Subido por NELSON ALFONSO DIAZ PARRA

903275028.Libro completo expresion grafica

Anuncio
UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO
FACULTAD DE AGRONOMIA Y AGROINDUSTRIAS
INGENIERIA EN ALIMENTOS
SISTEMAS DE
REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
Año 2012
INDICE
CAPITULO 1
Elementos utilizados en el Dibujo técnico y modo de empleo. Conceptos de representación normalizada.
Normas IRAM. Tamaño de planos. Escalas. Líneas. Acotación. Caligrafía. Rótulo.
CAPITULO 2
Elementos de la Geometría Descriptiva. Representación de punto, recta y plano. Método de Monge. Método de
representación. Sistema ISO. Sistema Europeo y Americano.
CAPITULO 3
Nociones de perspectiva. Proyecciones axonométricas. Dimétricas. Ejes dimétricos. Procedimiento para la
construcción de una proyección dimétrica. Aplicaciones. Proyecciones isométricas. Coeficiente de reducción.
Norma IRAM 4540. Características. Aplicaciones.
CAPITULO 4
Diagramas de Ingeniería. Diagramas de bloques. Diagramas de flujo. Introducción al Layout de
Interpretación de procesos simples.
Planta.
CAPITULO 5
Representación Gráfica de un Sistema Axonométrico Isométrico de Cañerías en Plantas Industriales de
Alimentos.
SBN 978-987-33-3172-5
UNIVERSIDAD NACIONAL
Los distintos capítulos que componen esta obra, corresponden a
los temas que se abordan a lo largo del curso de Sistemas de
Representación Grafica de la carrera de Ingeniería en Alimentos,
y que surgieron del análisis de las necesidades que los
DE
SANTIAGO
estudiantes
tienen DEL
en el ESTERO
aprendizaje de este idioma de la
Ingeniería.
FACULTAD DE AGRONOMIA Y AGROINDUSTRIAS
INGENIERIA
Los apuntes fueron realizados por el personal docente de la
ENcátedra
ALIMENTOS
con la colaboración de docentes de las cátedras de
Servicios Auxiliares y de Formulación de Proyectos, y de los
ayudantes de investigación del proyecto “Proceso de enseñanza
aprendizaje de Sistemas de Representación Grafica en
Ingeniería de Alimentos. Determinación de un procedimiento
efectivo para la transmisión del conocimiento y aplicación en
asignaturas del ciclo superior de la carrera”, todos ellos bajo la
dirección y coordinación del Ing. Guido Alfredo Larcher
SISTEMAS DE REPRESENTACION
GRAFICA
FASCICULO N° 1
TEMA: Elementos utilizados en el Dibujo técnico y modo de
empleo. Conceptos de representación normalizada. Normas
IRAM. Tamaño de planos. Escalas. Líneas. Acotación.
Año 2012
Caligrafía. Rótulo.
Mg. Ing. Guido Alfredo Larcher
Año 2012
ISBN 978-987-33-3172-5
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
PRÓLOGO
El profesor Guido Alfredo Larcher, tuvo la enorme deferencia de recabar nuestra opinión sobre su trabajo
de fascículos como guía-apoyo a la materia Sistemas de Representación Grafica, con destino al alumnado de la
carrera de Ingeniería en Alimentos de la Universidad Nacional de Santiago del Estero.
Los que interactuamos en el área entendemos que siempre hay algo que decir sobre el espacio tecnológico
y el presente trabajo se inscribe en esta temática. Vemos con enorme interés como la geometría y su aplicación
directa en el Dibujo Técnico sigue requiriendo opiniones, reinterpretaciones y decodificaciones, que con la
adecuada actualización y referenciada en el normado que le compete, ya sea este Nacional o Internacional,
completa el pensamiento del espacio tecnológico actual.
La idea de generar instructivos por áreas temáticas, simplifica la tarea docente y permite que el alumnado
tenga un horizonte previsible en su trayecto por el espacio curricular. Cada fascículo tiene un proceso-objetivo
bien definido y se puede afirmar que cuenta con un principio y un final autocontenido, que permite que el
estudiante aplique con precisión las distintas normas y sus personales soluciones ante los problemas concretos.
Como obra de guía y consulta para estudiantes de ingeniería, se suma al acervo de material necesario para
poder realizar sus representaciones gráficas durante su paso universitario y un apoyo en el posterior desempeño
como profesional ingeniero.
Arq. Carlos L. de VEDIA
CAPITULO 1
Elementos utilizados en el Dibujo técnico y modo de
empleo. Conceptos de representación normalizada.
Normas IRAM. Tamaño de planos. Escalas. Líneas.
Acotación. Caligrafía. Rótulo
SISTEMAS DE REPRESENTACION GRAFICA
CONSIDERACIONES GENERALES:
El fin último de la aplicación de métodos de resolución
de problemas del espacio, es la construcción de un
dibujo. La Geometría Descriptiva es la ciencia que
permite hacer realidad este concepto, a través del uso
de los elementos que se analizan, esto es el punto, la
recta y el plano.
Desde tiempos inmemoriales, el hombre ha tratado de
representar todos los objetos que veía, dándoles las
formas y dimensiones que, desde su óptica,
sobresalían. Así pues represento animales, rayas con
ondulaciones o en espiral, partes del cuerpo humano,
etc. Sin embargo, desde ese inicio en la Edad Antigua,
con Pitágoras, resolviendo matemáticamente y
dándoles forma visible a los polígonos regulares y
hasta la Edad Media, donde su representación
presenta distorsiones de las proporciones de los
cuerpos y adecuaciones a la importancia de los
mismos que pretendía resaltar. Allí aparece la
perspectiva que, al decir de Leonardo Da Vinci, es el
arte de expresar lo que se ve desde la posición de un
observador, que nos permite apreciar las partes que
constituyen un cuerpo en el espacio, pero no sus
dimensiones.
Hasta la aparición de Gaspar Monge, en la Edad
Mg. Ing. Guido Alfredo Larcher
2
Moderna, el hombre no supo que en realidad estaba
conformando una nueva ciencia: LA GEOMETRIA
DESCRIPTIVA.
Monge, quien era un físico y matemático francés, dio
forma a un sistema de representación de manera que,
las partes que componen un cuerpo ocupen una real
posición en el espacio y presenten sus verdaderas
dimensiones. Es decir dio origen a las reglas que,
actuando coordinadamente, nos permiten obtener el
dibujo de un cuerpo en el espacio, mediante un
procedimiento llamado de las proyecciones.
Este procedimiento nos da la posibilidad de lograr que,
en un plano, tal como el pizarrón, una hoja de papel,
etc., o una pantalla plana de una PC, se pueda
construir en el espacio, la forma real de los objetos,
sus proporciones, etc., dejando de lado lo artístico
para dar paso a la representación técnica.
Por ello consideramos que, la adquisición por parte del
estudiante de una carrera de Ingeniería, de la
capacidad de representar procesos, maquinarias,
equipos, etc., con métodos simples, resulta de
significativa importancia en su formación, sobre todo
porque no solo le permite adquirir formación en un
idioma universal, que contiene una normativa
específica, sino porque además lo impulsa a desterrar
SISTEMAS DE REPRESENTACION GRAFICA
de si el miedo al manejo del espacio y le permite
conservar una herramienta fundamental en el
desarrollo de su carrera y en el de su futura profesión.
Los cuadros siguientes nos dan una idea histórica del
desarrollo de esta Ciencia:
Año
Personaje
2450 A.C.
Rey GUDEA
1650 A.C.
AHMES
3
Mg. Ing. Guido Alfredo Larcher
Siglo/Año
Personaje
Tipo de
representación
Resultado
XVII
BRUNELLESCHI
Técnica
Arquitectura
XVII
LEONARDO DA
VINCI
Dibujos
Caras
Geometría
Descriptiva
Sistema
diedrico
Tipo de
representación
Resultado
1746 - 1818
GASPARD MONGE
Dibujos de
construcción
Planos de un
edificio
1788 - 1867
PONCELET
Geometría
Proyectiva
Concepto de
infinito
Contenido
Geométrico
Valor
aproximado de
pí.
XIX (1917)
COMITÉ ALEMAN
DE
NORMALIZACION
Normalización
Definición del
dibujo técnico
Contenido
Geométrico
Predicción de
eclipse de sol
Polígonos
regulares
Teorema de la
hipotenusa
600 A.C.
THALES
600 A.C.
PITAGORAS
030 A.C.
EUCLIDES
Geometría plana y
del espacio
Elementos de
Geometría
287-212 A.C.
ARQUIMIDES
Geometría plana y
del espacio
Formas de medir
áreas y
volúmenes
-----
APOLONIO
Curvas cónicas
Tratado de las
cónicas
SISTEMAS DE REPRESENTACION GRAFICA
INTRODUCCION
Todos los sistemas de representación, tienen como
objetivo
representar sobre
una
superficie
bidimensional, como es una hoja de papel o la pantalla
plana de una PC, los objetos que son tridimensionales
en el espacio.
Con este objetivo, se han ideado a lo largo de la
historia diferentes sistemas de representación. Pero
todos ellos cumplen una condición fundamental, la
reversibilidad, es decir, que si bien a partir de un
objeto tridimensional, los diferentes sistemas permiten
una representación bidimensional de dicho objeto, de
igual forma, dada la representación bidimensional, el
sistema debe permitir obtener la posición en el espacio
de cada uno de los elementos de dicho objeto.
Bidimensional
Tridimensional
Este mecanismo o sistema de representación ha
permitido, y de hecho permite, conjuntamente con los
gestos, las palabras y las escrituras, comunicarse a la
Humanidad desde tiempos lejanos. Darle forma a una
idea que existe en la imaginación es la expresión más
clara de los alcances del dibujo técnico que se
manifiesta
gráficamente,
universalmente
y
precisamente.
Cualquier dibujo tiene en su expresión los elementos
que constituyen la base de la Geometría, o sea, el
punto, la línea y el plano, así como la simbología que
caracteriza a ellos.
Mg. Ing. Guido Alfredo Larcher
4
Este dibujo puede ser interpretado de manera
acabada en cualquier lugar del mundo, lo cual lo
constituye en universal. Por último, la finalidad para lo
cual fue creado establece que el mismo debe ser
preciso en el sentido de contener cada una de las
partes que integran el cuerpo en forma adecuada y
proclive a ser unida sin mayores dificultades o bien en
coincidencia.
La necesidad de explicar cómo funcionan los sistemas
de tecnología en general impone en sí mismo conocer
con precisión las diferentes técnicas
de
representación, las que en su aprendizaje, parten del
dibujo a mano alzada para desembocar en el dibujo
técnico.
Con el dominio de ambas técnicas, el estudiante en su
carrera profesional y, aun en el cursado de diferentes
asignaturas de su carrera de grado, podrá realizar
croquis, manejar diferentes posiciones y con ellas las
vistas de un cuerpo y, luego profundizar el manejo de
planos y del espacio que lo rodea pero, para lograr la
expresión a mano alzada deben necesariamente
conocer las técnicas para dibujar.
SISTEMAS DE REPRESENTACION GRAFICA
EL DIBUJO: ELEMENTO DE COMUNICACIÓN
Como en todo sistema, cada vez que queremos
representar con algún dibujo cuerpos en el espacio,
debemos tratar de aplicar aquel método que, visto por
cualquier persona, le permita interpretarlo del mismo
modo que otras. Por eso decimos que el dibujo técnico
se encuentra normalizado, es decir bajo el acuerdo del
uso de métodos comunes a diferentes países, lo cual
lo constituye en un idioma universal y, además permite
interpretar con claridad y sin ningún tipo de doble
interpretación, lo que el que dibuja desea transmitir.
Mg. Ing. Guido Alfredo Larcher
5
Dibujo. Representación, sobre una superficie
generalmente plana, de las formas de un objeto. El
término dibujo sirve, como nombre colectivo o en
combinación con otras palabras, para denominar
documentos de dibujo según la clase de confección
del contenido o la finalidad, no teniendo una
preferencia por estas caracterizaciones.
Representación gráfica. Ilustración por medio de
líneas y superficies variables de tamaños, valores,
etcétera.
Dicho esto podemos definir a las distintas formas de
representar, de la siguiente manera:
Esquema.
Representación,
bajo
una
forma
convencional, de una cosa inmaterial o las relaciones
de la misma.
Dibujo de estudio. Representación gráfica que
corresponde al período de elaboración de un proyecto,
generalmente ejecutado con lápiz para permitir
correcciones. Nota: comúnmente se lo llama "boceto".
Representación gráfica. Ilustración por medio de
líneas y superficies variables de tamaños, valores,
etcétera.
Croquis. Representación que se confecciona
preferentemente a mano alzada, con la ayuda de
instrumentos de guía o de medición y que resulta más
o menos exacta con sus formas y posición.
Dibujo de tamaño natural. Representación exacta de
un carácter o representación geométrica, ejecutada en
trazo fino. Nota: comúnmente se lo llama "montea".
Esquema.
Representación,
bajo
una
forma
convencional, de una cosa inmaterial o las relaciones
de la misma.
Gráfico. Datos estadísticos en forma de curvas o de
otros dibujos en los cuales las magnitudes, de una
escala determinada, son representadas por listas,
círculos, polígonos, figuras, etcétera, en números o en
dimensiones proporcionales a ellas.
SISTEMAS DE REPRESENTACION GRAFICA
Clasificación
de
representación
los
dibujos
según
su
Dibujos ortográficos. Dibujos en escala que
representan en proyección ortogonal cortes, secciones
y algunas otras características de piezas aisladas o
conjuntos de piezas que constituyen un producto.
Nota: comúnmente se los llama "planos".
Perspectivas.
Dibujos
que
representan,
en
perspectiva isométrica, dimétrica y trimétrica, las
formas y algunas otras características de piezas
aisladas o conjunto de piezas que constituyen un
producto, como máquinas, herramientas, aparatos,
instalaciones, etcétera.
Diagramas. Dibujos que muestran las relaciones de
funcionamiento entre dos o más entidades; estas
últimas pueden ser físicas, como piezas y personas o
como planeamientos, implementos, etcétera. Las
formas geométricas que se emplean para representar
a las entidades pueden no tener ninguna relación con
las figuras reales de las entidades físicas. El lugar que
ocupan en el dibujo las diferentes entidades pueden
no tener ninguna relación con la posición que en el
espacio ocupan las entidades reales cuando estas son
físicas: diagramas eléctricos, electrónicos, hidráulicos,
los dibujos para caminos críticos.
Mg. Ing. Guido Alfredo Larcher
6
Nomogramas. Dibujos que comprenden escalas
convenientes, trazadas y dispuestas de modo que
permitan el cálculo gráfico de valores numéricos.
Estos valores se encuentran mediante el trazo de
líneas que, a partir de un valor conocido y pasando por
un punto del nomograma, intersectan las escalas y
dan los valores numéricos buscados.
Esquemas. Dibujos que representan piezas aisladas o
conjuntos de piezas relacionadas entre sí, para dar
una idea clara del funcionamiento del conjunto, de su
estructura o de ambas cosas. Las piezas y los
aparatos están representados en una forma muy
simple, pero guardan cierta relación de forma y
ubicación con las piezas y aparatos que constituyen el
conjunto real.
Gráficos. Dibujos que se emplean para representar
valores relativos o comportamientos variables en
función de otras variables. Para el primer caso se
representarán por medio de columnas dobles, barras,
sectores, etcétera. Para el segundo caso, podrán
representarse por el sistema cartesiano formado por
dos ejes, llamados de coordenadas, en una escala
determinada, que se cortan en ángulo recto en un
punto denominado origen del plano de representación,
según la norma IRAM 4516.
SISTEMAS DE REPRESENTACION GRAFICA
INSTRUMENTOS PARA DIBUJO
• Lápiz: se identifican mediante números y letras y
deben tener punta convenientemente afilada y
su dureza adecuada para el bosquejo, o bien
para la terminación.
Tipo de mina
Cifras
Siglas
Uso
Blanda
De 0 a 1
De 8B a 3B
Para hacer
croquis
Media
De 2 a 3
2B, B, HB, F
Para dibujar en
papel blanco
Dura
De 4 a 5
De H a 5H
Para dibujar en
papel vegetal
De 6H a 10H
Para dibujar
sobre
superficies
duras
Extra dura
De 6 a 9
El portaminas tiene ventajas respecto del lápiz: es fácil
afilar, se puede guardar la mina para evitar que se
rompa y puede recambiarse.
Mg. Ing. Guido Alfredo Larcher
7
• Goma de borrar: sirve para eliminar partes
sobrantes de los dibujos o para las
equivocaciones que cometemos.
Tipo
Características
Forma de Usos
Borrar lápiz
Blanda, flexible y de color claro
Pasarla suavemente
y sin presionar
Borrar tinta
Dura, poco flexible
Desgasta el papel
 Papel: existen de muchas medidas (folio,
cuartilla, octava, DIN A4, etc.). Para facilitar el
trabajo se ha establecido un acuerdo sobre los
tamaños y formatos de papel, a saber:
Formato
Ancho (mm)
Largo (mm)
A-0
841
1.189
A-1
594
841
A-2
420
594
A-3
297
420
A-4
210
297
A-5
148
210
A-6
105
148
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
8
• Escuadras: son plantillas en forma de triangulo
rectángulo. Según su forma reciben distintos
nombres.
A1
Escuadra: tiene forma de un triángulo isósceles.
A2
1183
Los catetos forman un ángulo con la
A3
hipotenusa de 30° y 60° y entre ellos
forman un ángulo de 90°.
A4
A5
Cartabón: tiene la forma de un triangulo isósceles.
Los catetos forman con la hipotenusa
841
 Reglas: son rectangulares y generalmente de
plástico. Su longitud va generalmente de 30 a
100 cm. Se utilizan para trazar rectas, para
transportar longitudes y para medir segmentos.
un ángulo de 45° y entre ellos de 90°.
SISTEMAS DE REPRESENTACION GRAFICA
• Compas: permite trazar circunferencias y arcos.
Tiene brazos, horquilla y mango.
Mg. Ing. Guido Alfredo Larcher
9
CALIGRAFIA NORMALIZADA
Todo trabajo técnico que incluye una representación
grafica, está conformado por alguna expresión tal
como un grafico, una frase, números, referencias
técnicas, etc., de manera que en él se pueda exponer
con suma claridad lo que se pretende referenciar.
La Norma que se aplica pertenece a la IRAM 4503 que
define la caligrafía que se utiliza para confeccionar la
identificación del trabajo ejecutado.
Para ello se utiliza un rótulo cuyo formato se inscribe
en la parte inferior derecha del plano o lamina, tal
como se indica en las figuras.
La razón de la ubicación se relaciona con el plegado
posterior que sufre ese plano o con el encarpetado de
la lámina, que dejan como primera visualización,
precisamente el sector de identificación del trabajo, es
decir el rótulo.
• Transportador de ángulos: se llama también
semicírculo graduado, círculo graduado o
goniómetro. Se Usa para medir, dibujar y
transportar ángulos.
Como veremos más adelante, el rótulo de un trabajo
se confecciona de manera tal que la caligrafía a utilizar
cumpla acabadamente con la norma que la propone,
la cual indica que se puede escribir en renglones y con
inclinaciones. En tal sentido se indica:
SISTEMAS DE REPRESENTACION GRAFICA
 Ubicación del rótulo de acuerdo a las dimensiones
de las laminas o de los planos
Mg. Ing. Guido Alfredo Larcher
10
Las letras se rigen bajo la norma IRAM 4503, la cual
establece las alturas nominales de letras y números
de espesores optativos, y,
Pueden tener orientación vertical
ABCDEFGHIJKLLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789 -+ºØ@$%&()
O bien orientación a 75 °
ABCDEFGHIJKLLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789 -+ºØ@$%&()
SISTEMAS DE REPRESENTACION GRAFICA
.
La Norma 4503 indica claramente las alturas de las
letras, en función de los espesores optativos, llamados
A y B, que permiten relacionar las alturas de las letras
mayúsculas, con las de las minúsculas, con los
números, los renglones, etc.
Así:
Altura de la letra
mayúscula (h)
2,5
3,5
5
7
10
14
20
Espesor del A (1/14
h)
0,18
0,25
0,35
0,50
0,70
1,00
1,40
0,25
0,35
0,50
0,70
1,00
1,40
2,00
trazo (d) B (1/10 h)
Mg. Ing. Guido Alfredo Larcher
11
Veamos un ejemplo:
Tomemos una altura cualquiera de las indicadas en la
primer tabla, por ejemplo 7 (son 7 mm) para la letra
mayúscula.
Según la segunda tabla, para una altura mayúscula de
7 mm, en la letra de espesor “A”, la altura de la letra
minúscula es 0,7 de la altura mayúscula, es decir 0,7
x 7 mm = 4,9 mm
(aproximadamente 5 mm).
Entonces la altura de la letra mayúscula es de 7 mm y
de la letra minúscula 5 mm.
La distancia entre letras es 0,14 de la altura
mayúscula, es decir 0,14 x 7 mm = 0,98 mm
(aproximadamente 1 mm)
Resumiendo:
Espesor
Características
Cota
“A”
h
“B”
Altura de la letra mayúscula
h
1
1
h
Altura de la letra minúscula
c
0,7 h
0,7 h
Distancia entre las letras según el
espacio disponible
a
0,14 h
0,2 h
Distancia entre renglones
b
1,6 h
1,6 h
Altura de letra mayúscula 7 mm
Altura de letra minúscula 5 mm
Distancia entre letras 1 mm
Escribamos:
7 mm
Noelia
1 mm
5 mm
o
7 mm
Noelia
5 mm
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
12
Como se dibujan las letras?
CONSTRUCCION DEL ROTULO
Sólo a modo e ilustración, se indica los movimientos
posibles que debe realizar el estudiante para efectuar
el trazado de letras, de manera que, con el tiempo, la
escritura normalizada le resulte de comodidad y, por
sobre todas las cosas, utilice un método en la
construcción del rótulo.
La norma IRAM 4508 define al rótulo como el recuadro
en el cual se indican la denominación y el número de
lo representado, siglas o nombre de la firma o
institución propietaria del plano, la fecha y demás
características referentes a la confección e
identificación del mismo y de fabricación del cuerpo o
pieza, y la escala del dibujo.
Si bien existen cartillas caligráficas para la práctica, en
este curso no serán utilizadas de manera obligatoria
pero si sugeridas para aquellos a los que les cuesta
demasiado adaptarse a esta nueva forma de escritura.
El rótulo con el cuál vamos a trabajar en la confección
general de un trabajo práctico, llevará la siguiente
información, en los espacios que más adelante se
indica:
1)
2)
3)
4)
Escala del dibujo.
Método ISO (E).
Número de trabajo práctico.
Fechas y nombres correspondientes a la
ejecución, revisión y aprobación del trabajo
práctico.
5) Denominación de lo representado.
6) Sigla o nombre de la Institución.
SISTEMAS DE REPRESENTACION GRAFICA
20
4,25
9
19
100
Fecha Nombre
Dibuja
Revisa
Aprobadp
Escala
11
10
Mg. Ing. Guido Alfredo Larcher
6
4
17
5
1
Método 2
34
Lámina N°
3
149
Como producir los renglones para escribir en el rótulo?
Sencillamente se mide a partir de las líneas de referencia, de acuerdo a la dirección de las flechas:
Fecha Nombre
Dibuja
Revisa
Aprobadp
Escala
7 mm
5 mm
7 mm
4 mm
7 mm
Método
5 mm
7 mm
Lámina N°
7 mm
5 mm
7 mm
6 mm
7 mm
12,5 mm
5 mm
5 mm
7 mm
13
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
Fecha Nombre
Dibuja
Revisa
Aprobadp
Escala
Método
Lámina N°
F.A.y A. – U.N.S.E.
Agronomía y
Facultad
Agroindustrias
Aspectos esenciales de la escritura:
 Legibilidad, mediante el espaciado entre caracteres igual al
doble del ancho de línea, salvo en siglas o anagramas que
puede ser de un ancho.
 Aptitudes para reproducción.
 Dimensiones. Se considera altura nominal a la de la letra
mayúscula.
 Ángulo de escritura: vertical o -cursiva- (75º sobre la horizontal).
14
SISTEMAS DE REPRESENTACION GRAFICA
ESCALAS
La representación de objetos a su tamaño natural no
es posible cuando éstos son muy grandes o cuando
son muy pequeños. En el primer caso, porque
requerirían formatos de dimensiones poco manejables
y en el segundo, porque faltaría claridad en la
definición de los mismos.
Esta problemática la resuelve la ESCALA, aplicando la
ampliación o reducción necesarias en cada caso para
que los objetos queden claramente representados en
el plano del dibujo.
Se define la ESCALA como la relación entre la
dimensión dibujada respecto de su dimensión real,
esto es:
E = dibujo / realidad
Si el numerador de esta fracción es mayor que el
denominador, se trata de una escala de ampliación, y
será de reducción en caso contrario. La escala 1:1
corresponde a un objeto dibujado a su tamaño real
(escala natural).
Mg. Ing. Guido Alfredo Larcher
15
La escala es adimensional, no importa la unidad de
medida que utilicemos. Debe escribirse en el cuadro
de rotulación. En caso de utilizarse más de una en el
mismo dibujo, en el cuadro figurará la principal, y las
particulares, junto a la referencia del elemento o del
detalle a que corresponde.
Escalas recomendadas, (normalizadas):
De ampliación:
Tamaño natural:
De reducción:
50:1; 20:1; 10:1; 5:1; 2:1,
1:1
1:2; 1:20; 1:200; 1:2000
1:5; 1:50; 1:500; 1:5000
1:10; 1:100; 1:1000; 1:10000
Recomendaciones prácticas de la Norma:
• Elección de la escala para que el tamaño del dibujo
permita una fácil interpretación.
• El condicionante de la escala para la elección del
formato de papel.
• Los pequeños detalles de un objeto, pueden, y
deben, representarse en una ampliación (a mayor
escala) para facilitar su interpretación.
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
Veamos una aplicación:
TAMAÑO DE PLANOS
Si en un dibujo 5 cm del mismo, representan 5 m del
objeto real, entonces la escala será:
D
E=
O
5 cm
=
5m
16
5 cm
=
500 cm
Para que pueda constituirse en norma, el tamaño de los
papeles usados en la confección de
planos se
encuentra uniformizado, de manera que con el se
puedan utilizar, sobres, carpetas, etc.
= 1: 100
Con el objeto de encontrar la medida tipo de un plano
se parte de las siguientes consideraciones:
esta última es la forma simplificada que simboliza la
escala y que se lee, es este caso, UNO EN CIEN (es
decir que a esta escala se la nombra así), y expresa
que una unidad medida sobre el dibujo, representa
cien unidades reales del objeto o también que el
dibujo es cien veces menor que el objeto (está
reducido).
Tener en cuenta que de esta simple ecuación, se
plantean tres posibilidades:
1- Dados el CUERPO y la ESCALA en que se lo
quiere representar, DIBUJARLO.
a) Al doblar un formato normalizado por la mitad, se
obtiene el formato inmediato inferior, que también
será normalizado.
b) La superficie del formato tipo es la unidad, o sea
un metro cuadrado.
c) Todos los formatos normalizados son semejantes
entre sí.
Para incursionar en el dimensionamiento del formato
tipo, se parte de un papel cuyas medidas son X e Y.
X
obtiene:
2- Dados el DIBUJO (sin medidas) y su ESCALA,
deducir las dimensiones del OBJETO.
3- Dado
el
DIBUJO
correspondientes del
ESCALA.
con
las
medidas
OBJETO, deducir la
Si se dobla el papel, se
X
Y
Y/2
SISTEMAS DE REPRESENTACION GRAFICA
Matemáticamente, por la regla de la semejanza:
X/Y = Y/2X
X2 = Y2/2
Y=X 2
Además la segunda consideración expresa:
XY = 1
Con ambas expresiones se obtiene que: X = 0,841 m y
Y = 1,189 m. Como en ingeniería las medidas se
expresan en milímetros, entonces el primer formato
conocido como A0 tiene por dimensiones 841mm x
1189 mm.
El formato al que se hace referencia, se denomina
formato final y surge luego de cortar las partes
remanentes del papel que, en conjunto es conocido
como formato en bruto.
Sobre este formato final es necesario marcar, en su
interior, un recuadro que encierra el dibujo a construir
y su designación, y se llama margen a la separación
que existe entre este y el borde del formato final del
papel.
m
Si procedemos a doblar el formato A0 por la mitad,
obtenemos el formato A1 y así sucesivamente. En
conclusión, los formatos son los siguientes:
A0 (841 x 1189)
17
Mg. Ing. Guido Alfredo Larcher
m
a
A1 (594 x 841)
A2 (420 x 594)
A3 (297 x 420)
A4 (210 x 297)
siendo el formato A4 el que se toma como tamaño
normal de proyectos, doblado de planos, folletos,
informes, etc.
b
En el caso específico de las láminas a utilizar en este
curso, el margen izquierdo mide 25 mm y los
márgenes derecho, superior e inferior, 10 mm.
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
FASCICULO N° 1
PLEGADO DE PLANOS
PLEGADO DE PLANOS
18
SISTEMAS DE REPRESENTACION GRAFICA
TIPOS DE LINEAS
Las líneas tendrán características
conforme deban representar:
diferenciales
1. Líneas del objeto a la vista.
Mg. Ing. Guido Alfredo Larcher
19
Línea de trazos: Se utiliza para representar aristas y
contornos no visibles y líneas convencionales (núcleo
de tornillos, circunferencias de raíz en ruedas
dentadas).
Ejemplo:
2. Líneas del objeto ocultas.
3. Líneas que representan ejes.
4. Líneas que indiquen cortes.
5. Líneas principales y auxiliares del dibujo (Norma
IRAM 4502)
Línea de trazo largo y trazo corto: Se utiliza para
representar ejes y circunferencias primitivos. También
para representar las trazas de planos en Geometría
Descriptiva.
Ejemplo:
Línea de trazo continuo intensa: Se utilizan para
representar aristas visibles del objeto. Cuando es
necesario, se utilizan trazos de mayor espesor para
las líneas principales, y de menor espesor para las
líneas secundarias o complementarias del dibujo.
Ejemplo:
Línea de trazo continuo suave: Se utilizan para
representar las líneas secundarias o complementarias
del dibujo.
Ejemplo:
SISTEMAS DE REPRESENTACION GRAFICA
ACOTACIÓN
Acotar una pieza es indicar sobre el dibujo, todas las
dimensiones necesarias para su interpretación y su
eventual fabricación.
Los elementos básicos que intervienen en la acotación
son:
Cota. Expresión numérica del valor de una medida,
indicada en el dibujo.
Mg. Ing. Guido Alfredo Larcher
Línea de cota. La que indica la medida a la que
corresponde una cota, trazada con la línea tipo “B”
(IRAM 4502). Será paralela a la medida que se acota y
de igual longitud. La separación entre líneas de cota, o
de estas con la del dibujo, será siempre mayor que la
altura de los números. La línea puede ser interrumpida
o continua, dándose preferencia a ésta última (Fig. 2 y
3 ).
Fig. 2
Las cotas se colocan encima y ligeramente separadas
de la línea de cota. Deben colocarse de forma que su
lectura se realice desde la parte inferior y derecha de
la pieza. Las cotas angulares se orientan
horizontalmente.
Cota funcional. La que posee una valía esencial para
que la pieza pueda cumplir su función.
Fig. 3
Fig. 1
20
SISTEMAS DE REPRESENTACION GRAFICA
Flecha de cota. Los extremos de la línea de cota
terminarán con flechas formadas por un triángulo
isósceles ennegrecido, cuya relación entre la base y la
altura será aproximadamente 1:4 Fig. 4.
Fig. 4
Para acotar correctamente una pieza, se tendrán en
cuenta los siguientes principios:
• La principal norma que regula la acotación es la
IRAM 4513.
• Las cotas se distribuirán, teniendo en cuenta
criterios de orden, claridad y estética.
• En los dibujos aparecerán todas las cotas
necesarias para su definición.
• No deben repetirse las cotas a menos que sea
indispensable.
• Cada cota se colocará en la vista que mejor
información aporte.
• Todas las cotas se expresan en la misma unidad,
en caso contrario, se colocará la unidad empleada
a continuación de la cota.
• Para los dibujos de fabricación metal mecánica la
unidad de medida lineal será el milímetro y no se
indicará su abreviatura.
Mg. Ing. Guido Alfredo Larcher
21
• No se utilizarán más cotas de las necesarias
para definir completamente el dibujo.
• Cuando haya que acotar un conjunto de varias
piezas ensambladas, se procurará separar las
cotas de cada pieza.
• Las cotas relacionadas. como el diámetro y
profundidad de un agujero, se indicarán sobre la
misma vista.
• Las cotas no funcionales se acotarán de la
manera más conveniente para facilitar la
fabricación o la verificación.
• En el dibujo se expresarán las propias cotas
funcionales (Fig.1), sin hacer depender unas de
otras, para asegurar las condiciones de
funcionamiento.
• Debe evitarse, la necesidad de obtener cotas por
suma o diferencia de otras, ya que puede
implicar errores en la fabricación, se expresará
para su lectura directa, y no para su obtención
por deducción de otras ni por aplicación de la
escala.
• Las cotas se situarán por el exterior de la pieza
Se admitirá el situarlas en el interior, siempre
que no se pierda claridad en el dibujo.
SISTEMAS DE REPRESENTACION GRAFICA
BIBLIOGRAFIA:

SISTEMAS DE REPRESENTACION – Arq.
Susana Beatriz Agotegaray – Editorial de la
Universidad Tecnológica Nacional – Año 2009.

MEDIOS DE REPRESENTACION – Alvarez –
Urdiain – Editorial Alsina – 3° Edición – Año
2003.

MANUAL DE NORMAS DE APLICACIÓN PARA
EL DIBUJO TECNICO – INSTITUTO ARGENTINO
DE RACIONALIZACION DE MATERIALES Edición XXVII.
Mg. Ing. Guido Alfredo Larcher
22
CAPITULO 2
Elementos de la Geometría Descriptiva.
Representación de punto, recta y plano.
Método de Monge. Método de representación.
Sistema ISO. Sistema Europeo y Americano
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
24
INTRODUCCION
ELEMENTOS DE LA GEOMETRIA DESCRIPTIVA
La posibilidad de representar un cuerpo en el espacio
a través de algún tipo de sistema, nos pone en frente
de herramientas muy valiosas de interpretación con
mayor precisión, pues nos permite observarlo desde
diferentes puntos de vista y con ello entender de que
se trata sin tener que recurrir de manera tan fuerte a
nuestra imaginación.
Los sistemas de representación son los medios
que sirven para expresar gráficamente las ideas,
sostiene Susana Beatriz Agotegaray en su tratado
SISTEMAS DE REPRESENTACION, pues ellos nos
permiten darle forma a aquello que se encuentra en
nuestra imaginación.
Por otro lado, el buen uso de estos sistemas convierte
naturalmente a esta expresión en un lenguaje
universal y de síntesis que permite transmitir mensajes
y esto es la representación gráfica, la forma de
transmitir en forma universal, grafica y precisa, un
elemento que ha sido creado en nuestra imaginación y
que a través de métodos geométricos, podemos
definirlo en un papel.
Se dice universal porque cualquiera puede leer e
interpretar la representación, grafica porque se
expresa a través de elementos comunes, símbolos,
etc., y preciso porque, los elementos utilizados, líneas
y planos, deben coincidir en el momento en que se
realiza la construcción.
En consecuencia, sin importar el idioma de una
nación, mientras reúna las condiciones mencionadas,
un cuerpo podrá ser representado en el espacio, y ser
analizado por cualquier persona.
La Geometría Descriptiva es la parte de la
Matemática que resuelve gráficamente los problemas
geométricos. Es el pasaje de un sistema tridimensional
(objetos en el espacio) a un sistema bidimensional
(representación de los objetos en el plano).
Para poder desarrollar estos conceptos, hace falta
conocer y analizar los tres elementos geométricos
básicos para la representación gráfica que son: el
punto, la recta y el plano.
Estos tres elementos a los que se llama abstractos
fueron utilizados en la antigüedad para el
perfeccionamiento de la geometría, por los griegos,
quienes nos enseñaron que a partir de ellos se genera
cualquier otra forma compleja tales como segmentos,
curvas, superficies, poliedros, etc.
Por ello, entonces, es necesario conocerlos en
profundidad, para poder usar su concepto en la
representación grafica de cuerpos en el espacio, por
cualquier método.
SISTEMAS DE REPRESENTACION GRAFICA
EL PUNTO
Si nos ubicamos en el espacio, es decir en un sistema
conformado por un plano vertical, al que llamaremos
PV, un plano horizontal PH y un plano lateral PL, tal
como el que se representa en la figura, podremos
determinar la posición exacta de un punto A situado en
él. Así,
Mg. Ing. Guido Alfredo Larcher
25
En primer lugar, el punto A, ahora se encuentra
ubicado o proyectado en cada uno de los planos que
conforma el espacio (A´, A” y A´´´) en forma
perpendicular a los mismos y, al mover el plano
horizontal 90° a la misma dirección del plano vertical,
el punto proyectado sobre dicho plano, también se
mueve quedando sus proyecciones relacionadas a
través de una línea común a ambas y que llamaremos
línea de tierra LT.
A´´´ PL
A”
PV
A
A”
PV
A
A´
PH
PH
Llamamos A” a la proyección del punto A en el plano
vertical PV, A´ a la proyección del punto A en el plano
horizontal PH y A´´´ a la proyección del punto A en el
plano lateral PL.
Ahora bien, si movemos el plano horizontal PH a una
posición tal que coincida su dirección con la del plano
vertical PV, es decir lo abatimos 90°, observamos que:
A´
Línea de
Tierra LT
Plano horizontal en
posición normal
A´
Plano horizontal
abatido 90°
De igual manera ocurre si abatimos 90°el plano lateral
PL hacia la derecha del plano vertical, el punto A´´´,
tomara la posición correspondiente. Así:
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
26
Al observar la figura plana conformada por los tres
planos PV, PH y PL, podemos identificar
perfectamente la posición en la que se encuentra el
punto A.
A´´´
A´´´
PV
d´´´
A´´
A´´
PL
A´´´
A
PL
cota
d´´
PV
Si unimos ambos sistemas, tendremos exactamente,
la posición del punto A, en el espacio, pero ahora
representado en una figura plana.
alejamiento
d´
PL
A´
A´´´
PH
PV
A´´
A´
PH
desviación
Decimos que el punto se encuentra a una distancia d´´
del plano horizontal, y a esa distancia la llamamos
cota; a una distancia d´ del plano vertical y la
llamamos alejamiento y, a una distancia d´´´ del plano
lateral y la llamamos desviación, todo ello tomando
como referencia la línea de tierra LT y la línea divisoria
de los planos.
Además se destaca que, al generar este nueva
visualización del espacio en el plano, el punto A
SISTEMAS DE REPRESENTACION GRAFICA
mantiene la posición que originariamente tenía, es
decir que, la altura a la que se encontraba del plano
horizontal seguirá siendo la misma y, las distancias a
las que se encontraba tanto de los planos vertical
como lateral, también mantendrán su valor.
Esta condición hace que los sistemas sean reversibles
y que, a través de métodos que posteriormente
describiremos, se pueda graficar un punto, una recta,
un plano y un volumen, tanto en el espacio como en el
plano.
En la práctica la representación se efectúa de la
siguiente manera:
L
T
Mg. Ing. Guido Alfredo Larcher
27
Por último, a los planos PV, PH y PL, los llamaremos
planos de proyección, tanto vertical, horizontal y lateral
izquierdo o derecho, según corresponda a la
proyección.
El sistema descripto es conocido como Sistema de
Monge o Sistema Diédrico.
SISTEMAS DE REPRESENTACION GRAFICA
LA RECTA
Mg. Ing. Guido Alfredo Larcher
28
PV
A´´
Una recta queda definida por dos puntos y su
proyección en el plano tiene forma de recta.
Para su análisis consideremos, utilizando idéntica
metodología que para el tratamiento del punto, que la
recta, a la que llamaremos r, contiene a los puntos A y
B.
r´´
B´´
A´
r´
Traza de la recta
B´
PV
A´´
A
Si observamos en la representación espacial, la recta r
se intersecta con el plano PV y con el plano PH. A
esas intersecciones se las denomina trazas de la
recta.
r´´
r
B´´
B
A´
r´
B´
PH
Recta r en el espacio,
conteniendo a los puntos A y B
PH
Traza de la recta
POSICIONES DE LA RECTA
Proyecciones de la recta r, en el plano vertical PV y en
el plano horizontal PH, con las correspondientes
proyecciones de los puntos A y B
Si abatimos el plano PH y lo colocamos en la misma
dirección del plano PV, entonces tendremos la
representación de la recta, que antes se encontraba
en el espacio, ahora en el plano. Así:
La razón de trabajar con los elementos de la
Geometría, es la identificar a posteriori, es decir
cuando se apliquen los diversos métodos de
representación, las diversas posiciones que tienen los
mismos en su representación tanto espacial como en
el plano.
SISTEMAS DE REPRESENTACION GRAFICA
La recta puede ser visualizada de siete maneras
distintas en su representación, a saber:
a) Recta horizontal
Llamamos recta horizontal a aquella recta que, en
su representación espacial es paralela al PH y
presenta una traza, es decir una intersección, con
el plano PV.
Mg. Ing. Guido Alfredo Larcher
29
b) Recta frontal
Por definición, la recta frontal es aquella recta que
se encuentra paralela al plano vertical y presenta
una traza con respecto al plano horizontal. Así:
PV
f´´
f
H´´
h
f´
PH
H=H´´
L
α
T
Al representar las proyecciones de la recta h en el
plano, verificamos la afirmación realizada: al ser la
recta paralela al plano horizontal, en su proyección en
el plano vertical aparece como una línea paralela a la
línea de tierra LT y, en su proyección en el plano
horizontal, necesariamente aparecerá su intersección
con la línea de tierra LT y la formación de un ángulo α
con la misma.
Su representación en el plano determina que, por ser
paralela al plano vertical, la proyección de la recta f en
el plano horizontal es una línea recta paralela a la
línea de tierra LT y, en el plano vertical, será una línea
recta que intersecta a la línea de tierra LT y forma un
ángulo β con la misma.
β
L
T
SISTEMAS DE REPRESENTACION GRAFICA
c) Recta paralela a la línea de tierra
Mg. Ing. Guido Alfredo Larcher
30
d) Recta de perfil
Se trata de una línea recta que, en el espacio se
encuentra paralela tanto al plano de proyección
vertical PV como al plano de proyección horizontal
PH.
Es una recta paralela al plano de proyección lateral PL
y presenta trazas en los planos de proyección tanto
vertical PV como horizontal PH.
PV
r´´
PL
PV
r
r´
r´´´
r´´
r
r´
PH
PH
En el plano, sus proyecciones vertical y horizontal,
resultan paralelas a la línea de tierra LT. Así:
r´´
L
T
r´
Las proyecciones en el plano dan como resultado
líneas perpendiculares a la línea de tierra y, para
conocer la inclinación de la línea en el espacio, es
necesario realizar su proyección en el plano lateral de
manera que, la intersección de la línea proyectada con
la línea de tierra permita realizar la medición del
ángulo. Así:
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
31
e) Recta vertical
r´´
La recta vertical presenta como características
principales ser paralela al plano vertical PV,
perpendicular al plano horizontal PH y tener su
traza con este último plano de proyección.
r´´´
T
L
r´
PV
r´´
r
Obsérvese como particularidad que, en el sistema de
proyecciones, la recta de perfil aparece en su
verdadera dimensión en el plano de proyección lateral,
es decir que la proyección en dicho plano tiene la
misma medida que la recta que se encuentra en el
espacio mientras que, tanto en el plano de proyección
vertical PV como en el plano de proyección horizontal
PH, sus dimensiones son notablemente menores.
Esta particularidad ocurre también para los casos a) y
b), es decir para rectas que son paralelas al plano de
proyección vertical PL y paralelas al plano de
proyección horizontal PH. La diferencia está en que
las rectas de los casos a) y b) pasan por la línea de
tierra mientras que la recta de perfil no lo hace.
r´
PH
La proyección de la recta r en el plano vertical, es decir
r´´, resulta perpendicular a la línea de tierra LT, y la
proyección de la recta en el plano horizontal, r´, es un
punto que coincide con la traza de la recta. Así:
r´´
L
T
r´
SISTEMAS DE REPRESENTACION GRAFICA
f) Recta de punta
.
32
g) Recta genérica o de posición general
La recta de punta tiene como características
principales ser paralela al plano horizontal PH,
perpendicular al plano vertical PV y tener su traza
con este último plano de proyección.
PV
Mg. Ing. Guido Alfredo Larcher
Esta clase de recta resulta oblicua a todos los
planos de proyección, es decir al plano vertical PV,
al horizontal PH y al lateral PL.
PV r´´
r´´´
PL
r
r´´
r
r´
PH
r´
PH
La proyección de la recta r en el plano horizontal, es
decir r´, resulta perpendicular a la línea de tierra LT, y
la proyección de la recta en el plano vertical, r´´, es un
punto que coincide con la traza de la recta en ese
La particularidad que presenta esta recta es que sus
proyecciones en el plano, forman cualquier ángulo con
la línea de tierra. En consecuencia:
r´´
L
T
L
r´´´
T
r´
SISTEMAS DE REPRESENTACION GRAFICA
EL PLANO
Mg. Ing. Guido Alfredo Larcher
33
b) Tres puntos no alineados
Los elementos analizados previamente, es decir el
punto y la recta, resultan de suma importancia a la
hora de definir la superficie más sencilla que podemos
encontrar: el plano.
B´´
C´´
PV
C
B
Un plano puede estar definido de varias formas, a
saber:
A´´
A
C´
B´
A´
a) Una recta y un punto exterior a ella.
Los puntos (A´, A´´),
(B´, B´´) y (C´, C´´),
son los que
representan el plano
que pasa por los
puntos A, B y C del
espacio
PH
Representación espacial
de la recta y el punto.
P´´
B´´
C´´
PV
P
A´´
r´´
r
L
T
A´
r´
P´
PH
C´
B´
P´´
r´´
L
T
Representación en el plano
de la recta y el punto
P´
r´
Si trazamos dos rectas que pasen por los puntos A, B y
C, tendremos dos nuevas rectas que se cortan y, en
consecuencia, cumpliremos con otra de las definiciones
de plano.
SISTEMAS DE REPRESENTACION GRAFICA
c) Dos rectas que se cortan
Mg. Ing. Guido Alfredo Larcher
d) Dos rectas paralelas
PV
PV
a´´
a´´
A´´
a
b´´
a
A
b´´
b
b
b´
PH
a´
A´
a´
b´
Las rectas (a´, a´´),
(b´, b´´), se
denominan rectas
concurrentes y se
intersectan en los
puntos A´, A´´
PH
a´´
a´´
A´´
b´´
b´´
L
T
L
T
b´
a´
a´
A´
b´
34
SISTEMAS DE REPRESENTACION GRAFICA
La expresión normal de un plano es su representación
mediante una superficie, en general bien definida, tal
como una figura geométrica (cuadrado, rectángulo,
círculo, etc...).
Por lo tanto, el lector debe conservar como definición
de proyecciones, las dadas hasta ahora al tratar el
punto y la recta.
35
Mg. Ing. Guido Alfredo Larcher
a) Plano horizontal
Se lo llama así porque su visualización en el
espacio nos permite observar que se encuentra en
forma paralela al plano de proyección horizontal PH,
con lo cual destacamos que su forma se encuentra
en la verdadera dimensión o magnitud mientras que,
se encuentra en forma perpendicular a los planos de
proyección tanto vertical PV como lateral PL, y eso
se visualiza con las trazas en ambos planos.
¿QUE POSICIONES ADOPTA EL PLANO EN EL
ESPACIO?
Las posiciones que adopta el plano en el espacio son
siete (7) de acuerdo al paralelismo y la
perpendicularidad en la que se encuentra con respecto
a los planos de proyección PV, PH y PL; de acuerdo al
ángulo que forman las trazas horizontal y vertical con
la LT y a la perpendicularidad de sus trazas, y de
acuerdo al ángulo que forma con cualquiera de los
planos de proyección.
PV
PV
PL
PL
PH
PH
De acuerdo a ello, entonces, simbolizamos las
representaciones de los planos y observamos sus
aplicaciones en los detalles de corte de los prismas
elementales que nos ayudan en su interpretación. A
saber:
Ejemplo:
Posición del
observador
SISTEMAS DE REPRESENTACION GRAFICA
36
Mg. Ing. Guido Alfredo Larcher
b) Plano frontal
c) Plano de perfil
Este es un plano que destaca su condición de ser
paralelo al plano vertical de proyección PV y, al
observárselo de frente se destaca que todos los
elementos que lo integran se encuentran en verdadera
magnitud. Sus proyecciones tanto en el PH como en
el PL, son líneas que representan, en el primero el
ancho y, en el segundo el alto.
Este es un plano que destaca su condición de ser
paralelo al plano lateral de proyección PL y, al
observárselo sobre esa proyección, se destaca que
todos los elementos que lo integran se encuentran en
verdadera magnitud. Sus proyecciones tanto en el PV
como en el PH, son líneas que representan, en el
primero el alto y, en el segundo, la profundidad.
PV
PL
PV
PV
PL
PL
PV
PH
PL
PH
PH
PH
Ejemplo:
Posición del
observador
Ejemplo:
Posición del
Observador
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
37
d) Plano proyectante horizontal
e) Plano proyectante vertical
Este tipo de plano presenta como particularidad, el
ser perpendicular al plano horizontal PH, su traza
horizontal forma un ángulo cualquiera α con respecto
a la línea de tierra, mientras que la traza vertical es
perpendicular a la línea de tierra.
Este tipo de plano presenta como particularidad, el ser
perpendicular al plano vertical PV, su traza vertical
forma un ángulo cualquiera β con respecto a la línea
de tierra, mientras que la traza horizontal es
perpendicular a la línea de tierra.
PV
PV
PV
PV
PL
PL
β
α
PH
PH
PH
PH
Ejemplo:
Posición del
Observador
Ejemplo:
Posición del
Observador
SISTEMAS DE REPRESENTACION GRAFICA
38
Mg. Ing. Guido Alfredo Larcher
f) Plano proyectante de perfil
g) Plano de posición general o plano oblicuo
También conocido con el nombre de plano rampa.
Presenta como particularidad el ser perpendicular al
plano lateral PL y sus trazas, tanto vertical como
horizontal, son paralelas a la línea de tierra.
Es un plano cuya posición forma un ángulo cualquiera
con los planos de proyección vertical PV, horizontal PH
y lateral PL.
PV
PV
PV
PV
PL
PL
PL
PL
PH
PH
PH
PH
Posición del
Observador
Ejemplo:
Posición del
Observador
Ejemplo:
SISTEMAS DE REPRESENTACION GRAFICA
A esta altura, ya podemos darnos cuenta que hay dos
formas de realizar una representación: generando una
figura de un cuerpo real, o bien gestionando desde la
imaginación algún cuerpo o pieza. En cualquiera de
los casos la forma de representar da la posibilidad de
hacerlo como un volumen o como una figura plana,
observándose que, en el caso de un volumen, las
dimensiones (ancho, alto y profundidad) que
representan al cuerpo, se presentan en una sola
figura, mientras que, cuando la figura es plana, su
representación solo puede hacerse con dos cualquiera
de las dimensiones y teniendo en cuenta la posición
del observador, en un proceso que, en referencia a la
ubicación del cuerpo de por sí resulta aleatorio. Para
el caso de la representación en volumen estamos
hablando de perspectivas y, en el caso de figuras
planas,
estamos
hablando
de
Proyecciones
Ortogonales.
El Sistema de Proyecciones Ortogonales permite
obtener las distintas partes de un cuerpo ubicando un
cuerpo en el espacio y cambiando de posición al
observador. Con ello y, teniendo la misma distancia de
observación, se estará mirando cada una de las vistas
en su verdadera dimensión y con los detalles
correspondientes.
Este Sistema está basado en las normas I.S.O. y
Mg. Ing. Guido Alfredo Larcher
39
presenta dos formas de visualización conocidas como
método ISO E y método ISO A, que significan Sistema
Europeo y Sistema Americano, respectivamente.
A continuación explicamos cada uno de ellos.
Una buena forma de explicar la representación del
cuerpo en el espacio es tratar de estar en las distintas
posiciones en la que se encuentra la persona de la
figura:
Imagen gestionada desde Internet
SISTEMAS DE REPRESENTACION GRAFICA
Para poder describir los métodos vamos a imaginar en
primera instancia que un cuerpo tiene sus caras
pintadas de distintos colores y que está contenido en
una caja.
A esta caja le abrimos sus caras y, en función de la
posición del observador, reflejamos cada una de las
Planta
vistas:
Posterior
Lateral
izquierdo
Alzado
Inferior
Lateral
derecho
Se observa entonces que, la figura de color violeta es
la proyección de la vista de alzada sobre el plano de
proyección vertical, la figura de color amarillo es la
proyección de la vista superior o planta sobre el plano
de proyección horizontal, la vista de color gris es la
proyección de la vista lateral derecha sobre el plano
de proyección izquierdo, la figura de color turquesa es
la proyección de la vista lateral izquierda sobre el
Mg. Ing. Guido Alfredo Larcher
40
plano de proyección lateral derecho, la figura de color
azul es la proyección de la vista inferior sobre el plano
de proyección superior y, la figura de color verde, es la
proyección de la vista posterior sobre el plano de
proyección anterior. Si bien el sistema ortogonal prevé
la representación del cuerpo en sus seis vistas, no es
necesario recurrir a todas ellas para poder
interpretarlo. Solo se recurre a aquellas que
conocemos como vistas principales, es decir alzada,
elevación o frontal, planta o superior, lateral izquierda
y lateral derecha. Cabe acotar que, actualmente las
Normas 4501-1 y 4501-2, que tratan lo referente a los
métodos de proyección establecen que, las vistas
conservan la designación, pero ya no se las categoriza
como vistas principales, aunque si se establece un
orden de prioridad entre ellas.
Al sistema descripto se lo conoce como Sistema
Europeo o ISO E y el cuadro nos muestra las formas
de colocar las vistas en la representación.
VISTA
INFERIOR
LATERAL
LATERAL
VISTA
IZQUIERDO
POSTERIOR
ALZADO
DERECHO
PLANTA
SISTEMAS DE REPRESENTACION GRAFICA
Para analizar el Sistema ISO A o Sistema Americano
utilizamos el mismo ejemplo de la caja que contiene
un cuerpo con sus caras pintadas con idénticos
colores.
Mg. Ing. Guido Alfredo Larcher
41
sobre el plano de proyección lateral izquierdo.
El cuadro nos muestra la forma en la que se coloca las
vistas en su representación.
PLANTA
LATERAL
LATERAL
ALZADO
IZQUIERDO
DERECHO
VISTA
POSTERIOR
VISTA
INFERIOR
Ahora observamos que cada cara con su color se
proyecta sobre el plano que se encuentra enfrente
suyo y, en consecuencia, la figura de color violeta es
la vista de proyección de alzada sobre el plano de
proyección anterior, la figura de color amarillo es la
vista de proyección superior sobre el plano de
proyección también superior, la figura de color azul es
la vista de proyección inferior que se encuentra en el
plano de proyección inferior, la figura de color gris es
la vista de proyección lateral derecha sobre el plano
de proyección lateral derecho y la figura de color
turquesa es la vista de proyección lateral izquierda
El ejemplo nos muestra claramente como se realiza la
representación de ambos métodos:
SISTEMAS DE REPRESENTACION GRAFICA
SISTEMA EUROPEO – Método ISO E
Mg. Ing. Guido Alfredo Larcher
42
Otras formas de representación que también plantean
las Normas IRAM 4501-1 y 4501-2, son:
a) Disposición de las vistas utilizando flechas de
referencia.
Es la proyección en el primer cuadrante y su simbolo
Esta permite ubicar libremente las diferentes vistas.
Con excepción de la vista principal, se debe
identificar cada vista con una letra mayúscula
repetida cerca de la flecha necesaria para indicar la
dirección en la cual se debe mirar la respectiva
vista.
A
de representación es
D
C
SISTEMA AMERICANO – Método ISO A
A
B
B
E
C
Es la proyección en el tercer cuadrante y su símbolo
de representación es
D
E
SISTEMAS DE REPRESENTACION GRAFICA
b) Representación ortogonal reflejada
En los dibujos de construcción, en donde a veces,
se confunden los métodos de representación, pues
se trabaja con distintos niveles que van desde el
techo hasta la planta pasando por los diferentes
pisos se utilizan los dos sistemas siguientes.
Uno,
conocido como Proyección Ortogonal
Directa, donde la vista representa el lado del objeto
que está colocado delante del dibujante, esto es:
Otro, conocido como Proyección Ortogonal
Reflejada,
donde
la
proyección
es
la
representación de la imagen reflejada en un espejo
situado paralelamente al plano de corte.
A
A
B
A
43
Mg. Ing. Guido Alfredo Larcher
B
A
El símbolo de la representación ortogonal reflejada es:
Nosotros utilizaremos el Sistema Europeo que, para
una representación se sintetiza como sigue:
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
44
BIBLIOGRAFIA
CUERPO EN EL
ESPACIO
VISTAS DEL CUERPO DE
ACUERDO A LA POSICIÓN
DEL OBSERVADOR
APLICACIÓN DEL
SISTEMA DE
PROYECCIONES
ORTOGONALES

SISTEMAS DE REPRESENTACION – Arq.
Susana Beatriz Agotegaray – Editorial de la
Universidad Tecnológica Nacional – Año 2009.

Compilaciones varias extraídas de Internet.

Desarrollo propio de la cátedra.

“ACTUALIZACION DE LAS NORMAS IRAM DE
DIBUJO TECNOLOGICO: POSIBLES IMPACTOS
EN LA ENSEÑANZA DE REPRESENTACION
GRAFICA” – Ing. UEMA, Ariel Shigeru – Libro
de Ponencias de EGraFIA 2011 – VIII Congreso
Nacional – Pag. 138 al 144 – Año 2011
CAPITULO 3
Nociones de perspectiva. Proyecciones axonométricas.
Dimétricas. Ejes dimétricos. Procedimiento para la
construcción de una proyección dimétrica. Aplicaciones.
Proyecciones isométricas. Coeficiente de reducción. Norma
IRAM 4540. Características. Aplicaciones
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
46
PERSPECTIVAS
EL SISTEMA AXONOMÉTRICO
La norma IRAM 4540 plantea la representación
complementaria a la representación de vistas, de las
piezas o cuerpos que se encuentra en el espacio y
permite una mejor visualización general. A este tipo de
representación espacial se la conoce como
Perspectiva,
que
significa
en
términos
de
representación grafica, mirar u observar desde un
punto de vista particular.
El sistema axonométrico tiene como base de referencia
un triedro trirrectángulo. Este triedro está formado por
tres planos que son perpendiculares entre sí.
La representación en perspectiva mejora notablemente
la posibilidad de comprender o entender elementos
construidos con cierta complejidad o bien de difícil
interpretación, ya que desde determinadas posiciones
se pueden observar las partes más importantes de un
cuerpo.
Desde el punto de vista de Geometría Descriptiva
podemos decir que es un sistema que estudia la
representación de figuras espaciales en un plano por
medio de proyecciones obtenidas según tres ejes y
cuya característica principal es la de conservar el
paralelismo entre las rectas.
Este sistema es conocido como Sistema Axonométrico
y se clasifica en oblicuo y ortogonal.
El origen de la palabra axonometría es el idioma griego,
en el que se compone por dos vocablos Axon que
significa ejes y Metron que significa medida, es decir
medida en los ejes.
Más adelante observaremos que, de acuerdo a la
posición espacial con la que sea visualizado un cuerpo,
a cada eje le corresponderá una determinada medida.
La gran ventaja que presenta este sistema es que, en
una sola imagen puede determinarse la forma y las
medidas del objeto observado y representado y por
ello, como método es muy utilizado para el croquizado
y como forma de representación de elementos
mecánicos, despiece de maquinarias y representación
de procesos industriales.
SISTEMAS DE REPRESENTACION GRAFICA
PRINCIPIOS DE REPREPRESENTACION
Dentro de la clasificación de los sistemas de
representación, el Sistema Axonometrico pertenece al
sistema cilíndrico o paralelo, en el que comparte el
lugar conjuntamente con el sistema acotado y el
sistema de Monge.
Mg. Ing. Guido Alfredo Larcher
47
Hacemos referencia a la siguiente posición del
observador que mira de manera perpendicular al plano
oblicuo, al que llamamos cuadro.
La representación de este sistema, se basa en la
combinación de tres ejes que, reunidos en un punto de
intersección (O), siguen respectivamente la dirección
en que se consideran cada una de las dimensiones,
largo, ancho y alto, del cuerpo a representar.
En donde:
Y
X, Y y Z son los
Ejes Coordenados.
P
Z
Y
O es el centro de
coordenadas.
O
R
Si el punto O es también proyectado sobre el plano
oblicuo, arrastra en esta proyección a los ejes
coordenados, convirtiéndolos en lo que llamaremos de
aquí en adelante ejes axonométricos. Así:
Q
X
Y1
XY, YZ y ZX son los
planos coordenados
RPQ es un plano
oblicuo que se
encuentra en forma
perpendicular al ojo
de un observador.
O
Z1
Z
O1
X1
X
SISTEMAS DE REPRESENTACION GRAFICA
Aquí aparece entonces el triedro trirrectángulo
formado por tres planos que son perpendiculares
entre sí.
48
Mg. Ing. Guido Alfredo Larcher
tricos por proyección. Y
Ahora bien, para obtener la proyección de un cuerpo
ubicado en el espacio de ejes coordenados, en el
nuevo sistema de ejes axonometricos, se procede
como se describe a continuación.
O
Se parte de un cuerpo ubicado de la siguiente manera
en el sistema de ejes coordenados:
X
Y
Y
Z
Y1
O
O
X
O1
X1
X
Z
Se traza ahora un plano perpendicular al plano del
observador (cuadro) y se obtienen los ejes axonomé-
Z1
Z
SISTEMAS DE REPRESENTACION GRAFICA
Los ejes axonométricos son X1, Y1 y Z1, y el punto O1
es el nuevo centro de intersección. Obsérvese que, el
punto O1 se obtiene por proyección perpendicular, es
decir que su línea o rayo proyectante forma con el
plano un ángulo de 90°.
A continuación, tracemos cada uno de los vértices del
cuerpo que se encuentra en las intersección de los
planos coordenados de idéntica manera como lo
hicimos con el punto O1, es decir perpendicular al
plano que lo contiene o, lo que es lo mismo, en forma
paralela a la proyección de ese punto, y obtendremos
así la proyección del cuerpo que antes se encontraba
en el espacio, en el plano.
Mg. Ing. Guido Alfredo Larcher
49
Esta nueva proyección del cuerpo en el sistema de
ejes axonometricos, es conocida entonces como
proyección axonométrica.
Ahora bien, los ángulos que forman los ejes
coordenados X, Y y Z con los ejes axonométricos X1,
Y1 y Z1, permiten obtener la proyección axonométrica,
ya que basta multiplicar la medida real por un
coeficiente de reducción igual al valor del coseno de
los ángulos formados entre el eje real o coordenado y
el eje axonométrico. La figura siguiente ilustra sobre el
particular.
Y
∂
Y1
O1
α
O
β
Z1
Z
X1
X
CATEDRA: SISTEMAS DE REPRESENTACION GRAFICA
Se denomina entonces Escala de Reducción, al
coeficiente que existe entre la magnitud real y la
proyectada. Así, para encontrar el valor que le
corresponde en los ejes axonometricos, a un valor real
de los ejes coordenados, basta multiplicar el valor de
los ejes coordenados (valor real) por el coseno del
ángulo que forma con los ejes proyectados.
Por ejemplo, si el valor de una medida en el eje Z es
de 4 cm y el ángulo que forma este eje con el eje
proyectado Z1, vale 46°, entonces la medida
proyectada valdrá 4 cm x cos 46°, igual a 2,78 cm, es
decir el 69,5% de su valor real.
Hecha esta demostración, corresponde ahora definir la
norma que rige para la visualización en proyección
axonométrica, de los cuerpos que se encuentran en el
espacio y son proyectados en un plano.
FASCICULO N° 4
PROYECCION AXONOMETRICA ISOMETRICA
Se caracteriza por ser iguales los ángulos que los
ejes forman entre sí, lo cual genera que las escalas
de reducción de medidas en los ejes sean iguales.
Por eso su nombre simboliza tal concepto, iso = igual
y métrica = medida.
Como aclaración y para no confundirnos, no es que
todas las medidas usadas para su construcción sean
iguales, sino que son las mismas que le corresponde
tanto al ancho como al alto y a la profundidad.
Y
120°
α
∂
β
Z
La Norma IRAM 4540 define tres tipos
proyecciones axonométricas basándose en
dimensión de los ángulos que forman entre ellos
ejes axonometricos surgidos por proyección de
ejes coordenados.
de
la
los
los
Las proyecciones pueden ser entonces, isométricas,
trimétricas o dimétricas, siempre que sus ángulos
sean todos iguales, todos diferentes o solo dos de
ellos iguales, respectivamente.
50
120°
X
120°
Al ser iguales todos los ángulos formados entre los
ejes y las proyecciones de estos en el triángulo,
iguales, el coeficiente de reducción a utilizar es 0,816
que resulta de calcular el coseno de cualquiera de los
ángulos.
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
51
OBTENCIÓN GRAFICA DE LA REDUCCIÓN EN LA
ISOMETRÍA
Y
En el sistema isométrico: las medidas son iguales para
las proyecciones en los tres ejes.
α = β = γ = 120º
Cota reducida
O
α + β + γ = 360º
Para entender en forma práctica, la isometría de un
cuerpo cubico por ejemplo se forma haciendo girar 45°
el cuerpo que se encuentra de frente a un observador
y luego es inclinado hacia adelante un ángulo de 36°
16’, dando como resultado, el cuerpo que se observa
en la figura y con sus medidas reducidas a un 81,6%
del valor real.
Q
A
Z
30°
N
B
45°
X
P
90°
O0
Cota real
Para encontrar la cota reducida o medida reducida en
la construcción de una isométrica se parte de los tres
ejes separados entre sí 120°, o sea X, Y y Z.
Se traza ahora una línea horizontal AB que une los
ejes Z y X dejando siempre un margen suficiente
como para que la medida que se busca pueda ser
construida sin dificultad. Desde el centro O se traza
una línea perpendicular a AB. La intersección de
ambas líneas genera el punto N, que es exactamente
el centro de la línea AB.
SISTEMAS DE REPRESENTACION GRAFICA
Tomando como centro este punto N, se traza una
semicircunferencia que una ahora los puntos A con B.
Observamos que la línea perpendicular a AB corta a la
semicircunferencia en el punto O0 , quedando así
conformado todo el conjunto de líneas necesarias
para determinar geométricamente el valor reducido.
Así pues, medimos una línea O0P y la proyectamos
sobre el eje OX, encontrando de esta manera la
medida reducida de la línea O0P. Si tomamos una
regla y medimos la línea OQ, veremos que
corresponde al 81,6 % del valor de la línea O0P. Esto
es, si esta última vale 5 cm, la reducida valdrá 5 cm X
0,816, o sea 4,08 cm.
Resumiendo, la perspectiva isométrica generalmente
utiliza un coeficiente de reducción de 0,816 (0,82) que
se aplica para calcular la medida de visualización
respecto a la original, lo que permite, como ventaja,
obtener una representación a escala y, como
desventaja, la de no reflejar la disminución aparente
de tamaño-proporcional a la distancia- que percibe el
ojo humano.
Es allí donde aparece entonces, el dibujo isométrico
que es el que nosotros utilizaremos para realizar todo
tipo de representaciones espaciales, puesto que este
no utiliza ninguna escala de reducción sino la relación
Mg. Ing. Guido Alfredo Larcher
52
1:1 o escala natural.
Una de las grandes ventajas del dibujo isométrico es
que se puede realizar el dibujo de cualquier modelo
sin utilizar ninguna escala especial, ya que las líneas
paralelas a los ejes se toman en su verdadera
magnitud. Así por ejemplo, el cubo cuando lo
dibujamos en forma isométrica queda con todas sus
aristas de igual medida.
Veamos un ejemplo de representación isométrica:
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
53
MÉTODO DE LA CAJA DE CRISTAL
Supongamos un sistema de proyecciones como el de
la figura
La secuencia de trabajo a desarrollar es como sigue:
1. Lectura e interpretación de las vistas de un
volumen.
¿Cómo se logra esta representación?
2. Trazo de los ejes isométricos, dos a 30° con
relación a una línea horizontal, y uno vertical.
Para desarrollar una representación isométrica, puede
utilizarse alguna de los siguientes métodos:
3. Determinación
observador.
• CAJA DE CRISTAL
• SUPERPOSICION
• ESCALA, CORTE, ROTACION (Método S.S.R.)
de
la
mejor
posición
del
SISTEMAS DE REPRESENTACION GRAFICA
4. Construcción del plano isométrico frontal
5. Construcción del plano isométrico superior.
6. Construcción del plano isométrico lateral.
7. Representación de las vistas del volumen.
8. Dibujar superficies paralelas al plano horizontal.
Mg. Ing. Guido Alfredo Larcher
54
METODO DE LA SUPERPOSICION
Consiste en:
1. Trazar ejes isométricos y un prisma que pueda
servir de referencia constructiva
2. Construir el objeto a través de la suma de
volúmenes regulares
9. Dibujar superficies paralelas al plano frontal.
10. Dibujar superficies paralelas al plano lateral.
11. Dibujar trazos intensos definitivos, o sea
remarcar líneas de aristas visibles.
Y por último:
SISTEMAS DE REPRESENTACION GRAFICA
METODO DE LA ESCALA, CORTE, ROTACION
O METODO SSR
Mg. Ing. Guido Alfredo Larcher
55
5. Para obtener el lado izquierdo del cuerpo se
siguen los pasos 1 y 2 de idéntica forma,
mientras que en el paso 3, el desplazamiento se
realiza a -30°
1. Construir un cuadrado
2. Reducir la altura del cuadrado a 86,062 % de
la real.
6. Pivotando en el vértice superior izquierdo, se
desplaza -30° hasta colocar el lado izquierdo en
posición vertical.
3. Desplazar la base superior del cuadrado, 30°
respecto de la vertical.
4. Pivotando en el vértice inferior derecho,
desplazar el cuadrado 30° desde la horizontal.
Se construye así la cara lateral izquierda del
cuerpo.
7. Para construir la cara lateral derecha se procede
de
idéntica
manera,
pero
utilizando
desplazamientos de 30° positivos
La figura siguiente sintetiza el proceso de
construcción total:
Se crea así la cara superior del cuerpo.
SISTEMAS DE REPRESENTACION GRAFICA
Izquierdo
Cuadrado
Escalar
86,062%
verticalmente
Inclinar
Superior
Derecho
Mg. Ing. Guido Alfredo Larcher
56
PROYECCION AXONOMETRICA TRIMETRICA Y
DIMETRICA
Continuando con el planteo de las proyecciones
axonométricas, abordamos ahora la trimetrica, cuya
característica principal es que los ángulos que separan
los ejes axonometricos son distintos entre sí y, por lo
tanto las medidas de cada una de las caras son
diferentes puesto que se usa en su representación,
una escala diferente para cada eje, a saber:
X
Y
135°
Rotar
105°
120°
Z
Sobre el eje X, el coeficiente de reducción que se
utiliza es de 0,65, en el eje Y es de 0,86 y en el eje Z
de 0,92. Esto implica que para realizar una
representación en este sistema debe aplicarse cada
uno de los coeficientes para determinar las medidas
que le corresponden a una proyección trimétrica, lo
cual lo torna dificultoso en su aplicación porque para
cada caso debe calcularse una dimensión.
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
57
Situación parecida plantea la utilización de la
representación dimétrica, aunque con un poco menos
de dificultad puesto que aquí se trata de dos ángulos
iguales y uno distinto entre ejes.
La otra proyección dimétrica conocida es la dimétrica
vertical que es muy utilizada en la construcción de
cuerpos o piezas cuya configuración es más bien
alargada.
La proyección dimétrica presenta dos tipos de
construcción. La primera conocida como dimétrica
usual porque es muy utilizada en la construcción de
cuerpos o piezas que tienen planos a los que se
considera de mayor importancia que otros.
Su representación utiliza los siguientes ejes:
Y
X
150°
105° 105°
Su representación utiliza los siguientes ejes:
Z
Y
97°
131° 30´
X
131° 30´
Z
Si se observa, la cara de un cuerpo de mayor
importancia, sin dudas la tendría aquella que se
ubique en el plano XY puesto que estaría más cercana
a la medida real, razón por la que el coeficiente de
reducción toma el valor de 0,94 para los ejes X y Y,
mientras que para el eje Z, el valor del coeficiente de
reducción es de 0,47, o sea la mitad.
Si se observa, las caras de un cuerpo que mas
alargadas podrían estar, sin dudas serían aquellas que
se ubiquen en los planos YZ y ZX y estarían más
cerca de la medida real, razón por la que el coeficiente
de reducción toma el valor de 0,73 para los ejes X y Y,
mientras que para el eje Z, el valor del coeficiente de
reducción es de 0,96, prácticamente 1.
A continuación veamos cómo se obtiene la reducción
de las cotas reales en sistemas de representación
trimétrico y dimétrico.
SISTEMAS DE REPRESENTACION GRAFICA
Se parte de ejes cuyos ángulos desde luego no son de
120°, sino que representan cualquiera de las
configuraciones vistas anteriormente.
En el plano ZX trazamos una horizontal que corta a
cada uno de los ejes en los puntos B y A,
respectivamente. A continuación encontramos el punto
medio N de la horizontal. A partir de allí construimos
Y
Cota real
Mg. Ing. Guido Alfredo Larcher
en el plano XY y en el YZ.
De esta manera encontramos las cotas reducidas en
cada uno de los ejes axonometricos, partiendo de
cotas reales.
¿CÓMO SE CONSTRUYE UNA DIMETRICA Y UNA
ISOMETRICA?
Y
C
131° 30´
Cotas
reducidas
La construcción de ejes
dimétricos como los que se
indican,
nos
permite
generar un proceso de
construcción
utilizando
como
valores
de
representación coeficientes
X
97°
O0
131° 30´
Z
N
58
O
de 1 para los ejes X y Y y de ½ para el eje Z.
N
B
A
X
Z
En primer lugar giramos el sistema de ejes de manera
que Y tome la posición de Z, es decir quede en
posición vertical
Cota real
Cota real
O0
una semicircunferencia que une los puntos A y B.
Proyectamos O hacia O0, y a partir de O0 trazamos
líneas hacia A y hacia B. De idéntica manera trabaja-
Z
131° 30’
X
131° 30’
97°
Y
SISTEMAS DE REPRESENTACION GRAFICA
Si trazamos una línea horizontal que pase por el
centro de intersección de los tres ejes y elevamos el
eje vertical, obtenemos la forma práctica de construir
una dimetrica, puesto que el eje X esta 7° por arriba
de la horizontal y el eje Z se encuentra a 41° 30’ de la
horizontal, aproximadamente 42°.
Así, en la práctica, se traza en primer lugar una
vertical y una horizontal y, desde su intersección para
uno u otro lado un eje de 7° y otro de 42°.
Mg. Ing. Guido Alfredo Larcher
59
En el caso de la isométrica, ya se explico que los
valores en los ejes se toman en verdadera magnitud y
representan el alto, el ancho y la profundidad de un
cuerpo, y los ejes se toman como sigue.
Se trazan una vertical y una horizontal y, a partir de la
intersección se trazan ejes a 30° y de -30° respecto de
la horizontal. La figura ilustra el procedimiento.
V
42°
-30°
30°
7°
Sobre la vertical se coloca la verdadera magnitud o
verdadero tamaño y representa la altura del cuerpo, en
el eje de 7° se coloca la verdadera magnitud y puede
representar el ancho o la profundidad del cuerpo y
sobre el eje de 42° se coloca la mitad de la verdadera
magnitud ya que el coeficiente de reducción es igual a
½ y puede representar la profundidad o el ancho del
cuerpo según se haya tomado en la línea de 7°.
Para comparar, supongamos que, sobre la base de los
conceptos vertidos, queremos representar un cubo en
el sistema dimétrico y el mismo cubo en un sistema
isométrico.
Para el primer caso trazamos los ejes indicados con la
orientación que elijamos, es decir 7° a la derecha y
42° a la izquierda y mantenemos la regla de
construcción que establece que sobre la vertical y
sobre el eje de 7° se coloca la verdadera magnitud de
la arista del cubo a representar y, a 42°, la mitad de
ese valor. Así:
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
59
BIBLIOGRAFIA
Dimétrica
Para el segundo caso trazamos los ejes indicados con
la orientación de -30° a la derecha y 30° a la izquierda,
respecto de la horizontal y mantenemos la regla de
construcción que establece que sobre la vertical y
sobre ambos ejes de 30° se coloca la verdadera
magnitud de la arista del cubo a representar. Así:
Isométrica
 Apuntes
sobre
Axonometrías
de
la
Universidad de Castila – La Mancha – Año
1996
 Fundamentos de la Representación Grafica –
Universidad de Sevilla – Año 2002.
 Norma IRAM 4540 – DIBUJO TECNICO –
Representación de vistas en perspectivas –
Año 1981.
 Apuntes de DIBUJO ISOMETRICO – Arq. Mgs.
Néstor E. FERIA – Año 2005
CAPITULO 4
Diagramas de Ingeniería. Diagramas de bloques.
Diagramas de flujo. Introducción al Layout de Planta.
Interpretación de procesos simples.
SISTEMAS DE REPRESENTACION GRAFICA
PLANTAS INDUSTRIALES
El desarrollo de este fascículo tiene su fundamento en
tratar de acercarle al estudiante, tanto de la Asignatura
Sistemas de Representación Grafica como de
asignaturas de cursos superiores, elementos que le
permitan adquirir el conocimiento y la interpretación
necesaria de procesos simples, a los que, con la
práctica de su desarrollo, puedan luego convertirlos en
algo más elaborado y más complejo.
Para introducirnos en el tema definiremos en primer
lugar que es una planta industrial.
Una planta industrial es un conjunto formado por
maquinas, aparatos y otras instalaciones dispuestas
convenientemente en edificios o lugares adecuados,
cuya función es transformar materias o energías de
acuerdo a un proceso básico preestablecido. La
función del hombre dentro de este conjunto es la
utilización racional de estos elementos, para obtener
mayor rendimiento de los equipos.
Esta definición genérica plantea sin dudas, la
necesidad de establecer claramente una organización
que permita evaluar esa disposición conveniente, de
manera que la transformación se realice de acuerdo a
Mg. Ing. Guido Alfredo Larcher
61
lo planificado.
Clasificación de las Plantas Industriales
Las plantas industriales presentan
clasificación general:
la siguiente
Por la índole del proceso puesto en práctica.
a) Proceso continuo: Es una planta que
trabaja las 24 horas diarias. Ej.:
Elaboración de cemento.
b) Proceso repetitivo: Es una planta en la
que el tratamiento del producto se hace
por lotes. Ej.: Confección de vestidos
c) Proceso intermitente: Es una planta en
la que se manipulan partidas del
producto contra pedido. Ej.: Fabricación
de turbinas.
Por el tipo de proceso predominantes: Mecánico,
Químico, etc.
Por las materias primas predominantes: Maderera,
del pescado, Petrolera, Petroquímica, Carboquímica,
etc.
Por el tipo de productos obtenidos: Alimenticia,
Farmacéutica, Textiles, Del cemento,
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
Esqueleto
Distribución de la planta
a) Agricultura, silvicultura, caza y pesca.
Sistema muscular
Manejo de materiales
b) Explotación de minas y canteras.
Sistema nervioso
Comunicaciones y controles
c) Manufactureras.
Sistemas respiratorio
Servicios generales y
d) Construcción.
Circulatorio y digestivo
Por tipo de actividad económica:
62
auxiliares
e) Comercio.
f) Transporte, almacenaje y comunicaciones.
Para fijar esta idea de planta industrial, resulta
conveniente plantear la analogía que existe entre una
fábrica y una persona.
Aunque en eventuales ocasiones se efectúa el diseño
de una nueva instalación completa, constantemente se
están haciendo modificaciones y reacomodo a nivel de
estación de trabajo y de departamento.
Desde luego, el diseño es necesario para las tareas
individuales y las estaciones de trabajo, pero también
para su
distribución manejo
de
materiales
procedimientos y comunicaciones servicio generales y
auxiliares y para el edificio mismo.
Veamos la analogía….
De este ejemplo se puede deducir entonces que una
planta industrial es una organización lo mas
perfectamente planificada.
Por que planificar?
Realizar un trabajo implica saber exactamente en qué
consiste y, excepto en el caso de trabajos muy simples
y cortos, rara vez se tiene la certeza de conocer todos
los detalles de la tarea. Por lo tanto, para realizar un
buen trabajo, se deben observar todos los detalles y
registrarlos.
Con el análisis de los procesos se trata de eliminar las
principales deficiencias en ellos y además lograr la
mejor distribución posible de la maquinaria, equipo y
área de trabajo dentro de la planta.
Para lograr este propósito de la planificación, se
emplean varios tipos de diagramas y esquemas.
SISTEMAS DE REPRESENTACION GRAFICA
DIAGRAMAS
Son dibujos que muestran las relaciones
funcionamiento entre dos o más entidades
de
Las entidades pueden ser físicas, como piezas
mecánicas y personas o como planeamientos,
implementos, etcétera.
Las formas geométricas que se emplean para
representar a las entidades pueden no tener ninguna
relación con las figuras reales de las entidades físicas.
El lugar que ocupan en el dibujo las diferentes
entidades pueden no tener ninguna relación con la
posición que en el espacio ocupan las entidades
reales cuando estas son físicas: diagramas eléctricos,
electrónicos, hidráulicos, los dibujos para caminos
críticos.
En el esquema siguiente se plantean los distintos tipos
de diagramas que se pueden utilizar en el proceso de
diseño de una planta industrial y que, como lo dijimos
antes, nos permiten realizar ese diseño con el mayor
detalle posible.
Mg. Ing. Guido Alfredo Larcher
63
SISTEMAS DE REPRESENTACION GRAFICA
DIAGRAMA DE BLOQUES
El diagrama de bloques es la representación gráfica
del funcionamiento interno de un sistema, que se hace
mediante bloques y sus relaciones, y que, además,
definen la organización de todo el proceso interno, sus
entradas y sus salidas.
Mg. Ing. Guido Alfredo Larcher
64
Todas las partes de interés deben estar solo una vez.
El orden en que se distribuyan los bloques en la hoja
tiene importancia; se los distribuye tratando de que
queden en un orden lógico de manera que faciliten el
análisis del proceso.
Un diagrama de bloques de procesos de producción
es un diagrama utilizado para indicar la manera en la
que se elabora cierto producto alimenticio,
especificando la materia prima, la cantidad de
procesos y la forma en la que se presenta el producto
terminado.
No representa la forma ni el aspecto físico ni su
funcionamiento. Hace hincapié en la función que
cumplen los elementos.
Un diagrama de bloques debe incluir a cada una de
las partes del sistema. Cada parte puede ser en
realidad un conjunto de partes que agrupamos porque
consideramos que juntas cumplen una función.
La ventaja de identificar esas partes es que permite
analizar al sistema en forma muy simplificada.
¿Cómo se elabora un diagrama de bloques?
Una vez identificadas las diferentes partes se
representa a cada parte (o conjunto de partes)
mediante un bloque que dibujamos con un rectángulo
en cuyo interior ponemos el nombre que lo identifica
(por ejemplo la función que cumple ese grupo de
partes).
Un bloque es una figura geométrica rectangular, en
cuyo interior se especifica una de las etapas de un
proceso.
Cuando los bloques se encuentran relacionados o
vinculados, debemos pensar en qué flujos se
transfieren las distintas partes entre si y los
representaremos mediante flechas.
Los flujos son aquellas “cosas” que intervienen en el
sistema pero que no forman parte del mismo.
Los flujos pueden ser de tres tipos y cada uno se
representa con un tipo de flecha diferente:
SISTEMAS DE REPRESENTACION GRAFICA
Materia
Energía
Información
Mg. Ing. Guido Alfredo Larcher
TIPOS DE DIAGRAMAS UTILIZADOS EN
INGENIERIA
La representación gráfica de un proceso industrial se
puede realizar utilizando algunas de las siguientes
formas o combinando a todas ellas:
De operaciones/proceso
A pesar de que lo expuesto no es considerado una
receta, sí comprende una serie de requisitos a tener
en cuenta al momento de construir un diagrama de
bloques:
 Cada parte del sistema que interviene en lo que
se desea analizar debe estar representada
(puede estar incluida dentro de algún bloque)
 Como cada bloque representa una parte o
conjunto de partes o funciones, debe llevar por
nombre un sustantivo (si fuera un verbo sería
una acción).
 Cada parte debe aparecer solo una vez.
 Los elementos que forman el sistema se
representan en bloques, lo que está en tránsito
se representa mediante flujos.
Si no los cumplen debemos revisarlos.
65
Diagramas
De maquinas
De flujos
Ejemplo de diagrama de operaciones/proceso
SISTEMAS DE REPRESENTACION GRAFICA
Ejemplo de diagrama de máquinas
Mg. Ing. Guido Alfredo Larcher
66
Dentro de los tipos de diagramas de procesos,
podemos encontrar los siguientes:
Ejemplo de diagrama de flujos
A modo de ejemplo desarrollamos un proceso químico
de elaboración que nos sirve para considerar los
elementos que intervienen en cada uno de los
diagramas que se elaboren, a saber:
SISTEMAS DE REPRESENTACION GRAFICA
DIAGRAMA DE FLUJO DE BLOQUE PARA LA
PRODUCCIÓN DE BENCENO
Mg. Ing. Guido Alfredo Larcher
67
c) Se muestran todas las corrientes se servicios que
se suministran a los equipos principales o que
brindan una función en el proceso.
d) Los lazos de control básico, que ilustren la
estrategia de control usada para que el proceso
opere dentro de condiciones normales.
Además, en la construcción de los diagramas hay que
respetar las convenciones y formatos recomendados,
a saber:
Un Diagrama de Flujo de Proceso (PFD), en general
contiene la siguiente información:
a) Todos los equipos principales en el proceso se
presentaran en el diagrama con una descripción de
este. Cada equipo tendrá asignado un número
único y un nombre descriptivo
b) Las corrientes de flujo de proceso están
representada por un número. Se incluye una
descripción de las condiciones de proceso y la
composición química de la corriente. Estos datos
se presentan directamente en el PFD o se incluyen
en una tabla adicional.
1) Las operaciones se muestran mediante bloques.
2) La mayoría de las líneas de flujo se representan
con flechas que van en dirección del flujo.
3) La dirección del flujo es de izquierda a derecha
mientras sea posible.
4) Las corrientes ligeras (gases) van por arriba del
bloque mientras que las corrientes pesadas
(líquidos y sólidos) van por el fondo.
5) Se suministra únicamente información critica del
proceso.
6) Si las líneas se cruzan, las líneas horizontales
son continuas y las verticales se cortan.
En base a la información general del proceso y
teniendo en cuenta las convenciones y formatos, se
puede construir un diagrama de flujo de proceso
para la producción de benceno como sigue:
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
68
Si se observa objetivamente, la información
que
contiene el nuevo diagrama, incluye a la que
originariamente tenía el primero, con lo que podemos
concluir que, en la medida que vaya incorporando
elementos a los diagramas, podemos convertir un
diagrama básico de flujo o diagrama de bloques en un
diagrama de flujo de los pasos del proceso (diagrama
de tecnología) y luego, en un diagrama de flujo de los
equipos (diagrama de ingeniería).
SISTEMAS DE REPRESENTACION GRAFICA
Mg. lng. Guido Alfredo Larcher
69
Veamos a modo de ejemplo un diagrama básico de bloques de proceso de elaboración de tomate cubeteado, el
cual presenta los pasos y las condiciones esenciales del proceso, expresando la organización básica del proceso
sin detallar cada uno de sus pasos ni sus condiciones particulares:
Recepción,
almacenamiento
y lirr pieza
de la materia
prima
Pelado y
cubeteado
Tratamiento
térmico
Envasado
aséptico
Ahnacenamiento
Expedición
SISTEMAS DE REPRESENTACION GRAFICA
Mg. lng. Guido Alfredo Larcher
70
Este diagrama puede convertirse en el diagrama de pasos del proceso, que presenta la tecnología concreta de
una alternativa de proceso, especificando cada uno de los pasos y las condiciones en las que se ha de desarrollar
cada uno de ellos, por ejemplo, temperatura, tiempo, presiones de trabajo, humedad, concentraciones, etc.. Así :
Pieles y Jugo
SISTEMAS DE REPRESENTACION GRAFICA
Mg. lng. Guido Alfredo Larcher
1
71
Al diagrama anterior se le adiciona ahora la maquinaria con la cual se realiza el proceso, convirtiéndose entonces
en el diagrama de flujo de la ingeniería del proceso.
Pieles y Zumo
!procedentes de In peladora-cuheteadom
y del vibrudt>r)
RECEPCIÓN de la M.P.
TRlTURADO
DESAIREADO
DESCA RGA de la M.P.
- En trituradora acero inox.
con 15 cuchillas
•
•
PRECALENTAMIENTO
• HasUI 80"C. cun agua c1icntc
LAVADO y DESHOJADO
• En cambiador de pared rascada
• Hasta 85-90" C
En dus fases:
J .Lavado enérgico meda
i nte
borboteo de agua en la pila
2. Duchas a presión en el
elevador de c;m_gíJones
'
TAMIZADO
• En pasudtll"J<Jt'ificio de lliLW 1 nun
+
-Eliminación del aire ocluido
• En volteadores de cajones
·Sobre pila de lavado
CALENTAMIENTO
•HOTBREA K•
MEZCLADO
· En bins de plá•liw de 3(K) kg
• Pesado y toma de muestras
pam oonLrol de callthtd.
-
ESTERILIZACIÓN
· En cambiador tubular
• Ruido t rmico vapor a 120" C
:t.
•
SF.I. ECCIÓN
ENFRJAMIENTO
· Hasw 3S•C
• Con agua de pozo a 16'' C
· Visual
- En depósito cuna
· Con los ingt'Cdientes (snl 1.2 %)
+
CONCENTRACIÓN
- En bola de CQnCentración
• Ha,ta 1 2" Rrix
-Sobreoonda de goma limcmaria
•
· Con agua caliente (98-HXI" C)
J
PELADO y CUDI!TEADO
SALSA
12" Rri<
(líquidu<.lc
gobierno\
•
ENVASADO ASÉI'TICO
E'.SCALDADO
''
• En cabezales ue llenado de 2'
- Esterilidad mediame barrera
de vopor
PALETLZADO
• En peludtlt"J cubeteadont
• En paletizador automático
VIBRADO
- En tamices horizontales
iOMAT6
CUBJITE.AOO
( 7.000k8111
M"Brix
ME"L.CLADO
• En dcp6sito cuna
1
-
SISTEMAS DE REPRESENTACION GRAFICA
Este diagrama también se puede representar de las
Mg. lng. Guido Alfredo Larcher
O bien:
siguientes dos maneras:
Picb
Dc,1ito
ooslficaao
Bornoa
Peladorncuteadom
ooiftcadora
DcptísiiO tic
alimcnlacit\n
Cemdorn
decajas
Serarndor vibratorio
Cinw de (li t ouclón
Desilo
nlmncenmnienlo
1
Zumo
72
SISTEMAS DE REPRESENTACION GRAFICA
Estos mismos diagramas se pueden realizar de otra
manera: en lugar de indicar los equipos con bloques
se esquematizan los equipos. Algunos de los
esquemas más frecuentes son los que se muestran en
las siguientes figuras.
Mg. Ing. Guido Alfredo Larcher
73
SISTEMAS DE REPRESENTACION GRAFICA
EJEMPLO DE DIAGRAMAS DE FLUJO DE
INGENIERIA DEL PROCESO
Proceso de elaboración de leche pasteurizada que
incluye balance de materia y energía
Mg. Ing. Guido Alfredo Larcher
Representación utilizando figuras representativas de
los equipos:
74
SISTEMAS DE REPRESENTACION GRAFICA
LAYOUT
Layout significa el planeamiento de la distribución
relativa de los elementos físicos de un sistema.
En el área industrial: hombres, materiales, equipos y
herramientas necesarios para producir un bien o
realizar una tarea y considerando los espacios
necesarios para el movimiento del material,
almacenamiento, trabajadores directos e indirectos,
equipos y herramientas y áreas de servicio.
Que objetivos persigue?
Generales:
Productividad
–
Seguridad
–
Calidad
Integrabilidad.
Específicos:
•
Mejorar los procesos de manufactura
•
Dar flexibilidad a los mismos, prever expansión
•
Minimizar manipuleos
•
Minimizar inversiones en equipo, terreno y
construcciones
•
Reducir el ciclo de producción
•
Reducir costos de producción
•
Reducir costos de servicios.
•
Reducir los accidentes
•
Aumentar la seguridad del personal
•
Proteger edificio, máquinas e instalaciones
•
Proteger al producto, aumentar su calidad
•
Mejorar procesos anexos, etc
–
Mg. Ing. Guido Alfredo Larcher
75
PRINCIPIOS BASICOS DE LA DISTRIBUCION EN
PLANTA
 La mejor distribución es aquella que considera y
optimiza la integración de todos los elementos
físicos que los componen, para cada conjunto de
condiciones de funcionamiento.
 A igualdad de condiciones, la mejor Distribución es
la que permite minimizar las distancias que recorre
el material. Este principio y la introducción del
concepto de unidad equivalente da origen a una de
las técnicas de resolución de distribuciones.
 A igualdad de condiciones, la mejor Distribución es
la que ordena las áreas de trabajo respetando las
secuencias en que se transforman, tratan o se
montan los materiales.
 A igualdad de condiciones, la mejor Distribución es
la que brinda mayor comodidad y seguridad al
trabajador.
 A igualdad de condiciones, la mejor Distribución es
la que ser ajustada o reordenada con menos costo
e inconveniente.
 Debe utilizarse de modo efectivo todo el espacio
disponible (cúbico).
SISTEMAS DE REPRESENTACION GRAFICA
¿Qué es diseñar un layout?
Consiste en integrar las diferentes áreas funcionales
de una empresa en un edificio único, abarcando no
solo el arreglo y composición de las secciones
funcionales del edificio, sino también las demás áreas
externas.
Las formas de integrar difieren si el layout se diseña a
partir de un predio existente o no, si ya existe alguna
edificación, si las alturas de los espacios restringen el
diseño, si los accesos al predio ya están construidos,
si hay edificios que no pueden ser reubicados, etc.
Para realizar un layout, se debe comenzar por
reflexionar y encontrar un método que simplifique las
cosas y luego sustente o justifique la solución final,
desarrollando todas las alternativas posibles de un
modo lógico y estructurado.
En consecuencia hay que buscar la mayor información
posible en referencia a cuáles son las principales
áreas a desarrollar haciendo un listado estricto de
ellas y de las que complementan el funcionamiento,
teniendo en cuenta las dimensiones de superficie que
se requiere así como las alturas, los procesos y sus
horarios, así como el equipamiento que se requerirá
en cada caso.
Mg. Ing. Guido Alfredo Larcher
76
Es necesario conocer qué tipo de carga se manipula,
que tipo de almacenamiento se utiliza, los vehículos
de transporte, la cantidad de personal, las condiciones
del ambiente, los niveles de iluminación, los servicios y
suministros, los elementos de seguridad, etc..
Aquí es donde, por medio de diagramas de flujo, se
determinan las relaciones funcionales dentro y entre
las áreas, para determinar su proximidad o lejanía
física.
Para realizar un layout, hay que planificar los pasos y
los sentidos de circulación entre áreas evitando
cuellos de botella o cruces que generen conflictos.
Hay que considerar, entre otras cosas, cambios de
turnos de trabajo, circulación de vehículos y personas
etc.
A partir de todas las consideraciones dichas, recién
debe buscarse cuál es la mejor configuración de
layout que se adapta a los requerimientos.
SISTEMAS DE REPRESENTACION GRAFICA
PUNTOS PRACTICOS A CONSIDERAR
Presentación del layout
















Necesidad del estudio
Origen
Antecedentes
Objetivos, premisas y restricciones
Datos básicos
Datos elaborados
Plano de Layout
Alternativas y evaluación
Verificación-operación piloto
Costos de inversión y operación
Plazo de operación
Calendarización
Análisis de interferencias en la producción
Instrucciones para la implementación
Memoria del proyecto
Reglamentaciones legales.
Mg. Ing. Guido Alfredo Larcher
77
VISUALIZACION DE LA DISTRIBUCION
La única forma de conseguir una distribución óptima
es mediante una clara comprensión del plan que se
está realizando.
Se debe tener una visión del aspecto de la distribución
y como va a funcionar.
LOS OBJETIVOS DE LA VISUALIZACION SON:
1. Favorecer el desarrollo de una distribución
perfecta
2. Ayuda al resto a comprender el plan
3. En determinados casos es la única forma de
trabajo.
4. De gran utilidad en el montaje de la distribución
MEDIOS CORRIENTES DE VISUALIZACION
1. Dibujos, diagramas, cuadros y planos
2. Plantillas y tableros de distribución
3. Modelos y maquetas tridimensionales
SISTEMAS DE REPRESENTACION GRAFICA
PLANTILLA TRIDIMENSIONAL
Mg. Ing. Guido Alfredo Larcher
78
BIBLIOGRAFIA
 Apuntes de Organización Industrial I –
Facultad de Ingeniería – U.N.B.A. – Año 2001
 Publicaciones de Juan Sebastián Arroyo –
Especialista en logística- Año 2009
 LAYOUT – GAVIN AMBROSE, Paul Harris –
PARRAMON, 2005
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
CAPITULO 5
Representación Gráfica de un Sistema
Axonométrico Isométrico de Cañerías
en Plantas Industriales de Alimentos.
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
80
Representación Gráfica de un Sistema
Axonométrico Isométrico de Cañerías en Plantas
 Srta. Tamara Peinetti
Industriales de Alimentos
Conceptos generales
Producción es una acción y como tal implica
movimiento. Acción de producir, o sea de engendrar,
originar, ocasionar algo, un producto o un servicio y,
Año 2011 para que exista desarrollo productivo hay un
condicionante excluyente: el compromiso entre los
recursos naturales y los recursos culturales.
Para entender este método gráfico de
representación, resulta necesario incorporar en el
conocimiento de los estudiantes, algunos conceptos
de asignaturas que corresponden al ciclo superior de
la carrera de Ingeniería en Alimentos, con el objeto de
dotarlos de las normas básicas necesarias para
diseñar una planta industrial y, con ella, el sistema
integral de distribución de cañerías de fluidos en el
ámbito de la misma, a través de un sistema de
representación gráfica conocido como proyecciones
axonométricas isométricas.
Si bien las plantas industriales, para su
desarrollo dependen de una serie de conocimientos
que involucran contenidos muy fuertes del estudio de
la carrera de Ingeniería, lo que en esta etapa de la
asignatura Sistemas de Representación Gráfica se
pretende, es solo comenzar a manejar las normas que
rigen y, de hecho, deben respetarse, en la
construcción de instalaciones industriales.
Antes de introducirnos a la temática, es importante
trabajar sobre los conceptos de producción y
tecnología.
En gran medida el bienestar que alcanza una
sociedad depende de las estrategias con las que
aborda la evaluación de ése compromiso y es ahí
donde aparece la tecnología como una actividad
sociocultural de producción de bienes, servicios y
procedimientos, definida como el conjunto de saberes
propios de cada grupo humano, en cierto contexto
histórico, tendiente a producir, distribuir y utilizar
bienes, procesos y servicios.
Estas consideraciones involucran:
 Productos, de la actividad sociocultural.
 Un productor (alguien que produce).
 Un proceso de producción (específico según
el tipo de producto).
 Un proyecto, es decir el propósito para el cuál
los productos se producen.
 Un contexto (sociocultural, nacional, regional,
local) donde la producción adquiere sentido, en
relación a las diferentes actividades del
quehacer cultural, científico, social, político,
económico, etc.
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
81
En síntesis, las demandas socioculturales de
productos, se conectan por la tecnología y se dan
respuestas tecnológicas, es decir producción de
productos.
¿cómo vinculo la demanda que tienen las áreas
mencionadas, es decir la cantidad de productos que el
público consumidor esta dispuesto a comprar, a un
proceso productivo a diseñar?
Las áreas de mayor demanda de productos en
la actualidad, son:
El estudio de la ingeniería de un proyecto o plan
de negocios debe llegar a determinar la producción
óptima de una empresa, es decir la cantidad de bienes
que debe producir y vender para lograr cubrir sus
costos y generar rentabilidad, para la utilización
eficiente y eficaz de los recursos disponibles para la
producción del bien o servicio deseado.








Energía
Alimentación
Comunicaciones
Educación
Salud
Vestimenta
Seguridad
Transporte, confort, etc.
Cuando
mencionamos
un
proceso
de
producción hacemos referencia a todo un sistema que
permite transformar la materia prima en un producto
terminado, es decir a una secuencia lógica de
operaciones desde el principio hasta el final, que
maneja una serie de variables que deben ser
controladas de manera que el producto sea conforme
a la definición dada y su fabricación este dentro de un
proceso que pueda repetirse.
Dada esta pequeña introducción que nos permite
ubicarnos en el contexto de la temática a tratar, la
pregunta que surge es:
Para
ello
deberán
analizarse
distintas
alternativas y condiciones en que se pueden combinar
los factores productivos, identificando a través de la
cuantificación y proyección en el tiempo de la
inversión necesaria, los costos y los ingresos
asociados a cada una de las alternativas de
producción.
Del estudio de mercado, es decir del análisis que se
hace de cuanto será la demanda que el público
consumidor esta dispuesto a comprar de un
determinado producto, se extrae la cantidad de bienes
o servicios a producir. De la selección del proceso
productivo óptimo, es decir de la determinación de la
tecnología a utilizar se derivan las necesidades de
insumos, equipos y maquinarias.
SISTEMAS DE REPRESENTACION GRAFICA
De la determinación de la disposición de ésa
maquinaria en el espacio disponible a tal fin (layout)
y del estudio de los requerimientos de personal que
los operen, así como de su movilidad, podría definirse
las necesidades de espacio y obras físicas.
La secuencia del análisis será:
Estudio de mercado Cantidad de
bienes a producir Elección del
Mg. Ing. Guido Alfredo Larcher
82
1º Etapa: búsqueda de información sobre el proceso
productivo.
2º Etapa: selección de maquinarias, equipos y obra
civil para obtener cotizaciones, determinar luego la
inversión y costos operativos.
A continuación se enuncian los principales
aspectos a tener en cuenta en el planteo de un plan
de negocios, la importancia relativa de los ítems
dependerá de la actividad planteada.
Evaluación técnica de las materias primas e
insumos
 Información técnica sobre productos, procesos y
maquinarias y equipos
patentes.
 Selección del proceso o sistema de producción.
Determinación del espacio necesario para
 Adaptación técnica del proceso.
Determinación del espacio necesario para maquinarias y equipos
 Elaboración de diagramas de flujo.
maquinaria y equipos
 Elaboración de balances de materiales.
 Determinación de sistemas de
manejo y
Determinación de insumos y material necesarios
transporte de materiales.
 Selección y especificación de maquinarias y
Como vemos entonces, en un plan de negocios,
equipos
este planteo tiene dos objetivos fundamentales:
 Especificación de los servicios auxiliares
 Distribución de las maquinarias y equipos en el
1. Aportar la información que permita realizar luego
espacio.
la evaluación económica del emprendimiento.
 Especificación de la obra civil.
2. Establecer las bases técnicas para la
 Programación de la construcción, instalación y
implementación del emprendimiento.
puesta en marcha de la planta
El diseño de un proceso productivo se realiza en
etapas, las cuales son:
proceso productivo Selección de

SISTEMAS DE REPRESENTACION GRAFICA
Proceso de producción
Se define proceso de producción como la forma
en que una serie de insumos se transforman en
productos mediante la participación de una
determinada tecnología (combinación de mano de
obra, maquinaria, métodos y procedimientos de
operación, etc.).
Los distintos tipos de procesos de producción
pueden clasificarse en función de su flujo productivo o
del tipo de producto.
Según el flujo productivo pueden ser en serie,
por pedido o por proyecto.
En serie se da cuando se trata de productos
idénticos normalmente destinados a un gran mercado.
Ejemplo: la producción de electrodomésticos.
Por pedido, la producción puede seguir una
secuencia diferente a lo habitual, debido a un pedido
especial del cliente. Ejemplo: ropa blanca con
holograma especial para un hotel.
Por proyecto, corresponde a un producto o
servicio complejo de carácter único. Ejemplo: la
producción de una película o el diseño y producción
de un barco.
Según el tipo de producto, el proceso se
clasifica en función de los bienes o servicios a
producir.
Mg. Ing. Guido Alfredo Larcher
83
Por ejemplo: extractivos, de transformación química,
de montaje, de salud, de transporte, etc.
El éxito de un plan de negocio depende en alto grado
de la cuidadosa selección del proceso o sistema de
producción. Esta selección implica un estudio técnico
profundo que permita visualizar cual de las distintas
alternativas puede dar los mejores resultados y
cumplir con las especificaciones siguientes:
 Ajustarse a los volúmenes de producción
previstos.
 Dar origen a productos que reúnan las
especificaciones que demanda el mercado.
 Ser factible de llevarse a cabo en los equipos
que pueden ser obtenidos.
Como vemos entonces, diseñar un proceso
productivo implica el conocimiento de una serie
importante de conceptos que, en conjunto, permiten
desarrollar la elaboración de un producto requerido
por el consumidor, por ello, en base a lo expresado,
vamos a comenzar a definirlos.
Plantas industriales
Una planta industrial es un conjunto formado por
maquinas, aparatos y otras instalaciones dispuestas
convenientemente en edificios o lugares adecuados,
cuya función es transformar materias o energías de
acuerdo a un proceso básico preestablecido.
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
La función del hombre dentro de este conjunto
es la utilización racional de estos elementos, para
obtener mayor rendimiento de los equipos.
d) Construcción.
Las plantas industriales se pueden clasificar de
diversas maneras, a saber:
f) Transporte, almacenaje y comunicaciones.
Por la índole del proceso puesto en práctica.
a) Proceso continuo: Es una planta que trabaja
las 24 horas diarias.
b) Proceso repetitivo: Es una planta en la que el
tratamiento del producto se hace por lotes.
c) Proceso intermitente: Es una planta en la que
se manipulan partidas del producto contra perdido.
Por el tipo
Mecánico, Químico.
de
proceso
predominante:
Por las materias primas predominantes:
Maderera, Del pescado, Petrolera, Petroquímica,
Carboquímica.
Por el tipo de productos obtenidos:
Alimenticia, Farmacéutica, Textiles, Del cemento
e) Comercio.
La analogía de una fábrica con una persona
Aunque rara vez se efectúa el diseño de una
nueva instalación completa, constantemente se están
haciendo modificaciones y reacomodo a nivel de
estación de trabajo y de departamento. Desde luego,
el diseño es necesario para las tareas individuales y
las estaciones de trabajo, pero también para su
distribución manejo de materiales procedimientos y
comunicaciones servicio generales y auxiliares y para
el edificio mismo.
Esqueleto
Distribución de la planta
Sistema muscular
Manejo de materiales
Sistema nervioso
Comunicaciones y controles
Por tipo de actividad económica:
Sistemas respiratorio
Servicios generales y
a) Agricultura, silvicultura, caza y pesca.
Circulatorio digestivo
auxiliares
b) Explotación de minas y canteras.
c) Manufactureras.
84
SISTEMAS DE REPRESENTACION GRAFICA
Distribución de una planta
La palabra Distribución se emplea para indicar la
disposición física de la Planta y las diversas partes de
la misma.
La distribución comprende tanto la colocación
del equipo en cada departamento como la disposición
de los departamentos en el emplazamiento de la
Planta.
La Distribución afecta a la Organización de la
planta, la velocidad con que fluye el trabajo por la
unidad es uno de los factores determinantes de la
supervivencia de dicha unidad por tanto el problema
de la distribución de la planta es de importancia
fundamentalmente para la Organización.
En un sentido amplio puede distribuirse de dos
maneras, ya sea tratando de satisfacer las
necesidades del producto o satisfacer necesidades del
proceso.
Probablemente las organizaciones comienzan
cuando son muy pequeñas con una distribución
orientada al producto, y conforme aumentan de
tamaño tienden a desviar hacia una distribución
orientada al proceso, en la creencia de tal distribución
permitiera hacer un mejor uso de los recursos físicos.
Mg. Ing. Guido Alfredo Larcher
85
Escalas
Plasmar la idea de un proceso productivo en un
papel implica hacerlo con la aproximación más cercana
a la realidad, de manera que, al transmitirla, esta
pueda ser interpretada por los receptores, razón por la
cual es necesario transformar la dimensión que
tenemos en mente en una que pueda ser dibujada en
un papel, a modo de esquema, como croquis o como
plano. Por ello incorporamos una definición importante:
escala.
Se define como escala a la relación aritmética en
la cual el denominador es la cantidad a representar y el
numerador la longitud del segmento que la representa.
En otros términos, es la relación que existe entre la
medida del dibujo trazado en el papel y la medida real
de la pieza mecánica, espacio físico, obra civil, etc.,
que se quiera diseñar.
Existen varios tipos de escalas, a saber:
 Escala lineal: relación en la que la cantidad a
representar corresponde a una magnitud lineal.
 Escala natural: relación en la que el segmento a
representar y el que lo representa son iguales.
 Escala de reducción: relación en la que el
segmento a representar es mayor que el que lo
representa
 Escala de ampliación: relación en la que el
segmento a representar es menor que el que lo
representa.
SISTEMAS DE REPRESENTACION GRAFICA
En las escalas lineales, la unidad de medida del
numerador y denominador de la relación, debe ser la
misma, quedando indicada solamente por los
números, simplificada de modo que el menor de ellos
sea la unidad. Por ejemplo:
10 cm
----------500 cm
=
1 cm
-----------50 cm
=
1
-----------50
Corresponde a una escala 1:50 (uno en
cincuenta, que pueden ser m, cm, mm, etc.).
Las escalas que deben usarse tanto en
construcciones civiles como en construcciones
mecánicas, según las Normas IRAM 4505 – NIO, son:
Tipo de escala
Reducción
Construc. civiles
Construc. mecánicas
1:5
1:2,5
1:10
1:5
1:20
1:10
1:50
1:20
1:100
1:50
1:200
1:100
1:500
1:200
1:1000
Natural
Ampliación
1:1
2:1
2:1
2:1
5:1
5:1
10:1
10:1
Mg. Ing. Guido Alfredo Larcher
86
Norma IRAM 4538 – Definiciones y clasificaciones
de las proyecciones
Proyección
Es la figura que resulta sobre una superficie luego
de proyectar todos los puntos del objeto que se quiere
representar. A los efectos de esta norma, el objeto se
considera ubicado en el centro de la proyección y la
superficie sobre la cual se proyecta.
Los tipos de proyecciones reconocidas por la
norma
mencionada
son:
proyección
paralela,
proyección central, proyección ortogonal y proyección
oblicua.
De las proyecciones indicadas, resultan motivo de
nuestro estudio, las axonométricas que son sistemas
de representación basado en proyecciones sobre un
plano, a las cuales podemos clasificarlas en:
Proyección axonométrica dimétrica (ya estudiada en el
primer tramo de la asignatura) y Proyección
axonométrica isométrica, a la cual prestaremos nuestra
atención.
Proyección axonométrica isométrica es una
proyección ortogonal en la cual los tres ejes
cartesianos se proyectan formando tres ángulos iguales.
En la figura (Norma
observa un objeto situado
deduce que tres segmentos
ejes cartesianos Ox, Oz y
IRAM 4540) indicada, se
en el espacio y de él se
iguales tomados sobre tres
Oy, se proyectaran en la
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
87
Elipse isométrica
proporción 1:1:1.
En la figura, el objeto a representar se dibuja en
las condiciones siguientes:
Lx : Lz : Ly = 1 : 1 : 1
 =  = 30º
En la representación de los equipos que integran
nuestro proceso de producción (cualquiera fuera el
elegido) nos encontraremos con diferentes formas y
tamaños, para lo cuál se deberá adoptar un criterio
sobre el particular.
En nuestro caso, dado que se trata de un curso
demasiado intenso, aplicaremos para la representación
de equipos, cuerpos cúbicos y cilíndricos.
Ly
y
Cuando se tratare de formas cúbicas, utilizaremos
lo explicado en el título anterior y, para el caso de
cilíndricos, utilizaremos como método, esquemas de
construcción con elipses isométricas.
Lz
Lx
z
x
30º
30º
Es decir, la proyección de las caras del cuerpo
se realiza considerando las verdaderas medidas o su
escala correspondiente, en cada uno de sus lados, en
su verdadera dimensión. Esta resulta una ventaja muy
importante para el diseñador de la planta industrial, ya
que no tendrá que realizar transformación alguna de
las medidas y, por otro lado, el que lea el plano de
construcción, estará perfectamente ubicado sobre el
trabajo a realizar.
Tal como se indicara anteriormente, la elipse es
una figura geométrica que surge de representar una
circunferencia en el plano y, dado que los métodos de
representación
utilizan
diferentes
ángulos
de
observación, la misma aparece deformada como tal,
dando origen a la elipse.
La proyección axonométrica dimétrica plantea el
uso de dos medidas de ángulos y lineales, en la
construcción de la elipse, en cambio en el sistema
axonométrico isométrico, se plantea una única medida,
lo cuál aparece como una ventaja importante en la
construcción.
Veamos cómo construir una elipse isométrica
inscribiéndola en un cuadrado, para lo cuál trazamos en
SISTEMAS DE REPRESENTACION GRAFICA
en primera instancia el mismo, de acuerdo a las
instrucciones que tengamos en cuanto a dimensiones,
respetando los ángulos con respecto a una línea
horizontal, es decir, se traza un ángulo de 30º primero
y, luego un ángulo de – 30 º (o bien 150º), tal como se
indica en la figura.
Mg. Ing. Guido Alfredo Larcher
88
Seguido a ello, apoyando el compás en el punto
a, y midiendo el radio R, procedemos a unir los puntos
b y c.
b
c
dm
r
DM
R
a
30 º
-30 º
A continuación trazamos en el dibujo, las
diagonales mayor DM y menor dm y luego las líneas
ab y ac, que van desde el punto a hasta el centro de
los lados opuestos del dibujo, o sea los puntos b y c.
Al trazar ambas líneas se conforman los radios
mayor R, que tiene como medida la distancia ab, y
menor r, cuya dimensión se define como el punto de
intersección de la línea ac y DM, y el punto c. Así:
De idéntica manera procedemos por el lado
inverso del dibujo, para lo cuál trazaremos las líneas
de y df, y posterior a ello, midiendo el radio R, con el
compás uniremos los puntos e y f, tal como se indica
en la figura siguiente.
d
b
c
dm
r
DM
R
e
f
a
b
c
dm
DM
R
a
r
Por último, midiendo con el compás el radio r, y
apoyando en los puntos de intersección de la diagonal
mayor DM y las líneas ab y de, y las líneas ac y df,
uniremos los puntos be y cf, con lo cuál habremos
construido una proyección axonométrica isométrica,
con eje de rotación vertical.
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
89
d
b
c
dm
r
DM
R
e
f
a
A continuación se representa un cubo isométrico
con las posibles orientaciones que pueden usarse en
las elipses en futuras construcciones de sistemas de
isometrías de instalaciones industriales en las que se
necesite representar alguna maquinaria o equipo de
forma cilíndrica.
Así, un tanque de acero inoxidable, por ejemplo
enfriador de leche, en posición vertical, de altura h, se
representaría de la siguiente manera:
h
1 00. 00
De forma similar, se pueden construir tanques
que tengan las otras dos posiciones, es decir rotación
sobre 30º o sobre - 30º, según una línea de referencia
horizontal.
SISTEMAS DE REPRESENTACION GRAFICA
Construcción de un sistema de cañerías por el
método isométrico. Normas de aplicación
El diseño de un sistema de cañerías en plantas
industriales constituye un factor muy importante a
tener en cuenta, debido a que la correcta
especificación del mismo, permite una correcta
construcción.
Mg. Ing. Guido Alfredo Larcher
90
Si las cañerías fueran de un solo tramo y rectas,
no existiría demasiado problema en su representación.
Sin embargo, un sistema de cañería industrial no
resulta tan simple de diseñar ya que la misma presenta
curvas, cambios de direcciones, etc. y en ése caso, la
norma IRAM 4502, nos permite el uso de planos
auxiliares que dan la posibilidad de atender estas
situaciones, a saber:
La República Argentina utiliza la proyección
isométrica a esos fines, dado que permite reducir el
trabajo a realizar en el dibujo y, además, la
representación resulta más clara.
En ese sentido la Norma IRAM 4563, se
corresponde con la norma internacional, permitiendo
así que nuestra representación pueda interpretarse en
cualquier parte.
Para llevar adelante un diseño de cañerías, en
primer lugar resulta necesario considerar que nuestra
dirección del dibujo se desprende de la dirección de
los ejes coordenados, es decir que al momento de la
proyección de una estructura, esta debe hacerse en la
dirección de los ejes.
Plano auxiliar vertical
Este plano nos permite desviar una cañería
situada sobre el plano OZ elevando su instalación
sobre el plano OX, para continuar en la dirección
original, pero a una altura diferente. O sea:
X
Y
0
Z
Cañería con desviación vertical
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
91
Idéntica situación se plantea con una tubería
situada en el plano horizontal OX que se inclina sobre
el plano OZ, desplazándose en la misma dirección
original.
Plano con desviación horizontal
Cañería con desviación combinada
Cañería con desviación horizontal
Por último, cuando se quiere desviar una
cañería sobre ambos tipos de planos, se utilizan
planos combinados. Esto es una cañería situada
sobre el plano vertical OZ y horizontal OZ, su
desviación se indicará de la siguiente manera:
Plano con desviación combinada
Es decir que, cambiando el plano de proyección,
podemos de manera simple cambiar la dirección y
orientación de las cañerías, permitiendo de esta forma
que, los sistemas de transporte de fluidos puedan
plasmarse en un dibujo y ser interpretados.
Tipos de cañerías
Las cañerías o tuberías son conductos cilíndricos
de material, diámetro y longitud variable. Se dividen en
tuberías y tubos. Las tuberías tienen dimensiones
normalizadas, los tubos son los no fabricados en
tamaños estándar. Las tuberías se identifican por su
diámetro exterior y su espesor, el cual varía según el
tipo y condición del fluido a transportar, mientras que
las cañerías se identifican por si diámetro interior. Las
tuberías están fabricadas de muchos materiales como
acero, acero inoxidable, hierro, fundido, arcilla
vitrificada, cobre y plástico, entre otros.
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
92
Por otra parte, las presiones y temperaturas de
los materiales transportados por las tuberías pueden
ser muy altas, de modo que, algunas tuberías se
sueldan en sus uniones.
La norma IRAM que se utiliza para acotar
medidas de las tuberías corresponde a la 4513 y para
realizar este tipo de tareas deben tenerse en cuenta las
siguientes consideraciones:
En las instalaciones industriales, las cañerías
pueden encontrarse de dos maneras distintas,
dependiendo del tipo fluido que transportan, a saber:
sin aislación y con aislación. La aislación es utilizada
generalmente cuando el fluido que se transporta debe
conservar sus características a lo largo del sistema.
Por ejemplo transporte de agua caliente, vapor, agua
helada, etc..
 El diámetro nominal se indica sobre la línea
que se utiliza para representar el caño o tubo.
 Las medidas de los largos se acotan entre los
centros de líneas
(CL), las caras de las
bridas o los centros de las juntas.
 Cuando la tubería o cañería presente
elementos tales como codos, se acotarán
desde los centros de líneas comunes (CL)
hasta los extremos de las cañerías.
 Cuando son de 45 º y de 90º no se indican.
En cambio, cuando son distintos de ambas
medidas, si debe indicarse.
Sin aislación
Con aislación
Acotación
Acotar es una acción dentro del proceso de
construcción de una instalación industrial referida a
dar expresión numérica del valor de una medida,
dispuesta en el dibujo, en correspondencia con la
misma. Es decir a referenciar, en función de la escala
adoptada para el dibujo, la medida que corresponde
en longitud.
Acotación de largos de cañerías
Acotación de cañerías con codos
&
R
Acotación de radios y ángulos de codos
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
93
Niveles
Pendiente
Para poder representar los niveles a los cuales
se debe colocar el caño de una instalación, se debe
contar con un nivel de referencia, de manera tal que
se pueda especificar el nivel del caño en sus extremos
más alto y más bajo de la instalación. Estos niveles
deberán ser tomados en relación al centro del caño de
la instalación. Así:
En las instalaciones de cañerías, como por
ejemplo de vapor, el fluido al recorrer las mismas,
sufre el efecto de la condensación. Esta condensación
debe eliminarse lo más rápidamente posible ya que la
acumulación
de
condensado,
puede
afectar
notablemente el sistema y producir, por efecto de la
presión, una rotura o explosión de la cañería.
De la figura se deduce que debe existir un nivel
0, a partir del cuál se mide el 2.700 y a partir del cuál,
el – 3.500.
Los caños tienen además, una parte superior
externa y otra inferior. En algunos casos, resulta
necesario especificar la cota respecto a la parte
superior del caño y, otras veces, respecto de la
inferior. En el primer caso se llama Cota Superior del
Caño (CSC) y, en el segundo caso, Cota Fondo del
Caño (CFC), y se representan como sigue:
A fin de evitar este tipo de trastorno, las
cañerías se instalan de manera tal que ambos fluidos,
tanto el vapor como su condensado, fluyan en
contracorriente, es decir uno en una dirección y, el
otro, en la dirección contraria.
La Norma IRAM plantea tres tipos de
representación de este caso particular de instalación,
a saber:
1. La pendiente se indicará por medio de
triángulos rectos arriba del caño, orientados
desde el nivel más alto al nivel más bajo.
SISTEMAS DE REPRESENTACION GRAFICA
2. Otra posibilidad surge al indicar, en los
extremos de cañerías, el punto de trabajo
(PT) y su medida.
Mg. Ing. Guido Alfredo Larcher
94
Todos ellos deben representarse en el sistema
isométrico de una instalación de acuerdo a las normas
que lo establecen, dibujados en proyección isométrica,
a saber:
Válvulas
Según la Norma IRAM 2510, la representación
de las válvulas se puede realizar así:
3. La tercera posibilidad surge de especificar la
pendiente con relación a un nivel de
referencia.
Tipos de válvulas y su representación
Elementos que integran las instalaciones
Es el conjunto de piezas moldeadas o
mecanizadas que unidas a los tubos mediante un
procedimiento determinado forman las líneas
estructurales de tuberías de una planta de proceso.
Además
integran el sistema de cañerías,
elementos tales como válvulas, reducciones, soportes
para colgar la cañería, cruces, bridas, uniones, etc.
Válvula de compuerta
Válvula mariposa
Válvula de globo
Válvula de ángulo
Válvula de retención
Válvula de alivio
Válvula de bola
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
95
Reducciones y ampliaciones
Medidores de flujo
Estas piezas se utilizan para realizar
modificaciones de los diámetros de tramo a tramo de
tubería, con la finalidad de reducir o expandir a
cualquiera de ellos, debido a necesidades
determinadas de condiciones de los fluidos que
transporta.
El principio básico de estos medidores es que
cuando una corriente de fluido se restringe, su presión
disminuye por una cantidad que depende de la
velocidad de flujo a través de la restricción, por lo
tanto la diferencia de presión entre los puntos antes y
después de la restricción puede utilizarse para indicar
la velocidad del flujo. Se los utiliza para conocer en
qué condiciones se transporta un fluido por una
cañería. Los tipos más comunes de medidores son el
tubo Venturi, la placa orificio y el tubo de flujo.
Su representación se rige por la Norma IRAM
2503 – parte I.
Ampliación
Reducción
Trampas de vapor
Las trampas de vapor son un tipo de válvula
automática que filtra el condensado (es decir vapor
condensado) y gases no condensables como lo es el
aire esto sin dejar escapar al vapor. En la industria, el
vapor es regularmente usado para calentamiento o
como fuerza motriz para un poder mecánico. Las
trampas de vapor son usadas en tales aplicaciones
para asegurar que no se desperdicie el vapor.
Filtros coladores
Son filtros coladores de sedimentos en “Y” y por
definición, son elementos utilizados para la extracción
en línea de sólidos suspendidos, sedimentos,
suciedad y desechos. Su conveniente colador es
desmontable, permite una limpieza rápida, y hay una
variedad de tamaños de malla para satisfacer una
variedad de aplicaciones necesarias.
Su representación utiliza el siguiente símbolo:
Colador tipo “y”
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
96
Compresores
Te
Un compresor es una máquina de fluido que
está construida para aumentar la presión y desplazar
cierto tipo de fluidos llamados compresibles, tal como
lo son los gases y los vapores. Esto se realiza a través
de un intercambio de energía entre la máquina y el
fluido en el cual el trabajo ejercido por el compresor es
transferido a la sustancia que pasa por él
convirtiéndose en energía de flujo, aumentando su
presión y energía cinética impulsándola a fluir. Sus
representaciones pueden ser:
Son accesorios que se fabrican de diferentes
tipos de materiales, aleaciones, diámetros y Schedule
y se utiliza para efectuar fabricación en líneas de
tubería. Las hay de dos tipos: Diámetros iguales o te
de recta y Reductora con dos orificios de igual
diámetro y uno desigual.
Bombas y ventiladores
Son máquinas que se utilizan para elevar,
comprimir y transportar fluidos. Sus representaciones
son:
Codos
Son accesorios de forma curva que se utilizan
para cambiar la dirección del flujo de las líneas tantos
grados como lo especifiquen los planos o dibujos de
tuberías. Los codos estándar son aquellos que vienen
listos para la pre−fabricación de piezas de tuberías y
que son fundidos en una sola pieza con
características específicas y son:
Bomba
Ventilador
Soportes para colgar
Estos elementos son utilizados para sostener
cañerías a lo largo de la instalación.
Sostener implica no sujetar de manera rígida la
cañería, de manera que la misma tenga la posibilidad
de expandirse o contraerse tantas veces sea
SISTEMAS DE REPRESENTACION GRAFICA
necesario en el momento
transportador de fluidos.
de
su
uso
como
La Norma IRAM que define las formas de
representación en proyección isométrica corresponde
a la 4563 – parte I. De ella se sugieren los siguientes
ejemplos.
Bridas
Estos elementos se utilizan para unir cañerías a
lo largo de un recorrido o bien para dejar una
instalación pendiente para una futura ampliación.
Las bridas están conformadas por aros soldados
o roscados a las cañerías, a través de los cuales se
produce la unión de tramos de cañerías.
Mg. Ing. Guido Alfredo Larcher
97
Su representación se realiza de acuerdo a la
Norma IRAM 2503 – parte I, tabla 2 y corresponden a
los esquemas que se detallan a continuación:
Uniones
Estas también representan elementos de unión
de cañerías. Las mismas pueden ser roscadas o
soldadas.
Su representación se rige por la Norma IRAM
2503 – parte I, tabla 1.
Los aros presentan agujeros en los cuales se
atraviesan tornillos que, al unir a ambos, son
ajustados para su fijación. En el medio de ambos aros,
antes de ajustar se coloca una junta de unión.
En el segundo caso (ampliación), se coloca una
tapa del mismo diámetro exterior del aro y se ajusta. A
esta se la conoce como brida ciega.
Todos estos elementos que integran un sistema
isométrico de cañerías, son a continuación
ensamblados de manera tal que constituyan un
ejemplo de diseño de instalaciones, respetando las
normas IRAM de su construcción.
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
98
Se indica además que, en todo plano de
a) Las líneas de cota deben ser de trazos finos y
proyecciones
isométricas
terminadas, generalmente, en puntas de flecha
a) una punta
de flecha. de instalaciones industriales,
b)
Para
acotar
entre
ejes
de
figuras
éstos
se
prolongan
a
manera
de
que
sirvanse
como
líneas auxiliares
de cota.cuidadosamente y a
debe indicarse arriba del mismo y a la derecha, la
que
acostumbra
dibujar
c) Paranorte,
acotar conforme
internamenteloseexpresa
pueden utilizar
las propias
aristas del dibujo
comoalzada.
líneas auxiliares
de cota.
orientación
la norma
IRAM
mano
La punta
de la flecha puede ser
d) Para acotar ángulos frecuentemente es necesario trazar una línea auxiliar de cota que sirva como uno de los lados del ángulo. La
2503 – parte
I. cota debe ser un arco de circunferencia.
rellena o sin rellenar.
línea de
b) El valor numérico de la cota, es decir, el número
que mide la distancia existente entre dos puntos
determinados del dibujo, debe colocarse, siempre
que sea posible, en la mitad de la línea de cota.
c) Las líneas de cota deben colocarse en forma
ordenada, en partes visibles y que no interfieran
con el dibujo, de manera que se facilite su
ACOTACIÓN
interpretación.
Entre una línea de cota y una arista del dibujo
debe mantenerse una distancia mínima de 10 mm.
Cuando se representa un objeto a escala es
imprescindible utilizar determinadas líneas auxiliares
para indicar distancias entre determinados puntos o
elementos del objeto dibujado. Estas líneas especiales
se denominan líneas de cota y la distancia que
representan es la cota, en resumen, acotar es
determinar las distancias existentes entre diversos
puntos de un dibujo, utilizando líneas de cota.
d) Para acotar el diámetro de una circunferencia debe
agregársele, al valor numérico de la cota, el
símbolo O.
El valor de un dibujo depende de las cotas
utilizadas en él. Mediante las cotas obtenemos la
descripción del objeto dibujado: sus dimensiones y su
forma. Para poder acotar es necesario conocer
diversas técnicas y simbologías; a saber:
f) Para acotar entre ejes de figuras éstos se
prolongan a manera de que sirvan como líneas
auxiliares de cota.
g) Para acotar internamente se pueden utilizar las
propias aristas del dibujo como líneas auxiliares de
cota.
e) Para acotar el radio de una circunferencia debe
agregársele, al valor numérico de la cota, el
símbolo r. La línea de cota sólo lleva una punta de
flecha.
SISTEMAS DE REPRESENTACION GRAFICA
h) Para acotar ángulos frecuentemente es necesario
trazar una línea auxiliar de cota que sirva como
uno de los lados del ángulo. La línea de cota debe
ser un arco de circunferencia.
Acotar una pieza es indicar sobre el dibujo, todas las
dimensiones necesarias para su interpretación y su
eventual fabricación.
Mg. Ing. Guido Alfredo Larcher
99
Línea de cota. La que indica la medida a la que
corresponde una cota, trazada con la línea tipo “B”
(IRAM 4502). Será paralela a la medida que se acota
y de igual longitud. La separación entre líneas de cota,
o de estas con la del dibujo, será siempre mayor que
la altura de los números. La línea puede ser
interrumpida o continua, dándose preferencia a ésta
última (Fig. 2 y 3 ).
Los elementos básicos que intervienen en la acotación
son:
Cota. Expresión numérica del valor de una medida,
indicada en el dibujo.
Las cotas se colocan encima y ligeramente separadas
de la línea de cota. Deben colocarse de forma que su
lectura se realice desde la parte inferior y derecha de
la pieza. Las cotas angulares se orientan
horizontalmente.
Cota funcional. La que posee una valía esencial para
que la pieza pueda cumplir su función.
Fig. 2
Fig. 3
Flecha de cota. Los extremos de la línea de cota
terminarán con flechas formadas por un triángulo
isósceles ennegrecido, cuya relación entre la base y la
altura será aproximadamente 1:4 Fig. 4.
Fig. 1
Fig. 4
SISTEMAS DE REPRESENTACION GRAFICA
Para acotar correctamente una pieza, se
tendrán en cuenta los siguientes principios:
• La principal norma que regula la acotación es la
IRAM 4513.
• Las cotas se distribuirán, teniendo en cuenta
criterios de orden, claridad y estética.
• En los dibujos aparecerán todas las cotas
necesarias para su definición.
• No deben repetirse las cotas a menos que sea
indispensable.
• Cada cota se colocará en la vista que mejor
información aporte.
• Todas las cotas se expresan en la misma unidad,
en caso contrario, se colocará la unidad empleada
a continuación de la cota.
• Para los dibujos de fabricación metal mecánica la
unidad de medida lineal será el milímetro y no se
indicará su abreviatura.
• No se utilizaran mas cotas de las necesarias para
definir completamente el dibujo.
• Cuando haya que acotar un conjunto de varias
piezas ensambladas, se procurara separar las
cotas de cada pieza.
• Las cotas relacionadas, como el diámetro y la
profundidad de un agujero, se indicaran sobre la
misma vista.
• Las cotas no funcionales se acotaran de la manera
mas conveniente para facilitar la fabricación o la
verificación.
Mg. Ing. Guido Alfredo Larcher
100
• En el dibujo se expresaran las propias cotas
funcionales (Fig. 1), sin hacer depender unas de
otras,
para
asegurar
condiciones
de
funcionamiento.
• Debe evitarse la necesidad de obtener cotas por
suma o diferencia de otras, ya que puede implicar
errores en la fabricación, se expresara para su
lectura directa, y no para su obtención por
deducción de otras ni por aplicación de la escala.
• Las cotas se situaran por el exterior de las piezas.
Se admitirá situarlas en el interior siempre que no
se pierda claridad en el dibujo.
SISTEMAS DE REPRESENTACION GRAFICA
Y
=
10
.00
0
X=
Mg. Ing. Guido Alfredo Larcher
00
.0
0
2
C
. B
.+
8.
50
0
0
0
6.
2
1.
20
0
0
.0
40
0
0
5
.3
0
30
n
O
1
0
3.5
1.
75
0
1.
60
0
1
.00
0
0
0
0
.
1
+
=
0
1.2
,4
52
0
5 .
00
0
0
101
Mg. Ing. Guido Alfredo Larcher
Unión de isometría de cañerías con isometría de
equipo
 Vapor vivo o de alta presión: color naranja
 Vapor de baja presión: tramos de color
naranja alternados con tramos de color
blanco.
 Agua para incendio: color rojo
 Gas: color amarillo
 Aire comprimido: color azul
 Vacío: color marrón
2.60 0
SISTEMAS DE REPRESENTACION GRAFICA
3.50 0
Representación del sistema isométrico
cañerías dentro del edificio de una planta
de
h
1.00 0
h
102
Colores a utilizar en la representación de cañerías
Los diferentes tipos de fluidos a transportar por
un sistema de cañerías son también representados
con diferentes colores, a saber:
 Agua: color verde
 Agua caliente: tramos de color verde
alternados con tramos de color naranja.
 Agua fría: tramos de color verde
alternados con tramos de color blanco.
Una vez asimilado el concepto de isometría,
corresponde realizar el sistema completo de la
instalación, incluyendo la infraestructura edilicia que la
contiene, de manera que aquí se apliquen todos los
conceptos vertidos anteriormente, tales como
orientación, pendiente, acotación, símbolos, etc.
Resulta importante destacar que en esta
configuración debe tenerse en cuenta la ubicación de
los equipos dentro de la planta, para lo cual debe
definirse tanto la cota como el alejamiento de los
mismos respecto de las paredes de los edificios.
Esta definición permitirá posteriormente el
trazado de la isometría de cañerías, de manera que el
conjunto quede completo. Así:
SISTEMAS DE REPRESENTACION GRAFICA
Mg. lng. Guido Alfredo Larcher
103
SISTEMAS DE REPRESENTACION GRAFICA
Vista en planta de la fábrica
Mg. Ing. Guido Alfredo Larcher
Vista del corte A-A de la Planta donde se visualiza
el conjunto de las instalaciones
20.000
2 . 50 0
21.200
10.000
11. 200
H
h
1 . 00 0
3 . 50 0
10.000
7. 000
104
SISTEMAS DE REPRESENTACION GRAFICA
Mg. Ing. Guido Alfredo Larcher
105
BIBLIOGRAFIA
EJERCICIO PRÁCTICO
 Dibujo Técnico – A. Bachman - R. Forberg Edit. Labor
 Dibujo Técnico – French – Svensen – Edit. Gilli
 Dibujo Técnico – Earl D. Black – Edit. Marymar
Vista
en Dibujo Técnico planta
 Normas IRAM para
En el papel isométrico impreso al final,
desarrollar una representación esquemática de un
sistema de flujo mediante un isométrico de cañerías,
con los elementos que a continuación se exponen:
Vista
Vista
Vista
Vista
en
en
en
en
planta
planta
planta
planta
de
de
de
de
de
la
fábrica
 Un tanque de la
acero inoxidable defábrica
10.000
litros de capacidad.
la
fábrica
 Dos bombas impulsoras
la
fábrica
 Tres válvulasla de compuerta defábrica
3” de
diámetro
 Siete tramos de tubería de 3” de diámetro
de las siguientes medidas: 500 mm, 1300
mm, 570 mm, 275 mm, 222 mm, 300 mm,
2230 mm, 1800 mm, 1218 mm y 610 mm.
 Una válvula compuerta de 1” de diámetro.
 Una reducción de 3” a 2”.
 Tres tramos de tubería de 2” de diámetro
de las siguientes medidas: 500 mm, 1279
mm, 1375 mm y 90 mm.
 Una Te de 3 “.
 Una Te de reducción de 3” a 2”.
 Ocho codos de 90° de 3”.
 Siete codos de 90° de 2”.
106
106
Descargar