COMPUTATIONS WITH MATHEMATICA 10, AN ADDENDUM TO THE PAPER ”ON THE ICOSAHEDRON INEQUALITY OF LÁSZLÓ FEJES-TÓTH”. ÁKOS G.HORVÁTH In this note we publish those symbolic and numerical calculations which need to the paper in title. We used Mathematica 10 and its translating program into Latex. In[1]: D[1/6Sin[c](Cos[(x-c)/2]-Cos[x/2]Cos[c/2])/(1-Cos[x/2]Cos[c/2]), x,c] Out[1]: − 1 x Cos[ 2c ]Cos[c](−Cos[ 2c ]Cos[ x 2 ]+Cos[ 2 (−c+x)])Sin[ 2 ] 2 12(1−Cos[ 2c ]Cos[ x 2 ]) + (−Cos[ 2c ]Cos[ x2 ]+Cos[ 12 (−c+x)])Sin[ 2c ]Sin[c]Sin[ x2 ] + 2 24(1−Cos[ 2c ]Cos[ x 2 ]) 1 1 1 c x 1 c x 1 1 Sin[c]( 4 Cos[ 2 (−c+x)]− 4 Sin[ 2 ]Sin[ 2 ]) Cos[c]( 2 Cos[ 2 ]Sin[ 2 ]− 2 Sin[ 2 (−c+x)]) + − 6(1−Cos[ 2c ]Cos[ x 6(1−Cos[ 2c ]Cos[ x 2 ]) 2 ]) 1 c 1 c x 1 c x 1 x Cos[ x Sin Sin[c] Cos Sin − Sin (−c+x) Cos Sin[c]Sin Cos [2] (2 [2] [2] 2 [2 ]) [2] [ 2 ]( 2 [ 2 ]Sin[ 2c ]+ 12 Sin[ 12 (−c+x)]) 2] − 2 2 12(1−Cos[ 2c ]Cos[ x 12(1−Cos[ 2c ]Cos[ x 2 ]) 2 ]) c x 1 c x Cos[ 2c ]Cos[ x 2 ](−Cos[ 2 ]Cos[ 2 ]+Cos[ 2 (−c+x)])Sin[ 2 ]Sin[c]Sin[ 2 ] 3 12(1−Cos[ 2c ]Cos[ x 2 ]) + In[2]: Simplify[%] (( [ ] [x] [ c ]3 Out[2]: 9Cos 3c Cos[x]+ 2 − 2(5 + 10Cos[c] + Cos[2c])Cos 2 + Cos 2 ( ( [ ] ) [ ]) [ ] [ x ])3 ) 1 c c c Cos (30 + (11 + 3Cos[c])Cos[x]) Sin / 96 −1 + Cos Cos 2 2 2 2 2 In[3]: D[1/6Sin[c](Cos[(x-c)/2]-Cos[x/2]Cos[c/2])/(1-Cos[x/2]Cos[c/2]), {x,2}] [ ] [ ] [ ]) ( 41 Cos[ 2c ]Cos[ x2 ]− 14 Cos[ 12 (−c+x)])Sin[c] 1 ( Out[3]: + 6 −Cos 2c Cos x2 + Cos 12 (−c + x) · 6(1−Cos[ 2c ]Cos[ x ]) 2 ( ) 2 2 1 c x 1 1 Cos[ 2c ]Cos[ x Cos[ 2c ] Sin[ x Cos[ 2c ]Sin[c]Sin[ x 2] 2] 2 ]( 2 Cos[ 2 ]Sin[ 2 ]− 2 Sin[ 2 (−c+x)]) Sin[c] − − 2 + 3 2 c x c x 4(1−Cos[ 2c ]Cos[ x 2 1−Cos Cos 6 1−Cos Cos ]) ( [ ] [ ]) ( [ ] [ ]) 2 2 2 2 2 In[4]: Simplify[%] Out[4]: c Sin[ 2c ]Sin[c](−2Cos[c]Sin[ x 2 ]+Cos[ 2 ]Sin[x]) 3 48(−1+Cos[ 2c ]Cos[ x 2 ]) In[5]: D[1/6Sin[c](Cos[(x-c)/2]-Cos[x/2]Cos[c/2])/(1-Cos[x/2]Cos[c/2]), {c,2}] ( ) 2 c 2 ( [c] [x] [1 ]) Cos[ 2c ]Cos[ x Cos[ x 1 2] 2 ] Sin[ 2 ] Out[5]: − Sin[c] + 2 + 3 6 −Cos 2 Cos 2 + Cos 2 (−c + x) 4(1−Cos[ 2c ]Cos[ x 2(1−Cos[ 2c ]Cos[ x 2 ]) 2 ]) (( [ ] [ ] [ ]) c x 1 1 1 1 4 Cos 2 Cos 2 − 4 Cos 2 (−c + x) Sin[c]− 6(1−Cos[ 2c ]Cos[ x 2 ]) ( [ ] [ ] [ ]) ( [ ] [ ] [ ])) − −Cos 2c Cos x2 + Cos 21 (−c + x) Sin[c] + 2Cos[c] 12 Cos x2 Sin 2c + 21 Sin 12 (−c + x) − [ ] [ ] ( ( [ ] [ ] x c 1 Cos[c] −Cos 2c Cos x2 + 2 Cos 2 Sin 2 6(1−Cos[ 2c ]Cos[ x 2 ]) [ ]) ( [ ] [ ])) [ ] Cos 12 (−c + x) + Sin[c] 21 Cos x2 Sin 2c + 12 Sin 12 (−c + x) In[6]: Simplify[%] [ ] ( ] [ ] [ − 11Sin[2c − x]+ Out[6]: 4Sin 12 (c − 3x) + Sin 21 (5c − 3x) − 24Sin[c − x] + 3Sin 3(c−x) 2 [ ] [1 ] [1 ] 39Sin 2 (3c − x) + Sin 2 (5c − x) − 6Sin[x] + 24Sin[c + x] − 3Sin 3(c+x) + 11Sin[2c + x]− 2 [1 ] [1 ] [1 ] [1 ]) − 39Sin 2 (3c + x) − Sin 2 (5c + x) − 4Sin 2 (c + 3x) − Sin 2 (5c + 3x) / (384 (−1+ [ ] [ ])3 ) +Cos 2c Cos x2 Date: 2014 Nov. 1 2 Á. G.HORVÁTH In[7]: D[1/6Sin[c](Cos[(x − c)/2] − Cos[x/2]Cos[c/2])/(1 − Cos[x/2]Cos[c/2]), {x, 2}] · · D[1/6Sin[c](Cos[(x − c)/2] − Cos[x/2]Cos[c/2])/(1 − Cos[x/2]Cos[c/2]), {c, 2}] − D[1/6Sin[c](Cos[(x − c)/2] − Cos[x/2]Cos[c/2])/(1 − Cos[x/2]Cos[c/2]), x, c]∧ 2 ( ( ) 2 c 2 ]) Cos[ 2c ]Cos[ x Cos[ x 2] 2 ] Sin[ 2 ] Out[7]: −Cos 2 Cos 2 + Cos 2 (−c + x) − Sin[c]+ 2 + 3 4(1−Cos[ 2c ]Cos[ x 2(1−Cos[ 2c ]Cos[ x 2 ]) 2 ]) (( [ ] [ ] [ ]) ( [ ] [ ] [ ]) 1 1 c x 1 1 c x 1 Cos − Sin[c] − −Cos Cos + Cos Sin[c]+ Cos Cos (−c + x) (−c + x) c x 4 2 2 4 2 2 2 2 6(1−Cos[ 2 ]Cos[ 2 ]) (1 [x] [c] 1 [1 ])) ( [x] [c]( ( [c] [x] [1 ]) 2Cos[c] 2 Cos 2 Sin 2 + 2 Sin 2 (−c + x) − Cos 2 Sin 2 Cos[c] −Cos 2 Cos 2 + Cos 2 (−c + x) + ( ( [ ] [ ] [ ]))) ( ( [ ] [ ])2 )) ( 41 Cos[ 2c ]Cos[ x2 ]− 14 Cos[ 12 (−c+x)])Sin[c] + Sin[c] 21 Cos x2 Sin 2c + 12 Sin 12 (−c + x) / 6 1 − Cos 2c Cos x2 6(1−Cos[ 2c ]Cos[ x 2 ]) ( ) 2 2 ( [c] [x] [1 ]) Cos[ 2c ]Cos[ x Cos[ 2c ] Sin[ x 1 2] 2] −Cos Cos + Cos (−c + x) Sin[c] − + − 2 3 x x c c 6 2 2 2 4 1−Cos[ 2 ]Cos[ 2 ]) 2(1−Cos[ 2 ]Cos[ 2 ]) ) ( ( 1 1 c x 1 1 x Cos[ 2c ]Sin[c]Sin[ x Cos[ 2c ]Cos[c](−Cos[ 2c ]Cos[ x 2 ]( 2 Cos[ 2 ]Sin[ 2 ]− 2 Sin[ 2 (−c+x)]) 2 ]+Cos[ 2 (−c+x)])Sin[ 2 ] − − + 2 2 c x 6(1−Cos[ 2c ]Cos[ x 12 1−Cos Cos ( [ 2 ] [ 2 ]) 2 ]) c x 1 c x Cos[ 2c ]Cos[ x (−Cos[ 2c ]Cos[ x2 ]+Cos[ 12 (−c+x)])Sin[ 2c ]Sin[c]Sin[ x2 ] 2 ](−Cos[ 2 ]Cos[ 2 ]+Cos[ 2 (−c+x)])Sin[ 2 ]Sin[c]Sin[ 2 ] + + 3 2 12(1−Cos[ 2c ]Cos[ x 24(1−Cos[ 2c ]Cos[ x ]) 2 2 ]) 1 1 1 c x 1 c x 1 1 Sin[c]( 4 Cos[ 2 (−c+x)]− 4 Sin[ 2 ]Sin[ 2 ]) Cos[c]( 2 Cos[ 2 ]Sin[ 2 ]− 2 Sin[ 2 (−c+x)]) + − 6(1−Cos[ 2c ]Cos[ x 6(1−Cos[ 2c ]Cos[ x 2 ]) 2 ]) )2 c 1 c x 1 1 1 x c 1 1 Cos[ x Cos[ 2c ]Sin[c]Sin[ x 2 ]Sin[ 2 ]Sin[c]( 2 Cos[ 2 ]Sin[ 2 ]− 2 Sin[ 2 (−c+x)]) 2 ]( 2 Cos[ 2 ]Sin[ 2 ]+ 2 Sin[ 2 (−c+x)]) − 2 2 12(1−Cos[ 2c ]Cos[ x 12(1−Cos[ 2c ]Cos[ x 2 ]) 2 ]) 1 6 ( [c] [x] [1 In[8]: Simplify[%] (( [ ] [ ] Out[8]: 336 + 502Cos[c] + 256Cos[2c] + 26Cos[3c] − 66Cos 21 (c − 3x) − 14Cos 21 (5c − 3x) − [ ] [ ] [ ] 3(c−x) 2Cos 21 (7c − 3x) + 7Cos[c − 2x] + Cos[3c − 2x] − 498Cos c−x + 190Cos[c − x] − 46Cos + 2 2 [1 ] [1 ] 4Cos[2(c − x)] + 100Cos[2c − x] − 298Cos 2 (3c − x) + 18Cos[3c − x] − 98Cos 2 (5c − x) − [ ] [ ] [ ] 3(c+x) 2Cos 12 (7c − x) + 280Cos[x] + 8Cos[2x] − 498Cos c+x + 190Cos[c + x] − 46Cos + 2 2 [1 ] [1 ] 4Cos[2(c + x)] + 100Cos[2c + x] − 298Cos 2 (3c + x) + 18Cos[3c + x] − 98Cos 2 (5c + x) − ] [ ] [ ] [ 2Cos 12 (7c + x) + 7Cos[c + 2x] + Cos[3c + 2x] − 66Cos 12 (c + 3x) − 14Cos 12 (5c + 3x) − [ ]) [ ]2 ) ( ( [ ] [ ])5 ) 2Cos 12 (7c + 3x) Sin 2c / 576 −2 + 2Cos 2c Cos x2 In[9]: Plot3D[1/6Sin[c](Cos[(x-c)/2]-Cos[x/2]Cos[c/2])/(1-Cos[x/2]Cos[c/2]), {x,0,Pi/2}, {c,x,2ArcSin[Sqrt[2/3]]}] Out[9]: 3 In[10]: D[1/6Sin[c](Cos[(x-c)/2]-Cos[x/2]Cos[c/2])/(1-Cos[x/2]Cos[c/2]), c] Out[10]: + Sin[c]( 1 Cos[c](−Cos[ 2c ]Cos[ x 2 ]+Cos[ 2 (−c+x)]) 6(1−Cos[ [ ]Sin[ ] ] 1 x 2 Cos 2 c 2 c 2 6(1−Cos[ [ [ ]) c 2 ]Cos[ ]) ]) x 2 − c x 1 c Cos[ x 2 ](−Cos[ 2 ]Cos[ 2 ]+Cos[ 2 (−c+x)])Sin[ 2 ]Sin[c] 12(1−Cos[ 2c ]Cos[ x 2 ]) + 12 Sin 12 (−c+x) Cos x 2 In[11]: Simplify[%] Out[11]: ( ) c 3 Sin[ 2c ] (1+3Cos[c])Sin[ x 2 ]−2Cos[ 2 ] Sin[x] 2 12(−1+Cos[ 2c ]Cos[ x 2 ]) In[12]: Plot3D[Out[11], {x,0,Pi/2}, {c,x,2ArcSin[Sqrt[2/3]]}] Out[12]: In[13]: RegionPlot[Out[11]>=0 ,{x,0,Pi/2},{c,0,2ArcSin[Sqrt[2/3]]}] Out[13]: 2 + 4 Á. G.HORVÁTH In[14]: Plot3D[Out[8], {x,0,Pi/2}, {c,x,2ArcSin[Sqrt[2/3]]}] Out[14]: In[15]:RegionPlot[Out[8]>=0 ,{x,0,Pi/2},{c,0,2ArcSin[Sqrt[2/3]]}] Out[15]: In[16]: Reduce[ Out[8]==0 && x==Pi/2 && 0 < c < 2ArcSin[Sqrt[2/3]], {x,c}] ] [√ [ ] 2 3 4 π Out[16] x == 2 &&c == 4ArcTan Root 1 − 24#1 + 78#1 − 24#1 + #1 &, 1 In[17]: N[%] Out[17]: x == 1.5708&&c == 0.875793 In[18]: Solve[z ∧ 4 − 24z ∧ 3 + 78z ∧ 2 − 24z + 1==0] {{ √ √ √ √ } { √ √ } Out[18]: z → 6 − 34 − 35 − 6 34 , z → 6 − 34 + 35 − 6 34 , { √ √ √ √ } { √ √ }} z → 6 + 34 − 35 + 6 34 , z → 6 + 34 + 35 + 6 34 5 In[19]: N[%] Out[19]: {{z → 0.049513}, {z → 0.288583}, {z → 3.46521}, {z → 20.1967}} In[20]: Reduce[ Out[8]==0 && c==Pi/2 && 0 < x < Pi/2, {x,c}] [√ ] √ √ 2 5 3 2√ √ Out[20]: x == 4ArcTan − 10+7 + &&c == π2 2 10+7 2 In[21] N[%] Out[21]: x == 0.427922&&c == 1.5708 In[22]: Reduce[ Out[8]==0 && c==2ArcSin[Sqrt[2/3]] && 0¡x¡Pi/2, {x,c}] [ [√ ]] [√ [{ [ [√ ]] √ 2 2 + 10368Cos 4ArcSin + Out[22]: x == 4ArcTan Root 14712 − 256 3 + 20331Cos 2ArcSin 3 3 [ [√ ]] ( [ [√ ]] [ [√ ]] √ 2 2 2 +1053Cos 6ArcSin + 51168 − 3072 3 + 81324Cos 2ArcSin + 41472Cos 4ArcSin + 3 3 3 [ [√ ]]) ( [ [√ ]] [ [√ ]] 2 2 2 + 4212Cos 6ArcSin #1 + 66768 + 121986Cos 2ArcSin + 62208Cos 4ArcSin + 3 3 3 [ [√ ]]) ( [ [√ ]] √ 2 2 + 6318Cos 6ArcSin #12 + + 51168 + 3072 3 + 81324Cos 2ArcSin + 3 3 [ [√ ]] [ [√ ]]) ( [ [√ ]] √ 2 2 2 +41472Cos 4ArcSin + 4212Cos 6ArcSin #13 + 14712 + 256 3 + 20331Cos 2ArcSin + 3 3 3 [ [√ ]] [ [√ ]]) }]] [√ ] 2 2 2 +10368Cos 4ArcSin + +1053Cos 6ArcSin #14 &, 0.03105 &&c == 2ArcSin 3 3 3 In[23]: N[%] Out[23]: x == 0.697715&&c == 1.91063 In[24]:Reduce[ Out[8]==0 && x==-2Pi/3+2ArcSin[Sqrt[14]/4] && x¡c¡2ArcSin[Sqrt[2/3]], {x,c}] ( [ √ ]) 7 √ √ √ [√ [{ 2 Out[24]: x == − 3 π − 3ArcSin 2 2 &&c == 4ArcTan Root 2699 − 768 2 + 163 21 − 448 42+ [ ( [ √ ])] [ ( [ √ ])] 7 7 2 4 2 +560Cos 3 π − 3ArcSin 2 + 16Cos 3 π − 3ArcSin 2 2 + [ √ ])] ( [ ( 7 √ √ √ 2 + + −18227 + 4992 2 − 2059 21 + 2592 42 + 3920Cos 3 π − 3ArcSin 2 2 [ ( [ √ ])]) 7 √ √ ( +112Cos 43 π − 3ArcSin 2 2 #1 + 16167 − 9600 2 + 1695 21− [ √ ])] [ ( [ √ ])]) [ ( 7 7 √ 2 4 2 + 336Cos 3 π − 3ArcSin 2 2 #12 + −3360 42 + 11760Cos 3 π − 3ArcSin 2 ( [ ( [ √ ])] 7 √ √ √ 2 + −2751 + 9216 2 − 3447 21 − 2304 42 + 19600Cos 3 π − 3ArcSin 2 2 + [ ( [ √ ])]) 7 √ √ √ ( +560Cos 43 π − 3ArcSin 2 2 #13 + −2751 − 9216 2 − 3447 21 + 2304 42+ [ ( [ √ ])] [ ( [ √ ])]) 7 7 2 4 2 +19600Cos 3 π − 3ArcSin 2 + 560Cos 3 π − 3ArcSin 2 2 #14 + [ √ ])] ( [ ( 7 √ √ √ 2 + 16167 + 9600 2 + 1695 21 + 3360 42 + 11760Cos 3 π − 3ArcSin 2 2 [ √ ])]) [ ( 7 √ √ √ ( #15 + −18227 − 4992 2 − 2059 21 − 2592 42+ +336Cos 43 π − 3ArcSin 2 2 [ √ ])] [ ( [ √ ])]) [ ( 7 7 √ ( 4 2 2 + 112Cos 3 π − 3ArcSin 2 2 #16 + 2699 + 768 2+ +3920Cos 3 π − 3ArcSin 2 [ √ ])] [ ( 7 √ √ + +163 21 + 448 42 + 560Cos 23 π − 3ArcSin 2 2 6 Á. G.HORVÁTH [ ( [ √ ])]) }]] 7 7 4 2 +16Cos 3 π − 3ArcSin 2 #1 &, 0.1324047495312671 In[25]: N[%] Out[25]: x == 0.324463&&c == 1.39593 In[26]: Reduce[ Out[8]==0 && x==-4ArcSin[Sqrt[14]/4]+5Pi/3 && x¡c¡Pi/2, {x,c}] ( [ √ ]) 7 √ √ √ [√ [{ Out[26]: x == 13 5π − 12ArcSin 2 2 &&c == 4ArcTan Root 9361 − 5376 3 − 2432 7 + 933 21+ [ ( [ √ ])] [ ( [ √ ])] 7 7 √ √ ( +2240Cos 13 5π − 12ArcSin 2 2 +64Cos 23 5π − 12ArcSin 2 2 + −55113 + 31104 3 + 15168 7− [ ( [ √ ])] [ ( [ √ ])]) 7 7 √ −11709 21 + 15680Cos 13 5π − 12ArcSin 2 2 + 448Cos 23 5π − 12ArcSin 2 2 #1+ ( [ ( [ √ ])] 7 √ √ √ + 51813 − 40320 3 − 25920 7 + 9225 21 + 47040Cos 13 5π − 12ArcSin 2 2 + [ ( [ √ ])]) 7 √ √ √ ( +1344Cos 23 5π − 12ArcSin 2 2 #12 + 17811 − 27648 3 + 13824 7 − 19377 21+ [ ( [ √ ])] [ ( [ √ ])]) 7 7 +78400Cos 13 5π − 12ArcSin 2 2 + 2240Cos 23 5π − 12ArcSin 2 2 #13 + ( [ ( [ √ ])] 7 √ √ √ + 17811 + 27648 3 − 13824 7 − 19377 21 + 78400Cos 13 5π − 12ArcSin 2 2 + [ ( [ √ ])]) 7 √ √ √ ( +2240Cos 23 5π − 12ArcSin 2 2 #14 + 51813 + 40320 3 + 25920 7 + 9225 21+ [ ( [ √ ])] [ ( [ √ ])]) 7 7 +47040Cos 13 5π − 12ArcSin 2 2 + 1344Cos 23 5π − 12ArcSin 2 2 #15 + ( [ ( [ √ ])] 7 √ √ √ + −55113 − 31104 3 − 15168 7 − 11709 21 + 15680Cos 13 5π − 12ArcSin 2 2 + [ ( [ √ ])]) 7 +448Cos 23 5π − 12ArcSin 2 2 #16 + ( [ ( [ √ ])] 7 √ √ √ + 9361 + 5376 3 + 2432 7 + 933 21 + 2240Cos 13 5π − 12ArcSin 2 2 + [ ( [ √ ])]) }]] 7 +64Cos 23 5π − 12ArcSin 2 2 #17 &, 0.1604829573029123 In[27]: N[%] Out[27]: x == 0.398271&&c == 1.52411 In[28]:Reduce[Out[8]==0&&x==Pi/5&&0 < c < 2ArcSin[Sqrt[2/3]], {x, c}] ( (( [{ x = π5 ∧ c = 4 tan−1 Root #12 − 5&, 2#1 + #22 − 10&, −2#1 + #32 − 10&, 29#1#47 − 189#1#46 +393#1#45 −105#1#44 −105#1#43 +393#1#42 −189#1#4+29#1+8#2#47 −60#2#46 + 156#2#45 − 288#2#44 + 288#2#43 − 156#2#42 + 60#2#4 − 8#2 + 56#3#47 − #3#46 + 420#3#45 + 288#3#44 − 288#3#43 − 420#3#42 + 324#3#4 − 56#3 + 167#47 − 951#46 + 1083#45 + } ])1/2 ) 4 3 2 ∨c=4 341#4 + 341#4 + 1083#4 − 951#4 + 167& , {2, 2, 2, 4} (( [{ 2 2 2 −1 tan Root #1 − 5&, 2#1 + #2 − 10&, −2#1 + #3 − 10&, 29#1#47 − 189#1#46 + 393#1#45 − 105#1#44 − 105#1#43 + 393#1#42 − 189#1#4 + 29#1 + 8#2#47 − 60#2#46 + 156#2#45 − 288#2#44 + 288#2#43 − 156#2#42 + 60#2#4 − 8#2 + 56#3#47 − 324#3#46 + 420#3#45 + 288#3#44 − 288#3#43 − 420#3#42 + 324#3#4 − 56#3 + )) 167#47 − } ]) 1/2 951#46 + 1083#45 + 341#44 + 341#43 + 1083#42 − 951#4 + 167& , {2, 2, 2, 5} In[29]:N [%] 7 Out[29]: x = 0.628319 ∧ (c = 0.36077 ∨ c = 1.83487) [{ sin(u) sin(v) sin(x) sin(y) sin(z) In[30]: NMaximize √3−cos(u) + √3−cos(v) + √3−cos(x) + √3−cos(y) + √3−cos(z) , } ] π u + v + x + y + z ≤ 2 , 0 < x, 0 < y, 0 < z, 0 < u, 0 < v , {x, y, z, u, v} Out[30]: {1.97836, {x → 0.314159, y → 0.314159, z → 0.314159, u → 0.314159, v → 0.314159}}