La transmisión internacional de políticas monetarias: Mundell

Anuncio
La transmisión internacional de políticas
monetarias: Mundell-Fleming vs
Obstfeld-Rogo¤¤
Carlos Borondoy
Universidad de Valladolid
Febrero 2001
Abstract
En este trabajo se comparan dos modelos para el análisis de la transmisión internacional de perturbaciones monetarias: el tradicional de MundellFleming-Dornbusch (MFD) y el intertemporal y microfundado de ObstfeldRogo¤ (OR). Las diferencias y similitudes entre ellos son puestas de relieve
y se revisan adicionalmente algunas extensiones del modelo OR que están
conformando la Nueva Macroeconomía Abierta.
JEL classi…cation: E32, E52, F41
Keywords: Transmisión Internacional, Política Monetaria, Modelos
de dos países.
¤ Esta investigación se realizó durante mi estancia como visitante en la Universidad
de Oxford. Quiero expresar mi gratitud al Departamento de Economía de esa universidad por su hospitalidad. Los comentarios de Oscar Bajo han contribuido a mejorar
sensiblemente la versión original de este trabajo. Agradezco la ayuda …nanciera del
Ministerio de Educación y Cultura a través del programa de estancias de investigadores
españoles en centros extranjeros. Cualquier error es de mi exclusiva responsabilidad.
y Dirección: Facultad de Economia. Avda. Valle Esgueva 6. 47011 Valladolid. Fax: +34
983 423299. Email: [email protected]
1
1
Introducción
Como resultado del desafío de las expectativas racionales al modelo macroeconómico dominante en los años sesenta –la síntesis neoclásica– los macroeconomistas keynesianos han dedicado mucho esfuerzo a profundizar en los fundamentos microeconómicos de la oferta y la demanda agregadas. En concreto, el
objetivo ha sido establecer …rmemente el resultado empírico de la no neutralidad
del dinero a corto plazo. Se reconoció que el modelo no hacía su…cientemente explícitas las imperfecciones de los mercados y, para ello, era necesario desarrollar
cuidadosamente el comportamiento de los agentes racionales bajo esas imperfecciones. El enfoque adoptado fue desarrollar modelos pequeños, de equilibrio
parcial, para iluminar las consecuencias de las imperfecciones. Por otro lado,
los economistas clásicos continuaron desarrollando modelos de equilibrio general
dinámico más y más so…sticados, completamente basados en supuestos microeconómicos, pero sin contemplar ninguna imperfección. En la actualidad, como
lo describe Blanchard (2000), los dos programas de investigación convergen en
modelos de equilibrio general dinámico (la metodología clásica) donde se incluyen sistemáticamente diferentes imperfecciones y se exploran sus efectos (el
enfoque keynesiano). De acuerdo con Blanchard, las imperfecciones van a jugar
un papel central en macroeconomía por tres motivos: (i) “conducen a características del equilibrio muy distintas en términos de e…ciencia y bienestar”, y
por lo tanto afectan al papel de las políticas económicas; (ii) cambian el mecanismo de propagación de las perturbaciones; y (iii) proveen de nuevas fuentes de
perturbaciones.
El modelo Mundell-Fleming (MF) estaba basado en el modelo IS-LM, y por
tanto heredó sus mismos problemas (recogidos recientemente por McCallum y
Nelson, 1999b). Una extensión importante del modelo MF consistió en incorporar el lado de la oferta y expectativas racionales para convertirlo en un modelo
de medio plazo. Esta fue la contribución de Dornbusch (1976). Un paso más
era encarar los fundamentos del lado de la oferta y hacer el modelo verdaderamente dinámico con las implicaciones de la maximización intertemporal de la
utilidad. Esta es la aportación de Obstfeld y Rogo¤ (1995). Aunque estos autores no incluyen un tratamiento del proceso de ajuste de los precios, preparan
el modelo para esta tarea cambiando la estructura del mercado a la competencia monopolística. En mi opinión, a la vista de los desarrollos recientes de
la macroeconomía, el modelo Obstfeld-Rogo¤ (OR) puede ser considerado el
sucesor del Mundell-Fleming-Dornbusch (MFD).
El objetivo de este trabajo no es hacer una panorámica completa de la Nueva
Macroeconomía Abierta, como se empieza a conocer a la literatura surgida a
partir del modelo OR1 , tarea recientemente acometida por Lane (1999). El
propósito es detallar en qué manera la consideración explícita de la maximización intertemporal puede cambiar los resultados familiares de MF en el
modelo de dos países y ante perturbaciones monetarias. Se trata de ofrecer una
panorámica más detallada aún a costa de perder algo de perspectiva. Ser más
especí…co hace posible iluminar mejor los parámetros cruciales, los mecanismos,
las contribuciones y las aplicaciones de los modelos.
La estructura del artículo es la siguiente. La sección segunda explica las prin1 Por analogía con la denominación de Nueva Síntesis Neoclásica que propusieron Goodfriend y King (1997) para el modelo similar de economía cerrada.
2
cipales conclusiones de una versión dinámica de MFD basada en los contratos
solapados de Taylor. Un incremento permanente de nuestra cantidad de dinero
incrementa la producción nacional y produce un resultado indeterminado sobre
la producción extranjera (en el caso de MF, sin expectativas, la producción extranjera disminuye sin duda). El comercio es el canal más importante para la
transmisión internacional, y consiste en dos mecanismos opuestos: la desviación
del gasto de bienes extranjeros a bienes nacionales (debido al incremento del
precio relativo de los bienes extranjeros) y el efecto renta (que hace que el
aumento de la renta nacional estimule la demanda de productos extranjeros).
Exploramos también una segunda versión del modelo con índices de precios de
consumo (IPC), que añade un nuevo canal de liquidez: la depreciación de la
moneda nacional reduce el IPC extranjero y aumenta sus saldos reales. Con
este canal adicional, que trabaja en la misma dirección que el efecto renta, el
resultado …nal de una política monetaria expansiva en nuestro país puede ser
positivo sobre la producción extranjera.
La sección tercera describe el modelo OR. El comportamiento intertemporal de los consumidores se re‡eja en la ecuación de Euler del consumo, que
implica que los tipos de interés reales y el consumo futuro esperado son los
determinantes del consumo actual. La paridad del poder adquisitivo (PPA)
se mantiene continuamente, determinando una paridad de los tipos de interés
reales de los dos países, y debido a la ecuación de Euler, el consumo de ambos
países sigue la misma senda. Como resultado, el canal …nanciero se torna más
importante: cuando nuestro país aumenta su cantidad de dinero, el tipo de interés real disminuye, y lo mismo ocurre en el otro país, lo que implica que el
consumo en ambos aumenta. Al mismo tiempo, el canal del comercio también
funciona, y el efecto de desviación del gasto prevalece, haciendo que aumente la
producción nacional y que disminuya la extranjera. Un resultado nuevo y de interés es que nuestro país puede conseguir un superávit corriente que aumentará
permanentemente sus activos frente al otro, sirviendo de base para un efecto
real permanente de la perturbación monetaria. En esta sección se muestra que,
sorprendentemente, los efectos sobre el bienestar en ambos países son positivos
y de la misma cantidad, lo que constituye probablemente la mayor contribución
de este enfoque de equilibrio general.
La sección cuarta considera algunas extensiones del modelo OR. En primer
lugar, se analiza el caso en el que la elasticidad de sustitución entre bienes de
un país es mayor que entre bienes nacionales y extranjeros. La sección también
incluye dos extensiones del modelo OR para evitar el cumplimiento contínuo
de la PPA. La primera consiste en considerar bienes no comercializables y la
segunda introduce el sesgo en las preferencias hacia bienes del propio país. Un
tercer apartado analiza la extesión del modelo en otra dirección prometedora:
el “pricing to market” (PTM) y el “local currency pricing” (LCP). Finalmente,
se aborda la aplicación del modelo a las reglas de política monetaria, tanto las
del tipo Taylor como las reglas óptimas obtenidas en un modelo completamente
estocástico.
En la última sección se recogen las conclusiones.
3
2
El modelo de dos países de Mundell-FlemingDornbusch
Desde las contribuciones de Robert Mundell (1962, 1963, 1968) y Marcus Fleming (1962), el modelo Mundell-Fleming ha sido el marco analítico más importante para estudiar la transmisión internacional de perturbaciones monetarias2 .
La versión original estaba basada en el modelo IS-LM, sin dinámica ni expectativas. Una mejora sustancial del modelo tuvo lugar con la contribución de
Dornbusch (1976), que incorporó expectativas racionales sobre el tipo de cambio y un ajuste lento de los precios. El modelo resultante (MFD) es el punto de
referencia para comparar el modelo de Obstfeld-Rogo¤ que exponemos en las
próximas secciones.
El modelo de dos países, que llamo MFD1, supone simetría en los dos países
y contiene las siguientes ecuaciones:3
Modelo MFD1
yt
yt¤
rt
rt¤
qt
mt ¡ pht
m¤t ¡ p¤f
t
it
pha
t
a
p¤f
t
pht
p¤f
t
= ¡b1 rt ¡ b2 qt + b3 yt¤
= ¡b1 rt¤ + b2 qt + b3 yt
¢
¡
= it ¡ Et pht+1 ¡ pht
(1)
(2)
(3)
¤f
= i¤t ¡ (Et p¤f
t+1 ¡ pt )
(4)
=
= c1 yt ¡ c2 it
(5)
(6)
pht
¡ st ¡ p¤f
t
= c1 yt¤ ¡ c2 i¤t
= i¤t + Et st+1 ¡ st
¡
¢
1
Et¡1 pht + °yt + pht+1 + °yt+1
=
2
³
´
1
¤f
¤
¤
Et¡1 p¤f
=
t + °yt + pt+1 + °yt+1
2
¢
1 ¡ ha
p + pha
=
t¡1
2 t
´
1 ³ ¤f a
=
pt + p¤fa
t¡1
2
(7)
(8)
(9)
(10)
(11)
(12)
La Tabla 1 lista las variables utilizadas en esta sección y en la siguiente.
Todas ellas son desviaciones logarítmicas respecto a sus tendencias o estados
estacionarios (excepto los tipos de interés, que son desviaciones sin logaritmos).
2Y
por supuesto para otros propósitos, pero nos centramos aquí en esta aplicación.
pocas referencias con versiones muy similares del modelo son McCallum (1996),
Krugman (1995) y Turnovsky (1986).
3 Una
4
Tabla
y
c
i
r
ph ; p¤f
pha ; p¤f a
p
s
q
e
m
1. Variables utilizadas en los modelos MFD y OR
producción (desviación logarítmica)
consumo (desviación logarítmica)
tipo de interés nominal (desviación)
tipo de interés real (desviación)
índice de precios interiores (desviación logaritmica)
precio determinado por las empresas (desviación logarítmica)
índice de precios al consumo (desviación logarítmica)
tipo de cambio nominal (desviación logarítmica)
relación real de intercambio (q = ph ¡ s ¡ p¤f )
tipo de cambio real (e = s + p¤ ¡ p)
agregado monetario (desviación logarítmica)
Las ecuaciones (1) y (2) son las condiciones IS, y las LM son las expresiones
(6) y (7). La ecuación (8) es la paridad descubierta de intereses. Suponemos
perfecta movilidad del capital entre los dos países. Estas ocho ecuaciones pueden
resolverse para las ocho variables (y; y ¤ ; i; i¤ ; s; r; r¤ ; q) bajo el supuesto de que
los precios son constantes y el modelo es de corto plazo (si además suponemos
expectativas estáticas tenemos el modelo Mundell-Fleming). Una segunda posibilidad es resolver las mismas ecuaciones para (ph ; p¤f ; i; i¤ ; s; r; r¤ ; q) bajo el
supuesto alternativo de que los precios son perfectamente ‡exibles y las producciones igualan sus niveles naturales normalizados (y = y ¤ = 0). Finalmente,
podemos añadir a las primeras cinco ecuaciones algún tipo de mecanismo de
ajuste de los precios. El tipo de ajuste propuesto por Dornbusch (1976) era
que los precios aumentan siempre que la producción se encuentra por encima
de su nivel natural: ¢pt+1 = ¼yt donde ¼ > 0: Nuestra elección es utilizar
el mecanismo más elaborado de Taylor (1980): una estructura de precios con
solapamiento. Las ecuaciones (9)-(10) determinan el precio (único) …jado por
las empresas para los períodos t y t + 1 basado en la información disponible en
t ¡ 1. El índice de precios en t es la media de los precios vigentes en ese período.
Las únicas perturbaciones estocásticas del modelo provienen de los agregados
monetarios, que suponemos siguen el siguiente proceso:
mt
m¤t
ut
u¤t
=
=
=
=
mt¡1 + ut
m¤t¡1 + u¤t
½ut¡1 + "t
½u¤t¡1 + "¤t
(13)
donde ½ es la autocorrelación (persistencia) de las perturbaciones u; u¤ y "; "¤
son las innovaciones monetarias del período, que suponemos son ruido blanco:
Los coe…cientes del modelo están tomados de Taylor (1993a) y se muestran en
la Tabla 2. Aunque no son valores estimados podemos pensar que son valores
razonables para los ejercicios de simulación que realizamos.
Tabla 2. Valores de los parámetros del modelo MFD
b1 = 1:2 b2 = 0:1 b3 = 0:1 c1 = 1 c2 = 4 ° = 1
El experimento a realizar consiste en una perturbación permanente en el
agregado monetario nacional (½ = 0): Los resultados se presentan en la …gura
5
1. La producción nacional aumenta transitoriamente (en el período 4 está casi
de vuelta en su nivel inicial) debido a la depreciación del tipo de cambio real y
a la caída del tipo de interés real. La producción extranjera apenas se ve afectada, puesto que el tipo de interés real extranjero apenas se modi…ca, y el efecto
negativo del tipo de cambio real y el positivo del incremento de la producción
nacional casi se cancelan mutuamente. Hay dos canales a través de los que la
expansión monetaria nacional puede afectar a la producción extranjera: el comercio y el mercado …nanciero. El canal del comercio está relacionado con el efecto
desviación del gasto causado por la depreciación real de la moneda nacional y
es capturado por el parámetro b2 , y con el efecto renta debido al incremento de
la producción nacional que aumenta la demanda de bienes extranjeros al mismo
precio relativo (parámetro b3 ). El canal del mercado …nanciero está relacionado
con la paridad descubierta de los tipos de interés que relaciona ambos tipos
nominales de interés. Cuando un país aumenta la cantidad de dinero disminuye
su tipo de interés nominal y el diferencial negativo es absorbido por la tasa
esperada de depreciación, implicando una apreciación esperada. Como consecuencia de ello, el tipo de cambio nominal sobrepasa su nuevo valor de largo
plazo. Esto aisla al tipo de interés extranjero. Sin expectativas sobre el tipo de
cambio el tipo de interés extranjero tendría que caer para igualar al nacional y
equilibrar el ‡ujo internacional de capitales.
Una ampliación interesante de este experimento consiste en incorporar en
el modelo el índice de precios al consumo (IPC). Los productos extranjeros
representan una fracción de la cesta de consumo y por tanto los movimientos
del tipo de cambio implicarán cambios en el nivel de precios y en los saldos
reales de dinero. Esta característica añade un nuevo canal de transmisión: a
través de la liquidez. El nuevo modelo se denomina MFD2.
Modelo MFD2
¡b1 rt ¡ b2 qt + b3 yt¤
¡b1 rt¤ + b2 qt + b3 yt
it ¡ (Et pt+1 ¡ pt )
i¤t ¡ (Et p¤t+1 ¡ p¤t )
yt
yt¤
rt
rt¤
=
=
=
=
qt
= pht ¡ st ¡ p¤f
t
pt
p¤t
mt ¡ pt
m¤t ¡ p¤t
it
pha
t
a
p¤f
t
pht
p¤f
t
=
®pht + (1 ¡ ®)(st + p¤f
t )
¤f
h
®pt + (1 ¡ ®)(pt ¡ st )
=
= c1 yt ¡ c2 it
= c1 yt¤ ¡ c2 i¤t
= i¤t + Et st+1 ¡ st
1
Et¡1 (pt + °yt + pt+1 + °yt+1 )
=
2
¡
¢
1
¤
Et¡1 p¤t + °yt¤ + p¤t+1 + °yt+1
=
2
¢
1 ¡ ha
pt + pha
=
t¡1
2
´
1 ³ ¤f a
a
pt + p¤f
=
t¡1
2
6
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
Los IPC (p; p¤ ) son medias ponderadas de los precios de los bienes nacionales
(ph ) y extranjeros (p¤f ). Y estos precios, a su vez, se calculan a partir de los
precios …jados por las empresas (pha ; p¤f a ) de la misma forma que en el modelo
MFD1 anterior. En esta versión del modelo podemos diferenciar entre tipo de
cambio real basado en los IPC (e = s + p¤ ¡ p) y relación real de intercambio
(q = ph ¡ s ¡ p¤f ), que es el cociente entre el índice de precios de los bienes que
exportamos y el de los que importamos.
La …gura 2 muestra una simulación con la misma perturbación que antes (los
parámetros son los mismos y ® = 0:85), pero ahora el efecto sobre la producción
extranjera es ligeramente positivo, puesto que la caída inicial del IPC extranjero
produce una in‡ación esperada y esto reduce el tipo de interés real extranjero.
El canal de la liquidez actúa en la misma dirección, haciendo que el tipo de
interés nominal extranjero disminuya. Como efecto secundario el diferencial en
los tipos de interés es menor y el sobrepasamiento del tipo de cambio es casi
invisible. En este modelo podemos ver que en el período 4 las variables reales ya
han alcanzado sus valores iniciales. Este efecto está controlado por el parámetro
°. La …gura 3 ilustra esto simulando el modelo MFD2 con ° = 0:05: Ahora los
efectos reales duran alrededor de 10 períodos porque este valor bajo de ° implica
un precio ‡exible óptimo apenas sensible a la producción (debido por ejemplo
a un coste marginal constante y/o elasticidad de la demanda creciente con el
precio).
3
El modelo Obstfeld-Rogo¤
Obstfeld y Rogo¤ (1995) desarrollan en detalle las decisiones intertemporales
de los agentes en un marco de competencia monopolística apropiado para el
estudio de las decisiones sobre la formación de los precios. El modelo original
era determinista y con una rigidez de precios de un período. La versión que
desarrollamos en esta sección es estocástica y dinámica.
El canal del comercio es aún importante en la transmisión de la política monetaria y el efecto desviación del gasto prevalece. Adicionalmente, el supuesto del
cumplimiento de la ley del precio único en todos los bienes lleva al cumplimiento
de la paridad del poder adquisitivo (PPA), lo que refuerza el canal …nanciero
al obligar a que la paridad de los tipos de interés reales se mantenga continuamente. Esto implica que cuando las autoridades nacionales aumentan la oferta
de dinero, reduciendo con ello el tipo de interés real, el tipo real extranjero
también disminuye. La caída del tipo de interés real, a través de la asignación
intertemporal del consumo, aumenta el consumo actual en ambos países. Adicionalmente aparece un nuevo canal: la transferencia de riqueza. Esto se debe
al superávit de la cuenta corriente que obtiene nuestro país, que aumenta su
posición acreedora frente al país extranjero y da pie a un aumento relativo y
permanente del consumo per cápita.
Otro resultado importante es que no hay sobrerreacción del tipo de cambio,
sino que se ajusta totalmente a su nuevo valor de largo plazo en el primer
período. Veremos en las secciones siguientes diferentes versiones de este modelo
en las que sí puede haber sobrerreacción.
El principal resultado del modelo es el efecto sobre el bienestar de la política
monetaria asimétrica analizada: ambos países se bene…cian de un incremento
similar en su bienestar. Este importante resultado depende de las características
7
especiales del modelo, y será tratado con detalle en las secciones siguientes.
3.1
Componentes del modelo
Hay un contínuo de individuos, z 2 [0; 1], distribuidos en dos países simétricos:
el nuestro, con z 2 [0; n], y el extranjero con z 2 (n; 1]. Cada individuo es un
consumidor y un productor, y tiene la función de utilidad:
Ut
=
1
X
¯ s¡t us (C;
s=t
=
M
; Y (z))
P
µ
½
¶
¾
Ms
'
¡ Ys (z)2
¯ s¡t log Cs + Â log
Ps
2
s=t
1
X
(28)
donde 0 < ¯ < 1; y Â; ' > 0: Las variables en mayúscula son niveles. La
de…nición del índice de consumo C es
µ
¾ µ¡1
½Z 1
µ¡1
[C(z)] µ dz
; µ>1
C=
0
donde µ es la elasticidad de sustitución entre bienes y suponemos que es mayor
que uno para asegurarnos que el ingreso marginal de los productores es positivo
(ver la ecuación de demanda debajo). El índice de precios que minimiza el gasto
es:
1
¾ 1¡µ
½Z 1
1¡µ
[P (z)]
dz
P =
0
donde P (z) es el precio interior del bien z:
Se permite el cumplimiento de la ley de un solo precio, de modo que si S
denota el tipo de cambio nominal entonces, para cualquier producto z, P (z) =
SP ¤ (z): Esto implica, por la de…nición del índice de precios, que la PPA también
se cumple:
P = SP ¤
Las demandas individuales de los consumidores nacionales y extranjeros son
funciones de los precios relativos, la elasticidad de sustitución y los índices de
consumo:
¸¡µ
·
P (z)
C ; z 2 [0; n]
C(z) =
P
· ¤ ¸¡µ
P (z)
¤
C (z) =
C ¤ ; z 2 (n; 1]
P¤
donde ya hemos incluido el supuesto de que hay simetría entre los consumidores
de un mismo país, de modo que C; C ¤ son los consumos agregados per cápita de
cada país. La simetría también implica que dentro de un país todos los precios
se igualan, y por tanto podemos escribir:
P (z) = P h ; z 2 [0; n]
P ¤ (z) = P ¤f ; z 2 (n; 1]
8
Con las demandas individuales anteriores podemos calcular la demanda
global de un producto z:
· h ¸¡µ
P
C w ; z 2 [0; n]
Y (z) =
(29)
P
· ¤f ¸¡µ
P
Y ¤ (z) =
C w ; z 2 (n; 1]
P¤
donde C w es el consumo per cápita mundial, de…nido como:
C w ´ nC + (1 ¡ n)C ¤
La restricción presupuestaria individual de un residente en nuestro país es:
Pt Bt + Mt + Pt Ct
=
(30)
Pt (1 + Rt¡1 )Bt¡1 + Mt¡1 + Pt (z)Yt (z) + Pt Tt
donde Bt¡1 son los saldos (a …nal de período) del único bono real comercializado
entre los dos países, Rt¡1 es el tipo de interés real, Mt¡1 es la cantidad de
dinero, Yt (z) es la producción del individuo y Tt son las transferencias netas del
gobierno.
El gobierno mantiene en cada período un presupuesto equilibrado (en términos per cápita):
Tt =
Mt ¡ Mt¡1
Pt
El tipo de interés nominal It se de…ne con la ecuación de Fisher:
1 + It =
Et Pt+1
(1 + Rt )
Pt
donde Et es el operador de expectativas. La paridad de intereses descubierta
(UIP):
1 + It =
Et St+1
(1 + It¤ )
St
y la PPA implican que hay paridad en los tipos de interés reales:
Rt = R¤t
El comportamiento del agente representativo se obtiene maximizando la función de utilidad U en (28) sujeto a la demanda global de su producto dada en
(29) y a la restricción presupuestaria en (30). Las condiciones de primer orden a las que se enfrenta el agente nacional son (las condiciones para el agente
extranjero son similares):
Ct
Mt
Pt
Pt (z)µ+1
Et Ct+1
¯(1 + Rt )
µ
µ
¶
¶¡1
1
Pt
1 + It
¡¯
=
= ÂCt
ÂCt
ÂEt (Pt+1 Ct+1 )
It
µ
¶
µ'
= Ptµ+1
Ct Ctw
µ¡1
=
9
(31)
(32)
(33)
La primera es la condición de Euler del consumo, habitual en los modelos de
elección intertemporal, e informa que el consumo actual es una función inversa
del tipo de interés real y directa del consumo futuro esperado. La segunda
condición determina la demanda real de dinero del individuo como una función positiva de la cesta de consumo (en lugar de la renta) y negativa del tipo
de interés nominal. La tercera condición determina el precio óptimo para el
productor del bien z, que dependerá positivamente del índice de precios, de su
consumo y de la demanda mundial.
La condición de equilibrio del mercado mundial del único bono intercambiado
entre los dos países es:
nB + (1 ¡ n)B ¤ = 0
(34)
A partir de esta condición y de las restricciones presupuestarias nacionales
se puede obtener que:
Ctw = n
Pth Yt
P ¤f Y ¤
+ (1 ¡ n) t ¤ t = Ytw
Pt
Pt
donde Ytw es la renta real per cápita mundial. Esta expresión es la restricción
mundial sobre el consumo: el consumo per cápita mundial debe ser igual a la
renta real per cápita mundial.
La forma habitual de resolver el modelo consiste en obtener una versión lineal
de las ecuaciones en torno a un estado estacionario donde las cuentas corrientes
de ambos países son cero (utilizo una barra encima de la variable para denotar
su valor estacionario):
h
RB +
¤
RB +
P
P Y
¡C
P
¤f
Y
P
¤
¤
¡C
= 0
¤
= 0
¤
y habitualmente se supone también que B = B = 0: En este caso particular se
obtiene que:
I
= R=
1¡¯
¯
¤
¤
C
= C =Y =Y =
P
= P = ÂR
P
¤
S
M
C
¤
M
¤f
= P = ÂR
C
P
M
=
¤ =
¤
P
M
µ
µ¡1
µ'
¶1=2
h
El tipo de interés real está determinado por la tasa de descuento subjetiva de
los agentes. El consumo per cápita es igual en ambos países y está determinado
por la producción, que a su vez depende de la elasticidad de sustitución entre
10
bienes (a menor elasticidad mayor poder de monopolio y menos producción) y
de la desutilidad del trabajo. Los precios dependen directamente de la cantidad
de dinero en cada país y el tipo de cambio nominal es el cociente entre las
cantidades de dinero.
Si los precios son perfectamente ‡exibles el modelo replica los resultados de
un modelo puramente clásico: las perturbaciones monetarias son neutrales, los
únicos efectos afectarán a las variables nominales.
3.2
Versión lineal del modelo
El modelo se resuelve linealizando las ecuaciones alrededor del estado estacionario inicial (ver apéndice con los detalles). Las letras en minúscula son
desviaciones logarítmicas de las variables en mayúscula respecto a sus valores
estacionarios (excepto para los tipos de interés, que son desviaciones de sus
valores estacionarios).
Modelo OR
bt
n
¡
bt
1¡n
qt
yt ¡ yt¤
(1 + µ)pht
(1 + µ)p¤f
t
ct ¡ c¤t
mt ¡ pt
m¤t ¡ p¤t
pt
p¤t
mt
m¤t
= (1 + R)bt¡1 + pht + yt ¡ pt ¡ ct
n
¤
¤
¤
(1 + R)bt¡1 + p¤f
= ¡
t + yt ¡ pt ¡ ct
1¡n
= pht ¡ st ¡ p¤f
t
= ¡µqt
= (1 + µ)pt + ct + [nct + (1 ¡ n)c¤t ]
= (1 + µ)p¤t + c¤t + [nct + (1 ¡ n)c¤t ]
= Et [ct+1 ¡ c¤t+1 ]
1
1
= ct ¡ (Et ct+1 ¡ ct ) ¡ (Et pt+1 ¡ pt )
R
R
1
1
¤
¤
¤
= ct ¡ (Et ct+1 ¡ ct ) ¡ (Et p¤t+1 ¡ p¤t )
R
iR
h
= npht + (1 ¡ n) st + p¤f
t
¤
£ h
= n pt ¡ st + (1 ¡ n)p¤f
t
= mt¡1 + "t
= m¤t¡1 + "¤t
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
Las dos primeras ecuaciones son las expresiones para las balanzas corrientes,
incluyendo en la segunda nbt +(1¡n)b¤t = 0, donde b es la posición internacional
neta mantenida en nuestro país. Juntas implican que el consumo per cápita
w
iguala a la renta per cápita cw = yw , donde cw
t = nct + (1 ¡ n)ct y yt =
¤f
h
¤
¤
n(pt + yt ¡ pt ) + (1 ¡ n)(pt + yt ¡ pt ).
La ecuación (37) de…ne la relación de intercambio. Dado que en este modelo prevalece la PPA, el tipo de cambio real es constante, pero la relación de
intercambio no. La ecuación (38) se obtiene restando las demandas globales a
las que se enfrentan los productores de cada país. El parámetro µ resulta ser
de crítica importancia, puesto que controla la magnitud del efecto desviación
del gasto después de un cambio en la relación de intercambio. Las ecuaciones
11
(39) y (40) son los precios óptimos para los monopolistas e implican que, ceteris
paribus, un incremento en el IPC será igualado con un incremento en el precio
del monopolista, que un incremento en el consumo mundial (un desplazamiento
de la demanda) aumentará el precio y que un incremento en el consumo nacional
aumentará la desutilidad del trabajo y por tanto el monopolista aumentará el
precio. La ecuación (41) se obtiene restando las ecuaciones de Euler del consumo en ambos países, teniendo en cuenta que el tipo de cambio real es el mismo
en ambos. Las ecuaciones (42) y (43) son las condiciones del equilibrio en el
mercado de dinero. Finalmente, (44) y (45) son las versiones loglinealizadas de
los IPC.
Las 11 ecuaciones (35)-(45) determinan las 11 variables: y; y ¤ ; c; c¤ ; p; p¤ ;
h
p ; p¤f ; q; s; b dados los procesos estocásticos para m; m¤ en (46)-(47). Las
perturbaciones a los agregados monetarios son permanentes.
En este modelo se mantiene la neutralidad del dinero a corto y largo plazo.
Sólo los precios (incluido el tipo de cambio) aumentarán si el stock de dinero
aumenta.
3.3
Precios rígidos un período
Como primer paso hacia un modelo dinámico con rigidez de precios construimos
una versión con precios rígidos durante un período. Tenemos que distinguir entre
los precios óptimos dados en (39)-(40), a los que nos referimos como peh ; pe¤f :
peht
pe¤f
1
1 w
ct +
c
1+µ
1+µ t
1 ¤
1 w
c +
c
= p¤t +
1+µ t 1+µ t
= pt +
(48)
y los precios corrientes …jados por las empresas: ph ; p¤f . Los precios óptimos
pueden no conseguirse a corto plazo debido a costes de ajuste, por ejemplo, pero
sí a largo plazo.
Para recoger el supuesto de que los precios se …jan con un período de antelación y se ajustan al …nal de cada período, consideramos las siguientes reglas
de precios:
pht
p¤f
t
= Et¡1 peht
=
(49)
Et¡1 pe¤f
t
La solución del modelo se explica en el apéndice. El tipo de cambio se
determina combinando las condiciones de equilibrio del mercado de dinero en
ambos países:
st = (mt ¡ m¤t ) ¡ (ct ¡ c¤t )
(50)
El tipo de perturbación que estamos analizando es un incremento permanente,
de una sola vez, de la oferta de dinero en nuestro país, de modo que "1 = 1; y
"t = 0, para t > 1: Por tanto, mt ¡ m¤t = 1 para t > 0: La condición de Euler
para el consumo implica
ct ¡ c¤t = c1 ¡ c¤1 ; for t > 1
12
Esto a su vez implica que
s = s1 = 1 ¡ (c1 ¡ c¤1 )
donde la letra minúscula sin el subíndice de tiempo recoge el efecto a largo
plazo, que en este modelo se alcanza en el período 1: No hay sobrerreacción
porque la ecuación de Euler evita un ajuste gradual del diferencial de consumo.4
Obstfeld y Rogo¤ (1996, cap 9) a…rman que la sobrerreacción no tiene mucho
éxito empírico. En las secciones siguientes veremos casos en los que es posible
la sobrerreacción.
La relación de intercambio se obtiene a partir de las ecuaciones de los precios
y de la ecuación anterior para el tipo de cambio:
qt = ¡"t + (ct ¡ c¤t ) ¡
µ
(ct¡1 ¡ c¤t¡1 )
1+µ
(51)
La relación de intercambio vuelve al valor de equilibrio inicial a menos que
se produzca una diferencia permanente en el consumo per cápita. Usando los
resultados anteriores:
q1
q
= ¡1 + (c1 ¡ c¤1 ) = ¡s1
1
(c ¡ c¤ )
=
1+µ
el impacto (t = 1) es una caída de la relación de intercambio de la misma
magnitud pero en sentido opuesto al aumento del tipo de cambio. Pero el
efecto de largo plazo se alcanza en el período 2, con un valor de la relación de
intercambio superior a la inicial si existe a largo plazo un diferencial de consumo
positivo a favor de nuestro país.
El diferencial de consumo es:
ct ¡ c¤t
¼cb
= ¼cb bt¡1 + ¼cc (ct¡1 ¡ c¤t¡1 ) + ¼ c" "t
> 0; ¼ cc > 0; ¼ c" > 0
(52)
El impacto de la perturbación monetaria se determina por el parámetro ¼c" :
¼c" =
R(µ 2 ¡ 1)
>0
R(1 + µ)µ + 2µ
Este parámetro resulta ser muy pequeño: para los valores de referencia (µ = 6;
n = 0:5; R = 0:01)5 es sólo 0.028, lo que signi…ca que un 1% de aumento
del dinero crea un diferencial de consumo per cápita de 0.028% del consumo
per cápita inicial. Este diferencial está relacionado con el efecto riqueza del
superávit de la cuenta corriente que mejora la posición internacional neta de
nuestro país permanentemente:
c ¡ c¤ =
¼cb
b
1 ¡ ¼cc
4 Cuando la elasticidad de la demanda de dinero respecto al consumo no es igual a uno,
todavía se mantiene el resultado de no sobrerreacción, como en el modelo original OR (1995).
5 Estamos suponiendo un modelo trimestral, de modo que R = 0:01 implica aproximadamente un 4% anual; µ = 6 es el valor habitual en la literatura, que supone un margen del 20%
del precio sobre el coste marginal, ver por ejemplo Rotemberg y Woodford (1992).
13
¼cb
= 0:011:
Sin embargo, este efecto es muy pequeño, en nuestro caso 1¡¼
cc
El efecto sobre b viene del superávit corriente conseguido en nuestro país, que
sólo se produce en el impacto (t = 1), porque en t = 2 los precios se ajustan al
nuevo valor de m y se alcanza el nuevo equilibrio estacionario donde la cuenta
corriente tiene saldo cero. Esto implica que b1 = b, el aumento inicial en la
posición internacional neta resulta ser permanente.
El último paso es calcular los consumos y producciones nacionales y para
esto necesitamos el consumo per cápita mundial. Para calcular el efecto sobre el
consumo mundial empezamos por calcular el IPC mundial a partir de las reglas
de precios:
¤
w
pw
t = npt + (1 ¡ n)pt = Et¡1 pt +
2
Et¡1 cw
t
1+µ
(53)
Esta expresión implica que no hay impacto sobre pw
t y que
Et cw
t+1 = 0
(54)
de modo que el valor esperado para el consumo per cápita mundial para el
período después de la perturbación es el valor estacionario, porque todos los
precios se habrán ajustado en ese momento a las nuevas condiciones monetarias.
Esto a su vez implica en la ecuación de Euler que
cw
t = ¡¯rt
(55)
Aproximadamente una reducción de un punto en el tipo de interés real aumentará el consumo per cápita mundial un 1%.
Para calcular cw
t mostramos en el apéndice que agregando las condiciones de
equilibrio de los mercados moentarios y teniendo en cuenta las reglas de precios:
w
w
cw
t = mt ¡ pt = n"t
expresión que muestra que la perturbación nominal aumentará el consumo global
pero sólo en el período en el que ocurre la innovación. Los consumos per cápita
de cada país son:
ct
c¤t
¤
= cw
t + (1 ¡ n)(ct ¡ ct )
¤
= cw
t ¡ n(ct ¡ ct )
(56)
A partir de estas expresiones se puede concluir que si el efecto riqueza es pequeño, como hemos visto que ocurre, ambos consumos aumentan practicamente
lo mismo, produciendo una elevada (casi perfecta) correlación entre los consumos.
La restricción mundial de recursos requiere que
w
h
¤f
+ y ¤ ¡ p¤ ) = ny + (1 ¡ n)y¤
cw
t = yt = n(p + y ¡ p) + (1 ¡ n)(p
y las producciones nacionales se pueden calcular como:
yt
yt¤
= ytw + (1 ¡ n)(yt ¡ yt¤ ) = n"t ¡ (1 ¡ n)µqt
= ytw ¡ n(yt ¡ yt¤ ) = n"t + nµqt
14
(57)
Recogemos todos los resultados en la Tabla 3. La producción nacional siempre aumenta después de una expansión monetaria, pero el efecto sobre la producción extranjera es negativo. Esto implica una correlación negativa de (y;
y ¤ ) y también entre (y ¤ ; c¤ ). Sin embargo, ambas correlaciones son positivas
en los hechos estilizados del ciclo internacional y en la evidencia encontrada con
modelos VAR.
Tabla 3.
Resultados de un aumento permanente, de una vez, del agregado monetario nacional
Corto plazo (t = 1)
Largo plazo (t > 1)
"t
mt ¡ m¤t
ct ¡ c¤t
bt
st
qt
yt ¡ yt¤
cw
t
ytw
rt = rt¤
ct
yt
c¤t
yt¤
1
1
¼c² > 0
1¡¼cc
¼cb ¼ c² > 0
1 ¡ ¼c² > 0
¡(1 ¡ ¼c² ) < 0
µ(1 ¡ ¼c² ) > 0
n>0
n>0
¡ ¯1 n < 0
n + (1 ¡ n)¼c² > 0
n + (1 ¡ n)µ(1 ¡ ¼ c² ) > 0
n(1 ¡ ¼ c² ) > 0
n(1 ¡ µ)(1 ¡ ¼c² ) < 0
0
1
¼ c² > 0
1¡¼cc
¼cb ¼ c² > 0
1 ¡ ¼ c² > 0
1
1+µ ¼ c² > 0
µ
¡ 1+µ
¼ c² < 0
0
0
0
(1 ¡ n)¼c² > 0
µ
¡(1 ¡ n) 1+µ
¼c² < 0
¡n¼c² < 0
µ
n 1+µ
¼c² > 0
La …gura 4 representa grá…camente los resultados para los parámetros de
referencia (n = 0:5, µ = 6; R = 0:01).
Antes de pasar al análisis del bienestar, hay que señalar que hay un problema con la estacionariedad en el procedimiento anterior. Los efectos de largo
plazo de la perturbación implican que el sistema no vuelve al equilibrio inicial, alrededor del cual se han linealizado las ecuaciones, y algunas de ellas son
aproximaciones log-lineales. Hay varias soluciones a este problema. Corsetti y
Pesenti (1999) desarrollan un caso particular en el que no hay desequilibrio de
la balanza corriente y por lo tanto no hay efectos de largo plazo. Chari, Kehoe y
McGrattan (1998) eligen un entorno de mercados completos, que implica que la
diversi…cación internacional del riesgo evita la redistribución de riqueza después
de la perturbación. Ghironi (1999b) usa un enfoque de generaciones solapadas.
3.4
Análisis del bienestar
Una de las principales ventajas de trabajar en un marco de equilibrio general
es que se pueden calcular con exactitud los efectos de una perturbación sobre el
bienestar, evitando la incertidumbre que aparece cuando distintos mecanismos
con efectos opuestos entran en acción. La perturbación en la oferta de dinero de
nuestro país tiene efectos positivos y negativos sobre el bienestar del otro país.
Los positivos son el incremento a corto plazo de su relación de intercambio y el
aumento mayor del consumo que de la producción (la producción es una función
creciente del esfuerzo). Los negativos son de largo plazo: caída del consumo,
deterioro de la relación de intercambio y aumento del esfuerzo.
15
La evaluación de estos efectos de corto y largo plazo, positivos y negativos,
requiere calcular la variación de la utilidad del agente representativo dada en
(28). El primer paso es distinguir entre los efectos de las variaciones del consumo
y del esfuerzo sobre la utilidad (U R ) y el efecto de las variaciones en los saldos
reales de dinero (U M ):
dU = dU R + dU M
El primer término es:
dU R
=
1
X
t=1
³
´
2
¯ t¡1 ct ¡ 'Y yt
¯
2
2
= c1 ¡ 'Y y1 + (c ¡ 'Y y)
1¡¯
µ
¶
·
µ
¶ ¸
µ¡1
¯
µ¡1
= c1 ¡
y1 +
c¡
y
µ
1¡¯
µ
¶
¶
µ
µ
µ¡1
¯
¯
c ¡
y
=
c1 +
y1 +
1¡¯
µ
1¡¯
µ¡1
= cnpv ¡
ynpv
µ
w
w
m
c1
= 1
=
µ
µ
(58)
donde hemos hecho uso de los resultados sobre el estado estacionario inicial para
sustituir Y y los resultados de la Tabla 3 para sustituir c1 ; c; y1 ; y. De…nimos
cnpv ; ynpv como los valores presentes netos del consumo y la producción respectivamente. El bienestar aumenta con el consumo y disminuye con la producción,
y la tasa a la que una unidad adicional de producción compensa una unidad
adicional de consumo es (µ ¡ 1)=µ, el inverso del margen de los monopolistas.
En competencia perfecta este margen es igual a uno y una unidad adicional
de producción genera una desutilidad que compensa exactamente la utilidad
de consumir esa unidad. No hay aumento por tanto del bienestar debido a
la política monetaria. Pero con competencia imperfecta una unidad adicional
de producción aumenta el bienestar después de descontar el incremento del esfuerzo. Este es el resultado que pusieron de mani…esto Blanchard y Kiyotaki
(1987) en una economía cerrada.
El mismo procedimiento para el país extranjero da:
dU ¤R =
mw
cw
1
= 1
µ
µ
Este es el importante resultado de Obstfeld y Rogo¤ (1995): ambos países se
bene…cian del mismo incremento de bienestar. El efecto de desviación del gasto
y el cambio permanente en la posición internacional neta son de segundo orden
para el bienestar. La razón es que en el equilibrio inicial el ingreso y el coste
marginal son iguales, por tanto una reducción marginal en el precio relativo de
los bienes nacionales (producida por la depreciación) aumentará los ingresos al
vender más fuera, pero también incrementará el esfuerzo necesario para producir
más y ambos incrementos se anulan entre sí para perturbaciones marginales. El
efecto del cambio permanente de la riqueza es también de segundo orden sobre
16
la utilidad porque implica una reasignación entre consumo y ocio a partir del
equilibrio inicial. El efecto importante es el aumento global de la demanda,
puesto que esto mueve el equilibrio desde una sitiuación inicial monopolística
hacia la asignación competitiva.
El efecto de los saldos reales sobre la utilidad no cambia este resultado.
En nuestro país porque los saldos reales aumentan en todos los períodos, por
tanto contribuyen a aumentar el bienestar. En el otro país los saldos reales
aumentan en el primer período pero caen en el largo plazo (llevados por la caída
del consumo), pero Obstfeld y Rogo¤ argumentan que para valores plausibles
de los parámetros dU ¤M > 0:
Una implicación …nal de este análisis del bienestar es que la conclusión de
empobrecimiento del vecino del modelo MF basada en el efecto desviación del
gasto puede ser engañosa, ya que en el modelo OR hemos visto que a pesar de la
caída de la producción extranjera su bienestar mejora. De hecho, la conclusión
de Obstfeld y Rogo¤ (1995) también puede resultar engañosa, puesto que está
basada en determinados supuestos no particularmente realistas. La literatura
que ha generado este modelo ha extendido el marco teórico y ha señalado la
posibilidad de situaciones en las que el país extranjero (o incluso el nuestro)
empeore tras la perturbación.
4
Extensiones: La Nueva Macroeconomía Abierta
En esta sección se consideran algunas extensiones del modelo OR. En primer
lugar se analiza el caso en el que la elasticidad de sustitución entre bienes de un
país es mayor que entre bienes nacionales y extranjeros. En esta situación se reduce el efecto desviación del gasto y se puede llegar a un resultado muy distinto
sobre el bienestar, con el país que aumenta el dinero sufriendo una pérdida y el
otro obteniendo una ganancia. La sección también incluye dos extensiones del
modelo OR para evitar el cumplimiento contínuo de la PPA. La primera consiste
en considerar bienes no comercializables y la segunda introduce el sesgo en las
preferencias hacia bienes del propio país. Los bienes no comercializables incrementan la respuesta del tipo de cambio nominal, reducen el efecto de desviación
del gasto y rompen la paridad de los tipos de interés reales. Alternativamente,
con el sesgo en las preferencias, el efecto de la relación de intercambio se reduce, y la desviación del gasto es menor. Nuestro país aumenta su bienestar
en relación al otro y, en términos absolutos, el bienestar del país vecino puede
disminuir.
Se analizan también las extensiones del modelo en otra dirección prometedora: el “pricing to market” (PTM) y el “local currency pricing” (LCP). Estas
características reducen la transmisión de las variaciones del tipo de cambio a
los precios, disminuyen el desvio del gasto, aumentan la volatilidad del tipo de
cambio cuando se combina con rigidez de los precios, permiten desviaciones de
la PPA y, …nalmente, aumentan el bienestar de nuestro país y pueden reducir el
del otro. Finalmente, se aborda la aplicación del modelo a las reglas de política
monetaria, tanto las del tipo Taylor como las reglas óptimas obtenidas en un
modelo completamente estocástico.
17
4.1
Elasticidad de sustitución entre bienes nacionales y
extranjeros
Tille (2001) ha añadido al modelo OR la distinción entre elasticidad de sustitución entre bienes del mismo país y entre bienes nacionales y extranjeros. Para
ello hay que rede…nir el índice de consumo C que aparece en la función de
utilidad (28):
¸
¸ ¸¡1
·
¢ ¸¡1
¢ ¸¡1
1 ¡
1 ¡
h
f
¸
¸
¸
¸
+ (1 ¡ n) C
C= n C
, ¸>0
donde C h ; C f son a su vez los índices del consumo de bienes nacionales y de
bienes extranjeros, respectivamente, y ¸ es la elasticidad de sustitución entre
ambos. Estos nuevos índices se de…nen como:
µ
½
¾ µ¡1
Z n
£ h ¤ µ¡1
1
C (z) µ dz
n¡ µ
; µ>1
Ch =
0
C
f
=
½
¡ µ1
(1 ¡ n)
Z
1
n
£ f ¤ µ¡1
C (z) µ dz
µ
¾ µ¡1
donde µ es la elasticidad de sustitución entre bienes del mismo país. Este cambio
afecta a la de…nición de los índices de precios, que ahora serán:
h
=
Pf
=
P
=
P ¤h
=
P ¤f
=
P¤
=
P
1
½ Z n
¾ 1¡µ
1
1¡µ
[P (z)]
dz
n 0
1
½
¾ 1¡µ
Z 1
£ f ¤1¡µ
1
P (z)
dz
1¡n n
1
n ¡ ¢1¡¸
¡ ¢1¡¸ o 1¡¸
n Ph
+ (1 ¡ n) P f
1
½ Z n
¾ 1¡µ
1
[P ¤ (z)]1¡µ dz
n 0
1
½
¾ 1¡µ
Z 1
£ ¤f ¤1¡µ
1
P (z)
dz
1¡n n
1
n ¡ ¢1¡¸
¢1¡¸ o 1¡¸
¡
n Ph
+ (1 ¡ n) P ¤f
donde P (z) es el precio interior de un bien z producido en el interior; P ¤ (z) es el
precio en el extranjero de un bien producido en nuestro país, P f (z) es el precio
en nuestro país de un bien extranjero y P ¤f (z) es el precio en el extranjero de
un bien extranjero.
La ley de un solo precio implica que, para cualquier producto z, P (z) =
SP ¤ (z) y P f (z) = SP ¤f (z); y por la de…nición de los índices de precios: P h =
SP ¤h ; P f = SP ¤f y se cumple la PPA: P = SP ¤ :
El estado estacionario es exactamente el mismo que en el modelo OR estándar y las ecuaciones linealizadas son también las mismas, simplemente se
sustituye µ por ¸. La diferencia importante es que si ¸ < µ como parece más
18
probable6 , el efecto de desviación del gasto será menor:
yt ¡ yt = ¡¸qt
(59)
donde simplemente hemos sustituido µ por ¸: Esta ecuación implica que el efecto
impacto de la perturbación monetaria nacional será menor en ambos países:
y1
y1¤
= n + (1 ¡ n)¸(1 ¡ ¼ c² ) > 0
= n(1 ¡ ¸)(1 ¡ ¼c² ) < 0
La …gura 5 representa el efecto de una expansión monetaria nacional con ¸ = 1:
El impacto negativo sobre la producción extranjera será menor cuanto más cercano a la unidad esté ¸. Si hubiera una sustitución muy baja entre bienes
nacionales y extranjeros, la depreciación de la moneda nacional no serviría apenas para aumentar la producción nacional , y el otro país se bene…ciaría de
una expansión exactamente igual (¼ c² ¡! 0): Pero la falta de sustituibilidad
signi…ca que las importaciones serán más caras, reduciendo la renta nacional
y el consumo. La …gura 6 recoge un ejemplo con el caso extremo ¸ = 0:01:
Nuestro país experimenta un dé…cit y realiza una transferencia de riqueza hacia el otro país, la relación de intercambio emperora a corto y largo plazo, y
el consumo aumenta a corto plazo pero se reduce drásticamente a largo plazo.
Adicionalmente, el IPC aumenta más que el dinero, reduciendo los saldos reales
y el bienestar. Si nos hubieramos preocupado sólo de la producción, hubieramos
visto un incremento de la producción en ambos países, pero este resultado por
sí solo conduce claramente a un error al valorar los efectos de esta perturbación
sobre el bienestar. Este es un claro ejemplo de las ventajas de usar un modelo
de equilibrio general.
Corsetti y Pesenti (1999) explotan el caso especial ¸ = 1 en el que hay una
desviación del gasto pero no hay variación en las rentas reales relativas y por
tanto no hay desequilibrio en la cuenta corriente ni transferencias de riqueza ni
efectos reales a largo plazo. La …gura 7 ofrece una ilustración grá…ca de este
caso especial.
4.2
Bienes no comercializables y sesgo en las preferencias
El cumplimiento contínuo de la paridad del poder adquisitivo (PPA) no es una
característica atractiva del modelo OR, puesto que las desviaciones de la PPA
son signi…cativas y altamente persistentes (Rogo¤, 1996). Para tratar este problema se puede incluir bienes no comercializables o un sesgo en las preferencias
hacia bienes producidos en el propio país. Comentamos ambas posibilidades a
continuación.
4.2.1
Bienes no comercializables
Hau (2000) considera dos países del mismo tamaño cada uno de ellos con una
proporción ´ 2 [0; 12 ] de bienes no comercializados. El consumidor representativo consume tres tipos de bienes: nacionales no comercializados (z 2 [0; ´]),
6 Chari, Kehoe y McGrattan (1998) indican que la elasticidad de sustitución entre bienes
nacionales y extranjeros tiende a estar entre 1 y 2, y escogen un valor de 1.5 siguiendo a
Backus, Kehoe y Kydland (1994).
19
nacionales exportables (z 2 [´; 12 ]) y extranjeros exportables (z 2 [ 12 ; 1 ¡ ´]). El
índice de consumo se de…ne:
I
C =
·Z
1¡´
C(z)
µ¡1
µ
dz
0
µ
¸ µ¡1
donde µ es la única elasticidad de sustitución entre los tres tipos de bienes.
Las principales conclusiones son las siguientes. Primero, la relación entre los
precios y el tipo de cambio nominal es:
pt ¡ p¤t =
1 ¡ 2´
st
1¡´
que implica que la PPA sólo si cumple si todos los bienes son exportables (´ = 0).
También implica que la varianza del tipo de cambio nominal será mayor que
la varianza del precio relativo (como se encuentra en la literatura de ciclos
internacionales). Además, de…niendo el grado de apertura como:
apertura =
1 ¡ 2´
exportaciones
=
2(1 ¡ ´)
PIB
se observa que cuanto más pequeño es el grado de apertura mayor es la volatilidad del tipo de cambio en relación a la volatilidad de los precios.
En segundo lugar, se obtiene que:
1 ¡ 2´
st = (mt ¡ m¤t ) ¡ (ct ¡ c¤t )
1¡´
Esto es lo Hau llama “el efecto de magni…cación del tipo de cambio”: el tipo
de cambio tiene que aumentar más cuanto mayor es la proporción de bienes no
comercializables. La razón es que para un aumento dado del consumo, el IPC
tiene que aumentar después de una expansión monetaria, pero ahora el IPC es
menos sensible al tipo de cambio y por tanto este úlimo tendrá que aumentar
más.
Tercero, restando las demandas agregadas per cápita se obtiene:
yt ¡ yt¤ = ¡
1 ¡ 2´
´
(ct ¡ c¤t )
µqt +
(1 ¡ ´)2
1¡´
Hay un sesgo hacia bienes nacionales que reduce el efecto de desviación del
gasto, permitiendo al país que aumenta su oferta de dinero bene…ciarse más de
los resultados.
Finalmente, de las condiciones de Euler del consumo se obtiene que:
ct+1 ¡ c¤t+1 = ct ¡ c¤t + (st + p¤t ¡ pt ) ¡ (st+1 + p¤t+1 ¡ pt+1 )
Puesto que hay desviaciones de la PPA, no se cumple la paridad de los tipos
de interés reales y ésto conlleva que el diferencial en el consumo per cápita no
sea un camino aleatorio. Hay un diferencial a corto plazo más grande y otro a
largo plazo más pequeño porque el superávit corriente es menor con bienes no
exportables.
El último resultado a…rma que, contrariamente a lo que parece implicar el
efecto de magni…cación del tipo de cambio, el salto del tipo de cambio es menor
20
que el aumento en la cantidad de dinero. Esto se debe al incremento a corto
plazo del diferencial de consumo, que juega en la dirección opuesta.
Obstfeld y Rogo¤ (2000a, 2000c) usan un modelo con bienes no comercializables para analizar la política monetaria óptima (ver más abajo). El problema
con este tipo de modelos es que, si los bienes no comercializados fueran la única
causa de las desviaciones de la PPA (si se mantuviera la ley del único precio
en los bienes comercializables), entonces el precio relativo de los bienes comerciados respecto de los no comercializables debería ser muy distinto de un país
a otro. Suponiendo P = (P T )° (P n )1¡° y P ¤ = (P ¤T )° (P ¤n )1¡° ; podemos
descomponer el tipo de cambio real:
µ
¶1¡° µ n ¶1¡°
SP ¤T P ¤n
SP ¤
P
=
P
PT
P ¤T
PT
Pero Engel (1999) y Chari, Kehoe y McGrattan (1998) muestran que sólo una
fracción muy pequeña de la varianza del tipo de cambio real se debe al precio relativo de los bienes no comercializables. Esto obliga a mirar en otras
direcciones para explicar las desviaciones de la PPA. A pesar de esto, Obstfeld y Rogo¤ (2000a) de…enden el modelo de no comercializables argumentando
que “las desviaciones de la ley de un único precio son en parte el resultado de
componentes no comercializables incorporados en los CPI por supuestamente
bienes comercializables”, o como en Obstfeld y Rogo¤ (2000b) “muchos bienes
‘comerciados’ ya incorporan grandes cantidades de componentes no comercializables, y la línea divisoria es arbitraria y posiblemente endógena”. En ese
último artículo admiten que los resultados de Engel (1999) “probablemente no
pueden ser atribuidos simplemente a problemas de agregación, puesto que muchos investigadores encuentran respuestas lentas similares incluso para datos
muy desagregados sobre bienes de consumo que se consideran habitualmente
muy comercializables”.
4.2.2
Sesgo en las preferencias
Una de las cuestiones más difíciles de explicar en el comercio internacional es que
los consumidores parecen tener preferencias sesgadas hacia bienes producidos en
su propio país, como documentan Obstfeld y Rogo¤ (2000b). Warnock (1999)
incorpora esta característica en el modelo OR a través de un parámetro en la
función de utilidad. La nueva de…nición del índice de consumo es
µ
¾ µ¡1
½ Z n
Z 1
µ¡1
µ¡1
1
1
h
f
C (z) µ dz + (2 ¡ ®) µ
C (z) µ dz
C =
®µ
0
n
µ > 1; 0 < ® < 2
Cuando ® = 1 no hay sesgo hacia el país y el índice se reduce al caso estándar.
Hay sesgo hacia el propio país cuando ® > 1. Las demandas de los consumidores
nacionales para bienes nacionales y extranjeros son:
µ h ¶¡µ
P
h
= ®
C
C
P
µ
¶¡µ
SP ¤f
f
C
= (2 ¡ ®)
C
P
21
lo que implica
® ¡µ
Ch
q
=
Cf
2¡®
Si el otro país tiene un sesgo igual, entonces ocurrirá que
2 ¡ ® ¡µ
C ¤h
q
=
¤f
C
®
Por tanto, si ® > 1 entonces
Ch
C ¤h
¡µ
<
q
<
C ¤f
Cf
Para cualquier precio relativo, la proporción de bienes nacionales consumidos
respecto a extranjeros es mayor en nuestro país.7
El tipo de cambio real es ahora
e = s + p¤ ¡ p = (® ¡ 1)(s + 2np¤f ¡ 2nph )
lo que muestra que la PPA no se cumple necesariamente para ® 6= 1. Con sesgo
(® > 1) la desviación de la PPA durará hasta que los precios alcancen sus niveles
de equilibrio a largo plazo.
El efecto desviación del gasto resulta ser:
yt ¡ yt¤ = ¡®(2 ¡ ®)µq + (® ¡ 1)(ct ¡ c¤t )
que se convierte en la ecuación (38) para ® = 1: En el caso relevante ® > 1 el
efecto del precio relativo q es menor a medida que ® tiende a 2: el sesgo en las
preferencias hace que el precio relativo sea menos importante.
El sesgo en las preferencias refuerza el efecto positivo de la política monetaria
expansiva para nuestro país, al tiempo que es posible que el otro país sufra una
pérdida neta de bienestar.
Ghironi (1999a) construye un modelo para analizar la interdependencia de
EEUU y la UEM basado en este marco analítico. La única modi…cación es
que los agentes mantienen un bono nominal en vez de real y, por tanto, las
variaciones del tipo de cambio dan lugar a efectos riqueza. Este autor encuentra
que, para que la política monetaria tenga efectos positivos sobre el consumo, se
requiere un valor mínimo de la elasticidad de sustitución entre bienes, para
producir un efecto desviación del gasto su…cientemente fuerte para compensar
un menor valor de los activos. Ghironi también concluye que el efecto sobre la
producción extranjera es negativo.
4.3
Discriminación del precio según el mercado
Con discriminación del precio según el mercado (“pricing to market” o PTM)
y …jación del precio en la moneda local (“local currency pricing” o LCP) no
hay efecto desviación del gasto puesto que no hay transmisión inmediata de las
variaciones del tipo de cambio a los precios y por tanto la producción de ambos
7 Ambos
ratios pueden ser mayores que uno, dependiendo del precio relativo.
22
países aumenta con la política monetaria expansiva que estamos analizando.
Por esta vía se elimina el papel del tipo de cambio en la determinación de los
‡ujos comerciales y el papel de éstos como canal de transmisión internacional,
lo que resulta ser una gran diferencia respecto de los modelos MF y OR.
La base empírica en la que se sustenta este enfoque es doble: por una lado,
el incumplimiento de la ley de un único precio, documentado, entre otros, por
Engel (1993) y Engel y Rogers (1996, 1998); y por otro lado la evidencia de
una transmisión limitada de los movimientos del tipo de cambio a los precios
(revisada por Goldberg y Knetter, 1997).
Betts y Devereux (2000) desarrollan un modelo en el que una proporción
de empresas puede discriminar sus precios entre países y …jarlos en la moneda
local, mientras que el resto de empresas productoras no puede y …ja sus precios en su propia moneda. Argumentan que esta posibilidad tiene importantes
consecuencias:
² Limita la transmisión del tipo de cambio a los precios.
² Reduce el efecto de desviación del gasto, aumentando la correlación entre
la producción nacional y extranjera.
² Junto con rigidez nominal de precios aumenta la volatilidad del tipo de
cambio
² Permite la desviación de la PPA, rompiendo la paridad real de intereses y
eso hace que las trayectorias de los consumos no sean idénticas.
² El bienestar de nuestro país aumenta siempre, pero el del otro país puede
disminuir.
Estos resultados son importantes para el análisis de la transmisión internacional de perturbaciones, siendo el último particularmente relevante para el
análisis de la coordinación de políticas.
Betts y Devereux (2001) desarrollan el modelo anterior introduciendo acumulación de capital y dinámica de precios y permitiendo un grado variable tanto
de PTM como de completitud de los mercados de activos. Tras simular el modelo encuentran los mismos resultados anteriores, que comparan con un VAR de
los EEUU frente a un agregado de los otros seis países que forman el G7. La
versión del modelo con PTM puede replicar la correlación positiva encontrada
entre las producciones, la depreciación del tipo de cambio real y el aumento
del diferencial del tipo de interés nominal8 después de una expansión monetaria
en EEUU. Adicionalmente muestran que la transmisión internacional de shocks
monetarios depende sólo levemente de la estructura del mercado de activos.
Los problemas con este enfoque han sido puestos de mani…esto por Obstfeld
y Rogo¤ (2000a), que lo encuentran muy poco consistente con los hechos. La
crítica más fuerte es la predicción de una correlación positiva entre tipo de cambio nominal y relación de intercambio. Despues de efectuar distintas mediciones,
8 Esto implica sobrepasamiento, que es posible en el modelo PTM cuando la elasticidad de
la demanda de dinero al consumo es menor que uno, y en su calibración utilizan un valor de
0.85.
23
Obstfeld y Rogo¤ concluyen que en la mayoría de los países esta correlación es
negativa. Sin embargo, en una artículo más reciente, Obstfeld y Rogo¤ (2000b)
parecen apuntar en la dirección de la PTM para explicar el incumplimiento de
la PPA y lo que llaman la incógnita del tipo de cambio “desconectado” (sus
movimientos no parecen in‡uir en otras variables): “La alta volatilidad y desconexión del tipo de cambio son consecuencia de una combinación de costes
del comercio, poder monopolístico y discriminación de precios según el mercado
con …jación del precio en moneda local. Un modelo completo incorporaría estos
factores, a la vez que también incluiría una dinámica completa del ajuste de
precios a través de las redes de distribuidores, así como otros canales a través
de los cuales el tipo de cambio puede in‡uir sobre la economía real” (p. 41).
Tille (1999) evita la correlación positiva entre tipo de cambio nominal y
relación de intercambio introduciendo minoristas en el modelo. Las empresas
de un país venden a los minoristas del otro país, no directamente a los consumidores. Los minoristas a su vez venden a los consumidores. Las empresas no
discriminan los precios ni los …jan en moneda local, pero los minoristas de bienes
importados pueden elegir entre …jar el precio …nal en moneda local (LCP) o en la
moneda del productor (“producer currency pricing” o PCP). En el primer caso
todas las ‡uctuaciones del tipo de cambio son absorbidas por el minorista y no
hay transmisión, mientras que en el segundo caso (PCP) el minorista pasa todas
las ‡uctuaciones del tipo de cambio al precio …nal en moneda local. De esta
forma la transmisión global está controlada por la proporción de minoristas que
…jan sus precios en moneda local. Si todos lo hacen (LCP completo) entonces
no hay transmisión, como en el modelo de Betts y Devereux. Si todos …jan los
precios en su propia moneda (PCP completo) la transmisión es completa y se
produce la PPA.
En el modelo de Tille, incluso con LCP completo, la relación de intercambio se comporta como en el modelo OR. La diferencia es que los monoristas
nacionales pierden renta cuando hay una devaluación (venden al mismo precio
mercancias más caras). Por tanto nuestro país empeora y el otro mejora. El
elemento crítico es la estructura de la propiedad de los minoristas importadores.
Si los importadores son en realidad empresas …liales de los exportadores del otro
país, entonces las pérdidas las sufre el otro país, y las ganancias el nuestro. Tille
concluye por tanto que el resultado sobre el bienestar no re‡eja la ausencia de
transmisión, sino la apropiación del efecto renta que generan las ‡uctuaciones
del tipo de cambio.
Resultados muy similares obtienen Brunnermeier y Grafe (1999). Bergin
y Feenstra (1999) usan preferencias translogarítmicas con sesgo hacia el propio
país para motivar la discriminación de precios de las empresas, aunque su centro
de atención es la persistencia de los efectos de la política monetaria. Chari,
Kehoe y McGrattan (1998) también utilizan la discriminación de precios para
obtener desviaciones de la PPA, con resultados similares a Betts y Devereux
(2001).
En una interesante aplicación del modelo de Tille (1999), Devereux, Engel y Tille (1999) analizan los efectos del euro sobre el bienestar de Europa y
Estados Unidos. Encuentran que la moneda única hará más probable que los
exportadores americanos …jen sus precios en euros, del mismo modo que los
exportadores europeos los están …jando en dólares. Este cambio en la conducta
24
de …jación del precio aislará los precios de consumo europeos de la variabilidad
del tipo de cambio, como ocurre ahora en EEUU. Ese aislamiento aumenta el
consumo esperado per cápita en Europa por el efecto de un precio relativo más
estable, y por tanto el bienestar. Para EEUU hay también un efecto positivo
puesto que una mayor estabilidad de los precios europeos aumentará los precios de los activos y eso aumentará el valor de las carteras de los inversores
americanos en Europa.
4.4
4.4.1
Aplicación a las reglas de política monetaria
Reglas del tipo Taylor
Uno de los argumentos para defender los modelos con PTM-LCP es que predicen una correlación positiva entre la producción nacional y extranjera, tal como
muestra la evidencia empírica9 , mientras que el modelo OR predice una correlación negativa. Chari, Kehoe y McGrattan (1998) reconocen que para conseguir este comovimiento necesitan imponer una correlación positiva entre las
perturbaciones monetarias de los dos países: “si las perturbaciones monetarias
están correlacionadas entre países, el modelo es en general consistente con los
comovimientos de la producción y el consumo observados en los datos” (p. 2).
Además, “aumentando la correlación de los shocks monetarios aumenta la correlación entre la producción y el consumo de los países” (p. 23) y …nalmente
“los detalles de los comovimientos de las políticas monetarias entre países son
importantes para los comovimientos de los agregados” (p. 24). En su …gura
10 muestran que sin correlación entre las tasas de crecimiento del dinero, la
correlación entre producciones cae a cero. El problema es que su análisis no
ofrece ninguna razón por la que tenga que haber una relación positiva entre las
políticas monetarias. Kollmann (1999) estima una correlación de 0.20 entre las
innovaciones monetarias en los EEUU y el agregado de los otros países del G7
(Tabla 1 de su artículo), pero no hay ninguna explicación de por qué.
Borondo (2000) muestra que otra forma de obtener un comovimiento positivo
entre las producciones consiste en introducir reglas del tipo de interés en ambos
países que tengan como objetivo el IPC. Estas reglas explican el comovimiento
de las políticas monetarias. La regla para el tipo de interés nominal (It ) es:
It = d0 + d1 (log Pt ¡ log P T )
donde P T es el objetivo para el IPC.10 El objetivo del nivel de precios se convierte en el nuevo valor de estado estacionario (P = P T ), con el agregado monetario ajustando endógenamente para satisfacer la demanda de dinero. Puesto
que a largo plazo log Pt = log P , implica que d0 = R = (1 ¡ ¯)=¯; y la regla se
puede escribir …nalmente:
it
ut
= It ¡ R = d1 pt + ut
= ½ut¡1 + "t
(60)
(61)
9 Kim (2000) y Betts y Devereux (2001) hacen un análisis VAR del efecto de la política
monetaria de EEUU sobre la producción de los otros países del G7 y obtienen una transmisión
positiva.
10 Las referencias fundamentales sobre estas reglas son Taylor (1993b) y Taylor (1999). Clarida, Gali y Gertler (2000) estiman con éxito una regla para EEUU. King y Wolman (1999)
analizan la misma regla utilizada en el texto pero en una economía cerrada. Svensson (2000)
comenta las ventajas de un ob jetivo en términos de nivel de precios comparado con un objetivo
en términos de in‡ación.
25
donde u es la perturbación monetaria, que se supone es un proceso AR(1) con
persistencia ½ y "t es la innovación, que es un ruido blanco. Con una regla para el
tipo de interés, las perturbaciones monetarias son cambios exógenos estocásticos
en la regla utilizada por la autoridad monetaria, como lo han de…nido Rotemberg
y Woodford (1998). McCallum y Nelson (1999a) también estudian las respuestas
después de un shock a una regla del tipo de interés, y lo interpretan como una
variación inesperada del tipo de interés. King y Wolman (1999) suponen ½ = 0:5:
Suponemos que el otro país sigue la misma regla:
i¤t
u¤t
= d1 p¤t + u¤t
= ½u¤t¡1 + "¤t
(62)
(63)
Un incremento temporal en nuestro tipo de interés nominal producirá una depreciación para el otro país que aumentará su IPC. Esta regla del tipo de interés implica que la autoridad monetaria extranjera reaccionará con una subida
de su tipo de interés. Por tanto, las reglas de política monetaria provocan
una correlación positiva entre los tipos de interés nominales (y también entre
los agregados monetarios). Mientras los precios no respondan completamente,
la apreciación nominal para nuestro país se convierte en un incremento de su
relación de intercambio, y eso dispara el efecto desviación del gasto de bienes
nacionales hacia bienes extranjeros, el mecanismo que produce la correlación
negativa entre las producciones. Pero ahora este mecanismo es sofocado en
parte, dependiendo del parámetro d1 , porque el comovimiento de los tipos de
interés estabiliza el tipo de cambio nominal y la relación de intercambio. Se
obtiene que:
yt
yt¤
=
'
=
'
ytw + (1 ¡ n)(yt ¡ yt¤ ) = (1 + ¯d1 )¼ su n"t ¡ (1 ¡ n)¸qt
(1 + ¯d1 )¼ su n"t + (1 ¡ n)¸¼su "t
ytw ¡ n(yt ¡ yt¤ ) = (1 + ¯d1 )n"t + n¸qt
(1 + ¯d1 )¼ su n"t ¡ n¸¼su "t = (1 + ¯d1 ¡ ¸)n¼su "t
(64)
Donde
¼ su = ¡
¯
<0
1 + ¯d1 ¡ ½
y las aproximaciones provienen de que (c ¡ c¤ ) ' 0 (ver sección 3). Tras una
caída en el tipo de interés nacional (" < 0) la producción nacional aumenta,
pero la extranjera sólo aumenta si:
1 + ¯d1 ¡ ¸ > 0
Para cumplir esta condición el parámetro d1 debe ser mayor que (¸ ¡ 1)=¯: Con
un valor de referencia de ¸ = 1:5 esta condición se alcanza con d1 = 1:5, que
es el valor utilizado en la regla de Taylor. Es inmediato ver que la correlación
entre y; y ¤ será mayor cuanto mayor sea d1 y menor ¸:
4.4.2
Política monetaria óptima
Los modelos estocásticos utilizados en este capítulo utilizan la “certainty equivalence” e ignoran los términos con varianzas. Esto es habitual en la literatura
26
de ciclos reales, pero tiene el coste de suponer siempre que las perturbaciones
son su…cientemente pequeñas.
Obstfeld y Rogo¤ (1998, 2000a) desarrollan un marco analítico completo
para tratar la incertidumbre. Las características básicas son bienes no comercializables, trabajadores con capacidad para …jar el salario, rigidez salarial (no
de precios) y elasticidad de sustitución entre bienes nacionales y extranjeros
igual a la unidad (que implica que no hay desequilibrios en la balanza corriente,
ni distribución de riqueza ni efectos reales permanentes). El objetivo del modelo
es llevar a cabo un análisis del bienestar de varias políticas monetarias alternativas y regímenes monetarios. Comparan tres regímenes monetarios: ‡uctuación
del tipo de cambio, monetarismo mundial (los dos países …jan el tipo de cambio
y también una media ponderada de los agregados monetarios de ambos) y tipo
de cambio …jo. El resultado es que cuando hay perturbaciones reales que afectan
a un sólo país, el mejor régimen es la ‡otación.
Obstfeld y Rogo¤ (2000c) aplican el mismo marco teórico a la coordinación
de políticas. Muestran que la regla que consigue el equilibrio de Nash coincide
con la regla obtenida cuando hay cooperación. Esto es, si las reglas existentes
maximizan la utilidad media esperada mundial, ninguno de los dos países tiene
incentivos para cambiar su regla. Su conclusión es que “el sistema actual de
arreglos monetarios puede evolucionar a uno óptimo desde un punto de vista
de estabilización, sin grandes innovaciones institucionales al nivel internacional”
(p. 24).
En una serie de artículos Devereux y Engel (1998, 1999, 2000) utilizan este
nuevo marco para investigar la vieja cuestión de la respuesta óptima de la
política monetaria a las ‡uctuaciones del tipo de cambio. Su principal conclusión es que la respuesta óptima depende del tipo de rigidez de precios. Con
precios …jados en la moneda del productor (PCP), como en Obstfeld y Rogo¤
(2000a), encuentran su mismo resultado. Sin embargo, con …jación de precios
en moneda local (LCP) no hay efecto del tipo de cambio sobre los precios relativos y por tanto la regla óptima no utiliza el tipo de cambio, siendo consistente
con un tipo de cambio …jo. Por otro lado, si las perturbaciones son monetarias
(nacionales o extranjeras), con PCP será óptimo reducir la volatilidad del tipo
de cambio porque es costosa en términos de bienestar, mientras que con LCP
esa volatilidad no tiene coste de bienestar, y por tanto un régimen de ‡otación
es óptimo.
5
Conclusiones
En este capítulo se han revisado las principales características del modelo OR y
sus principales extensiones, sugiriendo que constituye la actualización del modelo MFD de los años setenta.
El modelo MF ha sido y es una herramienta muy importante y útil, pero
adolece de las mismas de…ciencias que el modelo IS-LM en el que está inspirado:
no hay lado de la oferta, sólo permite análisis de corto plazo y los comportamientos agregados no estan microfundados. Dornbusch (1976) añadió la dinámica de
la oferta y expectativas racionales, pero no microfundamentos. En los últimos
veinte años se ha invertido mucho esfuerzo en construir un bloque de oferta bien
microfundado para desarrollar con cuidado la conducta de …jación de precios
de las empresas y su dinámica. Al mismo tiempo se ha convertido en algo nor-
27
mal trabajar con modelos de equilibrio general dinámicos en los que los agentes
maximizan intertemporalmente. Todas estas características tenían que estar
presentes en la macroeconomía abierta, y esa es la contribución de Obstfeld y
Rogo¤ (1995).
Hemos visto que algunas de las conclusiones del modelo MFD aún se mantienen,
otras cambian y aparecen otras nuevas. El efecto sobre la producción extranjera
era negativo en el modelo MF original sin expectativas. Esa conclusión cambió
cuando se introdujeron expectativas racionales: el signo del efecto pasó a ser
indeterminado. El modelo OR obtiene un efecto negativo. Sin embargo, ese
efecto disminuye con las modi…caciones comentadas en la sección anterior.
La sobrerreacción del tipo de cambio después de una perturbación monetaria
era un resultado fundamental del modelo MFD. En el de OR no aparece, debido
a la dinámica que impone la ecuación de Euler.
En el modelo OR, dada la caída de la producción extranjera (y, por tanto,
del esfuerzo) y el aumento de su consumo, la conclusión relevante es que el
bienestar de los dos países aumenta en la misma proporción, contrariamente a la
presunción habitual de que una expansión monetaria en nuestro país perjudica al
vecino. El argumento crítico para llegar a esta conclusión es la imperfección del
mercado de bienes: la competencia monopolística conduce a un equilibrio con un
precio superior al coste marginal, por tanto existe la posibilidad de incrementar
la producción y el bienestar. Es también fundamental tener una función de
utilidad explícita para calcular los efectos del aumento del consumo y el esfuerzo.
Los parámetros de esta función de utilidad son esenciales para determinar el
signo de los efectos. Algunos ejemplos explorados en este capítulo han sido:
(i) una elasticidad de sustitución entre bienes nacionales y extranjeros menor
que la elasticidad de sustitución entre bienes nacionales puede llevar a pérdidas
de bienestar en el país que aumenta la cantidad de dinero; (ii) un sesgo en las
preferencias hacia bienes nacionales puede llevar al resultado de empobrecer al
vecino; y (iii) la discriminación de precios según el país y la …jación de éstos en
moneda local (LCP) también puede producir un empeoramiento del vecino.
Uno de los problemas del modelo OR es que predice un efecto negativo sobre
la producción del otro país. En la sección cuatro se ha visto que la inclusión en
el modelo de reglas de ajuste de los tipos de interés cuyo objetivo sea el IPC
puede llevar a la conclusión contraria, de acuerdo con el resultado de Borondo
(2000).
La capacidad de tratar el bienestar permite un análisis de las políticas óptimas, y hemos revisado las conclusiones obtenidas en los trabajos pioneros de
Obstfeld y Rogo¤ y de Devereux y Engel. Las conclusiones pueden ser muy distintas dependiendo del entorno: Obstfeld y Rogo¤ llegan a la conclusión de que
cuando hay shocks reales especí…cos el regimen monetario óptimo es la ‡otación.
Sin embargo, si la conducta de las empresas es LCP, Devereux y Engel muestran
que el régimen óptimo es el tipo de cambio …jo.
Apéndice
28
A
Solución del modelo
Este apéndice explica brevemente las ecuaciones loglinealizadas (35)-(45) y el
método de solución. Llamamos x a la desviación logarítmica de la variable X
respecto a su estado estacionario, excepto para r; i que son rt = Rt ¡ Rt , y
it = It ¡ I t .
Las ecuaciones (35) y (36) del texto, donde bt se de…ne como (Bt ¡ B)=Y
puesto que B = 0, re‡ejan los saldos por cuenta corriente de cada país, y se ha
incorporado la condición de equilibrio en el mercado mundial del único activo
…nanciero.
Las expresiones para la relación de intercambio q en (37) y para los índices
de precios en (44) y (45) son directas.
La ecuación (38) se obtiene restando las versiones linealizadas de las ecuaciones de demanda (29):
¤
£
yt = µ pt ¡ pht + cw
t
h
i
¤f
¤
¤
yt = µ pt ¡ pt + cw
t
y usando la de…nición de q.
Las ecuaciones (39) y (40) son versiones linealizadas de los precios óptimos
(33).
Las ecuaciones de Euler linealizadas son:
Et ct+1 ¡ ct
Et c¤t+1 ¡ c¤t
= ¯rt
= ¯rt
y restándolas se obtiene la ecuación (41). Las ecuaciones (42) y (43) son las
versiones linealizadas de (32).
Para resolver el modelo con precios …jados con un período de antelación
seguimos el procedimiento de Andersen y Beier (2000). Restando las condiciones
de equilibrio del mercado de dinero y utilizando la PPA:
mt ¡ m¤t ¡ st = (ct ¡ c¤t ) ¡
1
(Et st+1 ¡ st )
R
que se puede resolver para el tipo de cambio:
st =
1
R
R
(mt ¡ m¤t ) ¡
(ct ¡ c¤t ) +
Et st+1
1+R
1+R
1+R
La solución de esta expresión es la ecuación (50) del texto.
Restando las ecuaciones de la cuenta corriente (35) y (36) se tiene:
bt = (1 + R)bt¡1 + (1 ¡ n)[(yt ¡ yt¤ ) ¡ (ct ¡ c¤t ) + (pht ¡ st ¡ p¤f
t )]
Utilizando (37) y (38) podemos reescribirlo como:
bt = (1 + R)bt¡1 + (1 ¡ n)(1 ¡ µ)qt ¡ (1 ¡ n)(ct ¡ c¤t )
y eliminando q con (51):
bt
= (1 + R)bt¡1 ¡ (1 ¡ n)µ(ct ¡ c¤t ) ¡ (1 ¡ n)µ
¡(1 ¡ n)(1 ¡ µ)"t
29
1¡µ
(ct¡1 ¡ c¤t¡1 )
1+µ
(65)
Ahora podemos resolver para (ct ¡ c¤t ). Haciendo la conjetura de (52) calculamos:
Et (ct+1 ¡ c¤t+1 ) = ¼cb [(1 + R)bt¡1 ¡ (1 ¡ n)µ(ct ¡ c¤t )
1¡µ
¡(1 ¡ n)µ
(ct¡1 ¡ c¤t¡1 )
1+µ
¡(1 ¡ n)(1 ¡ µ)"t ] + ¼cc (ct ¡ c¤t )
Usando la ecuación de Euler (41) e igualando coe…cientes:
R(1 + µ)(1 + R) 1
>0
R(1 + µ)µ + 2µ 1 ¡ n
¼ cb
=
¼cc
=
R(µ ¡ 1)µ
> 0 for µ > 1
R(1 + µ)µ + 2µ
¼ c"
=
R(µ 2 ¡ 1)
> 0 for µ > 1
R(1 + µ)µ + 2µ
El parámetro ¼ c" calcula el impacto de la perturbación nominal, y es exactamente igual al calculado (de otra manera) por Obstfeld y Rogo¤.
Para calcular el consumo per cápita mundial primero hay que calcular el
IPC mundial. Utilizando las reglas de …jación de los precios en (49):
pw
t
= npt + (1 ¡ n)p¤t = nst + p¤t = npht + (1 ¡ n)p¤f
t
µ
¶
µ
¶
1
1 w
1 ¤
1 w
¤
ct +
c
c +
c
= nEt¡1 pt +
+ (1 ¡ n)Et¡1 pt +
1+µ
1+µ t
1+µ t 1+µ t
2 w
c
= Et¡1 pw
t +
1+µ t
Adelantando la expresión un período y tomado expectativas:
w
Et pw
t+1 = Et pt+1 +
2
Et cw
t+1
1+µ
lo que implica que Et cw
t+1 = 0: Sustituyendo en la expresión anterior tenemos
w
que: pw
t = Et¡1 pt : El mercado monetario mundial es, agregando los nacionales:
w
w
mw
t ¡ pt = ct ¡
1
1
w
w
(Et cw
(Et pw
t+1 ¡ ct ) ¡
t+1 ¡ pt )
R
R
Utilizando Et cw
t+1 = 0 y reordenando:
pw
t =
1
R
w
mw
Et pw
t ¡ ct +
t+1
1+R
1+R
La solución de esta ecuación es:
w
w
pw
t = mt ¡ ct
w
A partir de aquí calculamos que Et¡1 pw
t = mt¡1 ; lo que implica:
w
w
w
w
w
w
cw
t = mt ¡ pt = mt ¡ Et¡1 pt = mt ¡ mt¡1 = n"t
30
References
[1] Andersen, T.M. y N.C. Beier (2000), “Propagation of Nominal Shocks in
Open Economies,” University of Aarhus
[2] Backus, D.; P. Kehoe y F. Kydland (1994) “Dynamics of the trade balance
and the terms of trade: The J-curve?”, American Economic Review 84,
84-103.
[3] Bergin, P. y R. Feenstra (1999), “Pricing to Market, Staggered Contracts
and Real Exchange Rate Persistence,” NBER Working Paper #7026.
[4] Betts, C. y M. Devereux (2000) “Exchange rate dynamics in a model of
pricing to market”, Journal of International Economics 50, 215-244.
[5] Betts, C. y M. Devereux (2001), “The International E¤ects of Monetary
and Fiscal Policy in a Two-Country Model” en G. Calvo, R. Dornbusch y
M. Obstfeld (eds) Money, Capital Mobility and Trade: Essays in Honor of
Robert Mundell, MIT Press.
[6] Blanchard, O. (2000) “What do we know about macroeconomics that Fisher
and Wicksell did not?”, Quarterly Journal of Economics, nov.
[7] Blanchard, O. y N. Kiyotaki (1987) “Monopolistic Competition and the
E¤ects of Aggregate Demand”, American Economic Review 77, 647-666.
[8] Borondo, C. (2000) “International Transmission of Monetary Shocks
with Interest Rate Rules”, Universidad de Valladolid, Departamento
de Fundamentos del Análisis Económico, DT 00-04. Disponible en
http://www2.eco.uva.es/~borondo/papers/Interest.pdf
[9] Brunnermeier, M. y C. Grafe (1999), “Contrasting Di¤erent Forms of Price
Stickiness: An Analysis of Exchange Rate Overshooting and the Beggar
Thy Neighbour Policy,“ FMG Discussion Paper 329, London School of Economics.
[10] Chari, V.V., P. Kehoe y E. McGrattan (1998), “Monetary Shocks and Real
Exchange Rates in Sticky Price Models of International Business Cycles,”
Federal Reserve Bank of Minneapolis Research Department Sta¤ Report
#223.
[11] Clarida, R.; J. Gali, y M. Gertler (2000) “Monetary policy rules and
macroeconomic stability: evidence and some theory”, Quarterly Journal
of Economics, 147-180.
[12] Corsetti, G. y P. Pesenti (1999), “Welfare and Macroeconomic Interdependence”, mimeo, Federal Reserve Bank of New York (También NBER
Working Paper #6307).
[13] Devereux, M. y C. Engel (1998), “Fixed versus Floating Exchange Rates:
How Price Setting A¤ects the Optimal Choice of Exchange-Rate Regime,”
NBER Working Paper #6867
31
[14] Devereux, M. y C. Engel (1999), “The Choice of Exchange-Rate Regime:
Price Setting Rules and Internationalized Production”, (Previous version
in NBER Working Paper #6992, 1998).
[15] Devereux, M. y C. Engel (2000) “Monetary Policy in the Open Economy
Revisited: Price Setting and Exchange Rate Flexibility”, NBER WP 7665.
[16] Devereux, M., C. Engel y C. Tille (1999), “Exchange Rate Pass-Through
and the Welfare E¤ects of the Euro,“ NBER Working Paper 7382.
[17] Dornbusch, R. (1976) “Expectations and Exchange Rate Dynamics”, Journal of Political Economy 8 (6).
[18] Engel, C. (1993) “Real exchange rates and relative prices: an empirical
investigation”, Journal of Monetary Economics 32, 35-50.
[19] Engel, C. (1999), “Accounting for real exchange rate changes”, Journal of
Political Economy 107(3), 507-38.
[20] Engel, C. y J.H. Rogers (1996) “How wide is the border?”, American Economic Review 86, 1112-1125.
[21] Engel, C. y J.H. Rogers (1998) “Regional patterns in the law of one price:
The roles of geography versus currencies”, in J. A. Frankel (ed) The Regionalization of the World Economy, University of Chicago Press, Chicago,
153-183.
[22] Fleming, J.M. (1962) “Domestic Financial Policies under Fixed and Floating Exchange Rates”, IMF Sta¤ Papers 9, 369-379.
[23] Ghironi, F. (1999a), “U.S.-Europe Economic Interdependence and Policy
Transmission,” mimeo.
[24] Ghironi, F. (1999b), “Towards New Open Economy Macroeconomics”
mimeo.
[25] Goodfriend, M. y R.M. King (1997) “The New Neoclassical Synthesis and
the Role of Monetary Policy”, NBER Macroeconomics Annual, 231-284.
[26] Goldberg, P.K. y M.M. Knetter (1997) “Goods prices and exchange rates:
what have we learned?, Journal of Economic Literature 35, 1243-1272.
[27] Hau, H. (2000), “Exchange Rate Determination: The Role of Factor Price
Rigidities and Nontradables,” Journal of International Economics 50, 421447.
[28] Kim, S. (2000) “International Transmission of the US Monetary Policy
Shocks: Evidence from VAR’s”, mimeo, University of Illinois at UrbanaChampaign, próxima publicación en Journal of Monetary Economics
[29] King, R. y A. Wolman (1999) “What Should the Monetary Authority do
When Prices are Sticky?”, in J. Taylor (Ed) Monetary Policy Rules, University of Chicago Press.
32
[30] Kollmann, R. (1999), “Explaining International Comovements of Output
and Asset Returns: The Role of Money and Nominal Rigidities,” IMF
Working Papers 84.
[31] Krugman, P. (1995) “What do we need to know about the International
Monetary System?”, in Peter Kenen (Ed) Understanding Interdependence.
The Macroeconomics of the Open Economy, Princeton University Press, p.
509-529.
[32] Lane, P. (1999), “The New Open Economy Macroeconomics: A Survey,”
CEPR Discussion Paper #2115
[33] McCallum, B.T. (1996) International Monetary Economics, Oxford University Press.
[34] McCallum, B.T. y E. Nelson (1999a) “Nominal income targeting in an openeconomy optimizing model”, Journal of Monetary Economics 43, 553-78.
[35] McCallum, B.T. y E. Nelson (1999b) “An optimizing IS-LM speci…cation
for monetary policy and business cycles analysis”, Journal of Money, Credit
and Banking 21 (3), 296-316.
[36] Mundell, R. (1962) “The appropriate use of monetary and …scal policy for
internal and external stability”, IMF Sta¤ Papers 9, 70-79.
[37] Mundell, R. (1963) “Capital mobility and stabilization policy under …xed
and ‡exible exchange rates”, Canadian Journal of Economics and Political
Science 29, 475-485.
[38] Mundell, R. (1968) International Economics, Macmillan, New York.
[39] Obstfeld, M. y K. Rogo¤ (1995), “Exchange Rate Dynamics Redux,” Journal of Political Economy, 103, 624-660.
[40] Obstfeld, M. y K. Rogo¤ (1996), Foundations of International Macroeconomics, MIT Press, Cambridge, MA.
[41] Obstfeld, M. y K. Rogo¤ (1998), “Risk and Exchange Rates,” NBER Working Paper #6694.
[42] Obstfeld, M. y K. Rogo¤ (2000a), “New Directions for Stochastic Open
Economy Models,” Journal of International Economics 50, 117-153.
[43] Obstfeld, M. y K. Rogo¤ (2000b) “The Six Major Puzzles in International
Macroeconomics: Is There a Common Cause?”, en NBER Macroeconomics
Annual (También en NBER WP 7777).
[44] Obstfeld, M. y K. Rogo¤ (2000c) “Do we really need a new global monetary
compact?”, mimeo.
[45] Rogo¤, K. (1996) “Purchasing Power Parity Puzzle”, Journal of Economic
Literature 34, 647-668.
[46] Rotemberg, J. y M. Woodford (1992) “Oligopolistic pricing and the e¤ects
of aggregate demand on economic activity”, Journal of Political Economy
100, 1153-1207.
33
[47] Rotemberg, J. y M. Woodford (1998) “An optimization-based econometric framework for the evaluation of monetary policy. Expanded version”,
NBER Technical WP 233.
[48] Svensson, L.E. (2000) “How Should Monetary Policy Be Conducted in an
Era of Price Stability?”, NBER WP 7516.
[49] Taylor, J.B. (1980) “Aggregate Dynamics and Staggered Contracts”, Journal of Political Economy 88, 1-23.
[50] Taylor, J.B. (1993a) Macroeconomic Policy in a World Economy, New
York: Norton.
[51] Taylor, J.B. (1993b) “Discretion versus policy rules in practice”, CarnegieRochester Series on Public Policy 39, 195-214.
[52] Taylor, J.B. (ed) (1999) Monetary Policy Rules, University of Chicago
Press.
[53] Tille, C. (1999) “ ‘Beggar-thy-neighbour’ or ‘Beggar-thyself’ ? The Income
E¤ect of Exchange Rate Fluctuations”, mimeo, Federal Reserve Bank of
New York.
[54] Tille, C. (2001), “The Role of Consumption Substitutability in the International Transmission of Shocks”, Journal of International Economics 53(2),
421-44.
[55] Turnovsky, S.J. (1986) “Monetary and …scal policy under perfect foresight:
A symmetric two-country analysis”, Economica 53, 139-157.
[56] Warnock, F.C. (1999) “Idiosyncratic tastes in a two-country optimizing
model: implications of a standard presumption”, Board of Governors of
the Federal Reserve System, International Finance Discussion Paper 631.
34
1.5
1.5
1
1
s
0.5
0
y
0.5
q
-0.5
0
-1
y*
-1.5
0
2
4
6
8
-0.5
0
10
1.5
2
4
6
8
10
6
8
10
0.5
m
1
p*fa, p*f
0.5
pha
0
ph
0
-0.5
0
2
4
6
8
-0.5
0
10
0.5
4
0.5
i*
r*
0
0
i
-0.5
0
2
r
2
4
6
8
10
Periodos despues de la perturbación
-0.5
0
2
4
6
8
10
Periodos despues de la perturbaci
Figure 1: Modelo MFD1. Respuesta a una perturbación permanente a la oferta
monetaria de nuestro país.
35
1.5
1.5
1
1
s
0.5
0
y
0.5
q
-0.5
0
-1
y*
-1.5
0
2
4
6
8
-0.5
0
10
1.5
2
4
6
8
10
4
6
8
10
4
6
8
10
0.5
m
1
p*f
p
0.5
0
0
p*
ph
-0.5
0
2
4
6
8
-0.5
0
10
0.5
0
2
0.5
i*
0
r*
i
r
-0.5
0
2
4
6
8
-0.5
0
10
2
Figure 2: Modelo MFD2. Respuesta a una perturbación permanente a la oferta
monetaria de nuestro país.
36
1.5
0.6
0.5
1
0.4
s
0.5
y
0.3
0
0.2
0.1
q
-0.5
0
-1
y*
-0.1
-1.5
0
5
10
-0.2
0
15
1.5
5
10
15
5
10
15
5
10
15
0.5
m
1
p
0.5
0
p*f
ph
0
p*
-0.5
0
5
10
-0.5
0
15
0.5
0.5
r*
i*
0
0
i
r
-0.5
0
5
10
-0.5
0
15
Figure 3: Modelo MFD2. Respuesta a una perturbación permanente a la oferta
monetaria de nuestro país. ° = 0:05:
37
3
2
1.5
2.5
s
1
2
b
0.5
1.5
0
-0.5
1
q
-1
0.5
-1.5
0
0
2
4
6
8
-2
10
4
0
2
6
8
10
4
6
8
10
4
6
8
10
1
3
y
2
0.5
1
0
c
-1
0
-2
y*
c*
-3
-4
4
0
2
4
6
8
-0.5
0
10
1.5
2
0.5
m
1
0
0.5
0
-0.5
0
p
r, r*
-0.5
ph
2
4
6
8
-1
10
0
2
Figure 4: Modelo OR. Respuesta a una perturbación permanente a la oferta
monetaria de nuestro país. µ = 6
38
1
2
1.5
0.8
s
1
0.5
0.6
0
b
0.4
-0.5
q
-1
0.2
-1.5
0
0
2
4
6
8
-2
10
1.5
0
2
4
6
8
10
4
6
8
10
4
6
8
10
1.5
y
1
1
0.5
0.5
0
c
0
y*
-0.5
0
2
c*
4
6
8
-0.5
0
10
1.5
2
0.5
m
1
0
0.5
0
-0.5
0
p
r, r*
-0.5
ph
2
4
6
8
-1
10
0
2
Figure 5: Modelo OR. Respuesta a una perturbación permanente a la oferta
monetaria de nuestro país. ¸ = 1:5
39
0.5
2
1.5
s
1
0
0.5
b
0
-0.5
-0.5
q
-1
-1.5
-1
0
2
4
6
8
-2
10
1
0
2
4
6
8
10
4
6
8
10
4
6
8
10
1
0.5
0.5
y, y*
c
0
0
c*
-0.5
0
2
4
6
8
-0.5
0
10
1.5
2
0.5
m
1
0
0.5
0
-0.5
0
p
r, r*
-0.5
ph
2
4
6
8
-1
10
0
2
Figure 6: Modelo OR. Respuesta a una perturbación permanente a la oferta
monetaria de nuestro país. ¸ = 0:01
40
0.5
2
1.5
s
1
0.5
b
0
0
-0.5
q
-1
-1.5
Percent deviation from ss
-0.5
0
2
4
6
8
10
-2
0
1.5
1.5
1
1
2
4
6
8
10
4
6
8
10
4
6
8
10
y
0.5
0.5
c, c*
0
0
y*
-0.5
0
2
4
6
8
10
1.5
-0.5
0
2
0.5
m
1
0
0.5
0
-0.5
0
p
r, r*
-0.5
ph
2
4
6
8
10
-1
0
2
Figure 7: Modelo OR. Respuesta a una perturbación permanente a la oferta
monetaria de nuestro país. ¸ = 1
41
Descargar