20 2023 enero plano tangente al Calcular . 1 & f(x y z) (lasX f b) = . , (0E 0) = - g(x) = (1 . -1 - - - - sink , g"(x) 9'"(x) g(x) - = = 1) = cas(y) Sin (X + + - seria en f(X g"(0) 9)(x) g(0) 1 = (Xg"(d) - = = . Ero) - + E = - = 0 0 + g(0)x + X- 1 ( g" () Sinx 0 = Pla X : i) c = de + - x y z = en (x(X xo) fy(y yo) (z(z z0) = g'(d) Sinx - z 1) g(o (0X : : altener desarrollo = = sing la superficie - g(x) Sin(x) g(x) a v - (x - = F! - X3 X3 c - ii)him f . aso 2 (n + 1) = con en 2n + 2 & 2n + 2 S a) [ S M n 1 (n 1)+ him + =no san n= 1 gant = new gie Inter"IslimM nu = 25212 divege n2 + M ↳ Triadel Gril cociente 3 him + him t e . - , Origen ↓ . R In (ty dy r(0 k) , ⑦ (0 π) . tudado enceta ↓ v= R In -du du =rd : su Sede 2 = = 25/zhe- E = Ches 1) - ↳ a -5x5 **Cin (n +2) ·" w I sdeSe line t dx 2) 3 e ver que ocurre es live le al . f(X y) , = 1 - P(x y - xy X) X = 1 -xy - ty" :2 X(x = + y c) f(- 1 60 T S X& 2= x y t ↑ f( - 1 - - 1) 1) = = 02 2 fi ↑ min S max 4. e - ((X.yER" : xayec * : +y 9] x y2 dx dy 27 [2 3] o [u . ) - = = 22 rdrdo & Edy-jadod ↓ = E en los extremos 30 Julio 2023 1. a) z (n(x = f (x 3 1m(x yz) + - - z + = y2)P(1 1 (n() . . 1 0 8f(1 n = - tr - 1) 1 Y +y - z-(2-In (21) = 0 = 9 r ((xy)t = .. xyzx3 ox v = [] # V = ex E 2x = x2 ↳ . 2 a naen e en (nf2) ! (n 21 ! + (2( 1)) ! him + n ! (n + 2 - (a! (nt (2n 2) (2n + 1) + (2n) ! 2) (y + axedx un + y M F(x y) - My-taxes N = 1 + 2x2] Gerly = = ((y 2xe3)dx + x+ xe g(y) + = V = yx + x +y g(y) yx + ye 4 = + = ( g(y) =1 - Conveya