INVERSE TRIGONOMETRIC FUNCTIONS PREVIOUS EAMCET BITS ⎛ −1 ⎞ ⎛ −1 ⎞ ⎛1⎞ cos −1 ⎜ ⎟ − 2sin −1 ⎜ ⎟ + 3cos −1 ⎜ − 4 tan −1 ( −1) = ⎟ ⎝ 2 ⎠ ⎝2⎠ ⎝ 2⎠ 19π 35π 47π 1) 2) 3) 12 12 12 Ans: 4 2π π 3π π 43π Sol. − 2 × + 3× + 4 × = 3 6 4 4 12 ⎛3⎞ ⎛4⎞ π 2. If sin −1 ⎜ ⎟ + sin −1 ⎜ ⎟ = then x = ⎝x⎠ ⎝x⎠ 2 1) 3 2) 5 3) 7 Ans: 2 3 4 ⎛3⎞ ⎛4⎞ π Sol. sin −1 ⎜ ⎟ + sin −1 ⎜ ⎟ = ⇒ sin −1 = cos −1 x x ⎝x⎠ ⎝x⎠ 2 1. [EAMCET 2009] 4) 43π 12 [EAMCET 2008] 4) 11 3 16 9 16 = sin −1 1 − 2 ⇒ 2 = 1 − 2 ⇒ x 2 = 25 x x x x ⎛ ⎛ 1 ⎞⎞ The value of x where x > 0 and tan ⎜ sec −1 ⎜ ⎟ ⎟ = sin ( tan −1 2 ) is ⎝ x ⎠⎠ ⎝ ⇒ sin −1 3. 1) 5 2) 5 3 3) 1 [EAMCET 2007] 4) 2 3 Ans: 2 1⎞ ⎛ Sol. tan ⎜ sec −1 ⎟ = sin ( tan −1 2 ) x⎠ ⎝ ⎛ ⎛ 1 − x2 ⎞ 2 ⎞ tan ⎜ tan −1 ⎟ = sin ⎜ sin −1 ⎟ ⎜ x ⎟⎠ 5⎠ ⎝ ⎝ 1 − x2 2 5 ⇒ = ⇒x= x 3 5 4 1 sin −1 + 2 tan −1 = 4. 5 3 π π π 1) 2) 3) 3 4 2 Ans: 3 4 1 4 3 Sol. sin −1 + 2 tan −1 = sin −1 + tan −1 5 3 5 4 4 4 π = sin −1 + cos −1 = 5 5 2 −1 −1 −1 5. sin x + sin (1 − x ) = cos x ⇒ x ∈ 1 [EAMCET 2005] 4) 0 [EAMCET 2004] Inverse Trigonometric Functions 1) {1, 0} 2) {−1,1} ⎧ 1⎫ 3) ⎨0, ⎬ ⎩ 2⎭ 4) {2, 0} Ans: 3 π − 2sin −1 ( x ) 2 1 1 − x = 1 − 2x 2 ⇒ x = 0, 2 ⎡ ⎛1⎞ ⎛ 1 ⎞⎤ 6. cos ⎢cos −1 ⎜ ⎟ + sin −1 ⎜ − ⎟ ⎥ = …….. ⎝7⎠ ⎝ 7 ⎠⎦ ⎣ 1 2) 0 1) − 3 Ans: 2 ⎡ ⎛ 1⎞ ⎛ 1 ⎞⎤ Sol. cos ⎢cos −1 ⎜ − ⎟ + sin −1 ⎜ − ⎟ ⎥ ⎝ 7⎠ ⎝ 7 ⎠⎦ ⎣ Sol. sin −1 (1 − x ) = π⎤ π ⎡ = 0 ⎢∵ sin −1 x + cos −1 x = ⎥ 2 2⎦ ⎣ π 7. If sin −1 x − cos −1 x = , then x = 6 1 3 2) 1) 2 2 Ans: 2 Sol. By verification x = 3 / 2 8. sec 2 ( tan −1 2 ) + cos ec 2 ( cot −1 3) = [EAMCET 2003] 3) 1 3 4) 4 9 = cos 1) 5 2) 10 Ans: 3 Sol. Let tan −1 ( 2 ) = α and cot −1 ( 3) = β [EAMCET 2002] 3) −1 2 4) − 3 2 [EAMCET 2001] 3) 15 4) 20 3) 5/14 4) 14/5 tan α = 2; cot β = 3 ⇒ sec α = 5;cos ecβ = 10 ∴ sec 2 α + cos ec 2β = 5 + 10 = 15 If tan −1 3 + tan −1 x = tan − 8 , then x = 1) 5 2) 1/5 Ans: 2 Sol. tan −1 3 + tan −1 x = tan −1 8 3+ x 1 =8⇒ x = 1 − 3x 5 9. [EAMCET 2000] \\[[ 2