Trigonometric Identities, Thrice Prove each identity. 1. cos(270° − 𝛽) = − sin 𝛽 2. cos ( − 𝛽) = 3. sin(45° + 𝛼) = √2 (cos 𝛼 2 4. tan(45° − 𝛼) = 1−tan 𝛼 1+tan 𝛼 5. tan ( 4 + 𝛼) = tan 𝛼+1 6. tan(360° − 𝛽) = − tan 𝛽 7. tan(𝛽 + 45°) + tan(𝛽 − 45°) = 2 tan 2𝛽 8. cos 2𝛼 = cos2 𝛼 − sin2 𝛼 9. 2 csc 𝜆 = csc 𝜆−cot 𝜆 + csc 𝜆+cot 𝜆 10. 1−sin 𝛼 1+sin 𝛼 11. (sin 𝜃 + cos 𝜃)2 tan 𝜃 = tan 𝜃 + 2 sin2 𝜃 12. (1 + sin 𝜃 + cos 𝜃)(1 − sin 𝜃 − cos 𝜃) = −2 sin 𝜃 cos 𝜃 13. sec 𝜃 (sin 𝜃 sec 𝜃 + 1) = 𝜋 3 3𝜋 cos 𝛽+√3 sin 𝛽 2 + sin 𝛼) tan 𝛼−1 1 1 = (tan 𝛼 − sec 𝛼)2 sec2 𝜃−tan2 𝜃+tan 𝜃 cos 𝜃 Trigonometric Identities, Thrice KEY Prove each identity. 1. cos(270° − 𝛽) = − sin 𝛽 2. cos 270° cos 𝛽 + sin 270° sin 𝛽 = − sin 𝛽 𝜋 3 cos ( − 𝛽) = cos 𝛽+√3 sin 𝛽 2 𝜋 𝜋 cos 𝛽 + √3 sin 𝛽 cos cos 𝛽 + sin sin 𝛽 = 3 3 2 (0) cos 𝛽 + (−1) sin 𝛽 = − sin 𝛽 1 cos 𝛽 + √3 sin 𝛽 √3 ( ) cos 𝛽 + ( ) sin 𝛽 = 2 2 2 − sin 𝛽 = − sin 𝛽 cos 𝛽 + √3 sin 𝛽 cos 𝛽 + √3 sin 𝛽 = 2 2 3. sin(45° + 𝛼) = √2 (cos 𝛼 2 4. + sin 𝛼) sin 45° cos 𝛼 + cos 45° sin 𝛼 = √2 (cos 𝛼 2 tan 45°−tan 𝛼 1+tan 45° tan 𝛼 + sin 𝛼) ( √2 √2 √2 (cos 𝛼 + sin 𝛼) ) cos 𝛼 + ( ) sin 𝛼 = 2 2 2 √2 (cos 𝛼 2 5. + sin 𝛼) = 3𝜋 √2 (cos 𝛼 2 tan 𝛼−1 tan ( 4 + 𝛼) = tan 𝛼+1 3𝜋 +tan 𝛼 4 3𝜋 1−tan tan 𝛼 4 tan −1+tan 𝛼 1−(−1) tan 𝛼 = = tan 𝛼−1 tan 𝛼+1 tan 𝛼−1 tan 𝛼+1 tan(45° − 𝛼) = = 1−tan 𝛼 1+tan 𝛼 1−tan 𝛼 1+tan 𝛼 1−tan 𝛼 1+(1) tan 𝛼 = 1+tan 𝛼 1−tan 𝛼 1−tan 𝛼 1+tan 𝛼 1−tan 𝛼 = 1+tan 𝛼 + sin 𝛼) 6. tan(360° − 𝛽) = − tan 𝛽 tan 360°+tan 𝛽 1−tan 360° tan 𝛽 0+tan 𝛽 1−(0) tan 𝛽 = − tan 𝛽 = − tan 𝛽 − tan 𝛽 = − tan 𝛽 tan 𝛼−1 tan 𝛼+1 = tan 𝛼−1 tan 𝛼+1 7. tan(𝛽 + 45°) + tan(𝛽 − 45°) = 2 tan 2𝛽 tan 𝛽+tan 45° tan 𝛽−tan 45° + 1−tan 𝛽 tan 45° 1+tan 𝛽 tan 45° tan 𝛽+1 tan 𝛽−1 + 1+tan 𝛽(1) 1−tan 𝛽(1) tan 𝛽+1 1+tan 𝛽 ∙ 1−tan 𝛽 1+tan 𝛽 cos 𝛼 cos 𝛼 − sin 𝛼 sin 𝛼 = cos 2 𝛼 − sin2 𝛼 = 2 tan 2𝛽 cos2 𝛼 − sin2 𝛼 = cos2 𝛼 − sin2 𝛼 tan 𝛽−1 1−tan 𝛽 + 1+tan 𝛽 ∙ 1−tan 𝛽 = 2 tan 2𝛽 = 2 tan 2𝛽 = 2 tan 2𝛽 2 tan 𝛽 ) 1−tan2 𝛽 2( = 2 tan 2𝛽 tan 𝛽+tan 𝛽 ) 1−tan 𝛽 tan 𝛽 2( = 2 tan 2𝛽 2 tan(𝛽 + 𝛽) = 2 tan 2𝛽 2 tan 2𝛽 = 2 tan 2𝛽 9. 1 1 2 csc 𝜆 = csc 𝜆−cot 𝜆 + csc 𝜆+cot 𝜆 2 csc 𝜆 = 1 csc 𝜆+cot 𝜆 ∙ csc 𝜆−cot 𝜆 csc 𝜆+cot 𝜆 2 csc 𝜆 = csc 𝜆+cot 𝜆+csc 𝜆−cot 𝜆 csc2 𝜆−cot2 𝜆 2 csc 𝜆 = 2 csc 𝜆 csc2 𝜆−cot2 𝜆 2 csc 𝜆 = 2 csc 𝜆 1 2 csc 𝜆 = 2 csc 𝜆 cos 2𝛼 = cos2 𝛼 − sin2 𝛼 cos(𝛼 + 𝛼) = cos2 𝛼 − sin2 𝛼 = 2 tan 2𝛽 tan2 𝛽+2 tan 𝛽+1−tan2 𝛽+2tan 𝛽−1 1−tan2 𝛽 4 tan 𝛽 1−tan2 𝛽 8. + 1 csc 𝜆+cot 𝜆 ∙ csc 𝜆−cot 𝜆 csc 𝜆−cot 𝜆 10. 11. 1−sin 𝛼 1+sin 𝛼 = (tan 𝛼 − sec 𝛼)2 1−sin 𝛼 1+sin 𝛼 = tan2 𝛼 − 2 tan 𝛼 sec 𝛼 + sec 2 𝛼 1−sin 𝛼 1+sin 𝛼 = cos2 𝛼 − 1 cos 𝛼 cos 𝛼 + cos2 𝛼 1−sin 𝛼 1+sin 𝛼 = sin2 𝛼−2 sin 𝛼+1 cos2 𝛼 1−sin 𝛼 1+sin 𝛼 = sin2 𝛼−2 sin 𝛼+1 1−sin2 𝛼 1−sin 𝛼 1+sin 𝛼 = 1−2 sin 𝛼+sin2 𝛼 1−sin2 𝛼 1−sin 𝛼 1+sin 𝛼 = (1−sin 1−sin 𝛼 1+sin 𝛼 = 1+sin 𝛼 sin2 𝛼 2 sin 𝛼 1 1 (1−sin 𝛼)(1−sin 𝛼) 𝛼)(1+sin 𝛼) 1−sin 𝛼 (sin 𝜃 + cos 𝜃)2 tan 𝜃 = tan 𝜃 + 2 sin2 𝜃 (sin2 𝜃 + 2 sin 𝜃 cos 𝜃 + cos 2 𝜃) tan 𝜃 = tan 𝜃 + 2 sin2 𝜃 (1 + 2 sin 𝜃 cos 𝜃) tan 𝜃 = tan 𝜃 + 2 sin2 𝜃 tan 𝜃 + 2 sin 𝜃 cos 𝜃 tan 𝜃 = tan 𝜃 + 2 sin2 𝜃 2 sin 𝜃 cos 𝜃 sin 𝜃 1 1 cos 𝜃 tan 𝜃 + 1 = tan 𝜃 + 2 sin2 𝜃 tan 𝜃 + 2 sin2 𝜃 = tan 𝜃 + 2 sin2 𝜃 12. (1 + sin 𝜃 + cos 𝜃)(1 − sin 𝜃 − cos 𝜃) = −2 sin 𝜃 cos 𝜃 1 − sin2 𝜃 − cos2 𝜃 − 2 sin 𝜃 cos 𝜃 = −2 sin 𝜃 cos 𝜃 cos2 𝜃 − cos 2 𝜃 − 2 sin 𝜃 cos 𝜃 = −2 sin 𝜃 cos 𝜃 −2 sin 𝜃 cos 𝜃 = −2 sin 𝜃 cos 𝜃 13. sec 𝜃 (sin 𝜃 sec 𝜃 + 1) = sec2 𝜃−tan2 𝜃+tan 𝜃 cos 𝜃 sec 𝜃 (sin 𝜃 sec 𝜃 + 1) = 1+tan 𝜃 cos 𝜃 1 tan 𝜃 1 sin 𝜃 cos 𝜃 sec 𝜃 (sin 𝜃 sec 𝜃 + 1) = cos 𝜃 + cos 𝜃 sec 𝜃 (sin 𝜃 sec 𝜃 + 1) = cos 𝜃 + sec 𝜃 (sin 𝜃 sec 𝜃 + 1) = 1 cos 𝜃 + cos 𝜃 sin 𝜃 cos2 𝜃 1 sin 𝜃 sec 𝜃 (sin 𝜃 sec 𝜃 + 1) = cos 𝜃 (1 + cos 𝜃) 1 sin 𝜃 1 sin 𝜃 1 1 cos 𝜃 sec 𝜃 (sin 𝜃 sec 𝜃 + 1) = cos 𝜃 (cos 𝜃 + 1) sec 𝜃 (sin 𝜃 sec 𝜃 + 1) = cos 𝜃 ( + 1) sec 𝜃 (sin 𝜃 sec 𝜃 + 1) = sec 𝜃 (sin 𝜃 sec 𝜃 + 1)