4MA1DF01bil Wiederholung : Ableitungen Wiederholung : Ableitungen Die Ableitungen folgender Funktionen berehnen : 1. f (x) = 1 sin(x) 2. f (x) = x ln(x) 3. f (x) = (x − 1)3 (x + 1)2 4. f (x) = e−x · cos(x) 5. f (x) = x ln(x) − x 6. f (x) = 7. f (x) = ′ f (x) = ′ −x f (x) = −e 9. f (x) = sin(2x) −x · sin (x) 20x ′ f (x) = − 2 2x2 − 1 2x + 1 ′ f (x) = q 3 2 x2 + x + 1 ′ f (x) = −5 (3 − x) 4 ′ f (x) = 2 cos (2x) 10. f (x) = 11. f (x) = (3x2 + 4) (2x2 − 3x) 12. f (x) = sin(2x) · cos(3x) 13. f (x) = ln (3x5 ) 14. (3x − 2)2 − 1 f (x) = 3x − 2 15. f (x) = 3x5 − AK (x + 1)3 · cos (x) − e 3· f (x) = (3 − x)5 (x − 1)2 (x + 5) ′ x2 + x + 1 8. ln2 (x) f (x) = ln (x) 5 −1 √ 7 ln (x) − 1 ′ f (x) = 2x2 √ 3 cos(x) sin2 (x) ′ f (x) = − x4 ′ f (x) = 7· 5 6 7x3 3x2 + − x + 17 6 4 ′ 5 f (x) = 12x (2x − 3) 5 4 2 3x + 4 3 4 √ 7 x3 2 11x − 12x + 8x − 6 ′ f (x) = 2 cos (2x) cos (3x) − 3 sin (2x) sin (3x) 5 ′ f (x) = ′ f (x) = ′ x 3 9x2 − 12x + 5 (3x − 2)2 4 f (x) = 15x − 7x2 2 + 3x 2 −1 CdC 2014-2015 4MA1DF01bil Wiederholung : Ableitungen 2x − 1 x 2 ! 16. f (x) = sin 17. f (x) = ln(5x) 18. f (x) = cos(x) sin2 (x) + 2 19. −2 f (x) = √ 3 x2 20. f (x) = 2 sin(x) + cos(3x) 21. x2 f (x) = ln 1−x 22. f (x) = 4 − 3x 2x − 1 23. f (x) = 1 x ln(x) 24. f (x) = e5x 25. f (x) = sin3 (4x) 26. f (x) = 2 (2x − 1) · cos x3 2x−1 x 2 1 ′ f (x) = ′ 2 2 3 f (x) = sin (x) 2 cos (x) − sin (x) − 2 4 √ 3 ′ f (x) = 3· x = −3 sin (x) = x5 3x · 4 √ 3 x2 ′ f (x) = 2 cos (x) − 3 sin (3x) ! 2−x ′ f (x) = x (1 − x) 5 (2x−1)2 ′ f (x) = − ′ f (x) = − ln (x) + 1 x2 ln2 (x) 5x ′ f (x) = 5e 2 ′ f (x) = 12 cos (4x) sin (4x) q (4x2 − 2x)3 ′ f (x) = 3 · (4x − 1) · 27. f (x) = exp 28. f (x) = x2 ex p 4x2 − 2x 1 x exp 1 x ′ f (x) = − x2 ′ x f (x) = x (x + 2) e √ 3 f (x) = (1 + 30. f (x) = (x2 + a2 ) 31. 1 f (x) = √ 4 x 32. f (x) = ln (x2 − x) x) √ 2 1+ 3x √ 3 2 x 3 29. AK ′ f (x) = ′ f (x) = 5 ′ f (x) = 10x ′ f (x) = − 4· 1 √ 4 x5 ′ 2 x +a =− f (x) = 2 4 1 √ 4x · 4 x 2x − 1 x (x − 1) CdC 2014-2015