THE BILBAO CRYSTALLOGRAPHIC SERVER: CRYSTALLOGRAPHIC DATABASES AND COMPUTER PROGRAMS Mois I. Aroyo, J. M. Perez-Mato and Danel Orobengoa Universidad del Pais Vasco, Bilbao, Spain martes 23 de junio de 2009 martes 23 de junio de 2009 Contributing authors Universidad del Pais Vasco, Bilbao Eli Kroumova Svetoslav Ivantchev Cesar Capillas Danel Orobengoa Gemma de la Flor Gotzon Madariaga J. M. Perez-Mato Mois I. Aroyo martes 23 de junio de 2009 Contributing authors International Cooperation Technische Universität, Karlsruhe, Germany Hans Wondratschek Universität Bonn, Germany Rudolf Hund Sofia University, Bulgaria Assen Kirov Brigham Young University, Provo, USA Dorian Hatch Harold Stokes Institut Laue-Langevin, Grenoble, France Juan Rodriguez-Carvajal martes 23 de junio de 2009 Crystallographic databases Group-subgroup relations Structural utilities Representations of point and space groups Solid-state applications martes 23 de junio de 2009 Crystallographic Databases International Tables for Crystallography martes 23 de junio de 2009 Space-group Data International Tables for Crystallography Volume A: Space-group symmetry generators Wyckoff positions Wyckoff sets normalizers Volume A1: Symmetry Relations between space groups maximal subgroups of index 2,3 and 4 series of isomorphic subgroups Retrieval tools martes 23 de junio de 2009 ITA space group P4mm No. 99 CONTINUED Generators selected 1; t 100; t 010; t 001; 2; 3; 5 P4mm GENPOS Positions Coordinates Multiplicity, Wyckoff letter, Site symmetry 8 g 1 Reflection conditions General: (1) x y z (5) x ȳ z (2) x̄ ȳ z (6) x̄ y z (3) ȳ x z (7) ȳ x̄ z (4) y x̄ z (8) y x z no conditions Special: 1 2 1 2 1 2 1 2 4 f m x 4 e m x0z x̄ 0 z 4 d m xxz x̄ x̄ z 2 c 2mm 1 2 0z 0 1 b 4mm 1 2 1 2 z no extra conditions 1 a 4mm 00z no extra conditions z x̄ 1 2 z xz x̄ z no extra conditions 0xz 0 x̄ z no extra conditions x̄ x z x x̄ z WYCKPOS no extra conditions z hkl : h k 2n Symmetry of special projections Along 001 p 4 m m b b a a Origin at 0 0 z Along 100 p 1 m 1 b c a b Origin at x 0 0 Along 110 p 1 m 1 1 a b b a 2 Origin at x x 0 c Maximal non-isomorphic subgroups [2]P4 1 1 (P4, 75) 1; 2; 3; 4 I IIa IIb [2]P2 1 m (C m m 2, 35) 1; 2; 7; 8 [2]P2 m 1 (P m m 2, 25) 1; 2; 5; 6 none [2]P42 m c(c 2c)(105); [2]P4 c c(c 2c)(103); [2]P4 2 c m(c [2]F 4 m c(a 2a b 2b c 2c)(I 4 c m, 108); [2]F 4 m m(a MAXSUB 2c)(101); [2]C 4 m d(a 2a b 2b)(P4 b m, 100); 2a b 2b c 2c)(I 4 m m, 107) Maximal isomorphic subgroups of lowest index IIc [2]P4 m m(c 2c)(99); [2]C 4 m m(a 2a b 2b)(P4 m m, 99) Minimal non-isomorphic supergroups I [2]P4 m m m(123); [2]P4 n m m(129) II [2]I 4 m m(107) martes 23 de junio de 2009 MINSUP SERIES Transformation of the basis martes 23 de junio de 2009 ITA-settings symmetry data PRACTICAL EXERCISES Bilbao Crystallographic Server www.cryst.ehu.es Bilbao Crystallographic Server - mirror site http://158.227.0.68/ martes 23 de junio de 2009 MATRIX-COLUMN PRESENTATION OF SYMMETRY OPERATIONS martes 23 de junio de 2009 Crystallographic symmetry operations Symmetry operations of an object The isometries which map the object onto itself are called symmetry operations of this object. The symmetry of the object is the set of all its symmetry operations. Crystallographic symmetry operations If the object is a crystal pattern, representing a real crystal, its symmetry operations are called crystallographic symmetry operations. The equilateral triangle allows six symmetry operations: rotations by 120 and 240 around its centre, reflections through the three thick lines intersecting the centre, and the identity operation. martes 23 de junio de 2009 Description of isometries coordinate system: isometry: martes 23 de junio de 2009 {O, a, b, c} point X −→ point X̃ Matrix formalism linear/matrix part matrix-column pair martes 23 de junio de 2009 translation column part Seitz symbol Matrix formalism combination of isometries: inverse isometries: martes 23 de junio de 2009 Matrix formalism: 4x4 matrices augmented matrices: point X −→ point X̃ : martes 23 de junio de 2009 4x4 matrices: general formulae point X −→ point X̃ : combination and inverse of isometries: martes 23 de junio de 2009 EXERCISES Problem 1.1 Construct the matrix column pair (W,w) (and the corresponding (4x4) matrix) of the following coordinate triplets: (1) x,y,z (2) -x,y+1/2,-z+1/2 (3) -x,-y,-z (4) x,-y+1/2, z+1/2 martes 23 de junio de 2009 GEOMETRIC MEANING OF MATRIX-COLUMN PAIRS (W,w) martes 23 de junio de 2009 Crystallographic symmetry operations characteristics: fixed point P̃ = P of isometries Types of isometries preserve handedness identity: the whole space fixed translation t: no fixed point rotation: one line fixed rotation axis φ = k × 360 /N no fixed point screw axis screw vector screw rotation: martes 23 de junio de 2009 x̃ = x + t ◦ do not Types of isometries preserve handedness roto-inversion: inversion: reflection: glide reflection: martes 23 de junio de 2009 centre of roto-inversion fixed roto-inversion axis centre of inversion fixed plane fixed reflection/mirror plane no fixed point glide plane glide vector Geometric meaning of (W , w ) W information (a) type of isometry rotation angle martes 23 de junio de 2009 Geometric meaning of (W , w ) W information Texto (b) axis or normal direction (b1) rotations: = (b2) roto-inversions: reflections: martes 23 de junio de 2009 : Geometric meaning of (W , w ) W information (c) sense of rotation: for rotations or rotoinversions with k>2 det(Z): x non-parallel to martes 23 de junio de 2009 Geometric meaning of (W , w ) w -information (A) intrinsic translation part : (A1) screw rotations: (A2) glide reflections: martes 23 de junio de 2009 glide or screw component t/k Geometric meaning of (W , w ) w -information (B) location (fixed points xF ): (B1) t/k = 0: (B2) t/k ≠ 0: martes 23 de junio de 2009 EXERCISES Problem 1.1(cont.) Construct the matrix-column pairs (W,w) (and the corresponding (4x4) matrices) of the following coordinate triplets: (1) x,y,z (2) -x,y+1/2,-z+1/2 (3) -x,-y,-z (4) x,-y+1/2, z+1/2 Characterize geometrically these matrix-column pairs taking into account that they refer to a monoclinic basis with unique axis b, i.e. determine (i) the type, (ii) glide (screw) components, (iii) fixed points, (iv) nature and location of the symmetry elements. martes 23 de junio de 2009 Problem 1.1 SOLUTION (i) (ii) martes 23 de junio de 2009 ITA description: under Symmetry operations martes 23 de junio de 2009 EXERCISES Problem 1.2 Consider the matrices (iv) The geometrical meaning of (A, a), (B, b), (C, c) and (D, d) martes 23 de junio de 2009 Problem 1.2 SOLUTION martes 23 de junio de 2009 Problem 1.2 SOLUTION martes 23 de junio de 2009 Problem 1.2 SOLUTION martes 23 de junio de 2009 Problem 1.2 SOLUTION The matrix-column pair (A, a): translation part ITA description: (A, a): screw rotation 21 screw rotation axis x,x,1/4 2(1/2,1/2,0) x,x,1/4 (B, b): rotation 3 rotation axis x,x,x 3- x,x,x martes 23 de junio de 2009 Problem 1.2 SOLUTION The matrix-column pair (C, c): translation part (C, c): screw rotation 42 screw rotation axis x,0,1/2 martes 23 de junio de 2009 ITA description: 4+(1/2,0,0) x,0,1/2 Problem: Geometric Interpretation of (W,w) martes 23 de junio de 2009 SYMMETRY OPERATION Problem 1.3 1. Solve the problems 1.1 and 1.2 applying the program SYMMETRY OPERATION Problem 1.4 1. Characterize geometrically the matrix-column pairs listed under General position of the space group P4mm in ITA. Compare the results with the data listed under Symmetry operations. 2. Consider the diagram of the symmetry elements of P4mm. Try to determine the matrix-column pairs of the symmetry operations whose symmetry elements are indicated on the unit-cell diagram. martes 23 de junio de 2009 martes 23 de junio de 2009 GENERATION OF SPACE GROUPS martes 23 de junio de 2009 Generators Set of generators of a group is a set of spacegroup elements such that each element of the group can be obtained as an ordered product of the generators G1 - identity G2, G3, G4 - primitive translations G5, G6 - centring translations G7, G8, ... - generate the rest of elements martes 23 de junio de 2009 Generation of trigonal and hexagonal groups 1 3 32 6 622 martes 23 de junio de 2009 Generation of orthorhombic and tetragonal groups 1 2 222 4 422 martes 23 de junio de 2009 EXERCISES Problem 1.5 Generate the space group P4mm using the selected generators Compare the results of your calculation with the coordinate triplets listed under General position of the ITA data of P4mm Compare the results of your calculations with the BCS data using the retrieval tools GENPOS (generators and general positions) martes 23 de junio de 2009 martes 23 de junio de 2009 SITE-SYMMETRY GENERAL POSITION SPECIAL WYCKOFF POSITIONS martes 23 de junio de 2009 Calculation of the Site-symmetry groups Group P-1 S={(W,w), (W,w)Xo = Xo} ( 0 -1 0 -1 martes 23 de junio de 2009 -1 0 ) 1/2 0 1/2 = -1/2 0 -1/2 Sf={(1,0), (-1,101)Xf = Xf} Sf≃{1, -1} isomorphic EXERCISES Problem 1.6 Consider the special Wyckoff positions of the the space group P4mm. Determine the site-symmetry groups of Wyckoff positions 1a and 2b. Compare the results with the listed ITA data The coordinate triplets (x,1/2,z) and (1/2,x,z), belong to Wyckoff position 4f. Compare their site-symmetry groups. martes 23 de junio de 2009 Space group P4mm martes 23 de junio de 2009 EXERCISES Problem 1.7 Texto martes 23 de junio de 2009 martes 23 de junio de 2009 martes 23 de junio de 2009 CO-ORDINATE TRANSFORMATIONS IN CRYSTALLOGRAPHY martes 23 de junio de 2009 General affine transformation 5.1. TRANSFORMATIONS OF THE COORDINATE SYSTEM P ! Q"1 : a change of basis from (a, b) !to (a’ $ , b’) ! $ a a # b' & ! P # b' # &! c' c'# ' a shift of origin from O to O’ by a shift vector p with components p1rules andapply p2 also These transformation '# to the with respect to the basis vectors a' , b' , c' an respect to a, b, c, which are written as column m indices of a direction in direct space, [uvw], w eneral affine transformation, consisting of a shift of origin by by a shift vector p with components p1 and p2 and a change ! #$ ! $ m a, b to a# , b# . This implies a change in the coordinates of u u # # from x, y to x , y . Change in the coordinates of the # v# & ! Q# v &! point X from (x, y) to (x’,y’) w# w nverse matrices of P and p are needed. They are In contrast to all quantities mentioned above, "1 Q!P position vector r or the coordinates of a po martes 23 de junio de 2009 Problem: BASIS TRANSFORMATION 5.1. TRANSFORMATIONS OF THE COORDINATE SYSTEM P ! Q"1 : 3-dimensional space ! $ a # b' & ! (a, b, c), origin O: point X(x, y, z) c' (P,p) ' These transformation rules appl with respect to the basis ! ! ! ! vectors ! ! (a , b , c ), origin O’: point X(x , y , z ) respect to a, b, c, which are writte indices of a direction in direct sp neral affine transformation, consisting of a shift of origin by by a shift vector p with components p1 and p2 and a change ! #$ operations (W,w): implies a change inof thesymmetry coordinates of a, b to a# , b# . ThisTransformation u # # om x, y to x , y . # v# & ! # -1 w (W’,w’)=(P,p) (W,w)(P,p) verse matrices of P and p are needed. They are In contrast to all quantities ment "1 Q!P position vector r or the coordin martes 23 de junio de 2009 r "xa (yb (zc" e written in the following coordinate system consists of two parts, a linear part and a shift his section, the 3-dimensional relations between thespace primed unprimed of origin. The #3 ! and 3$ matrix P of the linear part and the #3 ! 1$ ntities are treated. column matrix p, containing the components of the shift vector p, define thetransformation) transformation he general transformation (affine of the It is represented by the symbol (a, b, c), origin O: point X(x, y, z) uniquely. p). a linear part and a shift dinate system consists of two(P,parts, rigin. The #3 ! 3$ matrix linear partpart and implies the #3 ! 1$ s of direct space (P, pP)of the (i) The linear a change of orientation or length or mn p, containing of the shift a, vector es ofmatrix a plane (or a set ofthe components both of the basis vectors b, c, p, i.e. ne the transformation by the symbol ! coordinates ! ! uniquely. It is represented ! ! ! t space or(a the & &X(x & , b , c ), origin O’: point , y , z ) #a , b , c $ " #a, b, c$P p). ciprocal space # & ) The linear part implies a change of orientation or length or P11 P12 P13 es: $ ' of the basis(i)vectors b, c,change i.e. of orientation or linear a, part: length " #a, b, c$% P21 P22 P23 ( of a point in direct space & & & P31 P32 P33 #a , b , space c $ " #a, b, c$P s of reciprocal # & " #P11 a ( P21 b ( P31 c, direction in direct space P11 P12 P13 $ ' of a shift vector from P12 a ( P22 b ( P32 c, " #a, b, c$% P21 P22 P23 ( & new origin O P13 a ( P23 b ( P33 c$" P P P 31 32 33 of an inverse origin n O & to origin O, with P21ab pure ( P31linear c, transformation, the shift vector p is zero and the " #P11 a (For (ii) origin shift bysymbol a shift isvector (P, o).p(p1,p2,p3): ( P32 c, P12 a ( PThe 22 b determinant part of a symmetry of P, det#P$, should be positive. If det#P$ is direct space negative, right-handed coordinate system is transformed into a P23 b ( aP33 c$" origin O’ P13 a ( the has one (or vice versa). If det#P$ " 0, the new basis vectors =O p #4 ! 1$ column O’ matrix of +left-handed coordinates (p1,p ,p ) in 2 3 aofpure linear transformation, the shift vector p is zero and the are linearly dependent and do not form a complete coordinate a point in direct space the old coordinate system system. bol is (P, o). In thisbechapter, transformations he determinant of P, det#P$, should positive. If det#P$ is in three-dimensional space are es: martes 23 de junio de 2009 of basis from a, b to a , b . This implies a change in the coordinate Fig. 5.1.3.1. General affine transformation, consisting of a shift of origin # # . components p and p and a change the point x, yof toax , py with by a shift vector from O tocomponents OX# from ontrast to all quantities mentioned above, the 1 2 # # basisXfrom a, b to space a , b . This implies a change in the coordinates o tion vector r or the coordinates of a ofpoint in direct the point X from x, y atoThe x# , y# . X(x,y,z): , z depend also on the shift of of the the origin in direct space. Transformation coordinates of point eral (affine) transformation is given by Also, the inverse matrices of P and p are needed. They are "1 ! #$ ! $ Q ! P Also, the inverse matrices of P and p are needed. They are x x " #% " % "1 and y ! Q y $ q Q ! P with # & # & "1 z# z q ! "P p! and ! $ Q11 x $ Q12 y $ Q13 z $ q1 "1 The matrix q consists of the components q ! "P p! of the negative shift ve " % # # # ! # Q21 x $ Q22 y $qQwhich 23 z $ qrefer 2 &! to the coordinate system a , b , c , i.e. The matrix q consists of the components of the negative shift vector Q31 x $ Q32 y $qQwhich q3 to the coordinate # q# c# !# 33 z $ refer $ q b#a$ q ! q a#system , b , c , i.e. mple 1 2 3 # # # a $ q b $ q c ! q ! q Thus, the transformation 1(Q, q)2 is the3 inverse transformation # # # (P, p). Applying (Q, q) to the basis vectors a , b , c and the or thethetransformation f no shift of origin is applied, i.e. p !Thus, q# ! o, position vector(Q, q) is the inverse transformation of O , p). theApplying old basis(Q, vectors a, b,basis c with origin # O# are # obtained. (P, q) to the vectors a , b , c and the origin of pointspecial X is transformed by cases # # # For a two-dimensional transformation of a and b , s , the old basis vectors a, b, c with origin O are obtained. ! $ O ! $ elements set as follows: 1 For a two-dimensional of a# andQ33b# ,! some x x# of Q are transformation Q#13 0. as follows: Q33 ! 1 and # &Q31 23 y! 32 ! set -origin elements of are b, c&PQ# y & ! %a , b#! , c#Q &# r# ! %a,shift: ! Q! Q which transform in the same way as the b Q13The ! Qquantities 23 ! z z# Q31 ! Q32 ! 0. vectors a, b, c arewhich calledtransform covariantinquantities areaswritten as The quantities the sameand way the basis -change of# basis : matrices. They vectors a, b, c areare: called covariant quantities and are written as row n this case, r ! r , i.e. the position vector is invariant, although Theyindices are: Miller a plane (or a set of planes), (hkl), in di he basis vectors and the components matrices. arethe transformed. For a of pure # hift of origin, i.e. P ! Q ! I, the transformed position vector the Miller indices of a rplane (or a set of planes), (hkl), in direc space and martes 23 de junio de 2009 ecomes space and ! = −1 . (5.3.13) Transformation of symmetry (W,w): This shape of equation (5.3.10 ) facilitatesoperations the formulation but not the actual calculation. For the latter, the forms 5.3.11 or 5.3.12 are more appropriate. point point X !! !!!!!!!! ! x ! !! !!! ! !! !!!! !! image point image point (W,w ) old coordinates old coordinates (P,p) (P,p) (W ! , w ! ) ! ! !!! !! !! !!! x !! ! ! ! !! ! X !!!!!!!!!!!!!! !!!!!!!!!!! x̃ !! ! !! !!! ! !! !!!! !! !!!!!!!!!!!!!! !! ............ .... ... ............ !!!! !!!!! !!! x̃ ! ! ! ! ! !! new coordinates new coordinates Fig. 5.3.3 Diagram of ‘mapping of mappings’. Mapping of mappings (W’,w’)=(P,p)-1(W,w)(P,p) martes 23 de junio de 2009 Matrix formalism: 4x4 matrices augmented matrices: martes 23 de junio de 2009 Problem: SYMMETRY DATA ITA SETTINGS 530 ITA settings of orthorhombic and monoclinic groups martes 23 de junio de 2009 SYMMETRY DATA: ITA SETTINGS Monoclinic descriptions abc cb̄a Transf. HM C 2/c abc C 12/c1 A12/n1 I 12/a1 A12/a1 C 12/n1 I 12/c1 A112/a B 112/n I 112/b bac̄ B 112/b A112/n I 112/a abc B 2/b11 C 2/n11 I 2/c11 ācb C 2/c11 B 2/n11 I 2/b11 Monoclinic axis b Monoclinic axis c Monoclinic axis a Cell type 1 Cell type 2 Cell type 3 Orthorhombic descriptions No. 33 martes 23 de junio de 2009 HM P na21 abc P na21 bac̄ P bn21 cab P 21 nb c̄ba P 21 cn bca P c21 n ac̄b P n21 a EXERCISES Problem 2.1 Use the retrieval tools GENPOS (generators and general positions), WYCKPOS (Wyckoff positions and HKLCOND (reflection conditions) for accessing the space-group data. Get the data on general and special positions in different settings either by specifying transformation matrices to new bases, or by selecting one of the 530 settings of the monoclinic and orthorhombic groups listed in ITA. Consider the General position data of the space group Im-3m (No. 229). Using the option Non-conventional setting obtain the matrix-column pairs of the symmetry operations with respect to a primitive basis, applying the transformation (a’,b’,c’) = 1/2(-a+b+c,a-b+c,a+b-c) martes 23 de junio de 2009 CRYSTAL-STRUCTURE DESCRIPTIONS martes 23 de junio de 2009 Inorganic Crystal Structure Database lattice parameters space group asymmetric-unit data martes 23 de junio de 2009 EXERCISES martes 23 de junio de 2009 Problem 2.2 EXERCISES Problem 2.2 Structure 1: Space group I41/amd, No. 141 origin choice 1 at 4̄m2 a=6.60 Å c=5.88 Å u=0.20; v=0.34 martes 23 de junio de 2009 Problem 2.2 Structure 2: Space group I41/amd, No. 141 origin choice 2 at 2/m at 0,-1/4,1/8 from 4̄m2 a=6.6164 Å c=6.015 Å Coordinate Origin choice 1 transformation p=0,-1/4,1/8 martes 23 de junio de 2009 Origin choice 2 Problem 2.2 Coordinate transformation primitive basis description (viii) What are the lattice parameters of the primitive unit cell martes 23 de junio de 2009 Problem 2.2 Origin 2 description SOLUTION x’ = x - p the rest of oxygen atoms 0, 0.0167, 0.198 martes 23 de junio de 2009 Problem 2.2 primitive basis description x’ = martes 23 de junio de 2009 -1 P x SOLUTION Structure Utilities martes 23 de junio de 2009 Problem: ALTERNATIVE SETTINGS SETSTRU SETSTRU: ITA-settings for the space group C2/c (No.15) martes 23 de junio de 2009 Problem: STRUCTURE TRANSTRU TRANSFORMATIONSETSTRU: structure asymmetric unit martes 23 de junio de 2009 default settings Problem: UNIT CELL TRANSFORMATION martes 23 de junio de 2009 CELLTRAN EXERCISES Problem 2.2 (cont) Repeat the calculations of Problem 2.2 applying the corresposponding tools of the Bilbao Crystallographic server. Compare the results. martes 23 de junio de 2009 Problem: STRUCTURE VISUALIZE VISUALIZATION SETSTRU: martes 23 de junio de 2009 Structure visualization martes 23 de junio de 2009 Structure visualization martes 23 de junio de 2009 Subperiodic groups: rod and layer groups Rod groups: 3dim groups with 1dim translations Layer groups: 3dim groups with 2dim translations martes 23 de junio de 2009 polymeric molecules nanotubes uniform magnetic field to bulk crystals bicrystals interfaces domain walls thin films Databases for subperiodic groups International Tables for Crystallography, Volume E: Subperiodic groups Data on maximal subgroups (Aroyo & Wondratschek) generators general postitions Wyckoff positions maximal subgroups of index 2,3 and 4 series of isomorphic subgroups Retrieval tools martes 23 de junio de 2009