m ,l m ,l

Anuncio
EJERCICIO 05
SISTEMAS DINAMICOS FI21B-2002-02
PROF. MARCEL G. CLERC
AUXILIARES: CLAUDIO FALCÓN Y MIGUEL TREJO
Péndulo esférico doble: Considere un sistema mecánico formado por dos
péndulos de masas y largos m1 , m2 , l1 , y L2 respectivamente (ver figura), bajo la
influencia de un campo gravitacional constante (g). El primer péndulo es esférico,
es decir, el movimiento de este péndulo se desarrolla sobre la superficie de una esfera
de radio l1 . El péndulo inferior es un péndulo plano restringido a moverse en el
plano ortogonal del primer péndulo como se muestra en la figura.
5-a¿Cuál es el lagrangeano que caracteriza a este sistema?.
5-b Encuentre las cantidades conservadas de este sistema e interprete a que
simetrias infinitesimales estan relacionadas estas cantidades conservadas.
5-c ¿Cuales son las ecuaciones de movimiento del sistema e interprte fisicamente
los diferentes términos de las ecuaciones de movimiento?.
5-d Considere independientemente los lı́mites l1 → 0 y l2 → 0. ¿Cuales son las
ecuaciones de movimiento del sistema en éstos?.
ϕ
θ1
m1,l1
θ2
m2,l2
Dificultad 6.0.
1
Descargar