7.3 Double-Angle and Half-Angle Formulas Find sin 2x, cos 2x, and tan 2x from the given information. 1. sin x = 5 , x in quadrant I 13 12 13 5 12 120 sin 2 x = 2 = 13 13 169 cos x = 3. 2 5 119 cos 2 x = 1 − 2 = 13 169 120 tan 2 x = 119 4 tan x = − , x in quadrant II 3 3 4 cos x = − , sin x = 5 5 24 4 3 sin 2 x = 2 − = − 25 5 5 Find sin 2 2 7 3 4 cos 2 x = − − = − 25 5 5 24 tan 2 x = − 7 x x x , cos , and tan from the given information. 2 2 2 6. sin x = 3 , 0 < x < 90 5 cos x = sin 4 5 x 1− 4 5 1 1 = = = 2 2 10 10 x 1+ 4 5 9 3 = = = 2 2 10 10 x 1 tan = 2 3 cos 1 9. sec x = 3 , 270 < x < 360 2 cos x = sin 2 3 x 1+ 2 3 5 5 =− =− =− 2 2 6 6 x 1 tan = − 2 5 cos x 1− 2 3 1 1 = = = 2 2 6 6 Use an appropriate half-angle formula to find the exact value of the expression. 5π 12 5π 1 + cos ( 5π 6 ) 1− 3 2 2− 3 2− 3 = = = cos 6 = 2 2 2 4 2 15. cos Use an appropriate double-angle formula to find the exact value of the expression. 17. tan120 tan(2 ⋅ 60o ) = 2 tan 60o 2⋅ 3 = 2 o 1 − tan 60 1 − 3 ( ) 2 = 2 2 3 =− 3 −2