Subido por Labievi UNPSJB

ACI PRC 211-1 2022

Anuncio
Ih-Pou Ut
Iterto Stem of Ut
Selecting Proportions
for orma-Density and
HighDensity Concrete
Guide
Reported by AC Committee 211
N
N
I
�
•
�
�
N
I
u
0
Q
u
<
can nc nsu
_
Always advancing
First Printing
July 2022
A  I
Always advancing
ISBN:
978-1-64195-1869
Selecting Proportions for Normal-Density and High-Density ConcreteGuide
Copyright by the American Concrete Institute, Farmington Hills, MI. A rights reserved. This material
may not be reproduced or copied in whole or part in any printed, mechanical electronic, lm or other
distribution and storage media without the written consent of ACI.
The technical committees responsible for ACI committee reports and standards strive to avoid
ambiguities, omissions, and errors in these documents. In spite of these eorts the users of ACI
documents occasionally nd information or requirements tha may be subject to more than one
interpretation or may be incomplete or incorrect. Users who have suggestions fr the improvement of
ACI documents are requested to contact ACI via the errata website at http://concrete.org/Publications/
DocumentErrata.aspx. Proper use of this document includes periodically checking r errata r the most
up-to-date revisions.
ACI committee documents are intended fr the use of individuals who are competent to evaluate the
signicance and limitations of its content and recommendations and who will accept responsibility for
the application of the material it contains. Individuals who use this publication in any way assume all
risk and accept total responsibility fr the application and use of this information.
ll infrmation in this publication is provided "as is without warranty of any kind, either epress or
implied including but not limited to, the implied warranties o merchantability tness for a particular
purpose or non-iningement.
ACI and its members disclaim liability for damages of any kind including any special indirect, incidental,
or consequential damages including without limitation, lost revenues or lost prots, which may result
om the use of this publication.
It is the responsibility of the user of this document to establish health and safety practices appropriate
to the specic circumstances involved with its use. ACI does not make any representations with regard
to health and safety issues and the use of this document. The user must determine the applicability of
all regulatory limitations befre applying the document and must comply with all applicable laws and
regulations, including but not limited to United States Occupaional Safety and Health Administration
(OSHA) health and safety standards.
Participation by governmental representatives in the work of he American Concrete Institute and in
the development of Institute standards does not constitute governmental endorsement of ACI or the
standards that it develops.
Order infrmation ACI documents are available in print, by download, through electronic subscription
or reprint and may be obtained by contacting ACI.
Most ACI standards and committee reports are gathered together in the annually revised the ACI
Collection of Concrete Codes Specications and Practices.
American Concrete Institute
38800 Country Club Drive
Farmington Hills, M 48331
Phone: +1.2488483700
Fax:
+1.2488483701
wconcrete.org
Copyright Amerca Cocete Institue
ACI PRC-211.-22
Selecting Proportions for NormalDensity and
HighDensity ConcreteGuide
Reported by ACI Committee 211
zgi Wio Cai
Kamra Amni
Wiiam L Brrige
Kate J. Bojay
Mmme P A  Bashee
James C Blnkeip
Casimi J. Bognacki
Pete Bome
Aony J Cadioo
Ramo L Crquio
Bryn R Ctle
Teck L Chu
Mchael A Wisoant, Secrety
John . Cook
Kik K Deic
Berd J choldt III
Johua J Edwars
imoy S. olks
Davd W. owle
Brett A ari
G. ery Hari
T J is
nce S Heiige
Ric D i
Dvi . Hoingswort
TarifM Jer
Robet S. Jenkis
Joe Kelley
Gy  Knigt
rc P Koele
Frk A Koeliski
Robe C ewis
Tyer Ley
Joh J. ucino
Dawa Ldija
Ally C e
Kevin A MacDo
 . McGie
Kik  Obl
H Celi Ozyiiim
Jmes S. Perce
Steve A Rga
G Mcael Roinon
Jame M Shione
awence . Stte
Consulting Mebers
Doa E Dixo
Si avni
Jme N. ingscei
Royce J Rhd
Joh P. Ri
Av Shypl
This guide to concrete proportioning provide background ior
mation on, and a procedure fo electing and adjuting concrete
mixture proportion. It applie to normal-densi concrete both
with and without chemical admixtures, supplementa cementitiou
materials or both he procedure ues calculation baed on the
abolute olume occupied by the mixture constituent. The proce
dure incorporate consideration of requirement for aggregate
gradation worabili trength, and durabili Example calcula
tions are provided including adjustment baed on the reults of
the rt trial batch Appendixe cover laborato tets and propor
tioning of highdensi concrete
Keywords: asoute volme; mixe; air conte riiy; mixe
propotoning  pplemety cemeniios mate ial tchig waercemeiious matei io (w/cm); woability yield
ACI Committee Reports and Guides are intended r
gidanc in planning, dsigning, xcting and inspcting
constrction This docment is intended r the se of individuals who ar comptnt to valat th signicanc and
imitations of its content and recommendations and who will
accpt rsponsibility r th application of th matrial it
contains The American Concrete nstitute discaims any and
all rsponsibility r th statd principls. h nstitut shall
not be iable r any loss or damage arising thereom.
Rrnc to this docmnt shall not b mad in contract
documents. If items und in this document are desired by
th Architct/Enginr to b a part of th contract documnts
they shal be restated in mandatory langage r incorporation
by th Architct/nginr.
Copyright Amerca Cocete Institue
Woodwar L  Vogt
CONTENTS
CHAPTER 1-INTRODUCTION AND SCOPE, p. 2
1 . 1Histoca ackgound, p 2
1 .2Inroducton, p 2
1 .3Scope p 3
CHAPTER 2-NOTATION AD DEFIITIONS, p. 3
2.1Noaion p 3
2.2Dnions, p 
CHAPTER 3COCRETE PROPERTIES, p. 4
3 . 1Water-ceentious maerals rao (w!) p. 4
3.2Worabity p 4
3 .3Consstncy p. 
3.4Sengh p 
3.5Duabiity, p 5
3.6Densy p. 
3 .7Geneation of heat p 
3.8Paly, p 5
AC! PRC-21 1  1 -22 spss AC! 21 1  1- 91 (09) an was aope a pbsd
Juy 2022.
Copyg © 2022  Ameran Cocre Inse
All rghts resve incldng igs of reprouco a us n ay m or by any
mas, g e mang o opes by ay poo pocess, o by ron o m
chaica dvc prined witte or ora o coig  son o visal reproucton
or r use  ay knowdg or rval sysem or v nless pemsso   wng
i obane om the copyig popreors.
2
SELECTI NG PROPORI ONS FOR NORMA L-DENS ITY AND HG HDE NSTY CONC REEGUD E (AC PRC-2 11.1-22)
39Shrnkage p. 5
3   OModls of ascity, p 5
CHAPTER 4-BACKGROUND INFORMATIO, p 6
1Tial atching, p 6
2Smp p 6
3Aggrgas p. 6
4Water p 7
5Chemical admxtues p. 7
6A p. 7
7Water-cementios mateials aio (wlcm), p. 8
A 7Mxtes  sma os p. 32
APPEDIX B-HIGHDESITY CONCRETE
MIXTURE PROPORTIOING, p 33
B1Gnal p. 33
B2Aggregate selecton p 33
B 3Adjstmnt n ancipaon of dyng, p 33
B4Adjstment r entaned ar  p. 33
B5Handlng of hgh-density aggregates p 33
B6Prpacd aggga  p. 33
CHAPTER 1INTRODUCTION AD SCOPE
CHAPTER 5PROPORTIO SELECTIO
PROCEDURE, p 13
5. 1Backgond, p 1 
5.2Seection pocess p. 14
5. 3simaion of atch wghs p. 1 4
CHAPTER 6-EFFECTS OF CHEMICAL
ADMIXTURES, p 17
6. 1Backgond p 1 7
6.2A-entanng admixures p 18
6.3 Watr-dcng admixrs p . 1 8
CHAPTER 7EFFECTS OF SUPPLEMENTARY
CEMENTITIOUS MATERIALS, p 19
7. 1Backgond p 1 9
7.2Pozzolanc vrss cmntios p. 1 9
7. 3Types o f sppemenary cementios mateials p
19
7.4Mixr poporonng wh sppmnay cmni
ios matrals, p 20
7.5 Teary sysems p 2 1
7.6Impac of SCMs on ssanablity, p  2 1
CHAPTER 8-TRIAL BATCHING, p  21
CHAPTER 9-SAMPLE COMPUTATIOS, p 2
9. 1Backgond, p 2 1
9.2Example 1 : Mxure propotioning sng portland
cement only p 22
9.3 xampl 2: Mixr poporonng of nay mixtr
contanng y ash p. 24
9.4xampl 3: Mixr propotioning sing cmni
ios ecency cto p. 26
9.5 Example : Mxtue propoionng sng tage pase
volm, p 27
CHAPTER 0REFERECES, p 28
Ahord docmns p. 29
APPEDIX ALABORATORY TESTS, p 29
A. Need  laboaory esing p 29
A.2Pqaicaion of matials, p  30
A.3 Popts of cmntios matrals, p  30
A.4Popetes o f aggregaes p. 30
A.5Tial ach srs p. 3 1
A.6Test mehods p . 3 1
�
Copyright Am
1.-Historical backgound
Th aliy o talor concr proprs n accordanc
wih proect reqiemens eecs technological deveop
mns tha hav tan pac r th mos pat, snc th arly
1 900s  Th s of th watr-cmnt rao (/)on of h
key paameers of mxure poporonngas a tool r est
maing stngh was rcognizd n appoxmaly 1 9 1 8. In
the ealy 190s mpovements n dabilty wee acheved
wih he  se of ar entainment These m ajor developments
in concrt tchnology wr agmntd by h dvlop
men of chemcal admixures to achieve specal poperies
conrac possl dcncis, and mpov cost c
tiveness (ACI 21 2.3R). The s water-edcng admxte
was developed n he 1 920s and was paented in Erope
in 1 932 , and hn in h Und Sas n 1 939 . Slowly,
wate-edcng admxtues came ino wdespread se n he
1 970s and played a mao ole in improvng wokability
thby adsng mxt poporons. Arond ths tim, t
was also nd hat som concrt characistcs cold b
improved wih the addtion of cetan ndsial y-podcts
now cald spplmntay cmnitos matrals (SCMs).
The se of hese maeials has no ony mpoved varos
concee popertes b also played a maor ole in coni
ng o nvronmnal sstainabily With h mpmna
tion o these technologcal developmens n crent prac
tic mos commcaly prodcd conct conans som
type of chemical admixres SCM or oth and ther pes
ence needs o e consi deed while mixure proporonng
1.2-ntroduco
Concr is composd pncpay of agggats, a port
land o blended cement and waer and may contain SCMs
chemcal admixres or oth I wll contain some amont
of ntrappd a and may also contain prposly nrand
air creaed wh he se of an admxtue o ar-entanng
cmn. Chmical admixrs a qnly sd to acc
ra or rad h im of stng, mpov woabity, o
redce wate reqiemens (ACI 2 1 2. 3R)  Thei se may
ac strngth and ohr conct proprs. Dpndng
on the type and amon cean SCMs sch as y ash
(ACI 232.2R), nara pozzolans, slag cmn (ACI 233R),
and sica m (ACI 23R) may b sd in conjncton
wih potland o lended cemen. They are added o povde
spcic poptis sch as highr srngth dcasd pm
ability essance o he ntusion of aggressive sotons
Institue
American Concrete Insttute - Copyrghted© Materal - www.concreteorg
SELECTING PROPORIONS FOR NO RMAL-DENSITY AND HG H-DENSITY CONCREEGUDE (AC PRC211. 1-22)
inceased essance to alkali-aggregae eacton and sule
atack (ACI 225R and ACI 233R) rducd hat of hydra
tion educed shinage iproved late-age sengh devel
opent and r econoic reasons
Th sction of mxu propotions nvovs a alanc
between economy and equrements  duality strengh,
woabilty dnsty and apparanc Th rquid cha
acerscs are deterned y the inended appcaion of
concree and y the condions expected to e encountered
a th tim of placmn and yond Ths chaactrsics
should be deailed n the o specicaions Soe characer
istics a govd by h concr uildng cod A road
rang of chaactriscs rangng o hgh stngth o slf
consolidaon and owale lls o low-pemeablty rdge
dcks o pvous concr paking los and any oth
characeistcs and applicaons have been made possile
wih th us of adixturs and SCMs
Th bs concr proporions a asd on prvous xp
rience wth he maeials ha will e used on siila poj
cs. Lacking tha nuous mthods hav bn dvlopd
 propoioning concee xtues. Mehods have een
developed angng om abiary ceen:sand:roc:wae
proportions (hat s 1 :2 3 :0 5) prcal hods such as
wokability cors (Shlstone 1 990), and mehods developed
o st prncipls such as packng modls (d Larard and
Sedan 2002) and suspenson ehods (ACI 2 l l 6T) I
is beyond he scope of his dscussion to revew he back
ground and hoy bhnd ths hods o hos of h la
tivey simple procedues of ths gude. Computer programs
 concree mixre desgn ncopoating many of hese
thois ar comrcally avalab.
Frquntly xistng conct popotions a popo
tioned o nclude chemical adxtues SCMs, o a dieren
aial sourc Th pranc of h rproporiond
concree should agan e veied y ral atches n he labo
ratoy or eld
Proporons calculad by any mthod should always 
consideed provisional subect to revson based on tral
batch rsus Dpnding on crcumstanc tral atchs
ay e pepaed in a laoratory. With success n the la
the ras should move on o ll-size eld baches wh he
aials ans and mthods xpctd r th pojc. This
procedue when asle avods pitlls of assung tha
data o small bachs mixd n a laboatoy nvronn
will pedict permance unde eld condions When using
axmum-sze aggregaes larger han 2 n. laoraory ral
batchs should  vid and adjusd n th ld using
ixtres of he size and type o e used duing constrction.
Tral batch pocdurs ar dscussd in Chapt 8 wih add
tional bacground and dals provdd in th appndxs
1.3Scope
Ths guide descries a ehod  selecng proporions 
concr mad wth hydauc cnt mting ASTM C l50/
Cl50M C595/C595M or Cl l57/Cl l57M wh or whou
othe ceenitous ateials chemical admixres o boh.
This conc consists of noal-dnsy aggrgats high
densiy aggegaes, o boh (as disinguished om gh-
3
weght aggregates) wih a worabilty sutable r normal
cast-n-plac constucton (as disngushd o spcalty
concete mixures such as pevious o self-consolidatng
concetes) Poporonng with lghtwegh aggegaes and
rcycld aggrgas ar ohr comon optons; howv
they ae beyond the scope of ths docuent. Please efe to
ASTM C33 0/C330M and ACI 213R  lightwght agg
gaes, and ACI 555R  recycled aggregaes
Also incuded are seveal design exaples applying the
pocdu o a vaiy of situaons Fo popoonng wth
gound liesone or othe aggegate mneal ller efe to
ACI 21 1 7R
Inrmation is providd on trms and concpts usd in
the poporionng pocedue tha may e unmila to a
ovic usr
The procedue poduces a s approxiaion r propor
tons of a concr mixur I s inndd tha h propor
tons  chcd by tial batchs n h laboaoy ld or
boh and adusted as necessary o poduce a concrete wth
al th dsd chaactistics
CHAPTER 2-NOTATIO AND DEFINITIONS
2.1-otation
%free
pecentage ofee oiste on an aggregae%
pcntag of supplmntay cntious
%SCM
%total
A%
Air%
c
cm
'
 '
MC%
m;
mo
msso
mwe
PV
Rr
w
Wbathd
aeral to otal ceenitous by wegh %
pecentage of otal evapoable moisre
connt %
pcntag of oisu asorpion of an
aggegae, %
pecentage of concrete volume occuped by
ai %
ceent weght, lb
cntious wgh lb
specied compessive srength, ps
requied aveage compressive srength, ps
pcntag of moistur connt of an agg
gae %
pcntag of  oistu contn of an
agggat %
intial wegh of sample eng tested r
oistu connt b
oven-dy wegh of sample, b
satuatd suc-dry wight of sapl l
 wa wght lb
paste volume  
rlativ yild %
wae weght, lb
bach-ady oistu-adjustd wa wight
l
toal ee wae, lb
wght of agggat n saurad surc-dy
conditon 
yeld %
dsign targ volum ft
Copyright Amerca Cocete Institue
America Cocrete Insttute - Copyrghted© Materal - www.cocrete.org
4
SELECTING PROPORIONS FOR NORMAL-DENSITY AND HGHDE NSTY CONCREEGUD E (AC PRC-211.1 -22)
2.2-Defnons
Plas rr to h las vrsion o f ACI Conct Trmi
nology r a comprehensive ls of dentions Dentions
povided heren complement hat esource
 h srngh gand om ac h pound
of cement in a cuc yard Wth unts of ps/l/yd  ,  s
computd by dvding h  sngh by h wgh of cmn
 a cuc yard of conct mixur
  weight pe unit volume of
ovn-dry agggat compacd by roddin g. I is also known
as "dry-rodded density. In his guide, dy-rodded density s
usd as th prrrd tm
h aily o lvl smooth consolida
and oherwse eat suces of esh o recenly placed
concr to produc a dsd apparanc and suc
 he rao of weight of a volume of a
matial at a sad tmpratur to th wght of h sam
volum of dslld watr at tha satd mpatu (rr
o ASTM Cl2 r details). It is also known as "ela
iv dnsity. In ths guid spcic gaviy s usd as th
prered tem
 the weight per unt volume of a mateal. I
s also known as "dnsity. In his gud dnsy is usd as
he pered term.
h amount or quantity of havinss. I is aso
nown as "mass In ths gude, weigh s used as the
prered tem
CHAPTER 3-CONCRETE PROPERTIES
The selection of concree proporons involves maching
h qurmnts of h projc wh h matials and
mthods availal. In ths chap som of h commonly
encounered propertes hat go nto specfyng, designing,
and proporioning conct will b discussd. Concr
properes descie he way concee behaves whle eing
mixed, placed, cued, or in use.
Concrt propotons usually consid woraily
srengh, and durabily needed  he specic applica
ion. Oth popris may nd to  consdrd to nsur
meeng he expectatons of he nsalled maerials These
properes include pumpabily, nshability, leeding,
dnsiy hat gnraion and pmaliy Fo concr
slabs, morta conent and admxtues used can sgnicantly
act nishing and s chaactrsics of th conct mat
ials A proect can mpose the need  a parcula property
such as rapd sengh gain, modulus of elasiciy, lling of
a stl-congsd spac color and archtctual nsh For
some of these popeties, we ll-estalished elatonships are
nown. Fo oths h laonshp wn th spcic
propry and h mxu dsgn can gnraly  dscibd
with the deails wored ou though tal aches.
3.1-Watercementious maeals ao (w/c)
I has long n known (Aams 1918) ha r a givn s
of matras and co nditons concr sngh and durablity
ae dectly related o the /. Ths s he raio o f he weigh
of war xcudng tha asord y th agggat dvidd
y he weigh of cementious maeials n a mxtue, stated
�
Copyright Am
as a decimal. The abreviaton of cm epresens cement
and supplemenary cementious materials (SCMs) such as
y ash sl ica m and slag cmnt as dscussd th n
Chape 7
Dncs in stngh at a gvn / may sult om
changes n placemen or curing conditons; he maxmum
sz gradaton surc txur parcl shap stngh
and stness of aggegates; derences in cement types o
sources ar conten and he use of chemcal admixres
tha ac th cmnt hydation pocss o hat dvlop
cemenitous properes hemselves. Because mos o f these
cors a masuabl hy a accountd  in h com
mndations r quaniy of watr Accuat prdictons of
srength and he meeting of stengh tages should e based
on ial achs o xprnc wih th poc matials
and equements.
3.2Workabily
Wokaliy is tha propery of eshly mixed concete
tha dtrmins th as wth which i can b mxd placd
consodated, and nished to a homogeneous condion. I is
aeced by wae quanty, aggegate grading, paricle shape,
and proporions of aggrgat as wll as y th amounts and
qualties o f cemen and othe cementious materals, chem
ical admxurs amount of ntrand air and th conssncy
of he mixre
3.3Consistency
Conssency s he degree o which a eshly mxed concete
resists demaontha is, s abilty to ow. It s measued
in tms of slump (ASTM Cl43/Cl43M); th hgh h
slump h mor mobil th mxtu wll b. This aily o
ow aects the ease with which the concree can e placed.
In poply propotond conct h uni war connt
required o produce a given slump will depend on seveal
cors. The wae equrement inceases as aggegates
bcom mo angula and rough-txurd (bu hs disadvan
tage may be oset y mprovemens n oher chaacteistics
such as bond to cmnt past). Th qud mixing wat
decreases as he maxmum sie of well-graded aggregate is
inceased, or the level of a entrainment inceases Mxng
wat rquimns usually ar ducd by watr-ducng
admxues (ACI 2123R). Slump chaactestics ae used
 dvloping spcal concts such as sf-consoldatng
concee (ACI 237R), or othe applcaions needng close
conol of worabilty (ACI 238 R)
3.4-Strengh
Convnonaly h avag of wo 6 x 1 2  n. o th
4 x 8 n. cylndrs rcad curd and sd a h ag
of 28 days s he value accepted as concree's compessve
srngth (ASTM C3 9/C39M). It s usd as a conrolling vau
 srucural desgn, concree poporonng, and evaluaton
of con. Conct s commonly s pcid wh comps
sv sngths om 2500 p si to gat han 1 0000 ps . Th
varabe naue of its consituents, the eects of he place
mn and curng nvionmnt all ac conct stngh.
Sengh is aeced by vaiaons in mixure consituents,
Institue
American Concrete Insttute - Copyrghted© Materal - www.concreteorg
SELECTING PROPORIONS FOR NO RMAL-DENSITY AND HG H-DENSITY CONCREEGUDE (AC PRC211. 1-22)
producton processes and cuing conditons and can e
expected o vary an allowable amoun aound a cental
mean value (ACI 2 1R). Fo insance some hghway pave
men mxtes require eachng age srength n 6 hous
accomplished wh high cementious conents and multiple
admxtes In mass and high-strength concees (8000 psi )
mixtures are ofen poporoned to povde he design
srengh at an age greaer han 28 days Howeve such
concrete may equre a minmum ealy-age stengh such as
3 days, to povde r adequae ealy sengh  opeatons
such as m emoval rm anchoage o pesressing The
choice of stengh o w/c m can e aected by early-stengh
or duraily equiements
3.5Duabity
Concrete s expeced to have a long sevce li
and herere duraily is pat of he specicaion 
concrete construction (ACI 301), and concete bulding
codes (ACI 318) (rer o ACI 201.2R  rher details).
Alhough meetng the specied compressive stengh is an
essenal and mpoan chaacterisic of concrete dura
bily consdeaions may requre a lowe w!c m, resulting
in srength greater than speced A low w/c m wll prolong
the li of concete y reducng pemeaily Ressance o
weatheing patcularly eezng and hawng and to salts
used  ce emoval s geatly mpoved y ncopoation
of an entaned ai system. Enained a s used in exteio
concrete where eezing occus (ACI 20 1 .2R) . The duraliy
of concree exposed o seawater or sulte-bearng so ls can
be enhanced wh the use of sule-ressng cement slag
cemen silca me o other SCMs In some aeas, aggre
gates should e checked r alali-aggegate reacvy
(AAR). If AAR is deected migatng seps should e taen
Rer to ACI 201 2R, AC I 2 2 1  l R  and ASTM C l 8 
moe inmaon on the migaton ofAAR
3.6Densy
For ceran applcaions concete may be needed pimaily
 s densiy. Normal-densiy concete s appoxmately
10 to 10 lb/ (with o wihout ai entranment) Hgh
densiy concee s ofen used  counerweghs on lif
brdges, weghs r sinking oil pipelnes , a shield om adi
ation and insulaion om sound. S ome applcations o f low
densiy concree ae some rdge decks and elevaed oos
By usng specal aggegates densties as hgh as 30 l/f
and as low as 0 lb/ can e oained
3.7-Generation of hea
The hydration of cemen generaes heat (rer o
ACI 20.lR and ACI 301 Secton 8. 1 3  more inma
tion) Theee in many lage stctual elemens where a
hgh volume o f concree s pl aced, heat geneaton should
be consideed A mao concern n proporionng mass
concete, o  any concete element of sucien sze and
shape, i s the accumulaton of excessive hea and consequen
expanson of volume Thee can e a high hermal die
ental beween he coe and the elavely cool surce of
the concree elemen. The sesses nduced y the hemal
5
derential can lead to unaccepable cracks Temperare
conrol measures ncludng a themal derential of 3°F
 1 9. °C) o less should be consideed o educe he potenial
r such themally nduced crackng Concree placemens
paticularly when the mnmum cross-seconal dimensons
of a solid concrete meme approach o exceed 2 to 3 ft or
when low w/c m ae beng used may require that measures
be taken to conol the geneation of hea It s po ssible r
concete empeate to exceed 160°F (70°C) and if the
temperaure rse of the concete s no mnimized and the
hea is not disspated at a reasonale ate, or ifthe concrete is
subjeced to a severe empeaue deental (3 °F [ 1 9 4°C]
o more) o themal gradien, cracing  s lely o occur. Such
cracing occus a he suce of the concete typcally rst
at he cener of he lage suces  concete where estrant
is pimaly neal (e to ACI 20  l R Secion 4.3 5) .
Temperature conol measues can nclude a relaively low
intial placemen temperaure replacement of cemen wth
SCM educed quanties of cementious materals use of
chemical admxtues, o crculaion o f chlled wae. In some
situaions insulation of concete suces may e requed to
adjus  hese various concree condions and exposures.
I should be emphasized hat mass concee s not necessarly
lage-aggegate concete and hat conce abou generaon
of an excessve amount of heat n concree s no  conned to
massive dam or undaton structues
3.8Permeabiliy
Low pemeaily s an mpotan cto r the poduc
ton of duable concree by minmzng ngress of harml
chemicals whch is oen accomplshed by he addiion of
an SCM o usng low w/cm. Chemcal admxtues can also
be used  f low pemealiy is requied (e to ACI 212.3R
r permeability-reducing admxes) Ths s of paticular
inerest conceing highway idges needng to prevent
chlorde nsion ha ultimately corodes the einrcng
steel At he othe end of the permeablity scale, pervous
concete is used in areas where i is desrale o have waer
pass though the concrete r hydrologcal envronmenal
o susanablity easons This s managed by he use of
ltle o no nes with he help of chemical admixures.
Re o ACI 5221 r addional nmaion regadng
pevious concree.
3.9Shinkage
Reducing shrnkage is citcal to mmg concete
cracing Mehods r educng shrnkage nclude he reduc
ton of paste conent usage of shinkage-reducng admx
tues, usage of shrnkage-compensatng concete adequate
cuing and conol of waer conten (rer o ACI 209R
and ACI 224R r the nmaion). ACI 223R provides
inmaon on shrnkage-compensatng concrete
3.10Moduus of easticy
The modulus ofelascity is someimes of conce in appl
catons where deectons ae consideed such as brdges
oors and he sway of tall buldng s.
Copyright Amerca Cocete Institue
America Cocrete Insttute - Copyrghted© Materal - www.cocrete.org
6
SELECTING PROPORIONS FOR NORMAL-DENSITY AND HGHDE NSTY CONCREEGUD E (AC PRC-211.1 -22)
CHAPTER 4-BACKGROUD IFORMATION
4.1-Trial batching
Tal baching s a pocess tha demonsates tha a
concr mxur wih qud propris can  producd
wih a given se of mateials and ools y mxtue popo
tions. Shotcomings dnd in th tral achs ar
addrssd though mxtu dsgn modications o mov
closer to he desired popetes The process contnues until
all h rqurmns a saisd.
4.2Slump
Slump is th masu of consistncy of shy mixd
concree mortar or stcco equal o the subsidence measured
to th nast 1 /4 n. of th spcimn immdatly ar
removal of he sump cone (rer o ASTM Cl 43/C1 43M r
thr nmaon). Th quanty of wat p uni volum
of conc qud to poduc a givn slump is dpndn
on he nominal maximum se paricle shape and gading
of th agggats; th conct mpatu; th amoun of
entraned a; and use of chemical admxues Slump s no
greay aected by he quanty of cemen o cementious
matrials whin nomal us lvs Dpndng on aggga
textue and shape mixng-wate equrements may e some
what abov o bow th taulatd vaus, ut thy a su
cently accurate r he rs estmate The derences n water
demand ae not necessarly reected n srength ecause
oth compnsaing cors may  nvovd A oundd and
an angula coarse aggregae boh well and smilaly gaded
and of hgh qualy can e expeced to produce concete of
approximatly h sam comprssiv stngh r th sam
cmn cor dsp dncs n war-cmnt ato (/)
or w!cm, esultng om he dieen mixng-wate equre
mns. Paticl shap is no ncssarly an ndicaor tha
an aggregate wll be eher aove o below in s sengh
producing capaciy Mxtues of the siest cons istency tha
can b placd cntly should b usd
The slump val ues  concete containing aggregae lager
than 1 - 1 2 in ar basd on sump tss mad af rmoval of
parcles larger than 1 - 1/2 i n by wet screenng
4.3Aggregates
431 Wellgraded-A well-gaded aggregae has a
parcl-sz dsriution hat poducs maximum dnsy
that s minmum vod space Such an aggegae mnimies
the requed pase needed to ll the aggegate vods (rer
to ACI 2 l l .6T r dals on optmal grading and pacing
density) The aggregate combnations  his gude are
assumd to  wll-gradd and mt ASTM C33/C33M
qualis o rgonay availal agggas accpd y th
local stae agencies
432 Nominal maximum aggregate size Usd r th
esimaon ofthe intial wate conten he nomna maximum
aggrga siz is ndd in conjuncton wih h slump
This s bcaus gnrally th arg an aggga s, th
less wate s needed to mobie . The nomina maximum
aggrga sz is th smals siv opning hrough which
he enre amount of the aggregate s pemtted to pass 
-
�
Copyright Am
Large nomnal maxmum ses of well-graded aggre
gats hav w vods han smallr szs Hnc, concts
wih the larger-sied aggregates requie less mota pe unt
volume of concree Geneally he nomnal maximum sie
of aggga should  th lagst that is conomically avail
able and conssent wth dmensons of the sucure In no
cas sould th nominal maxmum sz xcd 1 /5 of h
narowes dimensi on etween sdes of ms; 1/3 he deph
of slabs; o 3/4 of he minmum clear spacing beween
indvidual incng bas bundls of bars o ptn
sonng strands (e to ACI 3 18 Secion 26.42 l (a)(5))
Ths limitaons a somms wavd f worabity and
mhods of consolidaton ar such tha th concr can b
placed without honeycomng o vods. In areas congesed
wih nrcng sl, post-nsiond ducts, o conduts,
the propotioner should selec a nominal maximum se of
agggat so conct can  placd whout xcssv  sgr
gaton pocts, o vods Whn high-stngh conct is
desired es esuls may e obtaned with educed nomnal
maxmum sizs of aggrga bcaus hs produc high
srengths at a given w!cm (ACI 363R ACI 2 1 l .4R).
4 33 Large aggregate sizes-I general he larges aggre
gat siz praccal  th spcic job should b usd. Som
specia consideatons ae needed when using hese age
szs (aov 1 n.)
Less morar per unit volume of concete requires a
reducton when propotoning waer cemen and sand 
a givn mxu Bcaus hr s lss pas and gnraly
lowe slumps (1 o 2 in) admixure dosages can e signi
canty deent to oban he same esults as a mixure wih
small aggrgas Air-nraning admxus may qui
grar dosags
Enained a may be proporioned nto the mxtue o
incas worabity Whn using larg aggga wih low
cemen ctors ai entranment is no necessaily detrmenal
to srength In mos cases he mxng-wae equrement is
rducd scnty to improv th ! and to hus compn
sae r he stengh-educng eect of a entranment. Fo
concs w ith lag nomnal maximum sizs of aggrga,
air conents recommended  exreme exposure should be
consideed even hough thee may be lile o no exposure o
mosr or zng
For some applications aggregae sies over 6 in are avail
abl In h nitd Sats, projcts usng larg aggrgat
ses have been typcally propotioned and placed usng 3  n.
nomina maxmum sie aggregae
4 3.4 Bulk volume ofcoarse aggregate per unit o lume
The voume of loose stone compacted to speccaons of
ASTM C29/C29M tha wll b akn up in h unit volum
of h oncrt mixu
43 5 Fineness modulus-U wth the maximum aggre
gat sz th nnss modulus s usd o simat h bu
volume of coase aggegae pe unt volume ofconcete. This
valu suls om an ASTM C 1 36/C l 36M siv analysis. It
is a cto oband y progrssivly adding h cumulav
sums of the percenages reaned on specied sieves hen
divding ha sum y 100 Th svs, halvng in opnng
se ae 6 n (150 mm) 3 n (75 mm) 1-1/2 in (375 mm)
Institue
American Concrete Insttute - Copyrghted© Materal - www.concreteorg
SELECTING PROPORIONS FOR NORMAL-DENSITY AND HGH- DENSITY CONCREEGUD E (AC PRC211. 1-22)
3/4 in (19 ) 3/8 in. (9 ) No. 4 (4.7 ) No. 8
(2 36 ), No. 1 6 ( 1 . 1 8 ) No 30 (600 ), No. 50
(300 ) and No 1 00 ( 1 0 ). I is an esae of he
posion in he seve sack whee he aveage se parcle is
locad In ohr words,   s a asu of h avrag partcl
se hat aecs the way he voids eween the coase aggre
gat patcls a l ld
436 Drydded densiU  deerinaion o f he
weigh of coase aggegate ae he bulk volue has een
caculad,  is th wigh p unt vou of ovn-dry
aggregate copaced y oddng as dened n ASTM C29/
C29M
43.7 Saturated suace-d relative densi (specfc
gravi)U  detenng he asolute volue of
coars agggat and usd to drin th wght of h
ne aggegae  s he ato of the weght of a volue of a
aial (ncl uding th wgh of watr wthn h voids bu
no includng th vods wn paricls) at a sad tpr
aue to the weigh of an equal volue of distilled waer a
a stad patu. Satuatd surc-dry (SSD) spcic
gravties ae easued usng he procedues ofASTM Cl 27
and C l 2 8 r coase and ne aggregates respecively.
4.4-Water
Wat usd in xg conct should conrm o
ASTM Cl602/Cl602M. ASTM C l 602/C l 602M allows he
use of potale wate wihou testing and ncludes ethods
 qualfyng nonpoal soucs of wa wh consdr
aion of eects on seing e and strength Testng equen
ces ae esablshed to ensue connued ontoring of wae
qualy Th sandad ncluds oponal lis  chords,
sus aalis, and solds n xing watr that can 
invoed when appropiae
4.5-Chemical admixures
Cheical adxtues are used o odfy the properes of
concr o a  o worabl duabl or conocal;
incease o dec ease the e of set acceleate stengh gan
or conrol tpraur gan. Chcal adxus should 
used only afe an appopiae evaluaton has been conduced
to show hat the desied eecs have een accoplished n
th concr und h conditons of inndd us. Wa
reducing adxres se-conrollng adxtues or boh
conrming o th qurnts of ASTM C494/C494M,
when used sngulaly o in cobnation wih othe checal
adxtues wil sgncany reduce the quanty of wae
pr uni volu of concr. Th us of so chca
adxtes even at the sae slup wll iprove such qual
its as wokablity, nshaity pupailiy duabity
and coprssiv and xural stngh. Whn only usd
to incease slup checal adxtes ay not iprove
any ohr of th poptis of h conct ASTM C 1 602/
C l 602M eques liquid adxtures used in quanites tha
incas h / y or han 0.0 1   cound as pat of
th ixng wa.
7
4.6-Ai
Th volu of a nds to b known caus  is
included n the su ofthe volues of he known ngredients
when applyng he absolute volue ethod o deerine
th vou of n aggrgat. A n conc appars n wo
rs: entrapped and enained Enrapped ar bubles are
gnally largr han nraind ons and irgularly shapd
and dispsd. ntaind ubs a gnray sallr han
0 1  and are ound unde icroscopc exainaon The
dsiution of th ubls asurd by h spacing cor
is as porant as the se Enained air is ntoduced into
conct to nhanc h concr's zng-and-hawng
rssanc. I is poducd wh h addion to h conct
xtue of ai-enraning adxtues.
4.61 Entrapped ntrappd ar s h air vods in
concete tha ae no purposely entained. They are lage
irgular n shap lss us than thos of ntaind ar and
0 04 in ( 1 ) o lagr n sz. ntrappd a is sn against
the sdes of he r and n broken concree as vsible voids
ndr aggrga paticls
Tale . 3. 3 appoxaes th e aount of enapped ar to
be expected n non-ar-entaned concree in he tale.
4.62 Entrained ntrand a tas h  oficro
scopc ar bules inentionally incopoated n a ceen
tous past duing ixng usually y us of a surc-aciv
agen. The air bubes ae ypically etween 00004 and
0 04 in ( 1 0 and 1 000 µ) in daeer and spheical o nearly
so. As iporant as h siz of th ubls is thr dispson
thoughou the ceent paste Soe waer-reducing adix
tues w l unntentionally entran ai
Tal 5 .3 3 ndicas h approxiat aount of ntrappd
ai to b xpct d in non-ai-ntrand concrt and shows th
recoended average ar conten  air-enraned concete.
If air nrann s ndd or dsid, th rquid toal ar
conent levels ae gven  each aggregae sie dependng
on the pupose of the entained air and the severy of expo
sur if ntrand ar s ndd r duraily
The use of noal aouns of ai enrainen in concete
wh a spcid stngth of approxialy 5000 ps ay not
be possibe because each added percent of air lowers the
axiu sengh oainale wth a given coinaon of
arals In ths cass, h xposu o wa dicing salts,
and eeng teperaes should e caelly evaluated If
a r is n ot contnually w and wll no t b xposd to
decng sas lower air-conent values such as hose gven
in Table  3 .3 r F 1 exposue class ae approprae even
though th concr is xposd to zng-and-hawng
teperaures Howeve r an exposue condtion where the
b ay b saturatd por to zng th us of ar
nainn should no  sacrcd r stngh. In crain
applicatons i ay e und ha he conten of entraned
ai s lowr than hat spcid, dspit th us of usually
satiscory levels of ar-enainng adixure Ths happens
occasionallyr xap, whn vry hgh cn contnts
ar nvovd In such cass , th achivn of qud
duablity ay be deonstraed y satisctory esults of
xainaon of a-vod srucur n h past ofth hardnd
concete (Ley et a 20 12 )
Copyright Amerca Cocete Institue
America Cocrete Insttute - Copyrghted© Materal - www.cocrete.org
SELECTING PROPORIONS FOR NORMAL-DENSITY AND HGHDE NSTY CONCREEGUD E (AC PRC-211.1 -22)
8
When rial atches are used o esalish stength ela
ionshps o vify strngth-poducng capabity of a
ixure, he least vorale coinaon of xing water
and ai conent should e used. The a conent should e
h axiu pmid o likly to occu and h concr
should be designed o he highes pessle slup. Ths
will avoid dvopng an ovr-opsic sia of stngth
on he assupton ha aveage, athe than exee, condi
ions wll pevail n the eld If he concete otained in the
ld has a lowr sup ai connt or oh th propotions
of ingredents should e adjusted to ainan required yield
Fo addtional nration on air connt condations
 to ACI 201 .2R 3 01  and 302.lR
4 6 3 Eect on trength Fo noral concee, he addi
ion of ach addiional prcnag pont of a will rduc
he sengh of he concree appoxaely 5% ( Yudaku
 al. 201 ).
4.7-Watercementitious maeas aio (w/c)
Th wa-cntous aras ao (w/cm) is th
ao paraeter controllng concee srengh Fo a given
ixure of concree aterals, a specic w/cm produces a
uniqu stngh. Fo h sa ixur achving a spcd
srengh requies a paricula w/cm.
Alhough t s piariy a dnan of concr
srengh, w/cm aecs othe porant properes such as
density, elasic odulus, duablity, shrnkage and cracing,
and prmabity. Achivng on of hs poptis ay ca
  w/cm lowe than one that ght e dctaed y strength
Once he / s chosen,  is used o detene the weigh
of cnitous atials f th quanty of wa s nown
or vc vrsa
471 w/c selectionT selecion of w!cm s ade
asd on h srngth qud Howv hr a svral
possbilies and ore han one w/cm ay e ndcated, and
an oderly consderaon is needed Frst, w/cm ay e spec
d n conac docunts. Nx th nvironntal condi
ions should be exaned. ACI 3 18 Chape 19 lss several
xposu cagois wih ultipl casss ach calling r
a parcula srength and w/cm The lowest w!cm r any of
the applcale cases, or he w/cm requied o produce he
rquird sngth nds o b consdd Finally o account
 he vaiabliy of concee, the requred aveage copes
sve strength, J', wll dcate a paticular w/cm The w/cm
slctd r th dsign wll b h lowst valu slcd o
beween hose required by speccaon, exposue class, o
rquid avag coprssv strngth Th rlaionshp
beween w/cm and strength can be evaluated though w/cm
cuves tha plot he srengh poduced by a patcular set of
ingdns as  w/cm is changd. Withou such an analysis
Table 5 . 3 4 can be used o estate w/cm
472 w/c speced by contractW  w/cm is spc
d by conac t should b copard to thos ndd 
duablity and strength If anoher consdeaion produces
a lowr w/cm, h spcication is consdrd to hav
been exceeded
473 w/c neededfor durabiliT qud w/cm and
strngth  duabilty s dpndnt on th xposu.
ACI 3 1 8 Chaper 1 9 requires consideaton of exposue o
th llowng u catgors: sul xposur (S) zing
and-thawing exposure (F), exposure when n contac wh
wae (W), and exposue o corosion (C) ACI 30  Chape 
also adopts ths ur xposur cagors dscid n
ACI 3 1 8 Chape 1 9
Tal 4.3a shows h rquirns r xposur Ca
goy S r sulte exposure
Tale 4.7.3 shows the requireens r Exposue Cae
goy F r zng-and-hawng xposur
Tale 4.73c shows he requireens r Exposure Cae
goy W n conac wih wae
Tal 4..3d shows th rquirns r xposu Ca
goy C  condtons rquing corosion protcton of
renrceent.
4 7 31 Freezing-and-thawing exposureT zing
and-thawing exposue class has u categores: F, F  ,
F2, and F3. The F caegory is not exposed to eeng
and-thwing condi ons and Catgois F l though F3 a
exposed o a lesse to a greaer exent The a conen 
zing-and-hawing rssanc s spcd n Tal 4.   3 l .
Tabe 4.3aRequiemens or concee by Exposue Caegoy S fo sulfae exposue (ACI 30120
Tabe 4.2.2.G(b))
Maxmum
Exposre cass
w/cm *
so
SI
S2
NA
0.50
0.45
Optio I
0.45
Optio 2
0.40
S3
Requied cemetitious mateals-types
Calcum chlode
Minimum.', psi ASTM C O/C OM
ASTM C 57/C1157M
ASTM C595/C595M
admxtre
2500
NA
NA
NA
No rsictio
I
000
Typ wih MS) signation
MS
No rsictio
500
y§
Typs wit S) sigion
S
No pmid
V pl pozzoan or
ypes wit (HS) esigion
HS pu pozzol o
500
No pmid
lg cmt
pl pooa o lg cmt
lg cm
5000
Typs wit S) sigion
S
No pmid
'Th mamm wlcm lms o no app o gwegh ore
tAlteative combiatons of cementious maeials of ose
ised n his able are acceptabe f este r slte resisance and meeig the crieia n Tabe 4  6(b  
or sawa posue oh ps o poran cemes wh cacm alma  C 3A) cons p o 1% are apab e cm os o ced 0
!Othe avaiabe types of ceme suc as Type I l o Type I are acceptabe n Exposre Cass es S  o S2 if the CA coens ae less an 8% or % especively
The amon of the specc source of the pozzoan or slag cemet to be se sha be at least the amout deemie by tes or sevice record to mprve slte resisance whe
se i cocee coaning Type V cement Alteaively he amon of the spec c souce of he pozzan or sag se shal ot be less an e amon este i accordance wi
AST C /C2M a meng h qurmns o Tab 4.2 26 b  .
I Tpe V mn s sd as e sol cemos maera,  opoa su ssace eqme 0 40% mamm epanson  n ASTM C 1 50/C  5M  s appcab
�
Copyright Am
Institue
American Concrete Insttute - Copyrghted© Materal - www.concreteorg
SELECTING PROPORIONS FOR NO RMAL-DENSITY AND HG H-DENSITY CONCREEGUDE (AC PRC211. 1-22)
Table 4.73b-Requements for concree by
Exposue Categoy F or feezngandthawing
exposure (ACI 3020 Tabe 4.2.2.6(c))
Exposue Maxmm Mnimm
Additiona
.
cass
', psi
Ai content
eqrements
w
FO
A
500
A

055
3500
abe 42.6(c) 
A
2
05
abe 42.6(c)
A
4500
Tbe
3
00
5000
abe 42.6(c) 
4.2 1 )
3
be
pai
05
500
Tabe 6 c) I
1)
concrete
•Te maimm wlcm limits do o appy o lightweight concree
Tabe 4.73c-Requiemens o Exposure Categoy
W n contact wth wate (ACI 30120 Tabe 4.2.2.6(d))
Exposre cass
WO
WI
W
Maxmm
w*
A
A
050
Mnmm
' psi
2500
500
000
Addtona minmum
reqrements
None
6a)
6a)
"e maximm wm limis do o appy o lighweigh onree
Tabe 4.73d-Requiemens or Exposure Cate
goy C or condions requing corrosion protec
ion of einfocemen (ACI 3020 Tabe 4.2.2.6(e))
Maximum watesobe
choride on C) content
Exposre Maximum Mnmm
in concete, % by mass of

cass
', ps
cementtous materias!
w
o-petesed cocee
co
NA
500
100
C
NA
2500
0.30
C2
0.40
5000
0.15
Prestrese concree
co
NA
500
006
C
NA
2500
0.06
C2
0.40
5000
0.06
Te maimm w/cm limits do o appy o lightweight concree
e maximm emeniios maerias onen se in deemiing hloe one
sha ot ecee wo times e mass o porand ceme.
Tabe 4.73.1-Toa ai content o concrete
exposed to cyces of feeng and hawing
(ACI 3020 Tabe 4.2.2.6(c))
:
:
:
i
Nomna maximm
aggegate sze, n.
38
1/2
3/
I
1-1
2
3
Tota ai content, % •t
Exposue Casses
F2 and F3
Exposre Cass Fl
7.5
60
70
5.5
60
5.0
60
5
5. 5
5
50
4.0
4.5
3.5
'Toeance o a r cote as delvere sha be ± 1 %
oj; eqa o or greaer ha 50 ps i, i is aepable o ree air one by 1 0
peceage point
9
able 4.73.2-Limts on suppementay cementi
ous materias fo concrete assigned o Exposure
Class F3 (ACI 3020 Table 4.2.1.(b))
Sppementay cementitious matea
y ash or nua pozzons coming to
ASTM C618
Sag cemen coming to ASM C989
C989M
Silica me conming to ASTM C  0
otal o fy ash or aural pozzoas sag
cement n siic me
Toal o y ah or ual poolans ad
lca me
Maximum % of tota
cementtos materia

by mass
25
50
10
sot
35 
Tota cemenitios materia also incldes ASTM C 1/C  0M  C9/CM ad
  157/C   57M eme he maximm peeages above sha  le:
(a) Fy ash or natal pozzoans pese  ASTM C 1 / C 1 M or C9 /C M
ype I P blee eme
(b Slag cemet pese  ASTM C 1 1 /C   M or C9/C M Type IS bened
cemen
(c) Sca me comig toASTM C 24 present in ASTM C  1 /C 1 M o
595 /C5 5M ype I bended emen
FJy ash o naura pozzoans and silica ume sal constitte o moe an 2% and
0% especvey, of he oa mass of he emeos maeals
able 4.73.3Sufae concenration ranges
fo each sufate exposure (ACI 20.2R6
able 6..4.1 (a))
Sfte exposre
cass
SO, egigie
S I  Moee!
S Severe
S3, Very sevee
Wate-soue suate (S04) in
so (% y weigt)
000 to 01 0
0.1 0 to 0.20
00 to 00
over 00
Sfte S0) n
water ppm)
0 to 1 50
15 0 to 15 00
1500 to 10,000
ove 10000
When se an be epenishe by owg waer or om aoher exerio soe,
the pesece o  to 10 ppm o se shod be consdeed moerae epose
 fhe oree w be exposed o ses a maxmm wlm of05 wi a
inimmJ' o  ps s eede r moeate epose o e sevee ad vey
severe exposes a wlm of05 ad a minimm sreng of 5 ps ae neee
4732 When SCMs are used r Exposue Class F
lis on ther use ae lsed in Table 
47 33 Suate exposure-Tl .  . lists the sulte
concentraon anges  each sule exposue class Exposue o seawae can be consi deed an equvalent to modeate
sulte exposue Sulte concenraon ranges  the sulte
exposure classe s are n Tale 
When sulte exposue i s ancipaed, consult ACI 0  .R
4734 PermeabiThere ae also Permeablity Caegoies WO and W   stuctures n consant conac wth
wae In the rst case peealiy is no a con sideation;
in he second case i s
In Table ., concrete exposed to water whee pereablity is not an ssue has only a requiemen of 500 ps.
Concete exposed o wae where permeabity s an ssue
such as concete used n a waer arer elementha s the
wall of a wae tankcan have a axiu w/cm of 050
and mnu compessve strength of 000 ps.
473 Coon Finally thee is he corosion class with Caegoies CO through . In he CO caegoy the stuctue is dry or protected om oistue. In the
Copyright Amerca Cocete Institue
America Cocrete Insttute - Copyrghted© Materal - www.cocrete.org
10
SELECTING PROPORIONS FOR NORMAL-DENSITY AN D HGHD ENSTY CONCREEGUDE (AC PRC-21 1.1-22)
Tabe 4.74.-Requied average compressve
stengh er f daa ae no avaiabe o esabsh
standad deviaon (ACI 30120 Tabe 4.2.3.3(b))
Speced c mpressive stengt
', psi
Requied aveage
cmpessve strengt', psi
Les than 3000
3000 to 5000
Ove 5000
lc'  1000
', ps
Use the larger f:
 + 100
  f' + 700
5000 or le
fc, = lc'  I  34
, =l' + 33k - 500
Ove 5000
f,' = lc  I 34
J= 09 0/c' + .33k
Tabe 4.74.3-kaco or inceasing sampe
sandard deviaon or numbe of strengh ess
consideed in calcuaing standad deviation
(ACI 30120 Tabe 4.2.3.3(a)2)
Total nm be o tests cnsdeed
15
20
25
30 o more
k-ct fr nceasing sampe
standad deviaton
116
108
103
100
oe Lnea epolao r nermeae nmbe of e  aepable
C 1 category here s no exposue o exeal chloides b
n Categoy C2 there ae exernal chlorides. In the C and
C l categoies a mnimm compessve strength of 2500 ps 
s the only reqiremen. In he C2 caegoy, whee here s
expose o exeal chloides such as deicng sas acksh
water seawaer or spray om these souces a maximm
w/cm of0. 40 and mnmum compressive stengh of00 0 ps
ae reqied as shown in Table 47 .3 d
474 w/cm fm rquird strngth-Bee of the vai
aly of concree, a eqied aveage compressive stength
J' is often equired. The equired average compressive
srengh shold exceed the specied compressive stength
' by a sucien margin to keep the nume of noncom
plian test esults elow 1 % (ACI 2 l 4R; ACI 301 ). Several
methods ae used o determine the reqed average
sengh dependng on he amount of stengh es daa tha
is availale.
4741 n no data ar avaiab-We no daa
ae availale r deerminng the sandard devaion
Tale 4. 7 4. 1 can e used to deermine he required average
compessve strength
47 4.2 Standard diation  dtrmindfrom 30 strngth
tsts-We he sandard deviaton is determned om more
than 30 strength ests, i s sed whou modicaion.
47 4. 3 Standard diation dtrmindfrom fwr than 30
strngth tsts- When s is based on 1 to 29 tests the s of
those est esls is multiplied by the approprae modca
tion ctor otained om Table 4 7. 4 3.
4744 Rquird avrag strngth whn standard dia
tion is dtrmind-Wh an applicale vale of the sandard
deviaon  he equaions om Table 47 .4 4 can e used to
calclae c.
4745 w/cm through watrcmnt ratio curs-A good
way to desgn a concree mixure is based on expeence
wih he mateias to e used and the esults achieved in the
pas. It is hghly desiable o have or to develop he ela
tionship beween strength and w/cm  the materals to e
�
Copyright Am
Table 4.74.4-Requred aveage compessive
strengh fer if daa are avaiable to esablsh
a sample sandard deviaon, ps (ACI 3020
Table 4.2.3.3(a)1)
', psi
Noe: / is requed average compressive steng;' s spec e cocee strength k
 o om Table 423 3(a)2 and ,  anda evaon aulaed n acorace
wi 4.23 2.
sed. Whe n such a relaionshp s availale he /  he
required aveage compressive sengh can be chosen
4746 w/cm by tabl-Approximate and relatively
conservative vaes w/cm r concree containng potland
cemen can e taken om Table 53.4 Wh typcal mae
rals, the taulated w/cm shold podce 28-day srengths
close o those shown ased on ess of specimens cued
nde standard laboatoy condions.
475 Cmnt-Cement shold mee the equrements
of ASTM Cl50/Cl 5 0 MAASHTO M 85 ASTM C595/
C9M-AASHTO M 240M/M 240 o ASTM Cll7/
C l l 5 7 M Specc gravty  cemen s generally assmed
to be 315  ASTM Cl50/Cl 5 0 M; al ohers may be
slightly lowe
47.6 Suppmnta cmntitious matrials-Supple
menary cementious maerals (SCMs) ae ofen used n
concete n combnation wth potland o lended cement
 economy redction of hea of hydation improved
wokablity and mpoved strength or duability nde he
antcpated sevice envonment These benets depend on
the amount and ype of SCMs used sch as y ash natal
pozzoans (ASTM C618) slag cemen (ASTM C989/
C989M) and silca me (ASTM Cl240)
As dened n ASTM C61 8 pozzolans ae "sliceous o
slceous and alumnos maeals which n themselves
possess lle or no cemenitos vale b wll in nely
dvded rm and n the pesence of mosure chemicay
reac wih calcm hydroxide a odnary temperaures o
m componds possessng cementios popeties.
Fly ash is he ney dvided esde tha esls om he
comstion of gound or powdered coal Fly ash sed n
concete s classed ino two categores: Class F whch
has poolanc properes and Class C whch n additon
to havng pozzolanc properes also has some cementios
poperies in tha ths maeral may e self-seing when
mxed wih water Class C y ash may conain lme (CaO)
amounts hghe than 1 0% The use of y ash in concree is
moe lly descred and discssed in ACI 2322R
Blas-ace sag is a y-prodct of the poducion of pg
iron. When his slag s apdly quenched and gound   wll
possess laent cementious popeties. Aer pocessing he
maeial is known as slag cemen whose hydralic proper
ties vary and can be separaed nto gades noted n ASTM
C989/C989M. The grade casscaton gves gudance on
the elave stengh poental of 0% slag ceme nt moars o
Institue
American Concrete Insttute - Copyrghted© Materal - www.concreteorg
SELECTING PROPORIONS FOR NORMAL-DENSITY AND HG H-DENSITY CONCREEGUD E (AC PRC211.1-22) 11
the rerence poland ceent motar a 7 and 28 days. Slag
cmn grads ar 80, 1 00, and 1 20, i n ordr of ncrasing
srengh poentia When slag ceent is used n concree
wih potland ceent he leves and ae of srength devel
opmnt will dpnd o n th poptis of h s lag cn, h
properes of the potland cemen and he relave and toal
amounts of slag cmnt and potland cmnt
Silca e as used n concete s a y-poduct resulting
o the reducton of high-pury quarz wth coal and wood
chips n an lcic ac ac during th producton of
slicon eal o rosilcon alloys (ASTM Cl240) Silca
m, whch condnss om th gass scaping o h
acs, has a vry high connt of aophous slicon
dioxde and consists of very ne spheical patcles Othe
nas hat hav n usd includ sli ca dust condnsd o
precopaced slica me and microslica he most appro
prat is silca m.
Mthods  popotoning and valuating concr
ixtres conaning these SCMs should e ased on ral
batchs using a rang of ngrdin proporions By valu
aing the eec on stengh wae equieen tme of
se and other impotan popetes he optmum amount of
cmntious matrals can b dnd In h asnc of
pror inrmaton and n he neres of preparng esaed
proportions  a s tral bach or a sis of ral batchs n
accordance wth ASTM C 1 92/C l 92M he llowng ypcal
ranges are gven ased on he percentage o f he ingedents
by h oal wght o f SCM usd i n th batch r srucua
concree:
Cass F y ash15 o 25%
Class C y ash15 o 35%
Natal pozzolans1 0 o 20%
Slag cn25 to 0%
Silca e5 to 10%
Whn using SCMs, h quantity of h matrals usd p
cubic yad of concree may be derent o hat pevi
ously shown. Often cerain specal equred properies
such as vy high strngth odulus of lasticy or slf
consoldaton nvolve usng ternary o quaternary blends
usng muipl SCMs.
In cass wh hgh aly strnghs ar qurd th toal
weigh of SCM ay e geate han would e needed if po
land cn wr th only cmntious matrial Wh
high early stengh s no requied highe pecenages of y
ash ar qunty usd
Oftn i s und tha wh h us of y ash and slag
cemen the amount of mxing wae equied o obain he
dsrd slump and worabity of conct may b ow
than hat used in a mixre usng only potland ceen.
Whn slica m s usd, addional xing wa s usuay
rqurd han whn using only potland cn. In calcu
lating he aoun of chemical adxtes to dispense 
a givn batch of conct, h dosag should gnrally 
appled o the toal aount of cementious aeral. Unde
these condtions the educon in mi xng wate  conven
tional wa-rducng admxus (Typs A, D, and E should
be a leas 5% and  high-ange wae-reducng admix
turs (HRWRAs), a last 1 2%. Whn sag cnt s usd n
concete xtues contanng some HRWRA the admixre
dosag ay b rducd y approximaly 25% copad to
xtues conaining ony porland cement
Due o dieences n hei specc gravties a gven
wght of an SCM wll not occupy th sam voum as an
equal weight of potland cemen. The specic gravity of
blndd cns wll b lss han that of porland cnt.
Thus when using eher blended cemens o SCMs the yeld
of the concete mixre should be adjusted using the acual
spcic gavis of h arals usd.
Class C y as h noally of exeely low caon conent
sualy has ltl or no c on nraind a or on th air
nainng adixtur dosag at. Many Class F y ashs may
requie a hgher dosage of ai-entraning admxre o oain
spcid air connts; if cabon contnt is high, h dosag
rae may e seveal es tha of non-y-ash concrete The
dosag rquird ay also  qut vaial Th ntand ar
connt of concr conainng hi gh-caron-contn y ash
ay be dicul o obtan and mainan. Oher ceentious
marals ay  tatd th sam as cn n dtrminng
the poper quantiy of ar-entainng admixtures per cubic
yad of concree o pe 1 00 l of cementious maeial used.
Concr contaning a poposd lnd of cnt, ohr
ceentious aeials and admixures should be esed to
dn h tm qud  sttng a varous mpa
tues. The use of os SCMs generally slows the ie-of
settng of the concee and his perod ay be polonged
by hghr prcntags of hs matals n h cntiious
blend cod weaher and he pesence of chemical adix
tues no ulated speccally r acceleraon
Bcaus of th possil advrs cs on nshng
tm and consqunt laor coss in som cold clmas,
the popoton of other ceenitous maerals n he bend
may hav to  rducd low th opum amoun r
strength consderaons. Some Class C y ashes ay aect
settng ie wheeas soe othe cementious maeials may
hav lttl c on sting  Any ducon in cmnt
conent wll educe heat geneaton and noay polong
th sing tim.
When naral pozzolans y ash slag cement and slica
e are used n concree a wate-cemen-plus-SCM raio
o / should b considd in plac of h radtional /
by weigh.
4.77 Absolut volum mthod-I his pocdur th
weghts o f waer ai ceenitous aerals and coarse
aggegate ae deened eher hrough speccaton expe
rnc, or chats. Onc ths valus ar known th asolut
volues of these aeials ae deermined usng he proper
spcic gravtis. Thn thos volums ar sumd along
wh th volum pcntag of ai That sum is sutactd
om the unit volume to deermine he required volue
of n aggga Th volum of n aggrgat s hn
convered o s equivalent wegh usng he specic gravty
and h wgh-volu rlaonshp.
4.7 7 1 Unit volumTe unt volu  ths pocdur
is 1 yd  The sum or the absolute volues of all the concete
mixur ngrdints wll  th uni volu.
Copyright Amerca Cocete Institue
America Cocrete Insttute - Copyrghted© Materal - www.cocrete.org
12
SELECTING PROPORIONS FOR NORMAL-DENSITY AN D HGHDENSTY CONCREEGUDE (AC PRC-211.1-22)
4772 Abolut olumI the case of solids he
displacmnt voum of paticls thmslvs, ncuding
thei peeale and peeale voids bu excludng space
beween parcles; in the case of uids hei volue
A mor xac pocdu r calculatng th quird
amount of ne aggregate nvolves the use of volumes
displacd y th ingdnts. Th asout volum mhod
presened subtacts he sum of he absolute volues of the
deermined constients o he unt voue o deterine
th rqurd volum of th sand om whch h wight of
sand is deermined The desgn s checked y measuring the
yild wth pocdurs of ASTM Cl38/C l 3 8 M as wll as
tsng h mixur's ohr rquird propris.
4773 Spcc graviwightvolum rlationhipTe
volum occupd in conct by any ingdn s qual to s
weigh divided y the densiy of tha ateial
Th spcic gravity is th ao of th dnsity of a
susanc to h dnsy o f wat at a spcd mpratur
and pessure. The densy s he wegh per un volue of
a substanc Th wgh-voum rlaionshp dnd y
the specic gravity of a susance is used o deene the
volume of a known susance if he wegh s known and
vic vrsa. Th dnsiy of a susanc wll b th spcic
gravty mulpled by he densty of waer. Once the density
is known, h wigh of a gvn volum of h susanc
can be und y dividing the volue by he densty If the
volume is known he weigh is und by mutiplying it y
th dnsy
47 7 4 hortical a irr dniThe su of the
weighs of the constuens of a concete ixtre dvided
by h sum of h absolut volums ss h vou of ar.
478 Moitur adjutmnt Knowng th mostur
conten of aggegae sockples s vaiale the ne water
bachd o h xtu ypcally has to  adjustd to accom
odae tha varaily Moiste adjusens ae no par of
the desg n They are adusens to the design weghs of the
aggrgats and wa nd d to achiv th conct ixtur
desgn wth respec o wae. The weight of he design water
should  adusd  wat on h agggats tha s 
to hydrae ceent. The ee waer s the toal aoun of
water minus h e absobed wae. When aggegaes are elow
SSD, hy wll absor war so addtional war will nd
to e added to the batch wate When aggregaes are above
SSD, th s  wa on h aggrgat so wat will 
suraced om the atch waer.
4781 On Oven dry is he mosture condion
achvd whn an aggrga s did to consant wight In
this state he aggegate contains no osure a all If an
SSD wight s known, th ovn-dry wight can b und
usng h l lowing quaton.
When he oven-dry weigh  s known the SSD weght can
be und us ing he llowing equaion
(
A%
m = m 1 + 
100
47 82 Saturatd cdry i s the mosture condi
ion achivd af a lly sauratd aggrgat is did untl
all he surce oiste has been evaporated.
�
Copyright Am
(47.8.2)
4783 otal moitur contntThe moisture content
is th amoun of moisu hat can b vapoatd om
an aggrgat undr contolld condtions and compud
om ASTM C66  I contains boh he asored and he
surc moistu.
The ota osure conten compuaion s
m;  m
m
%total =

100
(47.8.3)
4784 AborptionDetened though the pocedures
ofASTM Cl 27 and C l 2 8 absopon s th mosur connt
when he aggegate s dried o ts SSD condion to its
oven-dy state A he SSD sae he aggegate has absored
as much wa as possibl, ut th s no moisu on h
surce of the parcles.
A% =
m  m
m

100
(47.8.4)
4785 Fr watr ee waer is the toal amoun of
wa ss h wat absobd ino h aggrga. Ths wat
is on he surce of the aggregae paricles and is availale
to hydat cmnt.
-
(4.78.1)
)
%fr
=
%total  A%
(47.8.5)
47.86 Fr watr wight computation whn ovn-d
wight i kownTo compue the ee wae the oven-dy
weght of he aggegate is ultiplied y he ee moistue
connt o dtrmin th wigh of war ndd o adjust h
design wate conent
(47.8.6)
47.87 Fr watr wight computation whn SSD wight
i kownWhen the weight s given in erms of SSD
wght  s convtd no ovn-dy wght y divding y
(l +
100
mw 
m
l + 
A% 

MC0
(47.8.7)
100
478 8 Conntional mthodfor computation offr watr
wightBecause typcal batch ckets give he weighs of
th concr constitunts in SSD ms  s convnnt
to copute the ee water based on these values wthout
convrng o ovn-dry wght Th  watr is compud
as the SSD weght mulipled by he moi stue conent.
mw
=
msD
Institue
American Concrete Insttute - Copyrghted© Materal - www.concreteorg
x
MC%
(47.8.8)
SELECTING PROPORIONS FOR NO RMAL-DENSITY AND HG H-DENSITY CONCREEGUDE (AC PRC211. 1-22)
Ths method poduces an insignicant deence
compared o the heoreical mehod  hard aggegates. I
overesmaes the ee water because it ovestates he oven
dry wegh slghtly resuling n a ltle moe aggegate and a
lile less water n the mixure han called  by he design
usually well wihin the weighng toleances r wae
given y ASTM C94/C94M Cae should be exercsed
however, when using highly asoben aggegates a high
mosure conens whee  is possle o shi he ! o he
nearest 0.0 1 
479  
47.91 Yield s he volume of eshly mixed
concrete produced om a known quaniy of ingedens:
the total wegh of ingredens divded y he densiy of he
eshly mixed concree It is compued based on he elaion
ship given in ASTM Cl38/C13 8 M Concrete is poduced on
a volumeic ass ethe as a cubc yad or a cubic meter
bu i is atched on a weigh ass accoding to a mxtue
desgn o mxtue propotions If he mxte propoions ae
no ached o detemned properly he comned materals
may produce eihe more or less than the desred volume
of concree.
I s the sum of the weight of he ngediens bached
dvded y he esh densiy, also determined y ASTM C 1 3 8/
Cl38M The result is a volume tha is compared o he
volume he ingredens wee supposed o poduce The age
yeld is 1 yd o 27 ft of concree maeial in most cases.
4.7.92  Relative yield () is he raio of
the actual volume of concree obaned (  o he volume as
designed (Yd)  the atch calculated as llows
(49.2)
A value r  geaer han 1 00 indicates an excess of
concete eing produced whereas a value less han 1 .00 nd
cates the atch o be shot o f s desgned volume
Even though he concete aching pocess i s designed o
produce 1 yd (27  ) varaions in bach weghs, specic
gaviy of maerials aggregae moi stue condions and ai
conent will result n ucaions in the batch volume Thee
is no publshed yield toleance n eithe ASTM o ACI docu
mens bu a pacical olerance can e esmaed.
4793 B In the eld, ASTM C94/C94M
batchng olerances allow the atch weghs o vary ±1 %
 cemenitous materals and up to a maxmum ±2% 
aggegates when weghed n indvidual batches nained
air tolerances allow r as much as ± 1 .5 % of the mxtue
volume If he poduce decides o monito the overall toler
ance of he yield of the atchng pocess a 1 or 2% yield
would gve the numbers dealed n Tale 4.7 9.3 
A 1 % ove ach on aggegaes and a 2% addtional (ove
target) air conten can resul in a yeld o f 1 03 on some
mxtes.
As long as the  is withn 0.98 o 1 02  the yield s pob
ably wihin accepable oleances; howeve a contactor wh
a 1000 yd placement might oject to havng o purchase an
exta 20 yd above wha he anicipaed.
13
able 4.79.3-0verall batch oleances for yied
Overall batch toerances fr yied
Target
1%
Ry
2%
Ry
 ft
7.2
63
1.01
099
254
66
1.0
098
Over eld (+)
Under ield (-)
47.94 B of  Typcally in batchng
concete materals the weighing ou of he cementious
maerals s more consant than hat of he aggegates due
to compensaion and adjustment of ee mosre on the
aggegate Also, he cos dierence of cemen compaed to
aggegate puts a cus on coec oleance r cemen Fo a
gven mxe desgn the cemenitous conent is elatvely
xed o he accuacy of he scale om batch to atch This
relatively consant cement cto has he llowing eec on
changing batch yields caused by a vaey of cors
If the concee ach under-yelds (produces less han
the desied concee volume), he llowing condions
may occu:
(a) Cementious maeals ae ypically weighed on a sepa
rae scal e and are ily constan r a given bached mixre
design. When a load ofconcree is atched and und o e in
an unde-yield conditon, the pecent of cement pe volume
of materal is geate han ha of he desgn thus causing a
lower / (pesumng oginal wate content wih smlar
slump) and leadng to highe compressive senghs, and a
more cosly concree per cubic yad
(b) I f the atch sie  s smalle than expeced, bu the waer
conent s not changed the concete mixre may have a
gher-han-accepable slump
(c) The contacto wll eceive less concete than requesed.
If he concete ach ove-yields (poduces more han
the desied concee volume) he llowing condions
may occu:
(a) As stated prevously the same amoun of cement is
bached and he concee is und o e in an over-yeld
conditon. Ths equres the same amount of cemen to cover
a larger popotion of aggegates and resuls n less net
cemen pe yad hus lowe stengths
(b) The larger ach will require more water r a gven
slump which wll result in a highe / and lower-than
ancipaed strength
(c) If he wate conten s no changed, the concete
mxtue may have lowe-han-equesed slump
Relative yeld  trial batches should be repored n the
eld o la epot
CHAPTER 5-PROPORTION SELECTION
PROCEDURE
The pocedure r selecon of mixtre proporions gven
in this secon s applcale to nomal-densy and high
densy concetes. The same asc data and pocedures can
also be used n propotionng concetes using mulple aggre
gae sze acions mulple ypes of cementious mateials
o oh. Sample compuaions r hese ypes of concee are
gven n the examples of Chapter 9.
Copyright Amerca Cocete Institue
Am ercan Concrete Institute - Copyrighted© Material - www.concrete.org
14
SELECTING PROPORIONS FOR NORMAL-DENSITY AN D HGHDENSTY CONCREEGUDE (AC PRC-211.1-22)
5.1-Backgound
Slction of concr popotons should b asd on s
daa o expeence wih the aeials o e used. Where
such bacground s limied o no avalable esaes given
hn may b mployd Th innt is o produc a al
ach which will e tesed  the requied esh and had
nd propis and modd as ncssay to produc th
qurd proprs Th llowing nrmaton r avalabl
materials is usel:
(a) Sv analyss of n and coas aggrgats
() Densty of coase aggegate
(c) Bul spcic gravtis dnsty a SSD conditons, and
asorpons of aggrgas
(d) Mxing-waer equrements of concree developed
o xprnc wih avalabl aggrgas
(e) Relatonships etween stengh and he rao of / or
w/cm r avalabl cobinaions of cns ohr cni
ious matrals if considd and aggrgas
( Specic gavies of hydaulc cemen and other
cmnttious matials, f usd
Esaes om Tables 53.3 and 5.3.4 espectvely
may e used when inaon o Seps (d) and (e) are
not avalabl
5.2Seecon pocess
The selecon process egins by esang the equired
ach weghs r he concete. The esaon nvolves a
squnc of logcal, saightrwad stps tha, in c, 
he chaactestics of he availale materals no a mixture
sutable r he wo The jo speccaons ay dicae
som o all of h llowing
(a) Maxmum w/cm
() Miniu cementious mateials content
(c) Air connt
(d) Slump
(e) Nominal axum sie of aggregae
( Stngth
(g) Oher equrements elating to requred average
stngh, admixurs and spcial yps of cnt, othr
cementtious mateials o aggegae
5.3Esmaon o batch weghs
Regardless of whethe the concree characeistcs are
pscrbd y h spcications or ar lf to h ndividual
selecing the poporons esaon of atch weights per
cuic yard of concree can e es accomplshed in the
llowng squnc
531 Stp  Choc of sump-I slup s no speci
d, a valu appropra  h wo can b slctd o
Tal 5.3 . 1  Th valus providd n Tal 5.3  1 apply to
concree poduced whou a waer-reducing admixture
(WA). Most structual conct includs a WRA or hgh
ange water-educng admixure (rer o Chapter 6 r more
nration). Th slumps shown n Tal 5. 3  1 may incas
whn chmcal admxurs ar usd, provding h admxur
reated concete has he sae or lowe w/cm and does no
xhi sggaon pontal and xcssiv lding Th
slup ranges shown apply when vbraion is used o consol-
�
Copyright Am
Table 5.3.1-Typca sump ranges or concee
wthout waterreducing admixtures or various
ypes of consucon
ypcal slump
rages, n.
Types f costructio
I o 4
2 o 4
Siped
Mass oncree
.
2 o 5
3 o 5
Pavemets  ss pi fotigs aissos substucre walls reire atio w, ad foings
Beams eirce ws ad uiig colns
Slmp ay be ncreased w e -age or hg-ange water-ecg amxtues
are ue, pove a h amreae coce a e ame o ower wlcm
a does no exhbit segegation or excessve beeng.
idae the concete This table is povded as gudance 
a starng poin r ial batchs and slump valus should
be adjused ased on vaous condtions I should no be
appld as a spcication.
53.2 Stp 2: Choc of nomna maxmum sz of aggr
gat-Geneally the noinal maxmum se of aggregate
should b h lagst tha is conoically availal and
consisen with densions of he structure. The nonal
axmum siz shou ld no xcd 1 /5 of h narowst
dmnsion wn sds of rms; 1/3 th dph of slabs;
o 3/ of the iniu clea spacing between ndvidual
rncing bas, undls of bas o ptnsoning stands
(ACI 30 1 ; ACI 31 8)
53.3 Stp 3 Estmaton ofmxng watr an da r contnt
Th qantity of watr pr cuc yad of conct rquid
to poduce a gven slup s dependent on the nonal
axmum s parcl shap surc txtur and gadng
of th aggrgas th concr tmpraur h nrand
air contn; and us of chmical admixurs. Slump is
no signcanly aected by the quanity of ceentious
ails withn normal us lvls An nial sat 
the ixing-wate weght can e taken o Table 5.33. It
povids appoxmat ixing-wat wghs pr cuc yad
of concr mad wth vaious nonal maximu sizs
of aggregaes wth and wthou ar enainmen T he ai
rquirmns shown ar hos om ACI 3 1 8 Chaptr 1 9
duabilty equements.
5331 Afe deemnng the appoxmate waer and
air contns adus h valus r h applicabl condi
tions provided in Table 5 3. 3 1 . I is ecomended o wth
hold approxaly 1 0% o f his watr intially and hn
add slowly o oban poper slup  an ntial rs ral.
The qanity of water can be the rened depending on
numrous cors such as agggat xtu and shap, h
type and dosage of admixures epeaue changes and
oh vaious ctos as listd in Tal 5 3. 3 . 1 
53311 Chmca admxturs-eil admixures
are use d to odi vaious properies of concrete Ch ecal
adxus should b usd only aft an appopiat valua
tion has been conduced o show that the desied eects can
b accop lishd in th paticular conct und h cond
tions o f inndd us If such adxtus ar usd, th slu mp
can be increased he water content can be adused llowng
Tal 5 .3 3  1 , o a coinaton of boh ASTM C9/C9M
and ASTM C 1602/C l 602M equre the weight of the wate
Institue
American Concrete Insttute - Copyrghted© Materal - www.concreteorg
SELECTING PROPORIONS FOR NORMAL-DENSITY AND HG H-DENSITY CONCREEGUD E (AC PRC211. 1-22) 15
Tabe 5.3.3-Appoxmate mixing wae and ai content o deren slumps fo concrete whout water
reducing admxtues and nomna maxmum szes o aggegates
Water of concrete  indicated nominal maximum szes o aggegates, lb/yd
Slmp n.
3/8
1/2
34
1
Non-air-etined coee
350
I to 
335
315
300
3 to 
385
365
30
35
37 5
5 to 6
400
350
330
6 to 7
410
385
360
340
Moe hn 
Approximate entrapped i coten i on-air-eained cocete, %
3
5

15
Air-enraie concrete
1to2
305
95
280
70
95
3 to 4
340
35
305
5 to 6
35 5
335
315
300
35
325
6 to 7
365
310
Moe hn 7
.
-
AC
318
Required oal i, %
Exposure Cas FI
posue Case 2  3
-


60
5. 5
7.5
0
-
-
1-1/2
2
3
5
300
305
315
60
85
90
300
0
5
255
20
-
-
-
I
05
03
250
275
80
290
40
65
0
80
205
25
0
260





50
60
5
6.0
5
55
0
5.0
45
3.5
'Sl umps are maximum amonts r angua aggregates gade wihi imis of acceped speci aios
1Te slmp vaes ar based o slmp ests mae ae remova of paces larger a  - / i by we sceeg
!S lump vale o more a 7 n are  al oba e roug he ue o waeredcng adme. We ug waeeducng admre, llow maucurer
ecommenaons
Noe: ee qane o mng wae ae  ue  compug cemeniou coe r ra bace a 68 o 77°F
Tabe 5.3.3.1-Adjustmens to esmated wae
conten or vaous condons (adaped rom
Bueau o Recamaion Concrete Manua, A Water
Resources Technical Pubication, Chape I,
Secton 45)
Adjustments"
Changed condtion
Wate content %
8
Rounde ggege
Eac I % inease i ai coent
3
Eah I% decree in i oten
3
Wereding mite (WRA) sed
5
1
Higrge waereduig amire HRWR) use
a lmp iease of I in.
+3
-3
Eah sump decrease o I in
+2
ah I 0° incree in oncrete temperatre
2
c I 0 eease n cocete empeatre
Ec I 0% inrease i y ash onet as cemet
3
eplcemet by weight
a 1 0% decree in y ah coet  ement
+3
eplcemet, by weight
Eh 10% incree in sag cement onte as
5
ceme eplement by weigh
Ec I 0% ecese in lag eme coent 
+5
ceme eplement by weigh
+5
Mucte sad i ed
'Tese adjusmens assme te user s startig a stana laboraory emperatues o
68 o 77F wh concee avng a 3 o 4 n. ump a coanng reaoab we 
shaped aggregates gaded wi i limis of acceped speccaio s a naua sa
havg a ee moulu o2 7 5 e mbo "+ epeen he ado o wae
weeas e symbol  repeses e eucton i wae coent
in lqud admixurs  includd as pat of h toal mxing
water when t causes a change of the / of 0 01 o moe.
53312 Air contnt-The secton of Table .33 
non-ai-nrand conct appoxmas th ntrappd a
content o be expeced in mxtues ased on the nominal
maximum sz of agggat In th low pat of h al
the required otal air conent r Classes F 1  F2 and F3 spec
id n A CI 3 1 8 Chapr 1 9 ar also providd Inial propor
toning calculations should use he a conten as a pecent
of th whol Additonal ecommendaons r a conent
and toleances r air conten conrol in the eld are given in
ACI 3 18 ASTM C94/C94M also povds a connt limits.
The equrements n other documents may not always match
xacly; thr in proporionng consdraon should b
gven to selecting an ar conent tha wll mee he needs of
the jo as well as mee the applcable speccatons.
5.34 Stp 4: Slction of w/cmTh quid w/cm is
deemned no only y sength requiremens bu also by
cors such as duabilty Bcaus drnt aggrgas and
cmntious maials may produc dirn sngths a th
same w/cm, it s desiable o have o to develop he relation
ship bwn sngth and w/cm r th marials to b u sd.
In the absence of such daa, appoxmae and elatvely
consvatv valus r conct conaning p I porland
cmnt can  takn om Tabl 5 3 .4
The elatonship n Table 3.4 assumes a nomnal
maximum siz of aggga of approximatly 3/4 o 1 n.
For a given source of aggregate stengh poduced at a
gven w!cm wll ncrease as nomnal maxmum se of
aggga dcrass.
Wih ypical maeials, the abulated w/cm should produce
strngths clos to thos shown asd on 28-day tsts of
specimens cued under standad laoraory condions.
Codes require ha he average strengh selected should
exceed he speced sengh y a sucien margin o keep
the numbe of low tests wthn specc limts (ACI 214R;
A CI 3 0 l ; AC I 3 1 8) .
Copyright Amerca Cocete Institue
America Cocrete Insttute - Copyrghted© Materal - www.cocrete.org
16
SELECTING PROPORIONS FOR NORMAL-DENSITY AN D HGHD ENSTY CONCREEGUDE (AC PRC-21 1.1-22)
Tabe 5.3.4-Relationship beteen w/c and
compressive strengh o concee
Table 5.3.6-Buk voume o coarse aggegate pe
unt of voume o concrete
w!cm, by weight
Compessve strengt
at 28 days ps'
000
6000
5000
000
3000
2000
Nnaientaned
concrete
03
01
08
05
0.68
0.8
Aientrained concrete
<033
033
00
08
059
04
Vaues ae estmate aveage sengs o  ccree ctaining t mre an % a 
o n-ai-naned nre ad 6% a a cn or a-eraie cce F
a cnstat wlm, the sregth  ccree s edce as e air cnte is icrease
wnygh-day sregh vales may be csvave ad may ag we vars
cemius materas ae sed Te ate a wc e 8-day steng is evelped
may als age
Cmpessve sregth s base n  x  n  r 4 x 8 n  cylders mis ced i
acrda wi ASM 3 /3 IM s are cyins ms ure a 73 4 ± 3°
p t tesing
1Cncre wi a wlcm hat s less an 033 may eqire e addtn f cemica
admires, supplemeay meiius maias a hgh cemis maeras
cn  aive a 28ay cmpressiv sng  70  psi
For exposure casses of S hrough S3 F  though F3 ,
W2 and C2 the w!cm shoud be kep low even though
srengh equieents ay be et with a hgher vaue.
Rer o Tabe 47.3a hrough Tae 73d r axiu
w!cm and niu stengh equreents. Tabe 4 7. 3  1
addionally povides equred ar contens r Exposure
Casses F 1 though F3 as a ncon of noinal axiu
sze of aggregae.
535 Stp 5 Calculation of cmntitious matrials
contnt-Te quantiy of ceentious aeials pe uni
voue of concete s xed y the determinaions ade in
Seps 3 and 4. The requied quanty of ceentious ate
rias is equa to the estaed ixng-wate content o
Sep 3 dvided by he w!cm o Sep  If however the
speccaton ncudes a sepaae inu li on ceeni
tious aerals in additon to requireens r strength and
duraiy, the ixure shoud e based on whcheve crte
rion eads o the arger quanty of ceentious ateras.
SCMs or cheica adixures are often used to
increase wokabity strength, duraiy, appeaance, and
othe cors ipotan to he perance of concree
Rer o ACI 234R 232.2R 233R and 212.3R r ore
deaied inraton.
536 Stp 6 Estimation of coars aggrgat contnt
Aggegates of essentay he sae noinal axu sze
and gadng w produce concree of satiscory wok
ay when a paicular voue of coarse aggregate on an
oven-dry-rodded basi s s u sed pe unit voue of concree.
Appopate vaues r ths aggregae voue ae gven in
Tae .3.6.
The u volue of aggegae needed r a cuic yard of
concree, n cubc e t on an oven-dry-rodded asis, is equa
o he vaue o Tabe . 3. 6 uliped y 27. This voue
s convered o he dry wegh of coase aggregate y uli
pyng the u voue y the oven-dry-odded densiy of
he coarse aggregate. The oven-dry wegh i s then converted
�
Copyright Am
Nomna maximum
sze f aggegate, in.
3/8
1/2
3/4
1
1-1

3
Voume  ven-drydded case
aggegate• per nt voume f concrete 
dierent neness mdl  ne aggegate I
2.40
2.60
2.80
3.00
050
08
06
0
059
0.5
055
053
0.66
0.6
06
0.60
01
069
06
065
0.5
0.71
0.69
0.3
0.8
0.6
0.7
0.7
0.8
0.80
0.78
0.76
Vlmes ar based  aggregaes n ven-dy-e cdtn as descibe i
ASM 29/ 9 s e vlms are secd m mpica reanships 
pce ncete wth a egree f wrkably stabe or usual enoce cstrc
n F ss wab re sh as qid o cce pavmen nsuc
tn they may be ncrease by apprmaely  0%
Rer  ASM   36/ 3 M or caluan  ness mls
Table 5.3.8Design egh summary*
Design weight
Mixing wer
Cementitous maerls
Cose aggregate (S SD)
Fine ggregate (SSD
Toal weight
Step 3
Step 5
Step 6
Step 
-
f cemca admxures ae used rec the amixure dsage (z/yd) Rec te
arg ar ne perage acrding  e prvidd vales  ab 53 3 (Sep 3) .
to an equvaen SSD wegh by uiplying by 1 pus he
absorption (1 + A ) .
537 Stp 7 stimation ofn aggrgat contnt- he
copeton of Sep 6 he weghs of all he ngredients of
th e concete ixure have been esiaed except the weight
of ne aggregae. Cacuaing he required quanity of ne
aggegate nvoves the use of the voues dispaced by he
ingedents. In concrete the voue occupied y any ngre
den s equa to is wegh dvided y the densiy of hat
aeial (the atte eing he poduct of the densty of wae
and he specc gavy of he aea). For his cacua
tion he toa voue dspaced y he known ngediens
xing water ai, ceentiious aeras, and coase aggre
gate (SSD)s subacted o he unt voue of concee
27 ft  o otain he requied nue of cubc et of n �
aggegate needed. To copee he desgn, hat voue of
sand s then converted to an SSD weight based on s SSD
densy by utpyng he voue y he specc gavy of
the aggregae tes the density o f water.
538 Stp 8 Dsign wight summarnte he
consuen weghs oained o the previous steps ino
Tabe 53.8
539 Stp 9 : rial batch-Tral batches of a proposed
concete xte ae ade to conr tha he conaton
of aerals w produce he equred esh and hardened
popeies. The ixture design weights of Tabe .3.8 yp
cay need adusens to accoun r changes n aggregate
oistre contens pio to baching. These adjustents ae
to accoodate changes n sockpe condtons and are not
adjusens o he design of he xue
Institue
American Concrete Insttute - Copyrghted© Materal - www.concreteorg
SELECTING PROPORIONS FOR NORMAL-DENSITY AND HG H-DENSITY CONCREEGUD E (AC PRC211. 1-22) 17
Table 5.3.9.-Batch weigh summay*
Design weigt
Batch weigh
Waer
Step 3
-
Cemeniious meial
Step 5

Coarse ggrege SSD)
Step 6

Fie ggege (SSD )
Step 7
-
Tot weigh


'If cmca admxr a d, rec he admure ag (zy ) Rco 
target air cnte percenage accrdng o e prided vales i Tabe 5 . 3  3 (Step 3.
53. 91 Moisture adjustmentsTyy, aggrgas will
have geater oistue conent than hei SSD cond tion. The
aount atchd will nd to  incasd om h dsign
weigh expessed as SSD by he ee wae on he aggre
gate so tha he corect aoun of aggegate is used. I can
happn tha h aggga is so dry h aoun to b wighd
ou needs to e deceased wh additonal waer added o
brng it to SSD Th nsrucions tha llow wll work 
boh cases.
To deterne the weght of aggegate to be ached, use
th llowng mula  ach aggrga and hn n
these values into the atch wegh sumary (Table 5 .3 .9. 1 )
wbatched
( + MC%)
=
(l + A%)
 SSD
(5.3.9.l)
Th dinc twn th atchd wat and th mixng
wate weght o the mixure propotions s the weigh of
th  watr It s suracd om th xing-wa wigh
 the weight of wae o e atched. Ene his value ino
Tabl 5 .3 9 . 1  Th wat addd o h mixur plus th 
wate should equal he mixng-water weght. The otal ach
wight af osur adjustnts should ach h toal
xtu wght
The otal aount of mateials wll e needed o compute
th yd. Th pocdu s llusatd in h xaps of
Chape 9.
53.10 Step 10: Post-trial batch adjustmentsT calcu
latd ixtur propotions should  chcd  rquird
perance by eans of ral aches pepared and esed
in accodanc wih ASTM Cl 92/Cl92M o ll-szd ld
batches. Only sucent waer should be used to poduce
the equred slup regadless of the quanty assued
in scting h tial propotions Th concr should 
checked  density and yeld (ASTM Cl38/C 1 3 8 M) and
 air contn (ASTM C l 38/C l 3 8M; ASTM C l 73/Cl 73M
ASTM C23 l /C23 1M ). It should also be caelly observed
 wokablity resistance o segegaton and nishing
proprtis. Appopiat adustmnts should b ad in h
propotions  subsequen baches o corect deciences n
accordanc wth h ll owng suggstions
53 10 1 Adjustment Re-esae he quanity of he
requied mxng wae per cubic yad of concree by ulti
plyng th nt xing-war contn of h ria bach y 27
and divding the poduct y the yield of he tial atch n
cubc t If h sup of h tal bach was not corc
incas o dcas h r-stimatd quantiy of watr y
  lb  each 1 n. equied ncrease or decrease n slump.
In cases wher e he addtion of water is undes able, he use
of wat-ducng admixturs can b consdrd.
53 10 2 Adjustment If he desred ai conten (r
ai-ntrand concrt) was not achivd -stimat th
admixre dosage r he requed ai content, and educe or
incease he xing-wae conent of Section 5. 5 . 1 y 5 lb
r ach 1 % by whch h ar connt is o  incasd or
deceased o tha of he pevious ral bach.
5.3 10 .3 Adjustment If h dsrd strngth was not
achvd /-vrsus-strngth cus can b usd to adjust
the value. An example s sh own n Chaper 9.
Th masurd cmn cincy can also b usd to adust
the sengh. Cement ecency s he srength gained o
ach pound of cmn n a cuic yad. Wih unts of ps/
/yd , i is computed by divding the tal atch srength
by h wght of cnt r a cubic yard of th tral ach.
Dvidng th dnc btwn h inndd stngh and
the measued sengh by the cemen ecency esuls in the
wght of cmn to  addd to a cubc yad to ncras
o sutraced o decease he stengh. To eep he w!cm
consant a waer adustment wll e needed. The ne volue
chang rsuling o hs changs s ost by an adjus
ent to he weight of sand to keep he yield constan at one
cuc yard. An xap is shown in Chapt 9.
5 310 4 Postadjustments new batch weghts
staing wih Sep 5 (Section 5.3.5) and odify the volue
of coars agggat om Tal 5  3. 6 f ncssay o povid
pope wokablity.
CHAPTER 6EFFECTS OF CHEMICAL
ADMIXTURES
6.1Background
Checal admixures ae dened as liquids or dispes
ile powdes used as ingedents n ceenitous mixres
to impov th conoy proprs or boh in th pasic
o hadened sae.
This chap wll provid basic nmaion ndd r
poportoning of concree xes ncorporaing cheical
admixres. Although he desgn method presened n his
gud maks only passing ntion ofhis vry ltl comr
cial concree is poduced whou cheical admixures.
Chca admixurs a usd o ailo h poptis of
concrete mixres to mee specc permance requie
ents o f a gven project such as worabity, e of setng
stngth shikag duabilty prmabity viscosiy
rheology colo and othe popeties. The ype and dosage
of chmica admixurs ar slctd basd on th dsd
panc qumnts. As war-rducing admixurs
(WRAs) and a-entraning admixtures (AEAs) ae aong
th ost comonly usd chical admixurs in th
concrete ndusy ths chape will ephase the eects
of ths wo admixur typs on mixur poporonng.
Howvr admixurs ohr han WRA and AA such as
set etarders acceleatos, and shinage-educng adix
turs a also usd o  vaious prmanc targts. For
Copyright Amerca Cocete Institue
America Cocrete Insttute - Copyrghted© Materal - www.cocrete.org
18
SELECTING PROPORIONS FOR NORMAL-DENSITY AN D HGHD ENSTY CONCREEGUDE (AC PRC-21 1.1-22)
rther detals on admxue types and ther use in concree,
 to ACI 2 1 2.3R
6.2-Arentranng admxtures
Ai-ntraning admxtus (AAs) ar usd o pupos
lly entran a system of nely dispersed a ubles
primarly o incas th sistanc against zng-and
hawing damage whee ccally satated exteio concree
s exposed to epeated eeing-and-thawing cycles n cold
wath climats. Conct s svly damagd whn
enough ce rms in the capllares ecause ice creates a
prssur gra than th nsil sngh of th cmn
pas whch disrupts th capillay wals. Th addton of
AEAs stablies microscopic air bubles (enained a)
durng mixng. Ths ubbls povid a svor r watr
o mgrae nto durng eeing, hereby reducing he tensle
rcs crad in th cmn past causd by th xpansion
of zing wat in h smallr capllary vod spacs Whn
hawing occurs, the wate is rced ack nto he capllaies
y compssd ar n th vods thby ng h vods
r use agan durng the next eeng cycle. Howeve, 
should e noed tha he ar bubles entained y he AEA
a dirn han th ntrappd ai n conct. nappd
ar voids are incopoated no he concete durng mxing
Ths a manly rgula n shap and usuay 004 in
( 1 mm) or lage in se Enraned air bules are inen
ionally added into concree o stalie andomly distb
ud microscopic ai bubls tha a typically sphrca or
neay so, ranging in se eween 0.0004 and 0.04 n (0. 0 1
and 1 mm) n damete Due to he lage sie, enapped air
ubbs do no povd th ncssary proction against th
cycls of zing and thawng of h crically saturatd
concree A-entrained vods ae needed  poecion and
can b achvd hrough h us of an AA
AEAs may also be used to mpove wokabliy as
he enained air ubles have a lubrcation eec on the
mixur Du o th sz and shap of th a voids a
enraned concete typically contans up o 1 0% less water
han non-air-naind concrt of qual wokablity. Ths
educon n he volume of mixng water as well as the
volume of entained and enrapped ai mus be consdered
n popoonng. In additon h ncras o f a contn may
cause a educion n stengh. Therere, mixre popo
ionng should  don with th cons draion of h tag
ar conten's mpact on srength (efe to ACI 2123R r
moe inrmaton)
Th quanty of AA qurd to achiv an appropa
level of ar enainmen n concree s vaiale and depends
on many mxur dsgn chaactrsics. Among hs ar
h chaactistics of aggrgats yp and propoions of th
concree admixres, ype and duation of mixng, conss
ncy tmpraur cmn nnss and chmistry and th
use of other cemenitous maerials
6.3Watereducng admixures
Water-educng admixres (Ws) are used to educe the
amount of wat qurd to achv and maintain th tag
slump of eshly mxed concete The educon of wae in
�
Copyright Am
the mxe can also have oher enes such as loweing he
w!cm, hry ncasng th stngh. Rducng wa can
also mpove the duability, educe shrnkage and cacng
poental, and reduce pemeaily The use of a WRApemts
a rduction in cmnitous connt whn poporonng
concee mixures due to he reducion n wae conten r a
gvn w!cm. WRAs can also  usd to ncras slump whl
mantaining he oignal wae conten of he mixe
WRAs ae gouped ino hree geneal categoies based
on th xpctd amoun of wa ducon although th
is no standad classcaon indcating the amoun of wae
rducton associad wth ach cagoy Nomal-rang
WRA rduc th amoun of watr by a minmum of 5%.
Mid-range waer-reducing admxtes (MRWRAs) reduce
wat connt y btwn 5 and 1 0% Hig h-ang war
reducing admxtues (HRWRAs) can acheve wae educ
tions of twn 12 and 40% (Kosmatka and Wison 2016).
Howvr h watr rducton may vary (abov o low)
om he ypcal amouns listed herein. Theee, these
limits hould sv ony as a gnrc stating poin that may
be u sel r water adjusmen n mixre proporionng
WRAs are ypcally used to produce slumps in he
lowng angs
(a) ormal-ange WRA: 0 o 6 in .
(b) MRWRA 2 to 7 in
(c) HRWRA: 5 o 9 n.  convenonal concete and up
to 30 n o f slump ow  self-conso lidaing concete (SCC )
WRAs ar on muatd n comnaon with st
reades or acceleaos Se reardes extend he tme
concee remains plastc (wokable), whch is u sel dung
ho wahr o xndd tanspotaton im. St accraors
rduc th tm of sttng and acclra stngh gain This
can e usel in cod weaher o anytime reduced tme of
sting o acc lrad strngh gain is dsird.
ASTM C494/C494M species the characeistcs  s even
wate-educng and se-control lng admixures as llows
( 1 ) yp AWatr-ducng
(2) ype BRetading
(3) yp CAcclatng
(4) ype DWate-educng and reardng
(5) ype EWater-reducing and acceleang
(6) yp FWa-rducing high-ang
(7) ype GWate-educng, high-range, and readng
ASTM C494/C494M has on addtional admxtu cassi caon, Type SSpecc Permance Admxres. Type S
admxes ae desgned to aec specc permance char
actrsics of h concr without substanally impactng
the slump, time o f seting, o strength gain of he concete.
Thr ar many cass whr mo han on or two drnt
typs of chmcal admixurs a addd to conc. Whn h
use of muliple admxtes  s anticpated, especally n chal
lngng applicaons chmical admixtur supprs should
be consu led while stl l n the concete mxue poporonng
phas. In addtion h mixur propotioning phas should
includ a discuss ion o n h ach war adjustmnt ndd o
accoun r he waer n he admixures (especi ally f added
at hig dosag ras) and hir xpcd watr-rducton
levels The compablty of chemcal admixtures wih each
Institue
American Concrete Insttute - Copyrghted© Materal - www.concreteorg
SELECTING PROPORIONS FOR NORMAL-DENSITY AND HG H-DENSITY CONCREEGUD E (AC PRC211. 1-22) 19
othe and cementios mateials as well as he combined
cts of sing mltpl chmical admxts on concr
permance shold be assessed dng the ral aching
phase. Fll-scale al atches and mockps of srucal
lmns will hlp idni any nxpctd bhavios and
allow  mixtre adjstments.
CHAPTER 7-EFFECTS OF SUPPLEMENTARY
CEMENTITIOUS MATERIALS
1-Background
Spplmnay cmnios matials (SCMs) a sd
to mpov prmanc and cos-cncy of concr
mixtures while conrtng to sstanabil ty. Many of these
maials a naral maals whas oths ar indsral
by-prodcs, as shown n Table 7. 1 
2Pooanc vesus cementous
Fly ash, slica me, slag cemen, meakaoln, and
calcind clay a som of th mos commonly sd SCM s
When blended wth porland cement, S CMs conrte o he
properes of concete hrogh hydalc actvity, poolanc
acivty or oth (Kosmata and Wlson 201 6) Hydalc
acivty occs when phases in the SCM chemcally reac
wih war hry mng cmntos hydraion pod
cts simlar o those med hrogh he hydraon of pot
land cemen. Poolanc actvity occs when silceos o
alminoslicos marial n th SCM acts wih calcim
hydoxde (porlandite), whch n t ms calcm sl 
cae hydrae (C-S-H) Fthemore, poolans do not have
any cmntios propris whn sd alon Howvr
whn sd in connction wh potland cmnt hy rac
wih calcm hydoxde. Consideing calcm hydoxde
is h most solbl of h hydraon prodcs (and hs s a
weak lin in concree om poosiy and dability perspec
tives, as opposed to C-S-H, whch conites to stengh
and pmaily nhancmn of concr) pozzolanc
acivty s highly desed Table 7.2 shows the comparson
Tabe 1Supplementay cementious maeials
hat are classifed as byproducs vesus naural
poducs
By-prdcts
Natral oducts
Cas C y ah
Metkaoln
Ca F y ash
Calined ay
Slg ceme
Ccie shale
Siic me
Rice u ash
-

Tabe 2Supplementay cementitous materas
hat ae cassifed as pozzolanic versus cementitous
Pzzaic
Pozzolanc + Cementtios
Cas F y as
Ca C y 
Siic fme
Slg cemet
Meain

Ccie cly

Calined e
-
Rice husk s
-
of commonly sed SCMs ased on ther poolanc verss
cmntios chaactrisics.
Dependng on the ype and amont of SCMs being sed,
they geneally:
(a) Improv h woraly of concr and dcras th
tendency o bleed and segegae
(b) Rdc po sz and h porosty o f boh th cmnt
marx and he nercial ransiion one
(c) Enhance dailty and sevice life in tems of
dcasng prmablity ncasng sistanc to chmical
atac, deceasng shrinkage, and ncreasng ressance to
thmal cracng and alali-aggrgat xpansion
(d) Incas arly o lma srngth
SCMs are added to concree as a pecentage weigh asis
as pat of h otal cmntios sy sm whr thy may b
sed as a patal replacemen of hydalc cemen where
th toal cmnitos matrals contn s incasd hld
consant o dcrasd dpnd ng on h prrmanc of th
SCM, n the rm of a hydalc cement The decsion on
th SCMs ng addd as a rplacmn or addtion o th
oveall cementios sysem as well as he selection of the
toal cementios materals conent shold e made based
on th ovrall prmanc rqrmns
3Types of supplementay cementitious
materias
A ief smmay of he mpac of some of he most
commonly sd SCMs on conct popts along wth
the key consideaton poins whle poporonng mixres
conainng SCMs, is povided in he llowing.
7.3  1 Fy Fly ash s a y-prodct of h combson
of gond or powdrd coal. Dpndng on th soc o f th
coal, chaacerscs o f y ash may vary, heey derng
thr in nc on concr pmanc. Thr a wo yps
of y ash ha are commonly sed n concete: Class C and
Class F y ashes (ASTM C618 also recognes Class N
naral pozzolans). Fly ash shold conm to h rqi
ments of ASTM C6 l 8.
Class F y ashs gnally contan a low amon of lm
(sally less than 1 8% CaO), whereas i is typcal  Class C
y ashes to have higher lime conens (typically moe han
 8% CaO ) Dpnding on h prmanc qmnt y
ash is ypically sed within 1 5 to 3 5% o f he toal cemen
tos marals connt (ACI 232.2R). Howv highr
and lowe amons than the ypcal vales lised have been
sccesslly sed and can be selected depending on the
poc qrmns.
Althogh he mpac of y ash on concete popeties
dpnds on th yp and amon of y ash th llowng
statmnts a applicabl  mos mxts. Fly ash nds
to mpo ve wokabliy de o its sphercal mo phology hat
lads to h dcion of h inrpatcl cion Th
re, whle poportoning a mxtue ncooraing y ash,
dpnding on h slctd amont and typ ofy ash slighly
lowr wa connt (p o 1 0%) may b ndd compad
to a plain concete mixre conanng porland cemen only
to achv th sam slmp. D o ts slow pozzolanc ac
tvity, y ash can ncease the settng tme and decrease the
Copyright Amerca Cocete Institue
America Cocrete Insttute - Copyrghted© Materal - www.cocrete.org
20
SELECTING PROPORIONS FOR NORMAL-DENSITY AND H GHDENSTY CONCREEGUD E (AC PRC-211.1 -22)
hea of hydation. Consideing ths reardng eect, the type
and amoun of y ash should b carully slcd r po
ecs hat eque early tme of settng o are exposed o cold
weathe condtions
Mixurs ncopoating y ash spcially whn usd
highe han 20% of he otal ceentious conent, can reduce
shinkag thby ducng th potntial r shnag
elated cracs Dependng on the physical and chemcal
properes of y ash, i also deceases permeablity, enhances
duraily and may incas h ula stngh of th
mixures However, at early ages (especally up o 3 days),
mixurs wh y ash ay show lowr sngh gan than
mixurs wh poland cmnt only For mor nmaion
on y ash, rer to ACI 232.2R and 232.3R.
732  Slag cn s a by-product of on
producton n a blas rnace ASTM C989/C989M classies
slag cn ino th ll owng hr grads asd on s rac
ivy lvl: 1 ) Gad 80; 2) Gad 1 00 and 3) Grad 1 20
Dependng on the perrmance equeent, slag cemen s
ypcally usd o rplac 20 to 50% of h toal cmntious
materials conent. However, higher and lowe aounts than
he typical values listed have been successlly used and can
 slctd dpndng on h pojc rquirmns and in
some applcaions, up o 80% of slag cemen ay e used
(ACI 233R)
Depending on the neness and amoun used, slag ceen
may incease o decrease the wate deand Mxtues
contanng slag cnt may qui slghly low watr
contens (up o %) copaed to a plain concete ixture
contanng porland cemen only o acheve the sae
slup Slag cn typically dcrass th ha of hydra
ion howvr i has a no impact on th im of sting
dependng on he aoun and aen epeatue. I
nhancs durabilty and ulimat srngth For or in
maton on slag ceent, efe to ACI 233R.
733  Slica me  s he y-poduct of
h producon of lntal silicon o alloys contaning
silicon Silica e should conrm to he equieens
of ASTM Cl240. Dpndng on th pmanc qur
men, slica me is ypically used wihn  to 1 0% of the
otal cementious mateials conent Howeve, highe and
lowr aounts than th typcal valus listd hav bn
successlly used and can e seleced dependng on the
projc rquins
Slica e has a very ne paricle sie tha s, on average,
1 00 tme s saller than he paricle se o f potland cemen
Du to s parcls having a high spcc suc ara
silica e often ncreases the waer demand and ay
promo sckinss of a concr mxtu. Thr whn
all othr condtons ar kp th sa whn popotioning
a xtue containng slica me, he use of a hgh-range
watr-rducing admixur (HRWRA) an incas in watr
conten, o he conaton of boh wll be needed to match
h slump of a mixur containng porland cmnt only
Unl os of h ohr SCM typs slica u dos no
have a reardaion eect on tme of seting. In addtion, i s
usd to ncras boh arly-ag and ultimat strngth du to
ts very high poolanic eactivty I sgnicantly reduces
�
Copyright Am
the peealiy; hence, it is ofen used n ixtures whee
xpos to dltious susancs such as chloid pntra
tion is a conce. Moe nrmation on slica me can be
und n ACI 234R
73.4 Makaoln s a natural pozzolan
tha cons to he equirements of ASTM C618 Type N.
Mtakolin s ypically usd wthin 5 to 1 5% of h toal
ceenitous materials conten. Howeve, hghe and
lowe aouns han he typical values lsed have een
succsslly usd and can b slctd dpnding on h
proec equreents.
Maoln is usd in applcations wh hgh sngh
and low prmability a qud Fo mor inrmaton on
eaaoln and othe natual poolans, rer to ACI 232 l R.
74-Mxture propooning wh supplementay
cemenious materias
In th dsgn hod condd by this guid unlss
a pelended ceent s eng used, each SCM added is
tra as an addional xtu componnt wth its patic
ula specic gravty occupying whaever volume is dicaed
by he quanty used us lke cement) and included in he
volu calculations Pozzolans a typically rncd n
terms of pecen by weight of otal ceenious materals,
although so locations rrnc hm in trs of prcnt
by volume. Where no specc efeence o he conay
is ncluded, he deul rerence should e as a percent
by wigh.
When popotoning concee xtues contaning SCMs,
the llowng ctos should e consdered whle deer
ning th dsd yp and aoun:
(a) Pozzolanic actvty of h SCM and is ct on
concee strengh at oth ealy and lae ages
(b) Ipact on th sing ti and tardation
(c) Eect on the wate demand neede d r the desied
wokablity and placeabilty
(d) Spcic gravty of h SCM and ts ct on h
volue o f concree produced n the batch
() ct on h dosag ra o f chmical admxurs usd
in he m xue
( Eect of SCMs on heat of hydraion, permeabilty,
and shinag
(g) Amount of SCM and cemen needed o ee he
prmanc qurmnts
(h) pac on leedng rae and the need r addtional
curng
Tabl 74 s povdd as guidanc r th poporonng
of xtues containng SCMs. The elationship esablshed
in ths abl r a gvn SCM typ and thir corspondng
ipact on concr popris is applicabl only whn all
the oer paaeers are ept consant (r exaple, toal
cnitous aials contn / and chical admix
tue dosage ate) It should e noed ha thee may be cases
wh th rlaionshp may ll outsid of th ons shown
hr dpndng on th slcd sourc and amount of SCM.
In the ody of he table are arrows up, down, sideways,
and up and down anng hat ncrasing th amount
of a constiuent will cause the easue of the propery
Institue
American Concrete Insttute - Copyrghted© Materal - www.concreteorg
SELECT ING PROPORIONS FOR NORMA L-DEN SITY AND HG H-DE NSITY CONC REEGU DE (AC PRC211 .1 -22) 21
Table 74-Eecs of SCM ypes on concete properties (Taylor et al. 2006)
Propety
Cass  y ash
Class C y ash
Sag cement
Silica fme
Metakaolin
Worabiity
i

t
t
1
Heat o hydraton
1

1
<
1
Tme o settng

1
<
1
1
Ar content
i
1

i
1
Early strengt

-

i

Long-term strengt
Permeabty






i
1


Coride ngress



1

Alal-sca eacton





Sulate esistance





Feezng-and-tawing resistance


<

<
Drying srinage





Note:  lncass; ! Decreases  Inceases or decreases � Neutra.
to go up down stay th sam or chang could go th
way, respecvely.
75Tenary sysems
Dependng on the selected ype and amoun of SCM,
incooatng xcssiv amouns of a sngl typ of SCM
(bnary mxtues) may have negaive sde eecs such as
extended seting me In such cases, a possile soluton is
to us a ay mixur which is a combnation of th
cementious maerials that are lended to balance esh
proprs duraliy and strngth For xampl dpnding
on he selected amount, comining SCMs su ch as y ash and
slica me may e ale to ose he advese eects of y
ash on sing tm whas y ash may ost th incasd
watr dmand associad wih sl ca m.
76lmpac o SCMs on sustanabilty
Cmnt producon ms appoxmaly 5% of gloal
caon doxide and consumes % of global enegy
consumption (Hndiks  al. 2004). Thr th plac
men of cement wth SCMs improves susanab lity y using
natual pozzolans, consuming y-poducts, and educing he
dmand on cmn cln producton considing h dirc
relaon etween he amouns of cemen cline poduced
and th caron doxd gnrad. In addtion h incasd
durailty acheved wih SCMs educes he need  epai
and eplacement, esulng n geater susainabliy.
CHAPTER 8-TRIAL BATCHIG
Onc th proprs rquird of a concrt hav n
detemined, the next step is to determine he mxte mae
rials and poporons tha wll acheve hose properes.
Thos poporons can b asd on prvous xpinc o
can e developed usng an assormen of desgn methods.
Lacng thos th mthod commndd n his guid can
b usd o stablsh popotons  th s tial ach Onc
those popotons have been detemined, tral baches ae
conducd to dmonsra hat h ndd propts a
indeed poduced. This noton is ndamenal o his gude.
By whatv mthod h proporions a sablshd h
tral atchng should show ha all h qud poprtis a
withn applcale oleances r the tes. If none are given
in th spccaton ASTM C9/C94M givs guidanc on
slump and air connt olancs. Only thn can i  said
tha the purpose of ths guide has been met.
On h rquisi poprtis ar no achvd on h st
tial Whn his happns th mixur propotons ar adjustd
to move he perrmance of the mxte n he desed diec
ton. Somms tha adusmn wors o improv on
popey, ut causes anoher to ecome decien. Anoher
adjusmen i s then made, anothe tial ach is rn, and so on
nil all th qurmnts hav n mt. Onc h mixur
poduces desed esults in he la, i s ecommended tha it
b bachd a producton-lvl amounts using h matials
means, and methods o be used  he poec to e su re the
mxtue wos he same way when scaled up
Tral aching s xcud llowing h pocdurs of
ASM Cl92/Cl92M. his standard is usd  mixur
popotoning, evaluaion of dieren mxues and mateials ,
corlaion wh nondstuctv tss and rsarch purposs.
 spcis h standard condtions qupmn and proc
ues needed to test poposed mixtures r the esh pop
rs. Tss such as ASTM C l 06/C1 06M r mpau
ASTM C l43/C143M  slump, ASTM C l3 8/C 138M r
ensy and yeld, and ASTM C23 l/C23 1M or ASTM C 1 73/
C l 3M r ar connt a lsd among th pocdurs.
Following pope cuing pocedues s very impotan r
poducng rpoducibl rsuls and r compang wth th
results comng om he eld. To assure elale results, ests
should e perrmed y an appropraely ceted peson
Th mhod of h h-point cu can b usd to
scover he elaionshp between w!cm and sength r a
mily of mxtus wh simila poptis bu dng in
strength Such a curve can  e use d r he desgn of mixres
whin he sengh range of the cuve, as well as srength
adjusmn of th mixur f ndd.
Once he results of he ial bach have been gatheed,
Tabl 8 may hlp gud th ncssary adjusmns.
CHAPTER 9-SAMPLE COMPUTATIONS
9.1-Background
Th llowng ur xampl poblms will b usd to
dmonstat th popotoning procdur Th condions
lsed in the llowing apply to all examples 
Copyright Amerca Cocete Institue
America Cocrete Insttute - Copyrghted© Materal - www.cocrete.org
22
SELECTI NG PROPORI ONS FOR NORMA L-DENS ITY AND HGHD ENSTY CONC REEGUD E (AC PRC-2 11.1 -22)
Tabe 8-Eect o addtonal consttuents on vaous fesh properties (Kosmatka and Wson 2016)
Prpety
Cement
w/cm
Water
Ai
Fly ash
Sag ement
Siia ume
Water demand


l
l
N/A
l
l

l

l

i

N/A

l

i


l
!
l

!
l


i

l

!
i

l



i
i
Wraity
Ar cntent
Beedng and segregaton
Finisaiity
Tme o settng
Heat of hydraton
Strengt
Pemeabty
Crakng
ote:


l

i

i


-

<


i

i



i

l

j Icases; L Derases; ! Incass or dereases; < Nutal.
(a) ASTM Cl50/C150M Type I porland cemen wll e
used. Is specc gravty s assmed to e 3  1 5 .
() Coase and ne aggegates in each case meet the
equements of ASTM C33/C33M
9.2-Example 1: Mixtue popotonng usng
portand cement ony
Concete is required  a porion of a scure tha will
e elow grond level in a locaon whee i will no e
exposed o severe weatheing constan weing or sule
atack. It is in Class FO. A sengh of 2500 psi at 28 days s
speced A locally avalable onded coase aggegate with
a nomnal maximm sze of 1 5 in  s suitale This coase
aggregate has a saaed sce-dry (SS D) specic gravity
of 2 68  asopon (%) of 0.5%  and a dry-rodded density
of 100 l/f  The ne aggegae has a neness moduls of
2.80, an SSD specc gravity of 264, and an asorpion
(%) of 07% The quanties of mxtue constients per
cubic yard (yd ) of concete ae determned as olined in
the llowing steps.
92 1 Step 1  Estimate slump-O he basis of he inrma
tion n Tale 5 .3  1 as well as pevos experence a sl ump of
3  4 n  wi ll be tageed r the selece d placemen mehod
22 Step 2 Select nominal maximum size of aggre
gateThe locally availale ounded coarse aggegate with
a nmnal maximum aggegae sze of 1 .5 n. is sed in his
apcaion.
;23 Step 3 stimate mixingwater contentBecase
the srucre is n Class FO exposure class non-ar-enained
concete wll be sed. From the op porton of Tale 5. 3 3,
the appoximate amount o f mixng wate needed o poduce
a 3 o 4 n slump  n non-ar-enained concete usng 1 5 in
nominal maxmm se aggegate s 300 l/yd , and the
approximate amon of entapped ar 1 %
924 Step 4 stimate w/cmThe applcaion species
an aveage 28-day compessve sengh ) of 2500 ps
Fo poporionng wihot a standard devation the stength
overdesgn  concrees wih a speced strength less than
300 0 psi as eqed y Tale 4.  4. 1 s 1 000 psi. There
e, the reqied aveage compressive strength ') r hs
mixture propotion becomes 3500 psi Because no dura
ily issues ae ndcaed strength alone can dictate the
w/cm. Based on Table 53.4, the w/cm estmated to poduce
a sengh o f 35 00 psi in non-air-enrained concete i s ine
polaed to be 062.
�
Copyright Am

i
i
925 Step 5: Calculate cement contentFrom the nr
mao developed in Steps 3 and 4, he reqired cement
conent is calculated as: 300 lb/yd/062  484 l/yd 
926 Step 6 Calculate coarse aggregate contentTh bl
volme of coase aggegate s estimated om Table 5.36.
Wth the ne aggregae having a neness modlus o f 2 8 0
and he 1 .5 n . nominal maxmm sze of coase aggregae
the able ndcaes hat 0  1 ft of coarse aggregae on a dry
rodded ass, s a good estimae  a cuic ot of concee.
Becase its dy-odded densy is 100 l/  each ulk cuic
ot of coarse aggregate wold weigh 0 7 1 ft  100 l/
f =  1 l. Because a cuic yard (2   ) s being popor
toned he amount will be adjused as he llowin g:  1 l/
f  27 ft/yd  1 91 7 l/yd  Absorpton (%) wll e aen
ino accon o convet he dy-rodded densy to the core
sponding SSD wegh, as shown n the llowng
19 17 l/yd

(1 + 0.5%)  1927 lb/yd 
927 Step 7 Calculatene aggregate contentConcete
consiss of water ai cement coase aggregae and ne
aggegate For the cuic yad being proporoned, he weights
of all hese excep he ne aggregae have een determined.
The rst step necessary to deermne he weight of the ne
aggegate is y rst calclaing the asolte volumes o f each
of the known mixre constens. The asole volumes
are calculaed thogh ther weigh-volme relaionships
detemned y heir coesponding specc gravties (rela
tve densites). The volme of he ne aggregate sogh is
detemned y adding he otal volume of all oher mxtue
constens sbaced om the otal volme of one cuic
yard. The weigh of he ne aggegate s then calclaed
based on is weght-volume relationship sing he known
parametesnamely its volme and specc gavy
9271 Absolute volume computations
Volme of water = 300 lb/62.4 l/f = 481 f
Volme of cemen  484 lb/(3. 1 5  624 lb/ )  2 46 f
Volme of coarse aggegae  1 927 lb/(2.68  624 lb/ft)
= 1 1 .52 
Volme of ar  1 %  27.00 f  0.2 7 ft
Toal volme except  ne aggegate = 1 9. 06 f
Volme of ne aggregate = 2 00   1 9.06 f = 94 f
Toal volme of ngediens  270 0 f
Reqired SS D weigh of ne aggregate =  94 ft  264 x
62 4 l/f  1308 lb
Institue
American Concrete Insttute - Copyrghted© Materal - www.concreteorg
SELECTING PROPORIONS FOR NORMAL-DENSITY AND H GH-DE NSITY CONCREEGUDE (AC PRC211. 1-22) 23
able 9.2.8-Constiuent weghts
Tabe 9.2.72-Consuent weighs
Mixtue costtuents
Mixing waer
Cemetitiou materia
Coarse aggegate SSD)
e aggregate SSD)
Toal weig
lb/yd
300
8
1927
1308
019
lb/ft
1111
193
7137
484
1885
Mxtre constituets
Mixig waer
Cemeniios maerials
Coae aggregate SSD)
ine aggregae (SSD)
Tota weight
b/yd
0
8
1956
137
019
/t
8
193
2.4
51.00
1885
res denity at 1 % a
-
Ar-ee esity
-
18.9
resh deniy
-
148.9
150.4
Aifee denity
-
150.
w!cm =300 lb/484 lb = 0.62
9.27.2 For he rst laboatoy ral bach he consten
wighs as wll as th xpctd sh dnsty and h ar
ee densty (needed r compuation of yeld and a conten
per ASTM Cl38/C l 3 8 M), are calculaed as shown n
Tabl 92.2 pror o th mostur adusmns
9.28 Step 8 Moisture adjustment-Th consten
wighs r his mixur hav bn sablishd Howvr
mosur adusmns may b ncssay at th tim of
batchng o properly manage the amoun of waer requied o
achiv th targt prrmanc rqurmns. This s usually
due o he presence ofwate on the surce of aggregates tha
is availabl o hydra cmnt as opposd o war absorbd
by aggrgats. Fr wa s th dirnc bwn h
toal amount of water subtraced by the absorbed wae. If
th aggrgat moisu s abov SSD an adustmnt should
be made o the aggegate weights wth the excess moistue
above SSD beng subaced om he mixre water This
assus hat h toa amount of wat n th batch quals h
amount rquid as sad in Tabl 5.3.3 Ths adjustmnts
are not apparent n he nital mxe poporionng phase
and can ony b dtmnd ar h ia batch is compld.
For th matials avalabl tsts indcat a oa mos
te conen (%) of 2%  the coase aggegate and 6%
 h n aggrga. Rcaling tha th absorptons of h
coarse and ne aggegaes wee 0.5% and 0.7% respec
tivly mosur-adusd wights bcom
Coase aggegate: 1927
Fin aggrgat 1308
x

 + 2%
 + 05%
=
1 956 lb/yd
+6%
= 13 lb/yd
 + 0.%
Th  wa conrbutd by th coars agggat s h
dierence beween he mosure-adjused aggregate weigh
Uus compud) and h SSD wght om Sp 6 Fo coars
aggregate ee water s detemned as
1 956 lb/yd  192 lb/yd = 29 lb/yd
For n aggrga  wa s
13 lb/yd  13 08 lb/yd = 69 lb/yd
Th otal  war s th sum of th wo amouns
29 lb/yd + 69 lb/yd = 98 lb/yd
able 9.2.9Constiuent weghts
Mixtue costtuents
Oignal /t3
Mixing waer
8
Batched /t3
850
Cemetitiou matera
1793
1793
Coarse aggegate (SSD)
72
72
Fie aggegate SSD)
5100
5100
Toal weig
e esity
Air-ee desiy
1885
1489
150
198
1475
-
Th h wa rquid r batchng s
300 lb/yd  98 lb/yd = 202 b/yd
Wih aggrgats adustd o th curn moistu cond
ton h constun wights ar shown n Tabl 92 8 .
Note hat after he moiste adjusmens, he sum of the
wghts of th consuns p cubic yard (yd ) and pr
cubc ot (f ) do no change om he oignal poporons.
92.9 Step 9: Posttrial batc-A nial 1 f ral batch
of ths mxte was pepared. Alhough the quanity of waer
r h tral bach was proporiond to b  48/ft   h amount
of water added to reach the desied 3 to 4 in. slump resulted
in a sump of 2 n. Thr o ncas th slump o ach
the design values of3 to 4 n., an additonal water conent of
 02 lb/f was added that inceased the oal waer conent
o 8. 50 lb/f  Th batchd wighs a shown n Tabl 92 .9. 
'
92.91 The tral batch poduced concete wh a 2 n.
slump tha s blow h 3 to 4 in slctd a Stp 1 . Ev
wth xtra war of 1 02 lb/f addd slump was oo low; 
herere, additonal wate was needed. The mixing wae i
h bach was no jus h 48 b/  tha was wighd out
bu also ncluded the ee wate on he aggegaes The ee
war wghs a und by rvsing h compuations 
'
drmining th moist wghs om h SSD proporionng
weghs The aggregate batched weght s st divded by 1 +
% to tu o ovn-dy condion and hn multplid by
 + % o brng he aggregate to SSD. The esultng equva
lnt SSD wgh is subtactd om th batchd wghs to
drmin th amoun of  wa on th aggrgas n th
tial batch
Coars aggrga
7244 (mos)

1 + 05%
1 + 2%
=
7 1 37 lb/ (SSD)
Fr war = 2.44 lb/ft   1 .3  lb/ft = 1 .0 lb/ft
Copyright Amerca Cocete Institue
Am ercan Concrete Institute - Copyrighted© Material - www.concrete.org
24 SELECTI NG PROPORI ONS FOR NORMA L-DENS ITY AND HG HDE NSTY CONC REEGUD E (AC PRC-2 11.1 -22)
Table 9.2.9.6-Constuen weighs
Fne aggegae
5 1 00 (ost)

 + 0.7%
 48.45 b/ (SSD)
 + 6%
Free wate  5 1 00 /f  48 45 l/f  255 /f
Theree, the ixng waer n the tra ach was
8.50 lb/f bached + 1 07 l/f ee on coarse aggregae +
255 lb/f ee on ne aggregate  1 2 1 2 /f
To produce a cuc yad of concete wth the sae 2 n
slup as h ial batch would us
1 2. 12 lb/ft
x
2.0 0 ft = 32 l/yd  of wa
To ncras th sup o h asurd 2 n. o th 3
to 4 in rang slctd in Sp 1  h aoun of wat gh
be ncreased by anothe 15 l  1 .5 i n addional slup,
brngng th ixtu wat r h nx tral to 34 2 b/yd .
9292 The density was easued to e 147.5 lb/  , and
the yed was
147.5 l/f

270 0 f/1 48.9 lb/  2675 ft
Kowing the air-ee density to be 150.4 /ft , the gravi
tic a conn was coputd o 
Air% =
(150.4 /   14 75 l/  )
1 50 .4 lb/ft 
x
100  19%
92.93 With th ncrasd xing wat addiona cn
is needed o ainain he w!cm of 0.62 The ceen conten
 the next ral becoes
342 lb/yd/062  552 /yd 
9294 As workabilty was und o e satsctoy,
h wight of coars aggga wll rain as oignally
proporond.
9295 With hese changes ade, Step 6 is eappied to
drmin th aoun of n agggat ndd  h nx
ral batch
Voue o f wae  342 /62 4 /f  5.48 ft
Volu of cnt = 5 52 l/(3. 15 x 62.4 l/ft ) = 2.8 1 f
Voue of SSD coarse aggregate  1 927 /(2.6 8 
62.4 lb/ ) = 1 1 .52 
Voue o f a (usng easued air o tra)  1 .9% 
27.00 f  0.5 1 f
Total volu of ingrdns xcpt n agggat =
20.3 2 f
Volu of SSD n agggat rquird = 200 f  
2032 f  6.68 f
Requed weigh of SS D ne aggegae  6 68   2.64 
62.4 lb/ = 1 100 lb
9296 Prior o tia batch osure adjusens, the
constunt wighs  h nx tial atch pr cubic yard
and pr cubc o ar dnd as shown n Tabl 92 9 .6 
�
Copyright Am
Mixture consttents
Mixig wate
Cemeiious mteials
Corse ggege (SSD
Fine aggege (SSD)
Totl weight
lb/yd3
3
55
1927
10
391
l/ft3
16

71.3
4.
15
Feh denity
-
145.
Ar-fee eity
-
148.0
Th / is antand o b 062 (342 lb/552 b)
92.97 Th rsuls of th nx tial atch wi b valuad
 its properies, and if und decent agan, the adust
ns o h popotioning will b ad un th dsid
properies are achieved. However,  shoud e noed hat
an adsn o corct on popry ay advrsly act
anohr propry Th procss contnus unti all th rquid
properies of the ixure ae acheved.
9.3-Example 2: Mixure popotionng of binay
mixture contanng fy ash
 conct xtu s ndd r sval ponds on a lo s
 ocaed in Nothe Maine The ponds wil e operaed
in such a way as o  lly nuncd by h ids ut not
the drect pact of the waves For duraiiy, this appca
tion s cassed as S  , F 3, and W  . For additona duabilty,
y ash at 20% by wgh as cn rplacn is spcid.
 oca ounded coarse aggegae wth nona axu
sz of 1 .5 n. wth sutab gradaion SS D spcc gaviy
of 2.6 6 a dy-oddd dnsty of 1 0 1 l/f  and absopton
(%) of 0.8% s avaabe  ocal naral sand, havng a
neness odulus of 2.80, an SSD specc gravty of 265,
and an absorpton (%) of 1 .0% wi   usd.  sapl
standad deviaon (S) of 300 psi has been deterned o
silar xus
931 Step 1 Estimate slump- slup of 5 to 6 n. is
specied.
93.2 Step 2 Select nominal maximum size of aggre
gate-Th ocaly availae rounded coarse aggegate wih
a nona axu aggrga sz of 1 5 n is usd in his
applicaton.
933 Step 3: Estimate water contentv saltwae
and zng-and-hawing xposus plac this applicaton
ino Exposure Cass F3 . The evel o f ar entranent  F3
is und in Ta 5.33 Givn th nonal axiu aggr
ga siz of 1 5 n. a toal ai contn of 5 5% is quid. To
enain 5.5% a, an ai-enanng agen (AEA) wl e used.
Fo hs xposur consdraions along wth h 5 o 6  n.
sup and he 1 5 in. noina axiu se of aggregae,
an appoxa ixng-watr wigh of 280 l s co
ndd  conct whou a war-rducing adxtu
(WR) ased on Tabe 5.3.3 Howeve, a WR wihin he
anucur's rcondd dos will b usd Thr
Tabe 5 .3 3  1 suggess water reducion of 5% when using a
WR, whch ylds a 1 4  wat rducton.
Th us of 20% y ash rplacn aows  a th
wae reduction of 6%, which yed s to 1 7 b based on
Tabl 5.3 3 1 .
Institue
America Cocrete Insttute - Copyrghted© Materal - www.concreteorg
SELECTING PROPORIONS FOR NORMAL-DENSITY AND H GH-DE NSITY CONCREEGUDE (AC PRC211. 1-22) 25
Furhermore, Table  3. 3   suggests a wae reducton of
8%  h us of oundd aggrgas whch yilds to an
addiional 22 lb.
The estmated mxng water hen ecomes
280 lb  14 lb (due to W)  1 7  (due to y ash)  22 l
(du o roundd agggas) = 22 lb
Ths war ducons a stimats and should  valu
atd wth a ral batch.
934 Step 4 Estimate w/cmThe selection of w/cm
rqurs considation of oth th duraily and stngh
requrements Based on Table 47.3a though Table 4.7.3d,
F3 zing-and-hawing xposur allows only a maxmum
w/cm of0.40 and minmum' of5000 psi. In h tida splash
one  seawae exposure, S  pems only a maximum /
cm of 0 50 and minimum ' of 4000 ps i Fo wa tght
ness, W  has a minmum of 200 ps i Based on ths, he
F3 equiemens r eeing-and-thawng exposue goves
duabity considations
The srength needs o comply wh speccaons 
th rquird avag comprssv srngh ) Th local
suppler antcpated  in he 000 psi ang e Fo these
mxtues, a sample standad devation s) of 300 ps was
computd Appying h mula om Tabl 4.44 h
requied aveage strength will need o be the larger of
' ' +  .34  000 psi + (1 .34

300 ps)  400 ps
or
  + 2 33  00  000 ps + (23 3
= 5200 ps

300 ps)  00
As i is high 5400 psi is slcd r fc,1• Fom
Tal 534 inrpolatng btwn 5000 and 6000 ps valus
 air-enrained concrete,  w/cm of0 37 is chosen Because
0.3 is lowr han h w/cm of 040 rquird r ssanc
to eeng and hawng, 037 s he w/cm selected 
propotioning
93.5 Step 5 Calculate cementitious materials content
Because the w/cm selected r proporionng s 037, he
cmnitous maials connt s th watr contn dvidd
by 0.37 Mixng-wate weght of 227 lb s divided y he
selected w/cm of 0 37 to calculate he cementous materals
connt whch s 614 lb. Fy ash at 20% rplacmn lv
will yield 123  while he emanng amount (491 lb) wil
constut potland cmn Th local y ash wih spcic
gravity of 24 0, w ll have a volume of 08 2 f  The cemen
volume wll e 20  • When y ash is used, Tae  3.3  1
suggsts a wat rduction o f 3 % r ach additonal 1 0%
y ash eplacement Ths wae adjusmen was already
accound r n Sp 3
936 Step 6 Calculate coarse aggregate content-B
on Table  3 6, a dy-odded volume of 0.7 1 f per un
volum s commndd  a nomnal maximum siz of
aggegate of 1 . n. and a neness moduus of sand of 2.8 0
Consdng h dry-roddd dnsy ing 1 0 1 b/ft  a dy
roddd volum of 0  1 f suls in h ovn-dy wight of
Table 9.3.72-Constiuent weghts
Mixture costtents
Mixing wate
Cemen
l ash
Coarse ggege (SSD)
Fie aggege SSD)
Tol wei g
b/yd3

91
12
1951
11
3916
lb/ft3
81
1819
4.56
72.6
163
150
Fres denity at 55% air
-
150
Air-fee esit

15
coas aggrgat o b  1  l  Th  corspondng wgh pr
yad s calculated by multplyng 7 1 7 l  2700  , which
poducs an ovn-dy coas agggat wgh of 1 93 6 b/
yd  • Asopon (%) wil l be taken ino account to convet
th dy-oddd dnsity o h cospondng SSD wigh as
shown in he llowing
1 936 l/yd

(1 + 0.8%) = 195 1 lb/yd
9.37 Step 7 Calculatene aggregate content Usng th
calculated volume of each mixre constent, the wegh of
n agggat s calculad as shown in 9 .3 .   .
9.371 Absout volum computaons 
Volume of wate  227 lb/62.4 lb/   364 
Volum of cmn = 491 lb/(3  1 5  62 4 l/f ) = 250 ft 
Volume of y ash  1 23 lb/(2.40  62 4 l/f)  08 2  
Volume of coase aggregae  1 9 1 lb/(26 6  62.4 l/f )
= 1 1 5 f
Volume of air  . %  2700 ft  1 49 ft

Total volume of ingedents excep ne aggregate 
202 0 ft
Volum of n aggga rqurd = 2  00 ft  2020 
 6 80 ft
Rquid wgh of SSD n aggrgat = 6 .8 0 f  265 x
62 4 l/f  1 124 b
Air-ee volume  2 1 f
/ = 22 l/(491 l + 123 lb) = 0.3
9372 For the s laoraory tral ach, the consient
wghts as wll as th xpcd sh dnsity and th air
ee densiy (needed  computaton of yel d and ar conent
pe ASTM C38/C 1 3 8 M), ae calculated as shown in
Tabl 9 .3  2 pio to h moistu adjusmns
938 Step 8: Moisture adjustment-For the maeials
avalabl tsts indcat a otal moistu contn (MC%) of
 % r the coarse aggregae and 3% r the ne aggregate.
Recallng hat he asopons of he coase and ne agge
gas wr 0. 8% and 1 .0% spctvly moistu-adjustd
weghts ecome
Coars aggga 1 95 1

F e aggregae:
1 1 24
x

1+%
 + 08%
= 1 955 /yd
1 + 3% 
- 146 lb/yd
 + 1.0%
Th  war contrbud by h coars aggrga is th
derence eween the moiste-adjusted aggegae weight
Copyright Amerca Cocete Institue
Am ercan Concrete Institute - Copyrighted© Material - www.concrete.org
26
SELECTING PROPORIONS FOR NORMAL-DENSITY AND HGHDE NSTY CONCREEGUD E (AC PRC-211.1 -22)
Tabe 9.3.8-Consuent weghs
lb/ft3

1819
4.56
721

10
Mixture costtuents
Mixing water
Cemen
ly ah
Coarse aggegte (SSD)
Fie aggegate SSD)
Toal weigh
lyd3
01
91
123
1955
116
3916
Feh desity
-
-
Ar-fee desiy


us coputed) and he S SD weight om Step 6. Fo coase
aggregate, ee wae s determined as
1955 lb/yd  195 1 lb/yd = 4 lb/yd
and r ne aggregae, ee wae s
1 146 lb/yd  1 124 b/yd = 22 lb/yd
Th toal  war s h sum of h wo aouns
4 lb/yd + 22 b/yd = 26 lb/yd
Thr th watr qurd  baching s
22 7 lb/yd  26 lb/yd  201 lb/yd
Wth aggegaes adjused to her curen osre condi
ion th consitunt wghs a shown in Tabl 9 3. 8
No tha aft th mosur adjustnts th su of h
wighs of h consitunts pr cubc yad (yd ) and pr
cubic o ( ) do not change om the orgina proportions
93.9 Step 9: Post-trial batchTh tral bach producd
he llowing resuls:
Th sup was masurd to b 55 n. Thrr no
adusmn on th WR dos s ndd. Howvr th sh
densiy was measued o be 146.0 lb/ft , and he yeld was
14 60 lb/f  200 /1 450 lb/f = 2.1 9 f  Knowing th
ar-ee densiy o be 1 53 4 b/f , he graveric ai conten
was coputd as lows
 _ (1 5 3  4  1 4 6 0)

 .
 i r% 
1534
The ai conten was 0.7% lowe than the aget air conten
of 55% and h mixur ov-yildd slghtly. Th rsus
ae generally good. A slght incease in AEA dosage will
sighly incease the a conen nto the accepable range
and incas h slup sighly as wll Consdr doing
the nex tral bach of a couple yads in a mixe of he type
(r xampl cntal-mixd truck-mixd) to b usd on
th pojc.
9.4Example 3: Mixure popoonng usng
cementous eciency faco
Th cmntious cncy cor is h comprssiv
srngh achivd divdd by th aoun of cmntious
ateial used (ps/b). Ths cor s ofen used to copare the
prmanc of drnt xtus A atonal way to adjus
�
Copyright Am
the stengh of a concete ixture s by using the cement
tious eciency cto I can be used to ehe ncrease o
dcras h sngh of a xtu by sval hundd ps.
Because sength is aeced by w!cm, when he ceentious
cncy cor is usd o adjust h srngth of a xtu
it s mpotan o ensure he / s not kep he same to see
an pac on the stength. Ths can be acheved by keepng
th wa connt h sam whl adustng th cntious
aeial conen.
94.1 Step 1 Calculate cemen titious eciency factor
Th us of his ctor  stngth adusnt will b
deonsraed starng wth he llowng mixure popor
tions r a cubc yard tagng 4500 psi hat whn ral
batched, only reached 4200 ps. In ths xe, a coarse
agggat wth nominal axum sz of 1 n. wh suiabl
gadaton sauad surc-dry (SSD) spcic gaviy of
273 ad absopton (%) of 0.7 % was used. The ne aggre
gat having an SSD spcc gaviy of 2.6 4 and an absorp
tion (%) of 06% wil be used
Cement: 564 lb
Fine aggregae: 1550 lb
Coas agggat: 1600 lb
Wae: 300 b
Toal wght: 4014 lb
Densty: 1487 lb/f
The w/cm was calcuated o be 300 lb/564 lb = 0.53
Th cntious ara cincy cto was calculad
as 4200 psi/564 lb = 745 psi/lb.
942 Step 2 Adjust mixture constituents bas ed on the
desired strength gainT slump was und o b satisc
toy Howvr bcaus 300 psi of srngh gain s ndd
the / was educed by inceasng he cementious ae
ra connt whil ping th war contn th sam.
(1 ) The ceentous aeal eciency ctor s 745 ps/b.
(2) The stengh gain needed s 4500 psi  4200 psi =
300 ps.
(3) T he additional cementious weigh needed to be added
is dtmind by dvdng th srngth incras ndd by h
ceenitous ecency cor: 300 ps i/745 ps /lb = 40 lb.
(4) The new ceenitous weigh s 564 lb + 40 b = 604 lb .
(5) Th wa contnt s kp constan as 300 lb Thr
re, he new w/cm is 300 lb/604 lb = 050
(6) B caus  w/cm is ducd o 0.5 3 to 0. 50 a WR
whin the manucue's ecomended dose is used o
antain he age slump.
() Th yild is pt constan by moving a volum of
ne aggegae equal o he volume of he addional ceenti
tous maial
(8) Th volum of additonal cmntious aal is
40 lb/(3.1 5  624 lb/) = 0 20 f •
(9) Th volum of n agggat is rducd by 020 f  .
The coresponding ne aggregate weight is calculaed as
020   x (264  62 4 lb/ft) = 33 lb. Hnc h n aggr
ga wight is ducd by 33 b.
( 1 0) The new ne aggregae wegh is 1 550 lb  33 lb =
1 5 1  lb
Institue
American Concrete Insttute - Copyrghted© Materal - www.concreteorg
SELECTING PROPORIONS FOR NORMAL-DENSITY AND H GH-DE NSITY CONCREEGUDE (AC PRC211. 1-22) 27
943 Step 3: Calculate the new mixture pportions
The poporons  the nex ial ach ae shown in he
llowng:
Cement 604 lb
Fine aggregae: 1 5 1 7 l
Coase aggegate: 1 600 lb
Wate: 300 l
Toal weight: 402 1 lb
Densy 1489 lb/ft
strength and resistance o chloide penetrailty) will lead to
a lower pase volue
25% pase volume n 1 yd of concete s 25%  2 7.0 0 ft
 6 75 ft , which wll e the new paste volume.
The new cement wegh is calculaed as llows
(V  62.4  (1  %SCM))
C
%SCM
l w cm + (1  %SCM)
+
315
SCMRD
I
9.5-Example 4: Mixture popoionng using
aget pase voume
The pase volue ( is dened as he su of volues of
the ceentous maerals and wae expressed as a percen
of the otal concee volume A lower paste volue can lead
to lower concree shinage lowe concete temperaure due
to lower heat of hydaton lowe maerials cos and lowe
caon otpin of concete. AASHTO PP 84 lss a pase
volume of2 5% as one of the approaches o reduce unwaned
slab warping and cackng due to shinage (if cacking is
a conce)
95.1 Step 1 Calculate paste volume- concree mxtue
has een desgned r concee ples exposed o aggessve
seawaer in Floida The exposure class  the concete is
F, C2, S l , and W l . Accoding to Tales 4.7 3a though
4.73d, the concete needs to have a w/cm of 0.40 and
have a mnimu compressive srength of 5000 ps. Due
to he desed esstance o chlorde peneraon, a xte
contaning slag ceent at 50% eplacemen level (by wegh)
is used The llowing mixure whch has een und o
atain he sengh ressance o chloide penetraion and
wokability levels, s desgned
Cement = 350 l/yd with a specic gravity of 3 . 1 5
Slag cement  35 0 lb/yd wih a specic gavity of2.90
Toal ceentitous aeals content  35 0 l/yd + 35 0 l/
yd = 700 l/yd
Wate  280 lb/yd 
w/cm = 280 lb/yd/700 l/yd = 0.40
Coase aggregae  1 800 l/yd with a specic gavity of
280
Fin e aggregae = 1 200 lb/yd  wih a specc gravty of
260
Fine-to-coarse aggregate raio s 40%/60%
The percen paste volume of he aove mxtre is shown
in he llowing:
Cement = 350 l/(3. 1 5  62.4 lb/f ) = 1.78 
Slag cement  350 l/(2.90 x 62.4 lb/ )  1 .93 f
Wate = 28 0 lb/(1  62.4 lb/ ) = 4.49 f
Toal paste volume = 8 20 f
Percen paste volue  8. 20 f/2700   30.4%
9.5.2 Step  Adjust mixture constituents to achieve the
target paste volume of Because the xtue already
attans the target sengh and essance to chloide pene
tration t was decided to manan the sae w/cm of 040
and 50% eplacement level of slag cemen A lower wae
conent along wih the targe w/cm (r aainng age
Insering he appropae values, he new ceen weight is
deemned as shown in the llowing
C eent =
Sag
=
(6.75  62.4 (l 50%))
= 288 b
(1  50%)
040+
+
315
2.9
(
Cemen  %SCM
(1  %SCM)
=
288  50%
=
(150%)
288 l
Theee otal cementous maeial content is calcu
laed as 288 lb + 288 l = 576 lb.
Because  w/cm s kep constan as 040, water content is
calculated as 040  576 = 230 l
953 Step 3 Calculate the new paste volume for
ercation
New paste volume
(23 0 l/62 4 l/f + 288 lb/3. 15 /624 lb/ft +
288 lb/2.90/62.4 lb/ )  6.75 f
New pecent pase volume
6.75 f /2700   25%
Reducon n paste volume compared o oignal mixure
(8 20 f  6.75  )  1 .45 f
Ths reducton wll need an ncrease n otal aggegate
volue o poduce he cubic yad. Dvdng his aggegate
volume y he ne-to-coase aggregate ratio of 40%/60%
yelds the llowng adjustents
Increase in coarse aggregae = 60%  1 45   280 
624 lb/ft  152 l
Incease in ne aggregae = 40%  1 45 f
624 l/ft  94 l

260

9.54 Step 4 Calculate the new mixture proportions
Ceen  288 lb
Slag cemen = 288 lb
Waer  230 l
Coarse aggregae = ( 1 800 lb + 1 52 lb) = 1 952 l
Fne aggegate = (1 200 l + 94 l) = 1 294 l
Because he new xing-wate conten s 230 lb, which
is 1 8% lowe than ere (280 lb) the xture should be
desgned wh a high-ange wate-educng admixre
Copyright Amerca Cocete Institue
America Cocrete Insttute - Copyrghted© Materal - www.cocrete.org
28
SELECTING PROPORIONS FOR NORMAL-DENSITY AND H GHDENSTY CONCREEGUD E (AC PRC-211.1 -22)
(HRWRA) to atan the tage worail y It should e noted
hat vy low mxing-war contns (particulay low
200 lb/yd ) wll result n diculty n nshng in the eld
The equations povded in his example can be used  any
argt pas volum w/cm, SCM% and spcic gaviy.
CHAPTER 10�REFERENCES
Comm ttee documens ae lised s y document number
and yea of publcation llowed by auhoed documens
listd aphabically.
American Association ofState Highway and Transportation
Ocials (AASHTO)
AASHTO M 8-2020Sandard Specication r Pot
land Cmn
AASHTO M 240 M/M 240- 2020Sandard Speci cation
 Blndd Hydraulic Cmnt
 AASHTO PP 84-202 0Standard Pactc  Dvloping
Pmance Engineeed Concete Pavement Mxtes
Aerican Concrete Institute AC!)

 CI 20 1 2R- 1 6Guide o Durable Concete
CI 20 l R-05( 1 2)Gud to Mass Concr
 ACI 209R-92(08)Pedicon of Ceep, Shinage, and
Tmpatur cts in Concrt Srucurs
ACI 2   4R-08Gude  Se ecting Poporons r
High-Srengh Concrete sng Portland Cement and Other
Cmnitous Marals
ACI 2   6T- 4Aggregate Suspenson Mxre Popo
tioning Mehod
ACI 2 1 l R-20Guid  Poporonng Concr
Mxurs wh Gound Calcum Caronat and Othr
Mnea Flles
ACI 2 1 2. 3R- 1 6Rpor on Chmca Admixurs r
Concee
ACI 21 3R- 1 Guide r Scra Lighweight
Agggat Concr
ACI 2 1 R- 1 1 ( 1 9)Guide to Evaluaon of Sengh Tes
Rsults of Conct
ACI 22 1 .  R-9 1 (08)Report on Alal-Aggegae
Reacivy
ACI 223R- 1 0Guid r th Us of Shkag
Compensaing Concree
ACI 22R-0 1 (08)Conrol of Cackng n Concr
Sces
ACI 22R- 1 9Guide o he Selection and se of
Hydaulc Cmns
ACI 23 2.  R-1 2Report on he Use o f Raw o Processed
Natual Pozzolans  n Conct
ACI 2322R - 1 8Rpor on th Us ofFl y Ash n Concr
ACI 2323R-1Repor on High-Volume Fly Ash
Conc  Structual Applicatons
ACI 23 3RGuide to the Use o f Slag Cement n Concree
and Mota
ACI 23R-06(12)Gud  th Us of Sica Fum in
Concee
ACI 23R -0( 1 9)Slf-Conso lidaing Conct
�
Copyright Am
ACI 2 38 .  R-08Repot on Measurements of Woraily
and Rheology of Fesh Concete
ACI 301-20Specications  Concree Constrction
ACI 302.  R-1 Gude o Concree Floo and Sla
Constucton
ACI 30.3R-20Heavyweigh Concete: Measuring,
Mixng Transporing and Placing
ACI 3 1 8- 1 9Buildng Code Requiemens  Strctal
Concete and Commenay
ACI 363 R- 1 0Rpor on High-Srngth Concr
ACI  22. 1 -20Specicaion  Constrction o fPervous
Conct Pavmnt
ACI 5 55R-   Rmova and Rus o fHadnd Conct
ASTM International
ASTM C29/C29M - 1 7aSandad Test Mehod  Bulk
Dnsiy ("ni Wigh) and Vods in Aggrgat
ASTM C3 1 /C3 1 M-2 l aSandard Pactc  Makng
and Cring Concee Tes Specmens n the Field
ASTM C33 /C3 3M-  8Standard Spccaton 
Concete Aggregaes
ASTM C3 9/C39M-2 1Standard Test Method 
Comprssiv Stngh of Cylndrcal Concrt Spcmns
ASTM C70- 20Standard Test Mehod r Surce Mos
tu in Fin Agggat
ASTM C 78/C7 8M-2 1Standad Tes Mehod  Flex
ual Srength of Concree (sng Simple Beam wh Thrd
Pont oading)
ASTM C88 /C8 8M-  8Sandard Test Mehod  Sound
ness o Aggegates y Use o f Sodum Sule or Magnesium
Su
ASTM C9/C9M-20Standard Spccaton 
ReadyMixed Concete
ASTM C  25 -2 l aStandard Tmnology Rating o
Concete and Concete Aggregaes
ASTM C  27 -1 Sandad Test Method r Rela
tiv Dnsity (Spcic Gravity) and Absorpion of Coars
Aggegae
ASTM C  28 - 1 5Standard Tst Mthod r Rlav
Densiy (S pecic Gavy) and Asorpion of Fne Aggregate
ASTM C  36/C 1 36M- 1 9Sandard Tes Mehod 
Sv Analyss of Fin and Coas Agggats
ASTM C  38/C 1 38 M- 1 7Sandard Tes Mehod 
Dnsiy (ni Wight) Yild and Ai Connt (Gravimrc)
of C oncrete
ASTM C 3/C  3M-20Sandard Tes Mehod 
Sump of Hydaulc-Cmnt Concr
ASTM C  0/C  0M-20Standard Speccaon 
Potand Cmnt
ASTM C3/C  3M- 1 6Sandard Ts Mhod 
Ai Conent of Feshly Mxed Concree by he Volumetic
Mthod
ASTM C88-17Standad Tes Mehod r Densiy of
Hydauc Cmnt
ASTM C  92/C  92M- 1 9Sandard Pracc r Makng
and Cring Concee Tes Specmens n the aoraory
ASTM C23 /C231M-Standad Ts Mthod r A
Conent of Freshly Mixed Concree by the Pressure Mehod
Institue
American Concrete Insttute - Copyrghted© Materal - www.concreteorg
SELECTING PROPORIONS FOR NORMAL-DENSITY AND H GH-DE NSITY CONCREEGUDE (AC PRC211. 1-22) 29
ASTM C293/ C293 M- 1 6Standard Test Method 
Flxural Srngth of Concrt (Usng Smpl Bam wih
Center-Poin Loadng)
ASTM C295/C2 95M - 1 9Sandad Guide r Peo
graphic xaminaon o fAggrgas  Conct
ASTM C3 1 1/C3 1 1 M-1 8Standard Test Mehods 
Samplng and Tsng Fly Ash or Natual Pozzolans r Us
in Porland-Ceent Concrete
ASTM C3 30/C3 30M- l 7aStandad Spec caon 
Lightwgh Agggats r Stuctual Concr
ASTM C494/C494M- 1 9Standad Speccaon 
Chmcal Admixurs r Concr
ASTM C496/C496M- 1 7Standard Tst Mthod 
Splttng Tensle Srengh o fCylndical Concrete Specimens
ASTM C535-16Sandard Ts Mhod  Rssanc
to Degradaion of age-Se Coarse Aggregae by Arasion
and Ipac in h os Angls Machin
ASTM C56 6- l 9Sandard Ts Mhod r Toal vapo
rale Moistue Content ofAggregae by Dryng
ASTM C595/C595M-20Standad Spccaon 
Blended Hydaulc Ceents
ASTM C6 l 7/C6 l 7M- l 5Sandard Pracice  Capping
Cylindrcal Conct Spcimns
ASTM C 6 l 8- l 9Standad Spec caon  Coal F ly Ash
and Raw or Calcind Natual Pozzolan  s n Conct
ASTM C637-20Sandad Speccaon r Aggregates
 Radaion-Shieldn g Concree
ASTM C638-20Sandad Dscriptiv Nomnclatu
of Constuens of Aggregates r Radiaton-Shelding
Concee
ASTM C702/ C702M- l 8Standad Pracc r Rducing
Sampls ofAgggat o Tstng Siz
ASTM C9 1 7/C9 1 7M- 1 8Standard Test Method 
valuaton of Varailty of Cmnt om a Sngl Souc
Based on Stengh
ASTM C989/C98 9M- 1 8aStandad Speccaon 
Slag Cmn r s n Conct and Motars
ASTM C l064/C 1 064M-1 7Sandard Tes Mehod 
Tmpatu of Fshly Mxd Hydraulic-Cn Conct
ASTM C l 1 57/C l l 57M-20aStandad Pemance
Speccaon r Hydaulc Ceen
ASTM C l 23 l /Cl 23 1 M- 1 5Sandad Pracc r Us of
Unonded Caps n Deernaton of Copessve Stengh
of Hardnd Cyindical Concr Spcns
ASTM C l 240-20Standard Specicaion  Silca
Fume Used n Ceentious Mxtes
ASTM C l 252 - l 7Sandard Ts Mhods r Unco
pacted Vod Conten of Fine Aggegae (as Inuenced y
Paicl Shap Suc Txtu and Grading)
ASTM C l 260-2 1 Sandard Ts Mthod r Pontal
Alali Reactvity of Aggregates (Mota-Ba Mehod)
ASTM C l 293- 2 1 Standad Ts Mthod r Dtrmi
naton of engh Change of Concete Due o Alali-Silica
Racion
ASTM C l 602/Cl 602M-1 8Standad Spcication 
Mixng Wate sed n he Poduction of Hydraulic Ceen
Conc
ASTM C l 778-20Standad Guide r Reducng the Risk
of Dlous Alkal-Aggrgat Racton n Conct
ASTM D75/D75 M- 1 9Standard Pactice  Samplng
Aggregaes
ASTM D4944- 1 8Sandad Ts Mthod r Fl d
Deenaton of Water (Moistue) Conten of Soi y the
Calcu Cabid Gas Pssur Tst
Auhored documents
Abrams, D. A., 1 9 1 8, "Desgn of Concrete Mixres,
Butn 1  Structural Marias Rsarch aboatoy wis
Insitue, Chcago, IL
Burau of Rclamation 1 988  Concrete Manual, A War
Rsoucs Tchncal Publcation Chaptr III Scon 45
US . Bueau of Reclamaton, Washngton, DC
d arad F and Sdan T 2002 "Mixtu
Poporonng of High-Perrmance Concete, Cement
and Concrete Research V 32, No 1 1 , pp 1 699- 1704 do:
 0 10 16/S0008-8846(02)0086 1-X
Hendks, C A.; Worell, E; de Jage, D.; Blo, K.; and
Rimr P. 2004 ssi on Rducion of Gnhous Gass
om the Ceent Indusy, Geenhouse Gas Control Tech
ooges Confeence, K.
Kosmaa S H  and Wilson M.   201 6 Design and
Control ofConcrete Mixtures 1 6th editon, Potland Cement
Associaon Skoi IL
ey, T.; Felce, R ; and Feeman, J M, 20 12 , Concete
Paveen Mixe Design and Analyss (MD A): Assessm ent
of A Void Sys Rqumnts r Duabl Conct
Technical Report, National Conc Pavmnt Tchnology
Cene, Iowa Sae Unversy, Ames, IA, 32 pp.
Shlsone, J M S, 1990, "Concrete Mxtue Opia
ton Concrete International, V 1 2 No 6 Jun pp. 33- 39.
Taylor, P C.; Kosaa, S. H; and Voght, G. F, 2006,
"Intgatd Marials and Consrucion Practics r
Concete Paveen: A Stae-of-the-Pracce Manual,
FHWA-HIF-07-004, Federal Highway Adminsaon,
Washington DC.
Yudaul, E; Taylor, P C.; Ceylan, H; and Bektas,
F 20 1 4 "c o f War-to-Bindr Raio Air Connt
and Typ of Cmntious Matrials on Frsh and Hard
ened Propetes of Bnary and Teary Blended Concete,
Journal of Materials in Civil Engineering, ASC V 26
No 6, p 04014002.
APPENDIX A-LABORATORY TESTS
A.1-Need fo laboaoy testing
Seveal basc physical popeties of ingedent aeials
sd r concr nd o b known o dmnd o
laoraory ss pror to h slcion of concr mixur
popotons. The physcal propeies of he ingedent ae
rals ar usd n th proporionng calculatons to drmin
and repor he w/cm ; ar conent; quantites of coase, ne,
and ntermedae aggregaes; and quantes of ceentious
marals and admixurs T h mxtu propotoning proc
due s used to establsh intial propotions  ial batches
and thn n-un and opmz th popoons o provid
CopyrightAmerca Cocete Institue
America Cocrete Insttute - Copyrghted© Materal - www.cocrete.org
30
SELECTING PROPORIONS FOR NORMAL-DENSITY AND H GHDENSTY CONCREEGUD E (AC PRC-211.1 -22)
he desired wokablity, /, ar conen, cemen conten,
stengh and duailty equemens  the specc mate
ials hat wll e used in the poposed concete mixure The
exen of laboatoy esing  any gven job wll depend
on he project sze and impotance and on the servce
condions nvolved.
A.2-Prequaliicaton o materials
Tess on concete maerals and mxtues can seve the
purpose of prequalcaton of ingredent mateials and
desred concree pemance poperties r the purpose of
estalishing daa equed  a mixure sumtal Many of
hese tests may only need o be conduced annually o less
oen when heir purpose is   pequalicaion o f maerals
and mxues. These prequalicaion data can then be used
r several os Fo example, test data hat estalishes the
potenal of alkal-si lca reacivty of an aggregae does no
need to be tested  every job if he sources ofmaeials and
he mxture poportons do no change sgnicantly.
A.3-Propertes o cementitious mateals
A31 Physical and chemical chaactestics of cemeni
ious materals nuence the popetes o f eshly mxed and
hadened concete The laoraory should oain ecords of
material cetications om the supple and ohe daa on
he unmiy of materal characeistcs om hat source,
such as epos r potland cement (ASTM C9 l 7 /C9 l 7M)
The only propery of cementious maerals used dectly
n computaon of concee mixture proporions is specic
gavy The specc gavity ofpotland cemens of the types
covered by ASTM C l50/Cl 50M may usually e assumed to
e 3  1 5 wihou ntroducng appeciable ero n computa
ions o f mixtue popoons. Fo r oher types s uch as lended
hydraulic cements (ASTM C595/C595M; ASTM Cl157/
C l 1  7M), slag cemen (ASTM C989/C989M), y ash or
natual poolan (ASTM C618), o slica me (ASTM
Cl240) the specic gravity  use in volume calculatons
can e obaned om the maeial cercaon provided y
he suppler of he mateial o should e deermined by es
(ASTM Cl 88; ASTM C 3 l l /C 3 l 1 M; ASTM C989/C989M)
A32 Samples of cementious materals should e
obtaned om he concree poduce o he maerals
supple who will supply maeials r he o The sample
should be of sucent quanty r tests conemplated wth a
libeal magn  addional ess hat migh later e consid
eed desrale. Samples o f cementious maerials should e
shppe d n aiigh and moi sue-proofcontaines. Depending
on he naure of the job and speccaons, samples of the
cementious materals used  deteminng mixture popo
ions and om subsequent shipments may e saved in a
igh conaines  a reasonale per iod after the jo has been
compleed o veify mxtue chaacersics if necessay
A33 The concree producer migh choose o conduct a
vaey of ess of cementious materals  quality-conrol
purposes The nen of hese tests may be r the purpose
of opmng mxtues r specc applcaions and season
ality and r ensung compaiblity o f maeial ngediens
r poducng consisten concete with predictale pe-
�
Copyright Am
mance These ess may e nonstandad ess (such as hose
 montoing colo or am generaon) o standard tests
(such as maing morar cues wh concete sand or ll
edged laoratory concrete mixtures in accordance wh
ASTM C l92/C l 92M whee seting chaacteistics slump
entaied air conent, sengh, and other popertes are
monitoed). The concree poducer should etan materal
cercaons r all shpments of cementious mateials
and unrmity eports of the pedominant cemen om a
source (ASTM C9 1 7/C9 1 7M) and monior changes in he
repored characteistics such as compessve stengh and
maeial neness
A.4-Popetes of aggregates
A4.1 Sieve analyses specc gravty absorption
and moistue conent of boh ne and coarse aggegates
(ASTM Cl27; ASTM Cl28) and bulk densy y roddng
(ASTM C29/C29M) of coase aggegate are physical pop
eres necessary r mxtue poporonng computatons.
Othe ess tha may be desrale r large or specal ypes
of wok nclude peogaphc examnaion (ASTM C29/
C29M) and tests r chemical eactvity (ASTM Cl260;
ASTM C l293) soundness (ASTM C88/C88M) duability
resistance o abason (ASTM C3), and varous delee
rous ustances Such tests yeld nmaion of value n
udging the serviceality of concree.
A42 Aggegae gradng deemned by sieve analysis
(ASTM Cl36/C l 3 6 M) can nuence wate equrements
popotions of coase and ne aggregate, and quanty
of cementious mateals  satiscory wokability.
Numerous aggegae gading cuves have een proposed
and these tempered y pactcal considerations can be u sed
as a tool r mixure proportioning optmaionASTM C33/
C33M provides a selection of sizes and gadings suiale
 mos concee. Addtional wokality ealed by use
of ai enanmen o supplementary cementious mateials
(SCM ) such as y ash and slag cemen may permi o some
exen, the use of less-rescive aggregae gradings and
may accommodae the use of locally available maeral.
A43 Aggegae samples  ess to deermine characer
istcs r poportoning concee mxtues should e epre
sentatve of aggegae avalable  use n he wok. Fo
laboaoy ess, he coase aggregaes should be separaed
ino size acons and ecomined at he tme of mixng
to asse repesentatve gadng  he small test atches.
Unde some condions,  wok of mporant magniude,
laboaoy nvesigaions may involve eots to overcome
gading decencies of the availale aggegates.
ndesirale sand gradng may e corected y:
(a) Sepaaton of he sand nto two o more size acons
and ecominng n suiale popotons
(b) Increasing o decreasing the quantiy of cetan sizes o
balance the gadng
(c) Reducing excess coase maeial y gndng o
crushg
ndesirale coarse-aggregate gradngs may be
coeced by:
(a) Cushng excess coase actons
Institue
American Concrete Insttute - Copyrghted© Materal - www.concreteorg
SELECTING PROPORIONS FOR NORMAL-DENSITY AND HG H-DENSITY CONCREEGUD E (AC PRC211. 1-22) 31
able 5ypica tes progam o estabish conceemakng popertes of oca maeials
Batch quantties b/yd3
Coase
Est
Mxtre No . Cement Sand aggreate water
Used
water
Tota
weght
wlc
Sum
n.
Densty
cf
Concete chaacterstics
Yied 28-day comessive
t3
stength, psi
Wok
aility
I
500
135
1810
35
350
035
0

10
5
2
500
1250
1875
35
30
3965
0.6
3
1.0
269
3350
OK
3
00
1335
1875
35
35
3955
0.8
4.5
15.5
2718
2130
OK

50
190
185
34 5
35
3960
0

16
09
610
OK
5
550
110
185
345
345
3980
063
3
15
698
3800
OK
6
600
1 165
1875
35
35
3985
05
3.5
18.3
268
4360
OK
(b) Wasing szs hat occur n xcss
(c) Suppleening decent sies wih anoher nee
diae aggregate
(d) A combnation of ths mthods
Whaever grading adusmens ae made n he labora
toy should b pactical and conomically jusid om
the sandpoin of ll-se producon and job opeation.
Aggegate gading equreents n specicaions should be
consistn wih tha of conomically avalabl matials.
Besides he aggegate gading, the parcle shape and
txu pacularly of manuctud n aggga, will
have an mpotan eect on the mixng-water equeents
 target slump Testng a graded sand to quan changes
in th paticl shap and xtu and la hs bac o
changes n mixng-wate requieens  a target slup of
a conc xtu may pov usl (ASTM Cl 252).
5ia bach sees
A51 Th tabulad and gaphcal laonshps in h
body of his documnt ay b usd o mak pliinary
esiaes of bach quanties r tral batches. Optonal seps
to obain a quck esimate of prelmnay mixre popo
tions ay b sippd thrby pocdng o rapdly o
trial batch evaluaon, o the optonal steps ay be used o
ipln a or daild procdur hat ncorporas o
prnciples of concree echnology and potenally educes
the numbe of tral batches equred Howeve, even when
using h o dtald appoach, h mathatcal calcula
tions tha provide xtue propoions ae stll oo geneal
izd to apply wh a hgh dgr of accuracy o a spcic
s of matials. I is hr ncssary o mak a srs of
concree ess to establsh quantative relationships  he
aials o b usd An illustration of such a tst pogra is
shown n Table A.5  1 
A5.2 In th s progra o fTabl A.5 1 , a batch ofdium
cn connt and usabl cons sncy s propotiond by h
descibed methods. In prepaing Mxte No. 1 , an amoun
of wat s usd hat will poduc th dsd slup vn if
ths ders om the tageed equrement The eshly mixed
concree is tes ted r slup and densty and observed closel y
 worabily and nish ng chaactistics. In th xapl 
the yeld s oo high, and he concete s judged to contain an
xcss of n aggrga.
A53 Mxte No 2 s prepaed, adusted to corect he
aeial poporions in Mixre No. 1 , and the esng and
valuaon rpad. In ths cas, th dsid sh concrt
properes ae acheved wihin accepable olerances and
cylndrs ar moldd to chck th copssv strngth Th
-
Oversaned
inaon drvd so r can now b usd o sl ct propor
tons  a seres of addtional xtuesNo. 3 through
6wih cement conents above and below that of Mixre
No 2 ncopassing th ang lily to b ndd.
A54 Mixure No. 2 though 6 provde the backgound,
inclu dng h rlatonship of sngth o /  h paticular
combinaion of ingedens needed to selec popotions  a
range o f specied requieens
A.5.5 In laboatoy tsts t sldom will b und vn
by expeienced opeaos, hat desired adjusents wll
dvlop as smoohly as ndicatd n Tabl A5. 1  Fuhr
ore, t should not be expeced tha ll-se producton
baches and eld esuls wll copae exactly wih laboa
toy suls Conct producrs will hav a gnal ida
based on expeience, on he deence n srength level
and othr chaactistics btwn mixturs om laboatoy
bachs and l l-sz poduction batchs of slar mixur
popotons. An adjusen of he selected laboatoy tial
bach, whn oving to ll-siz producton,  s usually ncs
sary. Anothr iporant aspc is to mak adjustnts r
ancipaed delvery time and jobse adusmens, which are
o generally siulated n laboatoy baches Closer agee
mnt bwn laboraory and ld rsults is or lkly f
achine xing is employed in the laboratory. This is espe
cially dsiabl r ar-naind concr bcaus th yp
of ixer, ype of ar-enainng admixre, and duration of
xing nuence the aoun of ai enrained n he xe.
Br mxng th rst bach th laboraory mxr should b
butered or he mixure over-oraed," as described in
ASTM C l 92/Cl92M Simi laly any procssing of maials
in h laboraoy should simula as closly as praccabl
coresponding eamen in the eld, such as he moisre
conditoning of th aggrgats.
A56 The seres o f tests llusated n Table A.5  1 may be
xpandd as th siz and spcal qurmnts of th wok
waran. Varabls tha ay rquir nvsgation includ
aleave aggregate sources; maximu sies and grad
ings drn typs and brands of cn; th us of ohr
ceentious mateals; adxtes; and consderaons
of concete durabily, volue change, teperare ise,
thal propris and tim of s.
6est methods
A61 In conducting laboatoy tests o povide nrma
ton  selecing concete propotions, he latest evsons of
th llowng mthods should b usd
A611 For ess of ngediens:
(a) Dnsity of hydaulc cmnASTM C l 88
Copyright Amerca Cocete Institue
Am ercan Concrete Institute - Copyrighted© Material - wwwconcrete.org
32 SELECTING PROPORIONS FOR NORMAL-DENSITY AND HGHDENSTY CONCREEGUDE (AC PRC-211.1-22)
() Sampng sone, slag, gravel, and sandASTM D75/
D5M
(c) Reducing samples of aggregae o esting
seASTM C702/C702M
(d) Sieve analysis and neness modulus ofne and coase
aggregatesASTM C l 36/C13 6M
(e) Relative densty (specc gaviy) and asopton of
coase aggegatesASTM C l27
( Relatve densty (specic gaviy) and asopion of
ne aggregaesASTM Cl 28
(g) Surce moiste in ne aggregateASTM C70
(h) Toal mostue conen of aggregate by dyng
ASTM C566 o a nonstandardzed es such as he speedy
mosture meterASTM D94
() Bul densty (uni wegh) and vods n aggregate
ASTM C29/C29M
) Uncompaced void conten of ne aggregate (as inu
enced y paricle shape surce extue and grading)
ASTM Cl252
A.61.2 Fo r tests of concete:
(a) Ar conent of eshly mxed concete y the volu
metic mehodASTM C l 73/Cl 73M
( ) Ai  conent of eshly mixed concree y he pressure
methodASTM C23 l/C23 1M
(c) Slump o f hydaulc cemen conceteASTM Cl3/
Cl3M
(d) Densty (unt weigh), yied, and air conent (gravi
metric) of concreeASTM C 138/Cl 38M
(e) Temperature of eshy mxed porland-cemen
concreeAS TM C 1 064/C 106M
(  Mang and curng concree es s pecimens  n the ao
atoyASTM C l 92/Cl 92M
(g) Compressive strength of cylindcal concrete speci
mensASTM C39/C39M
(h) Flexural sength of concete (smple b eam wih thrd
pont loading)ASTM C8/C8M
(i) Flexual sengh of concete (sim ple beam wi h cener
pont loading)ASTM C293/C293M
) Spliing tensle stengh of cylndrcal concree sp ec
mensASTM C496/C496M
(k) Capping cylndrcal concete specimensASTM C6 l  I
C617M
(I) se of unonded caps i n determnation of compessve
srength of hardened concree cylndersASTM Cl231/
Cl231M
7ixtues fo smal jobs
A71 Fo small os whee time and personnel ae not
availale to deemne popotions n accordance wih he
recommended procedure, mxtues in Table A.7 1 wll
usually povde concree that s of adequate sengh and
duabity f the amount o f waer added at he mix e is not
large enoug h to make the concree wth an excessive ly hgh
sump. These mixures have been pedetermined n conr
my with he ecommended pocedure by assumng condi
tions applcable to he aveage small o, and  aggregae of
medum densty. Three mxtues ae given r each nomnal
maxmum sie of coarse aggegate Fo he selected sie of
coarse aggegate Mixure B i s intended r inital use If his
mxte proves o e oversanded, change to Mxte C; f it is
undesanded, change to Mixue A I shoul d e noed hat he
mxtues lsed n he able ae ased on suce-dry sand If
the ne aggegae s moist o wet, make appopiate corec
tions n atch weights. ness he lightweght aggegate is
in lly sauraed suce-dry (SSD) conditon consideaton
should be taen tha ighweight aggegae might absob
wate and water should be adjused accodngly.
able oncree mixtues or smal jobs
Proede: Select te prope nom mximu ize o ggege Ue Mixue B ding jt enogh wer o produce a wokable cosey. f he
oee ppe to e nersade, hage to ixue A ad if it appear ovesaed, ge to Mixue C.
Nominal maxmm
size o aggregate, n.
1
Mixtue
desgnation
A
B
3
A
B
I
A
B
1-1
A
B
2
A
B
c
c
c
c
c
Cement
5
5
5
3
3
3

2
2
0
0
0
19
19
19
Appoximate wegts of solid ingredents pe t3 o concete, b
Sand (SSD)*
Coarse aggegate (SSD)
A-entrained
Concete wtout
Gavel or
ai entanment
Lghtwegt aggegate
concete!
cshed stone
8
51
54
47
49
6
56
9
47
58
51

45
49
6
54
3
6
47
56
1
5
66
58
1
5
0
61
43
39

63
74
1
37
65
75
1
5
65
39
3

6
1
79
37
69
45
79
0
69
3
81
38
71
1

36
83
'I mp   e ncree buled wgh od 2 b,   very we n  ue, 4 l b
t
A-nne concre hou  be ue    rcure poe o e yle  o eezng nd hwng Ar erm  be ob by e u e o n r-erg cme
o by dig  i-nining miure. I f mixure i s se te m u reommnd by te m uar wil n mos ses pru the esire i on.
Copyright
Institue
American Concrete Insttute - Copyrghted© Materal - www.concreteorg
SELECTING PROPORIONS FOR NO RMAL-DENSITY AND HG H-DENSITY CONCREEGUDE (AC PRC211. 1-22) 33
A.72 The appoxae ceen conent of concree lsed
in th al will  hlpl in stmatng cn rqur
ens r the job. These estmates apply o the use of po
land cement only These equements are based on concree
tha has us nough watr to allow  a consistncy tha
cltates working into s wihou oectionable segre
gaton. An ndx of a good conssncy  s whn h concrt
slides , not rns, o a shovel.
APPENDIX BHIGHDENSITY CONCRETE
MIXTURE PROPORTIONIG
B.1Genea
Concrete of noal placealiy and worailty can e
proportiond  dnsis as hgh as 350 lb/ft y using hgh
densiy aggegates such as ron ore, ron shot, steel sho,
bart ron punchngs and stl punchngs Although ach
of h aals has s own spcial characisics thy can
be processed to eet he sandard equeens r gading,
soundnss clanlnss and oth rlvant aggga prop
ties. ACI 30.3R addresses hgh-densy concree n detal
and should e consuled bere aeping o propotion
hgh-dnsty concr.
requied densty by he amoun of he ancipaed densty
loss due o dyng. A conservative esiae of his densty
loss ay b oand y asuing h wt dnsity and th
oven-dy densty of concree cylnders as llows.
Cas thr cylndrs and din th w dnsy in
accodance wth ASTM Cl38/C 1 3 8 M. Aer 72 hours of
standad cuing, dry he cylndes o a constan weigh in
an ovn a 21 1 o 230°F and asu th avrag dnsiy.
alculate the densy loss due to dying by subactng the
ovn-dy dnsty o h w dnsiy.
Add this dinc o h qud dry dnsy whn
calculating ixture proporions o allow  his loss Less
consvatv hods of dning dnsy loss ay b
appopiae depending on the applcaion Norally, a
shly xd dnsiy (wt dnsy) is 8 o 1 0 lb/ft highr
than the oven-dy densy
B.4Adjustment fo enraned ar
If enraned ar is equred to ess condions of exposue,
allowanc should  ad  th loss in wigh du to th
volume occuped y the ai To copensae  he loss of
enrained ai as a result of vibation, the concrete mixre
should  propotiond wh hgh ai connt.
B.2Aggregae selecion
B.5Handng of hghdensty aggregaes
The selecton of the aggegae should depend on he
inended use of he concee. Fo example, n the case of
radation shlding tac lmnts withn h aral tha
ay ecoe reacve when suected to adiaon should e
avoded. In he selecion of mateials and poportioning of
hgh-dnsty conct h  data ndd and procdurs usd
ar simila o hos qurd  noral-dnsiy concr.
Aggegae density and copo stion  high-dens y concrete
should mt qurnts of ASTM C637 and ASTM C638.
Typcal mateials used as hgh-density aggregaes are lsed
in Table B 2
Handlng of hgh-density aggregaes should e in accor
ance with ACI 303R (ASTM C637 and ASTM C638).
Typical poporons ar shown n ACI 30 4.3 R.
B.3-Adusmen n anicpaon o drying
If h concrt will b xposd to an nvironnt tha
causes a sgncan loss of wegh due to dyng, it should
be poportoned so hat he esh densy is hgher han he
B.6-Prepaced aggegae
High-dnsy pplacd aggrgat concrt should
b poporond n th sa ann as noal-dnsty
peplaced aggregae concree Example xtue proporons
r th pplacd agggat mthod and r ypcal grout
poporons can e und n ACI 303R.
B61 Concree s required r counerweghts
on a lft bdg that will not  suctd o zng-and
thawing condtions An average 28-day compressive
stngh of 3500 ps will b rquid. Placmn condions
pet a slup of 2 to 3 n. and a nominal maximu sie
aggegae of 1 in The desgn of he couneweight requires
Table B.2-Typcal highdensiy aggegates
Materia
Limonie nd goetite
Barie
lmenie, hemie, n mgnetie
Seel nd iro
Decrition
Hydo iro oes
Baium sute
ro oes
So peets ad puchings
Specifc gavity
34 to 38
4.0 to 4.4
4.2 to 5.0
65 to 75
Resultng cncete densty, b/3
180 to 1 95
205 to 225
21 5 to 240
3 1 0 to 3 50
Tabe B.6.-Popeies of seeced aggegates
Proerty
Mteia
Finees mouus
Specic gvity
Aorpion
Bk eity
oma mximm ze
Gadion
Partce hape
Copyright Amerca Socete Institue
Coarse aggregate
lmenie
N/A
461
0.08%
165 lb/ft
I in
Well-graded
Cbicl cushed
Am ercan Concrete Institute - Copyrighted© Material - wwwconcrete.org
Fne aggegate
Specul emtite
30
4.9 5
0.05%
N/A
N/A
-
-
34
SELECTING PROPORIONS FOR NORMAL-DENSITY AND HGHDENSTY CONCREEGUDE (AC PRC-211.1-22)
an oven-dy densiy of 225 / (he oven-died condion
s spcd and s a mo consrvatv valu han tha of th
ar-died condtion). An nvestigaon of economically aval
ale materals has indicated the llowing:
(a) Cmnt: ASTM Cl 50/Cl 50M Typ I
() Fine aggregate: specular heate
(c) Coas agggat: lmnit
(d) A high-ange wae-reducing admixre (HRW)
will be used
Tabl B2 ndcats hat hs combnaton of matials may
esu in an oven-dy densty of 2 1 5 o 240 l/ . As shown
in Tal B. 6 1  th lowng poptis of th aggrgats
hav n oband om aoaory tsts.
The quanties of ingedents are calculated as lows.
B.61.1 Step Th daild approach wll  usd
B612 Step Fro Table 5.3.3, a concree wh a 2 to
3 in slump and a 1 n nomina maximum sz aggrgat
rquirs a wat connt of appoxmatly 3 1 5 /yd  As th
aggregate s of noral particle shape and expected ulk dens
ts no adjusmnt in war conn s mad. No pozzolans ar
to be used, so no adusment s ade  the eecs. Non
air-entraned concete w be used ecause the concree will
no  xposd to sv wah and hgh a contnt would
reduce the dy density ofhe concree. Theere no eduction
in wat dmand  a ntranmnt is mad A consultng
the manucte of the HRWRA a reduction of25% n water
deand s expeced so he waer conten is adjused
w
=
100%
ater
=
�
Pw
=
236
62.4
=
3.78 ft /yd
xposu o sul xposur is anicipatd th ar no rcom
mended maxum vaues on wlcm r ths concee. There are
no production cods rlvant to th conc ing popo
toned; herere Table 4.7.4. 1 is used o deemneJ'
' = fc' + 1 200 ps = 3500 + 1 200 = 4700 ps
From Tabl 53.4 intrpolatng bwn th aggga
se lines wlc needed o poduce his ' in non-ar-entained
concr s und to  appoxmaly 0.48 Thus th
equred cemen conent is calculated o be
Cmnt contn () = 236/048 = 492 lb/yd 
and th volum of cmnt s sad to 
cmnt connt
=
Vcm
spcic gravty of cmn  dnsty of wa
492
 2.50  /yd
3 . 15  62.4
�
27 ft
- ( Vwter + Vcment + ,.) =
yd
27  (3.78 + 2.50 + 0.41 ) = 20.31 /yd
ggregat
The actonal volume of coarse aggregae is esiaed
om Tabl 5.3.6  a n aggrga havng a nnss
modulus of 2.30 and und o  0 72. Thrr th ovn
dy wight of coase aggegate wll e
Factional volume of coarse aggregae x buk densy x
27 ft/yd = 0.72 x 165  27 = 3208 l/yd
The SSD weight of the coarse aggregae will be
l 
100%
(
OD = l + 100%
yd3
Th volum acton of th coars aggrga wi b
321
=
 1 .  6 f /yd
4.61  62.4
Th volum acton ofth n aggrga wll :
B613 Step Bcaus nthr zng-and-thawing
Copyright Am
Th stmad ntappd air o Tal 53.3  s 1 5%.
;r = 27 f/yd x % air n mixre
The cubc et of a enranen is 27.0 /yd  1.5% =
04 1 f /yd
B6 1 5 Step The volume of aggregae to e provded
is
 3 1 5 = 236 b/yd
and the volume of waer s esaed as
V
B6 1 4 Step The volume of air:
gggte - Vos ggregat = 20.3 1  1 1 . 1 6 = 9.1 5 /yd
The SSD weight of the ne aggregate wll e
Msso = Vfin gggt
 RDo x 62.4 l/f = 9 . 1 5 x 4.95 x
62.4 = 2826 l/yd
The anticipated wet densty of he concete will then be
th wigh of watr cmnt coars aggrga and n
aggegate dvided by the unit volume o
W + C + MSSDcoars argate + MSSD, fin aggrga
27 /yd
23 6+ 492+ 3 211+ 2826
 25 1 /

27
The actual es esuls indicated he concree possessed he
llowing propris:
(a) Density (eshly xed): 24 9 lb/ft
(b) vn-dry dnsy: 242 l/f 
(c) A conten: 2.2%
(d) Slump: 2.5 n.
() Strngh: 5000 ps a 28 days
Not: Oven-dy densy of he concree having a comb
naton of hmait and ilmn agggats was 7 lb/ lss
than th shly mxd dnsity.
Institue
American Concrete Insttute - Copyrghted© Materal - www.concreteorg
American Concrete Institute
Always advancing
As ACI begins its second century of advancing concrete knowledge, its original chartered purpose
remains "to provide a comradeship in nding the best ways to do concrete work of all kinds and in
spreading knowledge. In keeping with this purpose, ACI supports the following activities:
Technical committees that produce consensus reports guides specications and codes.
Spring and fll conventions to facilitate the work of is committees.
Educational seminars that disseminate reliable information on concrete.
Certication programs fr personnel employed within the concrete industry.
Student programs such as scholarships, internships, and competitions.
Sponsoring and co-sponsoring international conferences and symposia.
Formal coordination with several international concrete related societies.
Periodicals the ACI Structural Journal Materials Journal, and Concrete International.
Benets of membership include a subscription to Concrete International and to an ACI Journal. ACI
members receive discounts of up to 40% on all ACI products and services including documents, seminars
and convention registration fees.
As a member of ACI you join thousands of practitioners and professionals worldwide who share
a commitment to maintain the highest industry standards for concrete technology construction
and practices. In addition, ACI chapters provide opportunities for interaction of professionals and
practitioners at a local level to discuss and share concrete knowledge and fellowship.
American Concrete Instiute
38800 Counry Club Drive
Farmington Hills, M 48331
Phone: +1248848.3700
Fax:
+1248.848.3701
wconcreeorg
Copyright Amerca Cocete Institue
American Concrete Institute
 d
38800 Country Club Dve
Famg Hils, M 48331 USA
+.28.883700
wwwcceeg
The American Concete Instiute (ACI) is a leadg aoity ad esource
woldwde for e developen ad disributio of cosensus-ased
stad ads ad teccal esoces, edcaiona rogras, and cetifcaons
for indvid ual s and ogazaons volved  cocee desig , constuctio,
and maeals, who shae a comtent to ursung e best use of concete.
divduas terested n te actvies of ACI ae encoaged to expore e
ACI weste fo meeship opotuies comtee actives and a wde
variety of coc ree esoces As a volu teer e me -dive orga at o
ACI invtes paterss ad welcomes al cocree pofessoas who wis to
be art of a respeced conneced social gou tat povdes a opporuty
for pofessona gowt, eworkig ad enjoyet
1          
9 6 95
Copyright Amerca Cocete Institue
Descargar