COMPLEMENTOS DE MATEMÁTICA Módulo 1: Productos Notables y Factorización PRODUCTOS NOTABLES BINOMIO DE LA SUMA AL CUADRADO ( a + b )2 Cuadrado de un binomio 1 término 2 término er ( a + b )2 = a2 + 2ab + b2 ( a - b )2 = a2 - 2ab + b2 Producto de la suma por la diferencia de binomios ( a + b ) ( a - b ) = a2 - b2 Producto de binomios con término común do ( a + b )2 = a2 + 2ab + b2 Su enunciado es: “el cuadrado del primero más dos veces el primero por el segundo más el segundo al cuadrado”. ( x + 2 )2 ( x + 2 )2 = ( x )2 + 2 ( x ) ( 2 ) + ( 2 )2 = ( x )2 + 4x + 4 1er término 2do término FACTORIZACIÓN Factor común monomio Factor común polinomio Consiste en encontrar un factor presente en todos los términos del polinomio. 3a2 + 5ab = a( 3a + 5b ) x( a + b ) + y( a + b ) = ( a+ b ) ( x+ y ) Aspa simple 6n2 + n - 15 3n 2n + 5 = + 10n - 3 = - 9n +n = ( 3n + 5 ) ( 2n + 3 ) BINOMIO DE LA DIFERENCIA AL CUADRADO ( a - b )2 ( ax+ b ) ( ax + c ) = ( ax )2 + ( b + c ) ( ax ) + ( b ) ( c ) 1er término 2do término ( a - b )2 = a2 - 2ab + b2 Su enunciado es: “el cuadrado del primero menos dos veces el primero por el segundo más el segundo al cuadrado”. ( x + 2 )2 1er término 2do término ( 5x - 3 )2 = ( 5x )2 - 2 ( 5x ) ( 3 ) + ( 3 )2 = 25x2 - 30x + 9 DIFERENCIAS DE CUADRADOS ( a + b )2 ( a - b )2 1er término 2do término 1er término 2do término ( a + b ) ( a - b ) = a2 - b2 1er término 2do término Su enunciado es: “el cuadrado del primero menos el cuadrado del segundo”. Conclusiones productos notables son una multiplicación 1 Los indicada que no necesita realizar la multiplicación para su desarrollo. factorización de polinomios es transformar a un 2 La polinomio en una multiplicación indicada. factorizar polinomios se usan los métodos de 3 Para factor común, diferencia de cuadrados y productos notables, los cuales permiten por ejemplo obtener áreas, volúmenes, etc.