Transmisión de Calor (Frío – Calor)

Anuncio
Transmisión de Calor
(Frío – Calor)
Objetivos de su utilización
• Otorgar determinadas propiedades
•organolépticas,
•sanitarias,
•nutricionales.
• Modificar características de conservación.
• Modificar propiedades del producto durante su procesamiento
• Implica el uso controlado de la variación de la temperatura para
producir determinados efectos o modificar las velocidades a las
que se producen fenómenos:
•Físicos (modificación de viscosidad, calentamiento o
enfriamiento, congelación, secado).
•Físico químicos (deshidratación de geles, floculaciones).
•Químicos (generación de colores, aromas, sabores, texturas).
•Biológicos (inactivación de enzimas, eliminación de
microorganismos).
Para lograr determinado efecto:
• ¿Qué temperatura se requiere?
• ¿Cuánto tiempo se tarda en alcanzar la
temperatura requerida?
• ¿Cuánto tiempo se la debe sostener?
• ¿Qué cantidad de energía (combustible = $)
se requiere para lograr el efecto térmico?
• ¿Qué eficiencia térmica tiene el proceso?
• ¿Qué equipo puedo usar?
Formas de transmisión de calor
• Conducción.
• Convección.
• Radiación.
¿características de cada una? ¿cuándo se produce cada una de ellas?
¿ejemplos comunes de su uso en el procesamiento de alimentos?
¿útil para enfriar, calentar?
Particularidades a considerar en el flujo térmico en alimentos
• Sistemas no homogéneos en composición y características
• Pocas veces tienen una forma geométrica regular
• Habitualmente cambian sus propiedades al modificarse la
temperatura
• Los fenómenos físicos, físicoquímicos, químicos y biológicos
se producen simultáneamente
Leyes o expresiones que modelizan los procesos
de transferencia de calor
La cantidad de calor absorbida o
cedida puede utilizarse para producir
cambios o
mantenimiento
de temperatura
Q = m.c.ΔT
cambios de
fase o de
estado (T = cte)
Q =λ.m
Leyes o expresiones que modelizan los procesos
de transferencia de calor
El intercambio de calor puede
producirse
con temperaturas constantes
en el tiempo para cada punto
del sistema, aunque estas
sean diferentes
sistema estacionario
con temperaturas
que varían en el
tiempo
sistema transiente
Leyes o expresiones que modelizan los procesos
de transferencia de calor
Transferencia de calor en estado estacionario (T cte)
Transmisión de calor por conducción
Ley de Fourier
q = U.A.ΔT
U = 1 /  (e/k)
Leyes o expresiones que modelizan los procesos
de transferencia de calor
Transferencia de calor en estado estacionario (ΔT cte)
Transmisión de calor por convección
q = h . A . ΔT
natural
forzada
Se la describe y caracteriza por medio de
los siguientes números adimensionales
Nusselt (Nu) = h.D / k
Prandtl (Pr) = c.µ / k
Grashoft (Gr) = D3.ρ2.g.β.ΔT / µ2
Nu = K(Pr)k.(Gr)m.(L/D)n
Leyes o expresiones que modelizan los procesos
de transferencia de calor
Transferencia de calor en estado estacionario (ΔT cte)
Transmisión de calor por convección: q = h . A . ΔT
Determinación de h para convección natural
Convección
Natural
Figura
Cilindro o placa
vertical
Cilindro o placa
horizontal
Convección
Figura
Forzada
Placa
Pr . Gr
Nu
104 a 109
109 a 1012
103 a 109
0,53.(Pr.Gr)0,25
0,12.(Pr.Gr)0,33
0,53.(Pr.Gr)0,25
Re
> 20.000
Nu
0,036.Re0,8.Pr0,33
Líquidos en
1 a 200
exterior de tubos
0,86. Re0,43.Pr0,3
Leyes o expresiones que modelizan los procesos
de transferencia de calor
Transferencia de calor en estado estacionario (ΔT cte)
Transmisión combinada: U = 1 / (1/hint + (e/k) + 1/hext)
Leyes o expresiones que modelizan los procesos
de transferencia de calor
Transferencia de calor en estado NO estacionario (ΔT NO cte)
Las temperaturas varían en el tiempo, siendo en los
diferentes puntos que componen el cuerpo
iguales
cambio
homogéneo
diferentes
Se predice a través del nº de Biot (Bi)
Bi = h.Lc
k
cambio
heterogéneo
V
Lc = A
transferencia
Leyes o expresiones que modelizan los procesos
de transferencia de calor
Transferencia de calor en estado NO estacionario (ΔT NO cte)
Cambio homogéneo
Sistemas con:
•Bi < 0,1 – 0,2
•agitación
T2 – Ta
=
T1 – Ta
- hs . A . t
e cp .ρ.V
hs = coeficiente de transferencia de
superficie
T1 = Temperatura inicial del cuerpo
T2 = Temperatura final del cuerpo
Ta= Temperatura externa
c = calor específico del cuerpo
A = superficie del cuerpo
V = volumen del cuerpo
Leyes o expresiones que modelizan los procesos
de transferencia de calor
Transferencia de calor en estado NO estacionario (ΔT NO cte)
Cambio heterogéneo
Sistemas con: Bi > 0,1 – 0,2
Nº de Fourier (relación entre la velocidad de la conducción de calor y la
velocidad del almacenamiento de energía)
k
.t
Fo =
cp .ρ.L2
k
α=
cp .ρ
Métodos de generación de energía
Principales fuentes de energía
Clasificación según su origen:
•Combustibles
• sólidos (carbón, madera),
• líquidos (derivados del petróleo, aceites vegetales y sus
derivados, alcoholes),
• gaseosos (gases del petróleo, biogas);
• Energía eléctrica (generación térmica, hidráulica, nuclear, etc.).
• Clasificación según sea energía renovable o no renovable.
Métodos de transferencia del calor
• Transferencia indirecta: los elementos que intercambian energía
no están en contacto directo, sino a través de un transmisor.
•Fluidos: vapores o gases, líquidos (agua, aceites).
• El agua tiene excelentes
características, sea líquida o
vapor saturado, no así el
aire.
• El aire generalmente se
utiliza en hornos de
panificación y en secaderos,
transfiriendo tanto calor
como humedad
• Sólidos calefaccionados (paredes calefaccionadas por
alguno de los fluidos anteriores o resistencias eléctricas
envainadas) llegan a 800 ºC
Métodos de transferencia del calor
• Transferencia directa: no se utiliza un transportador de calor
extra. Se utiliza en secaderos, hornos, tostadores, etc., y se
realiza mediante
•contacto directo con los productos de la combustión, tal
como en el caso de los hornos,
•energía infrarroja, radiadores con filamentos a temperatura
media (500 - 1000 ºC) o alta (2500 ºC) emiten radiación de λ
entre 0,75 y 350 μm a absorber por el material. Las
importantes están entre 1 y 50 μm (I = Io.e-ax)
•eléctricamente (exponiendo el alimento a ondas de radio, las
frecuencias disponibles se limitan para evitar interferencias)
•dieléctricos, frecuencias menores a 300 MHz (27 MHz),
•por microondas, frecuencias sobre 300 MHz (897 y 2450
MHz).
Tratamientos térmicos
1. Escaldado: calentamiento rápido del alimento hasta cierta a
temperatura y breve mantenimiento, con posterior enfriamiento.
Objetivos:
• Inactivación de enzimas (se sigue con desaparición de
peroxidasa y catalasa)
• Limpiar materia prima
• Reducir carga microbiana
• Expulsar gases (en el envasado reduce corrosión y facilita
creación de vacío en el espacio de cabeza)
• Ablanda y contrae los alimentos (en el envasado facilita el
llenado)
• Mejora la textura, especialmente en deshidratados.
Métodos:
• Inmersión en agua caliente • Tratamiento con vapor
• Tratamiento con aire caliente • Tratamiento con microondas
Tratamientos térmicos
Métodos de escaldado.
El alimento atraviesa el sector con las condiciones prefijadas a
velocidad controlada (longitud vs tiempo de residencia)
Escaldado por inmersión en agua caliente:
•tambor perforado que gira en agua caliente
•tubería con serpentines, previa suspensión en agua
Escaldado con vapor:
•cinta de malla o tornillo helicoidal dentro de cámara de vapor
Problemas e inconvenientes:
•Pérdida de materia seca
•Disminución de las vitaminas
•Necesidad de agua con características definidas
•Posible contaminación con flora termófila
•Generación de efluentes contaminantes
•Dificultad en asegurar un tratamiento térmico uniforme.
•Alteraciones del color
Tratamientos térmicos
2. Horneado: se agrupan bajo este título a aquellas operaciones
de calentamiento que no se incluyen en otras específicas y se
desarrollan en hornos.
• Métodos de calentamiento de los hornos
• “indirecto”, por medio de radiación procedente de
resistencias o desde las paredes calientes
• directo, combinación de radiación y convección natural o
forzada de una mezcla de gases de combustión y aire,
adicionada algunas veces con otros gases como el vapor
de agua.
• Clases de diseño de hornos
• discontinuos, con bandejas removibles,
• continuos, rotatorios horizontal o verticalmente, de raíl, de
túnel.
Tratamientos térmicos
3. Cocción por extrusión: se extruye una pasta para mezclar y
conformar el alimento y simultáneamente se le aplica calor de
forma controlada.
• Se alcanzan presiones de 60 atm y temperaturas de 200 ºC
• El calentamiento de la pasta se produce por:
• Compresión, fuerzas de cizalla y fricción en el interior del
cilindro extrusor,
• Transmisión por conducción desde resistencias eléctricas o
de fluidos en una camisa del cilindro,
• Inyección de vapor en el interior del cilindro.
• Se produce deshidratación, cizallamiento, homogeinización,
solubilización, plastificación, inactivación enzimática y
microbiana, orientación de componentes, moldeado, expansión
y secado.
Destrucción térmica de microorganismos
Cinética de choque único
Destrucción térmica de microorganismos
Cinética de choque múltiple
Destrucción térmica de microorganismos
Influencia de la temperatura sobre la velocidad de destrucción térmica
Destrucción térmica de microorganismos
Parámetros usualmente encontrados (dependen del tamaño
inicial de la población y condiciones del tratamiento, no son
particularmente útiles)
tiempo térmico letal o de destrucción térmica F: tiempo
necesario para destruir los microorganismos a una temperatura
determinada y bajo condiciones específicas;
coeficiente de letalidad (1/F): inversa del tiempo requerido para
destruir cierto número de microorganismos a una temperatura
definida y bajo condiciones específicas;
punto térmico letal: la temperatura más baja que se necesita
para matar a los organismos en 10 minutos.
Destrucción térmica de microorganismos
Los parámetros generales más útiles son:
índice de reducción o valor g (también m): logaritmo decimal del
número de veces que se redujo una población bacteriana
(equivale a reducir una población de 10g microorganismos hasta
1 microorganismo).
tiempo de reducción decimal o valor D: tiempo (en minutos y a
una temperatura determinada) que se requiere para reducir la
población viable al 10% de su valor.
constante de resistencia termal o valor z: diferencia en
temperaturas necesaria para causar una reducción de un 90% en
el valor D (modificar el valor D por un factor de 10).
Destrucción térmica de microorganismos
Influencia de la temperatura sobre la velocidad de destrucción térmica
Destrucción térmica de microorganismos
Determinación de la intensidad requerida para esterilización
Destrucción térmica de microorganismos
Determinación de la intensidad requerida para esterilización
Ejemplo de un proceso con F = 4 minutos durante un tiempo de 3 minutos
Destrucción térmica de microorganismos
Determinación de la intensidad de la esterilización
Influencia del calentamiento en la calidad del producto
esterilidad
comercial
mínimo deterioro posible de
las propiedades nutritivas y
vs
sensoriales del alimento
log F
El deterioro depende de:
-
tiempo del proceso
-
temperatura del proceso
-
composición y
propiedades del alimento
Zona de
destrucción
Zona de
mantenimiento
T
Influencia del calentamiento en la calidad del producto
Cl. botulinum: Z = 10 ºC
Vit. B1: Z = 25 ºC
Esterilidad Com
log F
Deterioro Vit
No Est Com
Sí Est Com,
Sí Det Vit
Sí Det Vit
No Est Com
No Det Vit
Z = 25 ºC
Z = 10 ºC
Sí Est Com, No Det Vit
T
Influencia del calentamiento en la calidad del producto
Cambios producidos en la calidad sensorial:
Textura
Lesión de membranas celulares
Pérdida de consistencia
Desnaturalización de proteínas
Solidez, gelificación
Gelificación del almidón
Gelificación
Color
Degradación de pigmentos y vitaminas
Decoloración
Reacciones de Maillard
Oscurecimiento
Aroma
Pérdida de compuestos volátiles
Pérdida de aroma
Formación de aromas desagradables
Maillard, pirazinas
Olor a quemado (o tostado)
Oxidación
Olor a rancio
Equipo de intercambiador de placas
Equipo de intercambiador de placas
1) cambiador-regenerador de calor
2) cambiador-pasteurizador
3) cambiador-refrigerador
Diagrama de flujo del proceso UHT directo por inyección
(uperización)
Cámara
expansión
Vapor
10%
Inyección
150 ºC
dilución 10%
Precalentamiento
75-80 ºC
a envasado
aséptico
Diagrama de flujo del proceso UHT indirecto
válvula de desvío
a
envasado
aséptico
Curso térmico del proceso UHT
UHT directo
UHT indirecto
En los sistemas de flujo continuo
el tiempo de tratamiento viene
determinado por la longitud de la
sección de mantenimiento.
Autoclave simple
Autoclave con
pulverización de agua
Esterilizador hidrostático continuo
Sistema abierto donde
puede utilizarse vapor
a presión superior a la
atmosférica
equilibrándolo con
presión hidrostática
Esterilizador rotatorio continuo de espiral y tambor
Congelamiento
Punto de congelación: temperatura
más elevada a la cual los cristales de
hielo son estables.
Tiempo de congelación: tiempo transcurrido entre el momento en que la
superficie del producto alcanza los 0º y el instante en que el punto crítico
alcanza los -10º por debajo del inicio de la formación de hielo en ese punto.
Congelamiento
Evolución de la temperatura en el centro térmico de un alimento
Congelamiento
Densidad de un alimento en función de la temperatura
Congelamiento
Conductividad térmica de un alimento en función de la temperatura
Congelamiento
Entalpía de un alimento en función de la temperatura
Congelamiento
Calor específico aparente de un alimento en función de temperatura
Congelamiento
Congelamiento de un líquido y de una solución
Congelamiento
Estabilidad de una solución en función de su concentración
y temperatura
Congelamiento
Crecimiento y nucleación de cristales
Congelamiento
Velocidad de nucleación
Congelamiento
Ecuación de Planck
h = Coeficiente de transferencia de
calor superficial
kc= Conductividad térmica del
material congelado
a = Espesor de la placa a congelar
t = Tiempo de congelación
l = Calor latente de fusión del
material
r = Densidad
Ti -Ta = Diferencia entre
temperatura de congelación del
alimento y del refrigerante
P =1/2 para placa infinita, 1/6 para
una esfera, 1/4 para un cilindro
infinito
R = 1/8 para placa infinita, 1/24
para esfera, 1/16 para cilindro
infinito.
Congelamiento
Ecuación de Planck
Para P y R en
geometrías
tipo ladrillo o
de bloque
Equipos para congelamiento
Congeladores por Ráfaga de Aire
Los productos se colocan en
bandejas o sistemas de transporte y
exponen a aire frío de alta velocidad.
1. Continuos de transportador:
el producto pasa por una
cámara de congelación y puede
tener trayectoria en espiral.
2. Por lotes: las bandejas
se cargan y descargan
de un compartimiento de
congelación. La
capacidad del sistema
se establece por el
tamaño del
compartimiento y el
tiempo de congelación.
Equipos para congelamiento
Congeladores en lecho fluido
Hay límites para el tamaño
(densidad) del producto a congelar
por la demanda de energía para
generar las velocidades del aire
necesarias para la fluidización
Equipos para congelamiento
Congeladores de placas
Enfrían por conducción. El producto, en general de geometría plana y de no
más de 5 cm, se coloca entre placas refrigeradas a las que se presiona
hidráulicamente
Equipos para congelamiento
Congeladores criogénicos: Los fluidos utilizados son el N2 o el CO2 líquidos.
• Nitrógeno: los sistemas más modernos preenfrían el producto con el
gaseoso de la etapa siguiente, y en la sección final del equipo, realizan la
inyección del spray. Los más utilizados son los equipos de cinta continua.
• Dióxido de carbono: se puede utilizar sólido, pero es difícil el contacto
uniforme con el alimento. Lo usual es como líquido que se descarga a
presión atmosférica, se solidifica y cae como nieve. En general se utiliza a
una temperatura de - 68 ºC, para asegurar que el gas no arrastrará nieve.
Descargar