2 356 788 ES 2 356 788 B1 - Universidad Politécnica de Madrid

Anuncio
19
OFICINA ESPAÑOLA DE
PATENTES Y MARCAS
ESPAÑA
Número de publicación:
21
Número de solicitud: 200703349
51 Int. CI.:
G06F 17/50
G01M 9/08
22
Fecha de presentación: 18.12.2007
43
Fecha de publicación de la solicitud: 13.04.2011
Fecha de la concesión: 10.02.2012
ES 2 356 788 B1
(2006.01)
(2006.01)
PATENTE DE INVENCIÓN
12
73
Titular/es:
AIRBUS OPERATIONS, S.L.
AVDA. JOHN LENNON, S/N
28906 GETAFE, MADRID, ES y
UNIVERSIDAD POLITECNICA DE MADRID
72
Inventor/es:
VELÁZQUEZ LÓPEZ, ÁNGEL GERARDO;
VEGA DE PRADA, JOSÉ MANUEL;
LORENTE MANZANARES, LUIS SANTIAGO y
ALONSO FERNÁNDEZ, DIEGO
45
Fecha de anuncio de la concesión: 22.02.2012
45
Fecha de publicación del folleto de la patente:
22.02.2012
54
Título: MÉTODO Y SISTEMA PARA UN CÁLCULO RÁPIDO DE LAS FUERZAS AERODINÁMICAS EN
UNA AERONAVE.
74
Agente: de Elzaburu Márquez, Alberto
57 Resumen:
Método y sistema para un cálculo rápido de las
fuerzas aerodinámicas en una aeronave para,
estando implementado en ordenador, servir de ayuda
en el diseño de una aeronave proporcionando las
fuerzas aerodinámicas de dimensionamiento y otros
valores relevantes que comprende los siguientes
pasos: a) Seleccionar un conjunto de parámetros de
dicha aeronave, siendo dichas fuerzas aerodinámicas
y otros valores relevantes dependientes de dichos
parámetros; b) Realizar cálculos CFD RANS del
campo fluido para un número N1 de combinaciones
diferentes de valores de dichos parámetros; c)
Obtener dichas fuerzas aerodinámicas y otros valores
relevantes mediante un modelo de orden reducido,
generado calculando los modos POD de las variables
de flujo, desarrollando las variables de flujo usando
dichos modos POD y obteniendo los coeficientes
POD de dichas variables de flujo desarrolladas
utilizando un algoritmo genético que minimiza el error
asociado al desarrollo de las ecuaciones de NavierStokes.
_
2 356 788
11
Aviso: Se puede realizar consulta prevista por el art. 37.3.8 LP.
B1
ES 2 356 788 A1
DESCRIPCIÓN
Método y sistema para un calculo rápido de las fuerzas aerodinámicas en una aeronave.
5
Campo de la invención
La presente invención se refiere a métodos y sistemas de ayuda para el diseño de aeronaves haciendo predicciones
analíticas de las fuerzas aerodinámicas experimentadas por la aeronave entera o por un componente de la aeronave
siendo dichas fuerzas dependientes de un número significativo de parámetros.
10
Antecedentes de la invención
15
Una situación habitual en aplicaciones prácticas industriales relacionadas con el desarrollo de productos es la
necesidad de llevar a cabo análisis rápidos en un espacio de parámetros de estado. En sectores industriales maduros y
muy competitivos como el sector aeroespacial, esta necesidad está motivada por el objetivo de generar productos con
un buen funcionamiento técnico en ciclos de diseño tan cortos como sea posible. Esto es, el tiempo es un factor clave
en la competitividad aeroespacial porque el acortamiento del tiempo de comercialización puede aportar una ventaja
económica de primera magnitud durante el ciclo de vida del producto.
20
En el caso específico de la industria aeronáutica, la predicción de las fuerzas aerodinámicas, y mas generalmente
las distribuciones de valores en la superficie de la piel, experimentadas por una aeronave es un elemento importante
de cara a un diseño óptimo de sus componentes estructurales de manera que el peso de la estructura sea el mínimo
posible, siendo capaz al mismo de tiempo de resistir la fuerzas aerodinámicas esperadas.
25
Gracias al incremento del uso de las capacidades de la Simulación de Fluidos en Ordenador la determinación de las
fuerzas aerodinámicas en una aeronave se hace habitualmente hoy en día resolviendo numéricamente las ecuaciones
promediadas de Reynolds de Navier-Stokes (ecuaciones RANS en adelante) que modelizan el movimiento del flujo
alrededor de la aeronave, usando modelos de elementos finitos discretos o de volúmenes finitos. Con la demanda de
exactitud requerida en la industria aeronáutica, cada uno de esos cálculos requiere importantes recursos computacionales.
30
35
40
45
50
55
Las fuerzas aerodinámicas de dimensionamiento no son conocidas a priori y como la magnitud global de las
fuerzas puede depender de muchos parámetros de vuelo diferentes como ángulo de ataque, ángulo de deslizamiento,
número Mach, ángulo de deflexión de la superficie de control, ha sido necesario llevar a cabo largos y costosos cálculos
para predecir apropiadamente las fuerzas aerodinámicas máximas experimentadas por los diferentes componentes de
una aeronave o por la aeronave entera.
De cara a reducir el número global de estos largos cálculos se han desarrollado en el pasado técnicas de modelizaciones matemáticas aproximadas como la Descomposición en Valores Singulares (SVD) como un medio para llevar
a cabo interpolaciones inteligentes, o la más exacta Descomposición Ortogonal de la Covarianza (POD en adelante)
que tiene en cuenta la física del problema mediante el uso de una proyección de Galerkin de las ecuaciones de NavierStokes.
La idea de estas técnicas es definir la nueva solución analítica como una combinación de la información obtenida
anteriormente. POD define varios modos que incluyen la solución obtenida por Dinámica de Fluidos Computacional
(CFD) y usa seguidamente esos modos para reproducir soluciones no obtenidas mediante CFD. Cuantos más modos
se usen mejor, con la limitación de que el máximo número de modos es el número de casos.
No obstante, es bien conocido en la técnica que estos métodos POD basados en las ecuaciones Galerkin, siendo
muy atractivos, necesitan esquemas de estabilización para producir resultados aceptables y siempre con el riesgo de
obtener un estado erróneo del modelo de ecuaciones de orden reducido POD después de un largo tiempo aun en el
caso de que se establezca el estado correcto para iniciar la simulación. Este problema de estabilidad de los métodos
POD basados en la proyección Galerkin ha impedido su uso desde un punto de vista industrial.
La presente invención está orientada a la solución de este inconveniente.
Sumario de la invención
60
65
Es un objeto de la presente invención proporcionar métodos y sistemas para hacer predicciones analíticas de las
fuerzas aerodinámicas experimentadas por una aeronave entera o por un componente de la aeronave, siendo dichas
fuerzas dependientes de un número significativo de parámetros.
Es otro objeto de la presente invención proporcionar métodos y sistemas que permiten un cálculo rápido de las
fuerzas aerodinámicas experimentadas por una aeronave entera o por un componente de la aeronave, siendo dichas
fuerzas dependientes de un número significativo de parámetros.
En un aspecto, esos y otros objetos se consiguen mediante un método asistido por ordenador apropiado para servir
de ayuda en el diseño de una aeronave proporcionando las fuerzas aerodinámicas de dimensionamiento, los valores en
2
ES 2 356 788 A1
la piel o la distribución de valores alrededor de la aeronave entera o de un componente de la aeronave, comprendiendo
los siguientes pasos:
5
- Seleccionar un conjunto de parámetros de dicha aeronave entera o dicho componente de aeronave, siendo dichas fuerzas aerodinámicas de dimensionamiento, valores en la piel ó distribución de valores dependientes de dichos
parámetros.
- Realizar cálculos CFD RANS del campo fluido para un número N1 de combinaciones diferentes de valores de
dichos parámetros.
10
15
- Obtener dichas fuerzas aerodinámicas de dimensionamiento, valores en la piel o distribución de valores para
cualquier combinación de valores de dichos parámetros mediante un modelo de orden reducido generado calculando
los modos POD de las variables de flujo, desarrollando las variables de flujo usando dichos modos POD y obteniendo
los coeficientes POD de dichas variables de flujo desarrolladas utilizando un algoritmo genético que minimiza el error
asociado al desarrollo de las ecuaciones de Navier-Stokes.
20
En otro aspecto, esos y otros objetos se consiguen mediante un sistema para servir de ayuda en el diseño de
una aeronave proporcionando las fuerzas aerodinámicas de dimensionamiento, los valores en la piel o la distribución
de valores alrededor de la aeronave entera o de un componente de la aeronave que son dependientes de un número
significativo de parámetros, que comprende:
- Un modelo discreto implementado en ordenador de dicha aeronave entera o dicho componente de aeronave y del
campo de flujo del fluido circundante.
25
30
35
40
45
50
- Un modulo CFD RANS implementado en ordenador para calcular y almacenar dichas fuerzas aerodinámicas,
valores en la piel ó distribución de valores en una muestra de casos con diferentes combinaciones de valores de dichos
parámetros.
- Un modulo implementado en ordenador de Descomposición en Valores Singulares de Orden Alto (HOSVD)
capaz de determinar los modos POD del campo fluido.
- Un modulo implementado en ordenador con un modelo de orden reducido para llevar a cabo cálculos rápidos
y almacenamientos de valores de variables del campo fluido para cualquier combinación de dichos parámetros, que
se obtienen modelizando las variables por medio de desarrollos en serie basados en los modos POD del campo fluido, habiendo obtenido los coeficientes POD utilizando un algoritmo genético que minimiza el error asociado a la
implementación de dicho desarrollo en las ecuaciones de Navier-Stokes.
El método y sistema mencionados son aplicables al diseño de una aeronave clásica o de un componente de aeronave
formado por un fuselaje cilíndrico, unas alas en el centro del fuselaje, en su región media, delantera ó trasera, una cola
convencional ó una cola de forma cruciforme o una cola en forma de T, V, H, U o de canard y unos motores en las alas
o la parte trasera del fuselaje, así como en el diseño de una aeronave de una configuración no convencional como la
de un cuerpo ala indiferenciada (BWB) o un ala volante.
Dicho conjunto de parámetros puede ser, en particular, cualquier combinación de los siguientes (si son aplicables
a la aeronave o componente de aeronave objeto de diseño): el ángulo de ataque, el ángulo de deslizamiento, el número
Mach, el ángulo de deflexión de un alerón de ala, la deflexión de aerofrenos, la deflexión de dispositivos de gran
sustentación, la deflexión de un canard, el status de deflexión de un tren de aterrizaje, el ángulo de las puertas de
un tren de aterrizaje, el ángulo de apertura en un orificio de entrada APU, el ángulo de deflexión de un timón de un
estabilizador vertical de cola, el ángulo de deflexión de un elevador de un estabilizador horizontal de cola y el ángulo
de posicionamiento de un estabilizador horizontal de cola. El rango de validez de dichos parámetros es el de una
envolvente típica de vuelo de la aeronave.
55
Dichas fuerzas aerodinámicas incluyen en particular la fuerza de sustentación, la fuerza de resistencia, la fuerza
lateral, el momento de cabeceo, el momento de alabeo, el momento de guiñada de la aeronave o componente de
aeronave objeto de diseño.
60
Dichos valores en la superficie de la piel incluyen en particular la presión estática, la fricción en la piel, la temperatura de la piel y cualquier combinación de los mismos. Dichas distribuciones de valores pueden ser en particular,
la fuerza total por sección (que puede ser un corte, una línea, una superficie del cuerpo), la transferencia de calor, la
fricción total y en general cualquier integral de los valores de la piel o su combinación.
El método que se describe puede ser utilizado también para reducir las necesidades de almacenamiento de información en el diseño de aeronaves, almacenando únicamente los modos obtenidos para reducir las demandas de
almacenamiento informático.
65
Otras características y ventajas de la presente invención se harán evidentes de la siguiente descripción detallada de
las realizaciones, ilustrativas de su objeto, junto con las figuras adjuntas.
3
ES 2 356 788 A1
Descripción de las figuras
La Figura 1 muestra un diagrama de bloques de un método según la presente invención.
5
La Figura 2 muestra esquemáticamente un perfil aerodinámico, que puede ser objeto de un método según la presente invención y alguno de sus parámetros relevantes.
La Figura 3 muestra esquemáticamente una representación gráfica de los resultados del cálculo de una variable de
flujo alrededor del perfil aerodinámico en cuatro casos iniciales.
10
Descripción detallada de la invención
15
Describiremos ahora siguiendo la Figura 1 una realización de un método y un sistema según la presente invención para calcular las fuerzas aerodinámicas en un perfil aerodinámico 11 moviéndose en el aire dependientes de los
siguientes parámetros:
- El ángulo de ataque α, variando en un rango entre -3º y 3º.
20
- El número Mach M (velocidad del objeto dividida por la velocidad del sonido), variando en un rango entre 0.4 y
0.8.
- El ángulo de deflexión δ de un elevador variando en un rango entre -5º y 5º.
25
30
En el paso 21 se selecciona un número N1 de casos iniciales con diferentes combinaciones de valores de los parámetros α, δ y M. Tres ejemplos de casos iniciales se muestran seguidamente. El usuario final puede seleccionar el
número de casos iniciales. El usuario debe cuidar que el número inicial de casos cubra todas las principales características del movimiento de la aeronave o del componente de la aeronave (un perfil aerodinámico en este caso) a través
del fluido.
Ejemplo 1
1053 casos combinando los siguientes valores de los parámetros:
- α (13 valores): -3.00, -2.50, -2.00, -1.50, -1.00, -0.50, 0.00, +0.50, +1.00, +1.50, +2.00, +2.50, +3.00
35
40
- M (9 valores):
0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80
- δ (9 valores):
-5.00, -3.00, -2.00, -1.00, 0.00, +1.00, +2.00, +3.00, +5.00.
Ejemplo 2
378 casos combinando los siguientes valores de los parámetros:
α (9 valores):
-3.00, -2.50, -1.50, -1.00, 0.00, +1.00, +1.50, +2.50, +3.00
M (6 valores):
0.40, 0.55, 0.65, 0.70, 0.75, 0.80
δ (7 valores):
-5.00, -3.00, -2.00, 0.00, +2.00, +3.00, +5.00.
45
50
Ejemplo 3
100 casos combinando los siguientes valores de los parámetros:
α (5 valores):
-3.00, -1.50, 0.00, +1.50, +3.00
M (4 valores):
0.40, 0.55, 0.70, 0.80
δ (5 valores):
-5.00, -3.00, 0.00, +3.00, +5.00.
55
60
65
En el paso 23 se calcula, para cada caso seleccionado, el coeficiente de sustentación 13, el coeficiente de resistencia
15, el momento de cabeceo 17 y la presión superficial en el perfil aerodinámico 11 mediante un programa de ordenador
de Dinámica de Fluidos Computacional (CFD RANS).
Como se muestra en la Figura 3 hay grandes diferencias en la naturaleza del campo fluido en los cuatro casos
mostrados con diferentes valores de los parámetros α, δ y M que causan fuerzas aerodinámicas muy diferentes en el
perfil aerodinámico 11.
4
ES 2 356 788 A1
En el paso 25 se almacenan los resultados de dichos cálculos en una base de datos, no solo los coeficientes globales
de las fuerzas y la distribución de presiones sino la solución completa del campo de flujo para las diferentes variables
en los puntos de la malla discreta.
5
10
15
20
25
30
En el paso 27, usando dichos resultados, se calculan los modos POD de las variables de flujo: U (velocidad in la
dirección x), W (velocidad en la dirección z), T (temperatura estática del aire) y ρ (densidad del aire) haciendo una
primera Descomposición en Valores Singulares de Orden Alto (HOSVD) de las soluciones que tenga en cuenta la
existencia de posibles ondas de choque en el campo fluido. Esta corrección se gestiona en tres sub-pasos: a) identificar
la estructura de ondas de choque (posición e intensidad de salto) y descomponer la estructura en un salto inclinado y
un perfil suave; b) aplicación del HOSVD a las dos partes de la estructura, y c) interpolar y recomponer las dos partes
de la estructura para reconstruir la estructura completa de la onda de choque.
Adicionalmente, para ayudar a la resolución de las ecuaciones POD, se consideran dos variables más: las densidades de flujo en la dirección X y en la dirección Z. Como el perfil aerodinámico considerado en esta realización es un
perfil aerodinámico en dos dimensiones, los modos POD para la velocidad x Ui (x,z), velocidad z Wi (x,z), temperatura
Ti (x,z), densidad <i (x,z), densidad de flujo a lo largo de x Xi (x,z) y densidad de flujo a lo largo de y Zi (x,z) son modos
espaciales 2D.
En el paso 29 se desarrollan las variables de flujo asumiendo un conjunto de funciones básicas derivadas de los
correspondientes modos POD calculados en el paso 27. El número de modos necesario para describir cada variable
puede ser diferente dependiendo del grado de cambios de los valores de la variable con el número de parámetros:
cuanto menos cambie el valor de la variable alrededor del perfil aerodinámico es menor el número de modos necesario
para el desarrollo de esa variable específica. El número de modos necesario para cada variable se calcula también en
el paso 29. Para hacer esto, el usuario especifica el margen de error requerido. Seguidamente se selecciona automáticamente, para cada variable, el mínimo número de modos necesario para satisfacer la condición de que una definición
analítica de error, basada en los valores propios de la llamada matriz de covarianza formada por los coeficientes de
ponderación de los desarrollos en serie de cada modo, sea menor que el margen de error requerido. Este método para
determinar el error está basado en la normalización de Frobenius.
El desarrollo en modos, para la realización específica de un perfil aerodinámico 2D es la siguiente:
35
40
45
Donde u es la velocidad x (usando para la reconstrucción modos Ui de la velocidad x), w es la velocidad z (usando
para la reconstrucción modos Wi de la velocidad z), ρ es la densidad (usando para la reconstrucción modos <i de la
densidad), T es la temperatura (usando para la reconstrucción modos Ti de la temperatura, Cx y Cz son densidades de
flujo a lo largo de x y z (usando para la reconstrucción modos Xi y Zi de densidades de flujo).
Los coeficientes ai , bi , ci , di , ei y fi son incógnitas a determinar.
50
55
En el paso 31, para cualquier caso 41 a ser calculado con una combinación dada de parámetros α, δ y M, se
obtienen los coeficientes ai , bi , ci , di , ei y fi minimizando el error global asociado a la implementación del desarrollo
de las ecuaciones de gobierno de Navier-Stokes y las condiciones de borde que describen el movimiento de flujo
alrededor del perfil aerodinámico.
Las ecuaciones de Navier-Stokes que describen el movimiento del flujo alrededor del perfil aerodinámico 2D que
estamos considerando son las siguientes (donde γ es el ratio de capacidad calorífica):
60
65
5
ES 2 356 788 A1
Las condiciones de borde son las siguientes (donde el sufijo ∞ significa condiciones del flujo incidente y AoA es
el ángulo de ataque):
5
10
15
En este caso, la velocidad está adimensionalizada en relación a la velocidad del sonido.
20
25
La Función de Aptitud, cuyo mínimo debe ser encontrado, se obtiene reemplazando las variables desarrolladas del
paso 29 por las ecuaciones de Navier-Stokes que describen el movimiento del flujo alrededor del perfil aerodinámico
2D que estamos considerando y forzando que la suma de los valores cuadrados de la parte izquierda de cada ecuación,
integrados sobre el dominio fluido y añadidos a los cuadrados de la condición de borde, sea mínima (idealmente sería
cero).
La evaluación de la Función de Aptitud resultante F es la siguiente (donde Ω significa todo el dominio volumétrico
de interés, x y z son la direcciones del sistema de coordenadas y δΩ son los bordes del dominio):
30
35
40
45
50
55
60
65
Como ya puede verse en la expresión de la Función de Aptitud, se usan directamente los valores de Cx y Cz de
cara a mantener la no-linealidad del problema como cuadrática en lugar de cúbica.
6
ES 2 356 788 A1
Un ejemplo de la forma de uno de los términos de la función de aptitud y de cómo depende de los coeficientes ai ,
bi , ci , di , ei y fi después de haber implementado el desarrollo, es el siguiente:
5
10
15
20
25
30
35
40
45
50
55
60
La minimización de la función objetivo se hace usando un método de Algoritmo Genético (GA), que encuentra,
para cada específico de combinación de parámetros que se considera en el paso 41, la combinación de valores de los
coeficientes ai , bi , ci , di , ei y fi que minimiza la Función de Aptitud. En principio puede parecer que con este método la
convergencia será lenta. Sin embargo, debe tenerse en cuenta el hecho de que ya se dispone de una buena aproximación
a la solución porque los modos globales POD están disponibles en el paso 27. Así pues se lleva a cabo una interpolación
spline estándar entre parámetros usando la técnica previa HOSVD para tener una primera estimación de la solución.
A continuación esta estimación se usa como semilla dentro de la población inicial del GA. De esta manera se obtienen
tiempos de convergencia GA que son típicamente del orden del 2% al 5% del tiempo necesario para la convergencia
de un cálculo completo CFD RANS.
En el paso 33, se lleva a cabo el cálculo de los coeficientes de las fuerzas aerodinámicas globales y de las presiones
superficiales a lo largo del perfil aerodinámico 11 para el caso seleccionado 41 usando el modelo de orden reducido
del Algoritmo Genético basado en los modos POD obtenido en los pasos previos 27, 29, 31 (en adelante GAPOD).
Para ello se usan los coeficientes ai , bi , ci , di , ei y fi obtenidos en el paso 31 y se aplican al desarrollo del paso 29
generando un campo fluido para trabajar posteriormente con él.
La Tabla 2 muestra los resultados obtenidos para el Coeficiente de Sustentación CL y el Momento de Cabeceo Cm
para dos ángulos de ataque y un número Mach de 0.4 usando un método clásico CFD RANS y el método GAPOD
según la presente invención para un número diferente de casos iniciales. La clave de cada uno de ellos, según el
número de casos iniciales, se muestra en la Tabla 1. La primera columna de la Tabla 1 en el número de la muestra. La
segunda columna es el ángulo de ataque usado en el cálculo tanto en método CFD RANS como en el método GAPOD.
La tercera columna se refiere a los casos iniciales que son usados en cada muestra (el número N1 de casos iniciales
dependiente de las combinaciones de parámetros).
65
7
ES 2 356 788 A1
TABLA 1
5
10
15
TABLA 2
20
25
30
35
La Tabla 2 muestra que considerando un mayor número N1 de casos iniciales se incrementa la exactitud del
método.
40
Esta tabla también muestra que los resultados obtenidos con el método de la presente invención son suficientemente
exactos incluso para el menor número de casos iniciales.
La principal ventaja del método es que los resultados se obtienen en menos de una décima del tiempo necesario
utilizando un método clásico CFD RANS.
45
50
La aplicación del método en el diseño de una aeronave puede ser resumida como sigue. La aeronave se diseña
en los bordes de la envolvente de vuelo (definida por el número Mach y la altitud) y en el punto de diseño (algunos
componentes pueden ser diseñados fuera de la envolvente como casos altamente críticos) se obtienen varios puntos
seleccionados siguiendo el paso 21 y se calculan en CFD en el paso 23 almacenándolos (paso 25) hasta que se terminan
todos ellos. Una vez que se han llevado a cabo los suficientes cálculos, en el paso 27 se hace una POD según el método.
En el paso 29 se definen las soluciones reconstruidas para cada cálculo requerido para un caso crítico como en los pasos
41, 33 obteniéndose los coeficientes según el paso 31.
Una vez que se realizan todos los cálculos CFD y no se necesitan más cálculos extra, se puede liberar el espacio
de almacenamiento del paso 25 y almacenarlos en el paso 27 vía modos HOSVD.
55
Se pueden introducir en la realización preferida que hemos descrito aquellas modificaciones que estén comprendidas en el ámbito de las reivindicaciones siguientes.
60
65
8
ES 2 356 788 A1
REIVINDICACIONES
5
10
1. Un método asistido por ordenador apropiado para servir de ayuda en el diseño de una aeronave proporcionando
las fuerzas aerodinámicas de dimensionamiento, los valores en la piel o la distribución de valores alrededor de la
aeronave entera o de un componente de la aeronave, caracterizado porque comprende los siguientes pasos:
a) Seleccionar un conjunto de parámetros de dicha aeronave entera o dicho componente de aeronave, siendo dichas fuerzas aerodinámicas de dimensionamiento, valores en la piel ó distribución de valores dependientes de dichos
parámetros;
b) Realizar cálculos CFD RANS del campo fluido para un número N1 de combinaciones diferentes de valores de
dichos parámetros;
15
20
25
c) Obtener dichas fuerzas aerodinámicas de dimensionamiento, valores en la piel o distribución de valores para
cualquier combinación de valores de dichos parámetros mediante un modelo de orden reducido generado calculando
los modos POD de las variables de flujo, desarrollando las variables de flujo usando dichos modos POD y obteniendo
los coeficientes POD de dichas variables de flujo desarrolladas utilizando un algoritmo genético que encuentra, para
cada conjunto de parámetros de la etapa a), los coeficientes POD que minimizan la Función de Aptitud, la cual se
obtiene reemplazando las variables de flujo por las ecuaciones de Navier-Stokes, que describen el movimiento del
flujo alrededor del perfil de la aeronave que se está considerando, forzando que la suma de los valores cuadrados de
la parte izquierda de cada ecuación, integrados sobre el dominio fluido y añadidos a los cuadrados de la condición de
borde, sea mínima.
2. Un método asistido por ordenador según la reivindicación 1, caracterizado porque dicho conjunto de parámetros
incluye al menos el ángulo de ataque.
3. Un método asistido por ordenador según cualquiera de las reivindicaciones 1-2, caracterizado porque dicho
conjunto de parámetros incluye al menos el número Mach.
30
35
40
4. Un método asistido por ordenador según cualquiera de las reivindicaciones 1-3, caracterizado porque dichos
modos POD se obtienen usando una técnica de Descomposición en Valores Singulares de Orden Alto (HOSVD)
teniendo en cuenta una corrección para existencia de posibles ondas de choque en el campo fluido tal que dicha
corrección se gestiona en tres sub-pasos: a) identificar la estructura de ondas de choque (posición e intensidad de
salto) y descomponer la estructura en un salto inclinado y un perfil suave; b) aplicación del HOSVD a las dos partes
de la estructura, y c) interpolar y recomponer las dos partes de la estructura para reconstruir la estructura completa de
la onda de choque.
5. Un sistema para servir de ayuda en el diseño de una aeronave proporcionando las fuerzas aerodinámicas de dimensionamiento, los valores en la piel o la distribución de valores alrededor de la aeronave entera o de un componente
de la aeronave que son dependientes de un número significativo de parámetros, caracterizado porque comprende:
a) Un modelo discreto implementado en ordenador de dicha aeronave entera o dicho componente de aeronave y
del campo de flujo del fluido circundante;
45
50
55
60
b) Un modulo CFD RANS implementado en ordenador para calcular y almacenar dichas fuerzas aerodinámicas,
valores en la piel ó distribución de valores en una muestra de casos con diferentes combinaciones de valores de dichos
parámetros;
c) Un modulo implementado en ordenador de Descomposición en Valores Singulares de Orden Alto (HOSVD)
capaz de determinar los modos POD del campo fluido;
d) Un modulo implementado en ordenador con un modelo de orden reducido para llevar a cabo cálculos rápidos y
almacenamientos de valores de variables del campo fluido para cualquier combinación de dichos parámetros, que se
obtienen modelizando las variables por medio de desarrollos en serie basados en los modos POD del campo fluido,
habiendo obtenido los coeficientes POD de dichas variables utilizando un algoritmo genético que encuentra, para cada
conjunto de parámetros, los coeficientes POD que minimizan la Función de Aptitud, la cual se obtiene reemplazando
las variables del campo fluido por las ecuaciones de Navier-Stokes, que describen el movimiento del flujo alrededor
del perfil de la aeronave que se está considerando, forzando que la suma de los valores cuadrados de la parte izquierda
de cada ecuación, integrados sobre el dominio fluido y añadidos a los cuadrados de la condición de borde, sea mínima.
65
9
ES 2 356 788 A1
10
ES 2 356 788 A1
11
OFICINA ESPAÑOLA
DE PATENTES Y MARCAS
21 N.º solicitud: 200703349
ESPAÑA
22 Fecha de presentación de la solicitud: 18.12.2007
32 Fecha de prioridad:
INFORME SOBRE EL ESTADO DE LA TECNICA
51 Int. Cl. :
G06F17/50 (2006.01)
G01M9/08 (2006.01)
DOCUMENTOS RELEVANTES
Categoría
Documentos citados
Reivindicaciones
afectadas
A
JOUHAUD et al.: “A surrogate-model based multidisciplinary shape optimization method
with application to a 2D subsonic airfoil” en Computers & Fluids, Elsevier, yol. 36, nº 3,
páginas 520-529, ISSN 0045-7930. 06.12.2006
1-5
A
LUCIA et al.: “Reduced-order modeling: New approaches for computational physics” en
Progress in Aerospace Sciences, Elsevier, yol. 40, nº 1-2, páginas 51-117.
ISSN 0376-0421. 01.02.2004
1-5
A
RAMBO et al.: “Reduced-order modeling of turbulent forced convection with parametric
conditions” en International Journal of Heat and Mass Transfer, Elsevier, yol. 50, nº 3-4,
páginas 539-551. ISSN 0017-9310. 13.12.2006
1-5
A
LI et al.: “Optimizing thermal design of data center cabinets with a new multi-objective
genetic algorithm” en Distributed and Parallel Databases, Kluwer Academic Publishers,
yol. 21, nº 2-3, páginas 167-192. ISSN 1573-7578. 13.03.2007
1-5
A
WILLCOX et al.: “Balanced model reduction via the proper orthogonal decomposition en
AIAA Journal, vol. 40, nº 11, páginas 2323-2330. ISSN 0001-1460. 01.11.2002
1-5
A
HALL et al.: “Proper orthogonal decomposition technique for transonic unsteady
aerodynamic flows” en AIAA Journal, vol. 38, nº 10, páginas 1853-1862.
ISSN 0001-1452. 01.10.2000
1-5
Categoría de los documentos citados
X: de particular relevancia
Y: de particular relevancia combinado con otro/s de la
misma categoría
A: refleja el estado de la técnica
O: referido a divulgación no escrita
P: publicado entre la fecha de prioridad y la de presentación
de la solicitud
E: documento anterior, pero publicado después de la fecha
de presentación de la solicitud
El presente informe ha sido realizado
 para todas las reivindicaciones
Fecha de realización del informe
31.03.2011
 para las reivindicaciones nº:
Examinador
Javier Olalde
Página
1/4
INFORME DEL ESTADO DE LA TÉCNICA
Nº de solicitud: 200703349
Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)
G06F, G01M
Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de
búsqueda utilizados)
INVENES, EPODOC, COMPENDEX
Informe del Estado de la Técnica
Página 2/4
OPINIÓN ESCRITA
Nº de solicitud: 200703349
Fecha de Realización de la Opinión Escrita: 31.03.2011
Declaración
Novedad (Art. 6.1 LP 11/1986)
Reivindicaciones 1-5
Reivindicaciones
SI
NO
Actividad inventiva (Art. 8.1 LP11/1986)
Reivindicaciones 1-5
Reivindicaciones
SI
NO
Se considera que la solicitud cumple con el requisito de aplicación industrial. Este requisito fue evaluado durante la fase de
examen formal y técnico de la solicitud (Artículo 31.2 Ley 11/1986).
Base de la Opinión.La presente opinión se ha realizado sobre la base de la solicitud de patente tal y como se publica.
Informe del Estado de la Técnica
Página 3/4
OPINIÓN ESCRITA
Nº de solicitud: 200703349
1. Documentos considerados.A continuación se relacionan los documentos pertenecientes al estado de la técnica tomados en consideración para la
realización de esta opinión.
Documento
D01
D02
D03
D04
D05
D06
Número Publicación o Identificación
“A surrogate-model based multidisciplinary shape optimization
method with application to a2D subsonic airfoil”
“Reduced-order modeling: New approaches for computational
physics”
“Reduced-order modeling of turbulent forced convection with
parametric conditions”
“Optimizing thermal design of data center cabinets with a new
multi-objective genetic algorithm”
“Balanced model reduction via the proper orthogonal
decomposition”
“Proper orthogonal decomposition technique for transonic
unsteady aerodynamic flows”
Fecha Publicación
06.12.2006
01.02.2004
13.12.2006
13.03.2007
01.11.2002
01.10.2000
2. Declaración motivada según los artículos 29.6 y 29.7 del Reglamento de ejecución de la Ley 11/1986, de 20 de
marzo, de Patentes sobre la novedad y la actividad inventiva; citas y explicaciones en apoyo de esta declaración
De acuerdo con el artículo 29.6 del Reglamento de ejecución de la Ley 11/86 de Patentes se considera que los
objetos definidos por las reivindicación 1-5 parecen ser nuevos en el sentido del artículo 6.1 de la Ley 11/86 de
Patentes, y parecen implicar actividad inventiva en el sentido del artículo 8.1, en relación con el estado de la
técnica establecido por el artículo 6.2 de dicha Ley. En concreto,
Los documentos citados reflejan el estado de la técnica en cuanto la utilización de CFD (D01-D06), POD (D02D06), RANS (D01-D04) y algoritmos genéticos (D01,D04) en la modelización y resolución de flujos de aire
(D01-D06) en torno a estructuras de aeronaves (D01, D02, D06). No obstante, ninguno indica la utilización
(páginas 11, 12) de un algoritmo genético para encontrar, para cada conjunto de parámetros, los coeficientes
POD que minimizan Ia función de aptitud obtenida reemplazando las variables de flujo por las ecuaciones de
Navier-Stokes, forzando que la suma de los valores cuadrados de la parte Izquierda de cada ecuación,
integrados sobre el dominio fluido y añadidos a los cuadrados de Ia condición de borde, sea mínima.
Por tanto, el objeto (método) definido por la reivindicación 1, principal de procedimiento, 1 parece ser nuevo
frente al estado de la técnica.
El problema a resolver por la presente invención puede, consecuentemente, ser definido como obtener una
disminución de los tiempos de cálculo y errores del proceso.
No se considera que el algoritmo utilizado (páginas 11, 12), basado en POD y que minimiza el error mediante la
utilización del algoritmo genético, resulte evidente para un experto en la materia, por lo tanto, el objeto definido
por la reivindicación 1 también parece implicar actividad inventiva.
Por consiguiente, los objetos definidos por las reivindicaciones dependientes (2-4) parecen, así mismo, implicar
actividad inventiva.
Las consideraciones realizadas con relación a la reivindicación 1 son aplicables, mutatis mutandis, a la
reivindicación 5, principal y única de sistema, por lo que también el objeto definido por ella parece ser nuevo y
con actividad inventiva.
Informe del Estado de la Técnica
Página 4/4
Descargar