Subido por diegow321

examenes resueltos calculo

Anuncio
20
2023
enero
plano tangente
al Calcular
.
1
& f(x y z) (lasX
f
b)
=
.
,
(0E 0)
=
-
g(x)
=
(1
.
-1
-
-
-
-
sink
,
g"(x)
9'"(x)
g(x)
-
=
=
1)
=
cas(y)
Sin (X +
+
-
seria
en
f(X
g"(0)
9)(x) g(0)
1
=
(Xg"(d)
-
=
=
.
Ero)
-
+
E
=
-
=
0
0
+
g(0)x
+
X-
1
(
g" ()
Sinx
0
=
Pla
X
:
i)
c
=
de
+
-
x y z
=
en
(x(X xo) fy(y yo) (z(z z0)
=
g'(d)
Sinx
-
z
1)
g(o
(0X
:
:
altener desarrollo
=
=
sing
la superficie
-
g(x) Sin(x)
g(x)
a
v
-
(x -
=
F!
-
X3
X3
c
-
ii)him f
.
aso
2
(n + 1)
=
con
en
2n + 2
&
2n + 2
S
a)
[
S
M
n 1
(n 1)+
him
+
=no
san
n= 1
gant
=
new
gie
Inter"IslimM
nu
=
25212
divege
n2 + M
↳
Triadel
Gril
cociente
3
him
+
him t
e
.
-
,
Origen
↓
.
R
In (ty
dy
r(0 k)
,
⑦
(0 π)
.
tudado enceta
↓
v=
R
In -du
du =rd
:
su
Sede
2
=
=
25/zhe- E
=
Ches 1)
-
↳
a
-5x5
**Cin
(n +2)
·" w I
sdeSe
line
t dx
2)
3
e
ver
que
ocurre
es
live
le
al
.
f(X y)
,
=
1
-
P(x y
-
xy
X)
X
=
1 -xy
-
ty" :2
X(x
=
+
y
c)
f(- 1
60
T S X&
2= x
y
t
↑
f(
-
1
-
-
1)
1)
=
=
02
2
fi
↑
min
S
max
4.
e
-
((X.yER"
:
xayec
*
:
+y
9]
x y2
dx dy
27
[2 3]
o
[u . )
-
=
=
22
rdrdo
& Edy-jadod
↓
=
E
en
los extremos
30 Julio 2023
1.
a)
z
(n(x
=
f (x 3 1m(x yz)
+
-
-
z
+
=
y2)P(1 1 (n()
.
.
1
0
8f(1
n
=
-
tr
-
1)
1
Y +y - z-(2-In (21)
=
0
=
9
r
((xy)t
=
..
xyzx3
ox
v = []
#
V
=
ex
E
2x = x2
↳
.
2
a naen e
en
(nf2) ! (n 21 !
+
(2( 1)) !
him
+
n
!
(n + 2
-
(a!
(nt
(2n 2) (2n + 1)
+
(2n) !
2) (y +
axedx
un
+
y
M
F(x y)
-
My-taxes
N
=
1
+
2x2]
Gerly
=
=
((y 2xe3)dx
+
x+
xe g(y)
+
=
V
=
yx
+
x
+y
g(y)
yx +
ye 4
=
+
=
(
g(y)
=1
-
Conveya
Descargar