UNIVERSIDAD NACIONAL EXPERIMENTAL “FRANCISCO DE MIRANDA” ÁREA DE TECNOLOGÍA COMPLEJO ACADÉMICO “EL SABINO” DEPARTAMENTO DE ENERGÉTICA PRODUCTO DE NOVIEMBRE DE 2012 GUIA DE EJERCICIOS RESUELTOS Periodo: III-2012 Por: Prof. Ing. Josmery Carolina Prof. Ing. Gelys Carolina Sánchez Ortíz C.I. V.- 17.499.196 Guanipa Rodríguez C.I.V.- 13.706.162 Coordinador: Prof. Ing. Elier Garcia ________________________________________________ Ing. Gregorio Bermúdez Jefe de Departamento de Energética PUNTO FIJO; noviembre de 2012 GUÍA DE EJERCICIOS ACTUALIZADA III-2012 Análisis de masa y energía en volúmenes de control 1. En una turbina de flujo estacionario, se expande aire de 1000 kpa y 600°C en la entrada, hasta 100 kpa y 200°C en la salida. El área y la velocidad de entrada son 0,1 m2, y 30m/seg, respectivamente, y la velocidad de salida es 10m/seg. Determine la tasa de flujo de masa y el área de la salida. Datos: P1= 1000 Kpa = 1 Mpa T1= 600°C 1 =30 m/seg A1= 0,1 m2 P2= 100 Kpa T2= 200°C 2 =10 m/seg =? a) m b) A2=? Para conocer la tasa de flujo de masa, es necesario destacar que es la cantidad de masa que pasa por una sección transversal en función del tiempo, se expresa: m Ec.1 m t Y está expresado en el sistema internacional en kg/seg, y en el sistema inglés en lbm/seg. El volumen de un fluido que fluye a través de una sección transversal por unidad de tiempo se denomina tasa flujo volumétrico y se denota con V y es dado por: Ec.2 V m A = Velocidad del fluido * Área Ec.3 m A = densidad * Velocidad del fluido * Área m m Conociendo que la relación entre Flujo másico y flujo volumétrico es: Ec.4 V m V v y por ende, m V v Sustituyendo la Ec.3 en la Ec.4, queda: Ec. 5 m m A v Se puede aplicar en la entrada de la turbina o en la salida, debido al principio de conservación de masa m m e s un solo 1 m 2 flujo : m 1 1 A1 2 2 A2 Es indispensable conocer el volumen específico a la entrada de la turbina, Asumiendo que el aire es un gas ideal y flujo estable. Recordando que la constante particular del aire es R=0,287 Kpa.m3/kg.K Por Ley de Gases ideales: Se encuentra volumen a la entrada de la turbina. V1 R * T1 (0,287kpa * m3 / kgk) * (600 273k ) 0,2506m3 / kg P1 1000kpa V2 R * T 2 (0,287kpa * m3 / kgk) * (200 273k ) 1,3575m3 / kg P2 100kpa Se sustituye en la Ec.5 y se conoce el flujo másico del aire: m 1 A1 (0,1 m2)*(30m/seg) = 11, 97 kg/seg v1 0,2506 m3/kg Respuesta A El área en la salida de la turbina, despejando (A) de la Ec.5 se tiene: A2 m * v 2 (11,97 kg/s)*(1,3575 m3/kg) = 1,605 m2 2 10 m/seg Respuesta B Conclusiones La Primera Ley, se refiere propiamente a sistemas cerrados, con masa fija. El análisis ingenieril fija su atención en los equipos y máquinas, que generalmente son sistemas abiertos, a través de cuya pared entra o sale materia. Por esta razón, es conveniente hacer la transición de masa de control (sistema cerrado) a volumen de control (sistema abierto) y formular las ecuaciones de conservación de materia y energía en los mismos. Los equipos industriales comunes que operan con circulación de fluidos, generalmente en régimen estacionario: toberas y difusores, turbinas, bombas y compresores, dispositivos de estrangulación e intercambiadores de calor. 2.- Un compresor adiabático de aire procesa 10 l/s a 120 Kpa y 20 °C, hasta 1000 Kpa y 300 °C. Determine: a) El trabajo que requiere el compresor, en KJ/Kg. b) La potencia necesaria para impulsarlo, en KW. SOLUCIÓN; Parámetros conocidos: Condiciones a la entrada (1): Temperatura, T1=20 °C+273=293 K Presión, P1(abs)=120 Kpa Caudal volumétrico, G=10 l/s=0,01 m3/s Fluido de trabajo: Aire Condiciones a la salida (2): Temperatura, T2=300 °C+273=573 K Presión, P2(abs)=1000 Kpa Realizando el balance de energía al compresor, se tiene que: Ec.1 Consideraciones importantes: Q=0, debido a que es un proceso de compresión adiabática. ΔP=0, los efectos de la energía potencial son despreciables, cuando la altura no representa importancia en los gases. Wroz=0, no se tiene información alguna para estimarla. ΔK=0, no se especifican las velocidades del flujo en la sección de entrada ni en la sección se salida, se asume que son iguales, y por lo tanto se cancelan. Flujo estacionario: no hay cambios de la velocidad del flujo con respecto al tiempo. Ley de conservación de la masa, el flujo de entrada es igual al de salida, m1=m2=m. La ecuación 1 se reduce a: ( ) ( ) ( ) Ec.2 Despejando el trabajo por unidad de masa, entonces la ecuación 2 queda simplificada de la siguiente manera: ( ) Ec.3 Existen tres criterios para encontrar Cp: una primera forma es promediando las temperaturas del proceso; una segunda forma, es en función a cada temperatura; y la tercera es aplicando el método de integración para evaluar Cp. Los dos primeros aplican para el gas ideal, y el tercero para condiciones de gas real. Dado a que el problema no especifica condiciones reales, se trabajará en condiciones ideales, por lo tanto, Cp se busca en la tabla 2 de la sección de apéndice (pág. 906 del Cengel), usando la temperatura promedio (293K+573K/2), luego se aplica el método de interpolación para aproximarla a las condiciones dadas. Cp(433K)=1,01762 KJ/Kg.K Sustituyendo los valores en la ec.3 y efectuando el cálculo, se tiene que el trabajo por unidad de masa que requiere el compresor será: WTec=284,9336 KJ/Kg La potencia requerida se obtiene empleando la ec.2, el caudal másico se determina con el caudal volumétrico a través de la ecuación de continuidad como sigue: Ec.4 La densidad del aire se determina a partir de la ecuación del gas ideal: Ec.5 La constante R del aire, se lee en la sección de apéndice (pág. 905 del Cengel), igual a 0.2870 KJ/Kg.K Sustituyendo los valores en la ec.5 para estimar la densidad, se tiene: ρ=1,427025 Kg/m3 Por lo tanto, el caudal másico es: ( ) ( ) Finalmente, se determina la potencia requerida: ( ) ( )( ) 3.- El secado de un determinado material se realiza con aire atmosférico al cual se le regulan los parámetros con un reciclo en el proceso. Calcular: • Masa de agua incorporada al vaporizador adiabático. • Humedad del aire que sale del Deshumidificador. • Masa de agua condensada y flujo volumétrico de aire a la entrada del horno. • Flujo molar de aire húmedo alimentado al proceso. Calentador Condensador Horno Vaporizador adiabático Saturador Adiabático Deshumidificador de Zeolita Datos: • Corriente 1: Vh= 0.9 m3 /kg de aire seco Tsa= 23oC. • Corriente 2: Entrada al secador. En el secador por el fondo entran 120 kg/h de sólido húmedo y salen por el tope 115.2 kg/h de sólido seco. • Corriente 3: tr=20o C • Corriente 4: Y= 0.004 • Corriente 6: t bh= 17oC • Corriente 8: Aire • Corriente 9: Aire saturado 425 m3/h • • Asumiremos como base de cálculo 1 h de operación. ¿Cómo calcular el agua incorporada al vaporizador adiabático? magua= mas1-2 (ΔY) Será la mas1-2= mas2-3=mas9-2 Evidentemente que no, por lo que se impone calcular las masas de aire de 2-3 y de 9-2 para por diferencia (Balances de Masa sin reacción química) calcular la masa de aire seco de 1-2 • • Masa de agua incorporada al vaporizador adiabático. mas9-2= V9/vh9= 425m3/0.8375 m3/kg as = 507.5 kg as • mas 2-3= agua evaporada 2-3/(ΔY) = 120-115.2 /(0.0145-0.0119) = 1846.2 kg as De ahí que : mas1-2= mas2-3- mas9-2= 1338.7 Kg Y el agua incorporada al vaporizador: 1338.7kg de as /( 0.0011 kg agua/kg as) =1,47kg agua Humedad del aire que sale del Deshumidificador • Y8= H2O8 / mas8 • H2O8 = H2O7 - 3,20kg • Pero no sabemos H207 • H2O7=H2O5 – H2O6 • =mas5Y5 – mas6Y6 Ahora bien ¿ qué ocurre con esas masas de aire seco? • • • • mas6= mas 9-2 = 507.5 kg mas5= mas 2-3 = 1846.2 kg mas7= mas 1-2 = 1338.7 kg H2O7= (1846.2)(0.004)-(507.5)(0.004) = 7.3848 -2.03 = 5.3548 kg • H2O8 = 5.3548 – 320= 2.1548 kg Ahora bien: • Mas8= mas7= 1338,7 kg. Por tanto • Y8 = 2.1548 kg agua/1338.7 kg as = 0.0016 kg agua/ kg as Masa de agua condensada y flujo volumétrico de aire a la entrada del horno. agua condensada = mas3-4(ΔY) mas3-4= mas 2-3= 1846.2 kg ΔY= Y3 – Y4 = 0.0145-0.004 = 0.0105 kg de agua / kg de aire seco H2O condensada = 1846.2 (0.0105) = 19.4 kg de agua. Flujo volumétrico: V4= vh4.mas4 Si mas4= mas 2-3= 1846.2 kg V4= vh4. mas4 = 0.7813 m3/kg as . 1846.2 kg as = 1442.4 m3 Flujo molar de aire húmedo alimentado al proceso. • nah1 = nas (1 + Ym1) = nas ( 1 + 0.0174) Si nas = mas ( 1/M) = 1338.7kg.(1/29kg) = 43.16 kmol. Sustituyendo: = 46.16 kmol.as( 1 + 0.0174) = 46.96 kmol. 4. Un ciclo de turbina de gas de aire estándar con regeneración funciona bajo las siguientes condiciones: en el proceso de compresión la relación de presión es de 3:1 y el aire entra al compresor a 14.5 Psia y 80ºF. El aire entra a la turbina a 2560 ºF. Los rendimientos térmicos del compresor y la turbina son 0.78 y 0,80 respectivamente, mientras que el rendimiento del regenerador es de 0.75 El ciclo no posee refrigerador ni cámara de recalentamiento intermedio. Además la relación de presión en el proceso de expansión adiabática es de 2:1 proporcionando el mínimo trabajo de entrada y el máximo de salida, respectivamente. Determine: a) El trabajo en el compresor, en Btu/lbm. b) El trabajo en la turbina, en Btu/lbm. c) Temperatura de salida del proceso de compresión. d) Rendimiento térmico. DATOS: qmáx 6 5 rpcom = 3:1 Cámara de Combustión qreal T1 = 80ºF + 460= 540 R qced P1 = 14.5 Psia 2 3 Compresor T4 = 2560ºF + 460 = 3020 R Turbina ηTURBINA = 0.80 INCOGNITAS ηCOMPRESOR = 0.78a)W COMPRESOR = 4 qc.c b) W TURBINA = ηREGENERADOR= 0.75 ? Btu/lbm a) Para determinar el trabajo del compresor se utiliza la ecuación para procesos c) qced = ? = 2:1 isentrópicos ya que se trabaja con aire frío estándar con rkpexp. = 1,4: west ,rev wcompTotal = kk-1 1 k k R T1 P2 k 1 k 1 P1 d) ηt = ? 1.4. (1.986 Btu/ lbmol. R )*(540 R) (3)0.285 – 1 28.97 lbm/lbmol ( 1.4 - 1) = wcompTotal = 47.63 Btu/lbm Como el trabajo determinado es un trabajo basado en condiciones ideales hay que determinar el trabajo real por medio de la eficiencia del compresor dada (0,78): * w W w W i deal C I DEAL * w wi deal C 47.63 Btu/lbm = 61.66 Btu/lbm 0.78 ? Btu/lbm b) Para determinar el trabajo de la turbina, se aplica la ecuación de trabajo en régimen estacionario. k 1 k k R T4 P4 k west,rev 1 k 1 P5 k-1 wexpTotal = 1.4. (1.986 Btu/ lbmol. R )*(3020 R) (2)0.285 – 1 28.97 lbm/lbmol ( 1.4 - 1) = wexpTotal = 158.26 Btu/lbm Se calcula el trabajo real de las turbinas conociendo la eficiencia (0,80): * T w w W w *w T * I DEAL 0.80 * 158.26 Btu/lbm W I DEAL S wturbina = 126.61 Btu/lbm c) Para determinar la temperatura de salida del proceso de compresión T T 2 1 p p 2 s cons t kk-1 1 k T k 2 1 T * p p 2 1 1 T2 = T1 * (rp) (1.4-1) / 1.4 = 540 R * (3) (1.4-1) / 1.4 = 738.53 R d) Se deterina la eficiencia del ciclo por medio de el trabajo neto y el calor suministrado total: t wn et, sa l qsu m wtu rb in a wco mp reso r El calor suministrado sólo se absorbe a través de la cámara de combustión. qsu mt qsumtotal = qsum3-4 = Cp (T4 – T3) Para determinar los calores correspondientes se necesita ubicar la Temperatura 3, utilizando la ecuación del regenerador con su respectiva eficiencia de 0,75: regen, f ri o T3 T2 T5 T2 T 3 regen, f ri o *(T T ) T 5 2 2 k k-1 1 k k Primero se debe ubicar la temperatura de salida del proceso de expansion adiabático reversible, se utiliza la relación isoentrópica: T T 4 5 p p kk-1 1 k 4 s const k 5 T 5 T 4 p / p 4 5 T5 = 3020 R / (2)0.285 = 2478.63 R Ahora si se ubica, T3 = 0.75 * (2478.63 R - 738.53 R) + 738.53 R = 2043.61 R Buscando el calor suministrado total: qsumtotal = qsum3-4 = Cp (T4 – T3) = 0.240 Btu/lbm R (3020. R - 2043.61 R) = 234.33 Btu/lbm Sustituyendo en la ecuacion de rendimiento termico: ηt= 126.61 Btu/lbm - 61.66 Btu/lbm = 0.27716 = 27.716 % 234.33 Btu/lbm kk-1 1 k k 5. Ciclo Rankine con Regeneración en un Calentador Cerrado En un ciclo de potencia de vapor con regeneración, se trabaja con unas condiciones a la entrada de la turbina de alta a 2485.3 Psi y 1600 ºF, y se condensa hasta 2 Psia. Este sale de la primera etapa de la turbina a 235.3 Psi, hacia el Calentador Cerrado. La turbina tiene una eficiencia adiabática de 81%. Determine: a) La fracción de gasto másico total que se envía hacia el calentador. b) La eficiencia térmica del ciclo. Turbina caldera condensador Datos: P3 =2485.3 Psi + 14.7 = 2500 Psia P4 =235.3 Psi + 14.7 = 250 Psia ITEM ESTADO PRESION (Psia) 1 2 3 4 5 6 7 8 9 Líq.Comp Líq.Comp Vapor Sobr. Vapor Sobr. Mezcla Líq.Sat Líq.Comp Líq.Comp Líq.Sat 2500 2500 2500 250 2 2 2500 2500 250 ηturb = 81% a) y4 = ? Se transforman a Presiones absolutas T (ºF) 1600 401.04 401.04 h (Btu/lbm) 383.96 379.07 1832.6 1426.01 1003.68 94.02 101.37 377.85 376.2 S (Btu/lbm ºR) 0.5680 1.7424 1.7424 1.7424 0.17499 0.17499 0.5680 V (ft3/lbm) 0.016230 0.018653 b) ηt = ? Determinando las entalpías Estado 1: En este estado el agua se encuentra en Líquido comprimido, se puede aplicar un balance de energía en la bomba,que opera bajo un proceso isoentrópico. WB1 = Vf9 ( P1 – P9) (A) WB1 = h9 – h1 (B) Sustituyendo en (A), los valores conocidos de presión y el volumen específico del líquido saturado (Vf9) ubicado en tabla a 250 psia, Queda: WB1 = 0.018653 ft3 * (2500 -250) Lbm Lbf * 144 pulg*2 1 Btu pulg2 1 ft2 778 lbf * ft . WB1 = 7.76 Btu De la ecuación Lbm (B) WB1 = h9 – h1, se tiene que: h1 = WB1 + h9 h1 = (7.76 + 376.2) Btu= 383.96 Lbm Btu Lbm Estado 2: Líquido comprimido. Se aplica balance de energía en la unión, ya que solo se conoce una sola propiedad en este punto. Para determinar la fracción de flujo que se extrae hacia el calentador (y), se aplica un balance de energía en el calentador cerrado: (D) Despejando se tiene: (E) Primero se deben ubicar las entalpías requeridas. Estado 3: Vapor sobrecalentado, se requieren dos propiedades para entrar a la tabla, en este caso se tiene presión y temperatura ( 2500 psia y 1600ºF): h3 = 1832.6 Btu/Lbm y s3 = 1.7424 Btu/Lbm.ºR= s4 = s5 Estado 4: Vapor sobrecalentado. En este caso se lee la entalpía a una presión de 250 psia y s4 = s3 = 1.7424 Btu/Lbm.ºR. Al aplicar la interpolación lineal: h4 = 1426.01 Btu/Lbm Estado 5: Mezcla. Es necesario determinar la calidad, ya que al buscar en la tabla de saturación, aparece líquido y vapor, para lo cual se debe aplicar la ecuación de la entalpía de la mezcla: h5 = hf5 + x.hfg5 En la tabla de saturación del agua: hf5 a 2 psia= 94.02 Btu/Lbm sf5 a 2 psia= 0.17499 Btu/Lbm.ºR hfg5 a 2 psia = 1022.1 Btu/Lbm sfg5 a 2 psia = 1.7448 Btu/Lbm.ºR Es necesario conocer la calidad de la mezcla, esta se determina en función de la Entropía: x = S5 – Sf5 = 0.89 Sfg5 Ahora, si determinamos h5 = 1003.68 Btu/Lbm Estado 6: Líquido saturado h6 a 2 psia= 94.02 Btu/Lbm Vf6 a 2 psia = 0.016230 ft3/Lbm Estado 7: Líquido comprimido h7 = h6 + WB2 WB2 = Vf6. ( P7 – P6) Sustituyendo los valores conocidos de presión y el volumen específico del líquido saturado (Vf6) ubicado en tabla a 2 psia, Queda: WB2 = 7.35 Btu/Lbm h7 = 101.37 Btu/Lbm Estado 8: Líquido comprimido. Se requieren dos propiedades para entrar a la tabla, en este caso tenemos presión, Si observas bien el diagrama T-s, la T8 = T9 = 401.04 ºF Se ubica en la tabla de líquido comprimido con ambas propiedades, interpolación doble, se tiene: h8 = 377.85 Btu/Lbm Estado 9: Líquido Saturado. Se ubican los valores de propiedades a P9=250 Psia T (ºF) h (Btu/lbm) 401.04 376.2 S (Btu/lbm ºR) 0.5680 V (ft3/lbm) 0.018653 Para determinar la fracción de flujo que se extrae hacia el calentador (y), se sustituye los valores de las entalpías en el balance de energía en el calentador cerrado, Ec D: 377.85 – 101.37 . = 0.20 (1426.01- 101.37 – 376.2 + 377.85) Sustituyendo en (C), se encuentra: h2 = h2 = 383.96 Btu/Lbm * 0.20 + (1-0.20)* 377.85 Btu/Lbm = 379.07 Btu/Lbm Ahora, se determinará la eficiencia térmica del ciclo: T wT ,s al wB ,ent qs um Se debe conocer el trabajo real de la turbina, por: Turbi na wa ,real Si se tiene la eficiencia de la turbina y las entalpías para un proceso ideal, se puede obtener el trabajo ideal que produce la turbina (E) ws ,i deal Ws,ideal= h3 - h4s = 1832.6 Btu/Lbm - 1426.01 Btu/Lbm Ws,ideal = 406.59 Btu/Lbm DE (E) w a ,real Turbi na *w s ,i deal = 0.81 * 406.59 Btu/Lbm = 329.27 Btu/Lbm Se debe conocer el trabajo real de las bombas, por: Bomba w B ,ent w ws ,ideal wa ,real Como en este caso no se tiene la eficiencia de la bomba, y solo se conoce el trabajo ideal que produce la misma, se busca el trabajo real en función de la fracción de flujo. h2 s h1 h2 a h1 vf (P P ) * y vf (P P ) * (1 y ) 9 B ,ent 1 9 4 6 7 6 4 w * y w * (1 y ) B1 4 B2 4 Wb,ent = 7.76 Btu/Lbm * (0.20) + 7.35 Btu/Lbm * (1-0.20) = 7.43 Btu/Lbm Se debe conocer el calor suministrado al ciclo el cual ocurre en la fuente de calor, como lo es la caldera: qsum = h3 – h2 = 1832.6 Btu/Lbm - 379.07 Btu/Lbm = 1453.53 Btu/Lbm Entonces, el Rendimiento Térmico del ciclo,es: T wT ,s al wB ,ent qs um = 329.27 Btu/Lbm – 7.43 Btu/Lbm = 0.22 1453.53 Btu/Lbm El rendimiento obtenido es del 22 %, el aumento del mismo se puede lograr si al ciclo se adapta un segundo calentador de agua de alimentación y la zona de recalentamiento, que ayudarán a prevenir el excesivo contenido de humedad de la corriente que sale de la turbina. 6. El agua es el fluido de trabajo en un ciclo Rankine. En la turbina entra vapor sobrecalentado a 8Mpa y 480ºC. La presión del condensador es 8Kpa. La potencia neta del ciclo es 100Mw. Considere que la turbina y la bomba tienen rendimientos isoentropicos de 85% y 70% respectivamente. Determine para el ciclo: a) Calor transferido al fluido de trabajo a su paso por el generador de vapor en Kw. b) Rendimiento térmico c) Flujo másico del agua de refrigeración en el condensador en Kg/hr si el agua entra en este a 15ºC y sale a 35ºC sin pérdida de presión. Solución: Se muestra el esquema del ciclo Rankine simple: Idealmente se cumplen los siguientes procesos: 1) Compresión isoentrópica en una bomba (1-2) 2) Adición de calor a P= ctte en la caldera. (2-3) 3) Expansión isentrópica en la turbina.(3-4) 4) Salida de calor a P= ctte en un condensador. (4-1) Para resolver este tipo de problemas se pueden utilizar ciertas idealizaciones. Sin embargo es necesario tomar en cuenta los rendimientos isoentrópicos que suministran en el enunciado, ya que a través de ellos se podrán determinar trabajos de expansión y compresión (reales). Datos: P4≈P1= 8 Kpa W neto 100Mw ηturb = 85% ηbomba =70% Se pide: a) Q ent. ? en Kw b) ηt = ? agua,enf ? en Kg/hr c) m SOLUCIÓN: Aplicando un balance de energía en la caldera, despreciando energias cineticas y potenciales, queda: h3 h2 r Q ent. m (ec.1) Pero: 3 m 2 m 1 m 4 m ciclo m Se buscan las entalpias: h3 en la tabla de V.S.C a 8Mpa y 480ºC, se requiere interpolar: T(ºC) h(Kj/Kg) S(Kj/Kg.ºK) 450 3272 6.5551 480 h3 =? S3 =? 500 3398.3 6.7240 Por interpolación lineal (calculadora hp) se obtuvo h3 = 3347.78Kj/Kg y S3 = 6.6564Kj/Kg.ºK Nótese que la entropía en el estado 3 se buscó debido a que se utilizará posteriormente para calcular la calidad, de esta manera se ahorra tiempo al no tener que ubicar nuevamente la tabla. Para determinar h2r se aplica la sig ec: (ec.2) h1 = hf @8Kpa en tabla de agua saturada, interpolando: P(Kpa) hf(Kj/Kg) 7.5 168.79 h8 h1 =? 10 191.83 h1 =173.398Kj/Kg. wi = vf1. ( P2 – P1) Wb = 0,001008 m3 / Kg . ( 8000 – 8) Kpa. Sustituyendo en ec.2: Ahora se determina el flujo másico: .wneto,real Wneta,real m 1Kj 1Kpa. m 3 = 8.0559 Kj/Kg m Wneto,real wneto,real (ec.3) wneto,real wsal,real went,real (ec.4) (ec.5) ( ) (ec.6) h4 se determina por la ecuación de la entalpia de una mezcla: (ec.7) Donde X es la calidad y se determina por la siguiente ec: (ec.8) Interpolando se determinan las Sf4, Sfg4 y hfg4 P(Kpa) Sf4(Kj/Kg.ºK) 7.5 0.5764 h8 ? 10 0.6493 Sf4 = 0.5909 (Kj/Kg.ºK), Sf4(Kj/Kg.ºK) hfg4 (Kj/Kg) 7.6750 2406 ? ? 7.5009 2392.8 Sfg4 =7.6401(Kj/Kg.ºK) y hfg4= 2403.36(Kj/Kg) Sustituyendo en la ec.8 Sustituyendo en la ec.7 Sustituyendo en la ec.6 ( ) Sustituyendo en la ec.5 Pero: (en la bomba) Sustituyendo en la ec.4: wneto,real 1076.401 11.5084 1064.89Kj / Kg Sustituyendo en la ec.3: m 100000 Kj / seg 93.906 Kg / seg 1064.891Kj / Kg Sustituyendo en la ec.1: Q ent. 93.06Kg / seg 3347.78 184.906Kj / Kg 294337.054Kwatt . (Rta a) b) term Wneto 100000 Kj / seg 0.3397 34% Qent. 294337.054 Kj / seg c) Despreciando las pérdidas de calor queda: 15ºC 35ºC Q cedido. Q abs. (ec.9) .qced m .(h4 h1 ) 93.06Kg / seg.(2081.42 173.398) Kj / Kg 177560.527 Kj / seg Q cedido. m Y ref .Cp.(Tsal Tent ) Q abs. m Sustituyendo en la ec.9: ref .Cp.(Tsal Tent ) 177560.527 Kj / seg m Se despeja el flujo másico del refrigerante: ref 177560.527 Kj / Kg / Cp.(Tsal Tent ) (ec.10) m Para agua líquida →Cp=Cv=C (Del apéndice A.3 Cengel pag 726 4ta Ed), C=4.18Kj/Kg.ºC Sustituyendo en la ec.10 m ref 177560.527 Kj / seg 2123.92 Kg / seg 7646147.10 Kg / hr 4.18Kj / Kg.º K .(35 15)º C (Rta c) 7.- Considere la planta de vapor mostrada en la figura. El vapor entra a la turbina de alta presión a 15Mpa y 600ºC, y se condensa a una presión de 10 Kpa. Si el contenido de humedad a la salida de la turbina de baja no excede de 10.4 %, determine: a) La presión a la que el vapor se debe recalentar b) La eficiencia térmica del ciclo Suposiciones: Es un ciclo ideal, en el que las irreversibilidades no ejercen cambios significativos al sistema. Existen condiciones estables de operación, los cambios en las energías cinética y potencial son despreciables. Datos conocidos: P2 = P3 = 15 Mpa T3 = 600 ºC P1 = P6 = 10 Kpa (1 – X) = 10.4% = 0.104 Determinar: a)P4 = ? b) ηt = ? PROCEDIMIENTO: P4 = P5 = Precalentamiento Analizo el punto 5, por tener más datos, para buscar la presión, los cuales son los siguientes: Idealmente: T5 = T3 = 600ºC S5 = S6 = Sf6 + X. Sfg6 (A) Busco Sf 6 y Sfg6, en la tabla de saturación @10 Kpa: Sf6 = 0.6493 Kj/ Kg.ºK Sfg6 = 7.5009 Kj/ Kg.ºK Sea: 1- X = 0,104; entonces X =( 0,896), que es la calidad que requiero para poder determinar la entropía de la mezcla en el punto 6. Sustituyendo en (A): S5 = S6 = (0,6493 + 0,896. 7,5009) Kj/ Kg. ºK = 7,370 Kj/ Kg. ºK Como ya tengo dos propiedades, puedo buscar P 5, ya que en este punto el vapor está completamente sobrecalentado. En la tabla de vapor sobrecalentado @ 7,370 Kj/ Kg. ºK y 600ºC, el valor es: P5 = 4 Mpa = P4 ; Rta a) 4 Mpa b) ηt = ? Se determina a partir de: ηt = 1 qent qsal wneto qent (B) Para ahorrar tiempo, se recomienda buscar las entalpías en cada estado, ya que generalmente se utilizan todas. Cuando se seleccione el valor de entalpías por tabla, seleccione además otros datos de importancia, como volumen específico, o entropía, que probablemente también se requieran para el cálculo. Estado 1: h1 = hf @ 10 Kpa en la tabla de saturación del agua h1 = 191,83 Kj/ Kg v1 = vf @ 10 Kpa en la tabla de saturación del agua; v 1 = 0,00101 m3 / Kg Estado 2: Aplicamos el balance de energía en la bomba h2 = h1 + wb (C) El trabajo de la bomba se determina a partir de la siguiente ecuación: Wb = vf1. ( P2 – P1) (D) Sustituyendo en (D), los valores conocidos, nos queda: Wb = 0,00101 m3 / Kg . ( 15000 – 10) Kpa. 1Kj 1Kpa. m 3 = 15,14 Kj/Kg Sustituyendo en (C) h2 = (191,83 + 15,4) Kj/Kg ) = 206,97 Kj/ Kg Estado 3: Determinamos el estado, en este caso es un vapor sobrecalentado ya que @ 15 Mpa, la Tsat= 342.24ºC, entonces, Tsist > Tsat. En la tabla de V.S.C busco h3 y S3 @ 15 Mpa y 600ºC h3 = 3582.3 Kj/ Kg S3 = 6.6776 Kj / Kg. ºK Estado 4: P4 = 4 Mpa S4 = S3 = 6.6776 Kj / Kg. ºK Es de suponerse, que estamos en presencia de un vapor sobrecalentado, sin embargo, se recomienda determinarlo, de la siguiente manera: @ 4 Mpa, leemos Sf = 2,7964 Kj / Kg. ºK y Sg= 6,0701 Kj / Kg. ºK, entonces, Ssist > Sg, se comprueba que es un V.S.C. Ahora, leemos h4, interpolando, nos queda: h4 = 3154,26 Kj / Kg. ºK Estado 5: En V.S.C @ T5 ≈ T3 = 600ºC, y S5 = 7,370 Kj/ Kg. ºK , leemos h5 = 3674,4 Kj/Kg Estado 6: Por ser mezcla, se busca la entalpía por la ecuación de mezcla. h6 = hf6 + X. hfg6 @ 10 Kpa, hf6 = 191,83 Kj/ Kg y hfg6 = 2392,8 Kj/ Kg Sustituyendo nos queda: h6 = (191,83 + 0,896. 2392,8) Kj/ Kg = 2335,77 Kj/ Kg Aplicando un balance de energía en el condensador: qsalida = h6 – h1 qsalida = 2335,77 – 191,83 = 2143,94 Kj/ Kg Aplicando un balance de energía en la caldera con recalentamiento: qentrada = q I + q II = qcald + q rec = (h3 – h2) + (h5 – h4) Al sustituir, las entalpías, resulta: qentrada = 3895,38 Kj/ Kg Finalmente, sustituimos en (B), para hallar la eficiencia térmica del ciclo rankine con recalentamiento: ηtérmica = 0,4496 ≈ 45% 8. Un ciclo real de potencia de potencia de vapor con regeneración, opera en tal forma que las condiciones en la entrada de la turbina son: 400 psia y 900ºF, y en la salida llega a 1 psia. Se utiliza un solo calentador cerrado que opera a 60 psia. Calcule: a) El trabajo neto real si la turbina tiene una eficiencia isoentropica de 83%. b) El flujo másico que requiere la turbina para producir una potencia neta de 300 Mw. Datos: P3= 400 psia T3= 900ºF P5= 1 psia P4=60 psia Se pide: a) W neto,real=? a ŋt=83% b) ṁ=? para Ẇ neta=300Mw Determinamos las entalpias: Estado 1: Liquido comprimido, podemos aplicar un balance de energía en la bomba. h1 = h9 + wbII WbII = vf9. ( P9 – P1) (A) (B) Sustituyendo en (B), el volumen especifico del líquido leído en la tabla de saturación del agua a 60 psia y las presiones conocidas nos queda: WbII = 0,017325pie3/Lbm(400–60)psia.x(144/778.17) = 1.09Btu/Lbm h9 =hf a 60 psia en tabla de saturación. Como la temperatura de saturación en 8 se alcanza a la presión de extracción, las entalpias en 8 y 9 se pueden considerar iguales. Sustituyendo en (A) h1 = (1.09 + 262.25) Btu/Lbm) = 263.34Btu/Lbm Estado 2: líquido comprimido. Aplicamos un balance de energía en la unión, ya que solo se conoce una sola propiedad en este punto. h2 = h1.y + (1-y).h8 (C) Para determinar la fracción de flujo que se extrae hacia el calentador (y), se aplica un balance de energía en el calentador cerrado: h4.y + h7 .(1-y)= h9.y + h8. (1-y) Despejamos la y: Sustituyendo en (C) encontramos h 2: h2 = 262.42Btu/Lbm Estado 3: Vapor sobrecalentado, se requieren dos propiedades para entrar a la tabla, en este caso tenemos presión y temperatura ( 400 psia y 900ºF): h3 = 1470.1 Btu/Lbm y s3 = 1.7252 Btu/Lbm.ºR= s4 = s5 Estado 4: Vapor sobrecalentado. En este caso leemos la entalpía a una presión de 60psia y s4 = s3 = 1.7252 Btu/Lbm.ºR. Al aplicar la interpolación lineal nos queda: h4 = 1243.89 Btu/Lbm Estado 5: Mezcla Es necesario determinar la calidad, ya que al buscar en la tabla de saturación, aparece líquido y vapor, para lo cual se debe aplicar la ecuación de la entalpía de la mezcla: h5 = hf5 + x.hfg5 hf5 a 1 psia= 69.74Btu/Lbm hfg5 a 1 psia = 1036 Btu/Lbm x =? sf5 a 1 psia= 0.13266 Btu/Lbm.ºR sfg5 a 1 psia = 1.8453 Btu/Lbm.ºR Ahora, si determinamos h5 = 960.7Btu/Lbm Estado 6: Liquido saturado h6 a 1 psia= 69.74Btu/Lbm vf6 a 1 psia = 0.016136 Btu/Lbm Estado 7: Liquido comprimido h7 = h6 + wbI (D) WbI = vf6. ( P7 – P6) Sustituyendo el volumen especifico del liquido leído en la tabla de saturación del agua a 1 psia y las presiones conocidas nos queda: WbI= 0,016136pie3/Lbm(400–1)psia.x(144/778.17) = 1.191Btu/Lbm Sustituyendo en (D) h7 = (69.74+1.191) Btu/Lbm) = 70.93 Btu/Lbm Estado 8: Liquido saturado. Se consigue a la temperatura de saturación que se alcanza a la presión de extracción. Por esta razón, las entalpías en los estdos 8 y 9 son aproximadamente iguales: h8 = h9 = 262.25 Btu/Lbm Ahora procedemos a determinar el trabajo neto real: w neto,real = ŋ x wneto,ideal (E) wnetoideal = wt-wbI - wbII (F) Aplicamos un balance de energía en la turbina: h3 = y.h4 + h5.(1-y) + wt Despejando y sustituyendo, calculo el trabajo producido por la turbina: wt = 463.24 Btu/Lbm Ahora determinamos el trabajo neto ideal sustituyendo en (F) wnetoideal = 463.24-1.191-1.09=460 Btu/Lbm Sustituyendo en (E): w neto,real = 0.83x460= 381.8Btu/Lbm c) Fjujo másico: .wneto,real Wneta,real m Se despeja el flujo másico: m W neto, real (G) wneto, real W = 300Mw=1023,9.106 Btu/hr neto, real wneto,real = wturb,real – wbI –wbII wneto,real = 381.8 – 1.19 – 1.09 = 379.52 Btu/Lbm Finalmente el flujo másico sera: m = 1023,9.106 Btu/hr/ (379.52Btu/Lbm) = 2697881.53 Lbm/hr = 44964.69Lbm/min