Semiconductor, material sólido o líquido capaz de conducir la electricidad mejor que un aislante, pero peor que un metal. La conductividad eléctrica, que es la capacidad de conducir la corriente eléctrica cuando se aplica una diferencia de potencial, es una de las propiedades físicas más importantes. Ciertos metales, como el cobre, la plata y el aluminio son excelentes conductores. Por otro lado, ciertos aislantes como el diamante o el vidrio son muy malos conductores. A temperaturas muy bajas, los semiconductores puros se comportan como aislantes. Sometidos a altas temperaturas, mezclados con impurezas o en presencia de luz, la conductividad de los semiconductores puede aumentar de forma espectacular y llegar a alcanzar niveles cercanos a los de los metales. Las propiedades de los semiconductores se estudian en la física del estado sólido. Electrones de conducción y huecos Entre los semiconductores comunes se encuentran elementos químicos y compuestos, como el silicio, el germanio, el selenio, el arseniuro de galio, el seleniuro de cinc y el telururo de plomo. El incremento de la conductividad provocado por los cambios de temperatura, la luz o las impurezas se debe al aumento del número de electrones conductores que transportan la corriente eléctrica. En un semiconductor característico o puro como el silicio, los electrones de valencia (o electrones exteriores) de un átomo están emparejados y son compartidos por otros átomos para formar un enlace covalente que mantiene al cristal unido. Estos electrones de valencia no están libres para transportar corriente eléctrica. Para producir electrones de conducción, se utiliza la luz o la temperatura, que excita los electrones de valencia y provoca su liberación de los enlaces, de manera que pueden transmitir la corriente. Las deficiencias o huecos que quedan contribuyen al flujo de la electricidad (se dice que estos huecos transportan carga positiva). Éste es el origen físico del incremento de la conductividad eléctrica de los semiconductores a causa de la temperatura. Dopar Otro método para obtener electrones para el transporte de electricidad consiste en añadir impurezas al semiconductor o doparlo. La diferencia del número de electrones de valencia entre el material dopante (tanto si acepta como si confiere electrones) y el material receptor hace que crezca el número de electrones de conducción negativos (tipo n) o positivos (tipo p). Este concepto se ilustra en el diagrama adjunto, que muestra un cristal de silicio dopado. Cada átomo de silicio tiene cuatro electrones de valencia (representados mediante puntos). Se requieren dos para formar el enlace covalente. En el silicio tipo n, un átomo como el del fósforo (P), con cinco electrones de valencia, reemplaza al silicio y proporciona electrones adicionales. En el silicio tipo p, los átomos de tres electrones de valencia como el aluminio (Al) provocan una deficiencia de electrones o huecos que se comportan como electrones positivos. Los electrones o los huecos pueden conducir la electricidad. Cuando ciertas capas de semiconductores tipo p y tipo n son adyacentes, forman un diodo de semiconductor, y la región de contacto se llama unión pn. Un diodo es un dispositivo de dos terminales que tiene una gran resistencia al paso de la corriente eléctrica en una dirección y una baja resistencia en la otra. Las propiedades de conductividad de la unión pn dependen de la dirección del voltaje, que puede a su vez utilizarse para controlar la naturaleza eléctrica del dispositivo. Algunas series de estas uniones se usan para hacer transistores y otros dispositivos semiconductores como células solares, láseres de unión pn y rectificadores. Véase Electrónica; Energía solar. Los dispositivos semiconductores tienen muchas aplicaciones en la ingeniería eléctrica. Los últimos avances de la ingeniería han producido pequeños chips semiconductores que contienen cientos de miles de transistores. Estos chips han hecho posible un enorme grado de miniaturización en los dispositivos electrónicos. La aplicación más eficiente de este tipo de chips es la fabricación de circuitos de semiconductores de metal-óxido complementario o CMOS, que están formados por parejas de transistores de canal p y n controladas por un solo circuito. Además, se están fabricando dispositivos extremadamente pequeños utilizando la técnica epitaxial de haz molecular. Resistencia, propiedad de un objeto o sustancia que hace que se resista u oponga al paso de una corriente eléctrica. La resistencia de un circuito eléctrico determina —según la llamada ley de Ohm— cuánta corriente fluye en el circuito cuando se le aplica un voltaje determinado. La unidad de resistencia es el ohmio, que es la resistencia de un conductor si es recorrido por una corriente de un amperio cuando se le aplica una tensión de 1 voltio. La abreviatura habitual para la resistencia eléctrica es R, y el símbolo del ohmio es la letra griega omega, Ω. En algunos cálculos eléctricos se emplea el inverso de la resistencia, 1/R, que se denomina conductancia y se representa por G. La unidad de conductancia es siemens, cuyo símbolo es S. Aún puede encontrarse en ciertas obras la denominación antigua de esta unidad, mho. La resistencia de un conductor viene determinada por una propiedad de la sustancia que lo compone, conocida como conductividad, por la longitud por la superficie transversal del objeto, así como por la temperatura. A una temperatura dada, la resistencia es proporcional a la longitud del conductor e inversamente proporcional a su conductividad y a su superficie transversal. Generalmente, la resistencia de un material aumenta cuando crece la temperatura. El término resistencia también se emplea cuando se obstaculiza el flujo de un fluido o el flujo de calor. El rozamiento crea resistencia al flujo de fluido en una tubería, y el aislamiento proporciona una resistencia térmica que reduce el flujo de calor desde una temperatura más alta a una más baja. Circuito integrado, pequeño circuito electrónico utilizado para realizar una función electrónica específica, como la amplificación. Se combina por lo general con otros componentes para formar un sistema más complejo y se fabrica mediante la difusión de impurezas en silicio monocristalino, que sirve como material semiconductor, o mediante la soldadura del silicio con un haz de flujo de electrones. Varios cientos de circuitos integrados idénticos se fabrican a la vez sobre una oblea de pocos centímetros de diámetro. Esta oblea a continuación se corta en circuitos integrados individuales denominados chips. En la integración a gran escala (LSI, acrónimo de Large-Scale Integration) se combinan aproximadamente 5.000 elementos, como resistencias y transistores, en un cuadrado de silicio que mide aproximadamente 1,3 cm de lado. Cientos de estos circuitos integrados pueden colocarse en una oblea de silicio de 8 a 15 cm de diámetro. La integración a mayor escala puede producir un chip de silicio con millones de elementos. Los elementos individuales de un chip se interconectan con películas finas de metal o de material semiconductor aisladas del resto del circuito por capas dieléctricas. Para interconectarlos con otros circuitos o componentes, los chips se montan en cápsulas que contienen conductores eléctricos externos. De esta forma se facilita su inserción en placas. Durante los últimos años la capacidad funcional de los circuitos integrados ha ido en aumento de forma constante, y el coste de las funciones que realizan ha disminuido igualmente. Esto ha producido cambios revolucionarios en la fabricación de equipamientos electrónicos, que han ganado enormemente en capacidad funcional y en fiabilidad. También se ha conseguido reducir el tamaño de los equipos y disminuir su complejidad física y su consumo de energía. La tecnología de los ordenadores o computadoras se ha beneficiado especialmente de todo ello. Las funciones lógicas y aritméticas de una computadora pequeña pueden realizarse en la actualidad mediante un único chip con integración a escala muy grande (VLSI, acrónimo de Very Large Scale Integration) llamado microprocesador, y todas las funciones lógicas, aritméticas y de memoria de una computadora, pueden almacenarse en una única placa de circuito impreso, o incluso en un único chip. Un dispositivo así se denomina microordenador o microcomputadora. En electrónica de consumo, los circuitos integrados han hecho posible el desarrollo de muchos nuevos productos, como computadoras y calculadoras personales, relojes digitales y videojuegos. Se han utilizado también para mejorar y rebajar el coste de muchos productos existentes, como los televisores, los receptores de radio y los equipos de alta fidelidad. Su uso está muy extendido en la industria, la medicina, el control de tráfico (tanto aéreo como terrestre), control medioambiental y comunicaciones.