GUIÓN 2. CONDENSADOR PLANO Objetivos En esta práctica se

Anuncio
Curso 2005–2006
Laboratorio de Ampliación de Física - E.T.S.I.I.
GUIÓN 2. CONDENSADOR PLANO
Objetivos
En esta práctica se estudia la capacidad de un condensador plano sin considerar la capacidad
parásita que puedan introducir otros agentes conductores en su entorno. En particular:
- se analiza la dependencia de la capacidad del condensador plano respecto a la separación entre
sus placas,
- se evalúa experimentalmente la capacidad del condensador empleando, bien sus características
geométricas, bien medidas de carga frente a diferencia de potencial,
- se comparan y discuten los resultados experimentales obtenidos.
Materiales
1 condensador formado por dos placas metálicas.
1 soporte con 2 jinetillos.
Sistema medidor de carga: opción a) coulombímetro con resolución de ±1nC, opción b)
amplificador de medida con milivoltímetro.
Fuente de alimentación de CC 0/500 V.
Resistencia de protección de 100 MΩ.
Calibre y regla graduada.
Cables de conexión y conectores varios.
Introducción
La capacidad de un condensador se define como la razón
C =
Q
∆V
[1]
entre la carga Q almacenada en las armaduras en virtud de la diferencia de potencial ∆V
establecida entre ellas. Para un condensador de placas planoparalelas indefinidas cuyo espacio
Guión 2: Condensador plano - 1
Curso 2005–2006
Laboratorio de Ampliación de Física - E.T.S.I.I.
intermedio esta ocupado por un medio dieléctrico lineal, homogéneo e isótropo de espesor d y
constante dieléctrica relativa εr la capacidad de una zona finita de las placas viene dada por
Cg = εr ⋅ε0 ⋅
A
d
[2]
donde ε0 es la permitividad dieléctrica absoluta del vacío y A es el área de la zona considerada.
Para condensadores planos de placas finitas la expresión [2] puede
emplearse también como una buena aproximación cuando el
condensador no interacciona eléctricamente con su entorno y si el
espesor d es mucho menor que las dimensiones lineales de las armaduras
~A1/2. En estas condiciones todas las líneas de campo que salen de una
placa llegan a la otra casi sin distorsión de forma que el campo eléctrico
entre las placas pueda considerarse prácticamente uniforme (fig. 1).
Fig. 1
Sistema experimental. Procedimiento para la carga y descarga del condensador.
Todos los ensayos y medidas en esta práctica se realizan
1
2
3
utilizando alternativamente dos circuitos. Con el primero
R
de ellos (fig. 2a) se carga el condensador y se mide el
voltaje aplicado, que puede ser preseleccionado mediante
+
una fuente de alimentación de tensión variable. En el
-
V
C
segundo circuito (fig. 2b) se produce la descarga del
5
condensador a través de un aparato M que puede medir la
Fig. 2a
carga total que lo atraviesa (coulombímetro o medidor de
carga). Para conseguir trabajar con mayor rapidez y
eficacia
en
el
laboratorio,
los
dos
circuitos
4
3
se
+
M
-
implementan en un único montaje conectando en común
el negativo de la fuente de alimentación con una de las
placas del condensador y con el negativo del medidor de
C
5
carga (fig. 3).
Para cargar el condensador se conecta (~1 segundo) el
Fig. 2b
terminal 2 con el punto 3. El condensador se carga al voltaje señalado por la fuente. Para
descargar, sin conectar el terminal 2, se conecta el terminal 4 que va al sistema medidor de carga.
Guión 2: Condensador plano - 2
Curso 2005–2006
Laboratorio de Ampliación de Física - E.T.S.I.I.
Con la opción a) (coulombimetro, fig. 3a) obtenemos la lectura de la carga en nC. Las lecturas de
carga se van acumulando en el medidor de forma que la carga medida en cada prueba es la
diferencia entre el valor actual y el inmediatamente anterior. Cuando nos aproximamos al final del
rango (2000 nC) podemos poner a cero la carga en el medidor colocando el selector en la posición
"SHORT" y después seguir midiendo con el selector en la posición “2000 nC”.
Con la opción b) (amplificador de medida, fig. 3b) la lectura de la carga se obtiene sobre el
milivoltímetro empleando típicamente la escala de 10-8 C en el amplificador de medida. Entre
¡¡¡¡¡NUNCA DEBEN COINCIDIR CONECTADOS ENTRE SI LOS PUNTOS 2 Y 4!!!!
d
4
+
0/500 V
-
3
+
1999 nC
Short
2
1
-
2000 nC
100 MΩ
5
Fig. 3 a
Voltímetro
1V
3V
-
Cable coaxial
1 MΩ
4
Fuente
0/500 V
-
+
-
+
d
3
5
Amplificador de medida
2
1
+
-
100 MΩ
Fig. 3b
Guión 2: Condensador plano - 3
Laboratorio de Ampliación de Física - E.T.S.I.I.
Curso 2005–2006
cada dos lecturas de carga ponemos a cero el medidor pulsando el botón de cero. El milivoltímetro
se puede emplear en las escalas de 1V y 3 V.
Con objeto de reducir el efecto de otros conductores presentes en el entorno es recomendable
mantener a lo largo de la toma de datos la misma disposición del montaje experimental. En
particular, el tamaño y proximidad de los conductores (p.ej. no debe sustituirse uno de los cables
de conexión por otro de diferente longitud).
Actividad
Los objetivos de las actividades a desarrollar son:
1) Evaluar la repetibilidad de las medidas obtenidas con nuestro sistema experimental
caracterizando el error aleatorio, el error sistemático y el error total de la media de n medidas
2) Evaluar la capacidad de un condensador plano para dos valores de la separación entre placas.
Para cada separación se obtendrán, a su vez, dos valores experimentales de la capacidad:
a) la que llamaremos capacidad geométrica Cg que se determinará en base a medidas de las
características geométricas del condensador empleando la expresión [2].
b) la que llamaremos capacidad experimental Ce se determinará utilizando medidas de carga
frente a voltaje empleando la expresión [1].
Para ello agrupamos las tareas a realizar en tres apartados consecutivos (toma de datos,
tratamiento de datos y discusión y análisis) que se detallan a continuación.
Toma de datos.
1.
Caracterización geométrica del condensador plano con separación entre placas d1.
1.1
Medir con regla graduada las dimensiones de una de las placas del condensador (b y h) y
anotarlas en la tabla 1.1 (at1.1). Montar las placas en su soporte con los jinetillos lo más
paralelas entre si que sea posible. Fijar una separación entre placas de entre 3 y 6 mm. Medir
las separaciones entre las placas da, db, dc y dd en los cuatro vértices (at1.1) (esta medida es
especialmente crítica en nuestro montaje y deber realizarse con cuidado para obtener
resultados aceptables).
Guión 2: Condensador plano - 4
Laboratorio de Ampliación de Física - E.T.S.I.I.
2.
Curso 2005–2006
Montaje y verificación del sistema experimental .
2.1. Montar el sistema experimental de la figura 3 (según corresponda a o b).
NO CONECTAR A LA RED
NI LA FUENTE DE ALIMENTACION NI EL MEDIDOR DE CARGA.
Antes de conectar:
-
Realizar un esquema del sistema experimental real tal y como se ha realizado en el
laboratorio en el que se reflejen los detalles que se consideren relevantes (Esquema 2.1).
-
Comprobar con detenimiento que las conexiones se han realizado correctamente y se
ajustan al esquema de la figura 3.
-
Avisar al profesor y no proseguir con las actividades hasta obtener su visto bueno.
ANTES DE CONECTAR A LA RED VERIFICAR DE NUEVO EL MONTAJE Y
COMPROBAR QUE LAS PLACAS DEL CONDENSADOR NO ESTÁN EN CONTACTO
3.
Medidas de carga con condensador plano con separación entre placas d1 .
3.1
Conectar a la red el sistema. Realizar 8 pruebas de carga y descarga con una diferencia de
potencial fija ∆V inferior a 400 V (at3.1).
3.2
Medir la carga almacenada en el condensador para 8 valores de voltaje de la fuente ∆V en el
intervalo de 80 a 400 V (p.ej. 80, 100, 150, 200, 250, 300, 350 y 400). Para cada valor de la
diferencia de potencial ∆V deben realizarse dos mediciones de carga (Q1 y Q2) y cuidar que
sus valores sean similares (en otro caso repetir las dos mediciones) (at3.2). Tomaremos
como la medida de la carga para cada ∆V el valor medio Q de las dos medidas.
4.
Caracterización geométrica del condensador plano con separación entre placas d2.
APAGAR LA FUENTE Y ABRIR EL CIRCUITO
4.1. Una vez apagada la fuente manipular el condensador para fijar una nueva separación entre
las placas en un valor diferente del anterior (aproximadamente entre 10 y 15 mm). Medir las
separaciones entre las placas da , db, dc y dd en los cuatro vértices (at4.1).
Guión 2: Condensador plano - 5
Laboratorio de Ampliación de Física - E.T.S.I.I.
5.
Curso 2005–2006
Medidas de carga con condensador plano con separación entre placas d2 .
ANTES DE CONECTAR A LA RED VERIFICAR DE NUEVO EL MONTAJE Y
COMPROBAR QUE LAS PLACAS DEL CONDENSADOR NO ESTÁN EN CONTACTO
5.1. Medir la carga almacenada en el condensador para 8 valores de voltaje de la fuente ∆V en el
intervalo de 80 a 400 V (p.ej. 80, 100, 150, 200, 250, 300, 350 y 400). Para cada valor de la
diferencia de potencial ∆V deben realizarse dos mediciones de carga (Q1 y Q2) y cuidar que
sus valores sean similares (en otro caso repetir las dos mediciones) (at5.1). Tomaremos
como la medida de la carga para cada ∆V el valor medio Q de las dos medidas.
Tratamiento de datos.
6.
Evaluación de las repetibilidad.
6.1
Trasladar los datos de la tabla 3.1 a la tabla 6.1. Completar la tabla 6.1 calculando la media
de la muestra Qm, la desviación estándar de la muestra sn-1 y la desviación de la media sm
(consultar referencia R1).
6.2
Asumiendo que sn-1 es conocido, completar la tabla 6.2 con la estimación del error aleatorio,
sistemático y total para las siguientes magnitudes:
a) una sola medida de carga (como Qi en tabla 3.1).
b) la media de dos medidas de carga (como Q en tabla 3.2).
c) la media de 8 medidas de carga (como Qm en tabla 6.1).
d) la media de 100 medidas de carga Q100 (No hay ningún ejemplo concreto en esta
práctica. Para fijar ideas podemos pensar que Q100 es la media 100 medidas de carga
obtenidas como Q1 en tabla 3.1).
7.
Evaluación de las capacidades geométricas.
7.1
Como ya hemos dicho, llamamos capacidad geométrica a la que se determina en base a
medidas de las características geométricas del condensador empleando la expresión [2].
Calcular el área Ag de la placa (at7.1). Calcular los valores medios d1 y d2 de las
separaciones entre placas (at7.1). Con los valores de Ag, d1 y d2 calcular las capacidades
geométricas Cg1 y Cg2 (para las separaciones d1 y d2 respectivamente) empleando la
Guión 2: Condensador plano - 6
Laboratorio de Ampliación de Física - E.T.S.I.I.
Curso 2005–2006
expresión [2] (at7.1) (tomar ε0 = (8,85 ± 0,01)·10-12 F/m y asumir que εr = 1). Evaluar la
incertidumbre de Ag, d1, d2, Cg1 y Cg2 (at7.1).
8.
Evaluación de la capacidad experimental del condensador con d1 y d2.
8.1
Como ya hemos dicho, llamamos capacidad experimental Ce a la que se determina
utilizando medidas de carga frente a voltaje empleando la expresión [1]. Realizar una
representación gráfica de Q frente a ∆V para los datos de las tablas 3.2 y 5.1 (gr8.1).
Asumiendo que para describir los datos experimentales de las tablas 3.2 y 5.1 es válido el
modelo lineal
Q = b∆V + a
[3]
trazar a a ojo la recta de mejor ajuste de Q frente a ∆V para cada serie. Evaluar gráficamente
los valores de la pendiente b y la ordenada en el origen a para cada recta de mejor ajuste
(at.8.1). Evaluar con los resultados de los ajustes y considerando el modelo [1] las
capacidades experimentales Ce1 y Ce2.
Discusión y análisis
9.
Discusión de los resultados.
9.1
Resumir los resultados parea las capacidades en la tabla 9.1 y realizar una breve discusión
de los mismos considerando los siguientes aspectos:
-
En base a los resultados del apartado 6 ¿Es adecuado promediar dos medidas para
reducir el error aleatorio de la media a un nivel aceptable en este sistema experimental?
-
En base a los resultados del apartado 8 ¿Es adecuado el modelo [1] para describir el
comportamiento de los datos experimentales? ¿Y el modelo [3]? ¿Cuál puede ser el
significado físico del parámetro a en la expresión [3]?
-
Considerando los resultados de los apartados 7 y 8 ¿Existe una buena concordancia entre
los valores de las capacidad geométrica y la capacidad experimental? ¿Podrías
cuantificar objetivamente el grado de concordancia existente?
Referencias
R1
Material en fotocopiadora: “Magnitudes físicas y medidas. Teoría de errores”.
Guión 2: Condensador plano - 7
Descargar