funct f sin(x) π 2 ix −ix = e −e 2i 1 −1 odd, T= 2π cos( x) = sin(x+y)=sin( x)cos( y)+cos( x)sin( y) 3π 2 π 2 2π π 1 π 2 3π 2 π 2π π 2 π 2 π D( f )=IR 3π 2 2π D( f ): x = π2 +kπ π 2 π 2 3π 2 π 2π D( f ): x =kπ x −x = e −e 2 odd D( f )=IR cosh(x) x −x = e +e 2 1 f dx = −cos(x) D( f−1)=[−1,1] −sin(x) arccos( x ) cot( x)cot( y)−1 cot( x)+cot( y) f dx = sin( x) graph f−1 1 2 cos (x ) 1 1−x 2 π 2 −1 1 π 2 D( f−1’)=(−1,1) −1 1−x 2 π D( f−1)=[−1,1] arctan(x) =arctg(x) −1 coth(x) 1 −1 π 2 D( f−1)=IR arccot(x) 2 2 cosh ( x)−sinh ( x)=1 D( f−1’)=(−1,1) 1 x2+1 D( f−1’)=IR −1 x2+1 π π 2 D( f−1)=IR D( f−1’)=IR 1 x 2 +1 cosh(x) argsinh(x) =ln(x+ x2+1 ) f dx = cosh(x) D( f−1)=IR sinh(x) argcosh(x ) cosh( x+ y)=cosh(x)cosh( y)+sinh( x)sinh( y) 2 2 2 cosh(2 x)=cosh ( x)+sinh ( x) f dx = =ln(x+ x −1 ) 2 cosh(2 x)+1 D( f )=IR cosh ( x)= sinh(x) D( f−1)=[1, ) 2 1 x)+tanh( y) argtanh(x ) tanh( x + y)= tanh( 2 1+tanh( x)tanh( y) cosh (x ) =argtgh(x) x tanh(2 x)= 2tanh(2 x) = 12 ln(1+ 1−x) f dx = 1+tanh ( x) ln|cosh(x)| D( f−1)=(−1,1) D( f )=IR −1 1+coth( x)coth( y) argcoth( x) coth( x +y)= 2 y coth( x)+coth( ) sinh (x ) = 12 ln( x+1 2 x−1 ) 1+coth ( x) coth(2 x)= 2coth( x) D( f ): x =0 D( f−1): | x|>1 D( f−1’)=IR 1 x 2 −1 1 D( f−1’)=(1, ) 1 1−x2 8 1 π 2 2 cot ( x)−1 cot(2 x )= 2 cot( x) 1 −1 f dx = −ln|cos(x)| −1 2 sin (x ) f−1’ π 2 8 even odd cos ( x)= 1+cos(2 x) 2 sinh( x +y)=sinh( x)cosh( y)+cosh( x)sinh( y) sinh(2 x)=2sinh( x)cosh( x) 2 sinh ( x)= cosh(2 x)−1 2 sinh(x) cosh(x) 2 tan( x)+tan( y) 1−tan(x)tan( y) tan(2 x )= 2 tan(2 x) 1−tan (x) cot( x+ y)= odd, T=π = sinh(x) 2 cos(2 x)=cos ( x)−sin (x) tan( x + y)= odd, T=π odd sin( π2 )= 24 =1 sin2(x)+cos2( x)=1 2 π 2 −1 even, T=2π tanh(x) =tgh(x) sinh( x) = cosh( x) sin( π3 )= 23 2 sin (x)= 1−cos(2 x) 2 f ’ f inverse f−1 cos(x) arcsin(x) cos( x + y)=cos( x )cos( y)−sin(x)sin( y) 2 cot(x) cos( x) = sin( x) sin(2 x)=2sin(x)cos( x) D( f )=IR sin(0)= 20 =0 sin( π6 )= 21 = 12 sin( π4 )= 22 eix+ e−ix tan( x) =tg( x) sin(x) = cos( x) identities graph (with 1−1 restriction) 1 −1 D( f−1’)=(−1,1) 1 1−x2 −1 1 D( f−1’): | x|>1 c pHabala 2009