CENTRO EDUCATIVO SALESIANOS TALCA SEDE SUR: 2 SUR 1147 – FONOS (71) 233499-226257 - FAX (71) 237282 SEDE NORTE: 11 ORIENTE 1751 – FONO (71) 223330 – FAX (71) 221770 TALCA – VII REGIÓN MODULO MATERIALES Jorge. A .Navarro. G Técnico Industrial Talca, Marzo 2007 Introducción Este módulo está asociado a las áreas de competencias Montaje y mantenimiento de Sistemas mecánicos y Mecanización de piezas . Es de carácter complementario y para su desarrollo requiere 80 horas. Al finalizar el presente módulo el alumno y alumna estará habilitado para: Analizar propiedades de materiales utilizados en la fabricación mecánica. Realizar tratamientos térmicos de materiales. En este módulo se profundiza el conocimiento de los materiales más utilizados en los procesos de fabricación mecánica. Complementa los aprendizajes de los procesos de mecanizado. El estudiante tiene la posibilidad de analizar el impacto de los tratamientos térmicos en las propiedades de algunos materiales y en su comportamiento final como elemento constitutivo de estructuras o máquinas ALTOHORNOS En general los altos hornos tienen un diámetro mayor a 8 m y llegan a tener una altura superior de los 60 m. Están revestidos de refractario de alta calidad. Los altos hornos pueden producir entre 800 y 1600 toneladas de arrabio cada 24 h. La caliza, el coque y el mineral de hierro se introducen por la parte superior del horno por medio de vagones que son volteados en una tolva. Para producir 1000 toneladas de arrabio, se necesitan 2000 toneladas de mineral de hierro, 800 toneladas de coque, 500 toneladas de piedra caliza y 4000 toneladas de aire caliente. Con la inyección de aire caliente a 550°C, se reduce el consumo de coque en un 70%. Los sangrados del horno se hacen cada 5 o 6 horas, y por cada tonelada de hierro se produce 1/2 de escoria. Alto horno Reducción directa del mineral de hierro Para la producción del hierro también se puede utilizar el método de reducción directa, el que emplea agentes reactivos reductores como gas natural, coque, aceite combustible, monóxido de carbono, hidrógeno o grafito. El procedimiento consiste en triturar la mena de hierro y pasarla por un reactor con los agentes reductores, con lo que algunos elementos no convenientes para la fusión del hierro son eliminados. El producto del sistema de reducción directa es el hierro esponja que consiste en unos pelets de mineral de hierro los que pueden ser utilizados directamente para la producción de hierro con características controladas. Diagrama de producción de hierro esponja En el método de reducción directa para procesar 1000 toneladas de mineral de hierro, se requieren 491,000 metros cúbicos de metano y con ello se obtienen 630 toneladas de hierro esponja. Diferentes procesos de producción de hierro y acero Una vez obtenido el arrabio o el hierro esponja es necesario refinar al hierro para que se transforme en material útil para diferentes objetos o artefactos, o sea en hierro o acero comercial. A continuación se presentan los principales procesos de fabricación de los hierros y aceros comerciales. Proceso de pudelado El hierro dulce es un metal que contienen menos del 0.01% de carbono y no más de 0.003% de escoria. Para su obtención se requiere del proceso conocido como pudelado, el que consiste en fundir arrabio y chatarra en un horno de reverbero de 230 kg, este horno es calentado con carbón, aceite o gas. Se eleva la temperatura lo suficiente para eliminar por oxidación el carbón, el silicio, y el azufre. Para eliminar todos los elementos diferentes al hierro, el horno de pudelado debe estar recubierto con refractario de la línea básica (ladrillos refractarios con magnesita y aluminio). El material se retira del horno en grandes bolas en estado pastoso y el material producido se utiliza para la fabricación de aleaciones especiales de metales. Existen otros procedimientos modernos como el llamado proceso Aston, en donde en lugar del horno de reverbero se usa un convertidor Bessemer con lo que se obtienen mayor cantidad de material. Hornos bessemer Es un horno en forma de pera que está forrado con refractario de línea ácida o básica. El convertidor se carga con chatarra fría y se le vacía arrabio derretido, posteriormente se le inyecta aire a alta presión con lo que se eleva la temperatura por arriba del punto de fusión del hierro, haciendo que este hierva. Con lo anterior las impurezas son eliminadas y se obtiene acero de alta calidad. Este horno ha sido substituido por el BOF, el que a continuación se describe. Horno básico de oxigeno (BOF) Es un horno muy parecido al Bessemer con la gran diferencia que a este horno en lugar de inyectar aire a presión se le inyecta oxígeno a presión, con lo que se eleva mucho más la temperatura que en el Bessemer y en un tiempo muy reducido. El nombre del horno se debe a que tiene un recubrimiento de refractario de la línea básica y a la inyección del oxígeno. La carga del horno está constituida por 75% de arrabio procedente del alto horno y el resto es chatarra y cal. La temperatura de operación del horno es superior a los 1650°C y es considerado como el sistema más eficiente para la producción de acero de alta calidad. Este horno fue inventado por Sir Henry Bessemer a mediados de 1800, sólo que como en esa época la producción del oxígeno era cara se inició con la inyección de aire, con lo que surgió el convertidor Bessemer, el que ya fue descrito. Horno básico de oxígeno Horno de hogar abierto Es uno de los hornos más populares en los procesos de producción del acero. Un horno de este tipo puede contener entre 10 y 540 toneladas de metal en su interior. Tiene un fondo poco profundo y la flama da directamente sobre la carga, por lo que es considerado como un horno de reverbero. Su combustible puede ser gas, brea o petróleo, por lo regular estos hornos tienen chimeneas laterales las que además de expulsar los gases sirven para calentar al aire y al combustible, por lo que se consideran como hornos regenerativos. Los recubrimientos de los hornos de hogar abierto por lo regular son de línea básica sin embargo existen también los de línea ácida ((ladrillos con sílice y paredes de arcilla). Las ventajas de una línea básica de refractario, sobre una ácida son que con la primera se pueden controlar o eliminar el fósforo, el azufre, el silicio, el magnesio y el carbono y con la línea ácida sólo se puede controlar al carbono. El costo de la línea básica es mayor que el de la ácida. Los hornos de hogar abierto son cargados con arrabio en su totalidad o con la combinación de arrabio y chatarra de acero. El arrabio puede estar fundido o en estado sólido. La primera carga del horno tarda 10 h en ser fundida y estar lista para la colada, pero si se agrega oxígeno se logra tener resultados en menos de 7 h, además de que se ahorra el 25% de combustible. Horno de arco eléctrico Por lo regular son hornos que sólo se cargan con chatarra de acero de alta calidad. Son utilizados para la fusión de aceros para herramientas, de alta calidad, de resistencia a la temperatura o inoxidables. Considerando que estos hornos son para la producción de aceros de alta calidad siempre están recubiertos con ladrillos de la línea básica. Existen hornos de arco eléctrico que pueden contener hasta 270 toneladas de material fundido. Para fundir 115 toneladas se requieren aproximadamente tres horas y 50,000 kwh de potencia. También en estos hornos se inyecta oxígeno puro por medio de una lanza. Ok Los hornos de arco eléctrico funcionan con tres electrodos de grafito los que pueden llegar a tener 760mm de diámetro y longitud de hasta 12m. La mayoría de los hornos operan a 40v y la corriente eléctrica es de 12,000 A. Estos equipos tienen un crisol o cuerpo de placa de acero forrado con refractario y su bóveda es de refractario también sostenida por un cincho de acero, por lo regular enfriado con agua. Para la carga del horno los electrodos y la bóveda se mueven dejando descubierto al crisol, en el que se deposita la carga por medio de una grúa viajera. Estos equipos son los más utilizados en industrias de tamaño mediano y pequeño, en donde la producción del acero es para un fin determinado, como varilla corrugada, aleaciones especiales, etc. Horno de arco eléctrico Horno de refinación Estos hornos pueden ser de varios tipos, en realidad puede ser cualquier horno al que por medio de aire u oxígeno se obtenga hierro con carbón controlado, sin embargo se pueden mencionar dos de los hornos más conocidos para este fin. Horno de inducción Utilizan una corriente inducida que circula por una bovina que rodea a un crisol en el cual se funde la carga. La corriente es de alta frecuencia y la bovina es enfriada por agua, la corriente es de aproximadamente 1000Hz, la cual es suministrada por un sistema de moto generador. Estos hornos se cargan con piezas sólidas de metal, chatarra de alta calidad o virutas metálicas. El tiempo de fusión toma entre 50 y 90 min., fundiendo cargas de hasta 3.6 toneladas. Los productos son aceros de alta calidad o con aleaciones especiales. Horno de aire o crisol Es el proceso más antiguo que existe en la fundición, también se le conoce como horno de aire. Este equipo se integra por un crisol de arcilla y grafito, los que son extremadamente frágiles, los crisoles se colocan dentro de un confinamiento que puede contener algún combustible sólido como carbón o los productos de la combustión. Los crisoles son muy poco utilizados en la actualidad excepto para la fusión de metales no ferrosos, su capacidad fluctúa entre los 50 y 100 kg. Hornos de crisol para metales no ferrosos Horno de cubilote Son equipos muy económicos y de poco mantenimiento, se utilizan para hacer fundición de hierros colados. Consisten en un tubo de más de 4 metros de longitud y pueden tener desde 0.8 a 1.4 m de diámetro, se cargan por la parte superior con camas de chatarra de hierro, coque y piedra caliza. Para la combustión del coque se inyecta aire con unos ventiladores de alta presión, este accede al interior por unas toberas ubicadas en la parte inferior del horno. También estos hornos se pueden cargar con pelets de mineral de hierro o pedacería de arrabio sólido. Por cada kilogramo de coque que se consume en el horno, se procesan de 8 a 10 kilogramos de hierro y por cada tonelada de hierro fundido se requieren 40kg de piedra caliza y 5.78 metros cúbicos de aire a 100 kPa a 15.5°C. Los hornos de cubilote pueden producir colados de hasta 20 toneladas cada tres horas. Este tipo de equipo es muy parecido al alto horno, sólo sus dimensiones disminuyen notablemente. El mayor problema de estos hornos es que sus equipos para el control de emisiones contaminantes es más costoso que el propio horno, por ello no se controlan sus emisiones de polvo y por lo tanto no se autoriza su operación. CONVERTIDORES La mata fundida proveniente de la fundición contiene cobre, hierro y azufre como sus componentes principales y hasta un 3 % de oxígeno disuelto. Además, ésta contiene cantidades menores de metales como impureza (por ejemplo, As, Sb, Bi, Pb, Ni, Zn y metales preciosos, ver tabla ) los cuales se encontraban en el concentrado original y no se eliminaron durante la fundición. Esta mata se carga en estado fundido (1100 ºC) a un convertidor para su transformación a "cobre blister". El propósito de la conversión es eliminar el hierro, azufre y otras impurezas de la mata produciendo así un cobre metálico líquido en forma de cobre blister (no refinado 98.5 a 99.5 % de Cu). Esto se logra al oxidar la mata fundida a una temperatura elevada, de 1150 a 1250 ºC, con aire. El cobre blister producido posteriormente se refina térmicamente y se electrorefina para producir un cobre de pureza alta ( > 99.99 % de Cu). Los análisis representativos de las materias primas y productos del convertidor se indican en la tabla siguiente: Tabla. Análisis representativos de cargas y productos del convertidor La conversión de la mata de cobre se lleva a cabo casi universalmente en el convertidor cilíndrico Peirce - Smith (figura siguiente). La mata fundida se carga al convertidor por una gran abertura o "boca" y se inyecta aire al interior de la mata por toberas situadas a lo largo del convertidor. Los productos del convertidor son la escoria y el cobre blister. Esto se presenta en diferentes etapas del proceso donde la mata y escoria se vierten en forma separada por la boca del convertidor al girarlo alrededor de su eje (figura 8). Durante la conversión también se producen volúmenes grandes de gases calientes que contienen SO2, los cuales se colectan por medio de una campana ajustable sobre el convertidor. Los gases contienen de 5 a 15% de SO2 y en muchos casos el SO2 se elimina de éstos como ácido sulfúrico. Las reacciones de conversión son exotérmicas y el proceso es autógeno. Figura Corte y posiciones de un convertidor Peirce-Smith Operaciones de Conversión Industriales Los convertidores industriales Peirce-Smith son representativamente de 4 m de diámetro y 9 m de longitud (interior de la coraza) ambas de 20 %. Se construyen de una coraza de acero de 4 a 5 cm. de espesor, revestidos con ladrillo térmico de magnesita o cromo-magnesita de 25 a 75 cm. Los convertidores de estas dimensiones tratan de 300 a 500 toneladas de mata por día para producir de 100 a 200 toneladas de cobre. Una fundadora normalmente tiene de tres a seis convertidores, uno o más de estos en espera o en reparación, dependiendo de la capacidad del horno de fundición. El aire se inyecta al interior de los convertidores (de 500 a 700 m3N/min., 1 atm manométrica) a través de una sola línea de toberas de 4 a 6 cm. de diámetro. Existen de cuarenta a cincuenta toberas por convertidor, dependiendo del diámetro y tamaño del mismo. Las toberas consisten en tubos de acero empotrados en el refractario (figura anterior) y se conectan al tubo distribuidor lineal del convertidor. Las toberas requieren limpieza periódica ("punzonado", "punching") para eliminar las incrustaciones que se forman en la punta de la tobera y obstruyen el flujo de aire. El "punzonado" se efectúa al introducir una barra de acero a través de la tobera por un sistema mecánico o neumático. Cada tobera se puede equipar su propia barra (a menudo disparada automáticamente cuando la presión de aire aumenta debido al bloqueo de la tobera) el punzonado puede efectuarse con dos o cuatro barras montadas sobre un carro móvil detrás del convertidor. Un punzonado adecuado es importante para asegurar un flujo de aire uniformemente distribuido en todas las partes del convertidor. Se instala en el convertidor un mecanismo rotatorio que permite que sea colocado correctamente para la carga, inyección y extracción (figura anterior). Esta capacidad rotacional también permite sacar las toberas de los líquidos en el caso de una falla al inyectar y sumergir las toberas hasta la profundidad deseada en los mismos. Esta última facilidad hace posible al operador dirigir el aire hacia el metal blanco (Cu2S) y no hacia el cobre blister durante la etapa formadora de cobre. Las toberas normalmente se sumergen de 20 a 30 cm. en la mata. El revestimiento refractario de un convertidor dura de 100 a 200 días después de lo cual el convertidor se saca de servicio para revestirlo nuevamente. Los refractarios se gastan más severamente detrás de las toberas y esta región es la que limita la vida útil del convertidor. En general, una inyección fuerte del convertidor para lograr una productividad alta conduce a una vida corta, pero las toneladas reales de cobre producido por revestimiento se pueden, de hecho, aumentar por este tipo de práctica. Etapas del Proceso de Conversión La conversión se lleva a cabo en dos etapas distintas tanto química como físicamente en las cuales se necesita la inyección de aire al interior de la fase de sulfuro fundida: a) La etapa formadora de escoria en la cual el FeS se oxida a FeO, Fe3O4 y gas SO2. Las temperaturas de fundición de los óxidos FeO y Fe3O4 son 1385 ºC y 1597 ºC, respectivamente, y el fundente de sílice se agrega durante esta etapa por medio de un cañón de fundente (figura 8) para que se combine con el FeO y parte del Fe3O4 como escoria líquida. La etapa formadora de escoria se termina cuando el FeS de la mata se ha oxidado casi completamente, es decir, hasta un punto donde la mata contiene menos de 1 % de FeS. La escoria líquida de fayalita (2FeO·SiO2), saturada con magnetita, se vierte varias veces durante la etapa formadora de escoria. El producto principal de esta etapa es el "metal blanco", o sea, Cu2S líquido impuro. b) La etapa formadora de cobre en la cual el azufre remanente se oxida a SO2. El cobre no se oxida apreciablemente por el aire hasta que está casi libre del azufre y por lo tanto, el cobre blister, producto de la conversión, tiene concentraciones bajas en azufre y oxígeno (de 0,02 a 0,1% de S, y de 0,5 a 0,8% de O2). En las operaciones industriales, la mata se agrega al convertidor en dos o más etapas, seguida cada etapa por la oxidación de gran parte del FeS de la carga. La escoria resultante se vierte del convertidor después de cada etapa de oxidación y se agrega nuevamente mata. En esta forma, la cantidad de cobre (como mata) dentro del convertidor aumenta poco a poco hasta que existe suficiente para una "inyección" formadora de cobre final. En este punto, el FeS en la mata se reduce hasta alrededor de 1 %, se elimina una escoria final y el metal blanco resultante (Cu2S impuro) se oxida hasta cobre blister. El proceso de conversión termina cuando el óxido de cobre comienza a presentarse con el cobre líquido. Características mecánicas y tecnológicas del acero Representación de la inestabilidad lateral bajo la acción de un fuerza ejercida sobre una viga de acero. Aunque es difícil establecer las propiedades físicas y mecánicas del acero debido a que estas varían con los ajustes en su composición y los diversos tratamientos térmicos, químicos o mecánicos, con los que pueden conseguirse aceros con combinaciones de características adecuadas para infinidad de aplicaciones, se pueden citar algunas propiedades genéricas: • • • • • • • • • • • • Su densidad media es de 7.850 kg m-3. En función de la temperatura el acero se puede encoger, estirar o derretir. El punto de fusión del acero depende del tipo de aleación. El de su componente principal, el hierro es de alrededor de 1510 ºC, sin embargo el acero presenta frecuentemente temperaturas de fusión de alrededor de 1375 ºC (2500 ºF). Por otra parte el acero rápido funde a 1650ºC5 Su punto de ebullición es de alrededor de 3000 ºC (5400 ºF).6 Es un material muy tenaz, especialmente en alguna de las aleaciones usadas para fabricar herramientas. Relativamente dúctil. Con él se obtienen hilos delgados llamados alambres. Es maleable. Se pueden obtener láminas delgadas llamadas hojalata. La hojalata es una lamina de acero, de entre 0,5 y 0,12 mm de espesor, recubierta, generalmente de forma electrolítica, por estaño. Permite una buena mecanización en máquinas herramientas antes de recibir un tratamiento térmico. Algunas composiciones y formas del acero mantienen mayor memoria, y se deforman al sobrepasar su límite elástico. La dureza de los aceros varía entre la del hierro y la que se puede lograr mediante su aleación u otros procedimientos térmicos o químicos entre los cuales quizá el más conocido sea el temple, aplicable a aceros con alto contenido en carbono, que permite, cuando es superficial, conservar un núcleo tenaz en la pieza que evite fracturas frágiles (véase también endurecimiento del acero). Aceros típicos con un alto grado de dureza superficial son los que se emplean en las herramientas de mecanizado, denominados aceros rápidos que contienen cantidades significativas de cromo, wolframio, molibdeno y vanadio. Los ensayos tecnológicos para medir la dureza son Brinell, Vickers y Rockwell, entre otros. Se puede soldar con facilidad. La corrosión es la mayor desventaja de los acero ya que el hierro se oxida con suma facilidad incrementando su volumen y provocando • • • grietas superficiales que posibilitan el progreso de la oxidación hasta que se consume la pieza por completo. Tradicionalmente los aceros se han venido protegiendo mediante tratamientos superficiales diversos. Si bien existen aleaciones con resistencia a la corrosión mejorada como los aceros de construcción «corten» aptos para intemperie (en ciertos ambientes) o los aceros inoxidables. Posee una alta conductividad eléctrica. Aunque depende de su composición es aproximadamente de7 3*106 S m-1. En las líneas aéreas de alta tensión se utilizan con frecuencia conductores de aluminio con alma de acero proporcionando éste último la resistencia mecánica necesaria para incrementar los vanos entre la torres y optimizar el coste de la instalación. Se utiliza para la fabricación de imanes permanentes artificiales, ya que una pieza de acero imantada no pierde su imantación si no se la calienta hasta cierta temperatura. La magnetización artificial se hace por contacto, inducción o mediante procedimientos eléctricos. En lo que respecta al acero inoxidable, al acero inoxidable ferrítico sí se le pega el imán, pero al acero inoxidable austenítico no se le pega el imán debido a que en su composición hay un alto porcentaje de cromo y níquel. Un aumento de la temperatura en un elemento de acero provoca un aumento en la longitud del mismo. Este aumento en la longitud puede valorarse por la expresión: L = t° L, siendo a el coeficiente de dilatación, que para el acero vale aproximadamente 1,2 · 10-5 (es decir = 0,000012). Si existe libertad de dilatación no se plantean grandes problemas subsidiarios, pero si esta dilatación está impedida en mayor o menor grado por el resto de los componentes de la estructura, aparecen esfuerzos complementarios que hay que tener en cuenta. El acero se dilata y se contrae según un coeficiente de dilatación similar al coeficiente de dilatación del hormigón, por lo que resulta muy útil su uso simultáneo en la construcción, formando un material compuesto que se denomina hormigón armado.8 El acero da una falsa sensación de seguridad al ser incombustible, pero sus propiedades mecánicas fundamentales se ven gravemente afectadas por las altas temperaturas que pueden alcanzar los perfiles en el transcurso de un incendio. Formación del acero. Diagrama hierro-carbono (Fe-C) Diagrama de fase hierro-carbono (Fe-C), permite visualizar las condiciones de existencia de las fases que conforman el acero. El carbono es un elemento clave en el acero. Su porcentaje varía del 0,01% al 1,5%, de unos tipos de acero a otros. Es el elemento responsable de dar la dureza y la resistencia del acero. En función del contenido de carbono suele dividirse el diagrama de hierro-carbono en dos partes: una que comprende las aleaciones con menos del 2 % de carbono y que se llaman aceros, y otra integrada por las aleaciones con más de un 2 % de carbono, que se llaman fundiciones. A su vez, la región de los aceros se subdivide en otras dos: una formada por los aceros cuyo contenido en carbono es inferior al correspondiente a la composición eutectoide (0,77 % de C) los cuales se llaman aceros hipoeutectoides, y la otra compuesta por los aceros cuyo contenido se encuentra entre 0,77 y 2 %, y que se conocen por aceros hipereutectoides. Estas fases se obtienen a temperatura ambiente mediante el enfriamiento lento de un acero. Las principales son: 9 • • • • La ferrita ( ) es blanda y dúctil. Su estructura es cúbica centrada en el cuerpo (BCC), es estable hasta los 721 ºC La austenita ( ) es la más dúctil de las fases del diagrama Fe-Fe3C, su estructura es cúbica centrada en las caras (FCC). Esta fase permite un proceso de difusión con el carbono mucho más rápido. La cementita (Fe3C) es un compuesto ínter metálico de fórmula Fe3C, con un contenido de carbono de 6,67%, es dura y frágil. La perlita es el micro constituyente eutectoide que se forma a los 727 ºC a partir de austenita con 0.77 % de carbono. Es una mezcla bifásica de ferrita y cementita de morfología laminar. Sus propiedades mecánicas serán intermedias entre la ferrita blanda y la cementita dura que la compone. Fases fuera de equilibrio Estas condiciones se alcanzan mediante el uso de tratamientos térmicos como el temple (enfriamiento rápido) y el revenido (recalentamiento sostenido) para lograr la formación de martensita, bainita y otros micro constituyentes que tienen como propiedades ser duros y frágiles. Otros elementos en el acero Elementos aleantes del acero y mejoras obtenidas con la aleación Aunque la composición química de cada fabricante de aceros es casi secreta, certificando a sus clientes solo la resistencia y dureza de los aceros que producen, sí se conocen los compuestos agregados y sus porcentajes admisibles10. • • Aluminio: Se utiliza básicamente como desoxidante en elaboración del acero. Boro: Logra aumentar la capacidad de endurecimiento cuando el acero está totalmente desoxidado. Acería. Nótese la tonalidad del vertido. • • • • • Cobalto: Muy endurecedor. Disminuye la templabilidad. Mejora la dureza en caliente. El cobalto es un elemento poco habitual en los aceros. Cromo: Es un elemento clave para crear acero inoxidable; también se utiliza en revestimientos embellecedores o recubrimientos duros de gran resistencia al desgaste, como émbolos, ejes, etc.. Estaño: Es el elemento que se utiliza para recubrir láminas muy delgadas de acero que conforman la hojalata. Manganeso: Se usa para desoxidar el acero y para aumentar su capacidad de endurecimiento en el temple. Molibdeno: Es un elemento habitual del acero y aumenta mucho la profundidad de endurecimiento de acero, así como su tenacidad. Los aceros inoxidables austeníticos contienen molibdeno para mejorar la resistencia a la corrosión. • • • • • • • • Nitrógeno: Se agrega a algunos aceros para promover la formación de austenita. Níquel: Es el principal formador de austenita, que aumenta la tenacidad y resistencia al impacto. El níquel se utiliza mucho para producir acero inoxidable, porque aumenta la resistencia a la corrosión. Plomo: Se añade a algunos aceros para mejorar mucho la maquinabilidad. Silicio: Aumenta moderadamente la templabilidad. Se usa como elemento desoxidante. Aumenta la resistencia de los aceros bajos en carbono. Titanio: Se usa para estabilizar y desoxidar el acero. Tungsteno: También conocido como wolframio, se añade para fabricar acero rápido, porque soporta muy bien las altas temperaturas. Vanadio: Forma parte del acero de herramientas porque aumenta la capacidad de endurecimiento. Zinc:Es elemento clave para producir chapa de acero galvanizado. Los porcentajes de cada uno de los aleantes que pueden configurar un tipo determinado de acero están normalizados. Impurezas en el acero Se denomina impurezas a todos los elementos indeseables en la composición de los aceros. Se encuentran en los aceros y también en las fundiciones como consecuencia de que están presentes en los minerales o los combustibles. Se procura eliminarlas o reducir su contenido debido a que son perjudiciales para las propiedades de la aleación. En los casos en los que eliminarlas resulte imposible o sea demasiado costoso, se admite su presencia en cantidades mínimas. • Azufre: Límite máximo aproximado: 0,04%. El azufre con el hierro forma sulfuro, el que, conjuntamente con la austenita, da lugar a un eutéctico cuyo punto de fusión es bajo y que, por lo tanto, aparece en bordes de grano. Cuando los lingotes de acero colado deben ser laminados en caliente, dicho eutéctico se encuentra en estado líquido, lo que provoca el desgranamiento del material. Se controla la presencia de sulfuro mediante el agregado de manganeso. El manganeso tiene mayor afinidad por el azufre que hierro por lo que en lugar de FeS se forma MnS que tiene alto punto de fusión y buenas propiedades plásticas. El contenido de Mn debe ser aproximadamente 5 veces la concentración de S para que se produzca la reacción. El resultado final, una vez eliminados los gases causantes, es una fundición menos porosa de mayor calidad. Aunque se considera un elemento perjudicial, su presencia es positiva para mejorar la maquinabilidad en los procesos de mecanizado. Cuando el porcentaje de azufre es alto puede causar poros en la soldadura. • Fósforo: Límite máximo aproximado: 0,04%. El fósforo resulta perjudicial, ya sea al disolverse en la ferrita, pues disminuye la ductilidad, como también por formar FeP (fosfuro de hierro). El fosfuro de hierro, junto con la austenita y la cementita, forma un eutéctico ternario denominado esteadita, el que es sumamente frágil y posee punto de fusión relativamente bajo, por lo cual aparece en bordes de grano, transmitiéndole al material su fragilidad. Aunque se considera un elemento perjudicial en los aceros, porque reduce la ductilidad y la tenacidad, haciéndolo quebradizo, a veces se agrega para aumentar la resistencia a la tensión y mejorar la maquinabilidad. Normalización de las diferentes clases de acero Llave de acero aleado para herramientas Como existe una variedad muy grande de clases de acero diferentes que se pueden producir en función de los elementos aleantes que constituyan la aleación, se ha impuesto, en cada país, en cada fabricante de acero, y en muchos casos en los mayores consumidores de aceros, unas Normas que regulan la composición de los aceros y las prestaciones de los mismos. Por ejemplo en España actualmente están regulados por la norma UNE-EN 10020:2001 y antiguamente estaban reguladas por la norma UNE-3601011. Existen otras normas reguladoras del acero, como la clasificación de AISI (de hace 70 años, y de uso mucho más extenso internacionalmente), ASTM12, DIN, o la ISO 3506. A modo de ejemplo se expone la clasificación regulada por la norma UNE-36010, que ya ha sido sustituida por la norma UNE-EN10020:2001, y están editadas por AENOR: Norma UNE-36010 Artículo principal: UNE-36010 La norma española UNE-36010 es una normalización o clasificación de los aceros para que sea posible conocer las propiedades de los mismos. Esta Norma indica la cantidad mínima o máxima de cada componente y las propiedades mecánicas que tiene el acero resultante. En España, el Instituto del Hierro y del Acero (IHA) creó esta norma que clasifica a los aceros en cinco series diferentes a las que identifica por un número. Cada serie de aceros se divide a su vez en grupos, que especifica las características técnicas de cada acero, matizando sus aplicaciones específicas. El grupo de un acero se designa con un número que acompaña a la serie a la que pertenece. La clasificación de grupos por serie, sus propiedades y sus aplicaciones se recogen en la Tabla siguiente. Clasificación de los Aceros según la Norma UNE-36010 Serie Grupo Serie 1 Grupo 1 Acero al carbono. Grupos 2 y 3 Acero aleado de gran resistencia. Grupo 4 Acero aleado de gran elasticidad. Grupo 5 y 6 Aceros de cementación. Grupo 7 Aceros de nitruración. Grupo 1 Aceros de fácil mecanización. Grupo 2 Aceros para soldadura. Grupo 3 Aceros magnéticos. Grupo 4 Aceros de dilatación térmica. Grupo 5 Aceros resistentes a la fluencia. Serie 2 Denominación Descripción Son aceros al carbono y por tanto no aleados. Cuanto más carbono tienen sus respectivos grupos son más duros y menos soldables, pero también son más resistentes a los choques. Son aceros aptos para tratamientos térmicos que aumentan su resistencia, tenacidad y dureza. Son los aceros que cubren las necesidades generales de la Ingeniería de construcción tanto industrial como civil y comunicaciones. Son aceros a los que se incorporan elementos aleantes que mejoran las propiedades necesarias que se exigen las piezas que se van a fabricar con ellos como, por ejemplo, tornillería, tubos y perfiles en los grupos 1 y 2. Núcleos de transformadores y motores en los aceros del grupo 3, piezas de unión de materiales férricos con no férricos sometidos a temperatura en el grupo 4, piezas instaladas en instalaciones químicas y refinerías sometidas a altas temperaturas los del grupo 5. Serie 3 Serie 5 Grupo 1 Aceros inoxidables. Grupos 2 y 3 Aceros resistentes al calor. Grupo 1 Acero al carbono para herramientas. Grupos 2, 3 y 4 Acero aleado para herramientas. Grupo 5 Aceros rápidos. Estos aceros están basados en la adición de cantidades considerables de cromo y níquel a los que se suman otros elementos para otras propiedades más específicas. Son resistentes a ambientes húmedos, a agentes químicos y a altas temperaturas. Sus aplicaciones más importantes son para la fabricación de depósitos de agua, cámaras frigoríficas industriales, material clínico e instrumentos quirúrgicos, pequeños electrodomésticos, material doméstico como cuberterías, cuchillería, etc. Son aceros aleados con tratamientos térmicos que les dan características muy particulares de dureza, tenacidad y resistencia al desgaste y a la deformación por calor. Los aceros del grupo 1 de esta serie se utilizan para construir maquinaria de trabajos ligeros en general, desde la carpintería y la agrícola (aperos). Los grupos 2 ,3 y 4 se utilizan para construir máquinas y herramientas más pesadas. El grupo 5 se utiliza para construir herramientas de corte. Serie 8 Grupo 1 Aceros para moldeo. Son aceros adecuados para moldear piezas por vertido en moldes de arena, por lo que requieren cierto contenido mínimo de carbono que les dé estabilidad. Se utilizan para el moldeo de piezas geométricas complicadas, con características muy variadas, que posteriormente son acabadas en procesos de mecanizado. Clasificación de los materiales La manera más general de clasificación de los materiales es la siguiente: a. Metálicos • • Ferrosos No ferrosos b. No metálicos • • Orgánicos Inorgánicos Metales Ferrosos Los metales ferrosos como su nombre lo indica su principal componente es el fierro, sus principales características son su gran resistencia a la tensión y dureza. Las principales aleaciones se logran con el estaño, plata, platino, manganeso, vanadio y titanio. Los principales productos representantes de los materiales metálicos son: • • • • Fundición de hierro gris Hierro maleable Aceros Fundición de hierro blanco Su temperatura de fusión va desde los 1360ºC hasta los 1425ªC y uno de sus principales problemas es la corrosión. Metales no Ferrosos Por lo regular tienen menor resistencia a la tensión y dureza que los metales ferrosos, sin embargo su resistencia a la corrosión es superior. Su costo es alto en comparación a los materiales ferrosos pero con el aumento de su demanda y las nuevas técnicas de extracción y refinamiento se han logrado abatir considerablemente los costos, con lo que su competitividad ha crecido notablemente en los últimos años. Los principales metales no ferrosos utilizados en la manufactura son: • • • • • • Aluminio Cobre Magnesio Níquel Plomo Titanio • Zinc Los metales no ferrosos son utilizados en la manufactura como elementos complementarios de los metales ferrosos, también son muy útiles como materiales puros o aleados los que por sus propiedades físicas y de ingeniería cubren determinadas exigencias o condiciones de trabajo, por ejemplo el bronce (cobre, plomo, estaño) y el latón (cobre zinc). Materiales no Metálicos a. Materiales de origen orgánico b. Materiales de origen inorgánico Materiales orgánicos Son así considerados cuando contienen células de vegetales o animales. Estos materiales pueden usualmente disolverse en líquidos orgánicos como el alcohol o los tretracloruros, no se disuelven en el agua y no soportan altas temperaturas. Algunos de los representantes de este grupo son: • • • • • • Plásticos Productos del petróleo Madera Papel Hule Piel Materiales de origen inorgánico Son todos aquellos que no proceden de células animales o vegetales o relacionadas con el carbón. Por lo regular se pueden disolver en el agua y en general resisten el calor mejor que las sustancias orgánicas. Algunos de los materiales inorgánicos más utilizados en la manufactura son: • • • • • Los minerales El cemento La cerámica El vidrio El grafito (carbón mineral) Los materiales sean metálicos o no metálicos, orgánicos o inorgánicos casi nunca se encuentran en el estado en el que van a ser utilizados, por lo regular estos deben ser sometidos a un conjunto de procesos para lograr las características requeridas en tareas específicas. Estos procesos han requerido del desarrollo de técnicas especiales muy elaboradas que han dado el refinamiento necesario para cumplir con requerimientos prácticos. También estos procesos aumentan notablemente el costo de los materiales, tanto que esto puede significar varias veces el costo original del material por lo que su estudio y perfeccionamiento repercutirán directamente en el costo de los materiales y los artículos que integraran. Los procesos de manufactura implicados en la conversión de los materiales originales en materiales útiles para el hombre requieren de estudios especiales para lograr su mejor aplicación, desarrollo y disminución de costo. En la ingeniería la transformación de los materiales y sus propiedades tienen un espacio especial, ya que en casi todos los casos de ello dependerá el éxito o fracaso del uso de un material. LAS FUNDICIONES Las fundiciones, como los aceros, son en esencia aleaciones de hierro y carbono aunque, considerando el diagrama Fe-C, las primeras contienen una cantidad de carbono superior a la de saturación de la austenita a temperatura eutéctica. Por tanto, el contenido en carbono de las fundiciones varía de 2 a 6,67%. Sin embargo como los contenidos de carbono elevados confieren una gran fragilidad a la fundición, la mayoría de los tipos comerciales fabricados contienen una cantidad comprendida entre el 2,5 y el 4%. La ductilidad de las fundiciones es muy baja, por lo que no puede laminarse, estirarse o deformarse a temperatura ambiente, no siendo la mayor parte de ella maleable a ninguna temperatura. Sin embargo, funden fácilmente y pueden moldearse formas complicadas que usualmente se mecanizan después a dimensiones. Tipos De Fundición La mejor manera de clasificar las fundiciones es en función de su estructura metalográfica. Al estudiar los distintos tipos hay que considerar cuatro variables que influyen considerablemente en su formación, a saber: el contenido de carbono, el contenido en elementos de aleación e impurezas, la velocidad de enfriamiento durante y después de la solidificación, y el tratamiento térmico que reciben posteriormente. Estas variables determinan la condición y forma física del carbono. El carbono puede encontrarse en la fundición combinado con el hierro en forma de cementita, o bien libre en forma de grafito. La forma y distribución de las partículas de carbono libre influyen considerablemente en las propiedades físicas de la fundición. Los distintos tipos de las mismas son los siguientes: Fundiciones Blancas Fundiciones Grises Fundiciones Nodulares Fundiciones Maleables Fundiciones en Coquilla Fundiciones Aleadas Fundición blanca Son aquellas en las que todo el carbono se encuentra combinado bajo la forma de cementita. Todas ellas son aleaciones hipoeutécticas y las transformaciones que tienen lugar durante su enfriamiento son análogas a las de la aleación de 2,5 % de carbono. FUNDICION BLANCA Se forma al enfriar rápidamente la fundición de hierro desde el estado líquido, siguiendo el diagrama hierro-cementita meta estable; durante el enfriamiento, la austenita solidifica a partir de la aleación fundida en forma de dendritas. A los 1130°C el líquido alcanza la composición eutéctica (4.3%C) y se solidifica como un eutéctico de austenita y cementita llamado ledeburita. Este eutéctico aparece en su mayor parte como cementita blanca que rodea las dendritas de forma de helecho. Micro estructura de la fundición blanca Al enfriarse las fundiciones desde 1130°C hasta 723°C el contenido de carbono de la austenita varía de 2 a 0.8%C al precipitarse cementita secundaria que se forma sobre las partículas de cementita ya presentes, a los 723°C la austenita se transforma en perlita, el eutectoide de los aceros. La fundición blanca se utiliza en cuerpos moledores por su gran resistencia al desgaste, el enfriamiento rápido evita la grafitización de la cementita pero si se calienta de nuevo la pieza colada a una temperatura de 870°C el grafito se forma lentamente adoptando una forma característica conocida como carbono de revenido, resultando la fundición maleable. La matriz de la fundición puede ser ferrítica o perlítica si la aleación se enfría más rápidamente a partir de los 723°C al final del tratamiento de maleabilización. Las fundiciones maleables se utilizan en la fabricación de partes de maquinaria agrícola, industrial y de transporte. La figura 1 muestra la micro estructura típica de las fundiciones blancas, la cual está formada por dendritas de austenita transformada (perlita), en una matriz blanca de cementita. Observando la misma figura con más aumentos, vemos que las áreas oscuras son perlita (fig. 2). Fig.1, x100 Fig.2, x400 Estas fundiciones se caracterizan por su dureza y resistencia al desgaste, siendo sumamente quebradiza y difícil de mecanizar. Esta fragilidad y falta de maquinabilidad limita la utilización industrial de las fundiciones " totalmente blancas ", quedando reducido su empleo a aquellos casos en que no se quiera ductilidad como en las camisas interiores de las hormigoneras, molinos de bolas, algunos tipos de estampas de estirar y en las boquillas de extrusión. También se utiliza en grandes cantidades, como material de partida, para la fabricación de fundición maleable. FUNDICIÓN GRIS La mayoría de las fundiciones grises son aleaciones hipoeutécticas que contienen entre 2,5 y 4% de carbono. El proceso de grafitización se realiza con mayor facilidad si el contenido de carbono es elevado, las temperaturas elevadas y si la cantidad de elementos grafitizantes presentes, especialmente el silicio, es la adecuada. Para que grafiticen la cementita eutéctica y la proeutectoide, aunque no la eutectoide, y así obtener una estructura final perlítica hay que controlar cuidadosamente el contenido de silicio y la velocidad de enfriamiento. El grafito adopta la forma de numerosas laminillas curvadas, que son las que proporcionan a la fundición gris su característica FUNDICION GRIS La mayor parte del contenido de carbono en el hierro gris se da en forma de escamas o láminas de grafito, las cuales dan al hierro su color y sus propiedades deseables. Clasificación de las láminas de grafito según la forma, tamaño y distribución El hierro gris es fácil de maquinar, tiene alta capacidad de templado y buena fluidez para el colado, pero es quebradizo y de baja resistencia a la tracción. Micro estructura del hierro gris ( ferrita y perlita) El hierro gris se utiliza bastante en aplicaciones como bases o pedestales para máquinas, herramientas, bastidores para maquinaria pesada, y bloques de cilindros para motores de vehículos, discos de frenos, herramientas agrícolas entre otras. Resistencia Clase 20 30 40 50 60 a la tracción-psi 24000 34000 44000 54000 64000 Dureza brinell Estructura 130-180 170-210 210-260 240-280 260-300 F,P F,P,G P,G P,G B,G Clasificación de las fundiciones grises según la norma ASTM A48-41. F: ferrita; P: perlita; G: grafito; B: bainita Fractura grisácea o negruzca. Fig.1, x100 pulida Fig.2, x100 Si la composición y la velocidad de enfriamiento son tales que la cementita eutectoide también se grafitiza presentará entonces una estructura totalmente ferrítica (Fig. 1, x100 pulida). Por el contrario, si se impide la grafitización de la cementita eutectoide, la matriz será totalmente perlítica (Fig. 2, x400). La fundición gris constituida por mezcla de grafito y ferrita es la más blanda y la que menor resistencia mecánica presenta; la resistencia a la tracción y la dureza aumentan con la cantidad de carbono combinada que existe, alcanzando su valor máximo en la fundición gris perlítica. Las figuras 3 y 4 muestran la microestructura de una fundición gris cuya matriz es totalmente perlítica. Además, en la micrografía a 200 aumentos igual que en la Fig. 2se observan como unos granos blancos, los cuales resueltos a mayores aumentos (Fig. 4, x400) son, en realidad, esteadita. Fig.3, x200 Fig.4, x400 La mayoría de las fundiciones contienen fósforo procedente del mineral de hierro en cantidades variables entre 0,10 y 0,90%, el cual se combina en su mayor parte con el hierro formando fosfuro de hierro (Fe3P). Este fosfuro forma un eutéctico ternario con la cementita y la austenita (perlita a temperatura ambiente) conocida como esteatita (Fig. 4), la cual es uno de los constituyentes normales de las fundiciones. La esteadita, por sus propiedades físicas, debe controlarse con todo cuidado para obtener unas características mecánicas óptimas. FUNDICIÓN NODULAR Al encontrarse el carbono en forma esferoidal, la continuidad de la matriz se interrumpe mucho menos que cuando se encuentra en forma laminar; esto da lugar a una resistencia a la tracción y tenacidad mayor que en la fundición gris ordinaria. La fundición nodular se diferencia de la fundición maleable en que normalmente se obtiene directamente en bruto de fusión sin necesidad de tratamiento térmico posterior. Además los nódulos (fig. 1) presentan una forma más esférica que los aglomerados de grafito, más o menos irregulares, que aparecen en la fundición maleable. El contenido total en carbono de la fundición nodular es igual al de la fundición gris. Las partículas esferoidales de grafito se forman durante la solidificación, debido a la presencia de pequeñas cantidades de alguno elemento de aleación formadores de nódulos, normalmente magnesio y cerio, los cuales se adicionan al caldero inmediatamente antes de pasar el metal a los moldes. La cantidad de ferrita presente en la matriz en bruto de colada depende de la composición y de la velocidad de enfriamiento. Las fundiciones ferríticas (fig. 2) son las que proporcionan la máxima ductilidad, tenacidad y maquinabilidad. FUNDICION NODULAR La fundición nodular, dúctil o esferoidal se produce en hornos cubilotes, con la fusión de arrabio y chatarra mezclados con coque y piedra caliza. La mayor parte del contenido de carbono en el hierro nodular, tiene forma de esferoides. Para producir la estructura nodular el hierro fundido que sale del horno se inocula con una pequeña cantidad de materiales como magnesio, cerio, o ambos. Esta micro estructura produce propiedades deseables como alta ductilidad, resistencia, buen maquinado, buena fluidez para la colada, buena endurecibilidad y tenacidad. No puede ser tan dura como la fundición blanca, salvo que la sometan a un tratamiento térmico, superficial, especial. Este tipo de fundición se caracteriza por que en ella el grafito aparece en forma de esferas minúsculas y así la continuidad de la matriz se interrumpe mucho menos que cuando se encuentra en forma laminar, esto da lugar a una resistencia a la tracción y tenacidad mayores que en la fundición gris ordinaria. La fundición nodular se diferencia de la fundición maleable en que normalmente se obtiene directamente en bruto de colada sin necesidad de tratamiento térmico posterior. El contenido total de carbono de la fundición nodular es igual al de la fundición gris. Las partículas esferoidales de grafito se forman durante la solidificación debido a la presencia de pequeñas cantidades de magnesio o cerio, las cuales se adicionan al caldero antes de colar el metal a los moldes, la cantidad de ferrita presente en la matriz depende de la composición y de la velocidad de enfriamiento. Micro estructura de la fundición nodular ferrítico perlítica Las fundiciones nodulares perlíticas presentan mayor resistencia pero menor ductilidad y maquinabilidad que las fundiciones nodulares ferríticas. Resistencia Dureza brinell 28000 32000 38000 149-187 170-207 187-255 (%) 18 12 6 70000 47000 217-267 3 84000 63000 240-300 2 Clase 60-40-18 65-45-12 80-55-06 100-7003 120-7002 alargamiento Lím. fluencia psix1000 42000 45000 56000 Clasificación de la fundición nodular teniendo en cuenta sus características mecánicas de acuerdo con la norma ASTM A-536. Cada día se están sustituyendo muchos elementos de máquinas que tradicionalmente eran de fundición gris o acero por fundición nodular. Fig.1, x100 pulida Fig.2, x100 Estas fundiciones, bien en bruto de fundición o tras haber sufrido un normalizado, pueden presentar también una matriz constituida en gran parte por perlita (fig. 3 y 4). Fig.3, x100 Fig.4, x400 FUNDICIÓN MALEABLE La tendencia que presenta la cementita a dejar en libertad carbono, constituye la base de la fabricación de la fundición maleable. La reacción de descomposición se ve favorecida por las altas temperaturas, por la presencia de impurezas sólidas no metálicas, por contenidos de carbono más elevados y por la existencia de elementos que ayudan a la descomposición del Fe3C. La maleabilización tiene por objeto transformar todo el carbono que en forma combinada contiene la fundición blanca, en nódulos irregulares de carbono de revenido (grafito) y en ferrita. Industrialmente este proceso se realiza en dos etapas conocidas como primera y segunda fases de recocido. En la primera fase del recocido, la fundición blanca se calienta lentamente a una temperatura comprendida entre 840 y 980ºC. Durante el calentamiento, la perlita se transforma en austenita al alcanzar la línea crítica inferior y, a medida que aumenta la temperatura, la austenita formada disuelve algo más de cementita. La segunda fase del recocido consiste en un enfriamiento muy lento al atravesar la zona crítica en que tiene lugar la reacción eutectoide. Esto permite a la austenita descomponerse en las fases estables de ferrita y grafito. Una vez realizada la grafitización, la estructura no sufre ninguna nueva modificación durante el enfriamiento a temperatura ambiente, quedando constituida por nódulos de carbono de revenido (rosetas) en una matriz ferrítica (Fig. 1 y 2). Este tipo de fundición se denomina normal o ferrítica (Fig. 2). Bajo la forma de rosetas, el carbono revenido no rompe la continuidad de la matriz ferrítica tenaz, lo que da lugar a un aumento de la resistencia y de la ductilidad. Fig.1, x100 pulida Fig.2, x100 Si durante el temple al aire se consigue que el enfriamiento a través de la región eutectoide se realice con la suficiente rapidez, la matriz presentará una estructura totalmente perlítica. Fig.3 x50 Fig.4 x200 Si el enfriamiento en la región eutectoide no se realiza a la velocidad necesaria para que todo el carbono quede en forma combinada, las zonas que rodean los nódulos de carbono de revenido estarán totalmente grafitizadas mientras que las más distantes presentarán una estructura totalmente perlítica, debido al aspecto que presenta estas estructuras al microscopio, se conocen como estructura de ojo de buey (Fig. 3 y 4). Este tipo de fundición también puede obtenerse a partir de la fundición maleable ferrítica mediante un calentamiento de esta última por encima de la temperatura crítica inferior, seguido de un enfriamiento rápido. FUNDICION Proceso de producción de piezas metálicas a través del vertido de metal fundido sobre un molde hueco, por lo general hecho de arena. El principio de fundición es simple: se funde el metal, se vacía en un molde y se deja enfriar, existen todavía muchos factores y variables que se deben considerar para lograr una operación exitosa de fundición. La fundición es un antiguo arte que todavía se emplea en la actualidad, aunque ha sido sustituido en cierta medida por otros métodos como el fundido a presión (método para producir piezas fundidas de metal no ferroso, en el que el metal fundido se inyecta a presión en un molde o troquel de acero), la forja (proceso de deformación en el cual se comprime el material de trabajo entre dos dados usando impacto o presión para formar la parte), la extrusión (es un proceso de formado por compresión en el cual el metal de trabajo es forzado a fluir a través de la abertura de un dado para darle forma a su sección transversal), el mecanizado y el laminado (es un proceso de deformación en el cual el espesor del material de trabajo se reduce mediante fuerzas de compresión ejercidas por dos rodillos opuestos). Procesos de Fundición La realización de este proceso empieza lógicamente con el molde. La cavidad de este debe diseñarse de forma y tamaño ligeramente sobredimensionado, esto permitirá la contracción del metal durante la solidificación y enfriamiento. Cada metal sufre diferente porcentaje de contracción, por lo tanto si la presión dimensional es crítica la cavidad debe diseñarse para el metal particular que se va a fundir. Los moldes se hacen de varios materiales que incluyen arena, yeso, cerámica y metal. Los procesos de fundición se clasifican de acuerdo a los diferentes tipos de moldes. Proceso: Se calienta primero el metal a una temperatura lo suficientemente alta para transformarlo completamente al estado líquido, después se vierte directamente en la cavidad del molde. En un molde abierto el metal líquido se vacía simplemente hasta llenar la cavidad abierta. En un molde cerrado existe una vía de paso llamada sistema de vaciado que permite el flujo del metal fundido desde afuera del molde hasta la cavidad, este es el más importante en operaciones de fundición. Cuando el material fundido en el molde empieza a enfriarse hasta la temperatura suficiente para el punto de congelación de un metal puro, empieza la solidificación que involucra un cambio de fase del metal. Se requiere tiempo para completar este cambio de fase porque es necesario disipar una considerable cantidad de calor. El metal adopta la forma de cavidad del molde y se establecen muchas de las propiedades y características de la fundición. Al enfriarse la fundición se remueve del molde; para ello pueden necesitarse procesamientos posteriores dependiendo del método de fundición y del metal que se usa. Entre ellos tenemos: El desbaste del metal excedente de la fundición. La limpieza de la superficie. Tratamiento térmico para mejorar sus propiedades. Pueden requerir maquinado para lograr tolerancias estrechas en ciertas partes de la pieza y para remover la superficie fundida y la micro estructura metalúrgica asociada. CLASIFICACIÓN DEL PROCESO DE FUNDICIÓN: Según el tipo de modelo: Modelos removibles El molde para este disco se hace una caja de moldeo que consta de dos partes. A la parte superior se le llama tapa, y a la parte inferior base. Las partes de la caja se mantiene en una posición definida, una con respecto a la otra por medio de unos pernos colocados en dos lados opuestos de la base que encajan en agujeros de unos ángulos sujetos a los lados de las tapas. El primer paso en la hechura de un molde es el de colocar el modelo en el tablero de moldear, que coincide con la caja de moldeo. Enseguida se coloca la tapa sobre el tablero con los pernos dirigidos hacia abajo. Luego se criba sobre el modelo para que lo vaya cubriendo; la arena deberá compactarse con los dedos en torno al modelo, terminando de llenar completamente la tapa. Para moldes pequeños, la arena se compacta firmemente con apisonadores manuales. El apisonado mecánico se usa para moldes muy grandes y para moldeo de gran producción. El grado de apisonado necesario solo se determina por la experiencia. Si el molde no ha sido lo suficientemente apisonado, no se mantendrá en su posición al moverlo o cuando el metal fundido choque con él. Por otra parte, si el apisonado es muy duro no permitirá que escape el vapor y el gas cuando penetre el metal fundido al molde. Después que se ha terminado de apisonar, se quita el exceso de arena arrasándola con una barra recta llamada rasera. Para asegurar el escape de gases cuando se vierta el metal, se hacen pequeños agujeros a través de la arena, que llegan hasta unos cuantos milímetros antes del modelo. Se voltea la mitad inferior del molde, de tal manera que la tapa se puede colocar en su posición y se termina el moldeo. Antes de voltearlo se esparce un poco de arena sobre el molde y se coloca en la parte superior un tablero inferior de moldeo. Este tablero deberá moverse hacia atrás y hacia delante varias veces para asegurar un apoyo uniforme sobre el molde. Entonces la caja inferior se voltea y se retira la tabla de moldeo quedando expuesto el moldeo. La superficie de la arena es alisada con una cuchara de moldeador y se cubre con una capa fina seca de arena de separación. La arena de separación es una arena de sílice de granos finos y sin consistencia. Con ella se evita que se pegue la arena de la tapa sobre la arena de la base. Enseguida se coloca la tapa sobre la base, los pernos mantienen la posición correcta en ambos lados. Para proporcionar un conducto por donde entra el metal al molde, se coloca un mango aguzado conocido como clavija de colada y es colocada aproximadamente a 25 mm de un lado del modelo, las operaciones de llenado, apisonado y agujerado para escape de gases, se llevan a cabo en la misma forma que la base. Con esto, el molde ha quedado completo excepto que falta quitar el modelo y la clavija de colada. Primero se extrae esta, abocardándose el conducto por la parte superior, de manera que se tenga una gran apertura por donde verter el metal. La mitad de la caja correspondiente a la mitad superior es levantada a continuación y se coloca a un lado. Antes de que sea extraído el modelo, se humedece con un pincel la arena alrededor de los bordes del modelo, de modo que la orilla del molde se mantenga firme al extraerlo. Para aflojar el modelo, se encaja en el una alcayata y se golpea ligeramente en todas direcciones. Enseguida se puede extraer el modelo levantándolo de la alcayata. Antes de cerrar el molde, debe cortarse un pequeño conducto conocido como alimentador, entre la caída del molde hecho por el modelo y la abertura de la colada. Este conducto se estrecha en el molde de tal forma que después que el metal ha sido vertido el mismo en el alimentador se puede romper muy cerca de la pieza. Para prever la contracción del metal, algunas veces se hace un agujero en la tapa, el cual provee un suministro de metal caliente a medida que la pieza fundida se va enfriando, esta aventura es llamada rebosadero. La superficie del molde se debe rociar, juntar o espolvorear con un material preparado para recubrimiento, dichos recubrimientos contienen por lo general polvo de sílice y grafito. La capa de recubrimiento del molde mejora el acabado de la superficie de colado y reduce los posibles defectos en las superficies. Antes que el metal sea vaciado en el molde, deberá colocarse un peso sobre la tapa para evitar que el metal líquido salga fuera del molde en la línea de partición. Modelos desechables En la fabricación de moldes con modelos desechables, el modelo, que es usualmente de una pieza, es colocado en el tablero y la base de la caja se moldea en la forma convencional. Se agregan unos agujeros para ventilación y la base se voltea completamente para el moldeo de la tapa. Casi siempre la arena en verde es el material común más usado, aunque pueden usarse arenas especiales para otros propósitos, como arena de cara que se utiliza de inmediato alrededor del modelo. La arena en la línea de partición no se aplica en la tapa de la caja y la base no puede ser separada hasta que la fundición es removida. En cambio, la tapa es llenada con arena y se apisona. En cualquiera de los casos la colada es cortada en el sistema de alimentación o ambas, como usualmente sucede, esta es una parte del modelo desechable. Se hacen los agujeros para ventilación y se coloca algo de peso para oprimir la tapa. Los modelos de poli estireno, incluyen la alimentación y el sistema de colado como se. La colada es vaciada rápidamente en la pieza moldeada; el poli estireno se vaporiza; y el metal llena el resto de la cabida. Después de enfriado la fundición es eliminada del molde y limpiada. El metal es vaciado lo suficientemente rápido para prevenir la combustión del poli estireno, con el resultado de residuos carbonosos. En cambio, los gases, debido a la vaporización del material, son manejados hacia fuera a través de la arena permeable y los agujeros de ventilación. Un recubrimiento refractario se aplica comúnmente al modelo para asegurar un mejor acabado superficial para la fundición y le agrega resistencia al modelo. Es obligatorio a veces que los pesos para oprimir los moldes sean parejos en todos los lados para combatir la alta presión relativa en el interior del molde. Las ventajas de este proceso incluyen los siguientes aspectos: Para una pieza no moldeada en maquina, el proceso requiere menos tiempo. No requieren que hagan tolerancias especiales para ayudar a extraer el modelo de la arena y se requiere menor cantidad de metal. El acabado es uniforme y razonablemente liso. No se requiere de modelos complejos de madera con partes sueltas. No se requiere caja de corazón y corazones. El modelo se simplifica grandemente. Las desventajas de este proceso incluyen los siguientes aspectos: El modelo es destruido en el proceso. Los modelos son más delicados de manejar. El proceso no puede ser usado con equipos de moldeo mecánico. No puede ser revisado oportunamente el modelo de la cavidad. TIPOS DE FUNDICIONES Fundición a la arena: Existen dos métodos diferentes por los cuales la fundición a la arena se puede producir. Se clasifica en función de tipo de modelo usado, ellos son: modelo removible y modelo desechables. En el método empleando modelo removible, la arena comprimida alrededor del modelo el cual se extrae más tarde de la arena. La cavidad producida se alimenta con metal fundido para crear la fundición. Los modelos desechables son hechos de poliestireno y en vez de extraer el modelo de la arena, se vaporiza cuando el metal fundido es vaciado en el molde. Para entender el proceso de fundición, es necesario conocer como se hace un molde y que factores son importantes para producir una buena fundición. Los principales factores son: Procedimiento de moldeo Modelo Arena Corazones Equipo metálico Metal Vaciado y limpieza Procedimiento de moldeo: Los moldes se clasifican según los materiales usados. Moldes de arena en verde. Es el método más común que consiste en la formación del molde con arena húmeda, usada en ambos procedimientos. La llamada arena verde es simplemente arena que no se ha curado, es decir, que no se ha endurecido por horneado. El color natural de la arena va desde el blanco hasta el canela claro, pero con el uso se va ennegreciendo. La arena no tiene suficiente resistencia para conservar su forma, por ello se mezcla con un aglutinante para darle resistencia; luego se agrega un poco de agua para que se adhiera. Esta arena se puede volver a emplear solo añadiendo una cantidad determinada de aglutinante cuando se considere necesario. Moldes con capa seca. Dos métodos son generalmente usados en la preparación de moldes con capa seca. En uno la arena alrededor del modelo a una profundidad aproximada de 10 mm se mezcla con un compuesto de tal manera que se seca y se obtiene una superficie dura en el molde. El otro método es hacer el molde entero de arena verde y luego cubrir su superficie con un rociador de tal manera que se endurezca la arena cuando el calor es aplicado. Los rociadores usados para este propósito contienen aceite de linaza, agua de melaza, almidón gelatinizado y soluciones liquidas similares. En ambos métodos el molde debe secarse de dos maneras: por aire o por una antorcha para endurecer la superficie y eliminar el exceso de humedad. Moldes con arena seca. Estos moldes son hechos enteramente de arena común de moldeo mezclada con un material aditivo similar al que se emplea en el método anterior. Los moldes deben ser cocados totalmente antes de usarse, siendo las cajas de metal. Los moldes de arena seca mantienen esta forma cuando son vaciados y están libres de turbulencias de gas debidas a la humedad. Moldes de arcilla. Los moldes de arcilla se usan para trabajos grandes. Primero se construye el molde con ladrillo o grandes partes de hierro. Luego, todas estas partes se emplastecen con una capa de mortero de arcilla, la forma del molde se empieza a obtener con una terraja o esqueleto del modelo. Luego se permite que el molde se seque completamente de tal manera que pueda resistir la presión completa del metal vaciado. Estos moldes requieren de mucho tiempo para hacerse y su uso no es muy extenso. Moldes furánico. El proceso es bueno para la fabricación de moldes usando modelos y corazones desechables. La arena seca de grano agudo se mezcla con ácido fosfórico el cual actúa como un acelerador. La resina furánica es agregada y se mezcla de forma continua el tiempo suficiente para distribuir la resina. El material de arena empieza a endurecerse casi de inmediato al aire, pero el tiempo demora lo suficiente para permitir el moldeo. El material usualmente se endurece de una a dos horas, tiempo suficiente para permitir alojar los corazones y que puedan ser removidos en el molde. En uso con modelos desechables la arena de resina furánica puede ser empleada como una pared o cáscara alrededor del modelo que estará soportado con arena de grano agudo o en verde o puede ser usada como el material completo del molde. Moldes de CO2. En este proceso la arena limpia se mezcla con silicato de sodio y es apisonada alrededor del modelo. Cuando el gas de CO2 es alimentado a presión en el molde, la arena mezclada se endurece. Piezas de fundición lisas y de forma intrincada se pueden obtener por este método, aunque el proceso fue desarrollado originalmente para la fabricación de corazones. Moldes de metal. Los moldes de metal se usan principalmente en fundición en matriz de aleaciones de bajo punto de fusión. Las piezas de fundición se obtienen de formas exactas con una superficie fina, esto elimina mucho trabajo de maquinado. Moldes especiales. Plástico, cemento, papel, yeso, madera y hule todos estos son materiales usados en moldes para aplicaciones particulares. El molde debe poseer las siguientes características: Debe ser lo suficientemente fuerte para sostener el peso del metal. Debe resistir la acción de la erosión del metal que fluye con rapidez durante la colada. Debe generar una cantidad mínima de gas cuando se llena con el metal fundido. Los gases contaminan el metal y pueden alterar el molde. Debe construirse de modo que cualquier gas que se forme pueda pasar a través del cuerpo del molde mismo, más bien que penetrar el metal. Debe ser suficientemente refractario para soportar la alta temperatura del metal y poderse desprender con limpieza del colado después del enfriamiento. El corazón debe ceder lo suficiente para permitir la contracción del colado después de la solidificación. Maquinas para moldeo: Estas máquinas ofrecen velocidades más altas de producción y mejor calidad de los colados además de mano de obra ligera y costos más bajos. Máquinas de moldeo por sacudida y compresión: consta básicamente de una mesa accionada por dos pistones en cilindros de aire, uno dentro del otro. El molde en la mesa se sacude por la acción del pistón inferior que eleva la mesa en forma repetida y la deja caer bruscamente en un colchón de rebote. Las sacudidas empacan la arena en las partes inferiores de la caja de moldeo pero no en la parte superior. El cilindro más grande empuja hacia arriba la mesa para comprimir la arena en el molde contra el cabezal de compresión en la parte superior. La opresión comprime las capas superiores de la arena en el molde pero algunas veces no penetra en forma efectiva todas las áreas del modelo. Maquinas de sacudida y vuelco con retiro del modelo: en esta máquina una caja de modelo se coloca sobre un modelo en una mesa, se llena con arena y se sacude. El exceso de arena se enrasa y se engrapa un tablero inferior a la caja de moldeo. La máquina eleva el molde y lo desliza en una mesa o transportador. La caja se libera de la máquina, el modelo se vibra, se saca del molde y se regresa a la posición de carga. Máquinas similares comprimen y también sacuden. Máquina lanzadora de arena: esta máquina logra un empaque consistente y un efecto de apisonado lanzando arena con alta velocidad al modelo. La arena de una tolva se alimenta mediante una banda a un impulsor de alta velocidad en el cabezal. Una disposición común es suspender la lanzadora con contrapesos y moverla para dirigir la corriente de arena con ventaja dentro de un molde. La dureza del molde se puede controlar mediante el operador cambiando la velocidad del impulsor y moviendo la cabeza impulsora. Su principal utilidad es para apisonar grandes moldes y su única función es empacar la arena en los moldes. Generalmente trabaja con el equipo de retiro del modelo. Los procesos de moldes en fundición comercialmente ordinaria pueden ser clasificados como: Moldeo en banco: Este tipo de moldeo es para trabajos pequeños, y se hace en un banco de una altura conveniente para el moldeador. En estos tipos de moldeo se producen grandes cantidades, también se utilizan placas correlativas que son modelos especiales metálicos de una sola pieza al igual que las cajas de tableros de soporte que permiten sacar con facilidad el modelo del molde de arena, el cual se puede volver a utilizar. Moldeo en piso: Cuando las piezas de fundición aumentan de tamaño, resulta difícil su manejo, por consiguiente, el trabajo es hecho en el piso. Este tipo de moldeo se usa prácticamente todas las piezas medianas y de gran tamaño. Suelen ser muy costosos, tienen el mismo procedimiento que el moldeo en banco salvo las características ya mencionadas. Moldeo en fosa: Las piezas de fundición extremadamente grandes son moldeadas en una fosa en vez de moldear en cajas. La fosa actúa como la base de la caja, y se usa una capa separadora encima de él. Los lados de la fosa son una línea de ladrillos y en el fondo hay una capa gruesa de carbón con tubos de ventilación conectados a nivel del piso. Entonces los moldes de fosa pueden resistir las presiones que se desarrollan por el calor de los gases, esta práctica ahorra mucho en moldes costosos. Molde en maquina: Las maquinas han sido construidas para hacer un numero de operaciones que el moldeador hace ordinariamente a mano, tales como apisonar la arena, voltear el molde completo, formar la alimentación y sacar el modelo; todas estas operaciones pueden hacerse con la maquina mucho mejor y más eficiente que a mano. Sistema de alimentación del molde. Los conductos que llevan el metal vaciado a la cavidad de molde son llamados sistema de alimentación, generalmente están constituidos por una vasija de vaciado, comunicando a un canal de bajada o conducto vertical conocido como bebedero, y a un canal a través del cual el metal fluye desde la base del bebedero a la cavidad del molde. En piezas grandes, de fundición puede usarse un corredor el cual toma el metal desde la base del bebedero y lo distribuye en varios canales localizados alrededor de la cavidad. El propósito de este sistema es, primeramente colocar el metal dentro de la cavidad. Como quiere que sea el diseño del sistema de alimentación es importante e involucra un número de factores. El metal debe entrar a la cavidad con el mínimo de turbulencia, y cerca del fondo de la cavidad en los casos de fundiciones pequeñas. La erosión de los conductos o superficie de la cavidad deben ser evitadas con una regulación apropiada del flujo del metal o por el uso de arena seca de corazones. El metal debe entrar en la cavidad así como proporcionar una solidificación direccional. La solidificación debe progresar desde la superficie del molde a la parte del metal mas caliente compensando así la contracción. Se debe prever que no entre la escoria u otras partículas extrañas a la cavidad del molde. La vasija de vaciado, debe estar próxima a la parte superior al agujero del bebedero, facilitando el vaciado y eliminado la escoria. El metal debe ser vaciado de tal manera que la vasija de vaciado y el agujero del bebedero estén llenos todo el tiempo. Los rebosaderos que se obtienen proporcionan en los moldes la alimentación del metal líquido a la cavidad principal de la pieza para compensar las contracciones. Estas pueden ser tan grandes en sección, así como el resto del metal liquido, tan grande como sea posible, y puede localizarse cerca de las secciones grandes que pueden estar sujetas a una gran contracción. Si estas se colocan en la parte superior de la sección, la gravedad puede ayudar a la alimentación del metal en la propia pieza fundida. Los rebosaderos ciegos son como rebosaderos con cúpula, se localizan en la mitad de la tapa de la caja, los cuales no tienen la altura completa de la tapa. Estos están por lo normal colocados directamente sobre el canal, donde el metal alimenta dentro de la cavidad del molde y entonces complementa el metal caliente cuando el vaciado esta completándose. Tipos de Arena: Arena Sílica (SiO2) se encuentra en muchos depósitos naturales, y es adecuada para propósitos de moldeo por que puede resistir altas temperaturas sin descomponerse. Esta arena es de bajo costo, tiene gran duración y se consigue en una gran variedad de tamaño y formas de grano. Por otra parte, tiene una alta relación de expansión cuando esta sometida al calor y tiene cierta tendencia a fusionarse con el metal. La arena sílica pura no es conveniente por si misma para el trabajo de moldeo puesto que adolece de propiedades aglomerantes. Las propiedades aglomerantes se pueden obtener por adición de 8 a 16% de arcilla. Los tres tipos de arcilla comúnmente usados son, la Caolinita, Ilita y Bentonita. Esta ultima, usadas con más frecuencia, proviene de cenizas volcánicas. Arenas naturales (semisintéticas): estas se han formado por la erosión de las rocas ígneas; se mezclan adecuadamente con arcillas al extraerlos en las canteras y solo se requiere agregarles agua para obtener una arena conveniente para moldeos de piezas fundidas de hierro y metales no ferrosos. La gran cantidad de materia orgánica encontrada en las arenas naturales impiden que sean lo suficientemente refractarias para usos en temperaturas elevadas, tal y como en el modelo de metales y aleaciones con alto punto de fusión. Las arenas de moldeo sintéticas se componen de Sílice lava de granos agudos, a lo que se añade 3 a 5% de arcilla. Con las arenas sintéticas se generan menos gas ya que se requiere menos del 5% de humedad para que desarrolle su resistencia adecuada. A medida que aumente el tamaño de las piezas a fundir conviene elegir también arena con granos más gruesa, de mayor resistencia y refracción. La arena ideal, seria aquella que se adaptara perfectamente bien para moldes destinados a distintos trabajos. Para la fundición de piezas cuya superficie deben presentar buen aspecto sin trabajos posteriores a la fundición, se hace necesario el empleo de moldes de arena fija. Este tipo de arena es recomendable ya que gracias a su contenido es posible obtener mayor permeabilidad, lo que conlleva a una disminución de los defectos de la pieza. A continuación se indican los distintos tipos de arena y la forma de empleo para construir moldes de fundición, según la naturaleza de cada metal. Los moldes para el cobre se hace de arena verde mojada, muy poroso, para permitir el libre escape de los gases. Los latones requieren arenas especiales, no muy grasosas pero de buena cohesión. Para que la superficie de las piezas fundidas resulte lisa y de buen aspecto, se aplicará arena de granos mas bien finos y con una cierta cantidad de arcilla, sin olvidar, por otro lado que esta ultima ha de estar limitada, para que no impida la salida de los gases. Para los bronces se pueden aplicar moldes de arena verde o los llamados desecados. Los primeros se adaptan mejor para la fundición de piezas pequeñas, mientras que los segundos se usan para piezas de mayor tamaño. Para el aluminio y sus aleaciones, se usa arena que no ha de ser ni muy grasosa ni demasiado fina, con un contenido de arcilla de 10 a 15% y de 7 a 8% de agua; a esta arena se le agrega un poco aceite de lino, melaza, polvo de carbono o resina para aumentar la cohesión. Para las aleaciones de magnesio se aplica, por lo general, los mismos moldes que para la fundición del aluminio, pero con una diferencia solamente, que consiste en agregar a la arena de 3 a 10% de azufre y de 0.25 a 1% de ácido bórico. Esta 2 sustancia tienen por objeto, formar gases durante la fundición para impedir quemaduras en la superficie del metal o agujeros. Calidad de las arenas: Para determinar la calidad esencial de la arena de fundición se hace necesaria algunas pruebas periódicas. Las propiedades cambian por contaminación con materiales estaños, por la acción del lavado en el recocido, por el cambio gradual y la distribución de los tamaños de grano y por la continua exposición de esta a altas temperaturas. Las pruebas pueden ser tanto químicas como mecánicas, pero a aparte de la determinación de los elementos indeseables en la arena, las pruebas químicas son de poco uso. Las mayorías de las pruebas mecánicas son simples y no requieren equipos elaborados. Varias de las pruebas están diseñadas para determinar las siguientes propiedades de la arena de moldeo: Permeabilidad. La porosidad de la arena que permite el escape de los gases y vapores formados en el molde. Resistencia. La arena debe ser cohesiva hasta el grado de que tenga suficiente ligazón, tanto el contenido de agua como el de arcilla, afecta la propiedad de la cohesión. Resistencia en seco: es la resistencia necesaria en la arena para mantener la forma de la cavidad del molde cuando este seca. Resistencia en verde: es la capacidad de la arena para formar grumos para retener la forma necesaria. Refractariedad: La arena debe resistir las altas temperaturas sin fundirse. Resistencia en caliente: Esta resistencia hace que la arena no se deteriore ni cambie sus dimensiones. Una vez que el metal se solidifica y seca las orillas del molde, la arena se calentará mucho; pero en ese momento se solidificó el metal y no es crítico el estado de la arena. Desprendimiento: Es la facilidad de la arena para sacudirla o sacarla después que solidificó la pieza. Si la arena tiene mucho aglutinante se endurece mucho al secarlas y se hace difícil separarla de la pieza fundida. Tamaño y forma del grano. La arena debe tener un tamaño de grano dependiente de la superficie que se trate de producir, y los granos deben ser irregulares hasta tal grado que mantenga suficiente cohesión. Equipo para el acondicionamiento de la arena. Propiamente la arena bien acondicionada es un factor importante en la obtención de una buena pieza fundida. Las arenas nuevas así como las usadas preparadas adecuadamente, contienen los siguientes resultados: El aglutinante esta distribuido mas uniformemente en los granos de arena. El contenido de humedad esta controlado y además la superficie particular esta humedecidas. Las partículas extrañas están eliminadas de la arena. La arena se ventila de tal manera que no se compacta y esté en condiciones propias para el moldeo. Por razón de que acondicionar la arena a mano es difícil la mayoría de las fundiciones tienen equipos apropiados para esta operación. Tiene dos rodillos en los cuales esta montado una combinación de rastras y muelas trituradoras. Las dos muelas trituradoras están dispuestas de tal manera que la arena pueda ser procesadas de forma continua. Las muelas trituradoras proporcionan una acción intensa de frotamiento y amasado. El resultado es una distribución a través de los granos de arena con el material aglutinado. La arena en verdad y la de corazones ambas pueden ser preparadas en esta manera. Pruebas de la arena: son pruebas que se realizan continuamente para verificar que cumpla con los requisitos necesarios para poder soportar el proceso, ya que es normal que después del uso prolongado de estas se deterioren sus propiedades aglutinantes. El contenido de humedad se mide con un medidor de humedad el cual envía aire caliente a través de una muestra de arena a un volumen constante. El volumen de humedad se determina por el tiempo necesario para secar la muestra. Las resistencias se miden con una probadora universal: se toma una muestra de arena y se somete a pruebas de tracción, compresión, esfuerzo cortante y de carga. El número de veces que cae el peso muerto y apisona la arena, determina la resistencia del núcleo. La permeabilidad se mide con un aparato especial que registra el tiempo necesario para hacer pasar una cantidad determinada de aire a través de una muestra de arena. La arena poco permeable dejará pasar menos aire que otra más porosa. Corazones. Cuando una pieza de fundición debe tener una cavidad o hueco, tal y como un agujero para un tornillo, debe introducirse al molde alguna forma de corazón. Un corazón se define algunas veces como cualquier proyección de arena dentro del molde. Esta proyección puede quedar formada por el molde mismo o puede ser hecha en otra parte e introducido en el molde después de extraer el modelo. Se pueden formar superficies tanto internas como externas en una pieza de fundición mediante los corazones. Los de arena verde como se muestra en la figura son aquellos formados por el mismo modelo y se hacen en la misma arena del molde. Los corazones de arena seca son los que se forman separadamente para insertarse después que se ha retirado el modelo y antes de cerrar el molde. En general deben usarse los corazones de arena verde, siempre que sea posible para mantener el costo de los modelos y de las piezas de fundición en un mínimo. Naturalmente los corazones separados aumentan el costo de producción. Un corazón debe ser: Permeable: capacidad de la arena para permitir que escapen los vapores. Refractario: capacidad de soportar altas temperaturas. Facilidad de colapso: habilidad para disminuir el tamaño conforme se enfría el colado y se contrae. Resistencia en seco: para que no se erosione y sea arrastrado o cambie de tamaño cuando esté rodeado del metal fundido. Friabilidad: facilidad para desmoronarse y eliminarse con facilidad del colado. Debe tener una tendencia mínima a generar gas. Colada (vaciado) En talleres y fundiciones de producción pequeña, los moldes se alinean en el piso conforme se van haciendo y el metal es tomado entonces en pequeñas cucharas de vaciado. Cuando se requiere mas metal o si un metal mas pesado es vaciado, se han diseñado cucharas para ser usadas, por dos hombres. En fundiciones grandes, están comprometidas en la producción en masa de piezas fundidas, el problema de manejo de moldes y vaciado de metal se resuelve colocando los moldes sobre transportadores y haciéndolos pasar lentamente por una estación de vaciado. La estación de vaciado puede ser localizada permanentemente cerca del horno o el metal puede ser traído a ciertos puntos por equipo de manejo aéreo. Los transportadores sirven como un almacén de lugar para los moldes, los cuales son transportados a un cuarto de limpieza. El rechupe, debido a la falta de alimentación de la pieza. Las superficies internas de esta cavidad están cubiertas con cristales dendríticos y no están oxidadas. Fundición por Inyección: La fundición en esta forma y tratándose de gran cantidad de piezas, exige naturalmente un numero considerable de moldes. Es evidente que el costo de cada pieza aumenta con el precio del molde. En las técnicas modernas para la fundición de pequeñas piezas, se aplican maquinas con moldes de metal, que duran mucho tiempo, pudiendo fundirse en ellos millares de piezas, el metal se inyecta en el molde a presión, por cuya razón este sistema se denomina por inyección. El peso de las piezas que se pueden fundir por inyección en moldes mecánicos, varía entre 0.5 gramos hasta 8 kilos. Por lo general se funden por inyección piezas de Zinc, Estaño, Aluminio, y Plomo con sus respectivas aleaciones. La parte más delicada de la maquina para fundir por inyección es el molde. Este molde tiene que ser hecho con mucho cuidado y exactitud, tomando en cuenta los coeficientes de contracción y las tolerancias para la construcción de las piezas, de acuerdo con el metal y la temperatura con la que se inyecta. La cantidad de piezas que pueden fundir en un molde y con una sola maquina es muy grande, además, en una hora pueden fabricarse de 200 a 2000 piezas según su tamaño y forma, por lo tanto, repartiendo el costo del molde, de la maquina, así como también los gastos de mano de obra para la manutención del equipo y teniendo en cuenta la gran producción, a de verse que las piezas fundidas en serie por inyección resultan de bajo costos. Fundición en Coquillas: Si se hecha un metal fluido en un molde permanente, fabricado de hierro o acero, se efectúa la fundición en coquillas. Este método tiene una ventaja importante en comparación con la fundición en arena; se puede fundir con la pieza misma, roscas exteriores mayores, agujeros, etc. Las piezas coladas en coquillas tienen una superficie pareja y limpia por lo que, generalmente, no es necesario un trabajo posterior de acabado. La exactitud de la medida es mucho más grande que la fundición de arena; pero mucho menor que cuando se funde por inyección. Se puede observar que la estructura de la pieza fundida en coquillas es densa de grano muy fino, por lo que las propiedades mecánicas en estas son mejores que las de piezas iguales coladas en molde de arena. Por esta razón es posible disminuir el peso de piezas fundidas en coquillas, con el consiguiente ahorro de material. Fundición Centrífuga: La fundición centrifuga es el proceso de hacer girar el molde mientras se solidifica el metal, utilizando así la fuerza centrifuga para acomodar el metal en el molde. Se obtienen mayores detalles sobre la superficie de la pieza y la estructura densa del metal adquiere propiedades físicas superiores. Las piezas de forma simétricas se prestan particularmente para este método, aun cuando se pueden producir otros muchos tipos de piezas fundidas. Por fundición centrifuga se obtienen piezas más económicas que por otros métodos. Los corazones en forma cilíndrica y rebosaderos se eliminan. Las piezas tienen una estructura de metal densa con todo y las impurezas que van de la parte posterior al centro de la pieza pero que frecuentemente se maquinan. Por razón de la presión extrema del metal sobre el metal, se pueden lograr piezas de secciones delgadas también como en la fundición estática. Los moldes permanentes se han hecho frecuentemente en la fundición centrifuga de magnesio. Desde entonces las piezas de fundición de magnesio son forzadas nuevamente al molde, las piezas se enfrían mas rápidamente y el aire o gas atrapados se eliminan entre el molde y el material. Aunque en la fundición centrífuga hay limitaciones en el tamaño y forma de piezas fundida, se pueden hacer desde anillos de pistón de pocos gramos de peso y rodillo para papel que pesen arriba de 40 toneladas, Blocks de maquinas en aluminio. Materiales compuestos Bajo esta denominación comprende un conjunto de materiales cuyo origen es más bien técnico. Están constituidos por dos o más materiales distintos, con unas propiedades bastante diferentes a las que tendría cada uno por sí mismo. Son esencialmente insolubles entre sí, lo que pretende lograr es un material compuestos con unas características a ser posible superiores o más importantes a los materiales por separado. La naturaleza nos ofrece un material compuesto natural que es la madera. También los hormigones hechos basándose en cemento y grava, el asfalto, los plásticos reforzados con fibra de vidrio, etc. Los materiales compuestos pueden ser de dos clases fundamentalmente: macroscópicos y microscópicos. Los macroscópicos, cuyo ejemplo típico es el hormigón (compuesto de cemento y grava, como hemos dicho antes) como material de construcción o el hormigón armado. Luego están los microscópicos, con estos materiales se pretende aumentar los valores normales de algunas propiedades físicas, también las características mecánicas (la resistencia, la dureza, el límite elástico, etc.) o también las características térmicas. Todas estas características suelen aglutinarse en la denominación de termo elásticas. Los materiales compuestos microscópicos pueden ser de refuerzo continuo (lo que comúnmente se conoce como fibras) y con refuerzo discontinuo (que están formadas por partículas pequeñas). En los últimos años, ha habido un rápido crecimiento del uso de los materiales compuestos reforzados con fibras, sobre todo en aplicaciones técnicas. Este crecimiento es debido ha que los materiales compuestos se van reemplazando por los materiales que se iban utilizando hasta ahora, como por ejemplo los metales. Esto se debe a las características casi siempre superiores de los materiales compuestos. Los materiales compuestos están formados por dos partes claramente diferenciadas: la matriz, que sirve fundamentalmente de base de los otros materiales y los materiales reforzadores que serán, de otra clase de material, distinto de la matriz. Las matrices pueden ser de tres tipos diferentes: materiales compuestos de matriz plástica o MCMP o de matriz polimérica, materiales compuestos de matriz metálica y materiales compuestos de matriz cerámica. De este modo el aumento de características termo elásticas depende fundamentalmente del tipo de preparación usado, de las condiciones físicas, etc. La temperatura es un factor fundamental. Entre matriz y reforzante, la elección de la matriz no se debe quedar en la elección del material buscado como sólo un buen aglutinante, porque el efecto tenso elástico es debido al material reforzante, la matriz se tiene que definir otras propiedades del material compuesto, como son las conductividades térmica y eléctrica. La matriz tendrá que tener propiedades elásticas y plásticas, con una baja densidad y una alta resistencia térmica. Los materiales más usados en las matrices son polímeros, metales y cerámicos. En principio cualquier material valdría para matriz, pero en la práctica sólo se usan unos pocos materiales. Esto es propiciado porque hay factores determinantes tales como facilidad en la fabricación, propiedades finales que se desean que tengan, que haya una compatibilidad con las fibras con las que vayan a reforzar y principalmente el coste. Las fibras más importantes son de tres clases: fibras de vidrio, fibra de carbono y la de poliamida. Las propiedades de las fibras dependen del procedimiento de fabricación y de las condiciones de procesado. Las fibras afectan las propiedades de los materiales compuestos. CARACTERÍSTICAS FIBRA Y MATRIZ: Teniendo en cuenta el contacto fibra- matriz debe ser superficialmente, un factor importante es la cuna capacidad mojante de ambos, de un modo concreto que no se produzcan poros en la intercara, porque sino se producirá un debilitamiento de la mutua adherencia. Por esta razón a las fibras se las suele dotar de un recubrimiento previo a su colocación. Este recubrimiento debe tener un doble efecto: - aumentar el poder mojante de la matriz hacia la fibra - proteger a ésta del posible ataque del medio en que se sitúa. Interviene también la diferencia de coeficientes de dilatación de ambos componentes, con una consecuencia, las tensiones de origen térmico que aparecen en el calentamiento o enfriamiento del sistema. Para muchas fibras reforzantes, se ha comprobado, que aguantan sin romperse hasta la tensión de rotura, cuando la relación entre su longitud y su diámetro es de 100:1. UNIÓN FIBRA-MATRIZ: Esta relación matriz-fibra es consecuencia de un efecto sinergético de ambas. En el trabajo del material compuesto se sobrepasan ciertos valores de la tensión, puede suceder la rotura de la fibra, aparecen esfuerzos de cizalladura en la matriz y se crean tensiones en las fibras rotas. Entonces se produce una transferencia de carga y una cooperación en el esfuerzo del material compuesto. Los efectos termoelásticos, entonces la temperatura a la que a de estar sometido el material compuesto, la que determina los materiales componentes de la fibra reforzante y la matriz. Dos factores que pueden modificar la unión: la contracción de la resina durante el curado de polímeros termoestables y una dilatación térmica diferencial entre la matriz y las fibras. - Fibras de vidrio: Los mecanismos de unión química que implican agentes adhesivos silano y otras moléculas bifuncionales que se aplican generalmente a polímeros termoestables porque el grupo órgano-funcional se bloquea químicamente en la estructura de enlaces cruzados de la resina de líquido a sólido rígido. Las fibras antes de introducirse en la resina sufren un tratamiento de apresto que incluye un agente adhesivo y una resina en forma de película, que asegura la protección contra el agua y los daños producidos por los procesos de inyección. El efecto de la unión fibra-matriz en las propiedades mecánicas no pueden pasarse por alto y es bastante importante. LOS PLASTICOS CLASIFICACIÓN • Por su naturaleza § Naturales * Vegetales * Animal § Sintéticos * Hidrocarburos · Petróleo · Gas Natural · Carbón • Por su estructura interna § Termoplásticos § Termoestables § Elastómeros TERMOPLÁSTICOS Son plásticos que se ablandan con el calor, pudiéndose moldear con nuevas formas que se conservan al enfriarse. Es debido a que las macromoléculas están unidas por débiles fuerzas que se rompen con el calor. No existe ningún tipo de enlace químico entre cadenas, como mucho existen atracciones de tipo electroestático que hacen que la estructura microscópica sea un entrecruzamiento caprichoso y liado de cadenas a modo de ovillo de lana. Un aporte de calor a esta estructura permite que las estructuras puedan desliarse y resbalar unas sobre otras confiriendo el llamado estado viscoelástico. Dentro de este grupo podemos distinguir entre termoplásticos AMORFOS y CRISTALINOS. La diferencia radica en que los cristalinos, a la vuelta al estado sólido tras el aporte de calor, cuando se repliegan lo hacen intentando ocupar el mínimo espacio posible, no así en el caso de los amorfos que lo hacen de una forma mucho más anárquica. Aún más, en el caso de los amorfos la contracción es isotrópica (constante en las 3 dimensiones del espacio), mientras que en el caso de los cristalinos la contracción es anisótropa (la contracción es mucho mayor en el sentido de flujo que en el transversal). No obstante, no existe ningún termoplástico que sea 100% cristalino ni, a la inversa, 100% amorfo. Siempre coexiste una parte cristalina y otra amorfa, aunque haya siempre una mayoritaria que define la clasificación del material. ENUMERACIÓN: 1. Polietileno (PE) 5. Metacrilato 2. Polipropileno (PP) 6. Teflón 3. Poliestireno (PS) 7. Celofán 4. Cloruro de polivinilo 8. Nailon o Poliamida (PVC) (PA) TERMOESTABLES La organización espacial de las cadenas es similar a la de una red de pescador. Durante el proceso de moldeo se aplica calor para activar la racionabilidad de los monómeros de las cadenas, algunos de los cuáles logran enlazarse con monómeros de otras cadenas dando lugar a la citada estructura. Como en el caso anterior la disposición microscópica de las cadenas dota a la estructura macroscópica resultante de una características particulares; en este caso, la estructura macroscópica resultante es muy compacta y de gran rigidez : estos materiales presentan respecto al resto de plásticos una mayor resistencia térmica por cuanto al aportar más calor no logra romperse la estructura de cadenas. No obstante, su fragilidad es inversamente proporcional a la resistencia térmica. Efectivamente, la resistencia térmica viene dada por la mayor compactación de las cadenas pero ese mismo mayor empaquetamiento da lugar a una posibilidad de rotura mayor. Un impacto no deja de ser un aporte de Energía en un lugar puntual y concreto que las cadenas, en este caso, es difícil que puedan absorber por estiramiento ya que su libertad de movimiento no es muy alta. Estos materiales no son reciclables. Este hecho se explica por la reacción entre cadenas durante el proceso de moldeado que dan lugar a un material muy resistente a la temperatura una vez transformado y que, por tanto, difícilmente se puede volver a fundir para su reutilización. ENUMERACIÓN: 1. Poliuretano 2. Resinas fenólicas 3. Melanina ELASTÓMEROS Se caracterizan por una fácil degradación frente al calor y una irreversibilidad del proceso de moldeado, esto es, una vez moldeados no se pueden volver a utilizar como materia prima. Sus características microscópicas basadas en una organización espacial de las cadenas del tipo "muelles de colchón" influyen en el comportamiento macroscópico del mismo caracterizado por una gran flexibilidad (entendida como la capacidad de un sólido de recuperar su forma original tras finalizar un esfuerzo de compresión o de flexión). De hecho, con frecuencia se mezclan con algún termoplástico para conferirle unas mayores propiedades de flexibilidad e impacto. En cuanto a su procesabilidad se moldean con técnicas similares a las de la industria del caucho, aunque existe una variedad denominada termoplásticos elastómeros que pueden procesarse como termoplásticos. ENUMERACIÓN: 1. Caucho Natural 2. Caucho Sintético 3.Neopreno VEGETALES • CELULOSA: Celulosa (del latín, cellula, 'celda pequeña'), hidrato de carbono complejo; es el componente principal de la pared de todas las células vegetales. En las plantas, la celulosa suele aparecer combinada con sustancias leñosas, grasas o gomosas. Salvo algunos insectos, ningún animal tiene en los tejidos verdadera celulosa. Los microorganismos del aparato digestivo de los herbívoros descomponen la celulosa en compuestos absorbibles. La celulosa es insoluble en todos los disolventes comunes y se separa fácilmente de los demás componentes de las plantas. Dependiendo de la concentración, el ácido sulfúrico actúa sobre la celulosa y produce glucosa, almidón soluble o amiloide; éste es una forma de almidón utilizada para estucar ciertos papeles de lujo. Cuando la celulosa se trata con un álcali y se expone a continuación a los vapores del disulfuro de carbono, se obtiene una solución que puede estirarse en películas e hilarse. El rayón y el celofán son preparados de celulosa regenerados a partir de tales soluciones. Los acetatos de celulosa se hilan en filamentos delgados con los que se confeccionan tejidos; también son de acetato de celulosa las modernas películas fotográficas; con estos compuestos se elaboran los vidrios inastillables de seguridad y ciertos materiales de moldeo. Los éteres de celulosa se emplean en la elaboración de aparejos para papel, adhesivos, jabones y resinas sintéticas. Con una mezcla de ácidos nítrico y sulfúrico, la celulosa forma una serie de compuestos inflamables y explosivos conocidos como nitratos de celulosa o nitrocelulosas. El algodón de colodión es un nitrato que forma parte de diversos plásticos y lacas; el colodión es un compuesto parecido utilizado en medicina, fotografía y fabricación de cueros sintéticos y lacas. El algodón pólvora es también un nitrato; se emplea como explosivo propulsor en la fabricación de cartuchos. • LÁTEX: Látex, fluido lechoso que se encuentra en ciertas células especializadas, llamadas lactíferas, de muchas plantas superiores. El látex es un polímero disperso en agua que consiste en una emulsión compleja formada por proporciones variables de gomas, resinas, taninos, alcaloides, proteínas, almidones, azúcares y aceites. Suele ser de color blanco, pero en algunas plantas es amarillo, anaranjado o rojo. Contienen látex casi todas las especies de las familias Asclepiadáceas, Apocináceas, Sapotáceas, Euforbiáceas, Moráceas, Papaveráceas y Compuestas. Muchas gomas comerciales, como caucho, balata, guayule, gutapercha, opio y chicle, son productos de látex refinado, aunque ahora se obtienen también por medio de síntesis. ANIMALES • CASEÍNA: Caseína, grupo de proteínas que se producen por precipitación cuando la leche se acidifica. La caseína constituye casi el 80% del total de las proteínas presentes en la leche de vaca, y el 3% de su peso. Es el ingrediente principal del queso. Si se deseca, es un polvo amorfo de color blanco, inodoro e insípido. La caseína se disuelve mal en agua y muy bien en álcalis o ácidos fuertes. La caseína se utiliza como complemento nutritivo y como pegamento; forma parte de la composición de las pinturas acuosas y se utiliza en las fases de acabado de la fabricación de papel y de los textiles. La paracaseína es una variedad de la caseína que se utiliza para obtener un plástico empleado en la fabricación de botones y de otros pequeños objetos. Este plástico se obtiene a través de la reacción entre la caseína y el metanal. La paracaseína se obtiene añadiendo la enzima renina a la leche para formar una sustancia distinta a la que se obtiene tras la precipitación de la leche con ácidos. SINTÉTICOS • HICROCARBUROS: Hidrocarburos, en química orgánica, familia de compuestos orgánicos que contienen carbono e hidrógeno. Son los compuestos orgánicos más simples y pueden ser considerados como las sustancias principales de las que se derivan todos los demás compuestos orgánicos. Los hidrocarburos se clasifican en dos grupos principales, de cadena abierta y cíclica. En los compuestos de cadena abierta que contienen más de un átomo de carbono, los átomos de carbono están unidos entre sí formando una cadena lineal que puede tener una o más ramificaciones. En los compuestos cíclicos, los átomos de carbono forman uno o más anillos cerrados. Los dos grupos principales se subdividen según su comportamiento químico en saturados e insaturados. Los derivados del hidrocarburo son: • PETRÓLEO: Petróleo, líquido oleoso bituminoso de origen natural compuesto por diferentes sustancias orgánicas. También recibe los nombres de petróleo crudo, crudo petrolífero o simplemente crudo . Se encuentra en grandes cantidades bajo la superficie terrestre y se emplea como combustible y materia prima para la industria química. Las sociedades industriales modernas lo utilizan sobre todo para lograr un grado de movilidad por tierra, mar y aire impensable hace sólo 100 años. Además, el petróleo y sus derivados se emplean para fabricar medicinas, fertilizantes, productos alimenticios, objetos de plástico, materiales de construcción, pinturas y textiles, y para generar electricidad. Todos los tipos de petróleo se componen de hidrocarburos, aunque también suelen contener unos pocos compuestos de azufre y de oxígeno; el contenido de azufre varía entre un 0,1 y un 5%. El petróleo contiene elementos gaseosos, líquidos y sólidos. La consistencia del petróleo varía desde un líquido tan poco viscoso como la gasolina hasta un líquido tan espeso que apenas fluye. Por lo general, hay pequeñas cantidades de compuestos gaseosos disueltos en el líquido; cuando las cantidades de estos compuestos son mayores, el yacimiento de petróleo está asociado con un depósito de gas natural. Existen tres grandes categorías de petróleo crudo: de tipo parafínico, de tipo asfáltico y de base mixta. El petróleo parafínico está compuesto por moléculas en las que el número de átomos de hidrógeno es siempre superior en dos unidades al doble del número de átomos de carbono. Las moléculas características del petróleo asfáltico son los naftenos, que contienen exactamente el doble de átomos de hidrógeno que de carbono. El petróleo de base mixta contiene hidrocarburos de ambos tipos. El petróleo se forma bajo la superficie terrestre por la descomposición de organismos marinos • GAS NATURAL: Gas natural, mezcla de gases entre los que se encuentra en mayor proporción el metano. Se utiliza como combustible para usos domésticos e industriales y como materia prima en la fabricación de plásticos, fármacos y tintes. La proporción en la que el metano se encuentra en el gas natural es del 75 al 95% del volumen total de la mezcla (por este motivo se suele llamar metano al gas natural). El resto de los componentes son etano, propano, butano, nitrógeno, dióxido de carbono, sulfuro de hidrógeno, helio y argón. Antes de emplear el gas natural como combustible se extraen los componentes más pesados, como el propano y el butano. El gas natural se utiliza como combustible doméstico e industrial, además de por su gran poder calorífico, porque su combustión es regulable y produce escasa contaminación. También se emplea como materia prima en la industria petroquímica en la obtención de amoníaco, metanol, etileno, butadieno y propano. • CARBÓN: Carbón, combustible sólido de origen vegetal Los diferentes tipos de carbón se clasifican según su contenido de carbono fijo. La turba, la primera etapa en la formación de carbón, tiene un bajo contenido de carbono fijo y un alto índice de humedad. El lignito, el carbón de peor calidad, tiene un contenido de carbono mayor. El carbón bituminoso tiene un contenido aún mayor, por lo que su poder calorífico también es superior. La antracita es el carbón con el mayor contenido en carbono y el máximo poder calorífico. La presión y el calor adicionales pueden transformar el carbón en grafito, que es prácticamente carbono puro. Además de carbono, el carbón contiene hidrocarburos volátiles, azufre y nitrógeno, así como diferentes minerales que quedan como cenizas al quemarlo. OBTENCIÓN • POLIMERACIÓN POR ADICIÓN Y CONDENSACIÓN: Por el proceso de polimerización, los plásticos se pueden clasificar en polímeros de condensación y polímeros de adición. Las reacciones de condensación producen diferentes longitudes de polímeros, mientras que las reacciones de adición producen longitudes específicas. Por otro lado, las polimerizaciones por condensación generan pequeñas cantidades de subproductos, como agua, amoníaco y etilenglicol, mientras las reacciones de adición no producen ningún subproducto. Algunos polímeros típicos de condensación son el nailon, los poliuretanos y los poliésteres. Entre los polímeros de adición se encuentran el polietileno, el polipropileno, el poli cloruró de vinilo y el poli estireno. Las masas moleculares medias de los polímeros de adición son generalmente mayores que las de los polímeros de condensación • FABRICACIÓN: El primer paso en la fabricación de un plástico es la polimerización. Como se comentaba anteriormente, los dos métodos básicos de polimerización son las reacciones de condensación y las de adición. Estos métodos pueden llevarse a cabo de varias maneras. En la polimerización en masa se polimeriza sólo el monómero, por lo general en una fase gaseosa o líquida, si bien se realizan también algunas polimerizaciones en estado sólido. Mediante la polimerización en disolución se forma una emulsión que se coagula seguidamente. En la polimerización por interfase los monómeros se disuelven en dos líquidos inmiscibles y la polimerización tiene lugar en la interfase entre los dos líquidos. Tratamientos Se conoce como tratamiento térmico al proceso que se somete generalmente a los aceros con el fin de mejorar sus propiedades mecánicas, especialmente la dureza la resistencia y la tenacidad. La diferencia de unos aceros con otros reside en la composición química de la aleación que los forma y el tipo de tratamiento térmico a los que se les somete. Los tratamientos térmicos lo que hacen es modificar la estructura de los granos que forman los aceros sin variar la composición química de los mismos. El polimorfismo es la capacidad de algunos materiales de presentar distintas estructuras cristalinas, con una única composición química, el diamante y el grafito son polimorfismos del carbono. La -ferrita, la austenita y la -ferrita son polimorfismos del hierro. Esta propiedad en un elemento químico puro se denomina alotropía. Las características mecánicas de un material dependen tanto de su composición química como de la estructura cristalina que tenga. Los tratamientos térmicos modifican esa estructura cristalina, sin modificar la composición química, dando a los materiales unas características mecánicas concretas, mediante un proceso de calentamiento y enfriamientos sucesivos hasta conseguir la estructura cristalina deseada. A los elementos químicos que forman una aleación se les llama componentes, y a las distintas estructuras cristalinas o combinación de ellas constituyentes. Aquí nos referiremos específicamente al tratamiento térmico del acero y la fundición, formado por hierro y carbono básicamente dado que industrialmente es el de mayor peso e importancia. Tratamientos térmicos del acero • Templado: su finalidad es aumentar la dureza y la resistencia del acero. • Revenido: sólo es aplica a los aceros templados, para disminuir ligeramente los efectos del temple, conservando parte de la dureza y aumentar la tenacidad. • Recocido: es empleado para suprimir las tensiones internas remanentes del temple, haciendo desaparecer la dureza. • Normalizado: tiene por objeto dejar un material en estado normal, es decir, ausencia de tensiones internas y con una distribución uniforme del carbono. Se suele emplear como tratamiento previo al temple y al revenido. Tratamientos termoquímicos del acero Los tratamientos termoquímicos del acero consiguen aumentar la dureza superficial de los componentes dejando el núcleo más blando y flexible, modifican las características del material por medio del calentamiento y enfriamiento, pero cambiando también la composición química del material: • Cementación: aumenta la dureza superficial de una pieza de acero dulce, aumentando la concentración de carbono en la superficie. • Nitruración: al igual que la cementación, aumenta la dureza superficial, aunque lo hace en mayor medida, incorporando nitrógeno en la composición de la superficie de la pieza. • Sulfinización: aumenta la resistencia al desgaste por acción del azufre. El azufre se incorporó al metal por calentamiento a baja temperatura (565 ºC) en un baño de sales. • Cianuración: endurecimiento superficial de pequeñas piezas de acero. Se utilizan baños con cianuro, carbonato y cianato sódico. Se aplican temperaturas entre 760 y 950 ºC. Composición del Acero Acero es una aleación de hierro y carbono que contiene otros elementos de aleación, los cuales le confieren propiedades mecánicas especificas para su utilización en la industria metalmecánica. Los otros principales elementos de composición son el Cromo, Tungsteno, Manganeso, Níquel, Vanadio, Cobalto, Molibdeno, Cobre, Azufre y Fósforo. Estos elementos, según su porcentaje, ofrecen características específicas para determinadas aplicaciones, como herramientas, cuchillas, soportes, etc. Propiedades mecánicas de los materiales • • • • Resistencia al desgaste Es la resistencia que ofrece un material a dejarse erosionar cuando esta en contacto de fricción con otro material. Tenacidad Es la capacidad que tiene un material de absorber energía sin producir Fisuras (resistencia al impacto). Maquinabilidad Es la facilidad que posee un material de permitir el proceso de mecanizado por arranque de viruta. Dureza Es la resistencia que ofrece un acero para dejarse penetrar. Se mide en unidades BRINELL (HB) ó unidades ROCKWEL C (HRC), mediante test del mismo nombre. Tratamiento térmico del acero El tratamiento térmico en el material es uno de los pasos fundamentales para que pueda alcanzar las propiedades mecánicas para las cuales está creado. La clave de los tratamientos térmicos consiste en las reacciones que se producen en el material, tanto en los aceros como en las aleaciones no férreas, y ocurren durante el proceso de calentamiento y enfriamiento de las piezas, con unas pautas o tiempos establecido. • Temple El temple tiene por objeto endurecer y aumentar la resistencia de los aceros. Para ello, se calienta el acero a una temperatura ligeramente más elevada que la crítica superior Ac (entre 900-950ºC) y se enfría luego más o menos rápidamente (según características de la pieza) en un medio como agua, aceite, etc. • Revenido Es un tratamiento habitual a las piezas que han sido previamente templadas. El revenido consigue disminuir la dureza y resistencia de los aceros templados, se eliminan las tensiones creadas en el temple y se mejora la tenacidad, dejando al acero con la dureza o resistencia deseada. Se distingue básicamente del temple en cuanto a temperatura máxima y velocidad de enfriamiento. • Recocido Consiste básicamente en un calentamiento hasta temperatura de austenización (800-925ºC) seguido de un enfriamiento lento. Con este tratamiento se logra aumentar la elasticidad, mientras que disminuye la dureza. También facilita el mecanizado de las piezas al homogeneizar la estructura, afinar el grano y ablandar el material, eliminando la acritud que produce el trabajo en frío y las tensiones internas. Tratamientos Termoquímicos del Acero En el caso de los tratamientos térmicos, no solo se producen cambios en la Estructura del Acero, sino también en su COMPOSICION QUIMICA, añadiendo diferentes productos químicos durante el proceso del tratamiento. Estos tratamientos tienen efecto solo superficial en las piezas tratadas. • Cementación Mediante este tratamiento se producen cambios, en la composición química del acero. Se consigue teniendo en cuenta el medio o atmósfera que envuelve el metal durante el calentamiento y enfriamiento. Lo que se busca es aumentar el contenido de carbono de la zona periférica, obteniéndose después, por medio de temples y revenidos, una gran dureza superficial, resistencia al desgaste y buena tenacidad en el núcleo. • Nitruración Este tratamiento Termoquímico busca endurecer superficialmente un acero con nitrógeno, calentándolo a temperaturas comprendidas entre 400525ºC, dentro de una corriente de gas amoníaco, más nitrógeno. Endurecimiento del acero Temple (revenido) Recocido Cementado Carburización por empaquetado Carburización en baño líquido Carburización por gas Carbonitrurado, cianurado y nitrurado Práctica de tratamientos térmicos El tratamiento térmico es la operación de calentamiento y enfriamiento de un metal en su estado sólido para cambiar sus propiedades físicas. Con el tratamiento térmico adecuado se pueden reducir los esfuerzos internos, el tamaño del grano, incrementar la tenacidad o producir una superficie dura con un interior dúctil. Para conocer a que temperatura debe elevarse el metal para que se reciba un tratamiento térmico es recomendable contar con los diagramas de cambio de fases como el de hierro - hierro - carbono. En este tipo de diagramas se especifican las temperaturas en las que suceden los cambios de fase (cambios de estructura cristalina), dependiendo de los materiales diluidos. Los tratamientos térmicos han adquirido gran importancia en la industria en general, ya que con las constantes innovaciones se van requiriendo metales con mayores resistencias tanto al desgaste como a la tensión. Endurecimiento del acero El proceso de endurecimiento del acero consiste en el calentamiento del metal de manera uniforme a la temperatura correcta (ver figura de temperaturas para endurecido de metales) y luego enfriarlo con agua, aceite, aire o en una cámara refrigerada. El endurecimiento produce una estructura granular fina que aumenta la resistencia a la tracción (tensión) y disminuye la ductilidad. El acero al carbono para herramientas se puede endurecer al calentarse hasta su temperatura crítica, la cual se adquiere aproximadamente entre los 1450 °F y 1525 °F (790 a 830 °C) lo cual se identifica cuando el metal adquiere el color rojo cereza brillante. Cuando se calienta el acero la perlita se combina con la ferrita, lo que produce una estructura de grano fino llamada austenita. Cuando se enfría la austenita de manera brusca con agua, aceite o aire, se transforma en martensita, material que es muy duro y frágil. Temple (revenido) Después que se ha endurecido el acero es muy quebradizo o frágil lo que impide su manejo pues se rompe con el mínimo golpe debido a la tensión interior generada por el proceso de endurecimiento. Para contrarrestar la fragilidad se recomienda el temple del acero (en algunos textos a este proceso se le llama revenido y al endurecido temple). Este proceso hace más tenaz y menos quebradizo el acero aunque pierde algo de dureza. El proceso consiste en limpiar la pieza con un abrasivo para luego calentarla hasta la temperatura adecuada (ver tabla), para después enfriarla con rapidez en el mismo medio que se utilizó para endurecerla. Tabla de temperaturas para templar acero endurecido Color Grados F Grados C Tipos de aceros Paja claro 430 220 Herramientas como brocas, machuelos Paja mediano 460 240 Punzones dados y fresas Paja obscuro 490 255 Cizallas y martillos Morado 520 270 Árboles y cinceles para madera Azul obscuro 570 300 Cuchillos y cinceles para acero Azul claro 600 320 Destornilladores y resortes Recocido: Cuando se tiene que maquinar a un acero endurecido, por lo regular hay que recocerlo o ablandarlo. El recocido es un proceso para reducir los esfuerzos internos y ablandar el acero. El proceso consiste en calentar al acero por arriba de su temperatura crítica y dejarlo enfriar con lentitud en el horno cerrado o envuelto en ceniza, cal, asbesto o vermiculita. Consiste en el endurecimiento de la superficie externa del acero al bajo carbono, quedando el núcleo blando y dúctil. Como el carbono es el que genera la dureza en los aceros en el método de cementado se tiene la posibilidad de aumentar la cantidad de Carbono en los aceros de bajo contenido de carbono antes de ser endurecido. El carbono se agrega al calentar al acero a su temperatura crítica mientras se encuentra en contacto con un material carbonoso. Los tres métodos de cementación más comunes son: empacado para carburación, baño líquido y gas. Este procedimiento consiste en meter al material de acero con bajo contenido carbónico en una caja cerrada con material carbonáceo y calentarlo hasta 1650 o 1700 °F (900 a 927 °C) durante 4 a 6 horas. En este tiempo el carbón que se encuentra en la caja penetra a la superficie de la pieza a endurecer. Entre más tiempo se deje a la pieza en la caja con carbón de mayor profundidad será la capa dura. Una vez caliente la pieza a endurecer a la temperatura adecuada se enfría rápidamente en agua o salmuera. Para evitar deformaciones y disminuir la tensión superficial se recomienda dejar enfriar la pieza en la caja para posteriormente sacarla y volverla a calentar entre 1400 y 1500 °F (rojo cereza) y proceder al enfriamiento por inmersión. La capa endurecida más utilizada tiene un espesor de 0.38 mm, sin embargo se pueden tener espesores de hasta 4 mm. El acero a cementar se sumerge en un baño de cianuro de sodio líquido. También se puede utilizar cianuro de potasio pero sus vapores son muy peligrosos. Se mantiene la temperatura a 1500 °F (845 °C) durante 15 minutos a 1 hora, según la profundidad que se requiera. A esta temperatura el acero absorberá el carbono y el nitrógeno del cianuro. Después se debe enfriar con rapidez al acero en agua o salmuera. Con este procedimiento se logran capas con espesores de 0.75 mm. En este procedimiento se utilizan gases carburizantes para la cementación. La pieza de acero con bajo contenido carbónico se coloca en un tambor al que se introduce gas para carburizar como derivados de los hidrocarburos o gas natural. El procedimiento consiste en mantener al horno, el gas y la pieza entre 1650 y 1750 °F (900 y 927 °C). Después de un tiempo predeterminado se corta el gas carburizante y se deja enfriar el horno. Luego se saca la pieza y se recalienta a 1400 °F (760 °C) y se enfría con rapidez en agua o salmuera. Con este procedimiento se logran piezas cuya capa dura tiene un espesor hasta de 6 mm, pero por lo regular no exceden de 0.7 mm. carburado, cianurado y nitrurado Existen varios procedimientos de endurecimiento superficial con la utilización del nitrógeno y cianuro a los que por lo regular se les conoce como carbonitrurado o cianurado. En todos estos procesos con ayuda de las sales del cianuro y del amoniaco se logran superficies duras como en los métodos anteriores. Estructura de los metales Todos los materiales están integrados por átomos los que se organizan de diferentes maneras, dependiendo del material que se trate y el estado en el que se encuentra. Cuando un material se encuentra en forma de gas, sus átomos están más dispersos o desordenados (a una mayor distancia uno de otro) en comparación con los átomos de ese mismo material pero en estado líquido o sólido. Existen materiales en los que sus átomos siempre están en desorden o desalineados aún en su estado sólido, a estos materiales se les llama materiales amorfos, un ejemplo es el vidrio, al que se considera como un líquido solidificado. En el caso de los metales, cuando estos están en su estado sólido, sus átomos se alinean de manera regular en forma de mallas tridimensionales. Estas mallas pueden ser identificadas fácilmente por sus propiedades químicas, físicas o por medio de los rayos X. Cuando un material cambia de tipo de malla al modificar su temperatura, se dice que es un material polimorfo o alotrópico. Cada tipo de malla en los metales da diferentes propiedades, no obstante que se trata del mismo material, así por ejemplo en el caso del hierro aleado con el carbono, se pueden encontrar tres diferentes tipos de mallas: la malla cúbica de cuerpo centrado, la malla cúbica de cara centrada y la malla hexagonal compacta. Cada una de estas estructuras atómicas tienen diferentes números de átomos, como se puede ver en las siguientes figuras. Malla cúbica de cuerpo centrado Malla cúbica de cara centrada Malla hexagonal compacta La malla cúbica de cuerpo de cuerpo centrado. Es la estructura que tiene el hierro a temperatura ambiente, se conoce como hierro alfa. Tiene átomos en cada uno de los vértices del cubo que integra a su estructura y un átomo en el centro. También se encuentran con esta estructura el cromo, el molibdeno y el tungsteno. La malla cúbica de cara centrada aparece en el hierro cuando su temperatura se eleva a aproximadamente a 910ºC, se conoce como hierro gamma. Tiene átomos en los vértices y en cada una de sus caras, su cambio es notado además de por los rayos X por la modificación de sus propiedades eléctricas, por la absorción de calor y por las distancias intermoleculares. A temperatura elevada el aluminio, la plata, el cobre, el oro, el níquel, el plomo y el platino son algunos de los metales que tienen esta estructura de malla. La malla hexagonal compacta se encuentra en metales como el berilio, cadmio, magnesio, y titanio. Es una estructura que no permite la maleabilidad y la ductilidad, es frágil. Modificar a una malla de un metal permite la participación de más átomos en una sola molécula, estos átomos pueden ser de un material aleado como el carbón en el caso del hierro, lo que implica que se puede diluir más carbón en un átomo de hierro. Si se tiene en cuenta que el carbón es el que, en ciertas proporciones, da la dureza al hierro, entonces lo que se hace al cambiar la estructura del hierro es permitir que se diluya más carbón, con lo que se modifican sus propiedades. Otra de las características de los metales que influye notablemente en sus propiedades es el tamaño de grano, el cual depende de la velocidad de enfriamiento en la solidificación del metal, la extensión y la naturaleza del calentamiento que sufrió el metal al ser calentado. Grano de las estructuras metálicas Cuando un metal en su estado líquido se enfría sus cristales se van solidificando formando estructuras dendríticas, las que crecen uniformes hasta que se encuentran con otra estructura que también ha estado creciendo, en ese lugar de encuentro de las dos estructuras se forman los límites de los granos de los materiales. Entre más lento el enfriamiento de un material, mayor uniformidad en el crecimiento de los granos, o sea estos serán de menor tamaño. Un material con granos pequeños será más duro que un con granos grandes, debido a que los granos grandes tienden a fracturarse y deslizarse uno sobre el otro, lo que no sucede con los granos pequeños. La mejor forma de determinar el tamaño de grano de un material es por medio de microscopio metalúrgico, el que actúa por medio de un rayo de luz que se lanza sobre una superficie pulida al espejo y limpiada con una mezcla de 3% de ácido nítrico y 97% de alcohol, para eliminar lo que se conoce como metal untado. Microscopio para la medición de grano en un metal METALOGRAFIA: Es la ciencia que estudia las características estructurales o constitutivas de un metal o aleación relacionándolas con las propiedades físicas y mecánicas. Entre las características estructurales están el tamaño de grano, el tamaño, forma y distribución de las fases que comprenden la aleación y de las inclusiones no metálicas, así corno la presencia de segregaciones y otras irregularidades que profundamente pueden modificar las propiedades mecánicas y el comportamiento general de un metal. Mucha es la información que puede suministrar un examen metalográfico. El principal instrumento para la realización de un examen metalográfico es el microscopio metalográfico, con el cual es posible examinar una muestra con aumentos que varían entre 50 y 2000. 2.- OBJETIVO PRINCIPAL DE LA METALOGRAFIA: Es la realización de una reseña histórica del material buscando microestructura, inclusiones, tratamientos térmicos a los que haya sido sometido, microrechupes, con el fin de determinar si dicho material cumple con los requisitos para los cuales ha sido diseñado; además hallaremos la presencia de material fundido, forjado y laminado. Se conocerá la distribución de fases que componen la aleación y las inclusiones no metálicas, así como la presencia de segregaciones y otras irregularidades. 3.- OPERACIONES A SEGUIR PARA PREPARAR UNA MUESTRA METALOGRAFICA: a) Corte: El tamaño de la muestra siempre que se pueda debe ser tal que su manejo no encierre dificultad en la operación. -Corte por Sierra Produce severas condiciones de trabajo en frío y no es ventajoso. El corte mediante este método ocasiona superficies irregulares con valles excesivamente altos, dando como efecto más tiempo de aplicación de las técnicas de preparación de las muestras. Generalmente este tipo de corte es utilizado para extraer probetas de piezas muy grandes, para poder luego proceder con el corte abrasivo y adecuar la probeta a los requerimientos necesarios. -Corte por Disco Abrasivo Este tipo de corte es el más utilizado, ya que la superficie resultante es suave, y el corte se realiza rápidamente. Los discos para los cortes abrasivos, están formados por granos abrasivos (tales como óxido de aluminio o carburo de silicio), aglutinados con goma u otros materiales. Los discos con aglutinantes de goma son los más usados para corte húmedo; los de resina son para corte en seco. b) Montaje de muestras: Con frecuencia, la muestra a preparar, por sus dimensiones o por su forma, no permite ser pulida directamente, sino que es preciso montarla o embutirla en una pastilla. El material del que se componen estas puede ser Lucita (resina termoplástica) o Bakelita (resina termoendurecible). c) Desbaste: Después de montada la probeta, se inicia el proceso de desbaste sobre una serie de hojas de esmeril o lija con abrasivos más finos, sucesivamente. El proceso de desbaste se divide en 3 fases: Desbaste grosero, Desbaste intermedio y Desbaste final. Cada etapa de preparación de probetas metalograficas debe realizarse muy cuidadosamente para obtener al final una superficie exenta de rayas. -Desbaste Grosero Es el desbaste inicial, que tiene como objetivo planear la probeta, lo cual puede hacerse a mano y aun mejor con ayuda de una lijadora de banda. El papel de lija utilizado es de carburo de silicio con granos de 240 o papel de esmeril # 1. En cualquier caso, la presión de la probeta sobre la lija o papel de esmeril debe ser suave, para evitar la distorsión y rayado excesivo del metal. -Desbaste Intermedio Se realiza apoyando la probeta sobre el papel de lija o de esmeril, colocado sobre una mesa plana o esrneriladora de banda fija. En esta fase se utilizan los papeles de lija No. 320/340 y 400 o de esmeril # 1/O y 2/O. -Desbaste Final Se realiza de la misma forma que los anteriores, con papel de lija No. 600 ó de esmeril # 3/0. En todo caso, en cada fase del desbaste debe tomarse siempre en cuenta el sistema refrigerante. Cada vez que se cambie de papel, debe girarse 90 grados, en dirección perpendicular a la que se seguía con el papel de lija anterior, hasta que las rayas desaparezcan por completo. Se avanza y se facilita mucho las operaciones descritas utilizando una pulidora de discos, a las que se fija los papeles de lija adecuado en cada fase de la operación. Las velocidades empleadas varían de 150 a 250 rpm. En otro caso se pueden utilizar debastadoras fijas o de bandas giratorias. d) Pulido: -Pulido fino La última aproximación a una superficie plana libre de ralladuras se obtiene mediante una rueda giratoria húmeda cubierta con un paño cargado con partículas abrasivas seleccionadas en su tamaño. En éste sentido, existen muchos abrasivos, prefiriendo a gamma del oxido de aluminio para pulir metales ferrosos, los basados en cobre u oxido de cerio para pulir aluminio, magnesio y sus aleaciones. Otros abrasivos son la pasta de diamante, oxido de cromo y oxido de magnesio. La selección del paño para pulir depende del material que se va a pulir y el propósito del estudio metalográfico. -Pulido electrolítico Es una alternativa de mejorar al pulido total pudiendo reemplazar al fino pero muy difícilmente al pulido intermedio. Se realiza colocando la muestra sobre el orificio de la superficie de un tanque que contiene la solución electrolítica previamente seleccionada, haciendo las veces de ánodo. Como cátodo se emplea un material inerte como platino, aleación de níquel, cromo, etc. Dentro del tanque hay unas aspas que contienen en constante agitación al líquido para que circule permanentemente por la superficie atacándola y puliéndola a la vez. Deben controlarse el tiempo, el amperaje, el voltaje y la velocidad de rotación del electrolito para obtener un pulido satisfactorio. Muchas veces después de terminado este pulido la muestra queda con el ataque químico deseado para la observación en el microscopio. e) Ataque: Permite poner en evidencia la estructura del metal o aleación. Existen diversos métodos de ataque pero el más utilizado es el ataque químico. El ataque químico puede hacerse sumergiendo la muestra con cara pulida hacia arriba en un reactivo adecuado, o pasar sobre la cara pulida un algodón embebido en dicho reactivo. Luego se lava la probeta con agua, se enjuaga con alcohol o éter y se seca en corriente de aire. El fundamento se basa en que el constituyente metalográfico de mayor velocidad de reacción se ataca más rápido y se verá mas oscuro al microscopio, y el menos atacable permanecerá más brillante, reflejará más luz y se verá más brillante en el microscopio. f) Observación g) Fotomicrografía 4.- DESCRIPCION DEL MICROSCOPIO METALURGICO: En comparación al microscopio biológico el microscopio metalúrgico difiere en la manera en que la luz es proyectada. Como una muestra metalográfica es opaca a la luz, la misma debe ser iluminada por luz reflejada. Un haz de luz horizontal de alguna fuente de luz es reflejado, por medio de un reflector de vidrio plano, hacia abajo a través del objetivo del microscopio sobre la superficie de la muestra. Un poco de esta luz incidente reflejada desde la superficie de la muestra se amplificará al pasar a través del sistema inferior de lentes, el objetivo, y continuará hacia arriba a través del reflector de vidrio plano; luego, una vez más lo amplificará el sistema superior de lentes, el ocular. El poder de amplificación inicial del objetivo y del ocular está generalmente grabado en la base del lente. Cuando es utilizada una combinación particular de objetivo y ocular y una longitud adecuada de tubo, la amplificación total es igual al producto de las amplificaciones del objetivo y ocular. La amplificación máxima obtenida con el microscopio óptico es de unos 2000 x. La limitación principal es la longitud de onda de la luz visible, la cual limita la resolución de los detalles finos de la muestra metalográfica. La utilidad del microscopio metalúrgico puede ser ampliada debido a la incorporación de diversos aparatos auxiliares, como son los que permiten observar aspectos estructurales que no son visibles en condiciones normales. Puesto que el ojo humano es insensible a las diferencias de fase, debe incorporarse al microscopio un aparato óptico especial. Las diferencias de fases causados por variaciones extremadamente pequeñas al nivel de microestructuras, se transforman más tarde, en diferencias de intensidad en la imagen observada, revelando de esta forma aspectos invisibles bajo iluminación ordinaria. 5.- TECNICAS DE PREPARACION METALOGRAFICAS: • Preparación Normal o Tradicional Esmerilado burdo o tosco: La muestra debe ser de un tamaño de fácil manipulación. Una muestra blanda se puede aplanar si se mueve lentamente hacia arriba y abajo a través de una superficie de una lima plana poco áspera. La muestra plana o dura puede esmerilarse sobre una lija de banda, manteniendo la muestra fría sumergiéndola frecuentemente en agua durante la operación de esmerilado, evitando alterar su estado con el calor que se produce en el acto de pulido y asi mantener una misma fase. En todas las operaciones de esmerilado, la muestra debe moverse en sentido perpendicular a la ralladura existente. El esmerilado, continúa hasta que la superficie quede plana, y todas las ralladuras debidas al corte manual o al disco cortador no sean visibles, emulando la superficie de un espejo. Montaje: Este paso se realiza en el caso que las muestras sean pequeñas o de difícil manipulación en las etapas de pulido intermedio y final. Piezas pequeñas como tornillos, tuercas, muestras de hojas metálicas, secciones delgadas entre otros, deben montarse en un material adecuado o sujetarse rígidamente en una monta mecánica. La resina que se utiliza para fijar la probeta, se aplica a la probeta por medio de temperatura, es decir, es una resina termo-fijadora, comúnmente empleada para montar muestras es la baquelita. La muestra y cantidades correctas de baquelita, se colocan en un cilindro de la prensa de montar manual. La temperatura y presión aplicada producen una fuerte adhesión de la baquelita a la muestra, proporcionando un tamaño uniforme convenientes para manipular las muestras en operaciones de pulido posteriores. Pulido Intermedio: Luego del paso anterior, la muestra se pule sobre una serie de hojas de esmeril o lijas que contienen abrasivos finos. El primer papel es generalmente Nº 150 luego 200, 300, 400 y finalmente es posible encontrar en el mercado Nº1500. Antes de pulir con la siguiente lija se debe girar en 90º la muestra, a fin de eliminar el rayado realizado con la lija anterior. Las operaciones de pulido intermedio con lijas de esmeril se hacen en húmedo; sin embargo, en ciertos casos, es conveniente realizar este paso en seco ya que ciertas aleaciones se corroen fácilmente por la acción del agua. Pulido Fino: Esta etapa representa una de los pasos de mayor cuidado por parte del preparador de muestras, ya que en muchas ocasiones en la superficie del metal se han formado dobles caras o planos y que por supuesto por ningún motivo pueden ser utilizadas para el pulido fino, sino se remedia tal defecto superficial. El pulido fino se realiza mediante un disco giratorio cubierto con un paño especial, húmedo, cargado con partículas abrasivas, como es el oxido de aluminio para pulir materiales ferrosos y de los base cobre, y oxido de cerio para pulir aluminio, magnesio y sus aleaciones. La selección del paño para pulir depende del material y del propósito del estudio metalográfico. Se pueden encontrar paños de lanilla o pelillo, similares a los que se utilizan el las mesas de pool. También se pueden encontrar paños sintéticos para pulir con fines de pulido general, de los cuales el Gama y el Micropaño son los que se utilizan más ampliamente. • Preparación Electroquímica La técnica por pulido electroquímico requiere al igual que el caso anterior, la selección de una probeta de un tamaño apropiado para luego utilizar el electropulido. Este método consiste en una disolución electroquímica de la superficie del metal que produce un aislamiento y pulido, se aplica por lo general a muestras pequeñas. En el caso de metales blandos se requiere tomar ciertas precauciones para realizar el pulido debido a que se pueden formar capas amorfas. Para que ello no ocurra se utiliza también el pulido electrolítico, para lo cual se coloca la probeta como ánodo en una solución adecuada de electrolito (suspendida por un hilo de platino sujeta por pinzas conectadas al polo positivo de una batería) de tal forma de aplicar una fuerza electromotriz creciente, la intensidad se va a elevar hasta alcanzar un máximo. Aunque el potencial va aumentando, cae hasta alcanzar un valor constante y luego se vuelve a elevar bruscamente. Esta parte constante de la curva indica que corresponde al período de formación de la superficie lisa y brillante. Las probetas se lavan y luego se atacan por el método usual o bien se puede utilizar un ataque electrolítico que consiste en reducir la intensidad de corriente sin cambiar el electrolito inicial. 6.-CONSTITUYENTES METALOGRÁFICOS: En los aceros, el carbono se encuentra en general, o combinado en forma de cementita o disuelto, rara vez en forma de grafito. Este es el motivo por el cual solo se emplea el diagrama de equilibrio metaestable Fe - Fe3C para el estudio de los aceros. Los constituyentes estructurales de equilibrio de los aceros son: Austenita: Se define como una solución sólida de carbono en hierro gamma. Solo es estable a temperaturas superiores a 723 ºC, desdoblándose por reacción eutectoide, a temperaturas inferiores, en ferrita y cementita. Solo puede aparecer austenita a temperatura ambiente en los aceros austeníticos, en este caso la austenita si es estable a temperatura ambiente. Es deformable como el hierro gamma, poco dura, presenta gran resistencia al desgaste, es magnética, es el constituyente más denso de los aceros y no se ataca con reactivos. La resistencia de la austenita retenida a la temperatura ambiente oscila entre 80 y 100 daN/mm2 y el alargamiento entre 20 y 25 %. Puede disolver hasta 1,7-1,8 % de carbono. Presenta red cristalográfica cúbica centrada en las caras (c.c.c.), con los siguientes parámetros de red, a=3,67 A y d=2,52 A. Ferrita: Este constituyente está formado por una solución sólida de inserción de carbono en hierro alfa. Es el constituyente más blando de los aceros pero es el más tenaz, es el más maleable, su resistencia a la tracción es de 28 daN/mm2 y su alargamiento de 35 %. Su solubilidad máxima es de 0,008 %. Puede también mantener en solución de sustitución a otros elementos tales como Si, P, Ni, Cr, Cu... que figuran en los aceros, bien como impurezas, bien como elementos de aleación. La ferrita se presenta en los aceros hipoeutectoides como constituyente y mezclada con la cementita entra a formar parte de la perlita. Si el acero es muy pobre en carbono, su estructura está formada casi en su totalidad por granos de ferrita cuyos límites pueden revelarse fácilmente con el microscopio, después de un ataque con ácido nítrico diluido. Los granos son equiaxiales. Tiene una distancia interatómica de 2,86 A y un diámetro atómico de 2,48 A. Perlita: Está formada por una mezcla eutectoide de dos fases, ferrita y cementita, se produce a 723 ºC cuando la composición es de 0,8 %. Su estructura está constituida por láminas alternadas de ferrita y cementita, siendo el espesor de las láminas de ferrita superior al de las de cementita, estas últimas quedan en relieve después del ataque con ácido nítrico, lo cual hace que en la observación microscópica se revelen por las sombras que proyectan sobre las láminas de ferrita. La perlita es más dura y resistente que la ferrita, pero más blanda y maleable que la cementita. Se presenta en forma laminar, reticular y globular. Cementita: Es un constituyente que aparece en fundiciones y aceros. Es el carburo de hierro, de fórmula Fe3C, que cristaliza en el sistema ortorrómbico. Es muy frágil y duro, teniendo sobre 840 Vickers, y es muy resistente al rozamiento en las fundiciones atruchadas. A bajas temperaturas es ferromagnético y pierde esta propiedad a 212 ºC (punto de Curie). Se piensa que funde por encima de 1950 ºC, y es termodinámicamente inestable a temperaturas inferiores a 1200 ºC. Se puede presentar en forma reticular, laminar y globular. Bainita: Es el constituyente que se obtiene en la transformación isotérmica de la austenita cuando la temperatura del baño de enfriamiento es de 250 a 500°C. Se diferencian 2 tipos de estructuras: la Bainita superior de aspecto arborescente formada a 500-580°C, compuesta por una matriz ferrítica conteniendo carburos y la Bainita inferior, formada a 250-4000 ºC tiene un aspecto similar a la martensita y esta constituida por agujas alargadas de ferrita que contienen delgadas placas de carburos. La bainita tiene una dureza que va de 40 a 60 HRc. Sorbita: Se obtiene con un revenido después del temple. Al realizar el calentamiento la martensita experimenta una serie de transformaciones y en el intervalo comprendido entre 400 y 650 ºC la antigua martensita ha perdido tanto carbono, que se ha convertido ya en ferrita. La estructura así obtenida se conoce como sorbita. Martensita: Es una solución sólida, intersticial, sobresaturada de carbono en hierro alfa. Es el constituyente estructural de temple de los aceros y su microestructura se presenta en forma de agujas cruzadas. Los átomos de hierro están como en la ferrita, en los vértices. Los átomos de carbono están en las caras y en las aristas, presenta por tanto una red distorsionada. Esta distorsión de la red es la responsable de la dureza de la martensita. Presenta una red tetragonal. Sus características mecánicas son resistencia a la tracción entre 170-250 Kg/mm2, dureza HRc entre 50-60, alargamiento de 0,5 % y es magnética. 7.- EXAMEN MICROGRAFICO Y MACROGRAFICO La forma mas sencilla de realizar el estudio, es examinando las superficies metálicas a simple vista, logrando determinar de esta forma las características macroscópicas. Este examen se denomina macrográfico y de ellos se extraen datos sobre los tratamientos mecánicos sufridos por el material, es decir, determinar si el material fue trefilado, laminado, forjado, entre otros, comprobar la distribución de defectos como grietas superficiales, de forja, rechupes, partes soldadas. Así mismo, los exámenes macroscópicos se realizan generalmente sin preparación especial, pero a veces es necesaria una cuidadosa preparación de la superficie para poner de manifiesto las características macroscópicas. En macroscopía, se utilizan criterios para el tipo de corte a realizar (transversal o longitudinal) para extraer la muestra dependiendo el estudio a realizar, por ejemplo: Corte transversal: Naturaleza del material, homogeneidad, segregaciones, procesos de fabricación, y otros. Corte longitudinal: Proceso de fabricación de piezas, tipo y calidad de la soldadura y otros. Por otra parte, existe otro tipo de examen que es el examen micrográfico, que representa una técnica más avanzada y se basa en la amplificación de la superficie mediante instrumentos ópticos (microscopio) para observar las características estructurales microscópicas (microestructura). Este tipo de examen permite realizar el estudio o controlar el proceso térmico al que ha sido sometido un metal, debido a que los mismos colocan en evidencia la estructura o los cambios estructurales que sufren en dicho proceso. Como consecuencia de ello también es posible deducir las variaciones que experimentan sus propiedades mecánicas (dependiendo de los constituyentes metalográficos presentes en la estructura). Los estudios ópticos microscópicos producen resultados que no solo son útiles a los investigadores sino también a los ingenieros. El examen de la microestructura es muy útil para determinar si un metal o aleación satisface las especificaciones en relación a trabajos mecánicos anteriores, tratamientos térmicos y composición general. La microestructura es un instrumento para analizar las fallas metálicas y para controlar procesos industriales. Para un estudio de ella se necesita una preparación aún más cuidadosa de la superficie. No obstante el procedimiento de preparación de la superficie es básicamente el mismo para ambos ensayos metalográficos. Esta experiencia delinea una forma de preparar muestras pequeñas de acero blando) con el fin de realizar un examen metalográfico. Los pasos a seguir en el procedimiento de preparación son los mismos para todos los materiales difiriendo solo las herramientas de corte y el grado de finura de los papeles de esmeril según la dureza del material. El reactivo de ataque a utilizar depende del tipo de aleación. Los ensayos micrográficos se realizan sobre muestras o probetas de los materiales que han de ser sometidos a estudio, preparamos una superficie que luego de ser pulida convenientemente, se ataca con reactivos químicos apropiados a la finalidad de la determinación a realizar. Conociendo mejor el examen micrográfico: Si el examen se ejecuta para analizar una fractura, la que se sospecha provocada por irregularidades en el material, las muestras deberán ser por lo menos dos, una de la propia fractura y otra de una zona intacta de la misma pieza, con el objeto de observar y comparar las modificaciones que ha sufrido la estructura y de las que se podrán deducir y contar con una mayor cantidad de datos, es necesario tener en cuenta además, los tratamientos recibidos por la pieza en su fabricación, como forjado, laminado, recocido, temple, entre otros; pues en muchos casos (forjado y laminado) es beneficio contar con muestras en las distintas direcciones de sus fibras. Como se ha indicado, el estudio en si se hace sobre superficies convenientemente preparadas de dichas muestras o probetas. Esta preparación consiste en llegar a un pulido casi perfecto, para lo cual se parte de un desbaste que podríamos llamar grueso, con el fin de aplanar la superficie, lo que se consigue con un ajuste a lima o con el auxilio de devastadoras mecánicas de diseño especial. Los reactivos químicos y sus finalidades son muy variadas, pero en principio se busca con ellos la revelación, por coloración o por corrosión, de los distintos componentes de una estructura metalografica para poder diferenciarlos con facilidad. Por lo general, están constituidos por ácidos o álcalis diluidos en alcoholes, agua o glicerina. Y su elección se hará de acuerdo con la naturaleza química de la estructura a destacar en la muestra. Con tal fin, una vez pulida la superficie se hará en agua caliente, frotándola con un algodón o tela suave para quitarle todo rastro de las operaciones anteriores que pueda presentar, concluyendo esta limpieza con alcohol etílico o solvente similar y secándola con un soplado de aire caliente. Las fotografías obtenidas de estos exámenes, genéricamente llamados Microfotografías , se logran con la ayuda del microscopio metalográfico, cuyos principios ópticos y de observación no difieren mayormente de los comunes. En él, con iluminación adecuada, se observa por reflexión (los rayos luminosos al incidir sobre el objeto se refleja hacia el ocular), la imagen de la superficie atacada, a través de un sistema de lentes con los que se amplifica según lo que requiera la observación. Por otra parte, con la observación de las estructuras micrográficas y por comparación con microfotografías, es posible deducir el contenido aparente de carbono, finura y variedad de los componentes, clasificación de aceros, reconocer las inclusiones por defectos de fabricación (óxidos, silicatos, oxisulfuros, silicoaluminatos) EXAMEN METALOGRAFICOS A LAS PROBETAS DE SAE 1015 Y SAE 1045 Muestra 1 Muestra 2 Según como vemos en las micrografías obtenidas de los exámenes, reafirman que la muestra 1 es un acero SAE 1015 según la distribución de la perlita y la ferrita. Y las micrografías de la muestra 2 reafirman que estamos trabajando con un acero SAE 1045, así lo muestra el contenido de ferrita y de la perlita laminar. 8.- METODOS PARA DETERMINAR EL TAMAÑO DE GRANO TAMAÑO DE GRANO Una de las mediciones micro estructurales cuantitativas más comunes es aquella del tamaño de grano de metales y aleaciones. Numerosos procedimientos han sido desarrollados para estimar el tamaño de grano, estos procesos están sintetizados en detalle en la norma ASTM E112.Algu nos tipos de tamaño de grano son medidos, tamaño de grano de la ferrita y tamaño de grano de la austenita. Cada tipo presenta problemas particulares asociados con la revelación de estos bordes de manera que puede obtenerse un rango exacto. Los principales métodos para la determinación del tamaño de grano recomendados por la ASTM (American Society for Testing and Materials) son: Método de Comparación Método de Planimétrico Método de Intersección -Método de comparación Mediante el método de prueba y error se encuentra un patrón que coincide con la muestra en estudio y entonces se designa el tamaño de grano del metal por el número correspondiente al número índice del patrón mixto; se tratan de manera semejante, en cuyo caso se acostumbra especificar el tamaño de granos en términos de dos números que denota el porcentaje aproximado de cada tamaño presente. El método de comparación es más conveniente y bastante preciso en muestras de granos de ejes iguales. El número de tamaño de grano puede obtenerse con la siguiente relación: N=2 n -1 -Método planimétrico Es el más antiguo procedimiento para medir el tamaño de grano de los metales. El cual consiste en que un circulo de tamaño conocido (generalmente 19.8 mm f, 5000 mm2 de área) es extendido sobre una rnicrofotografia o usado como un patán sobre una pantalla de proyección. Se cuenta el número de granos' que están completamente dentro del círculo n1 y el número de granos que interceptan el circulo n2 para un conteo exacto los granos deben ser marcados cuando son contados lo que hace lento este método. -Métodos de intercepción El método de intercepción es más rápido que el método planimétrico debido a que la microfotografía o patrón no requiere marcas para obtener un conteo exacto. El tamaño de grano se estima contando por medio de una pantalla dividida de vidrio, o por fotomicrografía o sobre la propia muestra, el número de granos interceptados por una o más líneas restas. Los granos tocados por el extremo de una línea se cuentan solo como medios granos. Las cuentas se hacen por lo menos entres posiciones distintas para lograr un promedio razonable. La longitud de líneas en milímetro, dividida entre el número promedio de granos interceptados por ella da la longitud de intersección promedio o diámetro de grano. El método de intersección se recomienda especialmente para granos que no sean de ejes iguales.