Subido por Elizabeth Monserrath Coto Hernandez

FeldmanMeiri2013Length-massallometryinsnakes

Anuncio
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/262872508
Length–mass allometry in snakes
Article in Biological Journal of the Linnean Society · January 2013
DOI: 10.1111/j.1095-8312.2012.02001.x
CITATIONS
READS
78
1,520
2 authors:
Anat Feldman
Shai Meiri
Tel Aviv University
Tel Aviv University
29 PUBLICATIONS 3,477 CITATIONS
276 PUBLICATIONS 10,918 CITATIONS
SEE PROFILE
Some of the authors of this publication are also working on these related projects:
evolution, macroecology and biogeography of reptile traits View project
evolution of island vertebrates - sizes syndromes etc. View project
All content following this page was uploaded by Shai Meiri on 11 November 2020.
The user has requested enhancement of the downloaded file.
SEE PROFILE
bs_bs_banner
Biological Journal of the Linnean Society, 2013, 108, 161–172. With 2 figures
Length–mass allometry in snakes
ANAT FELDMAN* and SHAI MEIRI
Department of Zoology, Tel Aviv University, 69978 Tel Aviv, Israel
Received 31 May 2012; revised 5 July 2012; accepted for publication 5 July 2012
Body size and body shape are tightly related to an animal’s physiology, ecology and life history, and, as such, play
a major role in understanding ecological and evolutionary phenomena. Because organisms have different shapes,
only a uniform proxy of size, such as mass, may be suitable for comparisons between taxa. Unfortunately, snake
masses are rarely reported in the literature. On the basis of 423 species of snakes in 10 families, we developed
clade-specific equations for the estimation of snake masses from snout–vent lengths and total lengths. We found
that snout–vent lengths predict masses better than total lengths. By examining the effects of phylogeny, as well
as ecological and life history traits on the relationship between mass and length, we found that viviparous species
are heavier than oviparous species, and diurnal species are heavier than nocturnal species. Furthermore,
microhabitat preferences profoundly influence body shape: arboreal snakes are lighter than terrestrial snakes,
whereas aquatic snakes are heavier than terrestrial snakes of a similar length. © 2012 The Linnean Society of
London, Biological Journal of the Linnean Society, 2013, 108, 161–172.
ADDITIONAL KEYWORDS: body mass – body size – microhabitat – mode of reproduction – shape –
snout–vent length – total length – venomousness.
INTRODUCTION
An organism is an ensemble of many characteristics,
among which body size is undoubtedly one of the most
important. Body size is strongly related to the organism’s physiology, energy requirements, ecology and
life history (Calder, 1984; Shine, 1994a; Brown et al.,
2004). Size is therefore the focus of many ecological
and evolutionary studies, dating back to the inspiring
studies of Bergmann (1847; translation in James,
1970) and Cope (1887) and continuing to our time
(e.g. Hutchinson & MacArthur, 1959; Foster, 1964;
Griffiths, 2012). Greater accessibility to data has
enhanced the compilation of size data for some of the
major vertebrate taxa (Smith et al., 2003; Olden,
Hogan & Zanden, 2007; Meiri, 2008; Olson et al.,
2009), and these datasets have allowed us to search
further for ecological and evolutionary processes
involving size.
The body size of snakes has been studied in a
variety of contexts, such as geographical variation
*Corresponding author. E-mail: [email protected]
(e.g. Ashton & Feldman, 2003; Olalla-Tárraga, Rodrıguez & Hawkins, 2006; Terribile et al., 2009;
Amarello et al., 2010), range size (e.g. Bonfim, DinizFilho & Bastos, 1998; Reed, 2003), insularity (Boback,
2003), body size frequency distributions (Cox, Boback
& Guyer, 2011), optimality (Boback & Guyer, 2003)
and natural history (Pough & Groves, 1983). The
measure of size in these studies, and in others, was
length [Olalla-Tárraga et al. (2006) converted all
lengths to masses, but used the same equation for all
species]. This is undoubtedly because the snout–vent
length (SVL) and total length (TL) are the most
common size measures reported for snakes. Mass,
another measure of body size, is rarely reported, and
thus is rarely used. Some authors have claimed that
length is a more appropriate size proxy than mass
(Boback, 2003; Boback & Guyer, 2003), because mass
depends on factors such as breeding condition,
season, health, and size of and time from the last
meal (Meiri, 2010). Furthermore, length is probably
highly correlated with mass (Kaufman & Gibbons,
1975; Guyer & Donnelly, 1990). However, being
a linear measure, length may fail to explain variation
in body shape (Meiri, 2010), and snakes, although all
© 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 161–172
161
162
A. FELDMAN and S. MEIRI
having elongated body forms (Lillywhite, 1987), are
differently shaped (Pough & Groves, 1983; Aubret &
Shine, 2009). Thus, length should be regarded carefully as a proxy for body size. Mass, however, is
considered to be the best measure of body size in
life history studies (Hedges, 1985). Mass is also
the measure of choice in physiological studies
(e.g. Seymor, 1987; Glazier, 2009; Bronikowski &
Vleck, 2010), because various physiological rates
(e.g. metabolic rate; Kleiber, 1947; Nagy, 2005) are
mass dependent. Many ecological and physiological
attributes vary allometrically with body mass (Peters,
1983; Schmidt-Nielsen, 1984). Hence, in many
instances, mass will be a more useful proxy than
length for body size. In addition, as lengths cannot be
compared directly across groups of organisms that
differ in shape, comparison between such groups that
is based on length may prove to be misleading, but
their masses can still be meaningfully compared
(Hedges, 1985; Meiri, 2010).
Because snake masses are rarely reported, they
need to be estimated from the commonly reported
measure, length. Pough (1980) presented the most
comprehensive allometric equations for the estimation of snake mass from length. He proposed two
general equations – one for the calculation of
mass from SVL (mass = 6.6 ¥ 10-4 ¥ SVL3.02) and the
other for the calculation of mass from TL
(mass = 3.5 ¥ 10-4 ¥ TL3.02) (mass in grams, length in
centimetres). However, Pough’s pioneering equations
are based on the length and mass data of only 13
species of colubrids and vipers from the southern
USA (data from Kaufman & Gibbons, 1975) and, as
such, may not generalize to other snake taxa, if the
latter have different body shapes. Vipers, for
example, are generally more robust than other
snakes (Pough & Groves, 1983; and see below), and
so are constrictors (see below). Moreover, body shape
and hence mass–length relationships are influenced
by phylogenetic affinities, life history traits and ecological characteristics (Pough & Groves, 1983; Shine,
1994a; Martins et al., 2001; Brown et al., 2004).
Arboreal species, for example, are generally more
slender and have longer tails than terrestrial
species (Guyer & Donnelly, 1990; Lillywhite &
Henderson, 1993; Martins et al., 2001), and burrowing or aquatic species may differ even more from
above-ground active snakes (Murphy, 2007; and see
below). One equation for the estimation of mass
ignores any such difference, and these differences
may be too great to be neglected.
More specific allometries will allow us to assess
snake masses and the variation between different
ophidian clades more accurately. Such equations have
already been developed for lizards (Meiri, 2010;
Pincheira-Donoso et al., 2011), and have been proven
to be a better predictor of mass than is the single
equation of Pough (Pincheira-Donoso et al., 2011).
We compiled a database of 423 snake species in
10 families to develop new allometries for the estimation of snake mass from their SVL and TL, and
evaluated the explanatory power of the equations
depending on the measure used (SVL or TL). To
overcome phylogenetic affinities and biological differences between clades, we generated different equations for different snake lineages. We then evaluated
the predictive power of the equations and compared
it with the predictive power of Pough’s allometric
equations. Finally, we attempted to estimate the
influence of phylogenetic, ecological and life history
traits on the relationship between mass and length.
We specifically estimated the influence of reproduction mode, venomousness (function-based definition
of venom, i.e. ‘a toxic compound injected into prey or
predator to cause rapid death or incapacitation’; Fry
et al., 2012) and activity time on this relationship.
As there is a relationship between microhabitat
use and body shape (for example, arboreal species
are lighter than terrestrial species; Lillywhite &
Henderson, 1993; Martins et al., 2001), we added
microhabitat use as a covariate in the model. We
formulated four hypotheses:
1. Being elongated, snakes have limited abdominal
space to hold their litter or eggs (Bonnet et al.,
2000). Because viviparous species, unlike oviparous species, hold their embryos until the end of
their development, we predicted that viviparous
species would be heavier than oviparous species,
because females need more abdominal space to
retain their embryos. Moreover, the evolution of
viviparity is associated, in some species, with a
shift towards larger female size relative to male
size (Shine, 1994b), indicating that viviparous
species may be relatively heavier than oviparous
species.
2. In congruence with former studies (e.g. Guyer &
Donnelly, 1990; Martins et al., 2001), we hypothesized that mass would decrease on a gradient
from terrestrial to arboreal snakes, enabling the
latter to move more easily on trees. We further
predicted that aquatic species would be heavier, on
average, than others to better retain heat.
3. Body shape may play a significant role in heat
transfer (e.g. Spotila et al., 1973). For example,
assuming a cylindrical shape and a specific density
of 1 g cm-3, a 1130-mm (TL) and 94.7 g Dolichophis
jugularis from Israel [Tel Aviv University Zoological Museum (TAUM) specimen #10075] has a
surface/volume ratio of 12.2 mm-1, whereas a
heavier (432.2 g) Daboia palestinae (TAUM #8186)
with the same length has a surface/volume ratio of
© 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 161–172
SNAKE LENGTH–MASS ALLOMETRY
5.7 mm-1. Nocturnal species are not exposed to
solar radiation, and the heat exchange between
them and the environment is influenced by conduction and convection (Heatwole & Taylor, 1987).
Because nocturnal species face, on average, lower
temperatures than diurnal species, we predicted
that nocturnal species would benefit from a lower
surface to volume ratio (i.e. would be heavier than
diurnal species) to retain heat and reduce the rate
of cooling (Slip & Shine, 1988).
4. Venom in snakes facilitates prey manipulation,
swallowing and prey handling (Kardong, 1979).
Hence, nonvenomous snakes must invest more
power in killing their prey, either by biting or
constricting. We predicted that nonvenomous
snakes would therefore be heavier than venomous
snakes of a similar length as a result of the
more strongly developed muscles needed for prey
handling.
METHODS
DATA
We accumulated data on length (SVL and TL, in
millimetres) and body mass (in grams) for 423 snake
species. Data are mainly from the published literature and from museum specimens housed at TAUM.
We also measured live snakes at the Meier Segal’s
Garden for Zoological Research, Tel Aviv University.
We used only literature length and mass data that
were reported together for a species in the same
publication and referred to the same individual or
individuals. Because sexual size dimorphism (SSD) is
common in snakes (Seigel & Ford, 1987; Madsen &
Shine, 1993; Shine et al., 1998) and may affect the
mass–length relationships (Kaufman & Gibbons,
1975), we collected data separately for males, females
and unsexed individuals. We did not use data for
females that were known to be gravid at the time of
measurements. All museum specimens used were
weighed and measured prior to preservation. When
several measurements were available for the same
species, we used the mean values of all data for the
species. However, we did not average mass data if
they were associated with SVL data for some individuals and with TL data for others. Instead, we
created two datasets per species – one for SVL and
mass and the other for TL and mass. We used only
data from adults. Taxonomy follows Uetz (2011).
We classified species as either oviparous or viviparous and treated ovoviviparous species as viviparous,
because females retain their eggs inside their bodies
until hatching. We classified species as venomous or
nonvenomous and treated opisthoglyphous (rearfanged) species as venomous (a preliminary analysis
163
found that our results are robust to treating them as
venomous). We classified species as diurnal, nocturnal
or cathemeral, and microhabitat preferences as
aquatic (including semi-aquatics), burrowers (fossorial and semi-fossorial), terrestrial, terrestrial–
arboreal and arboreal. We analysed this relationship
for all snake clades together, controlling for phylogenetic affinities. We repeated the analysis for colubrids, a species-rich lineage which, unlike most snake
families, contains much ecological and morphological
diversity in the traits examined.
DATA
ANALYSIS
Prior to statistical analysis, we log10-transformed all
weight and length data. In a preliminary analysis for
each family, we found that allometries based only on
males did not differ from those based only on females
(not shown). Therefore, we analysed all data (i.e.
males, females and unsexed individuals) together. To
develop family-specific equations, we regressed mass
separately on SVL and on TL for each lineage. To
compare the predictive power of the equations using
SVL or TL, we used only species for which we had
both SVL and TL data from the same individual/
individuals, and selected the best models according to
the Akaike Information Criterion (AIC) (Wagenmakers & Farrell, 2004). To estimate the effect of ecological and life history traits on the relationship between
mass and length, we used backwards-stepwise elimination and determined the best model as that in
which all traits were statistically significant (at
P = 0.05).
To evaluate the predictive power of the allometries,
we randomly divided our data, using the ‘rand’
command in Microsoft Excel, into two, and developed
allometries for the relationship between mass and
SVL for each half. We then used these allometries to
calculate the mass of the other half. We also calculated, for each species, the estimated mass using
Pough’s equation, and tested for the difference and
percentage of deviation between the original mass,
our predicted mass and Pough’s predicted mass. All
statistical tests were conducted using R 2.13.1 (R
Development Core Team, 2011).
PHYLOGENY
To control for the effects of shared ancestry, we
assembled a species-level phylogeny from published
phylogenetic trees. The higher level branching (e.g.
family and subfamily levels) is based on Lee et al.
(2007) and Pyron et al. (2011) for Alethinophidia
(‘advanced snakes’) and on Vidal et al. (2010) for
Scolecophidia (‘blind snakes’). As several phylogenetic hypotheses have been suggested recently, we
© 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 161–172
164
A. FELDMAN and S. MEIRI
also analysed the data following the higher level tree
of Vidal et al. (2007) to examine whether the results of
our phylogenetic analysis are robust to the phylogenetic hypothesis we used. The tree of Vidal et al.
(2007) differs from that of Pyron et al. (2011) in its
interpretation of the branching of several Alethinophidian clades, especially within the superfamily
Colubridea. To compare the models based on these
two phylogenies, we used only species for which we
had all ecological and life history data. Preliminary
analysis yielded qualitatively the same results (in
terms of the predictors in the best model and their
direction), and thus we present here only the results
of the model which is based on the phylogeny of Lee
et al. (2007) and Pyron et al. (2011). The results based
on Vidal et al.’s (2007) tree are presented in Appendix
S3. Lacking branch lengths for most of the trees, we
scaled branches to make the trees ultrametric using
the cladogram transform in FigTree (Rambaut, 2010).
We used phylogenetic generalized least-square
(PGLS) regression to account for phylogenetic
nonindependence. We adjusted the strength of phylogenetic nonindependence using the maximum likelihood value of the scaling parameter l (Pagel, 1999)
implemented in the R package CAIC (Orme,
online, http://r-forge.r-project.org/projects/caic/). The
scaling parameter l varies between zero (no phylogenetic signal) and unity (strong phylogenetic signal,
equivalent to phylogenetically independent contrast
analysis).
RESULTS
Our dataset (Appendix S1) includes 423 species
(336 species for SVL and 337, partially overlapping
species for TL). It contains both the smallest known
snake (Tetracheilostoma carlae, SVL = 93.7 mm, TL =
99.4 mm, 0.6 g; Hedges, 2008) and a few of the largest
species (green anacondas, reticulated, Burmese
and African rock pythons, up to SVL = 3370 mm,
TL = 3735 mm and 21.75 kg in our database). We
calculated family-specific allometric equations for all
Alethinophidian families with N ⱖ 6 species for which
we had length and mass data. The infra-order Alethinophidia is represented in our data by seven families
and the infra-order Scolecophidia is represented by
three (however, because of the small sample size, we
grouped all Scolecophidians and generated one equation for the entire clade). The family mass–length
allometries are shown in Table 1.
Analysis of covariance revealed that intercepts
differed significantly between families, both in the
Table 1. Mass–length allometries for snake families and the infra-order Scolecophidia
Family
Measure
N
Slope
SE
95% confidence interval
Intercept
SE
R2
All
SVL
TL
336
337
2.786
2.597
0.063
0.073
2.661
2.452
2.910
2.744
-5.773
-5.465
0.172
0.208
0.853
0.789
PGLM
SVL
TL
241
235
2.578
2.443
0.079
0.092
2.422
2.261
2.734
2.625
-5.148
-4.989
0.254
0.313
0.834
0.777
Boidae
SVL
TL
15
13
2.776
2.856
0.279
0.331
2.171
2.126
3.380
3.585
-5.500
-5.886
0.814
0.982
0.883
0.871
Colubridae
SVL
TL
166
154
2.520
2.340
0.088
0.098
2.346
2.146
2.693
2.534
-5.143
-4.912
0.239
0.278
0.834
0.792
Elapidae
SVL
TL
26
49
2.453
2.407
0.215
0.188
2.009
2.028
2.897
2.786
-4.892
-4.819
0.606
0.539
0.844
0.777
Homalopsidae
SVL
TL
11
8
3.631
3.617
0.792
0.767
1.837
1.738
5.425
5.496
-7.713
-8.027
2.128
2.130
0.700
0.787
Lamprophiidae
SVL
TL
35
31
3.232
2.821
0.201
0.229
2.823
2.351
3.641
3.290
-7.092
-6.286
0.542
0.646
0.886
0.839
Pythonidae
SVL
TL
6
12
2.630
2.611
0.301
0.260
1.793
2.031
3.467
3.190
-5.124
-5.131
0.972
0.848
0.950
0.909
Viperidae
SVL
TL
60
51
2.655
2.910
0.107
0.156
2.440
2.596
2.869
3.223
-5.165
-6.013
0.293
0.438
0.913
0.877
Infra-order Scolecophidia
SVL
TL
17
18
2.985
3.068
0.553
0.489
1.804
2.031
4.165
4.104
-6.381
-6.596
1.254
1.144
0.660
0.711
PGLM, phylogenetic general linear model; SE, standard error; SVL, snout–vent length; TL, total length.
Log mass/log length allometries for different snake families and infra-order Scolecophidia.
© 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 161–172
SNAKE LENGTH–MASS ALLOMETRY
Table 2. Amount of variation explained and Akaike Information Criterion (AIC) scores for allometries of mass on
snout–vent length (SVL) and total length (TL)
Family
Measure
R2
AIC
All (245)
SVL
TL
0.837
0.773
94.555
175.774
All (corrected for family)
SVL
TL
0.881
0.858
29.100
72.263
Boidae (10)
SVL
TL
0.917
0.880
5.378
8.691
Colubridae (128)
SVL
TL
0.822
0.774
23.942
54.344
Elapidae (12)
SVL
TL
0.529
0.562
11.787
10.902
Homalopsidae (6)
SVL
TL
0.799
0.806
3.730
3.531
Lamprophiidae (30)
SVL
TL
0.886
0.839
-6.566
3.773
Viperidae (44)
SVL
TL
0.905
0.899
-27.145
-24.068
Infra-order Scolecophidia
(15)
SVL
TL
0.634
0.622
11.982
12.454
Number of species
parentheses.
in
each
category
is
given
Table 3. Parameter estimates for nonphylogenetic model.
Slope and intercept values for oviparous, diurnal and
terrestrial species in each family. The intercept value
differences should be added for the calculation of other
traits [for example, the intercept of a viviparous (0.069),
nocturnal (–0.057) and arboreal (–0.312) viperid is
–5.110 + 0.069 – 0.057 – 0.312]
Intercept
Slope
Colubridae
Boidae
Elapidae
Homalopsidae
Lamprophiidae
Pythonidae
Viperidae
Scolecophidia
Viviparous
Cathemeral
Nocturnal
Aquatic
Arboreal
Burrower
Terrestrial-arboreal
Intercept
difference
2.668
-5.510
-5.072
-5.459
-5.324
-5.552
-5.177
-5.110
-5.642
0.069
-0.030
-0.057
0.163
-0.312
0
-0.068
in
relationship between mass and SVL (F1,7 = 22.466,
P << 0.001, Fig. 1) and in the relationship between
mass and TL (F1,7 = 31.197, P << 0.001). Family slopes
differed in the relationship between mass and TL
(F1,7 = 2.101, P = 0.043), but not in the relationship
between mass and SVL (F1,7 = 1.665, P = 0.117).
Mass was usually explained better by SVL than by
TL (Table 2). When the same individuals were used to
derive allometric equations for both length measures,
only in elapids and, to a lesser extent, in homalopsids,
did TL explain more of the variation in mass than
SVL. Because SVL is generally a superior predictor
for mass (Table 2), we used SVLs to examine the
factors influencing the length–mass relationship.
FACTORS
165
INFLUENCING THE
LENGTH–MASS RELATIONSHIP
Nonphylogenetic analysis
The nonphylogenetic model included 336 species
(Appendix S1). The best model for snake mass
included SVL (slope = 2.668, SE = 0.066), family
(Fig. 1), microhabitat use, reproduction mode (Fig. 2)
and diel activity. The model explained 92.7% of the
variation in mass. There were no interactions
between SVL and any parameter. In colubrids viviparous species were heavier than oviparous species,
but this difference was marginally nonsignificant
(intercept difference = 0.069, t = 1.761, P = 0.0793).
Diurnal species were heavier than nocturnal species,
but this difference was also marginally nonsignificant
(intercept difference = 0.057, t = 1.815, P = 0.070).
Shape was strongly correlated with microhabitat use,
with aquatic species significantly heavier than all
other snakes (P << 0.001 in all cases) and arboreal
species significantly lighter than others (P << 0.001 in
all cases). The difference between terrestrial and
terrestrial–arboreal species was marginally nonsignificant (P = 0.095), and both terrestrial and
terrestrial–arboreal species did not differ significantly
from burrowing species. Parameter estimates of the
full model are shown in Table 3.
Viviparous colubrids were heavier, for their lengths,
than oviparous colubrids (intercept difference = 0.143,
t = 2.341, P = 0.02), and diurnal species were heavier
than nocturnal species (intercept difference = 0.089,
t = 2.346, P = 0.02). Differences concerning venomousness (intercept difference = 0.04, t = 1.250, P = 0.21)
and microhabitat use (aquatic species being heavier
than others and arboreal species being lighter than
others, F1,4 = 14.435, P << 0.001) were qualitatively
similar to those found in the previous analysis. This
model explained 89.9% of the variation in colubrid
mass.
© 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 161–172
166
A. FELDMAN and S. MEIRI
Figure 1. A, Mass–snout to vent length (SVL) relationship for snake families in our dataset. B, Mass–SVL relationship
for snake families. All species were fitted with parameter estimates for a terrestrial, diurnal and oviparous snake. See
Table 3 for parameter estimates.
© 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 161–172
SNAKE LENGTH–MASS ALLOMETRY
167
Figure 2. A, Mass–snout to vent length (SVL) relationship for oviparous and viviparous snake species in our dataset:
white, oviparous species; black, viviparous species. B, Mass–SVL relationship for oviparous and viviparous colubrids and
viperids species. All species were fitted with parameter estimates for a terrestrial and diurnal snake. See Table 3 for
parameter estimates.
© 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 161–172
168
A. FELDMAN and S. MEIRI
Table 4. Parameter estimates for phylogenetic model.
Slope and intercept values for oviparous species in different microhabitats. The value of 0.118 should be added to
the intercept values for the calculation of the intercept
value of viviparous species in each microhabitat (for
example, the intercept value of a viviparous arboreal
species is -5.699 + 0.118)
Intercept
Slope
Arboreal
Aquatic
Burrower
Terrestrial–arboreal
Terrestrial
Viviparous
Intercept
difference
2.677
-5.699
-5.326
-5.329
-4.488
-5.451
0.118
Phylogenetic model
The phylogenetic model included mass–SVL data for
241 species (Appendix S2). The maximum likelihood
value of l (0.557) was significantly different from both
zero and unity (P << 0.001). The best model for mass
included SVL (slope = 2.677, SE = 0.074), mode of
reproduction (viviparous species heavier than oviparous species; intercept difference = 0.118, P = 0.015)
and microhabitat use, with arboreal species lighter
than others (P << 0.001 in all cases) and burrowing and
aquatic species heavier than terrestrial (P = 0.018 and
0.05, respectively) and terrestrial–arboreal (P = 0.01
and 0.03, respectively) species. Activity time was not
correlated with mass, although the tendency was
similar to that of the nonphylogenetic model (i.e.
nocturnal species were lighter than diurnal species).
The model accounted for 86.9% of the variation in
snake mass. There were no interactions between SVL
and other factors. Parameter estimates of the best
phylogenetic model are shown in Table 4.
Predictive ability of the equations
We calculated mass for 302 species. Our calculated
mass did not differ significantly from the real mass
(paired t-test, t = 0.466, P = 0.641, see Appendix S4 for
detailed results), whereas the mass calculated using
Pough’s equation did (paired t-test, t = -13.052,
P << 0.001). The mass predicted by our equations deviated from the actual mass by 13.53%, on average, vs. a
mean deviation of 19.83% with Pough’s equation.
DISCUSSION
SVL and TL are the two most common measures for
snake body size, and both are used in ecological and
evolutionary studies of snake body size. Snake mass
is seldom reported in herpetological, ecological and
evolutionary studies. This is despite its probability of
being a better predictor for body size and a measure
which allows comparisons among taxa with different
body shapes (Hedges, 1985; Meiri, 2010).
Here, we developed clade and family allometric
equations for the calculation of mass from SVL and
TL, and found that the former is generally a better
predictor of mass (Table 2). This is somewhat paradoxical, because TL measures more of the animal
than does SVL. Among legless squamates, snakes
have relatively short tails (the ‘short-tailed burrowing
morph’; Wiens, Brandley & Reeder, 2006; Sites,
Reeder & Wiens, 2011). Nonetheless, relative tail
length varies among species. Tail lengths can vary
greatly between individuals of the same species (for
example, male snakes have longer tails than females;
Kaufman & Gibbons, 1975), between species inhabiting different microhabitats (Guyer & Donnelly, 1990;
Martins et al., 2001) and between lineages. Thus, we
attribute the differences in the predictive ability to a
high variation in tail length between species with
similar SVLs. Blindsnakes, a lineage of burrowing
snakes, have distinctively short tails (Wiens et al.,
2006; O’Shea, 2007), and this explains the similar
predictive ability of SVL and TL in this lineage.
Colubrids, however, have long tails (on average, ~30%
of SVL in our data), and their tail length/SVL ratio
differs greatly between species. The SVLs of colubrids
active in different microhabitats are different
(F4,116 = 9.08, P << 0.001), but those of terrestrial
(N = 64, mean SVL of 488 mm) and arboreal (N = 14,
mean SVL of 653 mm) colubrids are quite similar
[Tukey’s honestly significant difference (HSD) test,
P = 0.18], but the former have significantly shorter
tails (127 mm vs. 270.6 mm, 26% vs. 41% of SVL;
Tukey’s HSD test, P << 0.001).
The differences in body shape between families are
substantial (note the R2 gains when we correct for
family, Table 2). This suggests that the equations of
Pough (1980) may be too general because they do not
consider phylogenetically and ecologically related
body shape differences between lineages. Furthermore, the 95% confidence interval of the slope found
for all snakes in our study (for both SVL and TL,
Table 1) is entirely below three (indicating that long
snakes are more slender than short snakes) and does
not incorporate the slope of 3.02 of Pough. It is thus
not surprising that the masses calculated by the
application of Pough’s equations to our SVL data were
significantly different from the actual masses of these
snakes (Appendix S4).
Mass and hence body shape are influenced by
factors other than length. Phylogeny, natural history
and ecology are undoubtedly important drivers of
shape variation (França et al., 2008). In addition to
© 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 161–172
SNAKE LENGTH–MASS ALLOMETRY
phylogeny, we found that the mode of reproduction
and microhabitat use and, to a lesser extent, diel
activity play an important role in the relationship
between mass and length. Our specific parameter
estimates (Table 3) enable the calculation of the mass
of a snake with known traits. For example, an oviparous, diurnal, terrestrial colubrid (e.g. Liophisreginae,
SVL = 438.5 mm; Appendix S1) is expected to weigh
approximately 34.6 g (log mass = 2.668 ¥ log SVL –
5.510), whereas a viviparous, diurnal, terrestrial
viperid of roughly the same length (e.g. Crotalus
pricei, SVL = 421.3 mm; Appendix S1) is predicted
to weigh about 91.4 g (log mass = 2.668 ¥ log SVL –
5.110 + 0.069). An oviparous, burrower, nocturnal
lamprophiid species of similar SVL, such as
Atractaspis irregularis (SVL = 405 mm, Appendix S1),
is predicted to weigh just 22.2 g (log mass =
2.668 ¥ log SVL – 5.552 – 0.057).
The relationship between snake microhabitat use
and body shape is well known (Pough & Groves, 1983;
Guyer & Donnelly, 1990; see above). In agreement
with former studies (Lillywhite & Henderson, 1993;
Martins et al., 2001; França et al., 2008), we found
that arboreal species are relatively lighter for their
lengths than terrestrial or aquatic species. This shift
in body form from short-tailed, heavy bodied snakes
to long-tailed slender snakes may reflect the need of
arboreal snakes to move on light branches and to
manoeuvre across vegetation gaps (Lillywhite &
Henderson, 1993; Martins et al., 2001). The long tail
of arboreal forms may be an adaptation to greater
manoeuvring ability among branches (Lillywhite &
Henderson, 1993). Such a long tail is not required for
terrestrial locomotion, and terrestrial species probably require the extra musculature for increased locomotion and prey handling efficiency. The (all aquatic)
Homalopsid snakes have long and narrow forebodies
and bulky posteriors (Murphy, 2007). Sea snake
bodies (Elapidae: Hydrophiinae) are high for their
sizes (Brischoux & Shine, 2011). This shape probably
helps aquatic species to stabilize their bodies in the
water and to facilitate locomotion in water (Murphy,
2007; Brischoux & Shine, 2011). We suggest that the
robustness of aquatic species may also contribute to
heat retention in a medium with high levels of heat
conductivity. This assumption is supported by the
findings of Spotilaa et al. (1973) that, the heavier a
reptile, the less its body temperature fluctuates
(whereas they found that length had a minor effect on
body temperature).
Contrary to our prediction, we found no difference
between venomous and nonvenomous snakes.
Although this result may indeed reflect reality, we
assume that it may well result from different cladespecific body shapes. Viperids and elapids are all
venomous, but viperids are heavier than elapids of
169
similar lengths (the viperid slope is steeper, and
the two family lines intersect at 22.5 mm, way below
the minimum length of snakes; Table 1, Fig. 1). We
attribute this to their different foraging strategies.
Most elapids are active hunters, whereas most
viperids are ambush predators (Greene, 1997). Foraging mode may well be an important factor determining snake shape, with active foragers lighter than
ambush predators (Greene, 1997; Ford & Hampton,
2009), perhaps in order to reduce the costs of locomotion. Furthermore, differences in body size and in
mass–length relationship may also result from selection on other traits, such as on gape size, or reflect
adaptations to hunt different prey types (Martins
et al., 2001; Pyron & Burbrink, 2009).
Nocturnal snakes are generally lighter than
diurnal species, contradicting our hypothesis (and
mirroring the pattern found for lizards; Meiri, 2010).
We predicted that nocturnal species would be heavier
than diurnal species for the purpose of better retaining heat. This result, however, may indicate that the
importance of heat absorption is higher than the gain
of heat retention. However, because we have no data
on the thermal environment to which the species are
exposed (e.g. temperature, solar radiation), this conclusion should be taken with caution.
In congruence with our hypothesis, we found that
viviparous species are heavier than oviparous species
(Fig. 2). We attribute this to the differences in the
development stage of the eggs and the period of time
needed to retain the eggs. Being elongated, snakes
have limited abdominal space to hold their litter or
eggs (Bonnet et al., 2000). Oviparous species usually
retain their eggs for less than 50% of the embryonic
development (Shine, 1983; DeMarco, 1993), and eggs
absorb water and become larger and heavier after
they are laid (Qualls & Shine, 1995). Viviparous
species, however, retain their eggs until full development, and may thus require more abdominal space
for their developing young.
Length is considered by some authors (e.g. Boback,
2003; Boback & Guyer, 2003) to be a better proxy
than mass for snake size, but length data alone may
fail to provide any significant information about the
species biology or life history characters (Vitt, 1987).
Others argue that the high correlation between
the two makes them equally valuable (Kaufman &
Gibbons, 1975; Guyer & Donnelly, 1990); however, as
shown here, these correlations are influenced by phylogeny, ecology and life history traits. We suggest,
however, that mass, and not length, is a superior
proxy for size in most ecological and evolutionary
contexts regarding snake body size, especially when
comparing taxa that differ in shape. If weights are
estimated from length using specific equations, such
as those developed here (Tables 1 and 3), rather than
© 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 161–172
170
A. FELDMAN and S. MEIRI
from actual body masses, body condition, reproductive
condition and feeding will not affect mass estimates.
We show here that different snake clades have different allometries for the relationship between mass and
length. These allometries reflect the differences in
body shape that we attribute to phylogeny as well
as to ecological and life history traits. We believe
that the use of length as a measure for comparison
between clades or between ecological and life history
traits may poorly reflect reality. For example, oviparous (N = 214) and viviparous (N = 104) snakes
have similar SVLs (529 and 526 mm, respectively),
and thus similar masses, when mass is predicted
by Pough’s equation (104 g vs. 106 g, t = 0.085,
P = 0.932). Viviparous species, however, are heavier
than oviparous species, both when we compare their
actual masses (103.5 g vs. 52.4 g) and the masses
calculated using our equations (96.8 g vs. 56.1 g; calculated mass: t = –2.711, P = 0.007; actual mass:
t = –3.619, P < 0.0001). This result is congruent with
the tendency found (Fig. 2) for viviparous species to
be heavier than oviparous species of the same SVL.
Although mass is an extremely important measure
of snake biology, mass data are still seldom reported.
We thus urge researchers to publish mass data as
much as possible, especially for the less studied clades
(e.g. Uropeltidae, Tropidophiidae). Using mass rather
than length in ecological and evolutionary studies is
likely to prove highly valuable, and increase our ability
to arrive at meaningful conclusions across lineages.
ACKNOWLEDGEMENTS
We thank Erez Maza for great help with collection of
the data from the Tel Aviv University Natural History
Museum. Erez also helped us, together with Barak
Levi, to measure live snakes. We gratefully thank
Marinus Hoogmoed, Tiffany Doan, Jossehan Galúcio
da Frota, Gleomar Fabiano Maschio, Alessandro Costa
Menks Dale Nimmo and Otavio Marques for providing
us with invaluable data. Three anonymous reviewers
contributed helpful comments on an earlier version of
this paper.
REFERENCES
Amarello M, Novak EM, Taylor EN, Schuett GW, Repp
RA, Rosen PC, Hardy DL. 2010. Potential environmental
influence on variation in body size and sexual size dimorphism among Arizona populations of the western diamondbacked rattlesnake (Crotalus atrox). Journal of Arid
Environments 74: 1443–1449.
Ashton KG, Feldman CR. 2003. Bergmann’s rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it.
Evolution 57: 1151–1163.
Aubret F, Shine R. 2009. The origin of evolutionary innovations: locomotor consequences of tail shape in aquatic
snakes. Functional Ecology 22: 317–322.
Boback SM. 2003. Body size evolution in snakes: evidence
from island population. Copeia 2003: 81–94.
Boback SM, Guyer C. 2003. Empirical evidence for an
optimal body size in snakes. Evolution 3: 195–211.
Bonfim FS, Diniz-Filho JAF, Bastos RP. 1998. Spatial
patterns and the macroecology of South American viperid
snakes. Revista Brasileira de Biologia 58: 97–103.
Bonnet X, Naulleau G, Shine R, Lourdais O. 2000. Reproductive versus ecological advantages to larger body size in
female snakes, Vipera aspis. Oikos 89: 509–518.
Brischoux F, Shine R. 2011. Morphological adaptations
to marine life in snakes. Journal of Morphology 272: 566–
572.
Bronikowski A, Vleck D. 2010. Metabolism, body size and
life span: a case study in evolutionarily divergent populations of the garter snake (Thamnophis elegans). Integrative
and Comparative Biology 50: 880–887.
Brown JH, Gillooly JF, Allen AP, Savage VM, West GB.
2004. Toward a metabolic theory of ecology. Ecology 85:
1771–1789.
Calder WA. 1984. Size, function and life history. Cambridge,
MA: Harvard University Press.
Cope ED. 1887. The origin of the fittest. New York: Appleton.
Cox CL, Boback SM, Guyer C. 2011. Spatial dynamics of
body size frequency distributions for North American squamates. Evolutionary Biology 38: 453–464.
DeMarco V. 1993. Estimating egg retention times in sceloporine lizards. Journal of Herpetology 27: 453–458.
Ford NB, Hampton PM. 2009. Ontogenetic and sexual
differences in diet in an actively foraging snake, Thamnophis proximus. Canadian Journal of Zoology 87: 254–
261.
Foster JB. 1964. Evolution of mammals on islands. Nature
202: 234–235.
França FGR, Mesquita DO, Nogueira CC, Araujo AFB.
2008. Phylogeny and ecology determine morphological
structure in a snake assemblage in the central Brazilian
Cerrado. Copeia 2008: 23–28.
Fry BG, Casewell NR, Wüster W, Vidal N, Young B,
Jacksone TNW. 2012. The structural and functional diversification of the Toxicofera reptile venom system. Toxicon 60:
434–448.
Glazier DS. 2009. Ontogenetic body-mass scaling of resting
metabolic rate covaries with species-specific metabolic level
and body size in spiders and snakes. Comparative Biochemistry and Physiology Part A: Molecular and Integrative
Physiology 153: 403–407.
Greene HW. 1997. Snakes – the evolution of mystery in
nature. Berkeley, CA: University of California Press.
Griffiths D. 2012. Body size distributions in North American
freshwater fish: large-scale factors. Global Ecology and
Biogeography 21: 383–392.
Guyer C, Donnelly MA. 1990. Length–mass relationships
among an assemblage of tropical snakes in Costa Rica.
Journal of Tropical Ecology 6: 65–76.
© 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 161–172
SNAKE LENGTH–MASS ALLOMETRY
Heatwole HF, Taylor J. 1987. Thermal ecology. Ecology of
reptiles. Chipping Norton: Surrey Beatty & Sons, 21–96.
Hedges SB. 1985. The influence of size and phylogeny on life
history variation in reptiles: a response to Stearns. The
American Naturalist 126: 258–260.
Hedges SB. 2008. At the lower size limit in snakes: two
new species of threadsnakes (Squamata: Leptotyphlopidae:
Leptotyphlops) from the Lesser Antilles. Zootaxa 1841:
1–30.
Hutchinson GE, MacArthur RH. 1959. A theoretical ecological model of size distributions among species of animals.
American Naturalist 93: 117–125.
James FC. 1970. Geographic size variation in birds and its
relationship to climate. Ecology 51: 365–390.
Kardong KV. 1979. ‘Protovipers’ and the evolution of snake
fangs. Evolution 33: 433–443.
Kaufman GA, Gibbons JW. 1975. Weight–length relationships in thirteen species of snakes in the southeastern
United States. Herpetologica 31: 31–37.
Kleiber M. 1947. Body size and metabolic rate. Physiological
Review 27: 511–541.
Lee MSY, Hugall AF, Lawson R, Scanlon JD. 2007. Phylogeny of snakes (Serpentes): combining morphological and
molecular data in likelihood, Bayesian and parsimony
analyses. Systematics and Biodiversity 5: 371–389.
Lillywhite HB. 1987. Temperature, energetic, and physiological ecology. In: Seigal RA, Collins JT, Novak SS, eds.
Snakes: ecology and evolutionary biology. New York: Macmillan Publishing Company, 422–477.
Lillywhite HB, Henderson RW. 1993. Behavioral and functional ecology of arboreal snakes. In: Seigel RA, Collins JT,
eds. Snakes: ecology and behavior. New York: McGraw-Hill,
1–48.
Madsen T, Shine R. 1993. Phenotypic plasticity in body sizes
and sexual size dimorphism in European grass snakes.
Evolution 47: 321–325.
Martins M, Araujo MS, Sawaya RJ, Nunes R. 2001. Diversity and evolution of macrohabitat use, body size and morphology in a monophyletic group of Neotropical pitvipers
(Bothrops). Journal of Zoology 254: 529–538.
Meiri S. 2010. Length–weight allometries in lizards. Journal
of Zoology 281: 218–226.
Murphy JC. 2007. Homalopsid snakes: evolution in the mud.
Malabar, FL: Kreiger Publishing Company.
Nagy KA. 2005. Field metabolic rate and body size. The
Journal of Experimental Biology 208: 1621–1625.
O’Shea M. 2007. Boas and pythons of the world. London: New
Holland Publishers.
Olalla-Tárraga MA, Rodrıguez MA, Hawkins BA. 2006.
Broad-scale patterns of body size in squamate reptiles of
Europe and North America. Journal of Biogeography 33:
781–793.
Olden JD, Hogan ZS, Zanden MJV. 2007. Small fish, big
fish, red fish, blue fish: size-biased extinction risk of the
world’s freshwater and marine fishes. Global Ecology and
Biogeography 16: 694–701.
Olson V, Davies RG, Orme CDL, Thomas GH, Meiri S,
Blackburn TM, Gaston KJ, Owens IPF, Bennet PM.
171
2009. Global biogeography and ecology of body size in birds.
Ecology Letters 12: 249–259.
Pagel M. 1999. Inferring the historical patterns of biological
evolution. Nature 401: 877–884.
Peters HR. 1983. The ecological implications of body size.
New York: Cambridge University Press.
Pincheira-Donoso D, Fox SF, Scolaro JA, Ibargüengoytía
N, Acosta JC, Corbalán V, Medina M, Boretto J, Villavicencio HJ, Hodgson DJ. 2011. Body size dimensions in
lizard ecological and evolutionary research: exploring the
predictive power of mass estimation equations in two Liolaemidae radiations. The Herpetological Journal 21: 35–42.
Pough FH. 1980. The advantage of ectothermy for tetrapods.
The American Naturalist 115: 92–112.
Pough FH, Groves JD. 1983. Specialization of the body
form and food habits of snakes. American Zoologist 23:
443–454.
Pyron RA, Burbrink FT. 2009. Body size as a primary
determinant of ecomorphological diversification and the evolution of mimicry in the lampropeltinine snakes (Serpentes:
Colubridae). Journal of Evolutionary Biology 22: 2057–
2067.
Pyron RA, Burbrink FT, Colli GR, de Oca ANM, Vitt LJ,
Kuczynski CA, Wiens JJ. 2011. The phylogeny of
advanced snakes (Colubroidea), with discovery of a new
subfamily and comparison of support methods for likelihood
trees. Molecular Phylogenetics and Evolution 58: 329–342.
Qualls CP, Shine R. 1995. Maternal body-volume as a constraint on reproductive output in lizards: evidence from the
evolution of viviparity. Oecologia 103: 73–78.
R Development Core Team. 2011. R: a language and environment for statistical computing. Vienna: R Foundation for
Statistical Computing.
Rambaut A. 2010. FigTree, version 1.3.1. Edinburgh: Institute of Evolutionary Biology, University of Edinburgh.
Reed RN. 2003. Interspecific patterns of species richness,
geographic range size, and body size among new world
venomous snakes. Ecography 26: 107–117.
Schmidt-Nielsen K. 1984. Scaling. Why is animal size so
important? Cambridge: Cambridge University Press.
Seigel RA, Ford NB. 1987. Reproductive ecology. In: Seigal
RA, Collins JT, Novak SS, eds. Snakes: ecology and evolutionary biology. New York: Macmillan Publishing Company,
210–252.
Seymor RS. 1987. Scaling of cardiovascular physiology in
snakes. American Zoologist 27: 97–109.
Shine R. 1983. Reptilian reproductive modes: the oviparity–
viviparity continuum. Herpetologica 39: 1–8.
Shine R. 1994a. Allometric patterns in the ecology of Australian snakes. Copeia 1994: 851–867.
Shine R. 1994b. Sexual size dimorphism in snakes revisited.
Copeia 1994: 326–346.
Shine R, Harlow PS, Keogh JS, Boeadi. 1998. The allometry of life-history traits: insights from a study of giant
snakes (Python reticulatus). Journal of Zoology 244: 405–
414.
Sites JW, Reeder TW, Wiens JJ. 2011. Phylogenetic
insights on evolutionary novelties in lizards and snakes:
© 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 161–172
172
A. FELDMAN and S. MEIRI
sex, birth, bodies, niches, and venom. Annual Review of
Ecology, Evolution, and Systematics 42: 227–244.
Slip DJ, Shine R. 1988. Thermoregulation of free ranging
diamond pythons Morelia spilota (Serpentes, Boidae).
Copeia 1998: 984–995.
Smith FA, Lyons SK, Ernest SKM, Jones KE, Kaufman
DM, Dayan T, Marquet PA, Brown JH, Haskell JP. 2003.
Body mass of late Quaternary mammals. Ecology 84: 3403.
Spotila JR, Lommen PW, Bakken GS, Gates DM. 1973. A
mathematical model for body temperatures of large reptiles:
implications for dinosaur ecology. The American Naturalist
107: 391–404.
Terribile LC, Diniz-Filho JAF, Rodríguez MA, Rangel
TFLVB. 2009. Ecological and evolutionary components of
body size: geographic variation of venomous snakes at the
global scale. Biological Journal of the Linnean Society 98:
94–109.
Uetz P. 2011. The reptile database. Available at: http://reptiledatabase.org [downloaded November 2011].
Vidal N, Delmas AS, David P, Cruaud C, Couloux A,
Hedges SB. 2007. The phylogeny and classification
of caenophidian snakes inferred from seven nuclear
protein coding genes. Comptes Rendus Biologie 330: 182–
187.
Vidal N, Marin J, Morini M, Donnellan S, Branch WR,
Thomas R, Vences M, Wynn A, Cruaud C, Hedges SB.
2010. Blindsnake evolutionary tree reveals long history on
Gondwana. Biology Letters 6: 558–561.
Vitt LJ. 1987. Communities. In: Seigal RA, Collins JT, Novak
SS, eds. Snakes: ecology and evolutionary biology. New York:
Macmillan Publishing Company, 335–365.
Wagenmakers EJ, Farrell S. 2004. AIC model selection
using Akaike weights. Psychonomic Bulletin & Review 11:
192–196.
Wiens JJ, Brandley MC, Reeder TW. 2006. Why does a
trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution
60: 123–141.
SUPPORTING INFORMATION
Additional Supporting Information may be found in the online version of this article:
Appendix S1.
Appendix S2.
Appendix S3.
Appendix S4.
Length and mass data for species.
Species list and source of phylogeny, arranged by family.
Phylogenetic results, model by Vidal et al. (2007).
Evaluation of the allometries.
© 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 161–172
SNAKE LENGTH–MASS ALLOMETRY
1
APPENDIX S1
LENGTH
AND MASS DATA FOR SPECIES
Data for length (mm) and mass (g) arranged by type of measure and by family (data for species with no
exact citation are personal communication data)
Snout–vent length
Boidae
Species
SVL (mm)
Mass (g)
Source
Boa constrictor
Candoia aspera
Candoia bibroni
Candoia carinata
Corallus caninus
Corallus cookii
Corallus hortulanus
Epicrates cenchria
Epicrates inornatus
Epicrates maurus
Eryx conicus
Eryx jaculus
Eryx johnii
Eunectes murinus
Lichanura trivirgata
1662
541
480
518.5
957.5
812
1021
888
1426.9
1270
240
552.5
820
2088
597
5647
293
45.2
93
586.5
210
207
830
1058.9
1767
15.9
134.5
531
5900
170.7
Zoological garden
Johnson (1975)
Tel Aviv University Museum (TAUM)
Johnson (1975)
Tiffany Doan
Henderson & Winstel (1995)
Tiffany Doan
Vitt & Valdinger (1983), Tiffany Doan
Wiley (2003)
Zoological garden
TAUM
TAUM, zoological garden
Zoological garden
Rivas (2000)
Rodriguez-Robles et al. (1999)
Species
SVL (mm)
Mass (g)
Source
Amphiesma metusia
Amphiesma sauteri
Apostolepis albicollaris
Apostolepis ammodites
Apostolepis assimilis
Apostolepis flavotorquata
Atractus badius
Atractus major
Atractus pantostictus
Atractus snethlageae
Bogertophis subocularis
Boiga ceylonensis
Boiga irregularis
Boiruna maculata
Borikenophis portoricensis
Chironius exoletus
Chironius flavolineatus
Chironius fuscus
Chironius multiventris
Chironius quadricarinatus
Chironius scurrulus
Chrysopelea ornata
Clelia clelia
Clelia plumbea
Coluber constrictor
Coluber elegantissimus
Coluber flagellum
Coluber sinai
663
292.7
267
232
228
460
271
403
269
282.5
1200
360
1084
1280
569.3
807
675
704.5
1695
599
1340
768
1640.7
1401
765
461.6
1160
403
134
14
4
2
4
20
8
23
15
7.75
213.4
5.9
146.9
823.5
64
147
89
69.5
650
58
750
105
2050
600
121
21.7
322
19.1
Inger et al. (1990)
Inger et al. (1990)
França et al. (2008)
França et al. (2008)
França et al. (2008)
França et al. (2008)
Tiffany Doan
Tiffany Doan
França et al. (2008)
Tiffany Doan
Moon & Candy (1997)
TAUM
Aldridge et al. (2010)
Vitt & Valdinger (1983)
Barun et al. (2007)
França et al. (2008)
França et al. (2008)
Tiffany Doan
Tiffany Doan
França et al. (2008)
Tiffany Doan
Moon & Candy (1997)
Tiffany Doan
França et al. (2008)
Ford et al. (1990)
TAUM
Ford et al. (1990)
TAUM
Colubridae
2
A. FELDMAN and S. MEIRI
APPENDIX S1 Continued
Species
SVL (mm)
Mass (g)
Source
Crotaphopeltis hotamboeia
Dasypeltis scabra
Dendrelaphis punctulatus
Dendrophidion dendrophis
Diadophis punctatus
Dipsas catesbyi
Dipsas indica
Dipsas variegata
Dispholidus typus
Dolichophis jugularis
Drepanoides anomalus
Drymarchon corais
Drymarchon couperi
Drymobius rhombifer
Drymoluber brazili
Drymoluber dichrous
Eirenis coronella
Eirenis coronelloides
Eirenis decemlineatus
Eirenis modestus
Eirenis rothii
Elaphe carinata
Elaphe climacophora
Elaphe quadrivirgata
400
356.7
1006
422
459.3
397.5
308
670
856
1220.4
438.8
1249
1449
516.5
493
704.7
207.5
200
493.3
350
177
832
1155.8
860.1
13.8
15.7
166.3
20.25
19
11.3
4.5
46.7
153
692
28.6
829
1759
55.2
86
119.3
6.1
4.3
29.4
15.5
1.6
169.5
331.4
188.7
Elaphe sauromates
Erythrolamprus aesculapii
Erythrolamprus bizonus
Gomesophis brasiliensis
Helicops angulatus
Helicops leopardinus
Helicops modestus
Hemorrhois nummifer
Heterodon platirhinos
Imantodes cenchoa
Imantodes lentiferus
Lampropeltis nigra
Leptodeira annulata
Leptophis ahaetulla
Leptophis mexicanus
Liophis almadensis
Liophis lineatus
Liophis maryellenae
Liophis mossoroensis
Liophis poecilogyrus
Liophis reginae
Liophis typhlus
Liophis viridis
Lygophis meridionalis
Lygophis paucidens
Lytorhynchus diadema
Macroprotodon cucullatus
Mastigodryas bifossatus
1363
426
716
289
306.5
240
285
854
660
685
643.8
651.7
486.5
733.7
655
285
423.5
305
449.5
371.5
438.5
549
353
444
369
350
363.3
1017
993
40
124.5
23
39.4
24
35
230
280
16.4
14.5
152.5
29.9
68.3
43.1
14
26.5
23
50.75
40.1
36
54
20.7
26
20
12.8
16.6
523
TAUM
Jacobsen (1982)
Shine (1991)
Tiffany Doan
Parker & Brown (1974)
Tiffany Doan
Tiffany Doan
Tiffany Doan
TAUM
TAUM, zoological garden
Tiffany Doan
França et al. (2008)
Stevenson et al. (2003)
Tiffany Doan
França et al. (2008)
Tiffany Doan
TAUM
TAUM
TAUM
TAUM
TAUM
Moon & Candy (1997)
Hasegawa & Moriguchi (1989)
Hasegawa & Moriguchi (1989);
Tanaka (2011); Tanaka & Ota
(2002)
TAUM, zoological garden
França et al. (2008)
Moon & Candy (1997)
França et al. (2008)
Tiffany Doan
França et al. (2008)
França et al. (2008)
TAUM, zoological garden
Ford et al. (1990)
Tiffany Doan
Tiffany Doan
Faust & Blomquist (2011)
Tiffany Doan
Moon & Candy (1997)
Moon & Candy (1997)
França et al. (2008)
Vitt (1983)
França et al. (2008)
Vitt (1983)
Vitt (1983)
Tiffany Doan
Moon & Candy (1997), Tiffany Doan
Vitt (1983)
França et al. (2008)
França et al. (2008)
TAUM
TAUM
França et al. (2008)
SNAKE LENGTH–MASS ALLOMETRY
APPENDIX S1 Continued
Species
SVL (mm)
Mass (g)
Source
Mussurana quimi
Natrix maura
Natrix natrix
Natrix tessellata
Nerodia fasciata
Nerodia paucimaculata
Nerodia rhombifer
Nerodia sipedon
493
483
320
535.6
640
596.1
860.4
485
89
44.4
13
79.5
283
88.7
556.9
118.2
Ninia hudsoni
Opheodrys aestivus
Orthriophis taeniurus
Oxybelis aeneus
Oxyrhopus formosus
Oxyrhopus guibei
Oxyrhopus petolarius
Oxyrhopus rhombifer
Oxyrhopus trigeminus
333.5
485
755
836
575.1
439
550.8
312
455.3
14.6
17
76.2
57.5
51.2
43
29.6
21
41.3
1185
1216
700
518
504
715
771
685.5
677
454
774
440.2
476
435
305.5
695.4
283.3
780.8
530.3
261
567.6
616.5
567.5
419.5
786.1
786
919
340
246
695
62
58
47
145.3
170.5
91.5
168
50
155.4
34.4
87
22.6
26
63.6
11.5
56.6
35.9
16
62.8
134
90.6
32.5
189.3
561
89.5
10
França et al. (2008)
TAUM
TAUM
TAUM, zoological garden
Ford et al. (1990)
Greene et al. (1999)
Secor & Nagy (2003)
King et al. (1999); Queral-Regil &
King (1998); Weatherhead et al.
(1995)
Tiffany Doan
Ford et al. (1990)
Moon & Candy (1997)
Vitt & Valdinger (1983)
Tiffany Doan
França et al. (2008)
Tiffany Doan
França et al. (2008)
França et al. (2008); Vitt &
Valdinger (1983)
TAUM
Zoological garden
Braz et al. (2009)
França et al. (2008)
França et al. (2008)
TAUM
Vitt & Valdinger (1983)
Vitt & Valdinger (1983)
França et al. (2008)
França et al. (2008)
Moon & Candy (1997)
Jacobsen (1982)
França et al. (2008)
TAUM
Inger et al. (1990)
TAUM, zoological garden
TAUM
TAUM
TAUM
França et al. (2008)
Tiffany Doan
Vitt & Valdinger (1983)
Seigel (1992)
Inger et al. (1990)
Tanaka & Ota (2002)
França et al. (2008)
Tiffany Doan
TAUM
224
372
270
449
854.6
9
13.9
12
32
211.2
Winne et al. (2005)
Moon & Candy (1997)
França et al. (2008)
França et al. (2008)
TAUM, zoological garden
Pantherophis alleghaniensis
Pantherophis guttatus
Phalotris lativittatus
Phalotris nasutus
Philodryas aestivus
Philodryas chamissonis
Philodryas nattereri
Philodryas olfersii
Philodryas patagoniensis
Philodryas psammophidea
Philodryas viridissima
Philothamnus semivariegatus
Phimophis guerini
Phyllorhynchus decurtatus
Plagiopholis tyani
Platyceps collaris
Platyceps florulentus
Platyceps rhodorachis
Platyceps rogersi
Pseudablabes agassizii
Pseudoboa coronate
Pseudoboa nigra
Regina grahami
Rhabdophis nuchalis
Rhabdophis tigrinus
Rhachidelus brazili
Rhinobothryum lentiginosum
Rhynchocalamus
melanocephalus
Seminatrix pygaea
Sibon nebulatus
Sibynomorphus mikanii
Simophis rhinostoma
Spalerosophis diadema
3
4
A. FELDMAN and S. MEIRI
APPENDIX S1 Continued
Species
SVL (mm)
Mass (g)
Source
Spilotes pullatus
Stegonotus cucullatus
Storeria dekayi
Storeria occipitomaculata
Tachymenis peruviana
Tantilla coronata
1404
1040
229.8
230.5
346
188.5
552.5
298
4.7
7.3
29.2
2.5
Tantilla gracilis
Tantilla melanocephala
Telescopus dhara
Telescopus fallax
Telescopus hoogstraali
Telescopus semiannulatus
Thamnodynastes hypoconia
133.8
228
731
488
658.3
400
317.7
1.6
7
82
33.2
74.6
9.5
20.4
Thamnodynastes pallidus
Thamnodynastes rutilus
Thamnophis butleri
Thamnophis couchii
Thamnophis marcianus
Thamnophis proximus
Thamnophis radix
Thamnophis scalaris
Thamnophis sirtalis
585
275
381
510.6
521
635.3
435.6
395
549.4
53
21
24.8
61
90
58.9
50.9
42
104.2
Thelotornis capensis
Thelotornis kirtlandii
Trimorphodon biscutatus
Tropidonophis mairii
Virginia striatula
Virginia valeriae
Xenochrophis flavipunctatus
Xenochrophis piscator
Xenodon merremi
Xenodon nattereri
Xenopholis scalaris
Xenopholis undulatus
Xenoxybelis argenteus
Zamenis longissimus
701.5
877
823
644.5
183
232.7
667.5
555
615.3
245
254.9
268
660
645
78.8
69
84.3
119.1
3.3
7.2
250.7
131.6
201.8
14
8.8
10
25
199
Vitt & Valdinger (1983)
Shine (1991)
Ford et al. (1990)
Ford et al. (1990)
Tiffany Doan
Semlitsch et al. (1981); Todd et al.
(2008)
Cobb (2004)
França et al. (2008)
TAUM
TAUM
TAUM
TAUM
França et al. (2008); Vitt &
Valdinger (1983)
Vitt & Valdinger (1983)
França et al. (2008)
Ford & Killebrew (1983)
Lind & Welsh (1990)
Ford & Karges (1987)
Lancaster & Ford (2003)
King et al. (1999)
Manjarrez et al. (2007)
King et al. (1999); Moon & Candy
(1997)
Shine et al. (1996b)
TAUM
Moon & Candy (1997)
Shine (1991); Brown & Shine (2002)
Ford et al. (1990)
Ford et al. (1990)
Karns et al. (2010)
Brooks et al. (2009)
França et al. (2008); Vitt (1983)
França et al. (2008)
Tiffany Doan
França et al. (2008)
Tiffany Doan
TAUM
Elapidae
Species
SVL (mm)
Mass (g)
Source
Aspidelaps scutatus
Bungarus ceylonicus
Bungarus flaviceps
Demansia vestigiata
Dendroaspis angusticeps
Dendroaspis polylepis
Enhydrina schistosa
Hoplocephalus bungaroides
Hoplocephalus stephensii
Lapemis curtus
391.5
770
825
610.7
1245
1410
792.9
685
621
508.6
75.7
47.7
90.3
60.8
282.4
651.7
314.23
71
84
147.1
Shine et al. (1996a)
TAUM
Moon & Candy (1997)
Fearn & Trembath (2009)
Moon & Candy (1997)
Jacobsen (1982)
Lobo et al. (2004)
Shine & Fitzgerald (1989)
Fitzgerald et al. (2004)
Lobo et al. (2004)
SNAKE LENGTH–MASS ALLOMETRY
5
APPENDIX S1 Continued
Species
SVL (mm)
Mass (g)
Source
Laticauda colubrina
Micrurus frontalis
Micrurus ibiboboca
Micrurus lemniscatus
Naja annulifera
Naja atra
Naja mossambica
Naja naja
Naja nigricollis
Notechis scutatus
Simoselaps bertholdi
Simoselaps bimaculatus
Simoselaps calonotus
Simoselaps fasciolatus
Simoselaps semifasciatus
Walterinnesia aegyptia
921
650
643.5
679
858.1
1000.7
586.2
1570
1010
1258
203.4
306.5
214.8
241.4
261.2
810
355
80
48.5
38.5
391.2
311.1
171.3
1497.5
256.7
835.5
7.6
8.9
5
9.3
12.7
321
Moon & Candy (1997)
França et al. (2008)
Vitt & Valdinger (1983)
Tiffany Doan
Jacobsen (1982)
Ji & Wang (2005)
Jacobsen (1982)
TAUM
TAUM
Schwaner & Sarre (1988)
How & Shine (1999)
How & Shine (1999)
How & Shine (1999)
How & Shine (1999)
How & Shine (1999)
TAUM
Homalopsidae
Species
SVL (mm)
Mass (g)
Source
Cerberus rynchops
Enhydris bocourti
Enhydris enhydris
Enhydris jagorii
Enhydris longicauda
Enhydris plumbea
Enhydris subtaeniata
Erpeton tentaculatum
Fordonia leucobalia
Gerarda prevostiana
Homalopsis buccata
460
552.5
490.5
484
465.5
389
537.5
480
461
365
729.7
60.4
232.4
89.6
245
134.2
59.6
232.2
92.9
68.2
23.2
296.7
Karns et al. (2002)
Brooks et al. (2009)
Brooks et al. (2009)
Karns et al. (2010)
Brooks et al. (2009)
Karns et al. (2005)
Karns et al. (2010)
Brooks et al. (2009)
Karns et al. (2002)
Karns et al. (2002)
Brooks et al. (2009); Karns et al. (2010)
Lamprophiidae
Species
SVL (mm)
Mass (g)
Source
Amblyodipsas polylepis
Amblyodipsas ventrimaculata
Aparallactus capensis
Atractaspis bibronii
Atractaspis engaddensis
Atractaspis irregularis
Atractaspis microlepidota
Boaedon fuliginosus
Gonionotophis capensis
Gonionotophis nyassae
Homoroselaps lacteus
Lycodonomorphus rufulus
Lycophidion capense
Macrelaps microlepidotus
Malpolon monspessulanus
Micrelaps muelleri
528.5
295.5
256.3
467.5
616.5
405
677
466.5
627
382.94
465
405
283.5
650
1166
359.3
81.5
7.4
4.9
34.3
57.5
21.2
93.5
30.8
158.9
19.8
21.3
33.1
10.8
176.6
1257
7.7
Shine et al. (2006b)
Shine et al. (2006b)
Jacobsen (1982)
Shine et al. (2006b)
TAUM
TAUM
TAUM
Jacobsen (1982), TAUM
Jacobsen (1982)
Jacobsen (1982)
TAUM
TAUM
Jacobsen (1982)
Shine et al. (2006b)
TAUM, zoological garden
TAUM
6
A. FELDMAN and S. MEIRI
APPENDIX S1 Continued
Species
SVL (mm)
Mass (g)
Source
Micrelaps tchernovi
Pararhadinaea melanogaster
Prosymna sundevallii
Psammophis aegyptius
Psammophis brevirostris
Psammophis jallae
Psammophis leopardinus
Psammophis mossambicus
Psammophis namibensis
Psammophis notostictus
Psammophis schokari
Psammophis subtaeniatus
Psammophis trigrammus
Psammophis trinasalis
Psammophylax tritaeniatus
Pseudaspis cana
Rhagerhis moilensis
Xenocalamus bicolor
Xenocalamus mechowii
315
215.6
219.7
720
648.5
614
703.5
787
579
488.5
623
598
647.5
511.5
405
950
250.2
476
588
3
2.9
7.2
197.9
119.05
62.05
145.15
213.95
50.35
29.8
87
68.15
51.25
41.6
29.3
492.9
8.07
27
23.5
TAUM
Labanowski & Lowin (2011)
Jacobsen (1982)
TAUM
Shine et al. (2006a)
Shine et al. (2006a)
Shine et al. (2006a)
Shine et al. (2006a)
Shine et al. (2006a)
Shine et al. (2006a)
TAUM, zoological garden
Shine et al. (2006a)
Shine et al. (2006a)
Shine et al. (2006a)
Shine et al. (2006a)
TAUM
TAUM
Shine et al. (2006b)
Shine et al. (2006b)
Pythonidae
Species
SVL (mm)
Mass (g)
Source
Antaresia maculosa
Broghammerus reticulates
Morelia spilota
Morelia viridis
Python regius
Python sebae
1154
3061.3
1587.6
1021
1125
3370
530
11769.3
2120.15
563.2
1324
13250
Trembath (2008)
Shine et al. (1998)
Pearson et al. (2002)
TAUM
Aubret et al. (2005), zoological garden
TAUM
Scolecophidia
Species
SVL (mm)
Mass (g)
Source
Epictia albipuncta
Epictia tenella
Leptotyphlops distanti
Liotyphlops ternetzii
Myriopholis macrorhyncha
Ramphotyphlops bicolor
Ramphotyphlops braminus
Rhinotyphlops simonii
Siagonodon septemstriatus
Tetracheilostoma breuili
Tetracheilostoma carlae
Trilepida fuliginosa
Trilepida macrolepis
Typhlops minuisquamus
Typhlops reticulatus
Typhlops vermicularis
144.5
165.7
143.5
207
232.1
234
143.4
198.2
160
99.9
93.7
207.25
279.7
264
248.3
187.9
1.4
1.2
0.57
3
1.38
10.39
0.85
0.95
1.5
0.61
0.6
4.6
9.5
16.5
22
2.2
Marinus Hoogmoed
Alessandro Costa Menks
Jacobsen (1982)
França et al. (2008), Marinus Hoogmoed
TAUM
Dale Nimmo
Kamosawa & Ota (1996)
TAUM
Marinus Hoogmoed
Hedges (2008)
Hedges (2008)
França et al. (2008), Marinus Hoogmoed
Alessandro Costa Menks
Marinus Hoogmoed
Alessandro Costa Menks, Marinus Hoogmoed
TAUM
SNAKE LENGTH–MASS ALLOMETRY
7
APPENDIX S1 Continued
Viperidae
Species
SVL (mm)
Mass (g)
Source
Agkistrodon bilineatus
Agkistrodon contortrix
Agkistrodon piscivorus
Atheris squamigera
Bitis arietans
Bitis caudalis
Bitis cornuta
Bitis gabonica
Bitis peringueyi
Bitis schneideri
Bothriopsis bilineata
Bothropoides neuwiedi
Bothrops moojeni
Causus defilippii
Causus resimus
Causus rhombeatus
Cerastes cerastes
Cerastes gasperettii
Cerastes vipera
Crotalus cerastes
Crotalus durissus
Crotalus horridus
Crotalus molossus
Crotalus oreganus
Crotalus polystictus
Crotalus pricei
Crotalus ravus
Crotalus triseriatus
Crotalus viridis
337
610.5
580
477.5
839.5
302.5
325
331
230
198.7
422
413
618
317
531.7
630
530.1
547
214.6
428.8
1344.5
946
885
920
607
421.4
683
180
678.7
51.1
217.2
204
44.5
743.3
24.1
32.6
47.5
8.6
15.8
185
43
217
21.6
53.1
94.8
186.6
144
9.9
94.7
2440.5
581.9
438.4
502.6
188.9
62.6
223
4.4
221.1
Daboia palaestinae
Daboia russelii
Echis carinatus
Echis coloratus
Echis pyramidum
Eristicophis macmahoni
Gloydius blomhoffii
Gloydius himalayanus
Gloydius shedaoensis
Macrovipera deserti
Macrovipera lebetina
Macrovipera mauritanica
Montivipera bornmuelleri
Montivipera latifii
Montivipera raddei
Montivipera xanthina
Ovophis zayuensis
Protobothrops jerdonii
Pseudocerastes fieldi
Pseudocerastes persicus
Rhinocerophis alternatus
Rhinocerophis itapetiningae
Sistrurus catenatus
872
930
550.5
622.7
457.8
542
410
481
634
690
768
1080
654
578
848.7
942
435
633.5
612.5
625
760
304
535
437.5
675
178.4
147.7
76.6
125
63.7
75.7
124
244.2
380
855
193
104
317.3
351.3
72
166.5
185.2
215.3
229.6
38
167.2
Moon & Candy (1997)
Ford et al. (1990); Schuett & Gillingham (1989)
Ford et al. (1990)
TAUM
TAUM
TAUM
TAUM
TAUM
TAUM
Maritz & Alexander (2011)
Tiffany Doan
França et al. (2008)
França et al. (2008)
TAUM
TAUM
TAUM
TAUM
TAUM
TAUM
TAUM
Vitt & Valdinger (1983)
Brown (1991); Moon & Candy (1997)
Moon & Candy (1997)
TAUM
Setser et al. (2010); Moon & Candy (1997)
Prival et al. (2002)
Moon & Candy (1997)
Manjarrez et al. (2007)
Ashton & Patton (2001); Diller & Wallace (2002), Moon &
Candy (1997)
TAUM
TAUM
Moon & Candy (1997), TAUM
Moon & Candy (1997), TAUM
TAUM
TAUM
TAUM
TAUM
Li-Xin et al. (2002)
TAUM
TAUM
TAUM
TAUM
TAUM
Moon & Candy (1997), TAUM
TAUM
Inger et al. (1990)
Inger et al. (1990)
TAUM
TAUM
TAUM
França et al. (2008)
Moon & Candy (1997)
8
A. FELDMAN and S. MEIRI
APPENDIX S1 Continued
Species
SVL (mm)
Mass (g)
Source
Sistrurus miliarius
Trimeresurus gracilis
Trimeresurus kanburiensis
Trimeresurus stejnegeri
Vipera ammodytes
Vipera aspis
Vipera berus
Vipera kaznakovi
369
296
825
707
611
517
330.1
493.5
40.6
34.5
283.5
175.5
210.9
74.1
32.3
52.1
Ford et al. (1990)
Chia-Fan & Ming-Chung (2008)
Moon & Candy (1997)
Moon & Candy (1997)
TAUM
Bonnet et al. (2000), TAUM
Forsman & Lindell (1996), TAUM
TAUM
Total length
Boidae
Species
TL (mm)
Mass (g)
Source
Boa constrictor
Calabaria reinhardtii
Candoia bibroni
Candoia carinata
Charina bottae
Corallus caninus
Corallus hortulanus
Epicrates cenchria
Epicrates maurus
Eryx conicus
Eryx jaculus
Eryx johnii
Eunectes murinus
1848.3
837
560
780
488.65
1142.5
1273.8
1023.3
1440
260
599.3
900
2426
5646.7
183
45.2
530
39.8
586.5
207.2
829.6
1767
15.9
134.5
531
5900
Zoolological garden
Angelici et al. (2000)
TAUM
Seymor (1987)
Hoyer & Stewart (2000), Peabody et al. (1975)
Tiffany Doan
Tiffany Doan
Vitt & Valdinger (1983), Tiffany Doan
Zoological garden
TAUM
TAUM
Zoological garden
Rivas (2000)
Colubridae
Species
TL (mm)
Mass (g)
Source
Ahaetulla prasina
Amphiesma metusia
Amphiesma sauteri
Apostolepis albicollaris
Apostolepis ammodites
Apostolepis assimilis
Apostolepis flavotorquata
Arizona elegans
Atractus badius
Atractus major
Atractus pantostictus
Atractus snethlageae
Boiga ceylonensis
Boiga cynodon
Boiga dendrophila
Boiga irregularis
Boiruna maculata
Borikenophis portoricensis
Chironius exoletus
Chironius flavolineatus
Chironius fuscus
Chironius multiventris
1380
885
414.25
297
259
251
502
1070
306.8
456
300
321
460
2350
1260
1320
1517
816.9
1276
1116
1080
2496
78.2
134
14
4
2
4
20
161
8.3
23
15
7.75
5.9
417.3
182
402
823.5
64
147
89
70
650
Seymor (1987)
Inger et al. (1990)
Inger et al. (1990)
França et al. (2008)
França et al. (2008)
França et al. (2008)
França et al. (2008)
Seymor (1987)
Tiffany Doan
Tiffany Doan
França et al. (2008)
Tiffany Doan
TAUM
Quinn & Neitman (1978)
Seymor (1987)
Seymor (1987)
Vitt & Valdinger (1983)
Barun et al. (2007)
França et al. (2008)
França et al. (2008)
Tiffany Doan
Tiffany Doan
SNAKE LENGTH–MASS ALLOMETRY
9
APPENDIX S1 Continued
Species
TL (mm)
Mass (g)
Source
Chironius quadricarinatus
Chironius scurrulus
Chrysopelea ornata
Clelia clelia
Clelia plumbea
Coelognathus radiatus
Coluber constrictor
Coluber elegantissimus
Coluber flagellum
Coluber sinai
Coronella austriaca
959
1720
1050
2040.7
1716
740
1160
604.4
1810
543.7
495
58
750
145
2050
600
50.5
182
21.7
475
19.1
50
Coronella girondica
Crotaphopeltis hotamboeia
Dendrelaphis calligastra
Dendrelaphis caudolineatus
Dendrelaphis punctulatus
Dendrophidion dendrophis
Diadophis punctatus
Dinodon rufozonatum
Dipsas catesbyi
Dipsas indica
Dipsas variegata
Dispholidus typus
Dolichophis jugularis
Drepanoides anomalus
Drymarchon corais
Drymarchon couperi
Drymobius rhombifer
Drymoluber brazili
Drymoluber dichrous
Eirenis coronella
Eirenis coronelloides
Eirenis decemlineatus
Eirenis modestus
Eirenis rothii
Elaphe quatuorlineata
Elaphe sauromates
Erythrolamprus aesculapii
Gomesophis brasiliensis
Helicops angulatus
Helicops leopardinus
Helicops modestus
Hemorrhois hippocrepis
Hemorrhois nummifer
Hierophis viridiflavus
Imantodes cenchoa
Imantodes lentiferus
Lampropeltis getula
Lampropeltis nigra
Leptodeira annulata
Leptophis ahaetulla
Liophis almadensis
Liophis lineatus
650
448
1030
937.5
1185
742
535.1
780
532.2
412
921.5
1156
1698.3
569.2
1553
1725.5
701.5
622
979.7
261.5
254
666.7
454.2
219
1600
1612.3
485
359
426.2
360
378
1100
1073
1153.3
954.2
913.6
1120
745.3
654.3
1144.7
375
550.5
55
13.8
83.7
54
130.25
20.25
17.2
160.9
11.3
4.5
46.7
153
691.9
28.6
829
1759
55.2
86
119.3
6.1
4.3
29.4
15.5
1.6
400
993
40
23
39.4
24
35
220
230
172.3
16.4
14.5
258
152.5
29.9
68.3
14
26.5
França et al. (2008)
Tiffany Doan
Seymor (1987)
Tiffany Doan
França et al. (2008)
Seymor (1987)
Seymor (1987)
TAUM
Seymor (1987)
TAUM
Luiselli, Capula & Shine (1996); Zuffi
et al. (2010)
Zuffi et al. (2010)
TAUM
Seymor (1987)
Seymor (1987)
Seymor (1987)
Tiffany Doan
Parker & Brown (1974); Seymor (1987)
Dieckmann et al. (2010)
Tiffany Doan
Tiffany Doan
Tiffany Doan
TAUM
TAUM, zoological garden
Tiffany Doan
França et al. (2008)
Stevenson et al. (2003)
Tiffany Doan
França et al. (2008)
Tiffany Doan
TAUM
TAUM
TAUM
TAUM
TAUM
TAUM
TAUM, zoological garden
França et al. (2008)
França et al. (2008)
Tiffany Doan
França et al. (2008)
França et al. (2008)
Zuffi et al. (2010)
TAUM, zoological garden
Capula et al. (1995); Zuffi et al. (2010)
Tiffany Doan
Tiffany Doan
Seymor (1987)
Faust & Blomquist (2011)
Tiffany Doan
Vitt & Valdinger (1983), Tiffany Doan
França et al. (2008)
Vitt (1983)
10
A. FELDMAN and S. MEIRI
APPENDIX S1 Continued
Species
TL (mm)
Mass (g)
Source
Liophis maryellenae
Liophis mossoroensis
Liophis poecilogyrus
Liophis reginae
Liophis typhlus
Liophis viridis
Lygophis meridionalis
Lygophis paucidens
Lytorhynchus diadema
Macroprotodon cucullatus
Mastigodryas bifossatus
Mussurana quimi
Natrix maura
Natrix natrix
Natrix tessellata
Nerodia sipedon
399
537.35
453
570.8
720
456
611
496
412
433.7
1410
622
615
400
677.4
786.2
23
50.75
40.1
35.9
47
20.75
26
20
12.8
16.6
523
89
44.4
13
79.5
174
Nerodia taxispilota
Ninia hudsoni
Oxybelis aeneus
Oxyrhopus formosus
Oxyrhopus guibei
Oxyrhopus petolarius
Oxyrhopus rhombifer
Oxyrhopus trigeminus
798
389.5
1332
741
556
809.8
389
563.3
228
14.65
57.5
51.25
43
34
21
41.3
Pantherophis alleghaniensis
Pantherophis guttatus
Pantherophis obsoletus
Pantherophis spiloides
Phalotris lativittatus
Phalotris nasutus
Philodryas aestivus
Philodryas chamissonis
Philodryas nattereri
Philodryas olfersii
Philodryas patagoniensis
Philodryas psammophidea
Phimophis guerini
Phyllorhynchus decurtatus
Pituophis melanoleucus
Plagiopholis styani
Platyceps collaris
Platyceps florulentus
Platyceps rhodorachis
Platyceps rogersi
Pseudablabes agassizii
Pseudoboa coronata
Pseudoboa nigra
Ptyas korros
Rhabdophis nuchalis
Rhachidelus brazili
Rhinechis scalaris
Rhinobothryum lentiginosum
1467
1453.3
1380
1348
764
576
718
955
1066.5
947.5
929
610
607
510
1620
347.5
985.3
377.7
1099.3
726.5
346
743.8
809.5
930
517.8
999
1500
1155
246
695.3
510
322.8
62
58
47
145.3
170.5
91.5
168
50
87
22.6
747
26
63.6
11.5
56.6
35.9
16
62.8
134
201
32.5
561
500
89.5
França et al. (2008)
Vitt (1983)
Vitt (1983)
Tiffany Doan
Tiffany Doan
Vitt (1983)
França et al. (2008)
França et al. (2008)
TAUM
TAUM
França et al. (2008)
França et al. (2008)
TAUM
TAUM
TAUM, zoological garden
King et al. (1999); Weatherhead et al.
(1995)
Seymor (1987)
Tiffany Doan
Vitt & Valdinger (1983)
Tiffany Doan
França et al. (2008)
Tiffany Doan
França et al. (2008)
Vitt & Valdinger (1983); França et al.
(2008)
TAUM
Zoological garden
Seymor (1987)
Schumacher et al. (1997)
Braz et al. (2009)
França et al. (2008)
França et al. (2008)
TAUM
Vitt & Valdinger (1983)
Vitt & Valdinger (1983)
França et al. (2008)
França et al. (2008)
França et al. (2008)
TAUM
Seymor (1987)
Inger et al. (1990)
TAUM, zoological garden
TAUM
TAUM
TAUM
França et al. (2008)
Tiffany Doan
Vitt & Valdinger (1983)
Seymor (1987)
Inger et al. (1990)
França et al. (2008)
Zuffi et al. (2010)
Tiffany Doan
SNAKE LENGTH–MASS ALLOMETRY
11
APPENDIX S1 Continued
Species
Rhynchocalamus
melanocephalus
Sibynomorphus mikanii
Simophis rhinostoma
Spalerosophis diadema
Spilotes pullatus
Tachymenis peruviana
Tantilla coronata
TL (mm)
Mass (g)
420
10
332
565
1042.8
1803.5
427.5
231.8
12
32
211.2
552.5
29.2
2.5
Tantilla melanocephala
Telescopus dhara
Telescopus fallax
Telescopus hoogstraali
Telescopus semiannulatus
Thamnodynastes hypoconia
301
853
567.95
779.8
490
407
7
81.96
33.2
74.6
9.5
20.4
Thamnodynastes pallidus
Thamnodynastes rutilus
Thamnophis radix
Thamnophis sirtalis
Thelotornis capensis
Thelotornis kirtlandii
Xenochrophis flavipunctatus
Xenodon merremi
Xenodon nattereri
Xenopholis scalaris
Xenopholis undulatus
Xenoxybelis argenteus
Zamenis lineatus
Zamenis longissimus
800
384
552.7
630.85
1109.5
1369
898.56
718.3
289
302.6
316
1105
930
795
53
21
50.9
73.03
78.8
69
250.7
201.7
14
8.8
10
25
190
199.3
Source
TAUM
França et al. (2008)
França et al. (2008)
TAUM, zoological garden
Vitt & Valdinger (1983)
Tiffany Doan
Semlitsch et al. (1981); Todd et al.
(2008)
França et al. (2008)
TAUM
TAUM
TAUM
TAUM
Vitt & Valdinger (1983); França et al.
(2008)
Vitt & Valdinger (1983)
França et al. (2008)
King et al. (1999)
King et al. (1999)
Shine et al. (1996b)
TAUM
Karns et al. (2010)
Vitt (1983); França et al. (2008)
França et al. (2008)
Tiffany Doan
França et al. (2008)
Tiffany Doan
Zuffi et al. (2010)
TAUM
Elapidae
Species
TL (mm)
Mass (g)
Source
Acanthophis antarcticus
Acanthophis pyrrhus
Aspidelaps scutatus
Austrelaps superbus
Bungarus ceylonicus
Cacophis squamulosus
Chitulia belcheri
Chitulia inornata
Chitulia ornata
Cryptophis nigrescens
Demansia vestigiata
Disteira major
Disteira stokesii
Enhydrina schistosa
Furina diadema
Furina tristis
Hemiaspis signata
Hoplocephalus stephensii
567
585
448.7
553
850
726
852
645
614
481
874.3
910
470
892.8
388
860
529
878
252
148
75.75
339
47.7
45.7
260
156
107
35
89.7
258
52
314.2
15
147
35.8
104
Seymor (1987)
Seymor (1987)
Shine et al. (1996a)
Seymor (1987)
TAUM
Seymor (1987)
Seymor (1987)
Seymor (1987)
Seymor (1987)
Seymor (1987)
Fearn & Trembath (2009)
Seymor (1987)
Seymor (1987)
Lobo et al. (2004)
Seymor (1987)
Seymor (1987)
Seymor (1987)
Seymor (1987)
12
A. FELDMAN and S. MEIRI
APPENDIX S1 Continued
Species
TL (mm)
Mass (g)
Source
Hydrelaps darwiniensis
Lapemis curtus
Lapemis hardwickii
Laticauda laticaudata
Leioselasma cyanocincta
Leioselasma elegans
Micrurus frontalis
Micrurus ibiboboca
Micrurus lemniscatus
Micrurus tener
Naja atra
Naja naja
Naja nigricollis
Notechis scutatus
Oxyuranus
microlepidotus
Oxyuranus scutellatus
Pelamis platura
Pseudechis australis
Pseudechis porphyriacus
Pseudolaticauda
semifasciata
Pseudonaja affinis
Pseudonaja nuchalis
Pseudonaja textilis
Rhinoplocephalus bicolor
Simoselaps fasciolatus
Simoselaps incinctus
Simoselaps littoralis
Suta flagellum
Tropidechis carinatus
Vermicella annulata
Walterinnesia aegyptia
391
566.5
635
883
568
1980
692
681.5
734
610
1166.3
1843.5
1250
870
1660
22.4
147.1
330
165
39.3
2450
80
48.5
38.5
33.8
311.1
1497.5
256.7
226
838
Seymor (1987)
Lobo et al. (2004)
Seymor (1987)
Seymor (1987)
Seymor (1987)
Seymor (1987)
França et al. (2008)
Vitt & Valdinger (1983)
Tiffany Doan
Campbell (1973)
Ji & Wang (2005)
TAUM
TAUM
Seymor (1987)
Seymor (1987)
2100
637
1440
766
1020
753
30
642
304
641
Seymor
Seymor
Seymor
Seymor
Seymor
(1987)
(1987)
(1987)
(1987)
(1987)
1070
1380
1360
340
291
278
215
256
821
482
927.3
368
464
469
17.4
9.5
11.5
7.75
7.05
170
14.5
320.6
Seymor
Seymor
Seymor
Seymor
Seymor
Seymor
Seymor
Seymor
Seymor
Seymor
TAUM
(1987)
(1987)
(1987)
(1987)
(1987)
(1987)
(1987)
(1987)
(1987)
(1987)
Homalopsidae
Species
TL (mm)
Mass (g)
Source
Cerberus australis
Cerberus rynchops
Enhydris jagorii
Enhydris polylepis
Enhydris subtaeniata
Fordonia leucobalia
Gerarda prevostiana
Homalopsis buccata
500
500
621.6
664
645
528
420
953.9
36.8
36.5
245
132
232.2
96.8
23.2
347.2
Seymor (1987)
Karns et al. (2002)
Karns et al. (2010)
Seymor (1987)
Karns et al. (2010)
Karns et al. (2002); Seymor (1987)
Karns et al. (2002)
Karns et al. (2010)
SNAKE LENGTH–MASS ALLOMETRY
13
APPENDIX S1 Continued
Lamprophiidae
Species
TL (mm)
Mass (g)
Source
Amblyodipsas polylepis
Amblyodipsas ventrimaculata
Atractaspis aterrima
Atractaspis bibronii
Atractaspis engaddensis
Atractaspis irregularis
Atractaspis microlepidota
Boaedon fuliginosus
Homoroselaps lacteus
Lycodonomorphus rufulus
Macrelaps microlepidotus
Malpolon monspessulanus
Micrelaps muelleri
Micrelaps tchernovi
Pararhadinaea melanogaster
Psammophis aegyptius
Psammophis brevirostris
Psammophis jallae
Psammophis leopardinus
Psammophis mossambicus
Psammophis namibensis
Psammophis notostictus
Psammophis schokari
Psammophis subtaeniatus
Psammophis trigrammus
Psammophis trinasalis
Psammophylax tritaeniatus
Pseudaspis cana
Rhagerhis moilensis
Xenocalamus bicolor
Xenocalamus mechowii
571.5
322
522
484.5
664.2
434
743
725
520
565
771.5
1484
383
340
251.7
1005
964.5
914.5
1016.5
1109.5
830.5
706.5
938.4
924
1018
748
515
1150
310.2
518.5
631
81.5
7.4
27.5
34.3
57.5
21.2
93.5
50.9
21.3
33.1
176.6
1257
7.7
3
2.9
197.9
119.05
62.05
145.15
213.95
50.35
29.8
86.6
68.15
51.25
41.6
29.3
492.9
8.07
27
23.5
Shine et al. (2006b)
Shine et al. (2006b)
Gower et al. (2004)
Shine et al. (2006b)
TAUM
TAUM
TAUM
TAUM
TAUM
TAUM
Shine et al. (2006b)
TAUM, zoological garden
TAUM
TAUM
Labanowski & Lowin (2011)
TAUM
Shine et al. (2006a)
Shine et al. (2006a)
Shine et al. (2006a)
Shine et al. (2006a)
Shine et al. (2006a)
Shine et al. (2006a)
TAUM, zoological garden
Shine et al. (2006a)
Shine et al. (2006a)
Shine et al. (2006a)
Shine et al. (2006a)
TAUM
TAUM
Shine et al. (2006b)
Shine et al. (2006b)
Pythonidae
Species
TL (mm)
Mass (g)
Source
Antaresia maculosa
Antaresia perthensis
Aspidites melanocephalus
Aspidites ramsayi
Broghammerus reticulatus
Liasis fuscus
Liasis olivaceus
Morelia spilota
Morelia viridis
Python bivittatus
Python regius
1259
769
1310
1950
3522.52
1490
2400
1683.8
1210
3220
1216
530
339
1362
3900
11769.35
953
3305
1924.4
563.2
21750
1378
Python sebae
3735
13250
Trembath (2008)
Seymor (1987)
Seymor (1987)
Seymor (1987)
Shine et al. (1998)
Seymor (1987)
Seymor (1987)
Pearson et al. (2002); Seymor (1987)
TAUM
Van Mierop & Barnard (1976)
Gorzula et al. (1997); Aubret et al. (2005),
zoological garden
TAUM
14
A. FELDMAN and S. MEIRI
APPENDIX S1 Continued
Scolecophidia
Species
TL (mm)
Mass (g)
Source
Austrotyphlops australis
Austrotyphlops bituberculatus
Epictia albipuncta
Epictia tenella
Liotyphlops ternetzii
Myriopholis macrorhyncha
Ramphotyphlops bicolor
Ramphotyphlops polygrammicus
Rhinotyphlops simonii
Siagonodon septemstriatus
Tetracheilostoma breuili
Tetracheilostoma carlae
Trilepida fuliginosa
Trilepida macrolepis
Typhlops minuisquamus
Typhlops reticulatus
Typhlops tasymicris
Typhlops vermicularis
328
247.6
156
177.7
211
254.9
241.3
510
201.1
165
106.8
99.4
226.85
305.5
272.6
255.9
227
191.5
48
3.4
1.4
1.2
3
1.4
10.4
43.3
0.95
1.5
0.61
0.6
4.6
9.5
16.5
22
1.9
2.2
Seymor (1987)
Dale Nimmo
Marinus Hoogmoed
Alessandro Costa Menks
França et al. (2008), Marinus Hoogmoed
TAUM
Dale Nimmo
Seymor (1987)
TAUM
Marinus Hoogmoed
Hedges (2008)
Hedges (2008)
França et al. (2008), Marinus Hoogmoed
Alessandro Costa Menks
Marinus Hoogmoed
Alessandro Costa Menks
Bentz et al. (2011)
TAUM
Viperidae
Species
TL (mm)
Mass (g)
Source
Agkistrodon piscivorus
Atheris squamigera
Bitis arietans
Bitis caudalis
Bitis cornuta
Bitis gabonica
Bitis peringueyi
Bothriechis schlegelii
Bothriopsis bilineata
Bothropoides neuwiedi
Bothrops moojeni
Causus defilippii
Causus resimus
Causus rhombeatus
Cerastes cerastes
Cerastes gasperettii
Cerastes vipera
Crotalus atrox
Crotalus cerastes
Crotalus durissus
Crotalus oreganus
Crotalus ruber
Crotalus triseriatus
Crotalus viridis
Daboia palaestinae
Daboia russelii
Echis carinatus
Echis coloratus
Echis pyramidum
1060
570
927
327.75
360
1053
242.5
650
468
473
719
338
576
685
590.2
603.9
239.4
1230
496.5
1461.5
1044.5
1060
222
850
984
1070
516.25
658.6
510.3
861
44.5
743.3
24.1
32.65
4023.7
8.6
102
185
43
217
21.6
53.13
94.8
186.6
144.3
9.9
1000
114.87
2440.5
502.6
285
4.41
415
437.6
675
113.7
92.8
76.6
Seymor (1987)
TAUM
TAUM
TAUM
TAUM
Broadley et al. (2003), TAUM
TAUM
Seymor (1987)
Tiffany Doan
França et al. (2008)
França et al. (2008)
TAUM
TAUM
TAUM
TAUM
TAUM
TAUM
Seymor (1987)
Seymor (1987), TAUM
Vitt & Valdinger (1983)
TAUM
Seymor (1987)
Manjarrez et al. (2007)
Seymor (1987)
TAUM
TAUM
Seymor (1987)TAUM
TAUM
TAUM
SNAKE LENGTH–MASS ALLOMETRY
15
APPENDIX S1 Continued
Species
Eristicophis
macmahoni
Gloydius blomhoffii
Gloydius himalayanus
Macrovipera deserti
Macrovipera lebetina
Macrovipera
mauritanica
Montivipera
bornmuelleri
Montivipera latifii
Montivipera raddei
Montivipera xanthina
Ovophis zayuensis
Protobothrops jerdonii
Pseudocerastes fieldi
Pseudocerastes
persicus
Rhinocerophis
alternatus
Rhinocerophis
itapetiningae
Vipera ammodytes
Vipera aspis
Vipera
Vipera
Vipera
Vipera
berus
kaznakovi
latastei
ursinii
TL (mm)
Mass (g)
Source
125
TAUM
482
511
800
871.2
1260
63.7
75.7
244.2
380
855
TAUM
TAUM
TAUM
TAUM
TAUM
705.3
192.7
TAUM
621.5
853.75
1027.5
530.5
752.7
687.5
715
103.9
255.5
351.3
72
166.5
185.2
215.3
TAUM
Zuffi et al. (2010), TAUM
TAUM
Inger et al. (1990)
Inger et al. (1990)
TAUM
TAUM
900
229.6
TAUM
343
38
682
605
210.9
85.2
595
567.7
551
550
450
REFERENCES FOR THE LENGTH AND
MASS DATA
Aldridge RD, Siegel DS, Bufalino AP, Wisniewski SS,
Jellen BC. 2010. A multiyear comparison of the male
reproductive biology of the brown treesnake (Boiga irregularis) from Guam. Australian Journal of Zoology 58: 24–
32.
Andren C. 1982. Effect of prey density on reproduction,
foraging and other activities in the adder, Vipera berus.
Amphibia-Reptilia 3: 81–96.
Angelici FM, Inyang MA, Effah C, Luiselli L. 2000. Analysis of activity patterns and habitat use of radiotracked
African burrowing pythons Calabaria reinhardtii. Israel
Journal of Zoology 46: 131–141.
Ashton KG, Patton TM. 2001. Movement and reproductive
biology of female midget faded rattlesnakes, Crotalus viridis
concolor, in Wyoming. Copeia 2001: 229–234.
Aubret F, Bonnet X, Harris M, Maumelat S. 2005. Sex
differences in body size and ectoparasite load in the ball
python, Python regius. Journal of Herpetology 39: 315–
320.
74.5
52.1
87
65
França et al. (2008)
TAUM
Naulleau & Girons (1981);
Zuffi et al. (2010), TAUM
Andren (1982), TAUM
TAUM
Zuffi et al. (2010)
Zuffi et al. (2010)
Barun A, Perry G, Henderson RW, Powel R. 2007.
Alsophis portoricensis anegadae (Squamata: Colubridae):
morphometric characteristics, activity patterns, and habitat
use. Copeia 2007: 93–100.
Bentz EJ, Rodriguez MJR, John R, Henderson RW,
Powell R. 2011. Population densities, activity, microhabitats, and thermal biology of a unique crevice- and litterdwelling assemblage of reptiles on Union Island, St. Vincent
and the Grenadines. Herpetological Conservation and
Biology 6: 40–50.
Bonnet X, Naulleau G, Shine R, Lourdais O. 2000. Reproductive versus ecological advantages to larger body size in
female snakes, Vipera aspis. Oikos 89: 509–518.
Braz HBP, Araujo CO, Almeida-Santos SM. 2009. Life
history traits of the snake Phalotris lativittatus (Xenodontinae: Elapomorphini) from the Brazilian Cerrado. Herpetology Notes 2: 163–164.
Broadley DG, Doria CT, Wigge J. 2003. Snakes of Zambia:
an Atlas and field guide. Frankfurt am Main: Edition
Chimaira.
Brooks SE, Allison EH, Gill JA, Reynolds JD. 2009.
Reproductive and trophic ecology of an assemblage of
16
A. FELDMAN and S. MEIRI
aquatic and semi-aquatic snakes in Tonle Sap, Cambodia.
Copeia 2009: 7–20.
Brown GP, Shine R. 2002. Reproductive ecology of a tropical
natricine snake, Tropidonophis mairii (Colubridae). Journal
of Zoology 258: 63–72.
Brown WS. 1991. Female reproductive ecology in a northern
population of the timber rattlesnake, Crotalus horridus.
Herpetologica 47: 101–115.
Campbell JA. 1973. A captive hatching of Micrurus fulvius
tenere (Serpentes, Elapidae). Journal of Herpetology 7: 312–
315.
Capula M, Filippi E, Luiselli L. 1995. Annual mating in
female Colubrid snakes with irregular reproductive frequency. Herpetozoa 8: 11–15.
Chia-Fan L, Ming-Chung T. 2008. Food habits of the Taiwanese mountain pitviper, Trimeresurus gracilis. Zoological
Studies 47: 697–703.
Cobb VA. 2004. Diet and prey size of the flathead snake,
Tantilla gracilis. Copeia 2004: 397–402.
Dieckmann S, Norval G, Mao JJ. 2010. A description of an
Asian king snake (Dinodon rufozonatum rufozonatum
[Cantor, 1842]) clutch size from central western Taiwan.
Herpetology Notes 3: 313–314.
Diller LV, Wallace RL. 2002. Growth, reproduction, and
survival in a population of Crotalus viridis oreganus in
north central Idaho. Herpetological Monographs 16: 26–45.
Faust TM, Blomquist SM. 2011. Size and growth in two
populations of black kingsnakes, Lampropeltis nigra, in east
Tennessee. Southern Eastern Naturalist 10: 40–422.
Fearn S, Trembath DF. 2009. Body size, food habits, reproduction and growth in a population of black whip snakes
(Demansia vestigiata) (Serpentes: Elapidae) in tropical Australia. Australian Journal of Zoology 57: 49–54.
Fitzgerald M, Shine R, Lemckert F. 2004. Life history
attributes of the threatened Australian snake (Stephen’s
banded snake Hoplocephalus stephensii, Elapidae). Biological Conservation 119: 121–128.
Ford NB, Cobb VA, Lamar WW. 1990. Reproduction data on
snakes from northeastern Texas. The Texas Journal of
Science 42: 355–367.
Ford NB, Karges JP. 1987. Reproduction in the checkered
garter snake, Thamnophis marcianus, from Southern Texas
and Northeastern Mexico: seasonality and evidence for multiple clutches. The Southwestern Naturalist 32: 93–101.
Ford NB, Killebrew DW. 1983. Reproductive tactics and
female body size in Butler’s Garter snake, Thamnophis
butleri. Journal of Herpetology 17: 271–275.
Forsman A, Lindell LE. 1996. Resource dependent growth
and body condition dynamics in juvenile snakes: an experiment. Oecologia 108: 669–675.
França FGR, Mesquita DO, Nogueira CC, Araújo AFB.
2008. Phylogeny and ecology determine morphological
structure in a snake assemblage in the central Brazilian
Cerrado. Copeia 2008: 23–38.
Gorzula S, Nsiah WO, Oduro W. 1997. Survey of the status
and management of the royal python (Python regius) in
Ghana. Report to the Secretariat of the Convention on
International Trade in Endangered Species of Wild Fauna
and Flora (CITES), Geneva, Switzerland, 38 p + 6 annexes.
Gower DJ, Rasmussen JB, Loader SP, Wilkinson M.
2004. The caecilian amphibian Scolecomorphus kirkii Boulenger as prey of the burrowing asp Atractaspis aterrima
(Gunther): trophic relationships of fossorial vertebrates.
African Journal of Ecology 42: 83–87.
Greene BD, Dixon JR, Whiting MJ, Mueller JM. 1999.
Reproductive ecology of the Concho water snake, Nerodia
harteri paucimaculata. Copeia 1993: 701–709.
Hasegawa M, Moriguchi H. 1989. Geographic variation in
food habits, body size and life history traits of the snakes on
the Izu Islands. In: Matsui M, Hikida T, Goris RC, eds.
Current herpetology in East Asia. Tokyo, Herpetological
Society of Japan, 414–432.
Hedges SB. 2008. At the lower size limit in snakes: two new
species of threadsnakes (Squamata: Leptotyphlopidae: Leptotyphlops) from the Lesser Antilles. Zootaxa 1841: 1–30.
Henderson RW, Winstel RA. 1995. Aspects of habitat selection by an arboreal Boa (Corallus enydris) in an area of
mixed agriculture on Grenada. Journal of Herpetology 29:
272–275.
How AR, Shine R. 1999. Ecological traits and conservation
biology of five fossorial ‘sand-swimming’ snake species
(Simoselaps: Elapidae) in south-western Australia. Journal
of Zoology 249: 269–282.
Hoyer RF, Stewart GR. 2000. Biology of the rubber boa
(Charina bottae) with emphasis on C. b. umbratica. Part I:
Capture, size, sexual dimorphism, and reproduction.
Journal of Herpetology 34: 348–354.
Inger RF, Zhao E, Bradley SH, Guanfu W. 1990. Report on
a collection of amphibians and reptiles from Sichuan, China.
Fieldiana: Zoology New Series 58: 1–24.
Jacobsen NHG. 1982. The ecology of the reptiles and
amphibians in the Burkea africana–Eragrostis pallens
savanna of the Nylsvley Nature Reserve. A thesis submitted
in partial fulfilment of the requirements for the degree of
MSc (Zoology) in the Faculty of Life Sciences. Pretoria:
University of Pretoria.
Ji X, Wang ZW. 2005. Geographic variation in reproductive
traits and trade-offs between size and number of eggs of the
Chinese cobra (Naja atra). Biological Journal of the
Linnean Society 85: 27–40.
Johnson CR. 1975. Thermoregulation in the Papuan-New
Guinean boid and colubrid snakes, Candoia carinata,
Candoia aspera and Boiga irregularis. Zoological Journal of
the Linnean Society 56: 283–290.
Kamosawa M, Ota H. 1996. Reproductive biology of the
Brahminy Blind Snake (Ramphotyphlops braminus) from the
Ryukyu Archipelago, Japan. Journal of Herpetology 30: 9–14.
Karns DR, Murphy JC, Voris HK. 2010. Semi-aquatic
snake communities of the central plain region of Thailand.
Tropical Natural History 10: 1–25.
Karns DR, Murphy JC, Voris HK, Suddeth JS. 2005.
Comparison of semi-aquatic snake communities associated
with the Khorat basin, Thailand. The Natural History
Journal of Chulalongkorn University 5: 73–90.
SNAKE LENGTH–MASS ALLOMETRY
Karns DR, Voris HK, Goodwin TG. 2002. Ecology of
Oriental-Australian rear-fanged water snakes (Colubridae:
Homalopsinae) in the Pasir Ris Park Mangrove Forest,
Singapore. Raffles Bulletin of Zoology 50: 487–498.
King RB, Bittner TD, Queral-Regil A, Cline JH. 1999.
Sexual dimorphism in neonate and adult snakes. Journal of
Zoology 247: 19–28.
Labanowski RK, Lowin AJ. 2011. A reptile survey in a dry
deciduous forest fragment in northern Madagascar showing
new records for the little-known snake Pararhadinaea melanogaster and a range extension for the skink Amphiglossus
tanysoma. Herpetology Notes 4: 113–121.
Lancaster DL, Ford NB. 2003. Reproduction in western
ribbon snakes, Thamnophis proximus (Serpentes: Colubridae), from an east Texas bottomland. Texas Journal of
Science 55: 25–32.
Lind AJ, Welsh HH. 1990. Predation by Thamnophis couchii
on Dicamptodon ensatus. Journal of Herpetology 24: 104–
106.
Li-xin S, Shine R, Debi Z, Zhengren T. 2002. Low costs,
high output: reproduction in an insular pit-viper (Gloydius
shedaoensis, Viperidae) from north-eastern China. Journal
of Zoology London 256: 511–521.
Lobo A, Pandav P, Vasudevan K. 2004. Weight–length
relationships in two species of marine snakes along the
coast of Goa, western India. Hamadryad 29: 89–93.
Luiselli L, Capula M, Shine R. 1996. Reproductive output,
costs of reproduction, and ecology of the smooth snake,
Coronella austriaca, in the eastern Italian Alps. Oecologia
106: 100–110.
Manjarrez J, Venegas-Barrera CS, Garci’a-Guadarrama
T. 2007. Ecology of the Mexican alpine blotched garter
snake (Thamnophis scalaris). The Southwestern Naturalist
52: 258–262.
Maritz B, Alexander GJ. 2011. Morphology, sexual dimorphism, and growth in the smallest viperid, Bitis schneideri
(Reptilia: Squamata: Viperidae). Journal of Herpetology 45:
457–462.
Meiri M. 2008. Evolution and ecology of lizard body sizes.
Global Ecology and Biogeography 17: 724–734.
Moon BR, Candy T. 1997. Coelomic and muscular crosssectional areas in three families of snakes. Journal of Herpetology 31: 37–44.
Naulleau G, Girons SH. 1981. Poids des nouveau-nés et
reproduction de Vipera aspis (Reptilia: Viperidae), dans des
conditions naturelles et artificielles. Amphibia-Reptilia 2:
51–62.
Parker WS, Brown WS. 1974. Notes on the ecology of regal
ringneck snakes (Diadophis punctatus regalis) in Northern
Utah. Journal of Herpetology 8: 262–263.
Peabody RB, Johnson JA, Brodie ED Jr. 1975. Intraspecific escape from ingestion of the Rubber Boa, Charina
bottae. Journal of Herpetology 9: 237.
Pearson D, Shine R, Williams A. 2002. Geographic variation in sexual size dimorphism (Morelia spilota, Pythonidae). Oecologia 131: 418–426.
Prival DB, Goode MJ, Swann DE, Schwalbe CR, Schroff
MJ. 2002. Natural history of a northern population of
17
twin-spotted rattlesnakes, Crotalus pricei. Journal of
Herpetology 36: 598–607.
Queral-Regil A, King RB. 1998. Evidence for phenotypic
plasticity in snake body size and relative head dimensions in
response to amount and size of prey. Copeia 1998: 423–429.
Quinn HR, Neitman K. 1978. Reproduction in the Snake
Boiga cynodon (Reptilia, Serpentes, Colubridae). Journal of
Herpetology 12: 255–256.
Rivas JA. 2000. The life history of the green anaconda
(Eunectes murinus), with emphasis on its reproductive
biology. Doctoral dissertation. Knoxville, TN: University of
Tennessee.
Rodriguez-Robles JA, Bell CJ, Greene HW. 1999. Gape
size and evolution of diet in snakes: feeding ecology of
erycine boas. Journal of Zoology 248: 49–58.
Schuett GW, Gillingham JC. 1989. Male–male agonistic
behavior of the copperhead, Agkistrodon contortrix.
Amphibia-Reptilia 10: 243–266.
Schumacher J, Lillywhite HB, Norman WM, Jacobson
ER. 1997. Effects of ketamine HCl on cardiopulmonary
function in snakes. Copeia 1997: 395–400.
Schwaner TD, Sarre SD. 1988. Body size of tiger snakes in
southern Australia, with particular reference to Notechis
ater serventyi (Elapidae) on Chappell Island. Journal of
Herpetology 22: 24–33.
Secor SM, Nagy TR. 2003. Non-invasive measure of body
composition of snakes using dual-energy X-ray absorptiometry. Comparative Biochemistry and Physiology A 136: 379–
389.
Seigel RA. 1992. Ecology of a specialized predator – Regina
grahami in Missouri. Journal of Herpetology 26: 32–37.
Semlitsch RD, Brown KL, Caldwell JP. 1981. Habitat
utilization, seasonal activity, and population size structure
of the southeastern crowned snake Tantilla coronata. Herpetologica 37: 40–46.
Setser K, Mocino-Deloya E, Pleguezuelos JM, Lazcano
D, Kardon A. 2010. Reproductive ecology of female
Mexican lance-headed rattlesnakes. Journal of Zoology 281:
175–182.
Seymor RS. 1987. Scaling of cardiovascular physiology in
snakes. American Zoologist 27: 97–109.
Shine R. 1991. Strangers in a strange land: ecology of the
Australian colubrid Snakes. Copeia 1991: 120–131.
Shine R, Branch WR, Harlow PS, Webb JK, Shine T.
2006b. Biology of burrowing Asps (Atractaspididae) from
Southern Africa. Copeia 2006: 103–115.
Shine R, Branch WR, Webb JK, Harlow PS, Shine T.
2006a. Sexual dimorphism, reproductive biology, and
dietary habits of psammophiine snakes (Colubridae) from
southern Africa. Copeia 2006: 650–664.
Shine R, Fitzgerald M. 1989. Conservation and reproduction of an endangered species: the broad-headed snake,
Hoplocephalus bungaroides (Elapidae). Australian Zoologist
25: 65–67.
Shine R, Haagner GV, Branch WR, Harlow PS, Webb JK.
1996a. Natural history of the African shieldnose snake
Aspidelaps scutatus (Serpentes, Elapidae). Journal of
Herpetology 30: 361–366.
18
A. FELDMAN and S. MEIRI
Shine R, Harlow PS, Branch WR, Webb JK. 1996b. Life
on the lowest branch: sexual dimorphism, diet, and reproductive biology of an African twig snake, Thelotornis capensis (Serpentes, Colubridae). Copeia 1996: 290–299.
Shine R, Harlow PS, Keogh JS, Boeadi. 1998. The allometry of life-history traits: insights from a study of giant
snakes (Python reticulatus). Journal of Zoology 244: 405–
414.
Stevenson DJ, Dyer KJ, Willis-Stevenson BA. 2003.
Survey and monitoring of the eastern indigo snake in
Georgia. Southern Naturalist 2: 393–408.
Tanaka K. 2011. Phenotypic plasticity of body size in an
insular population of snake. Herpetologica 67: 46–57.
Tanaka K, Ota H. 2002. Natural history of two colubrid
snakes, Elaphe quadrivirgata and Rhabdophis tigrinus, on
Yakushima Island, southwestern Japan. Amphibia-Reptilia
23: 323–331.
Todd BD, Willson JD, Winne CT, Semlitsch RD. 2008.
Ecology of the South eastern Crowned Snake, Tantilla
coronata. Copeia 2008: 388–394.
Trembath DF. 2008. A record of ophiophagy by the spotted
python Antaresia maculosa (serpentes: Pythonidae) from
Murray Falls National Park, north Queensland, Australia.
Herpetofauna 38: 81–83.
Van Mierop LHS, Barnard SM. 1976. Observations on the
reproduction of Python molurus bivittatus (Reptilia, Serpentes, Boidae). Journal of Herpetology 10: 333–340.
Vitt LJ. 1983. Ecology of an anuran-eating guild of terrestrial
tropical snakes. Herpetologica 39: 52–66.
Vitt LJ, Valdinger LD. 1983. Ecology of a snake community
in northern Brazil. Amphibia-Reptilia 4: 273–296.
Weatherhead PJ, Barry FE, Brown GR, Forbes MRL.
1995. Sex ratios, mating behavior and sexual size dimorphism of the northern water snake, Nerodia sipedon. Behavioral Ecology and Sociobiology 36: 301–311.
Wiley JW. 2003. Habitat association, size, stomach contents,
and reproductive condition of Puerto Rican Boas (Epicrates
inornatus). Caribbean Journal of Science 39: 189–194.
Winne CT, Dorcas ME, Poppy SM. 2005. Population
structure, body size, and seasonal activity of black
Swamp Snakes (Seminatrix pygaea). Southern Naturalist 4:
1–14.
Zuffi MAL, Fornasiero S, Picchiotti R, Rapoli P, Lomele
M. 2010. Adaptive significance of food income in European
snakes: body size is related to prey energetics. Biological
Journal of the Linnean Society 100: 307–317.
APPENDIX S2
SPECIES
LIST AND SOURCE OF PHYLOGENY, ARRANGED BY FAMILY
List of species
Boidae
Species
Source
Boa constrictor
Calabaria reinhardtii
Candoia aspera
Charina bottae
Corallus caninus
Corallus cookii
Corallus hortulanus
Epicrates cenchria
Epicrates inornatus
Epicrates maurus
Eryx jaculus
Eryx johnii
Lynch & Wagner (2010)
Lynch & Wagner (2010)
Lynch & Wagner (2010)
Lynch & Wagner (2010)
Lynch & Wagner (2010)
Lynch & Wagner (2010)
Lynch & Wagner (2010)
Lynch & Wagner (2010)
Lynch & Wagner (2010)
Rivera et al. (2011)
Lynch & Wagner (2010)
Lynch & Wagner (2010)
SNAKE LENGTH–MASS ALLOMETRY
19
APPENDIX S2 Continued
Colubridae
Species
Source
Species
Source
Amphiesma sauteri
Arizona elegans
Atractus badius
Atractus pantostictus
Bogertophis subocularis
Boiga ceylonensis
Pyron et al. (2011)
Pyron et al. (2011)
Vidal et al. (2010a)
Franca et al. (2008)
Pyron et al. (2011)
Kelly et al. (2003) (based on
B. dendrophila)
Kelly et al. (2003) (based on
B. dendrophila)
Pyron et al. (2011)
Kelly et al. (2003) (based on
B. dendrophila)
Pyron et al. (2011)
Hollis (2006)
Hollis (2006)
Hollis (2006)
Hollis (2006)
Hollis (2006)
Hollis (2006)
Vidal et al. (2010a)
Franca et al. (2008)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Vidal et al. (2010a)
Vidal et al. (2010a)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Utiger et al. (2002)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)/
Vidal et al. (2010a)
Franca et al. (2008)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Franca et al. (2008)
Franca et al. (2008)
Vidal et al. (2010a)
Liophis typhlus
Lygophis meridionalis
Lytorhynchus diadema
Macroprotodon cucullatus
Mussurana quimi
Natrix maura
Natrix natrix
Natrix tessellata
Nerodia fasciata
Nerodia rhombifer
Nerodia sipedon
Nerodia taxispilota
Opheodrys aestivus
Oxybelis aeneus
Oxyrhopus formosus
Oxyrhopus guibei
Oxyrhopus petolarius
Oxyrhopus rhombifer
Pantherophis guttatus
Philodryas aestivus
Philodryas nattereri
Philodryas olfersii
Philodryas patagoniensis
Philodryas viridissima
Philothamnus
semivariegatus
Phimophis guerini
Phyllorhynchus decurtatus
Pituophis melanoleucus
Platyceps collaris
Platyceps florulentus
Platyceps rhodorachis
Platyceps rogersi
Pseudablabes agassizii
Pseudoboa coronata
Pseudoboa nigra
Ptyas korros
Regina grahami
Rhabdophis nuchalis
Rhabdophis tigrinus
Rhinechis scalaris
Seminatrix pygaea
Sibon nebulatus
Spalerosophis diadema
Spilotes pullatus
Storeria dekayi
Storeria occipitomaculata
Tantilla melanocephala
Vidal et al. (2010a)
Franca et al. (2008)
Pyron et al. (2011)
Pyron et al. (2011)
Franca et al. (2008)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Vidal et al. (2010a)
Pyron et al. (2011)
Pyron et al. (2011)
Vidal et al. (2010a)
Pyron et al. (2011)
Vidal et al. (2010a)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Jesus et al. (2009)
Boiga cynodon
Boiga dendrophila
Boiga irregularis
Boiruna maculata
Chironius exoletus
Chironius flavolineatus
Chironius fuscus
Chironius multiventris
Chironius quadricarinatus
Chironius scurrulus
Clelia clelia
Clelia plumbea
Coelognathus radiatus
Coluber constrictor
Coluber flagellum
Coronella austriaca
Coronella girondica
Dasypeltis scabra
Dendrelaphis caudolineatus
Dendrophidion dendrophis
Diadophis punctatus
Dipsas catesbyi
Dipsas indica
Dipsas variegata
Dispholidus typus
Dolichophis jugularis
Drepanoides anomalus
Drymarchon corais
Drymobius rhombifer
Drymoluber dichrous
Eirenis coronelloides
Eirenis decemlineatus
Eirenis modestus
Eirenis rothii
Elaphe carinata
Elaphe quatuorlineata
Elaphe sauromates
Erythrolamprus aesculapii
Erythrolamprus sp.
Helicops angulatus
Helicops leopardinus
Helicops modestus
Hemorrhois hippocrepis
Hemorrhois nummifer
Heterodon platirhinos
Hierophis viridiflavus
Imantodes cenchoa
Imantodes lentiferus
Lampropeltis getula
Lampropeltis nigra
Leptodeira annulata
Leptophis ahaetulla
Liophis almadensis
Liophis poecilogyrus
Liophis reginae
Telescopus fallax
Thamnodynastes hypoconia
Thamnodynastes pallidus
Thamnophis butleri
Thamnophis couchii
Thamnophis marcianus
Thamnophis proximus
Thamnophis radix
Thamnophis scalaris
Thelotornis capensis
Trimorphodon biscutatus
Xenodon merremi
Xenodon nattereri
Xenopholis scalaris
Xenoxybelis argenteus
Zamenis longissimus
Vidal et al. (2010a)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Vidal et al. (2010a)
Vidal et al. (2010a)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Vidal et al. (2000) (genus
and Pyron et al., 2011)
Pyron et al. (2011)
Vidal et al. (2010a)
Vidal et al. (2010a)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
de Queiroz et al. (2002)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Franca et al. (2008)
Pyron et al. (2011)
Zaher et al. (2009)
Pyron et al. (2011)
20
A. FELDMAN and S. MEIRI
APPENDIX S2 Continued
Elapidae
Species
Source
Acanthophis antarcticus
Acanthophis pyrrhus
Aspidelaps scutatus
Bungarus flaviceps
Cacophis squamulosus
Chitulia inornata
Chitulia ornata
Cryptophis nigrescens
Demansia vestigiata
Dendroaspis angusticeps
Dendroaspis polylepis
Furina diadema
Furina tristis
Hoplocephalus bungaroides
Hoplocephalus stephensii
Micrurus frontalis
Micrurus ibiboboca
Micrurus lemniscatus
Naja annulifera
Naja mossambica
Naja naja
Naja nigricollis
Notechis scutatus
Oxyuranus microlepidotus
Oxyuranus scutellatus
Pelamis platura
Pseudechis australis
Pseudonaja affinis
Pyron et al. (2011)
Reed & Shine (2002)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Lillywhite et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Reed & Shine (2002)
Reed & Shine (2002)
Reed & Shine (2002)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Reed & Shine (2002)
(based on genus)
Reed & Shine (2002)
(based on genus)
Reed & Shine (2002)
(based on genus)
Pyron et al. (2011)
Sanders et al. (2008)
Pyron et al. (2011)
Sanders et al. (2008)
Reed & Shine (2002)
Pyron et al. (2011)
Reed & Shine (2002)
(based on genus)
Pyron et al. (2011)
Pyron et al. (2011)
Pseudonaja nuchalis
Pseudonaja textilis
Simoselaps bertholdi
Simoselaps bimaculatus
Simoselaps calonotus
Simoselaps fasciolatus
Simoselaps littoralis
Simoselaps semifasciatus
Suta flagellum
Tropidechis carinatus
Walterinnesia aegyptia
Homalopsidae
Species
Source
Cantoria violacea
Cerberus australis
Cerberus rynchops
Enhydris bocourti
Enhydris enhydris
Enhydris jagorii
Enhydris plumbea
Enhydris subtaeniata
Fordonia leucobalia
Gerarda prevostiana
Homalopsis buccata
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Voris et al. (2002)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Lamprophiidae
Species
Source
Amblyodipsas polylepis
Vidal et al. (2008)
(based on genus)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Kelly et al. (2008)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Aparallactus capensis
Atractaspis bibronii
Atractaspis microlepidota
Boaedon fuliginosus
Gonionotophis capensis
Gonionotophis nyassae
Homoroselaps lacteus
Lycodonomorphus rufulus
Macrelaps microlepidotus
Malpolon monspessulanus
Psammophis brevirostris
Psammophis jallae
Psammophis leopardinus
Psammophis mossambicus
Psammophis notostictus
Psammophis schokari
Psammophis subtaeniatus
Psammophis trigrammus
Psammophylax tritaeniatus
Pseudaspis cana
Pythonidae
Species
Source
Antaresia maculosa
Antaresia perthensis
Aspidites melanocephalus
Aspidites ramsayi
Broghammerus reticulatus
Liasis fuscus
Liasis olivaceus
Morelia spilota
Morelia viridis
Python regius
Python sebae
Rawlings
Rawlings
Rawlings
Rawlings
Rawlings
Rawlings
Rawlings
Rawlings
Rawlings
Rawlings
Rawlings
et al.
et al.
et al.
et al.
et al.
et al.
et al.
et al.
et al.
et al.
et al.
(2008)
(2008)
(2008)
(2008)
(2008)
(2008)
(2008)
(2008)
(2008)
(2008)
(2008)
SNAKE LENGTH–MASS ALLOMETRY
21
APPENDIX S2 Continued
Viperidae
Species
Source
Species
Source
Agkistrodon bilineatus
Agkistrodon contortrix
Agkistrodon piscivorus
Atheris squamigera
Bitis arietans
Bitis caudalis
Bitis cornuta
Bitis gabonica
Bitis peringueyi
Bitis schneideri
Bitis worthingtoni
Bothriechis schlegelii
Bothriopsis bilineata
Bothropoides neuwiedi
Bothrops moojeni
Causus defilippii
Causus resimus
Causus rhombeatus
Cerastes cerastes
Cerastes gasperettii
Cerastes vipera
Crotalus atrox
Crotalus cerastes
Crotalus durissus
Crotalus horridus
Crotalus molossus
Crotalus oreganus
Crotalus polystictus
Crotalus pricei
Crotalus ravus
Crotalus ruber
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Hampton (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Lenk et al. (2001)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Hampton (2011)
Hampton (2011)
Pyron et al. (2011)
Castoe & Parkinson
(2006)
Crotalus viridis
Daboia palaestinae
Daboia russelii
Echis carinatus
Echis coloratus
Echis pyramidum
Eristicophis macmahoni
Macrovipera deserti
Macrovipera lebetina
Macrovipera mauritanica
Montivipera raddei
Montivipera xanthina
Ovophis zayuensis
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Malhotra & Thorpe
(2004) (based on
O. monticola)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Malhotra & Thorpe
(2004)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Pyron et al. (2011)
Protobothrops jerdonii
Pseudocerastes fieldi
Pseudocerastes persicus
Rhinocerophis alternatus
Rhinocerophis itapetiningae
Sistrurus catenatus
Sistrurus miliarius
Trimeresurus kanburiensis
Trimeresurus stejnegeri
Vipera ammodytes
Vipera aspis
Vipera berus
Vipera latastei
Vipera ursinii
Scolecophidia
Species
Source
Austrotyphlops australis
Austrotyphlops bituberculatus
Epictia albipuncta
Epictia tenella
Leptotyphlops distanti
Liotyphlops ternetzii
Myriopholis macrorhyncha
Ramphotyphlops bicolor
Ramphotyphlops braminus
Ramphotyphlops polygrammicus
Siagonodon septemstriatus
Tetracheilostoma breuili
Tetracheilostoma carlae
Trilepida fuliginosa
Trilepida macrolepis
Vidal et al. (2010b)
Vidal et al. (2010b)
Adalsteinsson et al.
Adalsteinsson et al.
Adalsteinsson et al.
Vidal et al. (2010b)
Adalsteinsson et al.
Vidal et al. (2010b)
Vidal et al. (2010b)
Vidal et al. (2010b)
Adalsteinsson et al.
Adalsteinsson et al.
Adalsteinsson et al.
Adalsteinsson et al.
Adalsteinsson et al.
(2009), Vidal et al. (2010b) (genus)
(2009)
(2009)
(2009)
(2009)
(2009)
(2009)
(2009) (based on genus)
(2009)
22
A. FELDMAN and S. MEIRI
REFERENCES FOR THE PHYLOGENETIC
RELATIONSHIPS
Adalsteinsson SA, Branch WR, Trape S, Vitt LJ, Hedges
SB. 2009. Molecular phylogeny, classification, and biogeography of snakes of the Family Leptotyphlopidae (Reptilia,
Squamata). Zootaxa 2244: 1–50.
Castoe TA, Parkinson CL. 2006. Bayesian mixed models
and the phylogeny of pitvipers (Viperidae: Serpentes).
Molecular Phylogenetics and Evolution 39: 91–110.
Franca FGR, Mesquita DO, Nogueira CC, Araujo AFB.
2008. Phylogeny and ecology determine morphological
structure in a snake assemblage in the central Brazilian
Cerrado. Copeia 2008: 23–28.
Hampton PM. 2011. Ventral and sub-caudal scale counts are
associated with macrohabitat use and tail specialization in
viperid snakes. Evolutionary Ecology 25: 531–546.
Hollis JL. 2006. Phylogenetics of the genus Chironius Fitzinger, 1826 (Serpentes, Colubridae) based on morphology.
Herpetologica 62: 435–453.
Jesus J, Nagy ZT, Branch WR, Wink M, Brehm A, Harris
J. 2009. Phylogenetic relationships of African green snakes
(genera Philothamnus and Hapsidophrys) from São Tomé,
Príncipe and Annobon islands based on mtDNA sequences,
and comments on their colonization and taxonomy. Herpetological Journal 19: 41–48.
Kelly CMR, Barker NP, Villet MH. 2003. Phylogenetics of
advanced snakes (Caenophidia) based on four mitochondrial
genes. Systematic Biology 52: 439–459.
Kelly CMR, Barker NP, Villet MH, Broadley DG, Branch
WR. 2008. The snake family Psammophiidae (Reptilia:
Serpentes): phylogenetics and species delimitation in the
African sand snakes (Psammophis Boie, 1825) and allied
genera. Molecular Phylogenetics and Evolution 47: 1045–
1060.
Lenk P, Kalyabina S, Wink M, Joger U. 2001. Evolutionary relationships among the true vipers (Reptilia: Viperidae) inferred from mitochondrial DNA sequences. Molecular
Phylogenetics and Evolution 19: 94–104.
Lillywhite HB, Albert JS, Sheehy CM III, Seymour RS.
2011. Gravity and the evolution of cardiopulmonary morphology in snakes. Comparative Biochemistry and Physiology – Part A: Molecular and Integrative Physiology 161:
230–242.
Lynch VC, Wagner GP. 2010. Did egg-laying boas break
Dollo’s law? Phylogenetic evidence for reversal to oviparity
in sand boas (Eryx: Boidae). Evolution 64: 207–216.
Malhotra A, Thorpe RS. 2004. A phylogeny of four mitochondrial gene regions suggests a revised taxonomy for
Asian pitvipers (Trimeresurus and Ovophis). Molecular Phylogenetics and Evolution 32: 83–100.
Pyron RA, Burbrinkb FT, Colli GR, Montes de Oca AM,
Vitt LJ, Kuczynskia CA, Wiens JJ. 2011. The phylogeny
of advanced snakes (Colubroidea), with discovery of a new
subfamily and comparison of support methods for likelihood
trees. Molecular Phylogenetics and Evolution 58: 329–342.
de Queiroz A, Lawson R, Lemos-Espinal JA. 2002. Phylogenetic relationships of North American garter snakes
(Thamnophis) based on four mitochondrial genes: how much
DNA sequence is enough? Molecular Phylogenetics and
Evolution 22: 315–329.
Rawlings LH, Rabosky DL, Donnellan SC, Hutchinson
MN. 2008. Python phylogenetics: inference from morphology and mitochondrial DNA. Biological Journal of the
Linnean Society 93: 603–619.
Reed RN, Shine R. 2002. Lying in wait for extinction:
ecological correlates of conservation status among Australian elapid snakes. Conservation Biology 16: 451–
461.
Rivera PC, Di Cola V, Martınez JJ, Gardenal CN, Chiaraviglio M. 2011. Species delimitation in the continental
forms of the genus Epicrates (Serpentes, Boidae) integrating
phylogenetics and environmental niche models. PLoS ONE
6: e22199. 10.1371/journal.pone.0022199.
Sanders KL, Lee MSY, Leijs R, Foster R, Keogh JS. 2008.
Molecular phylogeny and divergence dates for Australasian
elapids and sea snakes (Hydrophiinae): evidence from seven
genes for rapid evolutionary radiations. Journal of Evolutionary Biology 21: 682–695.
Utiger U, Helfenberger N, Schätti B, Schmidt C, Ruf M,
Ziswiler V. 2002. Molecular systematics and phylogeny of
old and new world ratsnakes, Elaphe Auct., and related
genera (Reptilia, Squamata, Colubridae). Russian Journal
of Herpetology 9: 105–124.
Vidal N, Kindl SG, Wong A, Hedges SB. 2000. Phylogenetic
relationships of Xenodontine snakes inferred from 12S and
16S ribosomal RNA sequences. Molecular Phylogenetics and
Evolution 14: 389–402.
Vidal N, Branch WR, Pauwels OSG, Hedges SB, Broadley DG, Wink M, Cruaud C, Joger U, Nagy ZT. 2008.
Dissecting the major African snake radiation: a molecular
phylogeny of the Lamprophiidae Fitzinger (Serpentes,
Caenophidia). Zootaxa 1945: 51–66.
Vidal N, Dewynterb M, Gower DJ. 2010a. Dissecting the
major American snake radiation: a molecular phylogeny
of the Dipsadidae Bonaparte (Serpentes, Caenophidia).
Comptes Rendus Biologies 333: 48–55.
Vidal N, Marin J, Morini M, Donnellan S, Branch WR,
Thomas R, Vences M, Wynn A, Cruaud C, Hedges SB.
2010b. Blindsnake evolutionary tree reveals long history on
Gondwana. Biology Letters 6: 558–561.
Voris HK, Alfaro ME, Karns DR, Starnes GL, Thompson
E, Murphy JC. 2002. Phylogenetic relationships of the
Oriental-Australian rear-fanged water snakes (Colubridae:
Homalopsinae) based on mitochondrial DNA sequences.
Copeia 2002: 906–915.
Zaher H, Grazziotin FG, Cadle JE, Murphy RW, de
Moura-Leite JC, Bonatto SL. 2009. Molecular phylogeny
of advanced snakes (Serpentes, Caenophidia) with an
emphasis on South American Xenodontines: a revised classification and descriptions of new taxa. Papéis Avulsos de
Zoologia (São Paulo) 49: 115–153.
SNAKE LENGTH–MASS ALLOMETRY
23
APPENDIX S3
PHYLOGENETIC
RESULTS, MODEL BY
VIDAL
ET AL.
(2007)
General allometries
SVL: slope = 2.580 (SE = 0.078), intercept = -5.128 (SE = 0.243), R2 = 0.838.
TL: slope = 2.448 (SE = 0.093), intercept = -4.982 (SE = 0.304), R2 = 0.774.
The best model for the relationship between mass and SVL included microhabitat use and reproduction mode.
This model explained 87.2% of the variation in mass and had a maximum likelihood value of l of 0.45
(significantly different from both zero and unity, P << 0.001). Arboreal species are lighter than the others
(P << 0.001 for all cases). Aquatic and burrower species are heavier than terrestrial (P = 0.046 and 0.020,
respectively) and terrestrial–arboreal (P = 0.022 and 0.001, respectively) species, but do not differ from each
other. Terrestrial and terrestrial–arboreal species do not differ from each other. Viviparous species are heavier
than oviparous species (P = 0.014).
Parameter estimates
The intercept values are for oviparous species in different microhabitats. The value of 0.118 should be added
to the intercept values for the calculation of the intercept value of viviparous species in each microhabitat.
Intercept
Intercept difference
-5.708
-5.327
-5.337
-5.500
-5.457
Arboreal
Aquatic
Burrower
Terrestrial–arboreal
Terrestrial
Viviparous
0.118
APPENDIX S4
EVALUATION OF THE ALLOMETRIES
Predictive power of ours and Pough’s allometric equations (number of species in parentheses; first row in each
family: P value and t value; second row in each family: percentage of deviation from real mass)
Family
Pough’s real data
New allometries real
data
Pough’s new
allometries
All (302)
<< 0.001,
19.83
0.894,
8.26
<< 0.001,
21.93
<< 0.001,
17.97
<< 0.001,
28.06
0.061,
7.03
0.641,
13.53
0.822,
12.73
0.934,
15.63
0.981,
14.32
0.310,
15.45
0.683,
6.46
0.466
<< 0.001, 21.498
0.229
< 0.437, 0.800
Boidae (15)
Colubridae (166)
Elapidae (26)
Lamprophiidae (35)
Viperidae (60)
View publication stats
-13.052
-0.135
-13.792
-4.808
-9.2065
1.906
-0.0827
<< 0.001, 32.486
-0.024
<< 0.001, 8.773
1.032
<< 0.001, 24.175
0.410
<< 0.001, -4.35
Descargar