FORMATO DE SCANNEO INFORMES GEOlAIGICOS Y GEOFlSlCOS C l T C O I N T E R N A T I O N A LP E T 1 9 00 N O R T H L O O P W E S T HOUSTON. T E X A S TELEPHONE: (713) 883-2000 TELEX: 7 6 - 2 0 5 6 C A B L E : ClTEXPET December 1 8 , 1981 REPLY TO: "-- M r . L. M. Asbury Arco International 515 South Flower S t r e e t Box 2676 Los Angeles, CA 90051 í" - Mr. I. H e r r i c k Amoco International Oil Company P. O. Box 4381 t Houston, Texas 77201 Mr, B , Toborda Ecopetrol Carrera 13, No, 36-24 P . l l B O g O t a , Colombia "La Luna Source Rocks in the Middle Magdalena Valley, Colombia" by J. E. Zurnberge. SUBJECT: , u F Gec L'" As a result a€ John Zurnberge's presentation t o the 26th International Geological Congress, Paris, 1980, on t h e correlation of o i l s t o source rocks in Colombia, he has been asked t o submit a paper for i n c l u s i o n in an AAPG compendium on carbonate source rocks. This is being compiled by J i m Palacas o f t h e USGS. -. ! A first d r a f t of the proposed paper i s attached for your information. There is no a d d i t i o n a l material o v e r and above t h a t contained in the 1980 p r e s e n t a t i o n . On this b a s i s , Cities Service has authorised John Zumberge t o submit t h i s d r a f t for publication. If you have any q u e s t i o n , please do not hesitate to c o n t a c t me. Paul R. Achton Manager Geology PñA/dc Enclosure CC: E. A. Quinones, Bogota J. Zumberge, Tulsa " L A LUNA SOURCE ROCKS IN THE MIDDLE MAGDALENA VALLEY, C O L O M B ~ A -~-I I_- bY John E. Zumberge Cities S e r v i c e Research P.O. Box 3908 Tulsa, OK 74102 A3 STRAC T Carbonate-rich o u t c r o p s from t h e Upper Cretaceous La Luna Formation i n - the Middle Magdalena Valley, Colombia average 4 . 3 % total 2500 ppm extractable hydrocarbons, o r g a n i c c a r b o n and Microscopial and elemental analyses of w La turn kerogen suggest t h a t the orgarrlc matter in these La kilns samples is m a r i n e o r i g i n and a t a maturity l e v e l within t h e o i l generation zone. - úf Biochem- .- i c a l fossil distributions a t t e s t t o a n aquatic microorganism source due t o abundant C27 steranes r e l a t i v e t o C29 steranes, low q u a n t i t i e s o f C1g and C 2 0 tricycl i c di terpanes r e i a t i ve t o extended ( u p t o C30) t r i c y c l i c di terpanes, and u b i q u i t o u s hopane t r i t e r p a n e s . INTRODUCTION ,- The Cretaceous La Luna Formation has long been ascribed t o as t h e source rock for much of the oil found i n t h e Maracaibo Basin of Venezuela (e.g., Hedberg, 1 9 3 1 ; 8ockmeulen e t a l . , 1981). Valley, Colombia, Crude oils from t h e Middle Magdalena r e s e r v o i r e d in T e r t i a r y f l u v i a l . sands, have recently been shown t o have also been generated, i n p a r t , from the Upper Cretaceous La Luna Formation based on geochemical corre1 a t i o n techniques such as stable carbon isotopes and biochemical fossíl d i s t r i b u t i o n s (tumberge, 19801. of t h i s p r e s e n t study is t o d e s c r i b e i n detail the widespread and pro’li f i c cal careaus source rock, The o b j e c t i v e organic geochemistry o f this I 8 Outcrop samples were c o l l e c t e d along t h e \ eastern flank of the Nuevo -------- --i Mundo Syncl-ine--in t h e Middle Magdalena B a s i n approximately 20 km west o f /-- Bucaramanga, Colombia, Although the samples are from outcrops, care was taken t o c o l l e c t unweathered specimens; however, some o f the observed v a r i a b i l i t y o f t h e data may be due t o d i f f e r e n t i a l weathering e f f e c t s - A l l t h r e e members o f t h e L a Luna formation (Gaiembo, Pujamana, and Salada) were sampled; the o l d e r S a l a d a member samples were collected - 5 km south o f t h e Galembo and Pujamana - . members sample collection area (Quebrada La Sorda), t i o n ranges f r o m 150 m t o 600 m. The thickness o f the forma- i n general, the La Luna Formation in t h i s r e g i o n can be lithologically described as c o n s i s t i n g o f dark grey t o black calcareous shales w i t h varying amounts of i n t e r b e d d e d 1 irnertanes and some t h i n chert beds. i n t h i n section, La Luna samples f r o m t h e Pujamana and Salada members c o n t a i n abundant calcareous planktonfc forami n i f e r a and other p e l a g i c c i r c u l a t i o n (M. Longman, personal comunication). no evidence o f land-derived m a t e r i a l , - Except f o r a e o l i a n c l a y s , such as d e t r i t a l quartz, was found. F o r a m i n i f e r a t e s t s which a r e n o t fílled w i t h calcite a r e o f t e n filled w i t h oil as was determined by fluorescence microscopy in reflected l i g h t { S . Palmer, personal communication). These Colombia L a Luna samples are remarkably simi- lar to La Luna rocks f r o m northwestern Venezuela as described by Hedberg (1931) more than f i f t y years aqo. EXPERIMENTAL Rock samples were ground t o (100 mesh w i t h subsequent H C l d i s s o l u t i o n and o r g a n i c carbon combustion u s i n g a Lec0 Carbon Analyzer i n order t o d e t e r m i n e I f ' # approximate percent carbonate and t o t a l organic carbon. Powdered samples were s o x h l e t extracted w i t h chlorofarm/methanol (90fl0, V:V) t o remove extractable organic material f o l l o w e d by deasphal t i n g i n pentane a f t e r s o l v e n t removal. The pentane sol ubie materi al was then separated i n t o al i p h a t i c hydrocarbon, aromatic hydrocarbon, and NSO Inonhydrocarbon) fractions on alumina and s i l i c a gel l i q u i d c h r o m a t o g r a p h i c determined gravimetrically. - columns, and the quantity o f each fraction was The stable carbon isotopic compositions of both the aliphatic and a r o m a t i c hydrocarbon f r a c t i o n s were determined u s i n g t h e . combustion method o f S o f e r (1980) with subsequent analysis on a V.G. 602 mass spectrometer. Micromass Capill ary gas chromatographic separation of the a7 ipha- t i c f r a c t i o n was accomplished on a Hewlett Packard 5880 gas chromatograph f i t m i w i t h a SP-2100 fused s i l i c a coiurnn (12.5 m X 0.02 m i-d.1. Combined gas chromatography/mass s p e c t r o m e t r y was performed on a Finnagi n 4000 GC/MS/DS system by Global Geochemical Corporation, Canoga P a r k , California, to determine cterane and terpane di s t r j b u t i o n s M i c r o s c o p i al and elemental analyses o f kerogen concentrates ( H C l and HF d i s s o l u t i o n of i n o r g a n i c matter followed by - f l o a t a t i o n i n Z n B r Z ) were made using a Z e i s s U n i v e r s a l Microscope for vitrinite reflectance measurements and C a r l a Erba CHNO analyzers (Williams Brothers Co. , . Tulsa, Oklahoma). RESULTS AND üISCUSSION T o t a l organic carbon val uec and approximate carbonate percentages for the three members o f the la Luna Formation are presented i n T a b l e 1. Galemba (youngest) member samples ( L L l - L L 6 ) contain 7 i t t l e carbonate minerals (avg. = 2.4%) and average less than 0.9% organic carbon. ., . The The Pujamana and ____ TABLE 1 Organic Geochemical Data Sample No., Mernher Carbon La Luna Source Rocks Extractable C15+ Organic Material (PPml tiy drocarbons Nanhy drocarbons Total Sat Aro N so ASPh ( ppm 1 1039 1986 336 1 935 523 2605 676 1452 261 6 294 377 542 189 249 580 385 1508 1245 1252 2680 1777 6954 54 25 94 129 302 LL1 Gaiembo 0.7 1.97 459 lL2 1.9 605 tL4 " LL5 " 1.3 1.5 8.3 LL6 " 0.6 0.57 1 .o3 0.79 0.77 O. 16 13,6 2.90 394 45 656 577 1472 1.2 o. 40 17 430 294 127 1204 2473 7 58 4163 1320 485 3900 7643 5626 4975 2807 5 'I LL3 - % Carbonates x Organic - LL7 Pujamana 299 17.5 4.82 44.2 45 .O 3.40 3.37 17 359 1938 1000 51.9 4.41 303 1145 8 34 3302 3967 7 5 584 47 .O 53.5 4.78 455 1166 663 3105 5389 3.99 438 1224 7 29 3670 6070 t L 1 5 Salada 46.5 3.77 627 1180 1499 3170 6476 LL16 I' 38.2 4.52 1223 2806 1749 4134 9912 Li17 " 37 .a 1579 2543 7006 1979 2111 4725 9896 37 -8 4.94 918 1081 1253 1966 41.5 4-60 4.70 3033 1651 4722 10659 1.5 71.52 6372 64521 97366 366282 534541 LL8 I' LL9 I' LtlO I' *LL11 " -_ Lua Ll19 " *LL20 Puj amana * A s p h a l t i t e material ( s o l i d bitumen) present, o c c u r r i n g as fracture flllings up t o 1 m thick* .. . i " I Salada member rocks, however, contain an the average 42.8% and 40.4% carbonate, respectively (excluding samples LL7 and LL8 which a r e from t h i n interbedded chert l a y e r s ) . These two carbonate-rich lower members a l s o contain almost f i v e times more organic carbon (Pujamana average = T S % a n d Salada averaye = 4 . 5 X 1 than t h e carbonate-poor Galembo member. Sample LLll (Pujamana member) i s a fractured carbonate-rich sample which is in-filled w i t h a solid bitumen, soluble i n organic s o ? v e n t s , known as asphalite (Hunt, 1979), and sample U 2 0 i s a "pure" - sample o f an asphalite v e i n which occurs t y p i c a l l y up t o 1 rn i n thickness. - T h i s fracture-filling organic m a t e r i a l is similar to the Gilsonite common in t h e U i n t a Basin, Utah, and may represent an early, preserved stage of m i g r a t i o n ín which o i l generated from La Luna kerogen has migrated short distances Snto a s a i . z k d fractures w i t h i n the La Luna carbonate-rich rocks. Microscopial examination o f la Luna kerogen revealed predominantly f i n e grai ned amorphous mater1 a l w i t h few we1 1 -defi ned vi tri n i t e particles or spores. F1uorescence was often observed under both transmitted and reflected modes, i n d i c a t i n g marine amorphous kerogen, - v i trinite reflectance measurements average value o f i.DfO.2% . prone t o o i l generation. Although few were p o s s i b l e for rnaturi-ty estimate-s, m R, for all samples was obtained which I s well w i t h i n the main phase of petroleum generation { T i s s r i t and Welte, 1978). Table 2 lists the results o f elemental analyses o f f i v e l a Luna samples f r o m the PuJarnVa and Salada members; the atomic ratios of hydrogen t o carbon and oxygen t o carbon are also given. kerogen samples are 0.85 and 0.05, as Type i i marine The H/C a n d O/C averages f o r the f i v e respectively, which classifies these samples kerogen and places them w i t h i n the principle zone o f o i l g e n e r a t i o n on t h e van Krevelen diagram as defined by Tissot and Welte ( 1 9 7 8 ) . These results are consistant w i t h the v i s u a l analysis o f the La Luna kerogen. f 1 as evldenced by the l a r g e , unresolved "hump" under the n-alkane peaks. % This chromatogram i s consistent w i t h organic matter: d e r i v e d from marine organisms deposited in a reduci ng environment. The s t a b l e carbon isotopic composition o f the a l i p h a t i c and aromatic CIS+ e x t r a c t a b l e f r a c t i o n s average -27.5 hydrocarbon 0.4'/00, respectively Salada samples. -c ( r e l a t i v e t o the PDB f 0.4*/0~ +- and -27.1 standard) f o r t h e Pujamana and These v a l u e s are t y p i c a l f o r o i l s of marine o r i g i n as reported ilaervofi-ed o i ? s prcrduced frm the Payoa*_ La S a l i n a , by Safer ii9Sii. and Cararon F i e l d s i n the Middle Magdalena V a l l e y ( - 3 0 krn Nbí o f La Luna o u t c r o p locations) average -27.6 2 0,2'/00 and -27.2 2 O.l0/oo for the aliphatic and aromatic hydrocarbon fractions, r e s p e c t i v e l y , and is an important parameter when c o r r e l a t i n g the o i l s t o La Luna saurce rocks; the s t a b l e carbon Isotope r a t i o s o f the reservoired oils are e s s e n t l a l l y identical t o the La tuna extracta b l e hydrocarbons, f.e., the proposed source rock. A l so i m p o r t a n t i n e v a l u a t i n g geochemical correlations are the d i s t r i b u - tions o f the biochemical fossils (biomarkers) known as steranes (tetracyclic - alkanes) and d i terpanes terpanes (tricyclic and pentacyclic alkanes). The tricyclic are especially u s e f u l in c o r r e l a t i n g nandegraded t o biodegraded crude oils (such as commonly found in the Middle Magdalena Valley) because t h e y appear t o be r e i a t i v e l y uneffected by even severe microbial a t t a c k (e.9. Reed, 1977). A l s o , sterane and terpane biomarkers a r e o f t e n useful in determin- i n g source rock d e p o s i t i o n a l environments. distributions of The sterane, diterpane, and terpane a r e p r e s e n t a t i v e La Luna extract (LL15) are illustrated i n Figure 2 , and i d e n t i ' f i e d components are listed i n Table 3. The C27 sterane stereoisomers (peaks 6 - 9 , F i g u r e 2a) are more abundant than the C2g steranes [peaks 14-17), indfcatíng a predominance of aquatic microorganisms ( r e l a t i v e TABLE 2 i Elemental Camposition of La Luna Kerogen Sampi e LL12 %C %H %O %N H/C O K 69.4 4.8 5.3 5.2 4.9 5.2 3.5 2.1 0.83 O .O4 O .87 0.79 0.87 0.05 0.07 O . 04 73.6 72.1 LL13 LL16 LL17 74.4 LL19 71.5 0.86 2.2 2.4 2.5 2.2 3.3 4.7 6.6 4.0 0.03 Quantit i c s of the various C15+ e x t r a c t a b l e f r a c t i o n s are presented i n - As i n the case o f t o t a l organic carbon, t h e carbonate-rich samples Table 1. - of the Pujamana and Salada members average more extractable indigenous organic m a t t e r than the shaley Gatembo member. Typically, t h e aromatic hydrocarbons a r e more abundant then t h e a l i p h a t i c hydrocarbon f r a c t i o n ( a v e r a g i n g 1638 ppm and 860 pprn, respectively} in the asphal tite-containing L L i l sample). carbonate-rich samples The nonhydrocarbon extractable f r a c t i o n s are y e t more abundant than the hydrocarbon f r a c t i o n s . ( L L Z D } contains primarily (excluding the pentane-insoluble The a s p h a l t i t e sarnpl e asphal tenes and NSO ( n i t r o g e n - sulphur-oxygen) organic compounds; aromatic hydrocarbons are an order o f magni - tude greater than aliphatic hydrocarbons. - Almost 6% o f t h e tata1 organic car- bon c o n s i s t s o f extractable C15+ hydrocarbons in the carbonate-rich La Luna samples which is cornpatiable w i t h maturities estimated from v i t r i n i t e reflec- tance v a l u e s and H/C atomic ratios o f La Luna kerogen and i s consistent w i t h very good possible o i l source rocks. In F i g u r e 1, a r e p r e s e n t a t f v e capillary gas chromatogram (sample LL15) o f a L a Luna C15+ a l i p h a t i c f r a c t i o n is displayed. typicaily more The i s o p r e n o i d phytane is abundant than pristane, and the n-alkane d i s t r i b u t i o n i n d i c a t e s o n l y a s l i g h t preference in odd- o v e r even-numbered alkanes i n t h e Cz8+ region, An even carbon p r e f e r e n c e i s noticeable i n t h e n - C i q t o n-C28 m a j o r i t y of the aliphatic fraction consists of range. The branched and cyclic alkanes i - TABLE 3 8 identi f l ed Sterane and Peak ( F i g u r e 2al 1 2 3 4 5 - 6 - 7 8 STE RAN E Tri terpane Components Peak (Figure 2 c ) TRITERPANE 18aI H)-22, 24, 30-trl snarhopane 170(H)-22, 2 9 , 30-trisnorhopane 17dH) 18a(H), 21B(H)-28, 30bisnorhopane 17a(H), 2lg(H)-30-norhopane 17@(HI, ZlaI HI-norrnoretane 1 7 d H) , 2lfi(H)-hopane 1 7 ~ ( H ) ,21a( HI-rnoretane 9 17a(H), Zlg(H)-30-homohopane (22s) 10 i7a(ti), 2lg(Hl-30-homohopane (22R) gammacerane 11 17p(H), 21a( H)-homomoretane 17a(H), 218(H)-30, 31-bi ShomO- 12 hopane (22s) 17a(H), 21p(H)-30, 31-bIShom0- 13 - !-c 15 16 17 hopane (22R) i1 f ' 1 Tissot and Llelte, 1978) whích c o n t r i b u t e d t o higher land-dertved p l a n t s , e.g., t o t h e La Luna sediments, 2a) are p r e s e n t , perhaps menL Few rearranged C27 steranes (peaks 1-5, Figure 2 a ) indi cat1 ng a nonaci d i e carbonate deposi t i onal envi ron- The roughly equal abundance o f t h e 20s and 20R component pairs o f the 5a(H), 1 4 a ( H ) , 17a(H) steroisomers (peak p a i r s 6 and 9 , 10 and 1 3 , and 14 and 7 17; Figure 2 a } ' i s characteristic of m a t u r i t i e s s u f f i c i e n t t o generate s i g n i f i - cant q u a n t i t i e s of hydrocarbons (Seif e r t and Moldowan, 1981 and Mackenxie e t - a l . , 1980). The most abundant tricyclic diterpane compouna' (-i-.E., 4 F i g u r e 2); in the La Luna samples is the same component in the o i l s f r o m the Payoa, Cn,:W-3-18; which i s La S a l i n a , and Coraron F i e l d s . most abundant The r e l a t i v e lack of C1g and C20 diterpanes [compounds generally b e l i e v e d t o be derived from terrestrial p l a n t s ) i n b o t h La Luna rocks and Middle Magdalena o i l s i s again s u g g e s t i v e of a marine source. The range o f tricyclic diterpanes extends o u t 1 t o the C30 molecular w e i g h t range (MW 416; F i g u r e 2b and 20. The pentacyclic - t r i t e r p a n e components in the La Luna source rocks ( F i g u r e 2 c ) consist primarily o f the ubiquitous hopane series w i t h t h e C29 norhopane (peak O; Figure 2c) and C30 hopane (peak F predominating. The thermo- dynamically less s t a b l e moretane series ( i . e . , t h e 1 7 6 ( H ) , 2 1 d H ) hopane stereo- isomers, peaks €, G , and K ) are present i n minor amounts which i s consistent w i t h the other m a t u r i t y indicators. The C 3 p hopanes are believed to be d e r i v e d from b a c t e r i a [ e . g . , Yan Dorsselaer e t a l . , 1977). Not shown i n Figure 2c are traces of C 3 p hopane 225 and 22R pairs. . CONCLUSIONS The following listing is a summary o f t h e significant results and i n f e r - ences o f the organic geochemistry analyses of the Upper Cretaceous La Luna Formati on f r o m the M i ddl e Magdalena Val 1ey , Col ombia. rabonate minerals) o f the Pujamana (1) CzrSoni&e-+-ich l a Luna samples 1 and Salada members average 4.3% t o t a l organic carbon. The carbonate-poor 1' /L Galembo samples average l e s s than 0.9% organic carbon. (2) Microscopial and elemental analyses of La Luna kerogen suggest a marine origin with a 13) C 1 5 + extractable hydrocarbons o f Carbonate-rich almost 2500 ppm which +'-- (4) \ \ present maturity well w i t h i n the main phase of oil generation. La Luna samples a v e r a g e indicate very goad possible o i l source rocks. Gas chromatographic results of the aliphatic f r a c t i o n s , i n c l u d i n g pristane/ phytane v a l u e s l e s s than 1, abundant C 1 5 t o C1g n-alkanes w i t h respect to C20+ alkanes, and a predominance of cycloalkanes, i n d i c a t e t h a t L a Luna o r g a n i c matter i s d e r i v e d f r o m aquatqc microorganisms, i n agreement w i t h - - ._ _ I the kerogen analyses. (5) S t a b l e carbon i s o t o p e ratios o f t o t t i o s e of crude o i l - s prü&& La Luna hydrocarbon e x t r a c t s are identical i-n- TertS-ayy- r e s e ~ v o i r swj?M!l the M4-ddl-e Magdalena Valley which suggests a genetic reiationship. u i " I , (6) Biochemical fossil distributions al so i n d i c a t e a marine depositional environment (due t o abundant C27 steranes ' r e l a t i v e t o C 2 9 steranes; reiati v e l y 1 ow quanti ti es o f C 1 g and C20 d i terpanes ; and b a c t e r i a l ly-deri ved hopanes) w i t h molecular maturation' parameters consistent w i t h t h e generation of oil. ACKNOWLEDGMENTS -/ I would like t o thank and T. Murray, P. Hoffman f o r technical analyses J + Heard, S. Sellers, C. S c h i e f e l b e i n , and M. Draughon f o r typing the manuscript. I a l s o thank L. B a i e , M. Leenheer, S. Palmer, and C. Sutton f o r r e v i e w f n g t h e manuscript and providing helpful comments and suggestions. Special thanks go t o R. S. Williams ( C i t i e s Service, Houston International) and R. M e j i a , A . Erazo, and G . Velasco (Colcltco, Colombia) f o r sample collection and geological i n f o r m a t i o n and advice. . REFERENCES Backmeulen, H., Barker, C., and Dickey, P. A. (1981) Geology and Geochemistry of Crude O i l s in the Bolivar Coastal Fields, Venezuela. Bull. AAPG, in p r e s s . Hedberg, It. D. ( 1 9 3 1 ) Cretaceous Limestone as Petroleum Source western Venezuela. Rock in North- Bull. AAPG, 15, 229-246. Hunt, J. M. (1979) Petroleum Geochemistry and Geology. Freeman, San Francisco. Durand, B. (1980) Molecular Parameters o f Matlirtion in the Toarcian Shales, Paris B a s i n , - France acyci ic isoprenoid- &Wanes, I. Changes Steranes, in the Configuration of and- Tri-terpanes. Geochim. e t Cosmochim. Acta, 44, 1709-1721. , Reed, W. E. (19791 Moiecular Compositions o f Weathered Petroleurn and Comparison w i t h i t s P o s s i b l e Source. ‘Seifert, d W, 41, 237-247. K, and Moldowan, 3. M. (1981) Paleoreconstruction by B i o l o g i c a l Markers. Geochim. e t Cosmochim. Acta, 45, 783-794, * Sofer, Z. (1980) Preparation o f Carbon D i o x i d e f o r Stable Carbon Isotope Analy- s i s of Petroleum Fractiuns. Soh-, Anal . Chern, , 5 2 , 1389-1391. i. i i 3 8 i i isütq~ic C m p o s i t i o n o f Heavy i C 1 5 t j Saturate ana A r o m a t i c Fractions of Crude Oils, - Geochim. e t Casmachim. Acta, T i s s o t , B. P. and tlelte, O, H. Ann. AAPG Convention, San Francisco. Abst. (1978) Petroleum Formation and Occurrence. Springer-Ver1 ag, New York van Dorsselaer, A . , Albrecht, Novel (17&)-Hopanes leum. Zumberge , P., and Ourisson, G. (1977) Identification of i n Shales, Coals, L i g n i t e s , Sediments, and Petro- B u l l . Soc. C h i m . Fr., 5 8 , 1243-1252 J. E. t 1980) O i 1 -Di 1 and Oi 1 -Source Rock Corre1 a t i ons Degraded O i l s and Cretaceous Outcrops from Colombia, 26th int. Geological Congress, P a r i s , A b s t r a c t p s 806. of Bac t e r i a7 1y South America, FIGURE CAPTIONS I F i g u r e 1. Gas Chromatagram of t h e aliphatic hydrocarbon fraction of a Salada member s a p r e iLL15) from the La t u n a Formation. represent n-alkanes; Pr and Ph represent Numbered peaks pristane and phytane, respect ively - Figure 2. -- Biochemical fossil composition o f a La Luna hydrocarbon extract (LL15). a) b) Sterane d i s t r i b u t i o n as determined by the m/z = 217 fragmentograrn. Numbered peaks are i d e n t i f i e d in Tab1 e 3 ; RA = rearranged steranes. mass Tricyclic diterpane distribution (m/z = 191)- Molecular weights were determined by monitoring m/z = 262 ( C 1 9 ) , 276 I C 2 0 1 , 290 (C211, 304 ( C 2 2 1 , 318 (C231, etc, c) Pentacyclic trlterpane distribution (m/r = 191). Lettered peaks are i d e n t i f i e d in T a b l e 3. ,- . .. . ,, ... . .I SAMPLEi LALUNA 15 ENLARGE= 2324 KAWi S A 4 4 1 2 m a +FRJXZ TIMEi 0 TO 35 M I N (2.5 MIN/INCH) __ i ' N + N' UI Iu m- nl nl- Ln N vu1 M- ; I - I.' - -- / . ci+