Subido por Eduardo Trigo

2022-Teoria algebra Capitulo 1

Anuncio
Álgebra y Geometrı́a Analı́tica
Vectores
,
Vectores en Rn
Definición 1 (Vector de Rn ). .
Sea n ∈ N,
a) Llamamos vector de Rn a toda n-úpla ordenada de números reales.
b) El conjunto de vectores de n componentes, R, es entonces
Rn = {(x1 , x2 , · · · , xn )/∀i = 1, · · · , n;
xi ∈ R}
Observaciones:
Denotamos los vectores con letras mayúsculas, por ejemplo A, en el caso que se preste a confusión
→
−
colocamos el sı́mbolo → sobre el nombre del vector y escribimos A .
Por ejemplo, A ∈ Rn , quiere decir que A es un vector de Rn .
Las componentes del vector se denotan con letras minúsculas, por ejemplo: A = (a1 , a2 , · · · , an ),
como el vector pertenece a Rn , ai ∈ R, ∀i = 1, · · · , n.
Analı́ticamente el vector A = (a1 , a2 , · · · , an ) se identifica con el punto A(a1 , a2 , · · · , an ) por lo
que no haremos distinción a menos que sea necesario.
Representación gráfica
Para representar graficamente un vector utilizamos
una flecha (segmento dirigido) con origen en el origen del sistema de referencia y extremo en el punto
cuyas coordenadas coinciden con las componentes del
vector.
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
1
Álgebra y Geometrı́a Analı́tica
Vectores
Ejemplo. .
V = (2, 4), es un vector de dos componentes reales entonces, V ∈ R2
A = (3, 4, 5) es un vector de tres componentes reales entonces, A ∈ R3
C = (1, −1, 5, 2, −1) es un vector de cinco componentes reales entonces, C ∈ R5
graficamente:
en R2
en R3
Definición 2 (Igualdad de vectores ). .
Sean A = (a1 , a2 , · · · , an ), B = (b1 , b2 , · · · , bn ) ∈ Rn
A = B ⇔ ∀ i = 1, · · · , n;
ai = bi
Es importante que recuerdes que para comparar dos vectores deben tener el mismo número
de componentes.
Ejercicio. .
Dados los vectores U = (2, x2 , −4) y V = (2, 16, x), determine x ∈ R tal que U = V .
Resolución.
Debemos determinar x ∈ R tal que U = V , es decir,
(2, x2 , −4) = (2, 16, x)
por la definición de igualdad de vectores, cada componente del vector U es igual a la correspondiente del
vector V
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
2
Álgebra y Geometrı́a Analı́tica




2=2



x2 = 16





−4 = x




2=2



=⇒ x = 4 ó x = −4





x = −4
Vectores
=⇒
x = −4
Respuesta:
U =V
si x = −4
Definición 3 (Suma de vectores). .
Dados A = (a1 , a2 , · · · , an ) ∈ Rn y B = (b1 , b2 , · · · , bn ) ∈ Rn , la suma de A y B es el vector
A + B = (a1 + b1 , a2 + b2 , · · · , an + bn ) ∈ Rn
.
Ejemplo. .
Dados los vectores A = (2, 2, −4, 0) y B = (2, 16, −1, 1),
A + B =(2 + 2, 2 + 16, (−4) + (−1), 0 + 1)
A + B =(4, 18, −5, 1)
Es importante que recuerdes que para sumar vectores, deben tener el mismo número de
componentes.
Propiedades (de la suma). .
1. La suma de vectores es conmutativa.
∀A, B ∈ Rn , A + B = B + A
2. La suma de vectores es asociativa
∀A, B, C ∈ Rn , (A + B) + C = A + (B + C)
3. Existe elemento neutro para la operación suma de vectores.
∃ θ = (0, 0, · · · , 0) ∈ Rn : ∀A ∈ Rn , θ + A = A + θ = A
4. Cada vector tiene su opuesto respecto de la operación suma.
∀A ∈ Rn , ∃A0 ∈ Rn : A + A0 = A0 + A = θ
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
3
Álgebra y Geometrı́a Analı́tica
Vectores
Demostración. .
1. Sean A = (a1 , a2 , · · · , an ), B = (b1 , b2 , · · · , bn ) ∈ Rn
A + B = (a1 , a2 , . . . , an ) + (b1 , b2 , · · · , bn )
= (a1 + b1 , a2 + b2 , · · · , an + bn ),
por definición de suma de vectores
= (b1 + a1 , b2 + a2 , · · · , bn + an ),
aplico en c/componente conmutatividad de la suma en R
= (b1 , b2 , · · · , bn ) + (a1 , a2 , · · · , an ), por definición de suma de vectores
=B+A
Probamos que:
∀A, B ∈ Rn , A + B = B + A
2. Queda para los alumnos
3. Sean A = (a1 , a2 , · · · , an ) , θ = (0, 0, · · · , 0) ∈ Rn
A + θ = (a1 , a2 , · · · , an ) + (0, 0, · · · , 0)
= (a1 + 0, a2 + 0, · · · , an + 0)
por definición de suma de vectores
= (a1 , a2 , · · · , an )
0 es neutro para la suma en R
=A
probamos que , A + θ = A
Como la suma de vectores es conmutativa, θ + A = A + θ = A
Por lo tanto queda probado que:
∃ θ ∈ Rn : ∀A ∈ Rn , A + θ = θ + A = A
4. Sea A = (a1 , a2 , · · · , an ) ∈ Rn .
Queremos determinar la existencia de A0 = (a01 , a02 , · · · , a0n ) ∈ Rn tal que A + A0 = θ = A0 + A.
A + A0
=
θ
(a1 , a2 , · · · , an ) + (a01 , a02 , · · · , a0n ) = (0, 0, · · · , 0)
(a1 + a01 , a2 + a02 , · · · , an + a0n )
(1)
= (0, 0, · · · , 0) por definición de suma de vectores.
Por definición de igualdad de vectores
∀i = 1, 2, · · · , n;
ai + a0i = 0
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
4
Álgebra y Geometrı́a Analı́tica
Vectores
por existencia de opuesto de un número real
∀i = 1, 2, · · · , n;
a0i = −ai
hemos obtenido las componentes del vector A0 , por lo tanto:
A0 = (a01 , a02 , · · · , a0n ) = (−a1 , −a2 , · · · , −an ) ∈ Rn y cumple que, A + A0 = θ y como la suma de
vectores es conmutativa A0 + A = A + A0 = θ
A0 , como se puede probar que es el único vector con esta propiedad, se lo denomina opuesto de
A ∈ Rn y se denota −A , ( A0 = −A ).
Queda probado que:
∀A = (a1 , a2 , · · · , an ) ∈ Rn , ∃ − A = (−a1 , −a2 , · · · , −an ) ∈ Rn : (−A) + A = A + (−A) = θ
Interpretación geométrica de la suma.
Para vectores de R2
Sean V = (x1 , y1 ) y U = (x2 , y2 )
el vector suma
V + U = (x1 + x2 , y1 + y2 )
Gráficamente se cumple la
Regla del paralelogramo
Podemos generalizar para vectores de Rn y concluir, gráficamente, que la suma de los vectores V y
U , pertenecientes a Rn , es el vector diagonal del paralelogramo de lados V y U , con origen en el origen
del sistema de coordenadas y extremo en el punto V + U .
La existencia y unicidad del vector opuesto para cada vector de Rn nos permite
definir la diferencia entre dos vectores
Definición 4 (Diferencia de vectores). .
Sean A, B ∈ Rn ,
A − B = A + (−B)
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
5
Álgebra y Geometrı́a Analı́tica
Vectores
Ejemplo. .
Dados los vectores A = (2, 2, −4, 0) y B = (2, 16, −1, 1),
A − B =(2 − 2, 2 − 16, (−4) − (−1), 0 − 1)
A − B =(0, −14, −3, −1)
Interpretación geométrica de la resta
Como A − B = A + (−B), por
la interpretación geométrica de
la suma de vectores A − B es la
diagonal del el paralelogramos
de lados A y −B, que
por igualdad de vectores es el vector diagonal del paralelogramo de lados A y B con origen en B y
extremo en A.
−−→
Llamamos al vector BA, Vector Localizado
−−→
BA = A − B,
Si el origen del vector es el punto A y el extremo es el punto B el vector es,
−−→
AB = B − A,
−−→
que es opuesto del vector BA
Ejemplo. .
−−→ −−→
Dados A = (1, 2) y B − (3, 1).Determinemos los vectores, BA y AB
−−→
BA = A − B = (1, 2) − (3, 1) = (−2, 1).
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
6
Álgebra y Geometrı́a Analı́tica
Vectores
−−→
AB = B − A
= (3, 1) − (1, 2)
= (2, −1)
Definición 5 (Producto de un escalar por un vector). .
Sean λ ∈ R y A = (a1 , a2 , . . . , an ) ∈ Rn , el producto del escalar λ por el vector A es el vector
λA = (λa1 , λa2 , . . . , λan ) ∈ Rn
Ejemplo. .
Sean λ = −2 y A = (1, −2, 3) ∈ R3
λA = (−2)(1, −2, 3) = ((−2) · 1, (−2) · (−2), (−2) · 3) = (−2, 4, −6)
Propiedades (del producto por escalar). .
1. ∀λ, µ ∈ R, ∀A ∈ Rn , λ(µA) = µ(λA) = (µλ)A
2. ∀λ, µ ∈ R, ∀A ∈ Rn , (λ + µ)A = λA + µA
3. ∀λ ∈ R, ∀A, B ∈ Rn , λ(A + B) = λA + λB
Demostración. Quedan para el alumno.
Observaciones.
1. ∀A ∈ Rn ,
1A = A
2. ∀A ∈ Rn ,
(−1)A = −A
3. Dados λ ∈ R y A ∈ Rn ,
λA = θ ⇔ λ = 0 o A = θ
Demostración. .
1. y 2. Queda para el alumno.
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
7
Álgebra y Geometrı́a Analı́tica
Vectores
3. Sean λ ∈ R , A = (a1 , a2 , · · · , an ) ∈ Rn
λA = θ ⇔ λ(a1 , a2 , · · · , an ) = (0, 0, · · · , 0)
⇔ (λa1 , λa2 , · · · , λan ) = (0, 0, · · · , 0)
por def. de producto de escalar por vector
⇔ ∀i = 1, 2, · · · , n; λai = 0
por def. de igualdad de vectores
⇔ ∀i = 1, 2, · · · , n; λ = 0 o ai = 0
por producto de dos num. reales igual a 0
⇔ λ = 0, o ∀i = 1, 2, · · · , n;
ai = 0
⇔ λ = 0, o A = (0, 0, · · · , 0)
⇔λ=0 o A=θ
Definición 6 (Producto escalar o producto interno en Rn ). .
Dados A = (a1 , a2 , · · · , an ), B = (b1 , b2 , · · · , bn ) ∈ Rn el producto escalar de A y B, que denotamos
A · B, es el número real que se obtiene de la siguiente manera:
A · B = a1 b1 + a2 b2 + · · · + an bn ∈ R
usando la notación de suma resumida:
A·B =
n
X
ai bi
i=1
Cuando multiplicas escalarmente dos vectores obtienes como resultado un número real. Recuerda que sólo puedes multiplicar vectores con igual número de componentes.
La notación para indicar el producto escalar de vectores es el punto “ · ”
Ejemplo. Dados los vectores A = (2, 2, −4, 0) y B = (2, −6, −1, 1),
A · B =2 · 2 + 2 · (−6) + (−4) · (−1) + 0 · 1
A · B =4 − 12 + 4 + 0
A·B =−4
Propiedades (del producto escalar). .
1. ∀A, B ∈ Rn ,
2. ∀A, B, C ∈ Rn ,
A·B =B·A
A · (B + C) = A · B + A · C
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
8
Álgebra y Geometrı́a Analı́tica
Vectores
3. ∀λ ∈ R, ∀A, B ∈ Rn ,
(λA) · B = A · (λB) = λ (A · B)
4. ∀A ∈ Rn ,
y
A·A≥0
(A · A = 0 ⇔ A = θ)
Demostración. .
1. Sean A = (a1 , a2 , · · · , an ), B = (b1 , b2 , · · · , bn ) ∈ Rn
A · B = (a1 , a2 , · · · , an ) · (b1 , b2 , · · · , bn )
= a1 b1 + a2 b2 + · · · + an bn ,
por la definición de producto escalar de vectores
= b1 a1 + b2 a2 + · · · + bn an ,
el producto de números reales es conmutativo
= (b1 , b2 , · · · , bn ) · (a1 , a2 , · · · , an )
por la definición de producto escalar de vectores
=B·A
Por lo tanto:
∀A, B ∈ Rn ,
A·B =B·A
2. Sean A = (a1 , a2 , · · · , an ), B = (b1 , b2 , · · · , bn ), C = (c1 , c2 , · · · , cn ) ∈ Rn
A · (B + C) = (a1 , a2 , · · · , an ) · [(b1 , b2 , . . . , bn ) + (c1 , c2 , · · · , cn )]
= (a1 , a2 , . . . , an ) · (b1 + c1 , b2 + c2 , . . . , bn + cn )
por la definición de suma de vectores
= a1 · (b1 + c1 ) + a2 · (b2 + c2 ) + · · · + an · (bn + cn )
por la definición de producto escalar
= a1 b1 + a1 c1 + a2 b2 + a2 c2 + · · · + an bn + an cn
prop. distributiva del producto respecto
de la suma en R,en cada sumando
= (a1 b1 + a2 b2 + · · · + an bn ) + (a1 c1 + a2 c2 + · · · + an cn )
aplico prop. conmuti. y asociat. de + en R
= (a1 , a2 , . . . , an ) · (b1 , b2 , . . . , bn ) + (a1 , a2 , . . . , an ) · (c1 , c2 , . . . , cn )
por la definición de producto escalar
=A·B+A·C
Queda probado que:
∀A, B, C ∈ Rn , A · (B + C) = A · B + A · C
3. la demostración queda como ejercicio.
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
9
Álgebra y Geometrı́a Analı́tica
Vectores
4. Sea A = (a1 , a2 , · · · , an ) ∈ Rn ,
A · A = a1 a1 + a2 a2 + · · · + an an =
(∗1)
(∗2)
n
X
a2i
(∗3)
i=1
(∗1) por definición de producto escalar
(∗2) por definición de potencia en R
Como: ∀i = 1, · · · , n;
ai ∈ R ⇒ ∀i = 1, · · · , n;
n
X
a2i ≥ 0 luego
a2i ≥ 0 ⇒ A · A ≥ 0
(∗3)
i=1
Probaremos ahora que A · A = 0 ⇔ A = θ
A·A=0⇔
n
X
a2i = 0
de (∗3)
i=1
⇔ ∀i = 1, · · · , n; a2i = 0
por suma de números reales no negativos
⇔ ∀i = 1, · · · , n; ai = 0
⇔ (a1 , a2 , · · · , an ) = (0, 0, · · · , 0)
⇔A=θ
Definición 7 (Norma de un vector). .
Sea A ∈ Rn llamaremos norma de A al número real
kAk =
√
A·A
Observación:
kAk está bien definida pues A · A ≥ 0 y tiene sentido calcular, en R,
kAk =
√
√
A·A
A · A ⇐⇒ kAk2 = A · A
s
Si A = (a1 , a2 , · · · , an ), A · A =
Pn
2
i=1 ai y por lo tanto kAk =
n
P
i=1
a2i
Ejemplo. .
Sea A = (2, −1, 5), aplicando la tercera observación
kAk =
Mg. I. Lomas - Mg. E. Fernández
p
√
√
22 + (−1)2 + 52 = 4 + 1 + 25 = 30
FACET - UNT
10
Álgebra y Geometrı́a Analı́tica
Vectores
Interpretación geométrica de la norma de un vector en R2
Sea A = (a, b) , Q = (a, 0) ,
Los
punto
A, Q, O
determinan
un
triángulo
rectángulo, cuyos catetos miden |a| y |b|, por el teorema de Pitágoras sabemos que la longitud de la
p
√
hipotenusa es |a|2 + |b|2 = a2 + b2
Por observación de la definición de norma
kAk =
p
a2 + b2
por lo tanto kAk es la longitud de la hipotenusa es
decir, la longitud del vector A.
Podemos generalizar este resultado para Rn y concluir que kAk es la longitud del vector
A, o lo que es lo mismo, la distancia del punto A al origen del sistema de referencia.
Propiedades. .
1. ∀A ∈ Rn ,
kAk ≥ 0
2. ∀A ∈ Rn ,
∀λ ∈ R,
y
kAk = 0 ⇔ A = θ
kλAk = |λ| kAk
3. Desigualdad Triangular
∀A, B ∈ Rn ,
kA + Bk ≤ kAk + kBk
Demostración. .
1. La demostración queda para los alumnos. Se sugiere utilizar las propiedades del producto escalar.
2. sean λ ∈ R, A ∈ Rn
p
(λA) · (λA)
p
= (λλ)(A · A)
p
= λ2 kAk2
√ p
= λ2 kAk2
kλAk =
por definición de norma de un vector
por propiedades del producto escalar
por definición de norma de un vector
propiedad de la raı́z cuadrada para números reales no negativos
= |λ| | kAk |
propiedad de valor absoluto
= |λ| kAk
por ser kAk ≥ 0 , | kAk | = kAk
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
11
Álgebra y Geometrı́a Analı́tica
Vectores
3. Aceptamos sin demostración para Ingenierı́as, PU. , Lic. en Informática y Lic. en Fı́sica
Un vector se dice unitario si su norma es 1
Definición 8 (Distancia en Rn ). .
Dados A y B ∈ Rn , la distancia entre A y B es el número real no negativo
−−→
dist(A, B) = kABk.
Propiedades. .
Las propiedades son consecuencia de la definición de norma, por lo tanto las aceptamos sin demostración.( Los alumnos de Lic. y Prof. en Matemática deben hacer las demostraciones)
1. ∀ A, B ∈ Rn ,
dist(A, B) > 0 ∧
2. ∀ A, B ∈ Rn ,
dist(A, B) = dist(B, A).
3. ∀ A, B, C ∈ Rn ,
dist(A, B) = 0 ⇔ A = B.
dist(A, B) ≤ dist(A, C) + dist(C, B).
Definición 9 (Vectores paralelos). .
Dados A, B ∈ Rn ,
A k B ⇐⇒ ∃ λ ∈ R − {0} / A = λB
Dados A = θ ∈ Rn y B ∈ Rn , si θ k B, por la definición de vectores paralelos
∃λ ∈ R − {0} /θ = λB
como λ 6= 0 podemos asegurar que
B = θ.
Concluimos que: el vector nulo es paralelo sólo a sı́ mismo .
Ejemplos. .
Dados los vectores A = (2, 4, −1), B = (1, 8, −2) y C = (1, 2, − 12 )
¿ El vector A es paralelo al vector B?. Para responder esta pregunta vamos a utilizar la definición
de vectores paralelos, A k B ⇐⇒ ∃ λ ∈ R − {0} / A = λB.
Vamos a averiguar si existe un escalar λ diferente de 0 que haga que se verifique la igualdad
A = λB
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
12
Álgebra y Geometrı́a Analı́tica
Vectores
(2, 4, −1) = λ(1, 8, −2)
por la definición de producto de escalar por vector
(2, 4, −1) = (λ, 8λ, −2λ)
por definición de igualdad de vectores




2=λ



4 = 8λ





−1 = −2λ




λ=2



⇐⇒ λ = 4
8





λ = −1
−2




λ=2



⇐⇒ λ = 1
2





λ = 1
2
⇐⇒
no existe λ
Respuesta:
No existe λ ∈ R − {0} : A = λB, por lo tanto A no es paralelo a B
¿ El vector A es paralelo al vector C?.
A = (2, 4, −1) = 2(1, 2, − 21 ) = 2C
por lo tanto ; ∃ λ = 2 ∈ R − {0} / A = λC
Respuesta:
AkC
Importante
Geométricamente dos vectores,no nulos, son paralelos si tienen la misma dirección.
Decimos que dos vectores paralelos, no nulos, tienen el mismo sentido si el escalar que los relaciona
es mayor que 0 y tienen sentido contrario si el escalar es menor que 0.
En el gráfico: A k B k C
A y B tienen la misma dirección y sentido contrario,
∃λ ∈ R − {0} / A = λB,
con λ < 0
C y B tienen la misma dirección y el mismo sentido ,
∃γ ∈ R − {0} / C = γB,
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
con γ > 0
13
Álgebra y Geometrı́a Analı́tica
Vectores
La relación de paralelismo cumple las siguientes propiedades que aceptaremos sin demostración (para ingenierı́as, PU , Lic. en Informática y Lic. en Fı́sica)
Propiedades. .
1. Propiedad reflexiva
∀A ∈ Rn , A k A
2. Propiedad simétrica
∀A, B ∈ Rn : A k B ⇒ B k A
3. Propiedad transitiva
∀A, B, C ∈ Rn : (A k B ∧ B k C ⇒ A k C)
Enunciaremos un teorema que aceptaremos sin demostración
Teorema 1 (Desigualdad de Cauchy Schwarz). .
∀A, B ∈ Rn ,
|A · B| ≤ kAkkBk
∧
|A · B| = kAkkBk ⇐⇒ A k B ó A = θ ó B = θ.
Definición 10 (Vector unitario en una dirección dada o Versor en una dirección dada). .
Dado un vector A ∈ Rn − {θ}, llamamos vector unitario o versor, en la dirección de A al vector E ∈ Rn
tal que
EkA
y
kEk = 1
Es importante que recuerdes que el vector A debe ser diferente del vector nulo, θ, de no
ser ası́ no tienes dirección para determinar el versor.
Obtención de la fórmula para determinar versor en una dirección dada
Sea A ∈ Rn − {θ}, por la definición de versor, E ∈ Rn ,
E k A y kEk = 1.
Por definición de vectores paralelos,
E k A ⇔ ∃λ ∈ R − {0} / E = λA
Para determinar el vector E debemos obtener el valor del escalar λ,
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
14
Álgebra y Geometrı́a Analı́tica
Vectores
como E = λA
kEk = kλAk
por hipótesis kEk = 1 por lo tanto
1 = kλAk
por propiedad de norma
1 = |λ| kAk
La kAk =
6 0 porque A 6= θ, podemos dividir ambos miembros por el número kAk, resultando
|λ| =
1
1
⇒ λ=±
kAk
kAk
determinado dos valores para el escalar λ, obtenemos dos versores en la dirección del vector A
E1 =
1
A
kAk
por ser el escalar positivo, E1 tiene la dirección y el sentido de A
E2 =
−1
A
kAk
por ser el escalar negativo, E2 tiene la dirección y sentido contrario de A
Ejemplo. .
Dado el vector A = (6, −8),
la norma de A es, kAk =
p
√
62 + (−8)2 = 36 + 64 = 10
los versores en la dirección de A son:
3 −4
,
5
5
−1
−1
−3 4
A=
(6, −8) =
,
E2 =
kAk
10
5 5
1
1
A=
(6, −8) =
E1 =
kAk
10
Versores fundamentales
En R2 , hay dos versores fundamentales (también se los llama vectores canónicos),
→
−
e1 = (1, 0) (también se designa i ), es el versor fundamental en la dirección del ejex
→
−
e2 = (0, 1) (también se designa j ), es el versor fundamental en la dirección del ejey
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
15
Álgebra y Geometrı́a Analı́tica
Vectores
En R3 , hay tres versores fundamentales (también se los llama vectores canónicos),
→
−
e1 = (1, 0, 0) (también se designa i ), es el versor fundamental en la dirección del ejex
→
−
e2 = (0, 1, 0) (también se designa j ), es el versor fundamental en la dirección del ejey
→
−
e3 = (0, 0, 1) (también se designa k ), es el versor fundamental en la dirección del ejez
Definición 11 (Vectores perpendiculares). .
Dados A, B ∈ Rn ,
A⊥B ⇔ A · B = 0
Teorema 2 (Teorema de Pitágoras en Rn ). .
Dados A, B ∈ Rn ,
A ⊥ B ⇔ kA + Bk2 = kAk2 + kBk2
Demostración. Sean A, B ∈ Rn
Determinemos primero la siguiente igualdad:
kA + Bk2 = (A + B) · (A + B)
por def. de norma
=A·A+A·B+B·A+B·B
= kAk2 + A · B + A · B + kBk2
por prop. distribut. del producto escalar respecto de la suma de vectores
por def. de norma y prop. conmutativa del prod. escalar
= kAk2 + 2A · B + kBk2
por lo tanto
kA + Bk2 = kAk2 + 2A · B + kBk2 (∗∗)
Para demostrar el teorema debemos probar la condición necesaria y la suficiente
i) (⇒) Hipótesis: A ⊥ B
Tesis: kA + Bk2 = kAk2 + kBk2
kA + Bk2 = kAk2 + 2A · B + kBk2 por (∗∗)
por hipótesis A ⊥ B y por definición de vectores perpendiculares A · B = 0, reemplazando
kA + Bk2 = kAk2 + 2 · 0 + kBk2
kA + Bk2 = kAk2 + 0 + kBk2
Por lo tanto:
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
16
Álgebra y Geometrı́a Analı́tica
Vectores
kA + Bk2 = kAk2 + kBk2
ii) (⇐) Hipótesis: kA + Bk2 = kAk2 + kBk2
Tesis: A ⊥ B
por hipótesis
kA + Bk2 = kAk2 + kBk2
Reemplazando kA + Bk2 por (**)
kAk2 + 2A · B + kBk2 = kAk2 + kBk2
por existencia de elemento neutro para la suma de números reales 2A · B = 0 ⇒ A · B = 0
por la definición de vectores perpendiculares
A·B =0
⇒
A⊥B
De I) y II), queda demostrado el teorema.
Definición 12 (Proyección vectorial ortogonal de un vector sobre otro). .
Dados A, B ∈ Rn , con B 6= θ. La proyección vectorial ortogonal de A sobre B es el vector P ∈ Rn :
P = λB,
con λ ∈ R
−→
PA ⊥ B
Es importante que recuerdes que el vector B debe ser diferente del vector nulo θ, de no
ser ası́ no tienes dirección donde proyectar el vector A.
Obtención del vector P , proyección vectorial ortogonal de A sobre B
Sea A, B ∈ Rn con B 6= θ, el vector P cumple
(1) P = λB,
−→
(2) P A ⊥ B
con λ ∈ R y
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
17
Álgebra y Geometrı́a Analı́tica
Vectores
De (2), por definición de vectores perpendiculares
−→
PA · B = 0
por vector localizado
(A − P ) · B = 0
por la propiedad distributiva del producto escalar respecto de la suma de vectores
A·B−P ·B =0
por (1) P = λB, reemplazando
A · B − λB · B = 0
por propiedades del producto escalar y definición de norma
A · B − λkBk2 = 0
por hipótesis B 6= θ y por lo tanto kBk2 6= 0, luego, de la ecuación anterior
λ=
A·B
kBk2
Determinado el valor del escalar, queda determinado el vector P = λB
P =
A·B
B
kBk2
Notación:
Para indicar proyección del vector A sobre B 6= θ escribimos:
PA,B =
A·B
B
kBk2
Si la proyección es del vector B sobre el vector A 6= θ, escribimos:
PB,A =
A·B
A
kAk2
Ejemplo. .
Dados A = (1, −1) y B = (3, 4), el vector proyección vectorial ortogonal de A sobre B es el vector
PA,B
A·B
(1, −1) · (3, 4)
−1
(3, 4) =
=
B=
(3, 4) =
2
2
kBk
k(3, 4)k
25
−3 −4
,
25 25
Definición 13 (Proyección escalar de un vector sobre otro). .
Dados A, B ∈ Rn , con B 6= θ. Proyección escalar de A sobre B es la norma del vector proyección
vectorial ortogonal de A sobre B.
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
18
Álgebra y Geometrı́a Analı́tica
Vectores
Obtención de la proyección escalar de A sobre B
Sean A, B ∈ Rn con B 6= θ, por proyección vectorial ortogonal de A sobre B
P =
aplicando norma al vector se tiene:
A·B
A·B
kP k =
B =
2
kBk
kBk2
(1)
kBk =
(2)
A·B
B
kBk2
|A · B|
|A · B|
kBk =
2
kBk
kBk
(1) por propiedad de norma , kλAk = |λ|kAk, pues
A·B
es un número real
kBk2
(2) por propiedad de valor absoluto y kBk > 0
Por lo tanto:
kP k =
|A · B|
kBk
es la proyección escalar del vector A sobre B
Definición 14 (Ángulo determinado por dos vectores). .
Dados A y B ∈ Rn −{θ} . El ángulo ϕ que determinan los vectores A y B es el que cumple las siguientes
condiciones:
0≤ϕ≤π
cos ϕ =
A·B
kAk kBk
Es importante que recuerdes que los vectores A y B deben ser diferentes del vector nulo.
Cuando hablamos del ángulo entre A y B denotamos, ^(A, B).
Ejemplo. .
Sean A = (1, −2, 1) y B = (1, 1, 2), determinar ϕ = ^(A, B).
cos ϕ =
A·B
(1, −2, 1) · (1, 1, 2)
1
1
√
=p
=√ √ =
2
2
2
2
2
2
kAk kBk
6
6 6
1 + (−2) + 1
1 +1 +2
Por la definición de ángulo entre vectores:
ϕ = arc cos 61
Mg. I. Lomas - Mg. E. Fernández
con 0 ≤ ϕ ≤ π
FACET - UNT
19
Álgebra y Geometrı́a Analı́tica
Vectores
Podemos mostrar que el ángulo entre vectores paralelos y perpendiculares esta en
concordancia con la definición de paralelismo y perpendicularidad de vectores.
Proposiciones.
1. Equivalencia de la definición de vectores paralelos
Dados A, B ∈ Rn − {θ}
^(A, B) = 0
ó
⇔
^(A, B) = π
AkB
Demostración
Sea ϕ = ^(A, B),
ϕ=0
o
⇔
ϕ=π
cos ϕ = ±1
(∗1)
⇔ |A · B| = kAk kBk
⇔
(∗2)
⇔
A·B
= ±1
kAk kBk
⇔
(∗3)
|A · B|
=1
kAk kBk
AkB
(∗4)
(*1) (⇐) por 0 ≤ ϕ ≤ π
(⇒) pues
cos 0 = 1
y
cos π = −1
(*2) por definición de ángulo en Rn
(*3) aplicando valor absoluto en ambos miembros.
(*4) por la hipótesis A 6= θ, B 6= θ entonces, por la desigualdad de C-S A k B
2. Equivalencia de la definición de vectores perpendiculares.
Dados A, B ∈ Rn − {θ}
^(A, B) =
π
2
⇔
A⊥B
Demostración
Sea ϕ = ^(A, B),
ϕ=
π
2
⇔
(∗∗1)
cos
π
A·B
=
2
kAk kBk
⇔
0=
A·B
kAk kBk
⇔
A·B =0
⇔
A⊥B
(∗∗2)
(**1) por definición de ángulo entre vectores
(**2) por definición de vectores perpendiculares
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
20
Álgebra y Geometrı́a Analı́tica
Vectores
Los productos que definiremos a continuación sólo se pueden aplicar en R3
Definición 15 (Producto Vectorial). .
Dados A = (a1 , a2 , a3 ) ∈ R3 y B = (b1 , b2 , b3 ) ∈ R3 , el producto vectorial de A y B en ese orden, es el
vector de R3 :
A × B = (a2 b3 − a3 b2 , a3 b1 − a1 b3 , a1 b2 − a2 b1 )
A × B = (a2 b3 − a3 b2 , a3 b1 − a1 b3 , a1 b2 − a2 b1 )
Regla práctica
Ejemplo. A = (1, −1, −3) , B = (2, −1, 0)
Regla práctica:
A × B = ((−1) · 0 − (−3) · (−1) , (−3) · 2 − 1 · 0 , 1 · (−1) − (−1) · 2)
A × B = (−3, −6 , 1)
Ejemplos. .
Realice los cálculos y compruebe los resultados.
A = (2, 1, −3) , B = (3, −1, 2)
A × B = (−1, −13, −5)
Para los vectores canónicos de R3
e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1)
e1 × e2 = (0, 0, 1) = e3
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
21
Álgebra y Geometrı́a Analı́tica
Vectores
e2 × e3 = (1, 0, 0) = e1
e3 × e1 = (0, 1, 0) = e2
e2 × e1 = (0, 0, −1) = −e3
e1 × e2 6= e2 × e1
podemos concluir que el producto vectorial no es conmutativo.
(e1 × e2 ) × e2 = e3 × e2 = −e1
e1 × (e2 × e2 ) = e1 × θ = θ
(e1 × e2 ) × e2 6= e1 × (e2 × e2 ) podemos concluir que el producto vectorial no es asociativo.
Propiedades (del producto vectorial). .
1. El producto vectorial es anticonmutativo
∀A, B ∈ R3 ,
A × B = −B × A
2. Distributividad del producto respecto de la suma
∀A, B, C ∈ R3 ,
A × (B + C) = A × B + A × C
(A + B) × C = A × C + B × C
3. Asociatividad mixta.
∀λ ∈ R, ∀A, B ∈ R3 , (λA) × B = A × (λB) = λ(A × B)
4. ∀A, B ∈ R3 ,
A×B ⊥A
y
A×B ⊥B
5. ∀A, B ∈ R3 , kA × Bk2 = kAk2 kBk2 − (A · B)2
6. ∀A, B ∈ R3 ,
7. ∀A, B ∈ R3 − {θ},
A×B =θ ⇔AkB ∨ A=θ ∨ B =θ
kA × Bk = kAk kBk sen ϕ
con ϕ = ^(A, B)
8. Sean A, B ∈ R3 − {θ} lados de un paralelogramo:
Área del paralelogramo de lados A, B = kA × Bk
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
22
Álgebra y Geometrı́a Analı́tica
Vectores
Demostración. .
Nota: Algunas propiedades se aceptan sin demostración para las carreras Ingenierı́as, PU,
Lic. en Informática y Lic. en Fı́sica.
1. Sean A = (a1 , a2 , a3 ) ∈ R3 y B = (b1 , b2 , b3 ) ∈ R3 .
A × B = (a1 , a2 , a3 ) × (b1 , b2 , b3 )
por la definición de producto vectorial
= (a2 b3 − a3 b2 , a3 b1 − a1 b3 , a1 b2 − a2 b1 )
sacando factor común -1 en cada componente
= (−1(−a2 b3 + a3 b2 ) , −1(−a3 b1 + a1 b3 ) , −1(−a1 b2 + a2 b1 ))
por definición de producto de escalar por vector
= (−1)(−a2 b3 + a3 b2 , −a3 b1 + a1 b3 , −a1 b2 + a2 b1 )
en cada componente conmuto los sumandos
= (−1)(a3 b2 − a2 b3 , a1 b3 − a3 b1 , a2 b1 − a1 b2 )
en cada componente, conmuto los productos de números reales
= (−1)(b2 a3 − b3 a2 , b3 a1 − b1 a3 , b1 a2 − b2 a1 )
por definición de producto vectorial
= (−1)(b1 , b2 , b3 ) × (a1 , a2 , a3 )
= (−1)B × A
= −B × A
2. Aceptamos sin demostración.
La demostración se pueden hacer de manera sencilla resolviendo cada miembro por separado y
aplicando transitividad de la igualdad.
3. Aceptamos sin demostración.
La demostración se pueden hacer de manera sencilla resolviendo cada miembro por separado y
aplicando transitividad de la igualdad.
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
23
Álgebra y Geometrı́a Analı́tica
Vectores
4. Sean A = (a1 , a2 , a3 ) ∈ R3 y B = (b1 , b2 , b3 ) ∈ R3 .
A × B · A = (a1 , a2 , a3 ) × (b1 , b2 , b3 ) · (a1 , a2 , a3 )
= (a2 b3 − a3 b2 , a3 b1 − a1 b3 , a1 b2 − a2 b1 ) · (a1 , a2 , a3 )
por la definición de producto vectorial
= (a2 b3 − a3 b2 )a1 + (a3 b1 − a1 b3 )a2 + (a1 b2 − a2 b1 )a3
por la definición de producto escalar
= a2 b3 a1 − a3 b2 a1 + a3 b1 a2 − a1 b3 a2 + a1 b2 a3 − a2 b1 a3 por distrib. del prod. respecto de la + en R
= a2 b3 a1 − a3 b2 a1 + a3 b1 a2 − a1 b3 a2 + a1 b2 a3 − a2 b1 a3
| {z } | {z } | {z } | {z } | {z } | {z }
(1)
(2)
(3)
(1)
(2)
cancelando términos iguales
(3)
=0
Probamos que
A×B·A=0
y por la definición de vectores perpendiculares
A×B ⊥A
Queda para ustedes probar que: A × B ⊥ B
5. Aceptamos sin demostración.
La demostración se pueden hacer de manera sencilla resolviendo cada miembro por separado y
aplicando transitividad de la igualdad.
6. Para demostrar esta propiedad utilizaremos 5) y desigualdad de Cauchy Shwarz
A × B = θ ⇔ kA × Bk = 0
por propiedad de norma de un vector
⇔ kA × Bk2 = 0
⇔ kAk2 kBk2 − (A · B)2 = 0
por propiedad 5)kA × Bk2 = kAk2 kBk2 − (A · B)2
⇔ kAk2 kBk2 = (A · B)2
p
p
⇔ (kAk kBk)2 = (A · B)2
ambos miembros son no negativos, puedo aplicar raı́z cuadrada
⇔ | kAk kBk | = |A · B|
por propiedad de valor absoluto
⇔ kAk kBk = |A · B|
el producto de normas es un número real no negativos
⇔AkB ∨ A=θ ∨ B=θ
7. Sean A, B ∈ R3 − {θ}, sea
por la desigualdad de C-S
ϕ = ^(A, B)
Por la definición de ángulo entre vectores A · B = kAk kBk cos ϕ
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
24
Álgebra y Geometrı́a Analı́tica
Vectores
y por la propiedad 5)
kA × Bk2 = kAk2 kBk2 − (A · B)2
reemplazando A · B se tiene:
kA × Bk2 = kAk2 kBk2 − (kAk kBk cos ϕ)2
kA × Bk2 = kAk2 kBk2 − kAk2 kBk2 cos2 ϕ
kA × Bk2 = kAk2 kBk2 (1 − cos2 ϕ)
por identidad trigonométrica sen2 ϕ + cos2 ϕ = 1 por lo tanto 1 − cos2 ϕ = sen2 ϕ, remplazando
kA × Bk2 = kAk2 kBk2 sen2 ϕ
aplicando raı́z cuadrada en ambos miembros que son números no negativos y por propiedad de
valor absoluto
kA × Bk = kAk kBk | sen ϕ|
por definición de ángulo entre vectores 0 6 ϕ 6 π y en ese intervalo sen ϕ > 0, por lo tanto
| sen ϕ| = sen ϕ
reemplazando queda probado que:
kA × Bk = kAk kBk sen ϕ
8. Dado el paralelogramos de lados A y B, el área, que denotamos con Área
(A, B), es igual a
la longitud de la base b, por la longitud de la altura h.
Área
(A, B) = b · h
Si consideramos como base del paralelogramo el lado A como
se indica en el dibujo, la longitud de la base es kAk
b = kAk
(∗1)
Para determinar la altura h, consideremos lo siguiente:
Si α = ^(A, B), por definición de ángulo entre vectores, 0 6 α 6 π y por lo tanto,
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
sen α > 0.
25
Álgebra y Geometrı́a Analı́tica
Luego:
sen α =
h
kBk
Vectores
⇒
h = kBk sen α
(∗2)
Reemplazando (*1) y (*2) en
Área
(A, B) = b · h
(A, B) = kAk kBk sen α,
Área
kA × Bk = kAk kBk sen α.
por propiedad del producto vectorial:
Por lo tanto
(A, B) = kA × Bk
Área
Definición 16 (Triple producto escalar o doble producto mixto). .
Sean A, B y C ∈ R3 se define triple producto escalar al número real:
(A B C) = A × B · C
Propiedades (triple producto escalar). .
1. ∀A, B, C ∈ R3 ,
(A B C) = (B C A) = (C A B)
2. ∀A, B, C ∈ R3 ,
(A B C) = −(B A C)
(propiedad cı́clica)
3. Sean A, B, C ∈ R3 − {θ} aristas de un paralelepı́pedo, |(A B C)| es el volumen de dicho
paralelepı́pedo.
4. Sean A, B, C ∈ R3 , (A B C) = 0 si y solo si los vectores son coplanares
(Vectores coplanares son vectores que están en el mismo plano, como vectores libres, si los puntos
que los identifican pertenecen al mismo plano que además pasa por el origen)
Demostración.
1. Sin demostración.
2. Sean A, B, C ∈ R3
(A B C) =
A×B·C
(por def. de triple producto escalar)
= −(B × A) · C
(por propiedad antisimétrica del producto vectorial)
= −(B × A · C)
(por propiedad del producto escalar)
=
−(B A C)
Mg. I. Lomas - Mg. E. Fernández
(por def. de triple producto escalar)
FACET - UNT
26
Álgebra y Geometrı́a Analı́tica
Vectores
Luego probamos que:
(A B C) = −(B A C)
3. Sean A, B, C ∈ R3 − {θ} aristas de un paralelepı́pedo.
el volumen, que denotamos con V ol
(A, B, C), es igual a área de la base por la longitud de la
altura.
(A, B, C) = área de la base · h
V ol
(1)
Si consideramos la base del paralelepı́pedo al paralelogramo de lados A y B, el área está dada
por ||A × B||, por propiedad del producto vectorial (notar que ||A × B|| ≥ 0 ). La altura del
paralelepı́pedo es el segmento perpendicular a la base trazado desde el vértice opuesto hasta dicha
base. Es decir, el vector altura H = PC,A×B y su longitud es la altura del paralelepı́pedo de base
A y B, en consecuencia
||H|| = ||PC,A×B || =
|C · A × B|
||A × B||
Por lo tanto, reemplazando en (1)
V ol
(A, B, C) = ||A × B|| |C·A×B|
||A×B||
=
|C · A × B|
=
|A × B · C)|
(por propiedad conmutativa del producto escalar)
=
|(A B C)|
(por def. de triple producto escalar)
Luego
V ol
(A, B, C) = |(A B C)|
4. Sin demostración.
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
27
Álgebra y Geometrı́a Analı́tica
Vectores
Ejercicios teóricos de integración 1.
1. Califique con verdadero o falso las siguientes proposiciones:
∀A, B ∈ Rn , kA + Bk = kAk + kBk
∀A, B ∈ Rn , |A · B| = kAkkBk
2. Sean A, B, C ∈ Rn .
a) Demuestre que: kA + Bk2 = kAk2 + 2A · B + kBk2
b) Utilizando el apartado a) obtenga una expresión general para:
Mg. I. Lomas - Mg. E. Fernández
FACET - UNT
kA−Bk, kA+2Ck y k3A − B + 2Ck.
28
Descargar