Tema 1. Fuerzas intermoleculares. Geometría molecular. Momentos

Anuncio
Tema 1.
Fuerzas intermoleculares
Tema 1. Fuerzas intermoleculares. Geometría
molecular. Momentos dipolares. Fuerzas de van de
Waals y radios de van de Waals. El enlace de
hidrógeno. El estado líquido. Estructura y propiedades
del agua. Estructura de los sólidos. Tipos de sólidos.
Objetivos:
1. Conocer la geometría de las moléculas discretas mediante la aplicación del VSEPR
2. Establecer el concepto de momento dipolar. Enlace polar, molécula polar.
3. Estudiar las fuerzas intermoleculares.
4. Relacionar las propiedades físicas de las sustancias con las fuerzas intermoleculares.
5. Aplicar los conceptos anteriores al agua
6. Identificar las estructuras de los sólidos en función de las fuerzas que operan en ellos.
1
Tema 1.
Fuerzas intermoleculares
Geometría molecular. Solo moléculas covalentes.
♦
La geometría molecular se refiere a la organización tridimensional de los átomos en las
moléculas.
♦
Muchas propiedades físicas y químicas (punto de fusión, punto de ebullición, densidad
y los tipos de reacciones) se ven afectadas por la geometría molecular.
♦
Las longitudes y ángulos de enlace, se debe de determinar experimentalmente.
♦
Un procedimiento sencillo que permite la predicción de la geometría de una molécula,
si se conoce el número de electrones, que rodean al átomo central se conoce con el
nombre de VSEPR.
♦
La idea es que los pares de electrones de la capa de valencia se repelen entre sí para
alcanzar una geometría de energía mínima. Electrones enlazantes y no enlazantes.
♦
Recuento de electrones de valencia del átomo central y su clasificación (PE, PL).
2
Tema 1.
Fuerzas intermoleculares
Moléculas en las que el átomo central no tiene pares libres
Estas moléculas tienen la fórmula general ABx, donde x es un entero 2, 3... (Si x = 1, la
molécula diatómica AB es lineal por definición.) En la gran mayoría de los casos, x está
entre 2 y 6.
3
Tema 1.
Fuerzas intermoleculares
Moléculas en las cuales el átomo central tiene uno o más pares libres
La determinación de la geometría de una molécula es más complicada si el átomo
central tiene tanto pares enlazantes como pares libres.
En estas moléculas hay tres tipos de fuerzas de repulsión
• Entre pares enlazantes,
• Entre pares libres,
• Entre pares enlazante y pares libre.
Las fuerzas de repulsión disminuyen en el siguiente orden:
Repulsión par libre VS. par libre > Repulsión par libre VS. par enlazante >
Repulsión par enlazante VS. par enlazante.
4
Tema 1.
Fuerzas intermoleculares
Nº de enlaces Nº pares solitarios Nº direcciones
Geometría
Ejemplo
5
Tema 1.
Nº de enlaces
Nº direcciones
Nº pares solitarios
Geometría
Ejemplo
6
Tema 1.
Fuerzas intermoleculares
Guía para la aplicación del modelo de RPECV
• Se escribe la estructura de Lewis de la molécula, considerando únicamente los pares
de electrones que rodean al átomo central (esto es, el átomo que está enlazado a más
de un átomo).
• Se cuenta el número total de pares de electrones que rodean al átomo central (esto es,
pares enlazantes y pares libres). Una buena aproximación es considerar los dobles y
triples enlaces como si fueran sencillos..
• Se usan las tablas anteriores para predecir la geometría molecular.(Lineal, triangular,
tetraedrica, bipiramide trigonal, octaedrica)
• En la predicción de ángulos de enlace, obsérvese que un par libre repele a otro par
libreo a un par enlazante más fuertemente que lo que un par enlazante.
7
Tema 1.
Fuerzas intermoleculares
Momentos dipolares.
En algunos enlaces la carga no se distribuye simétricamente
H
F
H
F
µ=Qxr
o El momento dipolar generalmente se expresa en debyes (D), unidades llamadas así en
honor de Peter Debye.
o El factor de conversión es:
1 D = 3.33 x 10-30 C m
Donde C es coulombio y m es metro.
8
Tema 1.
Fuerzas intermoleculares
Moléculas con más de dos átomos
El momento dipolar de una molécula formada por tres o más átomos depende tanto de
la polaridad del enlace como de la geometría molecular.
La presencia de un enlace polar no necesariamente implica que la molécula tenga
momento dipolo.
Momento dipolar
resultante
C
O
O
O=C=O
Molécula lineal
Molécula angular
(No tiene momento dipolar)
(Tiene momento dipolar )
µ = 1.46D
N
H
N
H
F
F
µ = 0.24D
H
F
9
Tema 1.
Fuerzas intermoleculares
Enlaces polares y moléculas polares
Cl
H
Cl
Cl
C
C
C
H
Cl
trans-dicloroetileno
µ = 0D
H
C
H
cis-dicloroetileno
µ = 1.46D
10
Tema 1.
Fuerzas intermoleculares
La teoría cinético-molecular de líquidos y sólidos
La diferencia principal entre el estado condensado (líquidos y sólidos) y el estado
gaseoso estriba en las distancias intermoleculares.
Las moléculas en los líquidos y los sólidos están unidas por uno o más tipos de fuerzas.
11
Tema 1.
Fuerzas intermoleculares
Fuerzas intermoleculares
Las fuerzas de atracción entre las moléculas son llamadas fuerzas intermoleculares.
12
Tema 1.
Fuerzas intermoleculares
Fuerzas de van der Waals y radios de van der Waals
Elemento P.ebullición
helium -269°C
neon
-246°C
argon
-186°C
krypton -152°C
xenon
-108°C
radon
-62°C
13
Tema 1.
Fuerzas intermoleculares
Relación entre propiedades físicas y fuerzas intermoleculares
™Hay una relación directa entre
las fuerzas intermoleculares y
las propiedades físicas.
™Por ejemplo a mayores fuerzas
intermoleculares mayores
puntos de fusión o ebullición
Moléculas ramificada mas
interacciones que las
lineales
Moléculas polares mas
interacciones que las
apolares
14
Tema 1.
Fuerzas intermoleculares
El enlace de hidrógeno
El enlace de hidrógeno es un tipo especial de
interacción dipolo-dipolo entre el átomo de
hidrógeno de un enlace polar y un átomo
electronegativo como O, N o F.
A-H---B
A-H--A
• Los tres átomos están en una línea recta, pero el
ángulo AHB (o AHA) puede desviarse de la
linealidad hasta 30º.
• La energía promedio del enlace de hidrógeno es
bastante mayor que la de la interacción dipolodipolo (hasta 40 Kj/mol).
15
Tema 1.
Fuerzas intermoleculares
Tipos de enlaces de hidrógeno
Enlaces intermoleculares
• dímeros (dímeros de ácidos carboxílicos)
• redes monodimensionales 1D, HF, HCN, HCO3• redes bidimensionales 2D, B(OH)3,
• redes tridimensionales 3D, NH4F, H2O, H2O2
Enlaces intramoleculares
16
Tema 1.
Fuerzas intermoleculares
Relación entre el enlace de hidrógeno y las propiedades físicas.
La primera evidencia del enlace de hidrógeno proviene del estudio de los puntos de
ebullición
P.E
78.5°C
-24.8°C
17
Tema 1.
Fuerzas intermoleculares
El estado líquido
Relacionado con las fuerzas intermoleculares, se pueden abordar las propiedades de las
sustancias condensadas
• Fenómenos asociados con líquidos: la tensión superficial y la viscosidad.
• Estructura y propiedades del agua.
Tensión superficial
¿Por qué, entonces, el agua forma gotitas en la superficie de
un coche recién encerado, en lugar de formar una película
sobre él?
La respuesta a esta pregunta reside en las fuerzas
intermoleculares.
La tensión superficial de un líquido es la cantidad de energía requerida para estirar o
aumentar la superficie por unidad de área.
18
Tema 1.
• Los
Fuerzas intermoleculares
líquidos
formados
por
moléculas
con
fuerzas
intermoleculares fuertes tienen tensiones superficiales altas.
• Debido al enlace de hidrógeno, el agua tiene una gran tensión
superficial.
La tensión superficial se manifiesta en forma de capilaridad.
La tensión superficial del agua provoca que esta capa se contraiga
y al hacerlo tira del agua hacia la parte superior del tubo.
Dos tipos de fuerzas provocan la capilaridad.
™Una es la atracción intermolecular entre moléculas afines, cohesión.
™La otra, que se denomina adhesión a las paredes del recipiente.
Si adhesión >> adhesión, el líquido subirá por las paredes hasta que las fuerzas de
atracción quedan balanceadas por el peso del líquido.
19
Tema 1.
Fuerzas intermoleculares
Viscosidad
™La viscosidad una medida de la resistencia de un fluido a fluir.
™Los líquidos que tienen fuerzas intermoleculares
fuertes tienen viscosidades más altas que
aquellos que tienen fuerzas intermoleculares
débiles
™A mayor viscosidad, el líquido fluye de modo
más lento.
™La viscosidad de un líquido comúnmente disminuye con un aumento de temperatura
20
Tema 1.
Fuerzas intermoleculares
La estructura y propiedades del agua
>Densidad
™Las moléculas de agua se enlazan en una gran red
Enlaces de
hidrógeno
tridimensional en la cual cada átomo de oxígeno está
unido aproximadamente a cuatro átomos de hidrógeno,
dos por enlaces covalentes y dos por enlaces de
hidrógeno.
Enlaces de
hidrógeno
™La
estructura
tridimensional
altamente
ordenada del hielo, evita que las moléculas se
acerquen mucho entre sí, tiene menor densidad!
™El agua sólida es menos densa que líquida: el
hielo flota en la superficie del agua.
21
Tema 1.
Fuerzas intermoleculares
>El agua tiene un calor específico alto.
™La razón de ello es que para elevar la temperatura del agua (esto es, aumentar la
energía cinética promedio de las moléculas de agua), se deben romper primero
muchos enlaces de hidrógeno intermoleculares.
™Por ello, el agua puede absorber una gran
cantidad
de
calor
mientras
que
su
temperatura sólo aumenta ligeramente.
™Lo inverso también es cierto: el agua puede
proporcionar
mucho
calor
con
una
disminución muy ligera en su temperatura.
22
Tema 1.
Fuerzas intermoleculares
Estructura cristalina
™Los sólidos se pueden dividir en dos categorías: cristalinos y amorfos.
™Un sólido cristalino, como el hielo o el cloruro de sodio, tienen rigidez y orden de largo
alcance; sus átomos, moléculas o iones ocupan posiciones especificas.
™El centro de cada una de las posiciones se llama un nudo de red, y el orden geométrico
de estos nudos cristalinos se
llama estructura cristalina.
™La disposición de los átomos,
moléculas o iones en un sólido
cristalino es tal que las fuerzas
netas
de
atracción
intermolecular tienen un valor
máximo.
23
Descargar