Integrales. Algunas resoluciones y respuestas 1) ∫ x 6 dx = x7 +K 7 (K cte) 2) ∫ (6 x 3 + 8 x 2 − 3) dx = ∫ 6 x 3 dx + ∫ 8 x 2 dx + ∫ −3dx = 6 ∫ x 3 dx + 8 ∫ x 2 dx − 3 ∫ dx = =6 x4 x3 +8 − 3x + K 4 3 3 3 x 2 2 +K = 2x 2 + K 3) ∫ 2 x dx = ∫ (2 x) dx = 2 ∫ x dx = 2 3 3 2 4 7) 1 − e 8) 0 9) 3 4 10) A = 36 11) A = 3 1 12) A = 1 2 125 6 14) A = 15) ∫ ( x − 5) 4 dx = ∫ t 4 dt = 16) ∫ e 2 x +1 2 215 3 x−5 = t dx = dt t5 ( x − 5) 5 +K = +K 5 5 2x + 1 = t 1 1 1 1 dx = ∫ e dt = ∫ e t dt = e t + K = e 2 x +1 + K 2 2 2 2 2dx = dt t dx = 1 dt 2 1 17) ∫ 6 cos( 2 x − 1) dx =6 ∫ cos t dt2 = 6 ∫ cos tdt = 3sent + K = 3sen( 2 x − 1) + K 2 2x − 1 = t 1 2dx = dt dx = dt 2 7 18) ∫ x+3=t dx = dt 7 t 2 2 ( x + 3) dx = ∫ t 2 dt = + K = ( x + 3) 2 + K 7 7 2 5 5 u = 2x 21) ∫ 2 x e x dx = 2 xe x − ∫ 2e x dx = 2 xe x − 2e x + K dv = e dx x u = ln x 1 22) ∫ ln x dx = x ln x − ∫ x dx = x ln x − x + K x 23) ∫ x ln x dx = ln x 2 2 2 dv = x 2 x x x 1 1x dx = −∫ ln x − +K 2 2 x 2 2 2 du = 2dx v = ex du = v=x 1 dx x 1 dx x x2 dv = xdx v= 2 24) ∫ x senx dx = − x cos x − ∫ − cos xdx = − x cos x + ∫ cos xdx = − x cos x + senx + K u = ln x u=x du = du = dx dv = senxdx 25) ∫ x cos x dx = v = − cos x xsenx − ∫ senxdx = xsenx − (− cos x) + K = xsenx + cos x + K u=x du = dx dv = cos xdx v = senx x4 x4 1 x4 1 x4 x4 −∫ dx = ln x − ∫ x 2 = ln x − +k 4 4 x 4 4 4 16 1 u = ln x du = dx x x4 dv = x 3 dx v= 4 26) ∫ x 3 ln x dx = ln x sen3 x sen3 x sen3 x 1 −∫ dx = x − ∫ sen3 xdx = 3 3 3 3 du = dx 27) ∫ x cos(3 x ) dx = x u=x sen3 x 3 sen3 x 1 ( − cos 3 x ) sen3 x 1 cos 3 x =x − +K = x + +K 3 3 3 3 3 3 dv = cos 3 xdx v=