UNIVERSIDAD VERACRUZANA

Anuncio
UNIVERSIDAD VERACRUZANA
FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA
“ESTUDIO DE LA FÍSICA DE NEUTRONES
PARA LA TECNOLOGÍA BWR”
MONOGRAFÍA
Que para obtener el título de:
INGENIERO MECÁNICO ELÉCTRICISTA
PRESENTA:
LUIS ALBERTO ZAMORA DOMINGUEZ
DIRECTOR:
ING. SIMON LEAL ORTIZ
XALAPA, VER.
ABRIL 2011
Agradecimientos.
A Dios.
Por estar conmigo en cada paso que doy, por fortalecer mi corazón e iluminar mi mente y
por haber puesto en mi camino a aquellas personas que han sido mi soporte y compañía
durante todo el periodo de estudio.
A mis padres.
Por su cariño, comprensión y apoyo sin condiciones. Gracias por guiarme sobre el camino
de la educación.
A mis hermanos (as).
Por el apoyo brindado desde siempre y sobre todo por esa gran amistad que siempre me
brindan, por escucharme y aconsejarme siempre.
A mis maestros.
Que participaron en mi desarrollo profesional durante mi carrera, sin su ayuda y
conocimientos no estaría en donde me encuentro ahora.
A Graciela.
Por ser quien siempre me da ánimos y me hace sonreír, por ser la que siempre me ayuda a
crecer emocionalmente, gracias por demostrarme que a pesar de que hubieron derrotas, la
batalla no estaba perdida, esta meta te la dedico con todo mi corazón.
INDICE
Introducción………………………………………………………………………………...1
Capítulo I Panorama energético……………………………...…………………….….…2
1.1.- Generación…………………………………………………...……………………...3
1.2.- Hidroeléctrica………………………………………………………….....................4
1.3.- Termoeléctrica…...…………………………………………………….....................5
1.4.- Eoloelectrica………………………………………...……………………………..12
1.5.- Nucleoeléctrica…………………………………...…………………………...…...13
Capítulo II Principios básicos…………...………………………………….....................15
2.1.- Estructura atómica…………………...........……………………………………….16
2.2.- Fisión nuclear………………………………………………………………...…….18
2.3.- Reacción en cadena………………………………………………………………...20
2.4.- Principios básicos para la generación de electricidad por medios nucleares……....22
Capítulo III Tecnología de reactores………..…………………………………………...24
3.1.- El reactor nuclear…………………………………………………………………..25
3.2.- Reactor PHWR (CANDU)……………………….…………………………….......26
3.3.- Reactor PWR…………………………….…………………………………….......27
3.4.- Reactor BWR………………………………………………………………….......28
3.5.- Reactores de Enriquecimiento……...……………………………………………...29
Capítulo IV Física de neutrones…………………..…………………………………….30
4.1.- El reactor nuclear (reactor de fisión)……………………………………...……….31
4.2.- La fisión nuclear……………………………………………………………...........34
4.3.- teoría del frenado…………………………………………………………………..44
4.4.- factor de multiplicación……………………………………………………...…….49
4.5.- Teoría de difusión…………………………………………………...……………..57
Conclusión……………………………………………………………………………........68
Bibliografías……………………………………………………………………………….69
INTRODUCCION
Debido a que los neutrones son partículas pesadas y con carga eléctrica neutra, tienen
propiedades que los hacen especialmente interesantes e importantes en la ciencia y
tecnología contemporáneas. La mayoría de las reacciones nucleares inducidas por
neutrones, son fuentes de información acerca de los núcleos. Además, es posible producir
nuevos elementos artificiales que tienen aplicaciones en otras ramas de la ciencia, tales
como la Química, Biología y Medicina.
En el primer capítulo llamado panorama energético, hablaremos de las principales centrales
eléctricas que contamos en nuestro país y de los principales beneficios que de ellas
obtenemos.
Dentro este capítulo describiremos lo que es una central hidroeléctrica, termoeléctrica (tipo
vapor, turbo gas, combustión interna y ciclo combinado), así como la central eoloelectrica y
la nucleoeléctrica.
En el segundo capítulo que lleva por nombre principios básicos, mencionaremos lo que es
una estructura atómica y cuáles son los elementos que la componen. También se hablara de
la fisión nuclear y de los elementos fisiles. Veremos cómo se lleva a cabo la reacción en
cadena dentro del reactor nuclear y por último los principios básicos para la generación de
electricidad por medios nucleares.
En el tercer capítulo llamado tecnologías de reactores, se dará a conocer las principales
características de lo que es un reactor nuclear, también se hablara de lo que es un reactor
PHWR (candu), así como también del reactor PWR que se describirá por medio de un
esquema.
Mencionaremos al reactor BWR describiendo sus características principales y por ultimo al
reactor de enriquecimiento que solo se utiliza para generar combustible para otros
reactores.
El cuarto capítulo llamado física de neutrones se basara en conocer el uso y la aplicación de
la física de neutrones en un sistema que permita tener reacciones de fisión controladas y,
además permita aprovechar la energía liberada en ellas. Este sistema se conoce con el
nombre de reactor nuclear, el cual permite la reacción de fisión en cadena para
posteriormente ser una fuente de energía eléctrica.
Y finalmente daremos una conclusión adecuada a los capítulos mencionados y requerida
para este trabajo.
1
CAPITULO I
PANORAMA ENERGETICO
2
1.1 GENERACION
La generación de energía eléctrica en la Comisión Federal de Electricidad se realiza por
medio de las tecnologías disponibles en la actualidad, centrales hidroeléctricas,
termoeléctricas, eólicas y nuclear.
Al cierre del mes de diciembre del año 2002 la CFE, incluyendo productores externos de
energía, cuenta con una capacidad efectiva instalada para generar energía eléctrica de
40,349.94 MW, de los cuales 9,378.82 MW son de hidroeléctricas, 26,161.16 MW
corresponden a las termoeléctricas que consumen hidrocarburos; 2,600.00 MW a
carboeléctricas; 842.90 MW a geotermoeléctricas; 1,364.88 MW a la nucleoeléctrica y 2.18
MW a la eoloeléctrica. (Como se muestra en la fig. 1.1.1)
(Fig. 1.1.1 Capacidad efectiva instalada de generación.)
3
1.2 HIDROELÉCTRICA
Las centrales hidroeléctricas utilizan la energía potencial del agua como fuente primaria
para generar electricidad. Estas plantas se localizan en sitios en donde existe una diferencia
de altura entre la central eléctrica y el suministro de agua.
De esta forma, la energía potencial del agua se convierte en energía cinética que es utilizada
para impulsar el rodete de la turbina y hacerla girar para producir energía mecánica.
Acoplado a la flecha de la turbina se encuentra el generador que finalmente convierte la
energía mecánica en eléctrica. (Como se muestra en la fig. 1.2.1)
(Fig. 1.2.1 Esquema de una central hidroeléctrica.)
La tecnología hidroeléctrica requiere la construcción de presas, una casa de máquinas para
instalar los equipos electromecánicos (turbina, generador eléctrico, transformadores), y un
cuarto de control para la operación de la central. Estas instalaciones deben estar debajo del
fondo de la base de la cortina de la presa, con la finalidad de aprovechar la energía
potencial del agua.
El agua de la presa es conducida por una tubería hasta el rodete de la turbina hidráulica. La
fuerza del agua hace girar los álabes o aspas de la turbina transformando la energía
potencial del agua en energía cinética, que se transforma en energía mecánica. El rodete de
la turbina tiene acoplado un generador eléctrico, que transforma la energía mecánica en
eléctrica.
Una característica importante es la imposibilidad de su estandarización, debido a la
heterogeneidad de los lugares en donde se dispone de aprovechamiento hidráulico, dando
lugar a una gran variedad de diseños, métodos constructivos, tamaños y costos de
inversión.
Las centrales hidroeléctricas se pueden clasificar de acuerdo con dos diferentes criterios
fundamentales, a saber:
1. Por su tipo de embalse.
2. Por la altura de la caída del agua
4
1.3 TERMOELÉCTRICA
En el proceso termoeléctrico existe una clasificación de tipos de generación de acuerdo con
la tecnología utilizada para hacer girar los generadores eléctricos, denominándoseles como
sigue:
 Vapor
Con vapor se produce el movimiento de una turbina acoplada al generador eléctrico.
 Turbogás
Con los gases de combustión se produce el movimiento de una turbina acoplada al
generador eléctrico.
 Combustión Interna
Con un motor de combustión interna se produce el movimiento del generador eléctrico.
Una segunda clasificación corresponde al tipo de centrales que utilizan una combinación de
las tecnologías de turbogás y vapor para la generación de energía eléctrica, denominada:

Ciclo combinado
Otra clasificación de las centrales termoeléctricas corresponde al combustible primario para
la producción de vapor, que son:

Vapor (combustóleo, gas y diesel)

Carboeléctrica (carbón)

Dual (combustóleo y carbón)

Geotermoeléctrica ( vapor extraído del subsuelo)

Nucleoeléctrica (uranio enriquecido)
5
1.3.1 Descripción del proceso de las centrales termoeléctricas tipo vapor
Una central termoeléctrica de tipo vapor es una instalación industrial en la que la energía
química del combustible se transforma en energía calorífica para producir vapor; este se
conduce a la turbina donde su energía cinética se convierte en energía mecánica, la que se
transmite al generador, para producir energía eléctrica. (Como se muestra en la fig. 1.3.1)
(Fig. 1.3.1 Secuencia de transformaciones de energía.)
6
1.3.2 Centrales termoeléctricas tipo vapor
Estas centrales utilizan el poder calorífico de combustibles derivados del petróleo
(combustóleo, diesel y gas natural), para calentar agua y producir vapor con temperaturas
del orden de los 520°C y presiones entre 120 y 170 kg/cm², para impulsar las turbinas que
giran a 3600 r.p.m. (como se muestra en la fig. 1.3.2)
(Fig. 1.3.2 Esquema de una central termoeléctrica tipo vapor.)
7
1.3.3 Turbogás
Descripción del proceso de las centrales tipo turbogás
La generación de energía eléctrica en las unidades turbogás se logra aprovechando
directamente, en los álabes de la turbina, la energía cinética que resulta de la expansión de
aire y gases de combustión, comprimidos.
La turbina está acoplada al rotor del generador, dando lugar a la producción de energía
eléctrica. Los gases de la combustión, después de trabajar en la turbina, se descargan
directamente a la atmósfera. (Como se muestra en la fig. 1.3.3)
(Fig. 1.3.3 Esquema de una central tipo turbogás.)
Estas unidades emplean como combustible gas natural o diesel. Desde el punto de vista de
la operación, el breve tiempo de arranque y la versatilidad para seguir las variaciones de la
demanda, hacen a las turbinas de gas ventajosas para satisfacer cargas de horas pico y
proporcionar capacidad de respaldo al sistema eléctrico.
8
1.3.4 Combustión interna
Descripción del proceso de las centrales tipo combustión interna
Las centrales de tipo combustión interna cuentan con motores de combustión interna donde
se aprovecha la expansión de los gases de combustión para obtener la energía mecánica,
que es transformada en energía eléctrica por el generador. (Como se muestra en la fig.
1.3.4)
(Fig. 1.3.4 Esquema de una central de tipo combustión interna.)
Las centrales de combustión interna, utilizan generalmente diesel como combustible y en
otros casos, como en el de la central General Agustín Olachea A.(San Carlos), sus dos
unidades de combustión interna emplean una mezcla de combustóleo y diesel.
9
1.3.5 Ciclo combinado
Las centrales de ciclo combinado están integradas por dos tipos diferentes de unidades
generadoras: turbogás y vapor. Una vez terminado el ciclo de generación de la energía
eléctrica en las unidades de turbogas, los gases desechados con alta temperatura, se utilizan
para calentar agua llevándola a la fase de vapor, que se aprovecha para generar energía
eléctrica adicional.
La combinación de estos dos tipos de generación, permiten el máximo aprovechamiento de
los combustibles utilizados, dando la mejor eficiencia térmica de todos los tipos de
generación termoeléctrica. (Como se muestra en la fig. 1.3.5)
(Fig. 1.3.5 Esquema de una central de ciclo combinado.)
10
El paquete o arreglo general de una planta de ciclo combinado se puede esquematizar de
acuerdo con diversas posibilidades. El número de unidades de turbogás por unidad de vapor
varía desde uno a uno hasta cuatro a uno. En cuanto al criterio de diseño de la fase de vapor
existen tres variantes:
A).- Sin quemado adicional de combustible.
B).- Con quemado adicional de combustible para control de la temperatura.
C).- Con quemado adicional de combustible para aumentar la temperatura y la presión del
vapor.
Una ventaja de este tipo de plantas es la posibilidad de construirlas en dos etapas. La
primera, la tipo turbogás, puede ser terminada en un plazo breve y de inmediato iniciar su
operación; posteriormente, se puede terminar la construcción de la unidad de vapor, y
completarse así la construcción e iniciar el funcionamiento del ciclo combinado.
11
1.4 EOLOELÉCTRICA
Este tipo de central convierte la energía del viento en energía eléctrica mediante una
aeroturbina que hace girar un generador. La energía eólica está basada en aprovechar un
flujo dinámico de duración cambiante y con desplazamiento horizontal. La cantidad de
energía obtenida es proporcional al cubo de la velocidad del viento, lo que muestra la
importancia de este factor. (Como se muestra en la fig. 1.4.1)
(Fig. 1.4.1 Esquema de una central eólica.)
Con velocidades de viento inferiores a 5 m/s el aerogenerador no genera energía eléctrica;
por encima de 25 m/s las aspas del rotor se alinean (girando sobre su eje) con el viento
automáticamente, deteniendo de esta manera su giro para evitar daños a los equipos.
Además, los aerogeneradores cuentan con un sistema de control automático que permite
variar la orientación del aerogenerador, con la finalidad de aprovechar en forma óptima los
vientos en la velocidad y dirección en que se presenten.
La tecnología denominada eoloeléctrica, para generar energía eléctrica, se basa en el
principio de transformar la energía del viento en energía eléctrica, para lo cual se usan los
aerogeneradores.
Que consisten en una torre tubular cónica de 31.5 m de altura, sobre la cual están
montadas en su extremo superior tres aspas o álabes con un diámetro de giro de 27 m y
cuyo diseño permite aprovechar la energía del viento, en los rangos de 5 a 25 metros por
segundo. Estas aspas o álabes, están conectadas a un rotor que lleva acoplado el generador
eléctrico, obteniéndose así la transformación a energía eléctrica.
12
1.5 NUCLEOELÉCTRICA
Una nucleoeléctrica es una central térmica de producción de electricidad. Su principio de
funcionamiento es básicamente el mismo que el de las plantas que funcionan con carbón,
combustóleo o gas: la conversión de calor en energía eléctrica.
Esta conversión se realiza en tres etapas: en la primera, la energía del combustible se utiliza
para producir vapor a presión y temperatura elevadas; en la segunda etapa la energía del
vapor se transforma en movimiento de una turbina; en la tercera etapa, el giro del eje de la
turbina se transmite a un generador, que produce la energía eléctrica.
Las centrales nucleoeléctricas se distinguen de las demás centrales térmicas solamente en la
primera etapa de conversión, es decir, en la forma de producir vapor.
En las centrales convencionales el vapor se produce en una caldera donde se quema carbón,
combustóleo o gas natural; las centrales nucleoeléctricas tienen un reactor nuclear, que
equivale a la caldera de las centrales convencionales.
En las centrales nucleoeléctricas el combustible que se utiliza es el uranio; el calor se
obtiene a partir de la fisión del uranio, sin producir combustión. El uranio se utiliza en su
forma natural que contiene 0.7% de uranio 235 o bien en forma de uranio enriquecido, al
que artificialmente se eleva la concentración de uranio 235 hasta un 3 o 4%.
El uranio se coloca en los reactores en forma de uranio metálico o de óxido de uranio
(UO2), dispuesto en pastillas compactadas. Para contener en el combustible los productos
formados en la fisión, las pastillas se encapsulan en un tubo hermético de zircaloy. En
conjunto se obtiene una central nucleoeléctrica laguna verde. (Como se muestra en la fig.
1.5.1)
(Fig. 1.5.1 Imagen de la central nucleoeléctrica laguna verde.)
13
En nuestro país contamos con una central nucleoeléctrica llamada Laguna Verde (CNLV)
que se localiza sobre la costa del Golfo de México, en el municipio de Alto Lucero, estado
de Veracruz. Está integrada por dos unidades, cada una con una capacidad de 682.44 MW
(megawatts eléctricos); los reactores son tipo Agua Hirviente (BWR-5) y la contención tipo
Mark II de ciclo directo.
La Unidad 1 ha generado más de 55.7 millones de MWh, con una disponibilidad de 83.8%
y un factor de capacidad de 79.7%; mientras que la Unidad 2 ha generado más de 35.8
millones de MWh, siendo su factor de disponibilidad de 84.9% y el de capacidad de 81.2%.
Ambas unidades representan el 3.38% de la capacidad efectiva instalada de CFE, con una
contribución a la generación del 4.9%.
En cuanto a la seguridad en la operación de la central, en más de 400 unidades
nucleoeléctricas que actualmente operan en el mundo se ha demostrado que el riesgo es
inferior al de cualquier planta industrial que utilice calor para trabajar, ya que desde el
diseño, construcción y operación de una nucleoeléctrica el énfasis fundamental está
precisamente en garantizar la seguridad del personal, así como la seguridad física de las
instalaciones.
La Central Nucleoeléctrica Laguna Verde (CNLV) cumple con las más estrictas normas
internacionales de seguridad y su operación es certificada y supervisada directamente por
los organismos reguladores nacionales e internacionales, para la aplicación de la energía
nuclear.
En el caso de México, Laguna Verde cumple con las más estrictas normas; su operación
la vigilan los diversos organismos reguladores nacionales e internacionales responsables de
la correcta aplicación de la energía nuclear para el progreso.
Con la certificación del organismo regulador nuclear mexicano, la Comisión Nacional de
Seguridad Nuclear y Salvaguardas (CNSNS), la Secretaría de Energía otorgó las licencias
para operación comercial a la unidad 1 el 29 de julio de 1990 y a la unidad 2 el 10 de abril
de 1995.
La energía eléctrica generada en la CNLV fluye a través de la subestación elevadora que se
conecta a la red eléctrica nacional mediante dos líneas de transmisión de 230 Kv a la
subestación Veracruz II, así como con 3 líneas de transmisión de 400 Kv: dos a la
subestación Puebla II y la tercera a la subestación Poza Rica II.
Las centrales nucleares permiten reducir la utilización de combustible fósil insustituible,
además de ser una alternativa para generar energía eléctrica limpia, ya que no se produce
emanación al medio ambiente de gases de combustión causantes de la lluvia ácida (las
emisiones de dióxido de carbono son el principal causante del efecto invernadero).
14
CAPITULO II
PRINCIPIOS BASICOS
15
2.1 ESTRUCTURA ATOMICA
Todos los cuerpos están formados por átomos
La parte más pequeña de cualquier sustancia que podemos ver en el microscopio está
formada por millones de pequeñas partículas que se llaman moléculas.
Estas moléculas, están formadas por uno o más átomos, que contienen partículas aún más
pequeñas llamadas electrones, protones y neutrones.
Los átomos tienen un núcleo y electrones
Los átomos se pueden imaginar cómo sistemas solares en miniatura. En su centro se
encuentran los protones y los neutrones firmemente unidos formando el núcleo atómico.
Alrededor de este núcleo, como si fuesen pequeños planetas girando alrededor del Sol, se
encuentran los electrones. (En la fig. 2.1.1 se muestra la composición de la molécula del
agua)
(Fig. 2.1.1 Molécula de agua).
16
No todos los átomos son iguales, como no son iguales las sustancias que resultan cuando se
agrupan estos átomos.
Los elementos se diferencian por el número de protones que contienen en su núcleo. Así
todos los átomos de azufre tienen en su núcleo 16 protones, los de cobre 29, los de oro 79,
etc. Los átomos de un mismo elemento pueden ser diferentes entre sí por contener diferente
número de neutrones en su núcleo. Estos átomos se denominan isótopos. (Tenemos en la
fig. 2.1.2.al núcleo.)
(Fig. 2.1.2 Representación del núcleo.)
Los núcleos atómicos se pueden partir.
Mediante métodos generalmente complejos podemos lograr que una partícula como el
neutrón, choque contra el núcleo de un átomo. Al chocar contra él, el núcleo se excita
debido a que su estructura se altera, pudiendo llegar esta excitación a partir el núcleo en dos
núcleos más pequeños. Este proceso de división del núcleo se llama fisión.
17
2.2 FISION NUCLEAR
De la fisión nuclear se obtiene energía
En cada una de las fisiones se produce una pequeña cantidad de energía en forma de calor;
al producirse la reacción en cadena se suman las energías producidas en cada fisión y se
puede obtener con este proceso una cantidad de energía considerable, este es el origen de la
energía nuclear. (Como se muestra en la fig. 2.2.1)
(Fig.2.2.1 Fisión nuclear.)
Para que se produzca energía mediante la fisión del núcleo, se precisa no obstante que se
cumpla una condición: que las masas resultantes de la división sean inferiores a la masa
inicial del átomo, en caso contrario la reacción no se producirá porque necesita absorber
una gran cantidad de energía.
El uranio o el plutonio son los materiales utilizados generalmente en una central nuclear. La
razón de esto es su número atómico elevado, que permite la generación de energía al
realizarse la división del núcleo. El uranio contiene isótopos, es decir, átomos con el mismo
número de protones pero no de neutrones.
El uranio natural consta de 92 protones y tres isótopos distintos con 142, 143 y 146
neutrones. Para distinguir los diferentes tipos de isótopos se nombran por la suma de
neutrones y protones de su núcleo; así, los diferentes isótopos del uranio natural se
denominan uranio 234, 235 o 238.
De los tres isótopos sólo el 235 es fisible, debiendo ser separado de los demás para
utilizarlo como combustible nuclear. Por su parte, el uranio 238, una vez bombardeado con
neutrones se transforma en plutonio 239, que sí es fisible.
18
Para fisionar el uranio se bombardea el núcleo con un neutrón, produciéndose cesio 140,
rubidio 93 y 3 neutrones. Para que la reacción nuclear se mantenga, es preciso que la
cantidad de átomos de uranio y su concentración sean superior a cierto límite, a partir del
cual se produce lo que se conoce como reacción en cadena.
Esa cantidad y concentración mínima de átomos de uranio necesarios para que la reacción
no se detenga se denomina masa crítica. Por encima de esta masa crítica se producen más
neutrones de los que se necesitan, y por tanto la reacción se mantiene. (Como se muestra en
la fig. 2.2.2)
(Fig. 2.2.2 Fisión del uranio 235.)
19
2.3 REACCION EN CADENA
Una reacción en cadena es cualquier proceso en el cual todos los pasos del proceso
producen los pasos que le siguen. Si cada paso produce una sucesión de pasos idénticos a si
mismos, tendremos una serie infinita de eventos idénticos. Esto es una reacción en cadena
como se aplica a la fisión nuclear.
Una reacción nuclear en cadena es una sucesión de fisiones nucleares que ocurren en forma
casi simultánea, en la cual los neutrones constituyen los eslabones de dicha cadena.
Supongamos que en una fisión nuclear se liberan 2 neutrones.
Estos neutrones que se han liberado pueden fisionar 2 nuevos núcleos atómicos, de donde
se liberan 4 nuevos neutrones, los que a su vez harán impacto sobre 4 núcleos atómicos y
así sucesivamente, (fig. 2.3.1)
(Fig. 2.3.1 Reacción en cadena.)
Cuando se fisionan ciertos núcleos como los del isótopo 235 del uranio, aparecen otros
neutrones libres. Si en las proximidades del núcleo hay más núcleos de uranio, estos
neutrones libres producirán a su vez más fisiones. Así, en poco tiempo, el número de
fisiones puede aumentar mucho, dando lugar a lo que se llama una reacción en cadena.
20
El proceso de fisión da como resultado la liberación de una gran cantidad de energía, la
cual es posible convertir en trabajo útil. Un factor importante que hace al proceso de fisión
una fuente práctica de energía son los neutrones adicionales que se producen y que habilita
el proceso para que sea continuo. (Como se muestra en la Fig. 2.3.2)
Los reactores se construyen de tal forma que garanticen la continuidad de una reacción en
cadena.
(Fig. 2.3.2 Continuidad de la reacción en cadena en un reactor.)
21
2.4 PRINCIPIO BASICO PARA LA GENERACION DE ELECTRICIDAD POR
MEDIOS NUCLEARES
Una central nucleoeléctrica es una instalación industrial donde se logra transformar
mediante varios procesos la energía contenida en los núcleos de los átomos en energía
eléctrica utilizable. Es similar a una central termoeléctrica convencional; la diferencia
estriba en la forma de obtener el calor para la producción de vapor.
Mientras que en una termoeléctrica el calor se obtiene quemando combustibles fósiles o
extrayendo vapor natural del subsuelo, en una nucleoeléctrica el calor se obtiene a partir de
la fisión nuclear en un reactor. La reacción de fisión se produce al partir los núcleos
atómicos de algún elemento como el uranio 235 o el plutonio 239, mediante el bombardeo
de los mismos con pequeñísimas partículas denominadas neutrones.
Esencialmente un reactor nuclear es un enorme recipiente dentro del cual se está efectuando
una reacción de fisión en cadena de manera controlada; está colocado en el centro de un
gran edificio de gruesas paredes de concreto, que protegen al personal que lo opera y al
público de la radiactividad que produce.
El combustible nuclear más utilizado es el uranio y puede utilizarse de dos maneras:
Natural, que contiene 0.7% de uranio 235 y 99.3% de uranio 238 el cual no se fisiona,
colocándose en los reactores en forma metálica o de dióxido de uranio (UO2).
Enriquecido, al que artificialmente se eleva la concentración del uranio 235 hasta un 3 ó
4% disminuyéndose la del 238 a 97%.
El mineral se somete a diferentes procesos para lograr que llegue a contener
aproximadamente 3% de núcleos de uranio 235, que son los que dan lugar a la reacción en
cadena.
El combustible nuclear se prepara en forma de pastillas. Estas pastillas se colocan en unos
tubos de material inoxidable.
Los tubos se agrupan en haces que se llaman elementos combustibles. Estos elementos
combustibles se colocan en el núcleo del reactor. (Como se muestra en la Fig. 2.4.1)
(Fig. 2.4.1Elementos de combustible.)
22
El poder energético de una pastilla de combustible cuyo peso sea de 10 gramos equivale al
de 3.9 barriles de combustóleo. (Como se muestra en la fig. 2.4.2)
(Fig. 2.4.2 Pastilla de combustible U235.)
En el reactor se tienen los elementos llamados barras de control, que se encargan de
mantener la intensidad de la reacción en cadena que ocurre en su interior dentro de los
límites deseados y de conformidad con la cantidad de energía térmica que se quiera
producir.
Las barras de control contienen carburo de boro, mismo que tiene la propiedad de capturar
neutrones y, debido a esto, se establece la función de control. Si se desea disminuir la
intensidad de la reacción nuclear que ocurre dentro del reactor, basta con insertar las barras
de control entre los ensambles de combustible del núcleo, en la medida de la disminución
deseada.
Las barras se encargan de capturar gran parte de los neutrones libres, reduciéndose la
cantidad de fisiones y por lo tanto la energía térmica producida por el reactor. En caso de
querer subir la potencia del reactor (aumentar la intensidad de la reacción nuclear) sólo hay
que extraer las barras de control, hasta lograr la potencia deseada.
El calor obtenido es utilizado para calentar agua en el interior del reactor, produciéndose así
el vapor que es utilizado para hacer girar una turbina, que no es más que un conjunto de
discos provistos de álabes o “paletas”. Este movimiento será transmitido al generador, el
cual producirá la electricidad (La energía eléctrica producida por la fisión de 1 kg de uranio
235, es de aproximadamente 18.7 millones de kilowatts-hora).
El objetivo de todo este proceso no es otro que el de producir energía eléctrica, la cual será
posteriormente distribuida hacia las industrias, hogares, talleres, etcétera.
23
CAPITULO III
TECNOLOGIA DE REACTORES
24
3.1 EL REACTOR NUCLEAR
Un reactor nuclear es una instalación capaz de iniciar, mantener y controlar las reacciones
de fisión en cadena, con los medios adecuados para extraer el calor generado. Un reactor
nuclear consta de varios elementos, que tienen cada uno un papel importante en la
generación de calor. Estos elementos son:
El combustible, formado por un material fisionable, generalmente un compuesto de uranio,
en el que tienen lugar las reacciones de fisión, y por tanto es la fuente de generación de
calor.
El moderador, que hace disminuir la velocidad de los neutrones rápidos, llevándolos a
neutrones lentos o térmicos. Este elemento no existe en los reactores denominados rápidos.
Se emplean como materiales moderadores el agua, el grafito y el agua pesada.
El refrigerante, que extrae el calor generado por el combustible del reactor. Generalmente
se usan refrigerantes líquidos, como el agua ligera y el agua pesada, o gases como el
anhídrido carbónico y el helio.
Los elementos de control, que actúan como absorbentes de neutrones, permiten controlar
en todo momento la población de neutrones y, por tanto, la reactividad del reactor,
haciendo que sea crítico durante su funcionamiento y subcrítico durante las paradas. Los
elementos de control tienen forma de barras, aunque también puede encontrarse diluido en
el refrigerante.
El blindaje, que evita el escape de radiación gamma y de neutrones del reactor. Los
materiales usados como blindaje son el hormigón, el agua y el plomo.
Los reactores nucleares se clasifican, de acuerdo con la velocidad de los neutrones que
producen las reacciones de fisión, en: reactores rápidos y reactores térmicos. Por tanto las
centrales nucleoeléctricas existentes tendrán: un reactor rápido o un reactor térmico.
Casi todos los neutrones liberados por fisión poseen energías elevadas y, por tanto, de no
existir un moderador en el núcleo, la mayoría de las fisiones serán producidas por neutrones
rápidos. El reactor nuclear que corresponde a este caso recibe el nombre de reactor rápido.
El combustible de tales reactores debe tener una proporción considerable alrededor del 10%
o más de material físil.
A su vez, los reactores térmicos se clasifican, de acuerdo con el tipo de moderador
empleado, en: reactores de agua ligera, reactores de agua pesada y reactores de grafito. Con
cada uno de estos reactores está asociado generalmente el tipo de combustible usado, así
como el refrigerante empleado.
25
3.2 REACTOR PHWR (CANDU)
Las principales características de este reactor, desarrollado en Canadá, consisten en que
utiliza uranio natural como combustible y agua pesada como moderador y enfriador.
El núcleo del reactor se encuentra dentro de un cilindro llamado calandria, atravesado
axialmente por tubos de pared relativamente gruesa llamados tubos de presión, en cuyo
interior se alojan los elementos combustibles.
En el tambor se encuentran también otro tipo de conductos, mediante los cuales se pueden
introducir varillas de control que absorben neutrones (los frenan), permitiendo actuar sobre
la reacción en el supuesto de que se produjese una pérdida de líquido refrigerante.
En este tipo de reactor la pérdida de refrigerante no implica pérdida de moderador, por lo
que el mantenimiento de la reacción llegaría a sobrecalentar el núcleo finalizando en su
destrucción, motivo por el que se disponen las varillas de control de emergencia.
Por dentro de los tubos de presión, bañando los elementos combustibles, también circula
agua pesada refrigerando dichos elementos, lo cual hace que su temperatura se eleve sin
llegar a entrar en ebullición, debido a que la presión en el interior de los tubos es muy alta.
El agua pesada caliente pasa a continuación al generador de vapor en el que transfiere su
energía térmica a un circuito de agua natural y la hace hervir.El vapor, así generado, mueve
al turbogenerador para producir energía eléctrica después de lo cual es condensado y
regresado nuevamente al generador de vapor.
Por su parte, el agua pesada, después de transferir su calor al agua natural, regresa al reactor
para continuar refrigerando a los elementos combustibles. (Como se muestra en la fig.3.2.1)
(Fig.3.2.1 Reactor CANDU.)
26
3.3 REACTOR PWR
En este tipo de reactor los elementos combustibles se encuentran dentro de una gran vasija
a presión llena de agua ligera que desempeña el papel tanto de moderador como de
refrigerante. Como en el caso del reactor CANDU, el agua no hierve debido precisamente a
la presión interna de la vasija.
El agua transmite su energía térmica con posterioridad a otro circuito de agua ligera y la
hace entrar en ebullición, fenómeno que tiene lugar en el generador de vapor; dicho vapor
se utiliza para mover el turbogenerador, después de lo cual es condensado y regresado de
nueva cuenta al generador de vapor.
Por su parte, el agua a presión, después de haberse desprendido de su calor, es reintegrada
al reactor para repetir su ciclo.
Este tipo de reactores utiliza como combustible uranio enriquecido que, como se mencionó
anteriormente, es el combustible en el cual la proporción del isótopo U235 es aumentada
desde un 0.7% que es la proporción que se tiene en el uranio natural hasta un 3%.
Por otra parte, las sustancias que sirven de moderadores absorben cierta cantidad de
neutrones en menor o mayor grado, según sea el moderador; el agua ligera absorbe más
neutrones que el agua pesada y para compensar el efecto que esta disminución de neutrones
tiene sobre el número de fisiones, hay necesidad de aumentar el número de U235 enriquecido
al combustible. (Como se muestra en la fig. 3.3.1)
(Fig.3.3.1 Reactor PWR.)
27
3.4 REACTOR BWR
Se asemeja mucho al PWR, ya que también utiliza agua ligera como moderador y enfriador
y uranio enriquecido como combustible. La diferencia está en que en el BWR el agua sí
entra en ebullición dentro de la vasija, gracias a que la presión interior es menor que en el
PWR, y se produce así directamente el vapor que se utiliza para mover el turbogenerador.
Como en los casos anteriores, después de efectuar esta operación, el vapor es condensado y
regresado al reactor para repetir el ciclo. La sencillez de este reactor lo hace el de menor
costo y la ausencia del generador de vapor determina que su eficiencia sea un poco más
elevada que la del PWR.
Ambos integran la familia de los LWR (Reactor de agua ligera) que domina ampliamente el
mercado de la industria nucleoeléctrica ya que las 250 unidades que existían en operación a
fines de 1980, aproximadamente 80% son de algunos de este tipo, proporción que se
sostiene en los 275 reactores en etapa de construcción a la fecha. (Como se muestra en la
fig. 3.4.1)
(Fig. 3.4.1 Reactor BWR.)
28
3.5 REACTORES DE ENRIQUECIMIENTO
Un reactor de enriquecimiento no se utiliza básicamente para generar energía con destino al
consumo. El objetivo principal es el de producir combustible que pueda ser utilizado en
otros reactores.
El combustible utilizado en estos reactores es uranio 238. Se trata de un isótopo del uranio
no fisionable, al contrario del uranio 235 que sí se utiliza en los reactores convencionales.
El plutonio 239 es un material fisionable. Se obtiene bombardeando el átomo de uranio 238
con un neutrón, que al descomponerse (debido a su inestabilidad) se desprende de un
electrón, transformándose en plutonio 239.
A su vez, una parte del plutonio generado se fisiona al recibir el impacto de un neutrón, que
a su vez origina otros tres neutrones. Una cantidad de ese plutonio es conservado como
combustible para su utilización por otras centrales nucleares.
Estructuralmente, la central posee un núcleo de uranio y plutonio enriquecidos, que generan
los neutrones para bombardear los átomos de uranio 238. Éste último se encuentra situado
alrededor del núcleo del reactor en forma de varillas, y es el material que se enriquecerá
absorbiendo neutrones, para posteriormente convertirse en el combustible útil.
Este tipo de reactores se denominan de neutrones rápidos, debido a que no disponen de
moderador. Los neutrones a alta velocidad tienen mayor dificultad para producir fisiones,
por este motivo es necesario concentrar mucha más cantidad de material para que se
produzca la reacción; sin embargo tienen la ventaja de incrementar la producción de
plutonio 239, que es la razón de funcionamiento de este tipo de reactores.
Un reactor de enriquecimiento produce temperaturas de funcionamiento de unos 500 grados
centígrados, muy superior al de otras centrales nucleares, por ello precisa disponer de un
sistema de absorción del calor, que a su vez no absorba neutrones, con objeto de no actuar
como moderador (del que no dispone). Para ello se emplea sodio, que es sólido a
temperatura ambiente, pero que se torna líquido a la temperatura de trabajo.
En un tanque de sodio actuando como refrigerante se halla sumergido todo el bloque; el
sodio cede su calor a un intercambiador de calor que también contiene sodio (el motivo de
aislarlos es que el sodio explota con el agua) y de ahí se transfiere finalmente a un circuito
de vapor de agua para su aprovechamiento.
El núcleo del reactor dispone de unos agujeros por donde se pueden introducir varillas de
control, con objeto de detenerlo si fuera preciso.
29
CAPITULO IV
FISICA DE NEUTRONES
30
4.1
EL REACTOR NUCLEAR
Como se mencionó anteriormente, el reactor nuclear es un sistema en donde se llevan a
cabo las reacciones nucleares (fisión o fusión) en forma controlada.
El caso de interés son los reactores de fisión (laguna verde), los cuales utilizan como
combustible dióxido de uranio (uo2) enriquecido en u235; que nos proporciona, al ocurrir la
reacción de fisión, la energía térmica necesaria para que después de pasar por el ciclo de la
central se obtenga la energía eléctrica, la cual es distribuida a la población. Posteriormente
se estudiará más a detalle el proceso de la fisión.
El combustible está en una forma química de uo2, que en estado natural tendría las
proporciones de 99.28% de u238 o2 y 0.72% de u235 o2. Sin embargo, en la central laguna
verde, el uo2 utilizado está compuesto del 2 al 3% de u235 o2 y el resto de u238 o2 y decimos
que el combustible está enriquecido del 2 al 3% respectivamente.
Otro de los componentes importantes del reactor, es el moderador que permite disminuir la
energía cinética de los neutrones por medio de colisiones de dispersión elásticas, para que
éstos conlleven a otra fisión y así poder sostener la reacción en cadena, en el reactor de la
central laguna verde quien realiza esta tarea es el agua.
El refrigerante o enfriador tiene la misión de remover el calor que se genera al chocar los
productos de fisión con los materiales, si este calor no fuese extraído del núcleo la
temperatura aumentaría hasta niveles peligrosos, que pueden causar daño a la integridad
física del mismo; el agua efectúa esta misión en el reactor de la central laguna verde.
Por último los reactores nucleares se controlan regulando la cantidad de neutrones
presentes en el núcleo, esta función la llevan a cabo principalmente las barras de control, las
cuales están constituidas con materiales que son capaces de absorber a los neutrones sin
producir fisión, es decir, poseen una sección eficaz de captura neutrónica muy alta. La
sustancia que se utiliza con más frecuencia es el carburo de boro enriquecido en B-1.
Para un reactor nuclear del tipo de laguna verde, el arreglo de combustible, moderador,
refrigerante y barras de control está ilustrado en la página siguiente de la figura (4.1.1) y
(4.1.2).
31
(Figura 4.1.1 Núcleo y celda combustible de un BWR.)
32
(Figura 4.1.2 Núcleo y celda combustible de un BWR.)
33
4.2 LA FISION NUCLEAR
De las reacciones nucleares existentes, la reacción de fisión es la de interés para esta sección.
A ésta se le puede ejemplificar con el modelo de la ruptura de la gota líquida.
Cuando es excitada (con calor) una gota de un líquido, empieza a oscilar por el aumento de
energía interna y la inercia del líquido moviéndose provoca que la gota se deforme. La
fuerza de lucha contra la deformación es la tensión superficial.
En el caso del núcleo las fuerzas inerciales las proporcionan las fuerzas coulombianas
de los protones y son contrarrestadas con las fuerzas gravitacionales o nucleares que
tienden a mantener unido al núcleo.
Si se continúa con la excitación hacia la gota líquida la fuerza de la tensión superficial ya no
es suficiente para mantener unido al líquido y se rompe en fragmentos. En el caso del núcleo
al absorber un neutrón se forma un núcleo compuesto (XA + n ─¾ XA+1), el cuál se
desestabiliza y las fuerzas de repulsión son capaces de fisionar el átomo.
Cuando se logra el proceso de fisión el núcleo se rompe en dos grupos de protones y
neutrones, es decir, en dos núcleos nuevos llamados fragmentos de fisión; figura (4.2.1) y
(4.2.2).
(Figura 4.2.1 Pasos posibles del proceso de fisión de acuerdo al modelo, gota líquida.)
34
(Figura 4.2.2 Representación esquemática de la reacción de fisión.)
Generalmente, los fragmentos de fisión no son del mismo tamaño y además son núcleos
inestables que decaen por la emisión de radiación β principalmente. Lo descrito
anteriormente se ilustra en la Fig. 4.2.3, donde se observa el rendimiento (Yield - γ) de la
fisión que representa la producción de cada nuevo núcleo con respecto a su masa atómica.
Esta gráfica depende del tipo de combustible y de la energía del neutrón que provoca la
fisión.
(Figura 4.2.3 Rendimiento de fragmentos de fisión obtenidos de la fisión térmica del
U235, U233, Pu239.)
35
La mayoría de los neutrones que se producen en la fisión se manifiestan en forma
instantánea (10-14 seg.) y son llamados neutrones prontos o inmediatos. Existen otros que
aparecen con un cierto retraso (0.1 - 80.0 seg.) a los cuales se les denomina como neutrones
retardados y aunque la fracción (β < 1%) es pequeña son importantes para el control
efectivo de la población neutrónica en un Reactor Nuclear.
A los núcleos que emiten neutrones retardados se les conoce con el nombre de precursores
de neutrones.
El numero total de neutrones ( prontos y retardados ) que se emiten en la fision, se refieren
a un numero promedio (v) y depende del combustible y de la energia del neutron incidente.
(Como se muestra en la tabla 4.2.1)
PRODUCCION (ν)
ELEMENTO FISIL
U-235
U-233
Pu-239
2.432
2.482
2.874
(Tabla 4.2.1 "Producción promedio de neutrones para diferentes núcleos fisiles".)
Una de las características más notables del proceso de fisión es la magnitud de la energía
liberada, la cual es cerca de 200 MeV por fisión. La energía total liberada puede ser
calculada de la diferencia de masa del núcleo compuesto (U235 + n 10 = [U236] *) y un par
de productos de fisión típicos estables, por ejemplo Mo y La, más dos neutrones que
faltarían para completar el número de masa 236 del núcleo compuesto.
Note que el número de protones del Mo y del La no suman los 92 del U236 esto se debe a
que tanto él La como el Mo se originan del decaimiento radiactivo de los fragmentos de
fisión. Sus masas sumadas son 235.829 uma y la masa del núcleo compuesto es de 236.052
uma. El exceso de masa es ganado como energía y es igual a 0.223 uma, teniendo como
consecuencia una liberación de energía de 0.223 (931.5) = 207.7 MeV.
La cantidad total de la energía liberada por la fisión es la suma de las energías cinéticas de
los fragmentos de fisión, los neutrones emitidos, las gammas que se manifiestan
inmediatamente después de la fisión (gammas prontas) y la energía liberada de las cadenas
de decaimiento de los productos de fisión.
36
De tal manera que se puede hacer una estimación de la aportación de cada uno de los
núcleos y partículas antes mencionadas y hacer para cada núcleo fisil una tabla como se
muestra a continuación. (Tabla 4.2.2)
Energía cinética de los fragmentos de fisión.
167 MeV
Energía de los neutrones de fisión.
5
Rayos gamma prontos.
7
Energía de decaimiento β
5
Energía de decaimiento γ
5
11
Energía de los neutrinos.
Energía total de la fisión:
200 Mev
(Tabla4.2.2 Energía liberada en la fisión u235)
De la energía liberada no toda es aprovechable, ya que la única forma de hacerlo es frenar las
partículas involucradas en la liberación. Como el total de neutrinos no interaccionan con la
materia, se llevan 11 MeV al igual que algunas otras partículas (principalmente rayos
gamma) que se fuguen del sistema, llevándose aproximadamente 14 Mev.
Afortunadamente dentro de los procesos de captura neutrónica se logra producir más
energía γ la cual se absorbe dentro del sistema y compensa las perdidas mencionadas, por
tal motivo se menciona, en forma práctica, que la energía aprovechable de la fisión nuclear
es aproximadamente de 200 MeV.
Se sabe que 1 MeV es igual a 1.6 x 10-19 MW/seg, y por lo tanto, una fisión producirá
(200)(1.6 x 10-19) = 3.2 x 10-17 MW/seg de energía aprovechable. Entonces serán
necesarias 1/(3.2 x 10-17) = 3.125 x 1016 fisiones para producir un MW/seg.
37
La razón de fisión indica la cantidad de fisiones que ocurren en un combustible al estar
sujeto a un flujo neutrónico.
RF = φ Σf V [Fisiones/seg]
(4.1)
Donde:
RF: Razón de fisión
Φ: flujo Neutrónico
Σf: Sección eficaz macroscópica de fisión del combustible
V: Volumen del combustible
Entonces la potencia aprovechable, en MW, será:
P = (φ Σ f V)/3.125x 10 16
(4.2)
Esta ecuación es sólo una aproximación, que será válida si se considera que el volumen del
reactor no está cambiando (es decir, que el combustible no se gasta) de otra manera tanto el
volumen como Σf estarían decreciendo.
Para determinar los gramos de U235 que se fisionan se definirá la razón de quemado que se
obtiene multiplicando la razón de fisión por el número atómico del U235 y dividiendo por el
número de avogrado.
A
RQ= RF
(4.3)
(g/seg)
NA
Recordando que los núcleos de U235 se consumen por captura y fisión, entonces la rapidez de
absorción será:
Rapidez de absorción = (σa /σf)
>1
Lo que implica que la razón de consumo del U235 estará dado por:
RC=
σa
σf
(4.4)
RQ [g/seg]
38
Ejemplo:
Determinar la razón de fisión, la razón de quemado y la razón de consumo por día, del
reactor de la CLV cuando trabaja al 100% de su potencia térmica nominal.
RF = Σ f υV
= P (3.125X1016 FIS / MWSeg)
= (1931 MW) (3.125X1016 FIS/MWSeg) (3600Seg/h) (24h/dia)
RF = 5.2137X1024 FISIONES /DIA
RQ = RF A
NA
= 5.2137X1024 (235/ 0.6023X1024)
RQ = 2034 DIA
RC =
σa
σf
RQ [g/seg.]
Para el U235: σa = 680.8 b
(4.4)
y σf = 582 b
RC = ( 680.8 / 582.2) (2034.2)
= ( 1.1694) (2034.2)
RC = 2378. 75 g / dia
La reacción de fisión como se ha estudiado depende tanto del núcleo blanco y del neutrón;
por lo tanto se deben de conocer más a fondo las características de ambas partículas para que
la reacción de fisión ocurra con una mayor facilidad.
Al fisionarse un núcleo del combustible se logra también obtener neutrones, los cuales
aparecen con una energía cinética que cumple con una distribución X (E), que depende del
combustible en cuestión. (Fig. 4.2.4)
Para el caso del uranio 235
Χ(E) = 0.045 e-1.035E senh 2.29E
(4.5)
39
(Figura 4.2.4 Espectro energético de los neutrones prontos para el U235.)
Al obtener la energía promedio de la función X (E) se tiene que la energía cinética con la que
se emite un neutrón pronto en el proceso de fisión del U235 es:
E = 1.98 MeV
Por otro lado, la sección eficaz microscópica de fisión (σf) del combustible cuantifica el área
efectiva que un núcleo presenta a un neutrón en el proceso de fisión. Esta σf depende del
material combustible y de la energía cinética del neutrón.
(En la Figura 4.2.5 a, b y c. se observa la dependencia de la sección microscópica de fisión
con respecto a la energía del neutrón para varios combustibles.)
40
(Fig.4.2.5a Sección microscópica de fisión del U235, Pu239 y los principales isótopos
fisionables.)
41
(Figura 4.2.5b Sección microscópica del U235, Pu239 y los principales isotopos
fisionables.)
42
235
(Figura 4.2.5c Sección microscópica de fisión del U , Pu
fisionables.)
239
y los principales isótopos
Se observa de las gráficas que existen muchas energías donde el núcleo tiene una gran
posibilidad de absorber el neutrón y como es el caso del U238, Pu240, Th232 la viabilidad de
fisionarse con neutrones rápidos es mayor que con neutrones térmicos, a este tipo de
combustible se les denomina como material fisionable.
Cuando el combustible se fisiona fácilmente con los neutrones térmicos, entonces a éste se
le conoce como material fisil, que es el caso del U235, Pu239, U233. Existe la posibilidad
de que el núcleo de un combustible tenga la capacidad de absorber al neutrón sin
fisionarse y convertirse a un material fisil, a este tipo de combustibles se les conoce con el
nombre de material fértil, (U238
Pu239 , Th232
U233)
Otra de las características que se puede observar de las gráficas de los materiales fisionables
es que existen zonas dependientes de la energía donde la probabilidad de interacción del
núcleo y el neutrón aumenta, a esta zona se le denomina como "zona de resonancias".
Como es difícil mantener al neutrón con estas energías es preferible llevar a éste a energías
más bajas denominadas energías lentas (E ≤1 eV) donde se cumple que E = 3/2 KT, a esta
región se le llama zona lenta o zona 1/v porque:
1
σα =
1
=
V
E
Concluyendo, los neutrones al nacer de la fisión son neutrones rápidos y es necesario ir
disminuyendo la energía de éstos para hacerlos llegar a energía térmica (0.0253 eV) donde el
U235 presenta una gran sección eficaz de fisión y facilitar dicho proceso.
43
4.3 TEORIA DEL FRENADO
Como ya se mencionó anteriormente el moderador es el encargado de realizar el frenado de
los neutrones por medio de dispersiones elásticas, donde en cada colisión el neutrón pierde
una fracción de su energía.
Un buen moderador debe tener tres características principales que son un número másico
pequeño, una sección eficaz de dispersión grande y una sección eficaz de absorción
pequeña. Las bases teóricas se verán a continuación.
La pérdida de energía por colisión puede ser determinada por medio de las leyes de
conservación de la energía y del momento. Sea Ei, Pi y Ef, Pf, la energía cinética y el
vector de momento del neutrón antes y después de la colisión, respectivamente, y sea EA,
PA, la energía y el momento del núcleo del moderador después de la dispersión.
El neutrón se dispersa con un ángulo θ y el núcleo con ángulo ɸ . (Ver la fig. 4.3.1)
(Figura 4.3.1 Dispersión elástica del neutrón.)
De la ley de la conservación de la energía:
Ei = Ef + EA
(4.6)
y de la ley de la conservación del momento:
Pi = Pf + PA
(4.7)
44
(Figura 4.3.2 Diagrama vectorial para la conservación del momento.)
Se obtiene aplicando la ley de cosenos al sistema vectorial de la conservación del momento
(Figura 4.3.2) y utilizando la relación P = 2ME, una ecuación cuadrática en Ef cuya
solución es:
cos Ө +
Ef = Ei
A2 - Sen2 Ө
2
(A+1)2
Como el interés es que el neutrón pierda rápidamente energía en las colisiones, entonces se
busca que Ef sea mínima, lo cual se logra si θ = π, por lo tanto:
(Ef)MIN= A – 1
A +1
2
E | = α E1
Donde α es el parámetro de colisión y depende sólo del moderador:
Promedio de colicion
α =
A–1
A +1
2
En diferentes cálculos referidos a la moderación de neutrones se utiliza la pérdida total de
energía, para esto, es conveniente definir un nuevo parámetro denominado etargia (u) y que
es el logaritmo natural de la pérdida total de energía de un neutrón en su proceso de
moderación, matemáticamente:
Letergía
(4.11)
u = l n ( Ei / Ef )
Donde Ei es la energía inicial y Ef es la energía final del neutrón, respectivamente.
45
El cambio promedio en la letergia en una colicion elástica (delta u) indica la perdida fraccional
promedio de energía y, es independiente de la energía del neutrón. Se define entonces el
promedio logarítmico de energía perdida por colisión como:
ξ = (∆u) = 1 +
α
ln α = 1 - (A-1)2 ln
1 - α
2A
A+1
A - 1
(4.12)
El interés de calcular estos parámetros es poder determinar el número de colisiones <n>
necesarias para termalizar un neutrón con un moderador, el cual está dado por:
uu
<
n
>=
<n>= ξ
ξ
(4.13)
Para que pueda existir pérdida de energía, primero debe de existir un evento de dispersión y
como el parámetro que indica la posibilidad de ocurrencia de dicho evento es la sección
eficaz de dispersión, entonces se definirá el poder de frenado como:
P F = ξ ΣS
(4.14)
Sin embargo, este parámetro no es suficiente para describir lo eficiente que pueda ser un
material para moderar neutrones, debido a que no toma en cuenta que también existe la
absorción. Para establecer una comparación entre un moderador y otro se usará un parámetro
llamado Razón de Moderación, definido como:
RM= ξ ΣS = PF
Σa
Σa
(4.15)
donde:
Σs = sección efícaz de dispersión
Σa = sección efícaz de absorción
46
Ejemplo:
Calcular la energía final con la que sale un neutrón de 2.0 MeV después de colisionar con un
átomo de grafito. Además, calcular ξ, el poder de frenado, la razón de moderación del
grafito y el número de colisiones necesarias para termalizar el mencionado neutrón.
EF = α Ei
2
= A–1
A+1
= 12 – 1
12 + 1
2
Ei
( 2 ) = 11
13
2
(2)
EF = ( 0.715976) ( 2)
EF = 1.43195 MeV
ξ=1+ α
ln α
1 - α
= 1 +
0.716 ln 0.716
1 – 0.716
ξ = 0.15777
Para el grafico ∑S = 0.380 CM -1
Y
∑ a = 32 x 10-5 cm-1
PF = ξ ∑S
= (0.158) ( 0.380)
PF = 0.0600 cm -1
RM= ξ ΣS = PF
Σa
Σa
=
0.0600
32 x 10-5
RM = 187.625
47
Por último:
<n>= U
ξ
= ln ( Ei / EF)
ξ
= 115.17
<n> = 115 coliciones
(En la Tabla 4.3.1 se tabulan valores para α, ξ, ξ Σ , ξ Σ / Σ y <n> para moderadores
S
S
a
típicos.)
Moderador
H
D
H2O
D2O
He
Be
C
Α
0.111
0.360
0.640
0.716
Ξ
1.00
0.725
0.920
0.509
0.425
0.209
0.158
ξ ΣS
1.35
0.176
1.6 x 10-5
0.158
0.060
(Tabla 4.3.1 Propiedades de algunos moderadores.)
48
ξ ΣS / Σa
71
5670
83
143
192
<n>
18.20
25.10
19.78
35.75
42.82
87.07
115.17
Densidad
(g / cm3)
gas
gas
1.0
1.1
gas
1.85
1.60
4.4
FACTOR DE MULTIPLICACION
Una vez realizada la fisión, hay producción de neutrones los cuales causarán nuevas
fisiones, obteniéndose nuevos neutrones y así sucesivamente. A esto se le llama una
reacción en cadena y puede continuar hasta que se agote el combustible o se pare de
alguna forma. En esta sección se hará un seguimiento de los posibles eventos que
pueden sucederle a los neutrones dentro del sistema (reactor nuclear).
Si un Reactor contiene únicamente un átomo de material fisil, una vez que ese átomo
se fisione ya no habrá otro; por lo tanto, no se genera una reacción en cadena. Entonces,
a la cantidad mínima de masa del combustible necesaria para tener la reacción en cadena
se le denomina masa crítica, la cual depende del combustible, el moderador y la
geometría del reactor.
Si un Reactor se construye exactamente con la masa crítica y se le proporciona una
cantidad de neutrones térmicos, algunos de ellos causarán fisión, y después de que los
neutrones producidos en la fisión adquieran energía térmica se tendrá el mismo número
de neutrones térmicos.
En este caso, hablamos de un Reactor en el cual la población de neutrones
permanece constante generación tras generación; es decir, se tiene un sistema estable.
Por otro lado, si el Reactor contiene menos masa que la crítica, la segunda generación será
menor que la primera, la tercera menor que la segunda, y así hasta que no haya más
fisiones; y si la masa fuese mayor que la crítica la población neutrónica irá en aumento
generación tras generación.
Esta idea de aumento y disminución en la población neutrónica se expresa en términos
del factor de multiplicación cuyo símbolo es K y se define como "La razón del número
de neutrones de generación a generación"
K=
Número de neutrones en una generación
Número de neutrones en la generación precedente
Entonces si K = 1, la población neutrónica pertenecerá constante, si K < 1 la población
decrecerá y si K > 1 el número de neutrones irá en aumento. Para cada uno de esos tres
casos la potencia se comportará de igual manera, ya que es proporcional al flujo de
neutrones; luego, podemos decir que si:
K = 1 el Reactor es crítico.
K < 1 el Reactor es subcrítico.
K > 1 el Reactor es supercrítico.
49
(La Figura 4.4.1 ejemplifica lo antes mencionado)
(Figura 4.4.1 Comportamiento de la población de neutrones en un reactor.)
50
Los reactores de potencia son diseñados para tener una K > 1 puesto que si se diseñaran con
K = 1.00 después de las primeras fisiones, que implican consumo de átomos fisiles, el
reactor se haría subcrítico.
Para controlar el valor de K y como consecuencia la potencia, se utilizan las barras de
control, éstas contienen tubos de acero inoxidable llenos de un material que tiene una gran
sección eficaz de absorción para neutrones térmicos, como el B10. (Como se ilustra en la
figura 4.2.2.)
(Figura 4.4.2 Influencia de las barras de control en el flujo de neutrones o potencia del
reactor.)
Para saber cuántos neutrones habrá en una generación posterior es necesario saber que
sucede con ellos durante todo su ciclo, y analizar las posibles causas que puedan aumentar o
disminuir su cantidad.
Considerando un número N1 de neutrones que nacen en un sistema, el número de neutrones
en la siguiente generación, N2, será igual a N1 multiplicado por los cambios fraccionales
de dicha población a través de todo el ciclo.
51
Lo primero que les puede suceder es que se fuguen del sistema o se queden en él, de ser así,
la segunda posibilidad es que los neutrones sean absorbidos en los materiales del sistema o
en el combustible del mismo, si ocurre lo segundo, entonces los neutrones pueden ser
capturados radiactivamente o producir otra vez la fisión y así generar nuevos neutrones. (Lo
anterior se muestra esquemáticamente a continuación fig. 4.4.3)
(Fig. 4.4.3 Análisis de la generación o disminución de neutrones.)
Donde:
PNL: probabilidad de que el neutrón no se fugue del sistema
PAF: Probabilidad de que el neutrón sea absorbido en el combustible
PF: Probabilidad de que el neutrón produzca de nuevo fisión
52
Así entonces:
N2 = ν Pf PAF PNL N1
(4.16)
Donde ν es el número promedio de neutrones producidos por fisión. Dos de estas
probabilidades son fáciles de calcular. La probabilidad de absorción en el combustible PAF,
la cual indica.
PAF =
Numero de neutrones absorbidos en el combustible
Numero de neutrones absorbidos en el sistema
Que matemáticamente se expresa como:
F
PAF = Σa
Σa
(4.17)
A esta posibilidad se le conoce con el nombre del factor de utilización térmica y se le
denomina con la letra f, por lo tanto:
F
PAF = f = Σa
Σa
(4.18)
La otra probabilidad fácil de calcular, es la probabilidad de fisión:
PF =
numero de neutrones que causan fisión
Numero de neutrones absorbidos en el combustible
En forma matemática:
F
PF = Σf
F
Σa
F
=
-
σa
F
σa
53
(4.19)
Por lo tanto la ecuación 4.16 queda:
F
N2
=
γ (σ)
a
f PNL N1
(4.20)
F
(σ)a
Si redefinimos:
F
η = γ (σ)
f
F
(σ)a
Que es el factor de regeneración neutrónica, entonces:
N2 = η f PNL N1
(4.21)
Para considerar el proceso de termalización de los neutrones, se introducirán dos nuevas
cantidades. La primera toma en cuenta las fisiones que se producen por los núcleos fisibles
y los núcleos fisionables, la cual se define como el factor de fisión rápida (ε).
Ε=
No. Total de neutrones producidos por fisión (rápida y térmica)
No. De neutrones producidos por fisión térmica
El otro factor que influye es la probabilidad de escape del neutrón a ser absorbido en la zona
de resonancias en su proceso de moderación, por lo tanto, se define la probabilidad de escape
a la resonancia (p) como:
No. de neutrones que escapan a la captura en las resonancias mientras se moderan
P=
No. de neutrones que empiezan el proceso de moderación
Considerando estos factores se tiene que:
N 2 = ηfεp P NL N 1
(4.22)
54
y como
N2
K=
entonces
N1
K = ηfεp P NL
(4.23)
Si suponemos que el Reactor es lo suficientemente grande para que la probabilidad de no
fuga de los neutrones sea igual a la unidad y, como K en este caso indica el comportamiento
de la población neutrónica para un reactor infinito, que se denota como K ∞, se tiene:
K ∞ = ηfεp
(4.24)
La ecuación 4.24 se conoce como la fórmula de los cuatro factores.
Si se considera un reactor finito (PNL < 1), entonces los neutrones rápidos como los
neutrones térmicos tienen una probabilidad de no fuga y por lo tanto:
PNL = PTNL P FNL
(4.25)
Donde:
PTNL= Probabilidad de no fuga de los neutrones térmicos.
PFNL= Probabilidad de no fuga de los neutrones rápidos.
y así, la ecuación 4.23 queda:
K eff= η f _ ε p PTNL P FNL
= K ∞ _ PTNLPFNL
(4..26)
Ecuación conocida como la fórmula de los seis factores y Keff es el factor de multiplicación
efectivo del reactor.
55
Ejemplo:
Para ilustrar estas ideas, en un reactor típico los valores para cada uno de los factores son los
siguientes:
η = 1.6489, f = 0.7094, ε = 1.02, p = 0.8733, PFNL = 0.9695 y PTNL = 0.99
por lo tanto:
K ∞ = η fε p
K ∞=(1 .6 4 8 9 ) (0 .7 0 9 4 ) (1 .0 2 ) (0 .8 7 3 3 )
= 1 .0 4 1 9 6
K ef f = K ∞PTNL PFNL
K ef f = 1 .0 4 1 9 6 (0 .9 9 )(0 .9 6 9 5 )
K ef f = 1.000
56
4.5 TEORIA DE DIFUSION
Para un reactor acotado, es decir, finito y que fuese homogéneo, el flujo neutrónico se
distribuirá de una forma dada por la geometría de dicho reactor, de manera tal que en los
extremos habrá siempre menor flujo. Esto es debido a que existen fugas de neutrones por el
área periférica del sistema.
El cálculo de la probabilidad de que un neutrón se fugue o no del sistema, tiene
implicaciones matemáticas y físicas bastante fuertes. Es por eso que en algunos de los
desarrollos siguientes se usarán resultados probados.
Para el desarrollo de esta sección los resultados están basados en la teoría de transporte de
neutrones en un medio, la teoría de continuidad del medio y la teoría de difusión del
neutrón, de las cuales se mencionan los puntos más importantes.
Considerando un neutrón de fisión que comienza a moderarse, éste viajará una distancia
hasta alcanzar la energía térmica, al radio vector que une el punto donde comienza la
moderación y el punto donde alcanza la energía térmica se le conoce como Longitud de
Moderación (Ls ó √τ); donde τ es la "Edad de Fermi" o el área de moderación y está medida
en cm2.
Después que el neutrón se ha termalizado no es absorbido inmediatamente, sino que se
difunde en el medio, la distancia que se difunde el neutrón es en función de las
características del moderador tales como las secciones eficaces de dispersión y absorción.
Al radio vector que une al punto donde el neutrón comienza a difundirse (alcanza la
energía térmica) a donde se absorbe se le conoce como longitud de difusión (L) y la
longitud L2 es el área de difusión en cm2 que por resultados de la teoría del transporte
viene dada por:
L2 = D
Σa
(4.27)
Donde D es el coeficiente de difusión y es igual a:
1
D=
3 Σ S (1 - cosθ)
(4.28)
Además, cos θ es el coseno del ángulo de dispersión promedio que forman las trayectorias
del neutrón después de la dispersión y antes de ella, y está dado por:
2
2
cosθ=3A
(4.29)
Cos θ =
3A
57
A la suma vectorial de √τ y L se le conoce como Longitud de Migración (M); (la
representación de estas distancias viene mostrada en la Figura 4.5.1)
M² = τ + L²
(4.30)
(Figura 4.5.1 Moderación y difusión de neutrones.)
(En la Tabla 4.5.1, se reportan los parámetros de difusión para algunos moderadores comunes.)
Moderador
H2O
D2O
Be
Grafito
Densidad
(g/cm3)
1.00
1.10
1.85
1.60
D (cm)
0.16
0.87
0.50
0.84
Σa
(cm-2)
L
t
(cm)
(cm²)
0.0197
2.9 x 10-5
1.0 x 10-3
2.4 x 10-4
2.85
170
21
59
(Tabla 4.5.1 Parámetros de difusión de algunos moderadores)
58
26
131
102
368
M (cm)
5.84
170
23
62
Ejemplo:
Determinar el valor del área de difusión para un neutrón que se difunde en Hidrógeno,
a) Considerando que el ángulo de dispersión promedio es de 30°
b) Utilizando la ecuación 4.29.
Se sabe que Σa = 1.77 x 10-5 cm-1 y ΣS = 0.002 cm-1 entonces:
a)
L2
b)
cos ɵ = 2
= D/ Σ
3A
1
D=
= 2
3 ( 1)
3∑ ( 1 – cos ɵ )
D =
D =
cos ɵ = 0.66
1
3 ( 0.002) ( 1 – cos 30° )
D=
1
(0.006) ( 1 – 0.866)
1
3 ( 0.002) ( 1 – 0.667)
D = 500 cm
D = 1243.78
L2 = 1244.02
1.77 x 10 -5
L2 =
500
1.77 X 10 -5
L2 = 7.027 X 10 7 cm2
L2 = 2.825 X 10 7
Para saber cómo cambia la población de neutrones térmicos en un reactor, se tiene
que hacer un balance de su concentración en el tiempo.
59
Razón de cambio del
número de neutrones
Razón de producción
=
de neutrones en V
Razón de absorción
- de neutrones en V
Razón de fuga
- de neutrones
en un volumen V.
de V
La expresión matemática que representa este comportamiento es la ecuación de continuidad
donde cada término está dado por:
dN
dt
Cambio en el tiempo de la población neutrónica 45
Razón de producción (en el reactor)
νΣfυ
Razón de absorción neutrónica
Σa υ
Razón de fuga neutrónica
Div J
Donde J es la densidad de corriente, que al aplicar el teorema de la divergencia
( ∫ J.ndA = ∫v div JdV) a la fuga neutrónica por una superficie y la ley de Fick.
dυ
J=-D
dx
se tiene:
ѵ Ʃf
dN
dt
υ – Ʃa υ + Dd
=
2
υ
(4.31)
dx2
la ecuación 4.31 es la ecuación de difusión dependiente del tiempo.
K = 1 dN = 0
dt
60
Si se considera el reactor critico:
d2 υ
ѵ Ʃf - Ʃa
υ=0
(4.32)
dx2
=
D
por lo tanto :
d2 υ +
( Bm)2 = 0
(4.33)
dx2
donde:
( Bm)2 = ѵ Ʃ f - Ʃ a
D
Que es llamado el buckling (pandeo) del material y sus unidades son cm-2 la ecuación 4.33
es conocida como la ecuación del reactor en estado estacionario para un grupo de energía.
Realizando ciertas sustituciones en la expresión para (Bm)2 se obtiene:
(Bm)2 =
K∞ - 1
(4.34)
L2
Cuando se resuelve la ecuación 4.33 para diferentes geometrías se llega a soluciones
dependientes de la geometría del sistema, es decir:
υ (r) = C F (Bg , r )
(4.35)
Donde C es una constante y f (Bg, r) es una función que depende del Buckling Geométrico
(Bg) y de la posición. ( La figura 4.5.2 muestra el valor del Buckling Geométrico para
diferentes configuraciones del Reactor.)
61
(Figura 4.5.2 Bucklings geométricos y flujo crítico para algunas geometrías del núcleo.)
Una de las consideraciones de mayor importancia en el diseño de un Reactor para que éste
sea crítico es que Bm² = Bg².
62
Como el factor de multiplicación para un reactor finito es Keff = K ∞ PTNL PFNL y
considerando que los neutrones rápidos se fugan (PFNL = 1), en el caso de criticidad se
tiene:
1 = K ∞ PTNL
(4.36)
PTNL = 1
K ∞
( 4.37)
Por lo tanto:
Despejando K∞ de la ecuación 4.34 y sustituyéndose en la ecuación 4.37 se tiene que la
probabilidad de no fuga de un neutrón térmico está dada por:
PTNL =
1
1 + (Bm)2 L2
(4.38)
La deducción de la ecuación de la probabilidad de no fuga cuando el neutrón es rápido
(PFNL) se omitirá, dado que los procesos matemáticos que la envuelven son más
complejos, por lo tanto, la probabilidad de no fuga rápida es:
P FNL =
1
= e-t(B)(B)
(4.39)
Et(B)(B)
Donde τ es la edad de Fermi del neutrón, entonces:
(4.40)
K eff = ηfpε
2
1
e-τ B
1 + B2 L2
63
Ejemplo:
Un Reactor cilíndrico de 100 cm de radio y 250 cm de alto, consiste en una mezcla
homogénea de U235 y agua, además considérese que el sistema es crítico. Determinar la
masa necesaria para que el Reactor opere bajo estas condiciones.
Primero se determinará el Buckling geométrico para luego utilizar las diferentes ecuaciones,
vistas en esta sección.
B2 = 2.405
R
2
2
+
= 2.405
100
+
π
H
2
π 2
250
B2 =7.363X 10 -4 cm2
De la tabla 4.5.1 L = 2.85 cm y τ = 26 cm² para el agua, por lo tanto:
PTNL =
=
1
1 + (Bm )2 L2
1
2
1 + (7.363 x 10-4 ) (2.85 )
PTNL = 0.994
PFNL = e
(- B 2 τ )
-4
= e [- (7.363 x 10 ) (26)]
PFNL = 0.981
Como el Reactor es crítico y utilizando la ecuación 4.26
K∞ =
=
1
PTNL PFNL
1
(0.994)(0.981)
K ∞ = 1.0254
64
Considerando que p = ε = 1 se tiene K∞ = ηf, por lo tanto
f f==
K
K∞
∞
η
η
= K∞
ν ƩF
F
Ʃa
=
σa K ∞
ν σF
(681) (1.0254)
=
(2.5) (583)
f = 0.4791
Además:
F
F
∑a
∑a
f=
=
∑a
F
H2O
∑a + ∑a
Asi
1
f=
H2O
1+ ∑a
F
∑a
65
Entonces:
F
H2O
∑a=
∑a
1 - 1
f
0.0197
=
1
0.4791
1
F
∑a =0.01812 cm-1
Se sabe que:
F
F
∑a = N σa
Así:
F
Σa
N=
σaF
0.01812
N =
681 x 10 -24
N = 2.66 x 10 19 ATM / cm3
También:
N = ρ Na
M
W
N = V
Na
M
66
Por lo tanto
W = NVM
Na
(2.66x1019) (235) (7.854x106)
W =
(6.023 x 10 23)
W = 81537 g
Así, es necesario tener 81.5 Kg de 235U para que un Reactor cilíndrico de un volumen de
3
7.854 m y moderado con agua sea crítico.
67
Conclusión
Al realizar la investigación se determino que la transformación de energía eléctrica en
nuestros tiempos se ha venido mejorando cada día más, gracias a las diferentes formas
para producirla, como es el caso de las centrales, (termoeléctrica, nucleoeléctrica,
hidroeléctrica, eoloelectrica, carboelectricas, geotérmicas).
Hemos mencionado sus principales características, así como ventajas y desventajas, sin
olvidarnos del lugar donde serán construidas. Para nuestro estudio fue necesario enfocarce
en la central nucleoeléctrica como una forma de generar electricidad por medio de la fisión
del U235 que se lleva a cabo dentro del reactor nuclear.
Se estudio la estructura atómica de los elementos y se analizaron las partes de la molécula,
misma que están formada por uno o más átomos, los cuales contienen electrones, protones
y neutros. Y concluimos que los núcleos atómicos se pueden partir y que mediante
métodos generalmente complejos podemos lograr que una partícula como el neutrón,
choque contra el núcleo de un átomo y lo fisione.
Se determino que con la fisión se produce energía nuclear, que debe mantenerse por medio
de una reacción en cadena dentro del reactor, pero al mismo tiempo ser controlada. Por lo
tanto un reactor nuclear es una instalación capaz de iniciar, mantener y controlar las
reacciones de fisión en cadena, con los medios adecuados para extraer el calor generado.
Un reactor nuclear consta de varios elementos óptimos para la generación de electricidad.
Como es el caso del reactor PHWR, reactor PWR, reactor BWR y reactores de
enriquecimiento. Se analizaron a detalle por separado, pero para nuestro estudio elegimos
el reactor BWR ya que es un reactor de menor costo y la ausencia del generador de vapor
determina que su eficiencia sea un poco más elevada que la del PWR.
Determinamos que el núcleo al absorber un neutrón se forma un núcleo compuesto (XA +
n ─¾ XA+1), el cual se desestabiliza y las fuerzas de repulsión son capaces de fisionar el
átomo. La energía total liberada, puede ser calculada de la diferencia de masa del núcleo
compuesto (U235 + n 10 = [U236] *) y un par de productos de fisión típicos estables más dos
neutrones que faltarían para completar el número de masa 236 del núcleo compuesto.
Recordando que la razón de fisión indica la cantidad de fisiones que ocurren en un
combustible al estar sujeto a un flujo neutrónico, Se tiene RF = φ Σf V [Fisiones/seg.];
P = (φ Σ f V)/3.125x 10
y para saber la potencia aprovechable, en MW, se utiliza:
. 16e
en (g/seg.) al igual
Entonces la reacción de quemado estará dada por RQ = (A/NA)(RF)
m
que la reacción de consumo RC = (σa/σf ) (RQ) en (g/seg.).
Estudiamos la teoría del frenado que no es más que un moderador de número másico
pequeño, sección eficaz de dispersión grande y una sección eficaz de absorción pequeña.
Se hablo del factor de multiplicación donde se debe de mantener la reacción en cadena su
símbolo es K y se definió como la razón del numero de neutrones de generación a
generación y por último la teoría de difusión.
68
Bibliografías
Asociación de jóvenes por energía nuclear en México / interacción de la radiación de la
materia / Xalapa ver. México/recopilación/2008
Asociación de jóvenes por la energía nuclear en México/tecnología de reactores/Xalapa,
ver. México/recopilación/2008.
Comisión federal de electricidad/central laguna verde/ Veracruz, México/particular/2004
Comisión federal de electricidad / del fuego
México/particular/2004.
a la energía nuclear/Veracruz,
Curso en seguridad y protección radiológica/ antología del mundo de química/ Xalapa, ver.
México/recopilación/2008.
Del fuego a la energía nuclear/comisión federal de electricidad, México; cfe, 1987.
García y García. Enrique, los reactores nucleares y la producción de electricidad. 2 a.
México: CFE, 1980.
Glasstone, Samuel, Ingeniería de reactores nucleares (Trad. M. Carreira) Barcelona:
Reverte, 1990
Holman, Jack Philip. Transferencia de Calor. (Trad. Pablo de Assas Martin de Moreton,
Teresa de J. Leo Mena, Isabel Pérez Grande) México: Mc Graw Hill. 1998.
Rafael Lozano González física III. México: nueva imagen, 2001
Lyerly, Ray L; Mitchel, Walter, Plantas de energía nuclear Washington DC: Comisión
Norteamericana de energia nuclear, 1964
Serway, Raymond A; Faughn, Jerry, S; Moses, Clement J física 6a ed. (Trad. Jorge
Humberto romo, Ángel Carlos Gonzales) México: Thompson, 2005.
69
http://www.inin.mx
http://www.cfe.gob.mx/lagver/lindex.html
http://enusa.es
http://www.energianuclear.tk
http://nucleartouist.com/systems/recirc.htm
http://www.nrc.gov/reading-rm/basic-ref/teachers/03.pdf
http://thales.cica.es/
http://gepower.com/prod-serv/products/nuclear-energy/en/nucelar_fuel.htm
http://html.rincondelvago.com/centrales-nucleoelectrias.html
http://www.cepb.una.py/nuclear/intro.html
http://www.cnea.gov.ar/xxi/energe/b19/B19art3.pdf
http://www.cfe.gob.mx./lagver.html
http://es.wikipedia.org/wiki/Energia_nuclear
http://www.tecnun.es/asignaturas/ecologia/hipertexto/07Energ/130EnNuclear.html
70
Descargar