Soluciones para Utilizar medidas de lóbulos laterales de tiempo para evaluar el rendimiento de los radares de pulsos comprimidos Nota de aplicación Serie Medida de radar Sin embargo, las medidas tradicionales de pulso de RF pierden su efectividad como indicadores del rendimiento en los radares que utilizan compresión de pulsos. Por ejemplo, el ancho de un pulso de radar no comprimido está directamente relacionado con la resolución espacial. En cambio, para un sistema de radar comprimido que utiliza modulación en frecuencia intrapulso (chirp LFM), la resolución depende del ancho del pulso, del ancho de banda de la modulación en frecuencia y de la linealidad de dicha modulación en frecuencia. En el campo del desarrollo de radares ha surgido una técnica denominada medida de nivel de lóbulos laterales (SLL) de tiempo, que constituye una solución viable para predecir el rendimiento. Esta técnica revela una amplia gama de posibles perturbaciones de señal a través de una sencilla métrica que puede emplearse para determinar si el rendimiento del radar se ajustará a la aplicación deseada. Esta nota de aplicación define los principales problemas relacionados con la medida de radares de pulsos comprimidos, describe el método de lóbulos laterales de tiempo y resume las aplicaciones prácticas de este método. Problema Como hemos señalado, los parámetros de modulación utilizados en los radares comprimidos afectan claramente al rendimiento del sistema. Uno de los problemas básicos consiste en determinar cuándo son “suficientemente buenos” los atributos de los componentes empleados en subsistemas de radar. Asimismo, en un escenario de diagnóstico resulta difícil evaluar el rendimiento general sin medir por separado los rasgos de los componentes individuales. Por ejemplo, no suele ser fácil evaluar el efecto del rendimiento de un componente en las perturbaciones añadidas a un pulso modulado, y los Pulse radar Radar compression de compresión de pulsos Excitador Waveformde formas de exciter onda COHO COHO I Q Detector Synchronous I/Q I/Q detector síncrono DAC PA Transmisor Transmitter Antena Antenna STALO STALO LNA LNA IF Receiver Receptor Desadaptación En un sistema de radar, el uso de las técnicas de compresión de pulsos mejora la resolución espacial y proporciona un rango ampliado para un determinado nivel de potencia de salida. Por estas razones, esta técnica suele emplearse en los sistemas de radar existentes y de nueva generación. errores en estas medidas suelen dar lugar a costosas especificaciones extra en los componentes. Pensemos en una reflexión de desadaptación dependiente de la frecuencia de un filtro de IF empleado en un receptor de radar (Figura 1). Los filtros de IF de frecuencia más baja suelen tener retardos de señal significativos. Cuando estos se combinan con reflexiones internas procedentes de un pulso de radar deseado, el resultado puede ser un retorno de eco “fantasma”. Puede ser muy difícil determinar el efecto de dicha reflexión cuando se evalúa el rendimiento funcional general de un radar de compresión de pulsos con frecuencia fluctuante. Desadaptación Mismatch Introducción Reflection Reflexión Reflection Reflexión Internally generated echo Eco generado internamente Figura 1. Las reflexiones de desadaptación pueden causar retornos de eco fantasmas Otros problemas del radar pueden estar relacionados con otras perturbaciones de los componentes que afectan a los resultados en el demodulador. Es el caso, por ejemplo, del ruido de fase no deseado, la modulación de amplitud, las reflexiones y el retardo de grupo. Estas perturbaciones distorsionan lo que se detecta en el receptor, limitando el rango dinámico y la precisión de detección del radar. Solución Funciones de ventana Una forma de resolver estos retos consiste en obtener la caracterización de una amplia gama de posibles perturbaciones de señal a través de una sencilla métrica, a ser posible que pueda servir para determinar si el rendimiento del radar se ajustará a la aplicación deseada. Las medidas de lóbulos laterales en el dominio del tiempo brindan una forma efectiva de utilizar equipos de prueba de calidad y conocidos —con las perturbaciones internas calibradas a través de las medidas— y un procesamiento matemáticamente coherente de datos de medida para caracterizar con precisión el rendimiento de un radar de pulsos comprimidos. Para reducir los lóbulos laterales en el dominio del tiempo a un nivel aceptable, suele utilizarse ponderación de amplitud de las señales de salida. La ponderación de las señales producirá como efecto secundario la pérdida de la relación señal-ruido. En la tabla 1 se muestran algunas de las funciones de ventana más utilizadas, con sus niveles de supresión y pérdidas de señal-ruido. Tabla 1. Funciones de ventana más utilizadas y sus efectos Nivel de lóbulos laterales de pico (dB) Qué son los lóbulos laterales Función de ponderación Los lóbulos laterales en el dominio del tiempo, también llamados lóbulos laterales de rango, son resultado del uso de técnicas de compresión de pulsos. Se producen cuando, durante el proceso de compresión de pulso, una señal ideal de retorno del radar se convoluciona con un filtro de correlación no ideal, o cuando una señal radar no ideal se convoluciona con la respuesta real de un filtro de correlación, o una combinación de ambas. Esto hace que parte de la energía del pulso de retorno quede fuera del ancho de banda del mismo. En el dominio de tiempo esto se indica mediante una dispersión en el dominio temporal del pulso de retorno, en particular en presencia de ecos de tierra o de anomalías de la señal de transmisión causados por imperfecciones en el camino del transmisor. Pérdida señalruido (dB) Uniforme -13,2 0 Hamming -42,8 1,34 Hann -32 1,4 Blackman -58 2,37 Blackman-Harris (3 términos) -67 2,33 La Figura 2 muestra gráficamente las características de la función Hamming. Dado que el filtro de correlación en los radares modernos se implementa casi siempre digitalmente en un DSP en lugar de con un filtro analógico de onda acústica estacionaria (SAW), la forma de onda de pulso comprimido que se obtiene es matemáticamente determinista y repetible y, por tanto, se puede optimizar fácilmente mediante simulación. Función de ventana 1 Respuesta de frecuencia 0 0,9 -10 0,8 0,7 -20 Decibelios Amplitud 0,6 0,5 0,4 -30 -40 0,3 0,2 -50 0,1 0 0 Muestras -60 N-1 Figura 2. Función de ventana Hamming y respuesta de frecuencia asociada 2 -60 -40 -20 0 bins 20 40 60 F (t) = Acos(wct + 1 2 ut2) El nivel de lóbulos laterales (SLL) es una medida de calidad Anchura de pulso SLL Filtro de correlación Pulso de frecuencia fluctuante lineal en FM Anchura de pulsos comprimidos Pulso comprimido Figura 3. Compresión de pulsos y medida de lóbulos laterales en el dominio del tiempo Aplicación del método de lóbulos laterales La plataforma de generación de pulsos debe proporcionar repetibilidad al crear y recrear los pulsos para el estímulo de medida y para la medida de comparación relativa. El detector de un receptor de radar correla la señal transmitida con ecos y ruido recibida a lo largo del tiempo. Cuando la señal recibida coincide con la señal enviada, se produce un pico de correlación y en ese momento Una alternativa sencilla sería crear matemáticamente el pulso comprimido se marca la detección de un blanco.1 ideal y compararlo con el pulso medido sin llegar a generarlo físicamente. La limitación en este caso sería que la comparación relativa siempre se Un pico de correlación ideal sería infinitamente estrecho, tendría un valor realiza con el ideal, algo que no tiene por qué ser lo deseable en todos los de uno y estaría rodeado de niveles de lóbulos laterales de tipo ruido. casos. En determinados momentos puede ser necesario medir el SLL entre En el otro extremo, la correlación entre una señal pura y ruido puro es dos puntos del sistema para intentar localizar la fuente específica de cero. La Figura 3 indica el proceso de medida de la compresión de pulsos una anomalía. y de lóbulos laterales temporales. Las perturbaciones del sistema, que pueden ser desde pulsos comprimidos que se han generado de manera imperfecta hasta reflexiones internas de los filtros, pueden producir niveles de lóbulos laterales de correlación muy por encima del nivel de ruido (Figura 4). Dado que es difícil valorar el efecto de dichas perturbaciones en un pulso comprimido, el uso de la técnica de nivel de lóbulos laterales en el dominio del tiempo proporciona medidas cuantitativas de formas de pulso transmitidas y de señales recibidas. Las tres herramientas recomendadas para crear la forma de onda de pulso pueden emplear distintos métodos, pero el resultado final es el mismo: un archivo o archivos de formas de onda I y Q combinadas o separadas que pueden descargarse directamente en la memoria de un generador de forma de onda arbitraria (AWG). SystemVue: Esta herramienta de modelado de sistemas, con la biblioteca opcional de modelos de radares, proporciona modelos de referencia de procesamiento de señales para explorar los compromisos en arquitecturas de sistemas de radares Doppler pulsados, FMCW, de matriz digital y UWB. Permite el modelado de escenarios añadiendo blancos, ecos parásitos, desvanecimiento, ruido, fuentes de interferencia y los efectos de RF necesarios para el análisis realista del sistema y la verificación anticipada de I+D utilizando conexiones con equipos de prueba con corriente. www.agilent.com/find/SystemVue Una medida precisa de SLL requiere un filtro que esté perfectamente correlado con la forma de pulso deseada. El primer paso consiste en crear una forma de onda ideal que represente el pulso comprimido que se desea: ancho de banda, ancho de pulso y las características de frecuencia fluctuante o modulación son parámetros esenciales. El modelado puede realizarse mediante software, como SystemVue o Pulse Builder Signal Studio de Agilent o MATLAB, de The MathWorks. La representación generada matemáticamente e ideal (es decir, repetible sin perturbaciones añadidas) del pulso comprimido se puede almacenar en la memoria y recuperar posteriormente para correlar formas de onda medidas y permitir cálculos de SLL. Pulse Builder Signal Studio: Permite generar con flexibilidad complejos patrones de pulso de banda ancha utilizando los generadores vectoriales de señales E8267D PSG o E4438C ESG. La formación de pulsos personalizados, la modulación, los patrones de antena y los patrones de pulsos definidos por el usuario se consiguen fácilmente con la sencilla interfaz gráfica de usuario o con un test executive propio empleando la API basada en COM. Añada el AWG de banda ancha N603xA/ N824xA/M933xA a Pulse Builder Signal Studio como elemento de procesamiento y modulación de señales, filtro digital y ajuste de curvas. www.agilent.com/find/MATLAB La forma de onda de pulso chirp para medir y calcular el SLL debe diseñarse para que imite la forma de onda operativa del sistema de radar. En los sistemas que incorporan varios modos de operación deberán emplearse múltiples formas de onda y realizarse múltiples medidas de SLL. MATLAB: Es un entorno de software y lenguaje de programación creado por MathWorks y disponible ahora directamente en Agilent como opción para la mayoría de los generadores y analizadores de señales. MATLAB amplía la capacidad de los analizadores y generadores de señales de Agilent para realizar medidas personalizadas, analizar y visualizar datos, crear formas de onda arbitrarias, controlar instrumentos y crear sistemas de prueba. Suministra herramientas interactivas y funciones de línea de comandos para tareas de análisis de datos, como procesamiento y modulación de señales, filtro digital y ajuste de curvas. www.agilent.com/find/MATLAB 1. Recordemos que el diferencial de tiempo entre “envío” y “recepción” está relacionado con la distancia entre el radar y el blanco. 3 Una vez realizados estos preparativos, se puede llevar a cabo la medida. En el software VSA, los datos de frecuencia medida (reales e imaginarios) se multiplican por el pulso ideal. Este resultado se procesa con la función de transformada inversa rápida de Fourier (IFFT) para producir la intercorrelación temporal necesaria para la medida de SLL. Cuando se miden formas de onda de pulso que se van a correlar con cálculos SLL, la calibración de los instrumentos y la corrección de las formas de onda son otros factores importantes. El motivo: dado el ancho de banda de la mayoría de los pulsos comprimidos, en el instrumento de medida se producen imprecisiones potenciales en fase y amplitud con respecto a la frecuencia. Para evitar que estas imprecisiones afecten a las medidas de SLL es esencial disponer de un receptor de medida con ecualización integrada y software o hardware de generación de señales con funciones de predistorsión. (t) medido Ω (t) ideal = IFFT [(f) medida * conj[(f) ideal]] Donde (f) medida = ventana * FFT ((t) medido) (f) ideal = ventana * FFT ((t) ideal) Realización de medidas de lóbulos laterales El proceso de medida comienza con el conocimiento detallado del pulso comprimido ideal, como se ha descrito anteriormente. El siguiente requisito es un analizador de señales de banda ancha, un osciloscopio o un analizador lógico adecuado con software de análisis vectorial de señales (VSA). Algunos instrumentos serían los analizadores de señales PXA y MXA, los osciloscopios Infiniium de la serie 90000X y los analizadores lógicos de la serie 16900 de Agilent. Todos ellos son compatibles con el software VSA 89600 de Agilent, que admite más de 70 formatos de señal y puede implementar las matemáticas necesarias para realizar y mostrar la medida de lóbulos laterales de tiempo. El software VSA puede ejecutarse en un PC o en instrumentos como los mencionados. SLL ideal SLL medido El instrumento se emplea para adquirir y digitalizar la forma de onda medida. El software VSA puede configurarse para utilizar la identidad de intercorrelación temporal, un método mucho menos laborioso que la intercorrelación en el dominio del tiempo entre archivos de datos. El uso de la identidad permite tomar los datos de frecuencia medida y multiplicarlos por el pulso ideal creado anteriormente. Antes de realizar la medida, el pulso ideal se debe importar al software VSA y convertir al formato de archivo VSA. Nota importante: para garantizar una medida correcta de SLL, el archivo importado y los datos medidos deben utilizar la misma velocidad de muestreo. Figura 4. Medida del SLL 4 FM ideal FM medida Resultados Conclusión Los ingenieros de radar y los profesionales de pruebas han dado muchas aplicaciones prácticas a las medidas de SLL. Un ejemplo sería la caracterización de la resolución espacial y el rango dinámico de los radares. También sirve de ayuda para identificar problemas en los componentes analógicos. Es fácil realizar medidas de lóbulos laterales en el dominio del tiempo con los populares analizadores de señales, osciloscopios y analizadores lógicos de Agilent equipados con el software VSA 89600B. Para preparar una medida es necesario crear la forma de onda de pulso ideal, importar el pulso ideal al software VSA y utilizar matemáticas de traza. Una vez finalizada la configuración es fácil realizar medidas de lóbulos laterales en el dominio del tiempo, que pueden servir para calibrar aspectos clave del rendimiento, aislar perturbaciones de la señal, diagnosticar problemas del sistema y localizar problemas a nivel de los componentes. La resolución espacial constituye a menudo una parte esencial de los criterios de aceptación de un sistema. Dado que el tiempo entre el lóbulo de correlación temporal y el lóbulo lateral discernible mínimo está directamente relacionado con la resolución espacial mínima, SLL evalúa de forma efectiva la validez del rendimiento in situ de un sistema de radar. SLL garantiza además que ningún otro lóbulo temporal generado internamente afectará al rendimiento general de umbral del radar. La función de correlación también está directamente relacionada con la probabilidad de detección de un blanco. A partir de esto, un valor de SLL suficientemente bajo garantiza que el hardware de radar sometido a prueba tenga un rango dinámico lo bastante ancho para detectar las señales débiles de un blanco. A nivel de los componentes, las pruebas de lóbulos laterales en el dominio del tiempo pueden ayudar a identificar problemas con componentes analógicos de microondas. El método habitual consiste en seguir pacientemente el proceso de medición de las características paramétricas y luego acotar los resultados e identificar problemas potenciales. En lugar de este método, pueden medirse los niveles de los lóbulos laterales temporales en busca de perturbaciones en cualquier punto de un sistema, lo que permitirá evaluar rápidamente si los pulsos de radar pueden suministrar el nivel de rendimiento deseado. Esta posibilidad de evaluar la calidad de los pulsos en prácticamente cualquier lugar de un sistema de radar —desde el transmisor hasta el detector del receptor— convierte al SLL en una valiosa herramienta de diagnóstico. Por ejemplo, una medida rápida de SLL en la salida del transmisor puede establecer con exactitud si la fuente de problemas se encuentra en el transmisor o el receptor. Medidas posteriores pueden aislar rápidamente las perturbaciones de la señal que impiden que el rendimiento del radar cumpla los requisitos del sistema. Si desea más información, póngase en contacto con su representante de Agilent o visite www.agilent.com. www.agilent.com www.agilent.com/find/AD Servicios Agilent Advantage Con los servicios Agilent Advantage, nos comprometemos a ayudarle a alcanzar el éxito durante toda la vida útil de su equipo. Nos preocupamos por que siga siendo competitivo; por eso invertimos constantemente en herramientas y procesos que aceleren la calibración y la reparación, y reduzcan el coste de propiedad. Asimismo, puede utilizar los Servicios web Infoline para gestionar los equipos y los servicios de forma más eficiente. Ponemos a su disposición una amplia experiencia en medidas y servicios para que pueda crear los productos más innovadores. www.agilent.com/find/advantageservices www.agilent.com/quality www.agilent.com/find/emailupdates Reciba la información más reciente sobre los productos y aplicaciones que seleccione. Para obtener más información sobre los productos, las aplicaciones o los servicios de Agilent Technologies, póngase en contacto con su oficina local de Agilent. La lista completa se puede encontrar en: www.agilent.com/find/contactus América Canadá Brasil México Estados Unidos (877) 894 4414 (11) 4197 3500 01800 5064 800 (800) 829 4444 Asia Pacífico Australia China Hong Kong India Japón Corea Malasia Singapur Taiwán Otros países de Asia Pacífico 1 800 629 485 800 810 0189 800 938 693 1 800 112 929 0120 (421) 345 080 769 0800 1 800 888 848 1 800 375 8100 0800 047 866 (65) 375 8100 Europa y Oriente Próximo Bélgica Dinamarca Finlandia Francia 32 (0) 2 404 93 40 45 70 13 15 15 358 (0) 10 855 2100 0825 010 700* Alemania Irlanda Israel Italia Países Bajos España Suecia Reino Unido 49 (0) 7031 464 6333 1890 924 204 972-3-9288-504/544 39 02 92 60 8484 31 (0) 20 547 2111 34 (91) 631 3300 0200-88 22 55 44 (0) 131 452 0200 * 0,125 €/minuto Para aquellos otros países no listados: www.agilent.com/find/contactus Revisión: 8 de junio de 2011 Especificaciones y descripciones de productos que aparecen en este documento sujetas a cambios sin previo aviso. © Agilent Technologies, Inc. 2012 Impreso en Estados Unidos, 7 de diciembre de 2011 5990-7532ESE