A Quick Survey of Trigonometry: Formula Sheet. opposite leg A opposite leg A sin α sin α = = tan α = = = sec α = hypotenuse C adjacent leg B cos α B adjacent leg B cos α adjacent leg = cot α = = = csc α = cos α = hypotenuse C opposite leg A sin α sin2 α + cos2 α = 1 tan2 α + 1 = sec2 α sin(α + 2nπ) = sin α cos(−α) = cos α tan(α + nπ) = tan α, for n = 0, ±1, ±2, . . . cos(α + 2nπ) = cos α sin(−α) = − sin α sin(π/2 − α) = cos α hypotenuse C 1 = = adjacent leg B cos α hypotenuse C 1 = = opposite leg A sin α cos(π − α) = − cos α tan(π/2 − α) = cot α cos(α ± β) = cos α cos β ∓ sin α sin β sin(π − α) = sin α sec(π/2 − α) = csc α sin(α ± β) = sin α cos β ± cos α sin β tan α ± tan β tan(α ± β) = 1 ∓ tan α tan β cos(2α) = cos2 α − sin2 α = 2 cos2 α − 1 = 1 − 2 sin2 α 2 tan α sin(2α) = 2 sin α cos α tan(2α) = 1 − tan2 α q q sin(α/2) = ± 12 (1 − cos α) cos(α/2) = ± 12 (1 + cos α) sin α 1 − cos α = 1 + cos α sin α sin x 1 − cos x sin x ≈ x when |x| is small lim =1 lim =0 x→0 x x→0 x d d d sin x = cos x cos x = − sin x tan x = sec2 x dx dx dx d d d cot x = − csc2 x sec x = sec x tan x csc x = − csc x cot x dx dx dx 1 1 1 d d d arcsin(x) = √ arccos(x) = − √ arctan(x) = dx dx dx 1 + x2 1 − x2 1 − x2 d 1 d 1 1 d √ arccot(x) = − arcsec(x) = arccsc(x) = − √ 2 2 dx 1+x dx dx |x| x − 1 |x| x2 − 1 restricted domain range domain range tan(α/2) = sin x [−π/2, π/2] [−1, 1] arcsin x [−1, 1] [−π/2, π/2] cos x [0, π] [−1, 1] arccos x [−1, 1] [0, π] tan x (−π/2, π/2) (−∞, +∞) arctan x (−∞, +∞) (−π/2, π/2) sec x [0, π/2) ∪ (π/2, π] (−∞, −1] ∪ [1, +∞) arcsec x (−∞, −1] ∪ [1, +∞) [0, π/2) ∪ (π/2, π] 1 y = sin x y = tan x y = sec x 1.0 0.5 Kp K 1 2 p 1 2 p p 3 2 p 2 p 5 2 p 3 Kp K p 1 2 p 1 2 p p 3 2 p 2 p 5 2 p 3 Kp K p 1 2 1 p 2 p p 3 2 p 2 p 2 p 5 2 p 3 p p 3 p K 0.5 K 1.0 y = cos x y = cot x y = csc x 1.0 0.5 Kp K 1 2 p 1 2 p p 3 2 p 2 p 5 2 p 3 Kp K p 1 2 p 1 2 p p 3 2 p 2 p 5 2 p 3 Kp K p 1 2 1 p 2 p p 3 2 p 5 2 K 0.5 K 1.0 y = sin x y = arcsin x 1 2 y = cos x y = arccos x p p 1 1 0.5 0.5 1 K 1 2 1 p 2 K p K 1 0.5 0.5 1 1 2 2 p p p K K 0.5 0.5 K K 1 1 K 1 2 y = tan x K p 1 y = arctan x K 0.5 y = sec x 2 0.5 1 y = arcsec x 3 1 2 p 2 p 1 1 K 1 2 1 p 2 p K 2 K 1 1 1 2 2 p 1 p 2 p K 1 K 1 K 2 K 1 K 2 p K 2 3 2 K 3 K 2 K 1 1 2 3