Capítulo 6 TFM SEBAS _Reparado

Anuncio
Capítulo 6
6 REFERENCIAS BIBLIOGRÁFICAS
6.1. Bibliografía Capítulo 1
[1] Venkitasamy C, Hendry D, Wilkinson N, Fernando L, Jacoby WA. Investigation of
thermochemical conversion of biomass in supercritical water using a batch reactor.
Fuel 2011;90:2662–70.
[2] Ekins P. Hydrogen energy: economic and social challenges. London: Earth-scan;
2010
[3] Ayoub M, Abdullah AZ. Critical review on the current scenario and significance of
crude glycerol resulting from biodiesel industry towards more sustainable renewable
energy industry. Renewable & Sustainable Energy Reviews 2012; 16:2671–86.
[4] “Final report on technical data, cost and life cycle inventories of fuel cells”. New
Energy Externalities Developments for Sustainability (NEEDS). (2008).
[5] T. Alleau y M. Rostaing. “Le vecteur d´Energie hydrogène” del libro “L´Energie de
demain”. P.532. EDP Sciences, 2005.
[6] Prospects for hydrogen and fuel cells. Energy Technology Analysis. International
Energy Agency (2005).
[7] Ewan BCR, Allen RWK. A figure of merit assessment of the routes to hydrogen. Int J
Hydrogen Energy 2008;30:809–19.
[8] Czernik S, French R, Feik C, Chornet E. Hydrogen by catalytic steam reforming of
liquid byproducts from biomass thermoconversion processes. Ind Eng Chem Res
2002;41:4209e15
[9] Adhikari S, Fernando S, Haryanto A. Production of hydrogen by steam reforming of
glycerin over alumina-supported metal catalysts. Catal Today 2007;129:355e64
[10] Dauenhauer PJ, Salge JR, Schmidt LD. Renewable hydrogen by autothermal steam
reforming of volatile carbohydrates. J Catal 2006;244:238e47.
Sebastián Galera
60
Capítulo 6
[11] Luo, Nianjun; Xianwen Fu, Fahai Cao, Tiancun Xiao, Peter P. Edwards. Glycerol
aqueous phase reforming for hydrogen generation over Pt catalyst – Effect of catalyst
composition and reaction conditions. Fuel 87 (2008) 3483–3489
[12] Byrd A.J., Gupta R.B., Pant K.K. Hydrogen production from glycerol by reforming in
supercritical water over Ru/Al2O3 catalyst. Fuel, 87 (2008) 2956–2960
[13] Y. Guo, S.Z. Wang, D.H. Xu, Y.M. Gong, H.H. Ma, X.Y. Tang Review of catalytic
supercritical water gasification for hydrogen production from biomass Renew. Sust.
Energy Rev., 14 (2010), pp. 334–343
6.2. Bibliografía Capítulo 3
[1] Gutiérrez Ortiz, F. J., Ollero, P., Serrera, A. Thermodynamic analysis of the
autothermal reforming of glycerol using supercritical water. Int J of Hydrogen
Energ, 2011,36, 12186-12199
[2] Gutiérrez Ortiz, F.J., Ollero, P., Serrera, A., Galera, S. An energy and exergy analysis
of the supercritical water reforming of glycerol for power production. International
Journal of Hydrogen Energy 2012 37, 209-226
[3] Gutiérrez Ortiz FJ, Ollero P, Serrera A, Sanz A. Thermodynamic study of the
supercritical water reforming of glycerol. Int J Hydrogen Energy 2011;36:8994–9013.
[4] Gutiérrez Ortiz FJ, Serrera A, Galera S ,Ollero P. Experimental study of the
supercritical water reforming of glycerol without the addition of a catalyst. Energy
2013; 56:193-206.
[5] Theodore Krause, John Krebs, and Magali Ferrandon. Fuel processing- water gas
shift catalysis. Annual Progress Report, U.S. DOE Hydrogen, Fuel Cells, and
Infrastructure Technologies Program,2005.
Sebastián Galera
61
Capítulo 6
[6] S. Sircar, T.C. Golden, Pressure swing adsorption for hydrogen production, in: K. Liu,
C. Song, V. Subramani (Eds.), Hydrogen and Syngas Production and Purification
Technologies, Wiley-AIChE, New Jersey, 2010, pp. 414–450.
[7] Y. Choi, H.G. Stenger, Kinetics, simulation and insights for CO selective
oxidation in fuel cell applications, J. Power Sources 129 (2004) 246–254.
[8] Y. Hou, M. Zhuang, G. Wan, The analysis for the efficiency properties of the fuel cell
engine, Renew. Energy 32 (2007) 1175–1186.
6.3. Bibliografía Capítulo 4
[1] EPA 452/B-02-002 Cost estimation and methodology. 2002
[2] Perry, Robert H., and Chilton, Cecil H., Perry’s Chemical Engineers’ Handbook (Fifth
Edition), McGraw-Hill, New York, NY 1973, pp. 25-12 to 25-16.
[3] Analysis, Synthesis and Design of Chemical Processes (3rd Edition) Richard
Turton , Richard C. Bailie , Wallace B. Whiting , Joseph A. Shaeiwitz
[4] Future prospects for production of methanol and hydrogen from biomass Carlo N.
Hamelinck*, Andre´P.C. Faaij. Journal of Power Sources 111 (2002) 1–22
[5]IEA Energy Technology Essentials, FUEL CELLS. April 2008
[6] Chemical Engineering, August 1, 2013
[7] Kerr BJ, Dozier WA III, Bregendahl K: Nutritional value of crude glycerin for
nonruminants. In Proceedings of the 23rd Annual Carolina Swine Nutrition Conference.
Raleigh, NC; 2007::6-18.
[8] Directiva 2003/87/CE del Parlamento Europeo y del Consejo, de 13 de octubre de
2003, por la que se establece un régimen para el comercio de derechos de emisión de
Sebastián Galera
62
Capítulo 6
gases de efecto invernadero en la Comunidad y por la que se modifica la Directiva
96/61/CE del Consejo.
[9] Ministerio de Agricultura, Alimentación y Medio Ambiente
[10]SENDECO2, la Bolsa Europea de Derechos de Emisión de Dióxido de Carbono
(EUAs)
[11] Prospects for hydrogen and fuel cells. Energy Technology Analysis. International
Energy Agency (2005).
[12] Ewan BCR, Allen RWK. A figure of merit assessment of the routes to hydrogen.
Int J Hydrogen Energy 2008;30:809–19.
[13] Ewan BCR, Allen RWK. A figure of merit assessment of the routes to hydrogen. Int
J Hydrogen Energy 2008;30:809–19
6.4. Bibliografía general consultada
[1] Cost and performa nce of carbon dioxide capture for power generation, Working
Paper, Internationa l Energy Agency. OECD/IEA, 2011.
[2] A.L. Villanueva Perales, C. Reyes Valle, P. Ollero, A. Gómez-Barea, Technoeconomic
assessment of ethanol production via thermochemical conversion of biomass by
entrained flow gasification, Energy 36 (7) (2011) 4097 – 4108.
[3] P. Haro, P. Ollero, A.L. Villanueva Perales, C. Reyes Valle, Technoeconomic
assessment of lignocellulosic ethanol production via DME (dimethyl ether)
hydrocarbonylation, Energy 44 (1) (2012) 891–901.
[4] P. Haro, F. Trippe, R. Stahl, E. Henrich, Bio-syngas to gasoline and olefins via DME —
a comprehensive techno-economic assessment, Applied Energy (2013), http://
dx.doi.org/10.1016/j.apenergy.2013.03.015.
Sebastián Galera
63
Capítulo 6
[5] B. Amigun, D. Petrie, J. Gorgens, Economic risk assessment of advanced process
technologies for bioethanol production in South Africa: Monte Carlo analysis,
Renewable Energy 36 (11) (2011) 3178 –3186.
[6] M.S. Peters, K.D. Timmerhaus, R.E. West, Plant design and economics for chemical
engineers, 5. ed., international ed. ed. Boston [u.a.]: McGraw-Hill; 2003.
[7] J. He, W. Zhang, Techno-economic evaluation of thermo-chemical biomass-toethanol, Applied Energy 88 (4) (2011) 1224 –1232.
[8] S.B. Jones, Y. Zhu, Techno-economic Analysis for the Conversion of Lignocellulosic
Biomass to Gasoline via the Methanol-to-gasoline (MTG) Process, PacificNorthwest
National Laboratory (PNNL), Richland, WA, 2009. , (PNNL-18481).
[9]Hamelinck, C.N., A.P.C. Faaij, 2001. Future prospects for production of methanol
and hydrogen from biomass, NWS-E-2001-49, ISBN 90-73958-84-9, September 2001
[10]Hamelinck, C.N. and A.P.C. Faaij, 2002. Future Prospects for Production of
Methanol and Hydrogen from Biomass. Journal of Power Sources, 111 (1):1-22. 18
September 2002.
[11]Hamelinck, C.N., A.P.C. Faaij, H. den Uil, and H. Boerrigter. 2003. Production of FT
Transportation Fuels from Biomass; Technical Options, Process Analysis and
Optimization and Development Potential. NWS 90-393-3342-4. Utrecht University. The
Netherlands, March 2003
[12] Spath, P., A. Aden, T. Eggerman, M. Ringer, B. Wallace, and J. Jechura, 2005.
Biomass Hydrogen Production Detailed Design and Economics Utiltizing the Battelle
Columbus Laboratory Indirectly Heated Gasifier. NREL/TP-510-37408. National
Renewable Energy Laboratory, Golden, CO. May 2005.
Sebastián Galera
64
Capítulo 6
[13] de Swaan Arons J, van der Kooi H. Sankaranarayanan K, Biomass Production and
Conversion. In Efficiency and Sustainability in the Energy and Chemical Industries,
Marcel Dekker, Inc.: New York, 2004.
[14] Henrich E, et al., Clean Syngas from Bio-oil/Char Slurries. In Science in Thermal and
Chemical Biomass Conversion, Bridgwater, A. V.; Boocock, D. G. B., Eds. CPL Press:
Newbury, UK, 2006; Vol. 2, pp 1565-1579.
[15] Bridgwater AV, Toft AJ. Brammer JG. A techno-economic comparison of power
production by biomass fast pyrolysis with gasification and combustion. Renewable &
Sustainable Energy Reviews 2002, 6, (3), 181-246.
[16] Spath PL. Dayton DC. Preliminary Screening -- Technical and Economic Assessment
of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for BiomassDerived Syngas. NREL/TP-510-34929; December, 2003.
[17] Huber GW, Iborra S. Corma A. Synthesis of transportation fuels from biomass:
Chemistry, catalysts, and engineering. Chemical Reviews 2006, 106, (9), 4044-4098.
[18] Cocco D, Pettinau A. Cau G. Energy and economic assessment of IGCC power
plants
integrated with DME synthesis process. Proceedings of the Institution of
Mechanical Engineers - Part A - Power & Energy 2006, 220, (2), 95-102.
[19] Lau FS, et al. Techno-Economic Analysis of Hydrogen Production by Gasification of
Biomass. DE-FC36-01GO11089; Gas Technology Institute: December, 2002.
Sebastián Galera
65
Descargar