Subido por LAURA MARIANELA FERNANDEZ MUNDACA

EXAMEN FINAL DE CALCULO INTEGRAL - 2021-I - UNPRG

Anuncio
UNIVERSIDAD NACIONAL “PEDRO RUIZ GALLO”
ESCUELA PROFESIONAL DE ESTADÍSTICA
Examen Final de Cálculo Integral
INSTRUCCIONES:
1. Lea cuidadosamente las preguntas antes de resolverlas. No adivine procesos que llevan a una solución
errada. Desarrolle el examen en forma personal y evite que sea anulado.
2. Para la calificación se considerará: orden, limpieza, planteamiento, desarrollo y respuesta del
problema.
3. No se permite el abandono del aula virtual dentro del tiempo que dure el examen.
4. Resuelva las preguntas en forma clara con lapicero.
5. Se permitirá el ingreso al examen hasta 10 minutos de tolerancia.
6. Escriba en cada hoja de respuestas sus nombres y apellidos, su número de DNI y su firma.
7. La solución del examen solo se recibe a través del aula virtual.
8. La solución de cada pregunta será entregada en una sola hoja.
Preguntas:
1) Determine si las series son convergentes o divergentes.
𝑎)
1
2𝑙𝑛2
+
∞
𝑏) ∑ 𝑛2
n=1
1
3𝑙𝑛3
+
1
4𝑙𝑛4
+ ⋯ + ..
(2.5 p)
(5 + (−2)𝑛 )𝑛
9
(2.5 𝑝)
2) Aplicando el criterio de la integral determine si la serie
∞
∑
n=1
1
nln(n)
es convergente o divergente
(5 p)
3) Determine si las siguientes series son convergentes o divergentes (use el criterio de la razón)
∞
∞
𝑛
𝑎) ∑(−1) 𝑒
2−3𝑛
3
4−2𝑛
𝑏) ∑(−1)𝑛
(2.5 𝑝)
n=1
n=1
2𝑛 + 1
𝑛(𝑛 + 1)
(2.5 𝑝)
4) Las series:
3 𝑛+2
+∞
𝑎) ∑n=0
(−1)𝑛 ( )
4
y
−2 𝑛
𝑏) ∑+∞
n=5 ( )
𝑒
son convergentes.
(5 p)
Halle su respectiva suma.
Lambayeque, 29 de Octubre del 2021
Dr. Gonzalo Paredes Tirado
Profesor del curso
Descargar