La geometría: Origen y desarrollo de la geometría El ser humano necesitó contar, y creó los números; quiso hacer cálculos, y definió las operaciones; hizo relaciones, y determinó las propiedades numéricas. Por medio de lo anterior, más el uso de la lógica, obtuvo los instrumentos adecuados para resolver las situaciones problemáticas surgidas a diario. Además de esos requerimientos prácticos, el hombre precisó admirar la belleza de la creación para satisfacer su espíritu. Con ese fin, observó la naturaleza y todo lo que le rodeaba. Así fue ideando conceptos de formas, figuras, cuerpos, líneas, los que dieron origen a la parte de la matemática que designamos con el nombre de geometría. El río Nilo Según lo registra la historia, los conceptos geométricos que el hombre ideó para explicarse la naturaleza nacieron, en forma práctica, a orillas del río Nilo, en el antiguo Egipto. Las principales causas fueron tener que remarcar los límites de los terrenos ribereños y construir diques paralelos para encauzar sus aguas. Esto, debido a los desbordes que causaban las inundaciones periódicas. El aporte griego Quienes dieron carácter científico a la geometría fueron los griegos, al incorporar demostraciones en base a razonamientos. Tales de Mileto (600 a.C.) inició esta tendencia, al concebir la posibilidad de explicar diferentes principios geométricos a partir de verdades simples y evidentes. Euclides (200 a.C.) le dio su máximo esplendor a esta corriente científica. Recogió los fundamentos de la geometría y de la matemática griega en su tratado Elementos. es una de las más antiguas ciencias. Inicialmente, constituía un cuerpo de conocimientos prácticos en relación con laslongitudes, áreas y volúmenes. En el Antiguo Egipto estaba muy desarrollada, según los textos de Heródoto, Estrabón y Diodoro Sículo. Euclides, en el siglo III a. C. configuró la geometría en forma axiomática, tratamiento que estableció una norma a seguir durante muchos siglos: la geometría euclidiana descrita en El estudio de la astronomía y la cartografía, tratando de determinar las posiciones de estrellas y planetas en la esfera celeste, sirvió como importante fuente de resolución de problemas geométricos durante más de un milenio. René Descartes desarrolló simultáneamente el álgebra y la geometría, marcando una nueva etapa, donde las figuras geométricas, tales como las curvas planas, podrían ser representadas analíticamente, es decir, con funciones y ecuaciones. La geometría se enriquece con el estudio de la estructura intrínseca de los entes geométricos que analizan Euler y Gauss, que condujo a la creación de la topología y la geometría diferencial. La geometría durante los periodos prehistórico y protohistórico Es razonable pensar que los orígenes de la geometría surge con los primeros pictogramas que traza el hombre primitivo pues, seguramente, clasificaba aun de manera inconsciente lo que le rodeaba según su forma. En la abstracción de estas formas comienza el primer acercamiento informal e intuitivo a la geometría. Así parece confirmarlo la ornamentación esquemática abstracta en vasijas de cerámica y otros utensilios. La geometría en el Antiguo Egipto . Las primeras civilizaciones mediterráneas adquieren poco a poco ciertos conocimientos geométricos de carácter eminentemente práctico. La geometría en el antiguo Egipto estaba muy desarrollada, como admitieron Heródoto, Estrabón y Diodoro, que aceptaban que los egipcios habían "inventado" la geometría y la habían enseñado a los griegos; aunque lo único que ha perdurado son algunas fórmulas –o, mejor dicho, algoritmos expresados en forma de "receta"– para calcular volúmenes, áreas y longitudes, cuya finalidad era práctica. Con ellas se pretendía, por ejemplo, calcular la dimensión de las parcelas de tierra, para reconstruirlas después de las inundaciones anuales. De allí el nombre γεωμετρία, geometría: "medición de la tierra" (de γῆ (gê) 'tierra' más μετρία (metría), 'medición'). Los denominados Papiro de Ahmes y Papiro de Moscú muestran conjuntos de métodos prácticos para obtener diversas áreas y volúmenes, destinados al aprendizaje de escribas. Es discutible si estos documentos implican profundos conocimientos o representan en cambio todo el conocimiento que los antiguos egipcios tenían sobre la geometría. Los historiadores antiguos nos relataron que el conocimiento de esta civilización sobre geometría –así como los de las culturas mesopotámicas– pasó íntegramente a la cultura griega a través de Tales de Mileto, los pitagóricos y, esencialmente, de Euclides. La Geometría griega antes de Euclides La primera demostración del teorema de Pitágoras probablemente usó un diagrama como el que se muestra. La Geometría Griega fue la primera en ser formal. Parte de los conocimientos concretos y prácticos de las civilizaciones egipcia y mesopotámica, y da un paso de abstracción al considerar los objetos como entes ideales –un rectángulo ideal, en lugar de una pared cuadrada concreta, un círculo en lugar del ojo de un pozo, etc.– que pueden ser manipulados mentalmente, con la sola ayuda de regla y compás. Aparece por primera vez lademostración como justificación de la veracidad de un conocimiento aunque, en un primer momento, fueran más justificaciones intuitivas que verdaderas demostraciones formales. Tales permaneció en Egipto una larga temporada de su vida, aprendiendo de los conocimientos de sacerdotes y escribas. Fue el primero en ser capaz de calcular la altura de las Pirámides de Egipto. Para ello midió su propia altura, y en el preciso momento en el que su sombra medía exactamente la misma cantidad, mandó a marcar la sombra del vértice de la Gran Pirámide. De esa forma pudo calcular exactamente cuál era su altura.1También se le atribuye la predicción de un eclipse solar. La figura de Pitágoras y de la secta por él creada: los pitagóricos, tiene un papel central, pues eleva a la categoría de elemento primigenio el concepto de número (filosofía que de forma más explícita o más implícita, siempre ha estado dentro de la Matemática y de la Física), arrastrando a la Geometría al centro de su doctrina – en este momento inicial de la historia de la Matemática aún no hay una distinción clara entre Geometría y Aritmética–, y asienta definitivamente el concepto de demostración (éste ya sí coincide con el concepto de demostración formal) como única vía de establecimiento de la verdad en Geometría. Esta actitud permitió (aun fuera de la secta) la medición del radio de la Tierra por Eratóstenes, así como la medición de la distancia a la Luna, y la investigación y establecimiento de la teoría de las palancas, por Arquímedes, varios siglos después. En el seno de la secta de los pitagóricos surge la primera crisis de la Matemática: la aparición de los inconmensurables, pero esta crisis es de carácter más aritmético que geométrico. Surge entonces un pequeño problema de Lógica, que consiste en lo siguiente: una demostración parte de una o varias hipótesis para obtener un resultado denominado tesis. La veracidad de la tesis dependerá de la validez del razonamiento con el que se ha extraído (esto será estudiado por Aristóteles al crear la Lógica) y de la veracidad de las hipótesis. Pero entonces debemos partir de hipótesis ciertas para poder afirmar con rotundidad la tesis. Para poder determinar la veracidad de las hipótesis, habrá que considerar cada una como tesis de otro razonamiento, cuyas hipótesis deberemos también comprobar. Se entra aparentemente en un proceso sin fin en el que, indefinidamente, las hipótesis se convierten en tesis a probar. Después de Euclides Euclides casi cierra definitivamente la geometría griega –y por extensión la del mundo antiguo–, a excepción de las figuras deArquímedes y Apolonio de Perge. Arquímedes analizó exhaustivamente las secciones cónicas, e introdujo en geometría otras curvas como la espiral que lleva su nombre, aparte de su famoso cálculo del volumen de la esfera, basado en los del cilindro y el cono. Esquema de las tres secciones cónicas:elipse, parábola e hipérbola (más la circunferencia). Apolonio trabajó en varias construcciones de tangencias círculos, así como en secciones cónicas y otras curvas. [editar]Los tres problemas geométricos de la Antigüedad entre La geometría griega era incapaz de resolver tres famosos problemas geométricos (que heredarán los matemáticos posteriores), puesto que debían ser resueltos utilizando únicamente la regla y compás «ideales», únicos instrumentos válidos en la geometría griega. Estos tres problemas son los siguientes: [editar]La duplicación del cubo Cuenta la leyenda que una terrible peste asolaba la ciudad de Atenas, hasta el punto de llevar a la muerte a Pericles. Una embajada de la ciudad fue al oráculo de Delfos, consagrado a Apolo, para consultar qué se debía hacer para erradicar la mortal enfermedad. Tras consultar al Oráculo, la respuesta fue que se debía duplicar el altar consagrado a Apolo en la isla de Delos. El altar tenía una peculiaridad: su forma cúbica. Prontamente, los atenienses construyeron un altar cúbico cuyos lados eran el doble de las del altar deDelos, pero la peste no cesó, se volvió más mortífera. Consultado de nuevo, el oráculo advirtió a los atenienses que el altar no era el doble de grande, sino 8 veces mayor, puesto que el volumen del cubo es el cubo de su lado ( ). Nadie supo cómo construir un cubo cuyo volumen fuese exactamente el doble del volumen de otro cubo dado, y el problema matemático persistió durante siglos (no así la enfermedad).La trisección del ánguloArtículo principal: Trisección del ángulo. Este problema consiste en dividir un ángulo cualquiera en tres ángulos iguales, empleando únicamente la regla y el compás, de manera que la suma de las medidas de los nuevos tres ángulos sea exactamente la medida del primero.La cuadratura del círculo Artículo principal: Cuadratura del círculo. La cuadratura del círculo consiste en tratar de obtener un cuadrado cuya área mida exactamente lo mismo que el área de un círculo dado. Anaxágoras fue el primero en intentar resolverlo, dibujando en las paredes de su celda. Fue apresado por explicar diversos fenómenos que los griegos atribuían a los dioses. Tampoco pudo ser resuelto por los geómetras de la antigüedad, y llegó a ser el paradigma de lo imposible. Como curiosidad, el filósofo inglés David Hume llegó a escribir un libro con supuestos métodos para resolver el problema. Hume no tenía suficientes conocimientos matemáticos, y nunca aceptó que sus métodos eran fallidos.La Geometría en la Edad Media Durante los siguientes siglos la Matemática comienza nuevos caminos de la mano de hindúes y árabes en Trigonometría y Álgebra (el uso de la notación posicional y del cero), aunque relacionadas con la Astronomía y la Astrología; pero en geometría apenas hay nuevas aportaciones. En Occidente, a pesar de que la Geometría es una de las siete Artes liberales (encuadrada en el Quadrivium), las escuelas y universidades se limitan a enseñar los "Elementos", y no hay aportaciones.La Geometría Proyectiva Es en el Renacimiento cuando las nuevas necesidades de representación del arte y de la técnica empujan a ciertos humanistas a estudiar propiedades geométricas para obtener nuevos instrumentos que les permitan representar la realidad. Aquí se enmarca la figura del matemático y arquitecto Luca Pacioli, de Leonardo da Vinci, de Alberto Durero, de Leone Battista Alberti, de Piero della Francesca, por citar sólo algunos. Todos ellos, al descubrir la perspectiva y la sección, crean la necesidad de sentar las bases formales en la que cimentar las nuevas formas de Geometría que ésta implica: la Geometría proyectiva, cuyos principios fundamentales aparecen de la mano de Desargues en el siglo XVII. Esta nueva geometría de Desargues fue estudiada ampliamante ya por Pascal o por de la Hire, pero debido al interés suscitado por la Geometría Cartesiana y sus métodos, no alcanzó tanta difusión como merecía hasta la llegada a principios del siglo XIX de Gaspard Monge en primer lugar y sobre todo de Poncelet. Geometría (del griego geo, 'tierra'; metrein, 'medir'), rama de las matemáticas que se ocupa de las propiedades del espacio. En su forma más elemental, la geometría se preocupa de problemas métricos como el cálculo del área y diámetro de figuras planas y de la superficie y volumen de cuerpos sólidos. Otros campos de la geometría son la geometría analítica, geometría descriptiva, topología, geometría de espacios con cuatro o más dimensiones, geometría fractal, y geometría no euclídea. Geometría demostrativa primitiva El origen del término geometría es una descripción precisa del trabajo de los primeros geómetras, que se interesaban en problemas como la medida del tamaño de los campos o el trazado de ángulos rectos para las esquinas de los edificios. Este tipo de geometría empírica, que floreció en el Antiguo Egipto, Sumeria y Babilonia, fue refinado y sistematizado por los griegos. Pitágoras En el siglo VI a.C. el matemático Pitágoras colocó la piedra angular de la geometría científica al demostrar que las diversas leyes arbitrarias e inconexas de la geometría empírica se pueden deducir como conclusiones lógicas de un número limitado de axiomas, o postulados. Estos postulados fueron considerados por Pitágoras y sus discípulos como verdades evidentes; sin embargo, en el pensamiento matemático moderno se consideran como un conjunto de supuestos útiles pero arbitrarios. Un ejemplo típico de los postulados desarrollados y aceptados por los matemáticos griegos es la siguiente afirmación: "una línea recta es la distancia más corta entre dos puntos". Un conjunto de teoremas sobre las propiedades de puntos, líneas, ángulos y planos se puede deducir lógicamente a partir de estos axiomas. Entre estos teoremas se encuentran: "la suma de los ángulos de cualquier triángulo es igual a la suma de dos ángulos rectos", y "el cuadrado de la hipotenusa de un triángulo rectángulo es igual a la suma de los cuadrados de los otros dos lados" (conocido como teorema de Pitágoras). La geometría demostrativa de los griegos, que se ocupaba de polígonos y círculos y de sus correspondientes figuras tridimensionales, fue mostrada rigurosamente por el matemático griego Euclides, en su libro "Los elementos". El texto de Euclides, a pesar de sus imperfecciones, ha servido como libro de texto básico de geometría hasta casi nuestros días. Primeros problemas geométricos Los griegos introdujeron los problemas de construcción, en los que cierta línea o figura debe ser construida utilizando sólo una regla de borde recto y un compás. Ejemplos sencillos son la construcción de una línea recta dos veces más larga que una recta dada, o de una recta que divide un ángulo dado en dos ángulos iguales. Tres famosos problemas de construcción que datan de la época griega se resistieron al esfuerzo de muchas generaciones de matemáticos que intentaron resolverlos: la duplicación del cubo (construir un cubo de volumen doble al de un determinado cubo), la cuadratura del círculo (construir un cuadrado con área igual a un círculo determinado) y la trisección del ángulo (dividir un ángulo dado en tres partes iguales). Ninguna de estas construcciones es posible con la regla y el compás, y la imposibilidad de la cuadratura del círculo no fue finalmente demostrada hasta 1882. Los griegos, y en particular Apolonio de Perga, estudiaron la familia de curvas conocidas como cónicas y descubrieron muchas de sus propiedades fundamentales. Las cónicas son importantes en muchos campos de las ciencias físicas; por ejemplo, las órbitas de los planetas alrededor del Sol son fundamentalmente cónicas. Arquímedes, uno de los grandes científicos griegos, hizo un considerable número de aportaciones a la geometría. Inventó Apolonio de formas de medir el área de ciertas figuras curvas así como la Perga superficie y el volumen de sólidos limitados por superficies curvas, como paraboloides y cilindros. También elaboró un método para calcular una aproximación del valor de pi, la proporción entre el diámetro y la circunferencia de un círculo y estableció que este número estaba entre 3 10/70 y 3 10/71. Geometría analítica La geometría avanzó muy poco desde el final de la era griega hasta la edad media. El siguiente paso importante en esta ciencia lo dio el filósofo y matemático francés René Descartes, cuyo tratado "El Discurso del Método", publicado en 1637, hizo época. Este trabajo fraguó una conexión entre la geometría y el álgebra al demostrar cómo aplicar los métodos de una disciplina en la otra. Éste es un fundamento de la geometría analítica, en la que las figuras se representan mediante expresiones algebraicas, sujeto subyacente en la mayor parte de la geometría moderna. Otro desarrollo importante del siglo XVII fue la investigación de las propiedades de las figuras geométricas que no varían cuando las figuras son proyectadas de un plano a otro. Un ejemplo sencillo de geometría proyectiva queda ilustrado en la figura 1. Si los puntos A, B, C y a, b, c se colocan en cualquier posición de una cónica, por ejemplo una circunferencia, y dichos puntos se unen A con b y c, B con c y a, y C con b y a, los tres puntos de las intersecciones de dichas líneas están en una recta. De la misma manera, si se dibujan seis tangentes cualesquiera a una cónica, como en la figura 2, y se trazan rectas que unan dos intersecciones opuestas de las tangentes, estas líneas se cortan en un punto único. Este teorema se denomina proyectivo, pues es cierto para todas las cónicas, y éstas se pueden transformar de una a otra utilizando las proyecciones apropiadas, como en la figura 3, que muestra que la proyección de una circunferencia es una elipse en el otro plano. Modernos avances La geometría sufrió un cambio radical de dirección en el siglo XIX. Los matemáticos Carl Friedrich Gauss, Nikolái Lobachevski, y János Bolyai, trabajando por separado, desarrollaron sistemas coherentes de geometría no euclídea. Estos sistemas aparecieron a partir de los trabajos sobre el llamado "postulado paralelo" de Euclides, al proponer alternativas que generan modelos extraños y no intuitivos de espacio, aunque, eso sí, coherentes. Carl Fiedrich Casi al mismo tiempo, el matemático británico Arthur Cayley Gauss desarrolló la geometría para espacios con más de tres dimensiones. Imaginemos que una línea es un espacio unidimensional. Si cada uno de los puntos de la línea se sustituye por una línea perpendicular a ella, se crea un plano, o espacio bidimensional. De la misma manera, si cada punto del plano se sustituye por una línea perpendicular a él, se genera un espacio tridimensional. Yendo más lejos, si cada punto del espacio tridimensional se sustituye por una línea perpendicular, tendremos un espacio tetradimensional. Aunque éste es físicamente imposible, e inimaginable, es conceptualmente sólido. El uso de conceptos con más de tres dimensiones tiene un importante número de aplicaciones en las ciencias físicas, en particular en el desarrollo de teorías de la relatividad. János Bolyai También se han utilizado métodos analíticos para estudiar las figuras geométricas regulares en cuatro o más dimensiones y compararlas con figuras similares en tres o menos dimensiones. Esta geometría se conoce como geometría estructural. Un ejemplo sencillo de este enfoque de la geometría es la definición de la figura geométrica más sencilla que se puede dibujar en espacios con cero, una, dos, tres, cuatro o más dimensiones. En los cuatro primeros casos, las figuras son los bien conocidos punto, línea, triángulo y tetraedro respectivamente. En el espacio de cuatro dimensiones, se puede demostrar que la figura más sencilla está compuesta por cinco puntos como vértices, diez segmentos como aristas, diez triángulos como caras y cinco tetraedros. El tetraedro, analizado de la misma manera, está compuesto por cuatro vértices, seis segmentos y cuatro triángulos. Arthur Cayley Otro concepto dimensional, el de dimensiones fraccionarias, apareció en el siglo XIX. En la década de 1970 el concepto se desarrolló como la geometría fractal.