Universidad del Valle de Guatemala Laboratorio de Física Grupo No. 9 13 de noviembre de 2009 Juan Manuel Maldonado, 09214 Sofía Gutiérrez, 09890 Oscar Reyes, 09565 Kevin Pacheco, 09145 Examen final de laboratorio Giroscopio Marco teórico El giroscopio fue inventado por Jean Bernard Leon Foucalt en 1852 poco después de su famosa experiencia del péndulo en el Panteón de Paris y le permitió observar y demostrar la rotación de la Tierra. Aunque el experimento no contó con tanto éxito,el nombre de giróscopo está aún vigente (gyros, rotación; scopos, verse o poner de manifiesto), es decir aparato para mostrar la rotación (Principia, 2008). Un giróscopo o giroscopio es un sólido rígido en rotación alrededor de un eje principal de inercia (eje de simetría). Habitualmente se monta sobre anillas en suspensión Cardan. De esta manera, ningún movimiento que realizase el conjunto causaría momento externo. Por tanto, el momento angular o momento cinético se conservaría y el eje de rotación mantendría una dirección fija en el espacio. Los movimientos giroscópicos han tenido un gran número de aplicaciones. La tendencia a mantener fija la orientación en el espacio del eje de rotación del giróscopo se emplea para estabilizar barcos, en los sistemas de navegación automática de los aviones, en el sistema de dirección de torpedos y misiles, en la brújula giroscópica, así como desempeña un papel fundamental en el equilibrio de bicicletas y motocicletas, etc. Inercia giroscópica La rigidez en el espacio de un giróscopo es consecuencia de la primera ley del movimiento de Newton, que afirma que un cuerpo tiende a continuar en su estado de reposo o movimiento uniforme si no está sometido a fuerzas externas. Así, el volante de un giróscopo, una vez que empieza a girar, tiende a seguir rotando en el mismo plano en torno al mismo eje espacial. Un ejemplo de esta tendencia es una bala de fusil, que —al girar en torno a su eje durante el vuelo— presenta inercia giroscópica, y tiende a mantener una trayectoria más recta que si no girara. La mejor forma de mostrar la rigidez en el espacio es mediante un modelo de giróscopo formado por un volante montado sobre anillos de forma que el eje del volante pueda adoptar cualquier ángulo en el espacio. Por mucho que se mueva, incline o ladee el giróscopo, el volante mantendrá su plano de rotación original mientras siga girando con suficiente velocidad para superar el rozamiento de los rodamientos sobre los que va montado. Precesión: La precesión es el movimiento circular uniforme del eje en un plano horizontal combinado con la rotación del volante alrededor del eje (Freedman, 2009). Movimiento circular del eje del volante (precesión) Volante Ω Eje del volante Pivote ߱ Rotación del volante La precesión se observa en la naturaleza, no sólo en máquinas giratorias como los giroscopios. Por ejemplo la Tierra, en este mismo momento, está en precesión ya que su eje de rotación (que pasa por los polos norte y sur) cambia lentamente de dirección, completando un ciclo de precesión cada 26,000 años. La rapidez con que se mueve el eje se denomina rapidez angular de precesión: Ω= ௐ ூఠ Por lo tanto, la rapidez angular de precesión es inversamente proporcional a la rapidez angular de giro alrededor del eje. Así, un giroscopio que gira rápidamente tiene precesión lenta; si la fricción en su cojinete hace que el volante se frene, la rapidez angular aumente. Al precesar un giroscopio, su centro de masa describe un círculo de radio r en un plano horizontal. La componente vertical de aceleración es cero, así que la fuerza normal(N) hacia arriba ejercida por el pivote debe ser igual en magnitud al peso. El movimiento circular del centro de masa con rapidez angular Ω requiere una fuerza F dirigida hacia el centro del círculo con magnitud F=MΩ2r (Freedman, 2009). Materiales Aro de bicicleta rin 16 pulgadas Cuerda Photogate Datos Radio aro (R): 0.2 m Largo varilla (L): 0.18 m Radio pivote: 0.07 m Radio eje: 0.0125 m Peso total: 1.13 kg Tiempo una revolución de precesión: 5 s Peso aro: 0.25 kg Gravedad: 9.77 ݉ൗ ଶ ݏ Peso rayos: 0.65 kg 0.018 kg c/u ߱௫௧ = 23.9 ݀ܽݎ/ݏ Peso eje: 0.23 kg Expresiones: ߱= ݎݓ ߗܫ ݃݉ = ݓ ܫ = ܴܯଶ Cálculos: = ݓሺ1.13 ݇݃ሻ ቀ9.77 ݉ൗ ଶ ቁ ݏ = ݓ11.04 ܰ ܫ = ሺ0.25 ݇݃ሻሺ0.2 ݉ሻଶ ܫ = 0.01 ݇݃ ∗ ݉ଶ ܫ = 1ൗ2 ሺ0.018 ݇݃ሻሺ0.18 ݉ሻଶ ܫ = 0.29 ݔ10ିଷ ܫ௦ = 36 ∗ ሺ0.29 ݔ10ିଷ ሻ ܫ௦ = 0.0105 ݇݃ ∗ ݉ଶ 1 ܫ = ሺ0.23 ݇݃ሻሺ0.0125 ݉ሻଶ 2 ܫ = 1.8 ݔ10ିହ ݇݃ ∗ ݉ଶ ܫ௧௧ = ܫ + ܫ௩௦ + ܫ ܫ௧௧ = (0.01 ݇݃ ∗ ݉ଶ + 0.0105 ݇݃ ∗ ݉ଶ + 1.8 ݔ10ିହ ݇݃ ∗ ݉ଶ ) ܫ௧௧ = 0.0205 ݇݃ ∗ ݉ଶ 1 ܫ = ܮܯଶ 2 1 ܫ = ܴܯଶ 2 ܫ௧௧ = ܫ + ܫ௩௦ + ܫ ߗ= 1 ݒ݁ݎ2ߨ ݀ܽݎ = = 1.26 ݀ܽݎൗݏ 5.0 ݏ 5.0 ݏ ߱= ሺ11.04 ܰሻሺ0.07݉ሻ ሺ0.0205 ݇݃ ∗ ݉ଶ ሻሺ1.26 ݀ܽݎൗݏሻ ࣓࢚ࢋó࢘ࢉࢇ = ૢ. ૢ ࢘ࢇࢊൗ࢙ % error = |29.9 ݀ܽݎൗ ݏ− 23.9 ݀ܽݎൗ| ݏ 29.9 ݀ܽݎൗݏ % ࢋ࢘࢘࢘ = % Referencias: Principia Centro de Ciencia. (2008) Giroscopio + precesión de un giroscopio. España. Recuperado de: http://www.principia-malaga.com/portal/pdfs/giroscopio.pdf Freedman, Y. (2009). Física Universitaria. México: Pearson Education. Páginas 337-340