Ver pdf

Anuncio
www.tecun.com
Rincón Técnico
Energía Nucleoeléctrica
Autores:
El contenido de este artículo fue tomado de la página web de Comisión Nacional de Energía Atómica,
http://www.cnea.gov.ar/temas_nucleares/energia_nucleoelectrica.php
Elaboración técnica:
Para la realización de este informe se utilizaron folletos, material impreso, fotos e información de Internet de
las siguientes empresas:
•
•
•
•
•
•
•
•
Comisión Nacional de Energía Atómica
Nucleoeléctrica Argentina S.A
Siemens
Atomic Energy of Canada Limited
Electricite de France
Westinghouse
General Electric
Joseph Gonyeau, "The virtual nuclear tourist"
Energía Nucleoeléctrica
www.tecun.com. Tecun 2012 Todos los Derechos Reservados
www.tecun.com
Introducción
"Dadme un punto de apoyo y moveré el mundo" dijo Arquímedes en el siglo II
a.c. Pero el pensador olvidó mencionar que para hacerlo necesitaba energía.
La energía de sus brazos sobre la barra.
En todas o casi todas las actividades diarias encontramos la necesidad de
energía. Desde las que lleva a cabo un ser humano, como caminar, comer,
hablar, hasta el funcionamiento de una fábrica o el lanzamiento de un cohete al
espacio.
Energía es casi un sinónimo de movimiento, de vida y, más aún, de calidad de
vida.
No todas las actividades requieren el mismo tipo de energía ni la misma
cantidad por eso podemos identificar distintas fuentes de energía que
satisfacen distintas necesidades.
La energía solar es importante para hacer germinar las semillas y cubrir los
campos de verde, pero no se ha logrado concentrarla lo suficiente como para
lograr mover una fábrica. Por lo tanto puede satisfacer los requerimientos
básicos de una vivienda, o el funcionamiento de un equipo de bajo consumo,
pero es inapropiada, por ahora, para el uso industrial masivo.
La energías eólica, mareomotriz, geotérmica, o por fusión se disputan el
dominio del siglo próximo con resultados masivos aun inciertos, ya que en la
actualidad, o están en etapas de desarrollo o todavía no se ha logrado
explotarlas comercialmente. Entonces ¿cómo se moverá un país, su industria o
su transporte? ¿cómo se producirán grandes cantidades de energía eléctrica
rebasando estos inconvenientes?
Actualmente la llamada 'energía de base' es producida principalmente por tres
fuentes:
• La energía hidráulica: producida por el aprovechamiento de las caídas
de agua. Es limpia y renovable, pero como el caudal de los ríos, de los
que se nutre, depende del régimen de precipitaciones, un país no puede
depender totalmente de ella. Además las represas modifican el ciclo del
agua, alteran el ecosistema y son geográfico-dependientes.
• La energía térmica: producida al quemar combustibles fósiles, es
insustituible actualmente para mover vehículos y es la energía por
excelencia desde que se inventó la máquina de vapor hace casi dos
siglos, pero tiene grandes desventajas: es altamente contaminante,
contribuye al efecto invernadero y consume recursos no renovables: es
decir que su combustible -petróleo, carbón, gas- se agotará en un plazo
predecible.
Energía Nucleoeléctrica
www.tecun.com. Tecun 2012 Todos los Derechos Reservados
www.tecun.com
• La energía nuclear: producida por la energía liberada durante la fisión
del átomo, es limpia, confiable en el suministro, no contaminante, pero
con una desventaja que los ecologistas levantan como bandera: produce
residuos que tardan muchos años en perder su actividad.
¿Qué es una Central Nuclear?
Al igual que los otros dos tipos de energía de base, el principio de producción
de electricidad de una central nuclear es el movimiento de turbinas a partir de
una fuerza externa. Tanto en el caso de los reactores nucleares como en el de
las plantas de energía térmica convencionales, la fuerza del vapor es la que
mueve esas turbinas, en las del tipo hidroeléctrica es la fuerza de las aguas la
que lo hace.
¿Cómo funciona una central nuclear?
Una central de este tipo utiliza combustible "nuclear", esto es, material que
contiene núcleos fisionables (es decir que se pueden 'partir'); en lugar del
combustible "convencional". El Uranio 235 es un material fisionable, como así
también el plutonio, pero del uranio natural que se extrae de las canteras sólo
una parte en 140 es uranio 235, el resto es inutilizable. Un reactor puede
funcionar tanto con uranio natural (escaso material fisionable) como con uranio
enriquecido, -al cual se lo ha tratado especialmente para aumentar su
rendimiento (mayor proporción de U.235)-.
El calor para generar vapor proviene del proceso de fisión. La fisión comienza
cuando un neutrón a gran velocidad choca contra un núcleo, el núcleo no
puede albergar el neutrón extra y se parte formando dos núcleos más
pequeños. Al mismo tiempo se liberan varios neutrones que van a chocar
contra otros núcleos, que a su vez se rompen y liberan más neutrones, y así
sucesivamente. Dado que el primer neutrón desencadena una serie de
fisiones, este procedimiento se denomina reacción en cadena. Así, se puede
generar una enorme cantidad de energía y de calor en una fracción de
segundo.
Este proceso se lleva a cabo en el núcleo del reactor, formado por los
'elementos combustibles'.
El núcleo del reactor se encuentra rodeado de una sustancia llamada
moderador que se utiliza para frenar la velocidad de los neutrones hasta
llevarlos a la energía térmica (una velocidad aprox. 3.700 m/s, a una
temperatura de 290ºC) y aumentar la probabilidad de choque con otros
núcleos. En los reactores que utilizan uranio enriquecido como elemento
combustible se utiliza agua común o grafito como moderador, en cambio en los
reactores que utilizan uranio natural, (menos cantidad de núcleos fisionables)
se utiliza agua pesada, tal es el caso de las centrales nucleares argentinas de
Atucha y Embalse.
Energía Nucleoeléctrica
www.tecun.com. Tecun 2012 Todos los Derechos Reservados
www.tecun.com
El agua pesada está formada por dos átomos de deuterio y uno de oxígeno (el
deuterio es un isótopo del hidrógeno que posee un neutrón más en su núcleo,
por lo tanto es más denso). Los neutrones provenientes de la fisión tienen una
gran velocidad, con la cual es más difícil hacerlos chocar contra otros núcleos,
por lo tanto es necesario frenarlos mediante choques con otras sustancias
capaces de extraerles energía sin absorberlos. Esta función es, en parte,
cumplida por el agua pesada que es aproximadamente 100 veces más
absorbente que el agua normal, por eso se la emplea con uranio natural,
deficiente en uranio-235. En cambio, con uranio enriquecido, con el cual se
generan más neutrones, se puede usar agua común. El uso del agua como
moderador, en lugar del grafito utilizado en algunos modelos de reactores
soviéticos como el de Chernobyl, reduce el riesgo de incendio.
Dentro del núcleo se insertan, con el fin de controlar la potencia de la fisión, las
denominadas 'barras de control'. Estas barras son generalmente de cadmio, un
material que absorbe los neutrones que chocan contra ellas durante el proceso
de fisión evitando que progrese la reacción en cadena.
El núcleo del reactor de Atucha I, por ejemplo, cuenta con 29 barras de control
y son necesarias solo 3 para detener el proceso en el acto. En caso de
producirse un recalentamiento, y de ser necesario detener el reactor en forma
inmediata, también se puede introducir dentro del núcleo ácido bórico que
actúa de una forma similar a las barras de control.
Seguridad
Un principio básico en el diseño de centrales nucleares es su seguridad
redundante. Para disminuir la probabilidad de que la radioactividad de los
productos de fisión se libere al medio ambiente y llegue al público, se aplica el
concepto de barreras múltiples. El material radioactivo (pastillas de dióxido de
uranio) se encuentra aislado del medio ambiente por 3 barreras:
1. Las vainas de zircaloy que componen los elementos combustibles. (Fuel
cladding)
2. El recipiente del reactor. (Reactor pressure vessel)
3. El edificio de contención. (Containment)
Elementos combustibles:
Están formados por tubos de zircaloy que contienen en su interior pastillas de
dióxido de uranio. Estas pastillas, de alrededor de un centímetro de alto y uno
de diámetro, se depositan dentro de los tubos sellados herméticamente para
impedir que el uranio produzca reacciones químicas indeseables al ponerse en
contacto con el agua y para impedir escapes del material fisionable al exterior.
Los tubos de Zircaloy están unidos en forma de manojo por otros elementos
estructurales fabricados con una aleación de circonio, material que no interfiere
Energía Nucleoeléctrica
www.tecun.com. Tecun 2012 Todos los Derechos Reservados
www.tecun.com
-al igual que el antes mencionado Zircaloy- en el proceso de fisión. Este
manojo constituye el llamado "elemento combustible".
Para optimizar el consumo de elementos combustibles, las centrales nucleares
tienen organizado un complejo sistema de rotación de los mismos, que
garantiza una producción de calor y un quemado parejos.
Energía Nucleoeléctrica
www.tecun.com. Tecun 2012 Todos los Derechos Reservados
www.tecun.com
Los elementos combustibles poseen distintas formas, dependiendo del tipo de
reactor. En las fotos superiores vemos un combustible de reactor BWR y
posteriormente, un combustible de la Central Nuclear Embalse fabricado en el
país en las plantas que la CNEA posee en el Centro Atómico Ezeiza.
El recipiente del reactor:
Este recipiente construido en aceros especiales de alta resistencia a la
radiación y a las grandes presiones, contiene dentro de si los elementos
combustibles, el moderador, el refrigerante y la estructura de soporte en la cual
se insertan los elementos combustibles. La forma y tamaño, varía según el tipo
de reactor.
Edificio de contención:
Un principio básico en la construcción de una central nuclear es su alta
seguridad, para reducir las probabilidades de una liberación del producto de
fisión al medio ambiente, el reactor, los generadores de vapor y el resto de los
circuitos primarios, se encuentran contenidos dentro de un edificio de
contención.
El edificio de contención es una gran estructura de acero estanca,
normalmente esférica o cilíndrica con una cúpula semiesférica. Por lo general
este edificio no se encuentra a la vista, sino que a su vez está contenido dentro
de un edificio de hormigón que provee una barrera de seguridad adicional. El
Energía Nucleoeléctrica
www.tecun.com. Tecun 2012 Todos los Derechos Reservados
www.tecun.com
edificio de contención puede soportar altas presiones internas que pueden
llegar a las 100 libras por pulgada cuadrada.
Dentro del edificio existen sistemas de ventilación y refrigeración para disminuir
la temperatura del reactor en condiciones normales de operación y ante la
eventualidad de un accidente. En este caso las cañerías instaladas en la parte
superior del edificio permiten rociar todos los elementos internos con agua
borada para reducir la presión y temperatura interna del edificio, en la parte
inferior del edificio hay sumideros que recolectan estos líquidos permitiendo
así, su posterior reutilización.
Energía Nucleoeléctrica
www.tecun.com. Tecun 2012 Todos los Derechos Reservados
www.tecun.com
Circuitos de operación:
Un reactor nuclear cuenta con varios circuitos de agua que funcionan en forma
simultánea:
• En el circuito primario la bomba principal impulsa el refrigerante (agua
pesada en el caso de Atucha I) hacia el núcleo del reactor, en donde se
calienta aproximadamente a 300ºC, luego pasa por el generador de
vapor calentando la tubería en su interior para después volver al circuito
principal.
• Al generador de vapor entra agua por otro circuito que al ponerse en
contacto con las tuberías calientes que se encuentran dentro de él, entra
en ebullición produciendo una enorme cantidad de vapor que
posteriormente pasará a impulsar los álabes de las turbinas haciéndolas
girar. Este movimiento, a su vez produce la rotación del "generador
eléctrico" produciéndose de esta forma la corriente eléctrica.
• Para lograr una renovación constante del agua que debe ingresar al
generador de vapor, a la salida de las turbinas se encuentran los
condensadores que enfrían el vapor y lo vuelven a la fase liquida. Esta
agua, con la ayuda de una bomba, es reingresada al generador de vapor
para un nuevo comienzo del ciclo. Los condensadores son enfriados con
agua natural, extraída de algún río o lago cercano a la central, (en el
caso de no haberlos se utilizan grandes torres de refrigeración) que
luego de cumplir su función es enviada de vuelta a su fuente de origen
sin sufrir ningún tipo de alteración química.
Desechos radioactivos
Como todo proceso industrial, la generación eléctrica produce residuos. En el
caso de las centrales nucleares estos se dividen en dos grandes categorías
según la actividad que posean y el tiempo que tarde esta en decaer:
1. Residuos de actividad media y baja: Estos se producen mayoritariamente
como consecuencia de procesos de limpieza internos de la central, filtros de
aire descartables, líquidos utilizados en distintas partes de la planta, y resinas
empleadas en procesos de purificación química. La evacuación de estos
desechos se produce mediante un proceso de compactado y cementación en
barriles de 200 litros. Estos son almacenados en repositorios o depósitos
especialmente diseñados hasta que la actividad de los mismos disminuya a un
nivel que permita su liberación como residuos convencionales.
2. Residuos de alta actividad: Son, principalmente, los resultantes del
procesamiento de los elementos combustibles quemados en el núcleo del
reactor. Después de permanecer de 2 a 5 años (dependiendo del tipo de
central nuclear) en el reactor, los elementos combustibles se extraen del mismo
mediante un sistema de telemanipulación remota y son colocados en piletas de
almacenamiento donde se enfrían y pierden parte de su radioactividad.
Energía Nucleoeléctrica
www.tecun.com. Tecun 2012 Todos los Derechos Reservados
www.tecun.com
Estas piletas llenas de agua contienen en el fondo soportes especiales donde
se colocan los elementos combustibles, que quedan almacenados bajo agua
por un periodo no menor de 10 años.
El agua cumple 2 propósitos: sirve como blindaje para reducir los niveles de
radiación a la cual podrían estar expuestos los operarios de la central y para
refrigerar los elementos combustibles que continúan produciendo calor por
algún tiempo luego de su extracción del núcleo.
Las piletas tienen generalmente una profundidad de 15 a 20 metros. Aunque
son necesarios solo 2 metros y medio de agua para blindar la radiación hasta
niveles aceptables para el público, se deja un margen extra de casi 8 metros
por encima de los elementos combustibles para permitir las maniobras de
reacomodamiento de los mismos dentro de la pileta, además permite su
observación, control y registro ante los tratados internacionales de
salvaguardia.
Para enfriar y recuperar el agua perdida, se utilizan sistemas de filtrado,
intercambiadores de calor, y bombas de recirculación. La temperatura del agua
es monitoreada constantemente para mantenerla entre los 30ºC y 45ºC
aproximadamente.
Luego de 10 o más años de permanecer en las piletas, y en caso de que las
mismas agoten su capacidad de almacenamiento, los elementos combustibles
pueden ser almacenados en seco dentro de silos de hormigón reforzado o
contenedores de acero especialmente construidos. Estos contenedores
almacenan de 20 a 80 elementos combustibles (dependiendo del tipo de
central), y están herméticamente sellados para asegurar que no se libere
material radioactivo al medio ambiente.
Si bien una solución para la disposición final de los combustibles aun no ha
sido tomada en ningún país del mundo, los estudios más avanzados realizados
en USA, Francia, Alemania, Finlandia, etc. se inclinan por el almacenamiento
directo en formaciones geológicas profundas, donde los combustibles
quedaran aislados del medio ambiente en contenedores especiales, o bien por
el procesamiento de los mismos y posterior almacenamiento profundo de los
residuos de alta actividad resultantes.
Distintos tipos de Reactores Nucleares
Si bien el principio de funcionamiento de una Central nuclear que se explicó
anteriormente es válido en general, existen algunas diferencias de una a otra
planta según el tipo de Reactor que posean. Los reactores se clasifican de
acuerdo a la sustancia que utilicen como moderador y refrigerante, los más
comunes son:
Energía Nucleoeléctrica
www.tecun.com. Tecun 2012 Todos los Derechos Reservados
www.tecun.com
• PWR (Pressurized Water Reactor) reactores con agua liviana a presión
como refrigerante y moderador.
• PHWR (Pressurized Heavy Water Reactor) reactores con agua pesada a
presión como refrigerante y moderador.
• BWR (Boiling Water Reactor) reactores de agua liviana en ebullición
como refrigerante y moderador.
• GCR (Gas Cooled Reactor) reactores refrigerados por gas y moderados
con grafito.
• LWGR (Light Water Graphite Reactor) reactor refrigerado con agua
liviana y moderado con grafito.
De las 441 centrales nucleares en operación (datos de 2002), en los 32 países
del mundo que utilizan la tecnología nuclear para generar electricidad, 213 son
del tipo PWR, 90 BWR, 35 PHWR y el resto funcionan con otros tipos de
reactores.
Tipo
ABWR
AGR
BWR
FBR
GCR
HWLWR
LWGR
PHWR
PWR
WWER
Total
En Operación
Cant.
Total MW(e)
2
14
90
3
16
1
17
35
213
50
441
2630
8380
78017
1039
2684
148
12589
17180
203068
32926
358661
En
Cant.
4
0
1
0
0
0
1
9
8
10
33
Construcción
Total
MW(e)
5329
0
1067
0
0
0
925
3800
7681
8298
27100
Describiremos a continuación las principales características de estos tres
modelos y luego presentaremos algunos datos particulares de las centrales
Argentinas de Atucha y Embalse que son del tipo PHWR.
Reactores PWR
Estos reactores fueron diseñados originalmente por la empresa Westinghouse
(USA) y hoy en día, con pequeñas variaciones en el diseño, son también
fabricados por las empresas Framatome (Francia) y Mitsubishi (Japón) entre
las más importantes. Un modelo similar, fabricado por la empresa rusa
Atomstroyexport, con tecnología soviética se conoce como VVER.
Los reactores PWR tienen tres sistemas separados de refrigeración de los
cuales solo uno, llamado Circuito de Refrigeración Primario, contiene
radioactividad.
Energía Nucleoeléctrica
www.tecun.com. Tecun 2012 Todos los Derechos Reservados
www.tecun.com
El Circuito de Refrigeración Primario ubicado dentro del edificio de contención,
consiste en dos, tres o cuatro circuitos ("loops") conectados al Reactor, cada
uno conteniendo una Bomba de Circulación Principal y un Generador de Vapor.
El reactor calienta el agua que entra a aprox. 250°C y atraviesa de abajo hacia
arriba los elementos combustibles saliendo del reactor por las Toberas
Principales a una temperatura aproximada de 300 °C. En este tipo de reactor el
agua no hierve pues trabaja a una presión interna de 2250 psi. Esta presión se
mantiene mediante un dispositivo llamado Presurizador conectado al Circuito
Primario. El agua que sale del Reactor se bombea a los Generadores de Vapor
y pasa por unos tubos en forma de "U" en el interior de los mismos, volviendo
luego a ingresar al Reactor.
En el Circuito de Refrigeración Secundario se bombea agua de refrigeración
desde el Sistema de Alimentación de Agua, la que pasa por el exterior de los
tubos del Generador de Vapor y es calentada hasta convertirse en vapor. El
vapor así generado pasa a través de la Cañería Principal de Vapor a la Turbina
que, accionada por el mismo, gira el Generador Eléctrico. El vapor al salir de la
Turbina se condensa en un condensador y luego de pasar por sistemas
intermedios de filtrado y secado, vuelve a los Generadores de Vapor
impulsados por las Bombas del Circuito Secundario.
El Condensador es refrigerado mediante agua que se toma de la fuente fría
más cercana a la Central como puede ser un lago, un río o mar. En caso de no
existir estos, se anexa a la Central una Torre de enfriamiento refrigerada por
aire para cumplir con este propósito.
Reactores PHWR
Los reactores PHWR se diferencian de los anteriores en que por utilizar uranio
natural como combustible tienen que ser moderados con Agua Pesada. Esto
requiere ciertas modificaciones en el reactor para separar el moderador del
refrigerante y un circuito adicional para circular y refrigerar el agua pesada del
moderador. Una descripción más detallada de este tipo de central lo veremos
en el capítulo dedicado a las plantas de Atucha y Embalse que tiene este tipo
de reactor.
Reactores BWR
Este tipo de reactores, originalmente diseñado por las empresas General
Electric y Allis-Chambers de Estados Unidos, es construido hoy en día también
por Hitachi (Japón). Existen modelos de este reactor funcionando en diversos
países como: Finlandia, Japón, Méjico, España, Taiwan, Suiza, Holanda, entre
otros.
A diferencia de los PWR, en este tipo de reactor, el agua en su interior está en
ebullición a una temperatura de aproximadamente 298°C produciendo vapor a
una presión de alrededor de 1000psi. El agua circula a través del núcleo del
Energía Nucleoeléctrica
www.tecun.com. Tecun 2012 Todos los Derechos Reservados
www.tecun.com
reactor extrayendo el calor a medida que atraviesa los elementos combustibles.
Esta agua convertida en vapor sube hasta la parte superior del reactor donde
se encuentran los Separadores de Vapor que separan la fase liquida de la fase
gaseosa. El vapor circula entonces a través de las tuberías principales de
vapor hacia el conjunto Turbina-Generador. El vapor entra primero a una
pequeña Turbina, llamada Turbina de Alta Presión, de allí pasa a un Separador
de Humedad y luego por dos o tres Turbinas más grandes denominadas
Turbinas de Baja Presión. Las Turbinas están conectadas unas a otra y al
Generador a través de un largo eje. El Generador produce electricidad,
generalmente a 20.000V de corriente alterna. Esta potencia es distribuida a un
transformador de que aumenta el voltaje hasta valores de 230 o 345 KV y es
luego distribuido a través de la red general de alta tensión del país. El vapor
que sale de las turbinas pasa a través de un circuito de condensadores y
bombas similar al descripto para los PWR.
Otra característica única de los BWR es que las barras de control, utilizadas
para detener y controlar la potencia del Reactor son insertadas desde abajo por
un sistema de alta presión operado hidráulicamente. Este tipo de Reactor tiene
también una cañería en forma de anillo en la parte inferior utilizada para enfriar
el Reactor en el caso que se produzca un exceso de vapor en el mismo.
Centrales Nucleares en el mundo
Un total de 441 centrales nucleares estaban en operación alrededor del mundo
a febrero del 2003 y otras 33 se encontraban en construcción. Esto representa
una capacidad aproximada de 400.000 MW de generación eléctrica.
A fines de 2002 en diez países la generación de electricidad por medio de
centrales nucleares representaba más del 40% del total producido en el país:
Lituania 80%, Francia 77%, Bélgica 58%, Suecia 44%, Eslovaquia 53%, Suiza
36%, Ucrania 46%, Bulgaria 42%, Hungría 40%, Corea 40%.
En Argentina, en el 2002, la proporción era la siguiente: Hidráulica 48%,
Térmica 43%, Nuclear 8%, otros 1%.
Centrales nucleares en Argentina
Actualmente la Argentina cuenta con dos centrales nucleares en
funcionamiento: Atucha 1 (CNA 1) y Embalse (CNE) que proporcionan el 8% de
la energía distribuida por el sistema interconectado nacional. Una tercera
central nuclear, situada junto a CNA 1, Atucha 2 (CNA 2), se encuentra en
etapa de construcción con un avance de obra del 80% pero detenida desde
fines de 1994 a la espera de una decisión gubernamental sobre su conclusión.
Energía Nucleoeléctrica
www.tecun.com. Tecun 2012 Todos los Derechos Reservados
www.tecun.com
Central nuclear Atucha I
La central nuclear Atucha 1 está ubicada sobre la margen derecha del río
Paraná de las palmas, en el partido de Zárate, 100 km al noreste de la capital.
Fue conectada al sistema interconectado nacional de distribución eléctrica, en
la red de 220 kV en el año 1974. Su reactor es del tipo PHWR, cuyo
combustible es uranio natural y es refrigerado y moderado por agua pesada, la
potencia térmica es de 1179 MWt, obteniéndose una potencia eléctrica de 370
MW.
Cuenta con dos piletas de almacenamiento de elementos combustibles
quemados ubicadas en un edificio contiguo.
Descripción:
La instalación del reactor de agua a presión se compone de: el reactor
propiamente dicho, dos circuitos de refrigeración principales del mismo tipo en
paralelo, sistema de mantenimiento de la presión, sistema del moderador, y de
algunas instalaciones auxiliares y secundarias.
Reactor:
El núcleo del reactor se encuentra dentro del recipiente de presión cerrado por
una tapa desmontable. El moderador y refrigerante - ambos agua pesada - se
separan entre si mediante un segundo recipiente, el tanque del moderador,
este se encuentra atravesado por los 253 canales de refrigeración que
conducen al exterior del recipiente de presión y están provistos de un cierre de
alta presión. Dentro de estos canales se encuentran suspendidos los
elementos combustibles.
Cada uno de sus 253 elementos combustibles mide 5,25 metros de largo, pesa
cerca de 200 kg y esta compuesto por un manojo de 37 barras de zircaloy de
0,5 mm de espesor con una barra de sujeción en el centro. El peso total del
uranio es de 38,6 toneladas. Una característica particular de este tipo de
reactor es que, a través de los citados cierres por medio de la maquina de
carga, pueden recambiarse los elementos combustibles sin que por ello sea
necesario interrumpir el servicio de la central como sucede en las plantas con
reactores del tipo PWR o BWR.
Las 29 barras de control alojadas en tubos que atraviesan diagonalmente el
núcleo del reactor, tienen como objetivo regular la potencia y detener el reactor.
Dichas barras se accionan mediante un mecanismo electromagnético que
actúa a través de las paredes de los tubos de metal resistentes a la presión.
Circuito refrigerante:
El refrigerante fluye a través de 2 circuitos principales dispuestos
simétricamente con respecto al recipiente, ingresando por 2 bocas de entrada
al recipiente y circulando axialmente, en sentido descendente, dentro del
recinto anular existente entre la pared del recipiente de presión y el recipiente
del moderador.
Energía Nucleoeléctrica
www.tecun.com. Tecun 2012 Todos los Derechos Reservados
www.tecun.com
Cada uno de los circuitos de refrigeración del reactor consta de: un generador
de vapor, una bomba de recirculación y de las tuberías de unión. A uno de los
dos circuitos de refrigeración va unido el sistema de control de presión, con
este se compensan las variaciones de presión y del volumen que se producen
durante el servicio normal y en caso de fallas.
Los generadores de vapor están diseñados a modo de intercambiadores de
calor, en disposición vertical, provistos de haces de tubos en forma de U.
Todas las partes en contacto con el refrigerante del reactor se han fabricado o
revestido con un material resistente a la corrosión. Sus condensadores están
enfriados con el agua extraída del río Paraná.
Circuito moderador:
El sistema del moderador está vinculado hidráulicamente al circuito primario,
aunque manteniendo distintas temperaturas, operándose por dos circuitos
independientes. El calor extraído de los mismos por los respectivos
intercambiadores es aprovechado para precalentar el circuito secundario.
El elemento principal dentro del recipiente de presión es el tanque del
moderador, atravesado por los 253 canales de refrigeración y conteniendo
además los tubos de guía de: las 29 barras de control, mediciones de
temperatura, nivel, flujo neutrónico, cañerías para la inyección de ácido deutero
bórico, el sistema de muestreo y detección de elementos combustibles con
fallas, y determinación de los parámetros de su propio circuito de refrigeración.
En condiciones de operación normal la circulación del fluido en el interior del
tanque se establece de abajo hacia arriba.
Central nuclear Embalse
Se levanta en la costa sur del Embalse de Río Tercero, Provincia de Córdoba.
Entro en servicio el 20 de enero de 1984 y genera una potencia de 600 Mw
eléctricos.
Posee un reactor tipo PHWR, de desarrollo canadiense, denominado CANDU
(Canadian Deuterium Uranium), siglas que se refieren al uso de uranio natural
como combustible y agua pesada como refrigerante.
Descripción:
El reactor está formado por un tanque cilíndrico horizontal de acero inoxidable
(denominado Calandria), atravesado horizontalmente por 380 canales,
(llamados tubos de presión), dentro de cada uno de los cuales hay 12
elementos combustibles y por los cuales circula el agua pesada que actúa
como refrigerante. Entre los tubos de presión y la calandria circula el
Energía Nucleoeléctrica
www.tecun.com. Tecun 2012 Todos los Derechos Reservados
www.tecun.com
moderador, también agua pesada. Las barras de control atraviesan al reactor
verticalmente y se introducen por la parte superior.
Al igual que en los reactores PWR, las bombas principales circulan el
refrigerante por el circuito principal hacia los generadores de vapor y de allí a la
turbina. El agua pesada que actúa como moderador circula por un circuito
independiente con su propio intercambiador de calor para refrigeración.
El resto de los sistemas son similares a los ya descriptos para los reactores
PWR.
Los elementos combustibles, de 50 cm de largo cada uno, están formados por
37 vainas de zircaloy conteniendo las pastillas de dióxido de uranio, tal como
ya se explicó anteriormente. El recambio de los mismos se realiza con la
central en funcionamiento por medio de una maquina de carga que actúa
horizontalmente en el frente de la Calandria.
Energía Nucleoeléctrica
www.tecun.com. Tecun 2012 Todos los Derechos Reservados
Descargar