Subido por Franklec

Atlas of Time-Temperature Diagrams for Irons and Steels George F Vander Voort

Anuncio
ATLAS OF TIME-
TEMPERATURE
DIAGRAMS FOR
IRONS AND STEELS
INTERNATIONAL
®
The Materials
Information Society
ASM International® is a Society whose
mission is to gather, process and
disseminate technical information.
ASM fosters the understanding and
application of engineered materials and
their research, design, reliable manufacture, use and economic and social
benefits. This is accomplished via a
unique global information-sharing
network of interaction among members
in forums and meetings, education
programs, and through publications
and electronic media.
Digitized by the Internet Archive
In 2022 with funding from
Kahle/Austin Foundation
httos://archive.org/details/atlasoftimetempeO000unse
Atlas of
Time-Temperature Diagrams
for lrons and Steels
Edited by
George F. Vander Voort
Carpenter Technology Corporation
Reading PA
ASN.
INMTERNLATIONAL
®
ASM International©
Copyright © 199]
b Vy
ASM International
All rights reserved
No part of this book may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, with the prior
written permission of the publisher.
Nothing contained in this book is to be construed as a grant of any right of
manufacture, sale, or use in connection with any method, process, apparatus, product, or
composition, whether or not covered by letters patent or registered trademark, nor as @
defense against liability for the infringement of letters patent or registered trademark.
Library of Congress Catalog Card Number:
ISBN:
91-072218
0-87170-415-3
SAN: 204-7586
Production coordination by
Veronica Flint, ASM International
PRINTED
IN THE UNITED
STATES
OF AMERICA
About the Editor
George
F. Vander
Voort
is supervisor,
Metal
Physics
Research,
Carpenter
Technology Corporation, Reading, Pennsylvania. Prior to joining Carpenter in 1983,
he spent 16 years with Bethlehem Steel Corporation, first in the metallurgy
division of their Bethlehem Plant, then with Homer Research Laboratories. He has
had a long interest in heat treatment of ferrous and nonferrous alloys. Mr. Vander
Voort received a BS degree in Metallurgical Engineering from Drexel University in
1967 and an MS in Metallurgy and Materials Science from Lehigh University in
1974.
A member of ASM for more than 25 years, and active in the Lehigh Valley
Chapter as well as nationally, he is presently chairman of ASM’s Technical Book
Committee and a member of its Publication Council. He has taught many ASM MEI
courses since 1977 and made eight of the ten video lectures for "Principles of
Metallography."
Also active in other societies, he is presently chairman of ASTM Committee E-4 on
Metallography and is a past president of the International Metallographic Society
and is a fellow of both ASTM and ASM International.
Mr. Vander Voort is the holder of four US patents, and has over 60 publications
his credit including Metallography. Principles and Practice, McGraw-Hill, 1984.
to
a rip MIIA
.
~
“nil
, iy
:
inna
akeF 4
Bm~~
on
=i
el
"
a)
;
" Hever
y En)
4
Gey
bly
8
':
Ae
Pie
ie
=.hityad -
vi
Abié
i[eas@
aie
weil
nt
wot? sent model
We-cosmi'tnst!
reialigs 1.0
(840°
F
bigot
fied
18
fa
=> wt bap:ae
*7
-
oheee
i ov’
7) st
ms eis
oe
i
Matat
7
=
Te
;ae ass i
bieyAg Mii, |
— »
7
ae
Wee
eA
{
| 7)
-encinn
l wbaleut o. \ andpeae
Ph
sat Tham OHS ve?
iv
7
ee
(Ai
mm
Brow: iat navies!
a
aS
aie
be
pine
wn -
ad
4 a \ smlpeipal
Ra)
4G
igual
Biers ”.
Mapar
@&
< yas
EA
Mii ie
hy
7
-
7
G
Egy
coef
y
’
Preface
The 1930 publication of the epic paper by E.S. Davenport and E.C. Bain on the isothermal
diagram concept had a profound influence on physical metallurgy, metallography and heat
treatment. Prior to the development of this technique, heat treatment was truly an art clothed in secrecy and often unpredictable. Metallurgists debated, theories were proposed and
demolished. Even the basic constituents in steel microstructures were not well understood and
firmly established. Indeed, the arguments over pearlite vs sorbite and troostite raged on for
nearly another decade. However, the simple concept of the isothermal diagram brought order
into this picture and paved the way for the current understanding of phase transformations
and industrial control of heat treating processes. Indeed, they even showed the way for new
processes, such as martempering and austempering.
Metallurgists began to develop isothermal transformation (IT) diagrams, also called timetemperature-transformation (TTT) diagrams or C-curves, for many steels. At the same time,
the understanding of hardenability was being advanced through the use of experimental
techniques, chiefly the Jominy end-quench test and several variants (for steels with either
very low or very high hardenability), and by mathematical modeling of cooling conditions and
the calculation of hardenability curves from chemical analysis and grain size information.
These two developments were by nature interrelated because of their mutual influence on heat
treatment. Hardenability techniques were primarily centered upon predicting the size of a bar
of a known composition that would just "through harden" in a given quench medium. The
"through harden" aspect related to the microstructure where this term means that the center of
the bar contains a minimum of 50% martensite. In the early days of this work, the balance of
the structure did not receive much attention. However, the ability to predict the Jominy curve
and cross-sectional hardness patterns in heat treated bars was found to depend on knowing
what else would form as the ability to produce martensite decreased.
While isothermal transformation diagrams were instrumental in providing an understanding of
how austenite transforms, and in identifying the constituents that can form in a given steel,
they were
not developed
under conditions
similar to quenching
where
the specimen
temperature decreased at some rate, generally variable, and the structures were formed over a
wide range of temperatures. Attempts were made to utilize IT diagrams for continuous cooling
situations but the results were never satisfactory. For simple alloys, such correlations were
reasonably useful but as the hardenability increased, particularly bainitic hardenability, they
became less useful. This spawned the development of continuous cooling transformation (CCT)
diagrams.
Because the science of physical metallurgy was much better established by the time CCT
diagrams became common, their development had much less of an impact on metallurgy than
the 1930 introduction of the IT diagrams. However, this in no way detracts from the practical
value of the CCT diagram. The first diagrams were made using metallographic observations of
the microstructures produced at different test locations on Jominy bars that had been end
quenched for different times before the entire bar was rapidly immersion quenched. Because
the cooling rate varies as a function of the distance from the end-quenched face, a great deal
of information could be obtained. A number of interrupted Jominy bars were heat treated
with varying end-quench times. The cooling curves at each location on the Jominy bar had to
be
determined.
Each
bar
was
hardness
tested
and
then
polished
along
the
side.
Then,
the
metallographer determined the amounts of each constituent present at key locations along the
bar. Tedious, yes, but useful. Metallurgists were quick to adopt use of the dilatometer for
developing CCT diagrams. When a specimen is cooled at a specific constant rate, the phase
transformation produces a change in length which can be measured by the dilatometer. A
number of specimens would
be run at a variety of cooling rates and the arrest points were
plotted on the cooling curve for each specimen. The microstructure of each dilatometer pin
was examined to be sure of the nature of the transformation. Then, the arrest points were
connected
together
austenite.
Other
to map
techniques
out the regions over
and
other
methods
which
of
a given constituent
plotting
also
evolved,
from
the
example,
the
formed
for
British diagrams plot results as a function of different locations on bars of different diameter
cooled at difference quench rates. Instead of following a cooling curve from the upper left
corner of the diagram towards the x-axis, their data are read vertically. The Benelux CCT
diagrams also are plotted differently with the x-axis showing the time to cool from 800 to
500°C:
Irrespective of the way the continuous cooling data were plotted, CCT diagrams are very
helpful
for understanding
or predicting
heat treatment
response,
especially
for those
treatments that involve quenching baths. As with the IT diagrams, CCTs also have their
limitations. Actually, the two diagrams are complementary, not competitive. IT diagrams are
best suited for developing annealing, martempering or austempering practices, while CCT
diagrams are best suited for developing quench
hardening
practices. Neither
diagram,
however, tells us anything about the effect of tempering. Dilatometrically derived CCT
diagrams have been criticized because the device tries to suppress the recalescence effects
associated with a phase transformation in its desire to maintain a constant cooling rate.
In the United States, IT diagram development progressed rapidly, mainly as a result of the
initial and continued interest in them by researchers at the United States Steel Corporation.
The US Steel collection of diagrams was republished by ASM in 1977 but has been out of
print for some time. Not all of the diagrams in the 1977 collection were made by US Steel,
however, and some CCT diagrams were included. Other American companies became involved
in the development of both IT and CCT diagrams. Notable is the work by the Climax
Molybdenum Corporation who published a number of books, articles and pamphlets, but no
overall atlas. Other countries have also produced excellent collections of IT and/or CCT
diagrams developed
by their researchers; for example, the German,
French
and Benelux
countries all produced excellent diagrams for their steels and published compendiums. In 1980,
ASM republished CCT diagrams developed by M. Atkins of British Steel Corporation. Besides
these, many diagrams can be found scattered throughout the literature. Vanitec recently
published a collection of diagrams from all over the world of steels containing vanadium.
Besides IT and CCT diagrams, there are other time-temperature type diagrams that have never
been collected together in one place. First, there are diagrams that show transformation after
applied pressure or deformation
or under
natural cooling conditions. There are timetemperature-embrittlement (TTE) diagrams dealing with temper embrittlement. There are timetemperature-precipitation (TTP) diagrams that show the conditions, mainly isothermal, under
which various nitrides, carbides or intermetallic phases precipitate in a wide variety of steels.
There are time-temperature-sensitization (TTS) diagrams that show
intergranular attack after
sensitization treatments.
This
atlas
brings
together
many
of the
published
IT and
CCT
diagrams
from
US,
British,
German,
French
and Benelux
collections as well as previously
non-collected
published
diagrams. Also, besides the traditional IT and CCT diagrams, other ITs and CCTs that show
the influence of pressure or deformation have been included. For the first time, TTE, TTP
and TTS diagrams for irons and steels have been brought together in one collection. Naturally,
there are a number of ways in which these diagrams could be arranged. We have chosen to
group them by published collections, except for those diagrams that were found scattered
throughout the open literature. Because the large collections often have a unique style for
plotting (or obtaining) the data, grouping them by the collections maintains coherence and
should help the reader in interpreting the curves.
The editor would like to thank the many people who helped him gather diagrams from the
many different publications. He also acknowledges the excellent support of the ASM staff,
particularly Mrs. Veronica Flint who coordinated much of the acquisitions, all of the
permissions to republish the diagrams, and the mechanics of publication of this book. Readers
who are aware
of other useful diagrams
not included
in this atlas are encouraged
to send
copies to the editor.
George F. Vander Voort, Editor
Carpenter Technology Corporation
Reading PA, USA
Contents
DSTO LCClS eer mk Meee
anes cae
Bri sh EM Stee Geer meee tare.
GCOMI ADS TCCIS@ Reve yee
BPLeMCHZSCCOTS
a
POCO LUX SSCCEIS(
a
so kon Oe
eee
eg Ae
ct mere
eae te eee
ett
eee
a
eae
sar es: eyonce Re
nCerine SCG Sew: cies wos ses) olhoes
wame-1emperature.
Precipitation. Diagrams
iame- Lemperature
Embrittlement
en
Ft
6 ss
ee
LS
glo
ene
1637-3220
One
aa
© are
ee) See
eae
ran
ee eee 243 - 296
SWRI
oS 297-509
ne
ee
ea
SAS IRS
nck
22
be2 42
ee
373 - 376
eee
453 - 520
5 cscs
Hts
ee ee 521 - 607
2; ¢ 40s.
vom
Cn
53°= 113
ee
(1 andsCG bh Diagrams).
ee Gee
a:
tw
meauaonal-stéels
eR
a
at a Pen
12 SPAMS) hte ers Gahan olvec cane ater setae
AOS
Bret
a
OotirOre SCCCIS CLT
Diagrams.
ee
ee een
es dugle ee ae he
eee
oo ae
Ree
hes Fey ati) Sihlews Boss aca ke CORO
ese eee eet ne ernie oes, a. eos.3 1x)a Swe
ea MAC IUR STCCIS:
lie
G hs a
eietes Lererare s nna eo
NTO IVOGEMUT ISTCCLS ee tee
Beisishe
iar
Geno
sae
Apos.. 120s
6
i
ee
te
ee 609 - 651
ee
653 - 700
EES, CORE ® Ate. Wetec cetiacs setae RL ae
701 - 766
hg
.
’
qanea
ae
4
Sarees
Cr ia
eeu
Oéasee
et
»
0
es
Aloe
af
Ast
res
toGivry
te
46
+44
ee
Ce
Arye:
@
°@E
ibe
Gece
p
esi
f
0
oe
@
ofe
2
Me.
66"
ae
ON
FAP
4 eu
oo
eng)
vo
@@
Gs
ime
TF
aly
ee
.
~ 796
ie
aut
|
a
,
a
a
as
.
7
.a
Re
Vad
ayo
=
ss
——"o
~
_
> Oye
pS
—
=
7 Ae
¢
>
oa
we
ip
&
. Le
A
pas wri: fh We
Vi Wh Ad ee BaP
BDO
>
*
_
+e
©
:
a
4
a5
a
See
oe id
_
=
-
¢
Gus
ena
'
-
fume ops -
ea:
;
-
a
¢
=
.
—_
y=
ye
y
iL)
i |
«
ot
a
—
Sl)
@
fe
Ss
7
~—
4
;
7
e
ep
:
ot pad
yi
4
;
;
i
;
:
wr
rT
7
VOOReely.:
@
=
if
eet n~g vate
1ea®
=
@.)
-
eget
IOS
p=
wee
Grane
&
poreny
APPL
ViGhss
BS \sneenti8s, NA.
As, ©.05
ie
;
sp
:
id
6 cele
n
‘e
=e
>
Table of Contents
US STEELS,
3 - 51
Type: Carburized
Introduction, 3 - 12
Type:
1006/1008,
Type: Carburized
LOLS.
13
1021,
73
.
Type: 2910,
1045/1050
22
Composition: Fe - 0.42% C - 0.68% Mn - 0.93% Cr
14
Type: 5160,
+ Cu,
14
22
Composition: Fe - 0.61% C - 0.94% Mn - 0.88% Cr
Type: 52100,
Composition: Fe - 0.48% C - 0.57% Mn - 0.20% Si - 0.46%
Cu
22
Composition: Fe - 1.02% C - 0.36% Mn - 0.20% Ni - 1.41%
Cr
Composition: Fe - 0.49% C - 0.57% Mn - 0.97% Cu
Composition: Fe - 0.49% C - 0.54% Mn - 0.20% Si - 1.49%
Type: Fe-C-Cr,
Cu
Type: Fe-C-Cr-Mo,
aby per 105050
15
1055 Mod.
15
Type: 410,
Composition: Fe - 0.54% C - 0.46% Mn
Type:
1060,
Mod.,
1080,
Type: 4027,
16
1086/1095,
© sy
ee
Type: W1
Type: 4037,
16
Type: Fe-C-Mo,
16
Type: 4047,
16
1320 (0.4% C),
17
Type: 4068,
17
Type: Fe-C-Mo,
Composition: Fe - 0.4% C - 1.88% Mn
Type: Carburized
1320 (0.6% C),
Composition: Fe - 0.6% C - 1.88% Mn
Type: Carburized
1320 (0.8% C),
17
Composition: Fe - 0.8% C - 1.88% Mn
Type: Carburized
1320 (1.0% C),
18
Composition: Fe - 1.0% C - 1.88% Mn
Type: Carburized
1320 (1.2% C),
18
Composition: Fe - 1.2% C - 1.88% Mn
diyoe; 1335,
19
1340,
19
19
Composition: Fe - 0.56% C - 0.26% Mn - 1.97% Ni
Type: 2340,
19
20
Weld Metal,
25
Composition: Fe-0.10% C - 1.63% Mn - 0.41% Mo
Type: Fe-C-Mo,
26
Composition: Fe - 0.40% C - 0.42% Mn - 0.53% Mo
Composition: Fe - 0.36% C - 0.17% Mn - 0.82% Mo
Composition: Fe - 0.33% C - 0.41% Mn - 1.96% Mo
26
Mo
Type: Fe-C-Ni-Mo,
27
Composition: Fe - 0.41% C - 0.60% Mn - 3.51% Ni - 0.21%
Mo
Mo
Type: Fe-C-Si,
Composition: Fe - 0.59% C - 0.25% Mn - 3.90% Ni
Type. 2512, 20
Composition: Fe - 0.10% C - 0.52% Mn - 5.00% Ni
Type: Carburized
Type: Mn-Mo
Composition: Fe - 0.39% C - 0.56% Mn - 3.53% Ni - 0.74%
Composition: Fe - 0.37% C - 0.68% Mn - 3.41% Ni
Type: Fe-Ni-C,
25
Composition: Fe - 0.97% C - 1.04% Mn - 0.32% Mo
Composition: Fe - 0.22% C - 0.79% Mn - 0.50% Mo
Composition: Fe - 0.40% C - 0.57% Mn - 3.49% Ni - 0.01%
Composition: Fe - 0.43% C - 1.58% Mn (low Mn)
Type: Fe-Ni-C,
25
Composition: Fe - 0.68% C - 0.87% Mn - 0.24% Mo
Type: Fe-C-Ni,
Composition: Fe - 0.35% C - 1.85% Mn
Type:
24
Composition: Fe - 0.48% C - 0.94% Mn - 0.25% Mo
Composition: Fe - 0.20% C - 1.88% Mn
Type: Carburized
24
Composition: Fe - 0.42% C - 0.20% Mn - 0.21% Mo
Composition: Fe - 1.13% C - 0.30% Mn
mype.. 1320,
24
Composition: Fe-0.35% C - 0.80% Mn - 0.25% Mo
Fe - 0.89% C= 0.29% Mn
Tool Steel,
24
Composition: Fe - 0.26% C - 0.87% Mn - 0.26% Mo
Composition: Fe - 0.79% _C - 0.76% Mn
\Type:
23
Composition: Fe - 0.22% C - 0.54% Mn - 0.64% Ni - 12.46%
Cr - 0.99% Mo - 0.29% V
15
Composition: Fe - 0.64% C - 1.13% Mn
Type:
23
Ni - 12.18% Cr
Type: Fe-C-Ni-Cr-Mo-V,
15
1060 Mod./1065
23
Composition: Fe - 0.11% C - 0.44% Mn - 0.37% Si - 0.16%
Composition: Fe - 0.63% C - 0.87% Mn
Type:
23
Composition: Fe - 0.33% C - 0.45% Mn - 1.97% Cr
Composition: Fe - 0.11% C - 0.38% Mn - 0.44% Si - 5.46%
Cr - 0.42% Mo
Composition: Fe - 0.50% C - 0.91% Mn
Type:
21
22
Type: 5140,
Composition: Fe - 0.47% C - 0.57% Mn - 0.06% Cu
Type:
2512 (1.2% C),
Composition: Fe - 0.08% C - 0.49% Mn - 8.94% Ni
13
1045/1050,
21
Composition: Fe - 1.2% C - 0.52% Mn - 5.00% Ni
_____Composition:
Fe - 0.35% C = 0.37% Mn
: ype:
2512 (1.0% C),
Type: Carburized
13
1035 Mod.,
21
Composition: Fe - 1.0% C - 0.52% Mn - 5.00% Ni
Composition: Fe - 0.20% C - 0.81% Mn
Type:
2512 (0.8% C),
Type: Carburized
"Composition: Fe - 0.17% C - 0.92% Mn
Type:
20
Composition: Fe - 0.8% C - 0.52% Mn - 5.00% Ni
Composition: Fe - 0.06% C - 0.43% Mn
ype:
2512 (0.6% C),
Composition: Fe - 0.6% C - 0.52% Mn - 5.00% Ni
2512 (0.4% C),
27
Composiion: Fe - 0.50% C - 0.23% Mn - 0.53% Si - 0.05% Cr
Composition: Fe - 0.54% C - 0.23% Mn - 1.27% Si - 0.05%
Cr
20
Composition: Fe - 0.4% C - 0.52% Mn - 5.00% Ni
EE
oe
Type: Fe-C-Si-Cr,
Type: 4317,
28
Cr
{
Composition: Fe - 0.53% C - 0.24% Mn - 2.32% Si - 0.32%
Cr
Composition: Fe - 0.51% C - 0.25% Mn - 3.80% Si - 0.32%
Type: 9260,
28
Composition: Fe - 0.62% C - 0.82% Mn - 2.01% Si - 0.07%
29
29
30
Composition: Fe - 0.43% C - 0.74% Mn - 0.92% Cr - 0.16%
Mo
36
.
Mo
Type: 4815 (1.0% C),
30
36
Composition: Fe - 0.97% C - 0.52% Mn - 3.36% Ni - 0.19%
Composition: Fe - 0.53% C - 0.67% Mn - 0.93% Cr - 0.18%
Mo
Type: 8620,
V
Type: Fe-C-Cr-Mo-V,
30
Composition: Fe - 0.23% C - 0.82% Mn - 1.22% Cr - 0.53%
Mo - 0.22% V
Composition: Fe - 0.40% C - 0.78% Mn - 1.25% Cr - 0.53%
Mo - 0.22% V
Type: Fe-C-Cr-Mo-V,
31
Mo - 0.26% V
Type: Fe-C-Mn-Ni-V,
31
Vv
Type: Fe-C-Ni-Mo-V,
Type: 8630,
37
Composition: Fe - 0.30% C - 0.80% Mn - 0.54% Ni - 0.55%
Cr - 0.21% Mo
37
Composition: Fe - 0.59% C - 0.89% Mn - 0.53% Ni - 0.64%
Cr - 0.22% Mo
Type: 8745,
Composition: Fe - 0.20% C - 1.44% Mn - 0.49% Ni - 0.16%
36
Composition: Fe - 0.18% C - 0.79% Mn - 0.52% Ni - 0.56%
Cr - 0.19% Mo
Type: 8660,
Composition: Fe - 0.33% C - 0.84% Mn - 1.05% Cr - 1.07%
37
Composition: Fe - 0.44% C - 0.90% Mn - 0.45% Ni - 0.54%
Cr - 0.22% Mo
31
Type: 9420,
Composition: Fe - 0.26% C - 0.57% Mn - 2.20% Ni - 0.48%
37
Composition: Fe - 0.24% C - 0.94% Mn - 0.47% Si - 0.30%
Ni - 0.34% Cr - 0.14% Mo
Mo - 0.09% V
Composition: Fe - 0.24% C - 0.69% Mn - 3.35% Ni - 0.50%
Mo - 0.09% V
Type: Fe-C-Mn-Ni-Cr-Mo-V,
32
Composition: Fe - 0.25% C - 0.88% Mn - 0.59% Ni - 0.73%
Cr - 0.88% Mo - 0.23% V
Type: 3140, 32
Composition: Fe - 0.38% C - 0.72% Min - 1.32% Ni - 0.49%
32
Cr
3310 (0.4% C),
33
Composition: Fe - 0.4% C - 0.45% Mn - 3.33% Ni - 1.52% Cr
3310 (0.6% C),
33
Composition: Fe - 0.6% C - 0.45% Mn - 3.33% Ni - 1.52% Cr
3310 (0.8% C),
33
Composition: Fe - 0.8% C - 0.45% Mn - 3.33% Ni - 1.52% Cr
Type: Carburized
3310 (1.0% C),
34
Composition: Fe - 1.0% C - 0.45% Mn - 3.33% Ni - 1.52% Cr
34
_-Composition: Fe - 0.33% C - 0.53% Mn - 0.90% Cr - 0.18%
Mo
Type: 4137/4140,
34
Composition: Fe - 0.37% C - 0.77% Mn - 0.98% Cr - 0.21%
Mo
Type: 4150 Mod.,
38
Composition: Fe - 0.57% C - 0.82% Mn - 1.16% Ni - 1.07%
Cr - 0.26% Mo
38
Composition: Fe - 0.14% C - 0.26% Mn - 2.21% Ni - 1.05%
Cr - 0.26% Mo
Composition: Fe - 0.138% C - 0.16% Mn - 3.08% Ni - 1.76%
Cr - 0.49% Mo
Composition: Fe - 0.11% C - 0.45% Mn - 3.33% Ni - 1.52%
Type: Carburized
Type: 9860,
Type: Fe-Ni-Cr-Mo,
Cr
Type: Carburized
38
Ni - 0.40% Cr - 0.11% Mo - 0.030% Zr
Cr - 0.90% Mo - 0.11% V
Type: Carburized
Type: 9440,
Composition: Fe - 0.38% C - 1.08% Mn - 0.70% Si - 0.34%
Composition: Fe - 0.27% C - 0.84% Mn - 0.60% Ni - 0.73%
34
Composition: Fe - 0.55% C - 0.60% Mn - 1.03% Cr - 0.19%
Mo - 0.36% Ni
36
Composition: Fe - 0.16% C - 0.52% Mn - 3.36% Ni - 0.19%
Vv
Type: 4130,
Mo
Type: 4815,
Cr
Type: 3310,
35
Composition: Fe - 0.36% C - 0.63% Mn - 1.84% Ni - 0.23%
Composition: Fe - 0.62% C - 0.86% Mn - 2.13% Si - 0.33%
Type: 6150,
35
Composition: Fe - 0.62% C - 0.54% Mn - 0.67% Si - 1.79%
Ni - 0.60% Cr - 0.32% Mo
Type: 4640,
Cr
Type: 6145,
Cr.- 0.33% Mo
Composition: Fe - 0.15% C - 0.63% Mn - 1.90% Ni - 0.24%
Composition: Fe - 0.62% C - 0.95% Mn - 2.01% Si - 0.15%
Type: 9262,
Composition: Fe 4 0.42% C - 0.78% Mn - 1.79% Ni - 0.80%
Type: 4615,
Cr
Type: 9261,
Cr - 0:24%
\Type: 4340,
Type: 4360,
Cr
35
Composition: Fe - 0.17% C - 0.57% Mn - 1.87% Ni - 0.45%
Composition: Fe - 0.55% C - 0.78% Mn - 1.62% Si - 0.77%
Type: Fe-Ni-Cr-Mo,
39
Composition: Fe - 0.55% C - 0.83% Mn - 1.15% Ni - 1.01%
Cr - 0.48% Mo
Composition: Fe - 0.51% C - 0.73% Mn - 2.74% Ni - 0.99%
Cr - 0.45% Mo
Type: Nitralloy,
135 Mod.,
39
Composition: Fe - 0.41% C - 0.57% Mn - 1.57% Cr - 0.36%
Mo - 1.26% Al
Type:
1060/10B60,
39
Composition: Fe - 0.63% C - 0.87% Mn - none or 0.0018% B
Type: 4317/43B17,
40
Composition: Fe - 0.17% C - 0.57% Mn - 1.87% Ni - 0.45%
Cr - 0.24% Mo
Composition: Fe - 0.14% C - 0.81% Mn - 1.81% Ni - 0.49%
Cr - 0.27% Mo - 0.0030% B
ee
Type: 4615/46B15,
40
Type: 1021
Composition: Fe - 0.15% C - 0.63% Mn - 1.90% Ni - 0.24%
Mo
Composition: Fe - 0.16% C - 0.60% Mn - 1.92% Ni - 0.27%
Mo - 0.0017% B
Type: 5160/51B60,
40.
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni
Composition: Fe - 0.18% C - 0.65% Mn - 1.09% Ni - 0.26%
Mo
Type:
40
Type: 1021 + 1 Ni / 1021 + 1 Ni + 0.75 Si, 45
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni
Composition: Fe - 0.18% C - 0.75% Mn - 0.71% Si - 1.07%
Cr - 0.20% Mo - 0.0025% B
Type: 8650/86B50,
41
Composition: Fe - 0.50% C - 0.77% Mn - 0.60% Ni - 0.51%
Ni
Cr - 0.22% Mo (0.21% Mo for 86B50 + 0.0016% B)
Type:
41
le
(
Composition: Fe - 0.18% C - 0.57% Mn - 0.31% Ni - 0.31%
41
1086/1095
+ 0.25% V,
47
47
Cr
Type: Fe-C-Mo,
47
Composition: Fe - 0.97% C - 1.04% Mn - 0.32% Mo
42
Type: Fe-C (Carbon),
Composition: Fe - 0.46% C - 0.79% Mn - 0.91% Ni - 0.77%
Cor-Ten
Steel,
42
Composition: Fe - 0.12% C - 0.45% Mn - 0.41% Si - 0.12% P
Type: Fe-C-Mn
- 0.31% Ni - 0.62% Cr - 0.26% Cu
ype: USS: Fi Steel, 43
Composition:
Composition:
Composition:
Composition:
Composition:
Composition: Fe - 0.15% C - 0.92% Mn - 0.88% Ni - 0.50%
Cr - 0.46% Mo - 0.06% V - 0.32% Cu - 0.0031% B
Type: USS Strux,
43
Composition: Fe - 0.39% C - 0.89% Mn - 0.48% Si - 0.68%
X 200,
Composition:
Composition:
Composition:
Composition:
43
Composition: Fe - 0.44% C - 0.79% Mn - 1.63% Si - 2.10%
Cr - 0.54% Mo - 0.06% V
+ 1 Ni,
C - 0.30%
C - 0.45%
C - 0.91%
C - 1.13%
C - 1.32%
Fe - 0.59%
Fe - 0.61%
Fe - 0.57%
Fe - 0.55%
48
Mn
Mn
Mn
Mn
Mn
49
C - 0.20%
C - 0.19%
C - 0.17%
C - 0.17%
Mn
Mn - 0.94% Ni
Mn - 1.94% Ni
Mn - 3.88% Ni
Type: Fe-C-Cr (Chrominum),
43
Composition: Fe - 0.20% C - 0.81% Mn
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni
+ 1 Ni / 1021
(Manganese),
Fe - 0.59%
Fe - 0.54%
Fe - 0.50%
Fe - 0.64%
Fe - 0.65%
Type: Fe-C-Ni (Nickel),
Ni - 0.95% Cr - 0.50% Mo - 0.03% V - 0.002% B
Airsteel
48
Composition: Fe - 0.54% C - 0.46% Mn
Composition: Fe - 0.89% C - 0.30% Mn
Composition: Fe - 1.18% C - 0.30% Mn
Cr - 0.18% Mo - 0.0021% B
+ 1 Ni+B,
44
Type: Fe-C-Cr
Composition:
Composition:
Composition:
Composition:
Composition: Fe - 0.19% C - 0.75% Mn - 1.04% Ni +
;
+ Ni / 1021 + 1 Ni+
Mn,
44
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni
Composition: Fe - 0.17% C - 1.65% Mn - 1.07% Ni
Type: 1021 + 1 Ni / 1021 + 1 Ni + 0.5 Cr,
Composition:
Composition:
Composition:
Composition:
44
Composition: Fe - 0.21% C - 0.75% Mn - 1.08% Ni - 0.48%
(Chromium),
Fe - 0.35%
Fe - 0.37%
Fe - 0.42%
Fe - 0.32%
Type: Fe-C-Mo
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni
1021 + 1 Ni / 1021 +1Ni+1Cr,
49
Composition: Fe - 1.13% C - 0.30% Mn
Composition: Fe - 1.17% C - 0.30% Mn - 0.26% Cr
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni
Type:
46
Composition: Fe - 1.02% C - 0.36% Mn - 0.20% Ni - 1.41%
Composition: Fe - 0.19% C - 0.77% Mn - 0.42% Ni - 040%
Cr
46
Type: 52100,
42
Cr - 0.12% Mo - 0.0018% B
Type: 1021
46
Composition: Fe - 0.87% C - 0.30% Mn - 0.27% V
Composition: Fe - 0.45% C - 0.89% Mn - 0.59% Ni - 0.66%
0.0021% B
“Dype: 4140,
Type:
Cr - 0.12% Mo - 0.0015% B
Type: 1021
1030 Mod.,
Composition: Fe - 0.27% C - 1.12% Mn
Composition: Fe - 0.22% C - 0.79% Mn - 0.50% Mo
Cr - 0.13% Mo - 0.0009% B
Type: 86B45, 42
1021/1021
_
Type: Fe-C-Mo,
Composition: Fe - 0.43% C - 1.02% Mn - 0.31% Ni - 0.48%
Type:
Si, 46
Composition: Fe - 0.37% C - 0.77% Mn - 0.98% Cr - 0.21%
Mo
Cr - 0.15% Mo - 0.0009% B
Type: USS
+ 1 Ni+2
Ni
Type:
Cr - 0.21% Mo - 0.0025% B
Type: 80B20, 41
Type: USS
1021 + 1 Ni / 1021
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni
Composition: Fe - 0.19% C - 0.75% Mn - 2.09% Si - 1.06%
Composition: Fe - 0.79% C - 0.77% Mn - 0.58% Ni - 0.50%
Cr - 0.21% Mo
Composition: Fe - 0.78% C - 0.86% Mn - 0.59% Ni - 0.49%
Type: 98B45,
45
Mo
Composition: Fe - 0.22% C - 0.76% Mn - 0.57% Ni - 0.51%
Type: 94B17,
1021 + 1 Ni / 1021 + 1 Ni + 0.5 Mo,
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni
Composition: Fe - 0.21% C - 0.70% Mn - 1.08% Ni - 0.49%
‘\_ Composition: Fe - 0.23% C - 0.72% Mn - 0.59% Ni - 0.52%
~€r -0.21% Mo
Type: 81B40,
45
Cr
/~ 0.0006%B
Type: 8680/86B80,
+ 1 Ni+2Cr,
Type: 1021 + 1 Ni / 1021 + 1 Ni + 0.25 Mo, 45
Composition: Fe - 0.61% C - 0.94% Mn - 0.88% Cr
_Somposition: Fe - 0.64% C - 0.88% Mn - 0.83% Cr -
( Type: 8620/86B20,
+ 1 Ni / 1021
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni’
Composition: Fe - 0.22% C - 0.77% Mn - 1.08% Ni - 1.91%
C - 0.37%
C - 0.37%
C - 0.68%
C - 0.45%
50
Mn
Mn - 0.57% Cr
Mn - 0.93% Cr
Mn - 1.97% Cr
(Molybdenum),
Fe - 0.35%
Fe - 0.42%
Fe - 0.40%
Fe - 0.36%
50
C - 0.37% Mn
C - 0.20% Mn - 0.21% Mo
C - 0.43% Mn - 0.52% Mo
C - 0.17% Mn - 0.82% Mo
Composition: Fe - 0.33% C - 0.41% Mn - 1.96% Mo
Type: Fe-C-V
44
(Vanadium),
51
Composition: Fe - 0.88% C - 0.41% Mn
Composition: Fe - 0.90% C - 0.47% Mn - 0.20% V
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni
Composition: Fe - 0.21% C - 0.78% Mn - 1.09% Ni - 0.99%
Cr
eee
EEE
a rer
_
el
i
Type: Fe-C-Co
(Cobalt),
En
51
Composition: Fe - 0.95% C - 0.45% Mn
99
13 (8717),
Composition: 0.19% C - 1.37% Mn - 0.14% Si - 0.012% S 0.026% P - 0.56% Ni - 0.20% Cr - 0.31% Mo
Composition: Fe - 0.95% C - 0.48% Mn - 0.95% Co
En 23 (3435 + Mo), 100
Composition: 0.32% C - 0.61% Mn - 0.28% Si - 0.013% S -
Composition: Fe - 0.98% C - 0.49% Mn - 1.98% Co
0.018% P - 3.22% Ni - 0.63% Cr - 0.22% Mo
EN
BRITISH
STEELS,
100
En 25 (3430 + Mo),
Mn - 0.20% Si - 0.012% S 0.62%
C
0.31%
Composition:
55 - 114
0.018% - 2.63% Ni - 0.64% Cr - 0.58% Mo
En 30B (3335 + Mo), 100
Composition: 0.32% C - 0.47% Mn - 0.29% Si - 0.020% S -
Introduction, 55 - 94
En 42 (1074/1075),
95
0.022% P - 4.13% Ni - 1.21% Cr - 0.30% Mo
Composition: 0.75% C - 0.70% Mn - 0.33% Si - 0.016% S -
En 44 (1095),
95
Composition: 0.96% C - 0.55% Mn - 0.32%
Si - 0.012%
0.013% P - 0.08% Ni - 0.11% Cr - 0.01% re
En
15 (1536),
En 110 (4340),
2
0.017% P - 0.20% Ni - 0.17% Cr - 0.02% Mo
2
0.021% P - 1.44% Ni - 1.11% Cr - 0.18% Mo
$-
14B (1527),
C - 1.67% Mn - 0.26%
Si - 0.030%
Composition: 0.29%
ig 96Cay Ge ocumMG an k
Ree
En 45 (9260),
0.017% P - 1.58% Ni - 0.95%
En 26 (4340), 101
ce
0.019%P - 0.86% Ni - 0.59% Cr - 0.05% Mo
Carburized En 351 (3120 at 0.9% C),
96
Composition: 0.17% C - 0.88% Mn - 0.22% Si - 0.016% S -
0.028% O - 0.90% Ni - 0.57% Cr - 0.03% Mo
Composition: 0.48% C - 0.86% Mn - 0.25% Si - 0.021% S -
En 31 (52100),
En 352 (3120),
103
Composition: 0.20% C - 0.71% Mn - 0.15% Si - 0.018% S -
97
Composition: 1.08% C - 0.53% Mn - 0.25% Si - 0.015% S 0.022% P - 0.33% Ni - 1.46% Cr - 0.06% Mo
0.032%P - 1.13% Ni - 0.80% Cr - 0.05% Mo
Carburized En 352 (3120 at 1% C),
Composition: 0.24% C - 0.27% Mn - 0.37% Si - 0.010% S 0.021% P - 0.32% Ni - 13.3% Cr - 0.06% Mo
0.029% P - 1.19% Ni - 0.84% Cr - 0.09% Mo
En 33, 104
En 56 (420 Stainless Steel),
16 (4032),
102
Composition: 0.92% C - 0.93% Mn - 0.30% Si - 0.019% S -
0.023% P - 0.18% Ni - 0.98% Cr - 0.04% Mo
103
Composition: 0.96% C - 0.74% Mn - 0.26% Si - 0.016% S -
97
Composition: 0.11% C - 0.36% Mn - 0.21% Si - 0.028% S -
97
0.010% P - 2.89% Ni - 0.28% Cr - 0.09% Mo
Composition: 0.33% C - 1.48% Mn - 0.18% Si - 0.028% S -
Carburized En 33, 104
0.028% P - 0.26% Ni - 0.16% Cr - 0.27% Mo
Composition: 0.95% C - 0.40% Mn - 0.26% Si - 0.015% S 0.28% P - 2.95% Ni - 0.36% Cr - 0.08% Mo
17 (4037),. 97
Composition: 0.38% C - 1.49% Mn - 0.25% Si - 0.028% S -
0.056% P - 0.24% Ni - 0.14% Cr - 0.41% Mo
En 36 (9310),
105
0.031% P - 3.47% Ni - 0.07% Cr - 0.11% Mo
En 36) (9310);
105
0.025% P - 1.24% Ni - 0.63% Cr - 0.05% Mo
Carburized En 36 (9310 at 0.7% C), 107
Composition: 0.11% C - 0.38% Mn - 0.13% Si - 0.016% S 0.023% P - 3.26% Ni - 0.87% Cr - 0.08% Mo
En 21 (2330), 98
Composition: 0.33% C - 0.74% Mn - 0.23% Si - 0.027% S$ -
Composition: 0.14% C - 0.46% Mn - 0.19% Si - 0.009% S$ 0.006% P - 3.55% Ni - 1.11% Cr - 0.12% Mo
En CiirG35),. 98
Composition: 0.37% C - 0.89% Mn - 0.28% Si - 0.035% $ -
Composition: 0.70% C - 0.35% Mn - 0.16% Si - 0.018% S$ 0.025%P - 3.24% Ni - 0.96% Cr - 0.06% Mo
En 47 (6150), 98
Composition: 0.51% C - 0.72% Mn - 0.27% Si - 0.020% S -
0.021% P - 0.15% Ni - 0.94% Cr - 0.05% Mo - 0.20% V
Carburized En 36 (9310 at 1% C), 106
0.015% P - 0.20% Ni - 1.01% Cr - 0.23% Mo
En 39A (9310),
Composition: 1.00% C - 0.30% Mn - 0.12% Si - 0.016% S 0.028% P - 3.27% Ni - 0.90% Cr - 0.07% Mo
En 19 (4140), 98
Composition: 0.41% C - 0.67% Mn - 0.23% Si - 0.016% S En
101
Soren ae 0.25% C - 0.52% Mn - 0.15% Si - 0.024% S -
96
Composition: 0.59% C - 0.66% Mn - 0.34% Si - 0.012% S 0.020% P - 0.17% Ni - 0.65% Cr - 0.02% Mo
18 (51 50),
En
0.48% Mo
0.010% P - 3.33% Ni - 1.14% Cr - 0.65% Mo - 0.16% V
En 351 (3120), 102
96
En
cra C- pee Mn - 0.31% Si - 0.022% S -
Composition: 0.33% C - 0.62% Mn - 0.21% Si - 0.025% S ie
0.022% P - 0.89% Ni - 0.10% Cr - 0.05% ae
En 11 (5060),
En
Ni),
Mo
0.028% P - 1.03% Ni - 0.53% Cr - 0.22% Mo
En 28,
0.038% P - 0.16% Ni - 0.10% Cr - 0.02% Mo
12 (1030 + 0.9%
Cr - 0.26%
P - 2.53% Ni - 0.72% Cr 40), 101
(8640/87
100
En 0.029%
Composition: 0.40% C - 1.34% Mn - 0.21% Si - 0.027% S -
S-
Composition: 0.55% C - 0.87% Mn - 1.74% Si - 0.037% S -
En
.
Scenes rey C- pede) Mn - oe Si - 0.010% S -
95
95
101
En 24 (4340),
Composition: 0.33% C - 1.54% Mn - 0.23% Si - 0.024% S ‘
0.021% P - 0.18% Ni - 0.15% Cr - 0.05% Mo
En
100
Composition: 0.39% C - 0.62% Mn - 0.23% Si - 0.018% S -
20,
0.026%P - 4.15% Ni - 1.33% Cr - 0.07% Mo
Composition: 0.27% C - 0.60% Mn - 0.13% Si - 0.022% S -
0.030% P - 0.19% Ni - 0.74% Cr - 0.55% Mo
Carburized
En 39A (9310 at 0.5% C),
Carburized
En 39A (9310 at 1% C),
107
Composition: 0.54% C - 0.34% Mn - 0.26% Si - 0.019% S$ 0.024% P - 3.92% Ni - 1.28% Cr - 0.07% Mo
Composition: 0.41% C - 0.58% Mn - 0.28% Si - 0.036% S 0.028% P - 0.15% Ni - 1.39% Cr - 0.74% Mo
En 40B,
107
Composition: 0.11% C - 0.38% Mn - 0.09% Si - 0.010% S -
99
99
108
Composition: 1.02% C - 0.47% Mn - 0.27% Si - 0.018% S -
Composition: 0.26% C - 0.55% Mn - 0.21% Si - 0.022% S -
0.029% P - 4.15% Ni - 1.22% Cr - 0.05% Mn
0.010% P - 0.25% Ni - 3.34% Cr - 0.54% Mo
———
—————————————————————
————————————————————————————
——————————————
a
bail
En 34,
108
Composition: 0.16% C - 0.53% Mn - 0.18% Si - 0.011% S -
0.022% P - 1.56% Ni - 0.26% Cr - 0.25% Mo
Carburized En 34, 109
Composition: 0.99% C - 0.56% Mn - 0.29% Si - 0.015% §S -
En
0.025% P - 1.61% Ni - 0.32% Cr - 0.29% Mo
39B (9315),
109
Composition: 0.15% C - 0.38% Mn - 0.20% Si - 0.018% S 0.027% P - 4.33% Ni - 1.16% Cr - 0.17% Mo
Carburized
En 39B (9315 at 0.6% C),
110
Composition: 0.56% C - 0.47% Mn - 0.18% Si - 0.028% S 0.020% P - 4.25% Ni - 1.16% Cr - 0.18% Mo
Carburized
En 39B (9315 at 0.9% C),
110
Composition: 0.93% C - 0.50% Mn - 0.30% Si - 0.017% S -
0.026% P - 4.25% Ni - 1.18% Cr - 0.16% Mo
£ne55,
111
Composition: 0.20% C - 0.61% Mn - 0.23% Si - 0.011% S -
0.015% P - 2.00% Ni - 1.65% Cr - 0.19% Mo
Carburized En 355, 111
Composition: 0.93% C - 0.71% Mn - 0.38% Si - 0.017% S -
0.029% P - 2.10% Ni - 1.70% Cr - 0.20% Mo
Ei 3 555 412
Composition: 0.18% C - 0.93% Mn - 0.26% Si - 0.008% S 0.016% P - 1.34% Ni - 1.11% Cr - 0.11% Mo
Cacburized
En 353,
112
Composition: 1.00% C - 0.99% Mn - 0.28% Si - 0.012% S -
En
0.023% P - 1.42% Ni - 1.12% Cr - 0.11% Mo
354 (4320),
113
Composition: 0.19% C - 0.90% Mn - 0.21% Si - 0.015% S 0.017% P - 1.87% Ni - 1.08% Cr - 0.18% Mo
Carburized
En 354 (4320 at 1% C),
113
Composition: 0.97% C - 1.00% Mn - 0.33% Si - 0.018% S 0.029% P - 1.93% Ni - 1.13% Cr - 0.23% Mo
GERMAN
STEELS,
Example
Page, 117
/
118
W 1 0.76% C - 0.29% Mn
(SAE
1078),
119
Composition: 0.76% C - 0.29% Mn - 0.22% Si - 0.008% P 0.008% $ - 0.11% Cr - 0.17% Cu - 0.019% Mo - 0.07% Ni 0.02% V
C 100 W 1 1.03% C - 0.22% Mn (AISI W1 Tool
Steely, 120
Composition: 1.03% C - 0.22% Mn - 0.17% Si - 0.014% P -
0.012% S - 0.07% Cr - 0.14% Cu - 0.01% Mo - 0.10% Ni
trace V
0.48%
C - 1.98% Mn,
121
P Composition: 0.48% C - 1.98% Mn - 0.28% Si - 0.020%
0.011% S
0.98% C - 1.84% Mn,
0.006% S - 1.53% Cr - 0.20% Cu - <0.01% Mo - 0.31% Ni <0.01% V
X 40 Cr 13 (AISI 420 Stainless Steel),
128
Composition: 0.44% C - 0.20% Mn - 0.30% Si - 0.025% P 0.010% S - 13.12% Cr - 0.09% Cu - <0.01% Mo - 0.31% Ni 0.02% V
X 210 Cr (AISI D3 Tool Steel),
129
Composition: 2.08% C - 0.39% Mn - 0.28% Si - 0.017% P -
0.012% S - 11.48% Cr - 0.15% Cu - 0.02% Mo - 0.31% Ni 0.04% V
20 Mo 5, 130
Composition: 0.23% C - 0.65% Mn - 0.30% Si - 0.013% P 0.030% S - 0.051% Al - 0.12% Cr - 0.08% Cu ~ 0.50% Mo 0.05% Ni - 0.038% V
37 MnSi 5, 131
Composition: 0.38% C - 1.14% Mn - 1.05% Si - 0.035% P 0.019% S - 0.23% Cr - 0.02% V
16 MnCr 5 (SAE 5115),
132
Composition: 0.16% C - 1.12% Mn - 0.22% Si - 0.030% P 0.008% S - 0.015% Al - 0.99% Cr - 0.02% Mo - 0.12% Ni 0.01% V
50 CrV 4 (SAE 6145),
133
Composition: 0.47% C - 0.82% Mn - 0.35% Si - 0.035% P 0.015% S - 1.20% Cr - 0.14% Cu - 0.04% Ni - 0.11% V
50 CrV 4 (SAE 6150),
134
Composition: 0.55% C - 0.98% Mn - 0.22% Si - 0.017% P -
Composition: 0.15% C - 0.67% Mn - 0.48% Si - 0.044% P -
Composition: 0.44% C - 0.66% Mn - 0.22% Si - 0.022% P 0.029% S - 0.15% Cr - 0.02% V
(70
Composition: 0.44% C - 0.80% Mn - 0.22% Si - 0.030% P 0.023% S - 1.04% Cr - 0.17% Cu - 0.04% Mo - 0.26% Ni <0.01% V
LOGE
TiO; AZ?
Composition: 1.04% C - 0.33% Mn - 0.26% Si - 0.023% P -
0.013% S - 1.02% Cr - 0.07% Cu - 0.01% Ni - 0.11% V
0.15% C - 0.67% Mn - 1.20% Cr - 0.31% V (SAE
6115)
—135
117 - 161
Ck 45 0.44% C - 0.66% Mn (SAE 1042),
y
34 Cr 4 (SAE 5135),
125
' Composition: 0.35% C - 0.656% Mn - 0.23% Si - 0.026% P 0.013% S - 1.11% Cr - 0.18% Cu - 0.05% Mo - 0.23% Ni <0.01% V
41 Cr 4 (SAE 5140),
126
122
Composition: 0.98% C - 1.84% Mn - 0.08% Si - 0.023% P -
0.011% S
0.73% C - 1.62% Si (71 Si 7),
123
Composition: 0.73% C - 0.73% Mn - 1.62% Si - 0.019% P -
0.012 $ - 0.10% Cr - 0.19% Cu - 0.12% Ni - 0.01% V
0.30% C - 3.03% Ni (SAE 2330), 124
Composition: 0.30% C - 0.51% Mn - 0.32% Si - 0.011% P 0.007% $ - 0.032% Al - 0.07% Cr - 3.03% Ni - <0.01% Ti
0.024% S - 1.20% Cr - 0.18% Cu - 0.25% Ni - 0.31% V
15 CrNi 6, 136
Composition: 0.13% C - 0.51% Mn - 0.31% Si - 0.023% P -
0.009% S - 0.010% Al - 1.50% Cr - 0.06% Mo - 1.55% Ni <0.01% V
18 CrNi 8, 136
Composition: 0.16% C - 0.50% Mn - 0.31% Si - 0.013% P 0.014% S - 0.03% Al - 1.95% Cr - 0.03% Mo - 2.02% Ni 0.01% V
14 NiCr 14, 137
Composition: 0.13% C - 0.46% Mn - 0.26% Si - 0.013% P 0.012% S - 0.012% Al - 0.78% Cr - 0.16% Cu - 0.04% Mo 3.69% Ni
25 CrMo 4 (SAE 4118),
138
Composition: 0.22% C - 0.64% Mn - 0.25% Si - 0.010% P 0.011% S - 0.97% Cr - 0.16% Cu - 0.23% Mo - 0.33% Ni <0.01% V
34 CrMo 4 (SAE 4130),
139
Composition: 0.30% C - 0.64% Mn - 0.22% Si - 0.011% P 0.012% S - 1.01% Cr - 0.19% Cu - 0.24% Mo - 0.11% Ni <0.01% V
140
42 CrMo 4 (SAE 4135/4140),
Composition: 0.38% C - 0.64% Mn - 0.23% Si - 0.019% P 0.013% S - 0.99% Cr - 0.17% Cu - 0.16% Mo - 0.08% Ni <0.01% V
ee
a
9 3,
X 30 WCrV
50 CrMo 4 (SAE 4150),
141
Composition: 0.50% C - 0.80% Mn - 0.32% Si - 0.017% P 0.022% S - 1.04% Cr - 0.17% Cu - 0.24% Mo - 0.11% Ni -
156
Composition: 0.28% C - 0.36% Mn - 0.11% Si - 0.008% P 0.004% $ - 2.57% Cr - 0.03% Mo - 0.04% Ni - 0.35% V 8.88% W
<0.01% V
X21 Crw ol Zen bo?
Composition: 2.19% C - 0.32% Mn - 0.26% Si - 0.027% P 0.008% $ - 11.75% Cr - 0.12% Cu - 0.12% Mo - 0.08% Ni 0.08% V - 0.84% W
60 WCrV 7, 158
Composition: 0.55% C - 0.34% Mn - 0.94% Si - 0.015% P 0.012% S - 1.27% Cr - 0.05% Mo - 0.12% Ni - 0.18% V 2.10% W
45 CrVMowW 5 8, 159
Composition: 0.39% C - 0.45% Mn - 0.58% Si - 0.018% P 0.003% S - 1.45% Cr - 0.47% Mo - 0.13% Ni - 0.70% V 0.55% W
20 MoCr 4, 142
Composition: 0.22% C - 0.66% Mn - 0.30% Si - 0.018% P 0.011% S - 0.049% Al - <0.0005% B - 0.56% Cr - 0.18% Cu
- 0.44% Mo - 0.020% N - 0.15% Ni
Composition: 0.27% C - 0.67% Mn - 0.20% Si - 0.017% P -
0.022% S - 0.034% Al - 0.002% B - 0.50% Cr - 0.45% Mo 0.005% N - 0.11% Ni
StE 70 (Cr-Mo-Zr),
143
Composition: 0.17% C - 0.84% Mn - 0.54% Si - 0.019% P 0.011% S - 0.031% Al - 0.019% As - 0.89% Cr - 0.07% Cu 0.40% Mo - 0.05% Ni - 0.008% Ng - 0.005% Og - 0.008% Sn
- 0.01% V - 0.09% Zr
StE 47 (Ni-V),
143
Composition: 0.21% C - 1.52% Mn - 0.40% Si - 0.022% P 0.023% S - 0.043% Al - 0.019% N - 0.07% Ni - 0.13% V
StE 47 (Ni-Ti),
144
Composition: 0.17% C - 1.45% Mn - 0.55% Si - 0.016% P 0.017% S - 0.055% Al - 0.74% Ni - 0.18% Ti
105 WCr 6, 145
Composition: 1.03% C - 0.97% Mn - 0.28% Si - 0.016% P 0.018% S - 1.05% Cr - 0.25% Cu - 0.03% Mo - 0.13% Ni 1.15% W
0.20% C - 1.20% Mn - 0.97% Cu - 0.55% Ni, 146
Composition: 0.20% C - 1.20% Mn - 0.38% Si - 0.039% P 0.024% S - 0.06% Cr - 0.91% Cu - 0.55% Ni
28 NiCrMo 7 4, 147
Composition: 0.30% C - 0.46% Mn - 0.24% Si - 0.030% P 0.025% S - 1.44% Cr - 0.20% Cu - 0.37% Mo - 2.06% Ni <0.01% V
X 45 NiCrMo 4, 148
Composition: 0.40% C - 0.35% Mn - 0.20% Si - 0.010% P 0.015% S - 1.27% Cr - 0.16% Cu - 0.24% Mo - 4.03% Ni 0.04% V
20 NiMoCr 6, 149
Composition: 0.20% C - 0.62% Mn - 0.15% Si - 0.015% P 0.020% S - 0.015% Al - <0.0005% B - 0.47% Cr - 0.48% Mo
- 1.58% Ni
61 CrSiV 5, 150
Composition: 0.58% C - 0.81% Mn - 0.89% Si - 0.013% P 0.006% S - 1.27% Cr - 0.14% Cu - 0.02% Mo - 0.06% Ni 0.11% V
X 38 CrMoV 5 1 (AISI H 1}! Tool Steel), 151
Composition: 0.39% C - 0.48% Mn - 0.94% Si - 0.013% P 0.005% S - 5.53% Cr - 0.20% Cu - 0.87% Mo - 0.04% Ni 0.48% V
45 CrMoV 67,
152
Composition: 0.43% C - 0.75% Mn - 0.27 % Si - 0.011% P 0.011% S - 1.31% Cr - 0.72% Mo - 0.11% Ni - 0.23% V
StE 47 (Cu-Ni-V),
153
Composition: 0.12% C - 1.28% Mn - 0.40% Si - 0.015% P 0.016% S - 0.024% Al - 0.67% Cu - 0.62% Ni - 0.15% V
StE 47 (Cu-Ni-Ti),
153
Composition: 0.12% C - 1.28% Mn - 0.40% Si - 0.015% P 0.016% S - 0.021% Al - 0.67% Cu - 0.62% Ni - 0.18% Ti
56 NiCrMoV 7, 154
Composition: 0.52% C - 0.70% Mn - 0.29% Si - 0.010% P 0.010% S - 1.09% Cr - 0.43% Mo - 1.72% Ni - 0.14% V
X 30 WCrV 5 3, 155
Composition: 0.28% C - 0.39% Mn - 0.16% Si - 0.020% P 0.006% S$ - 2.35% Cr - 0.06% Mo - 0.06% Ni - 0.53% V 4.10% W
B 18 (AISI T1 High Speed Steel),
160
Composition: 0.81% C - 0.33% Mn - 0.15% Si - 0.024% P 0.003% $ - 3.77% Cr - 0.44% Mo - 0.12% Ni - 1.07% V 18.25% W
D,
160
Composition: 0.87% C - 0.32% Mn - 0.27% Si - 0.020% P 0.005% S - 3.99% Cr - 0.80% Mo - 0.11% Ni - 2.52% V 11.91% W
D Mo 5, 161
Composition: 0.85% C - 0.31% Mn - 0.30% Si - 0.015% P 0.010% S - 4.15% Cr - 4.79% Mo - 0.18% Ni - 2.01% V 6.34% W
E 18 Co 5 (AISI T4 High Speed Steel),
161
Composition: 0.80% C - 0.30% Mn - 0.23% Si - 0.019% P 0.005% S - 4.52% Co - 4.34% Cr - 0.78% Mo - 0.30% Ni 1.52% V - 17.89% W
FRENCH
XC
STEELS,
32 Steel,
163 - 220
165
Composition: 0.35% C - 0.69% Mo - 0.31% Si - 0.018% S$ 0.011% P - 0.31% Ni - 0.12% Cr - 0.04% Mo - 0.14% Cu
XC
38 Steel,
165
Composition: 0.36% C - 0.66% Mn - 0.27% Si - 0.016% S -
0.020% P - 0.02% Ni - 0.21% Cr - 0.02% Mo - 0.22% Cu 0.060% Al
XC 42 Steel, 165
Composition: 0.45% C - 0.52% Mn - 0.27% Si - 0.025% S 0.015% P - 0.12% Ni - 0.05% Cr - 0.01% Mo - 0.13% Cu
Composition: 0.44% C - 0.72% Mn - 0.26% Si - 0.028% S -
0.038% P - 0.09% Ni - 0.16% Cr - 0.02% Mo
XC
55 Steel,
166
Composition: 0.53% C - 0.70% Mn - 0.35% Si - 0.010% S -
0.020% P - 0.24% Ni - 0.09% Cr - <0.10% Mo - 0.52% Cu <0.03% V
Composition: 0.52% C - 0.60% Mn - 0.28% Si - 0.017% S -
0.020% P - 0.05% Ni - <0.04% Cr - <0.05% Mo
XC
70 Steel,
166
Composition: 0.75% C - 0.75% Mn - 0.24% Si - 0.010% S -
0.012% P - 0.43% Ni - 0.06% Cr - <0.10% Mo - 0.56% Cu <0.03% V
Composition: 0.72% C - 0.72% Mn - 0.34% Si - 0.026% S 0.031% P
35°S 7 Steely 167
Composition: 0.55% C - 0.61% Mn - 1.68% Si - 0.014% S -
0.012% P - 0.19% Ni - 0.05% Cr - 0.01% Mo - 0.20% Cu trace V - 0.05% Ti
35 M 5 Steel,
167
Composition: 0.33% C - 1.12% Mn - 0.30% Si - 0.027% S 0.018% P - 0.24% Ni - 0.11% Cr - 0.04% Mo - 0.19% Cu 0.010% Al
Lae
xiv
45 M 5 Steel,
168
35 NC 6 Steel,
Composition: 0.47% C - 1.37% Mn - 0.36% Si - 0.025% S 0.015% P - 0.02% Ni - 0.15% Cr - 0.19% Cu
25M
6 Steel,
169
Composition: 0.24% C - 1.58% Mn - 0.20% Si - 0.014% S 0.016% P - 0.20% Ni - 0.24% Cr - 0.02% Mo - 0.12% Cu 0.018% Co
10 N
14 Steel,
169
0.010% P - 3.47% Ni - 0.10% Cr - 0.04% Mo - 0.15% Cu 0.007% Al
Z10N 5 Steel,
169
Composition: 0.10% C - 0.46% Mn - 0.33% Si - 0.011% S -
0.025% P - 5.00% Ni - 0.23% Cr - 0.04% Mo - 0.14% Cu
9 \Steel,
170
Composition: 0.09% C - 0.51% Mn - 0.27% Si - 0.008% S 0.010% P - 9.00% Ni - 0.05% Cr - 0.03% Mo - 0.13% Cu 0.012% Al
oz,
steel,
170
Composition: 0.32% C - 0.76% Mn - 0.30% Si - 0.010% S 0.021% P - 0.26% Ni - 1.08% Cr - 0.02% Mo - 0.17% Cu
38 C 4 Steel,
171
Composition: 0.38% C - 0.74% Mn - 0.26% Si - 0.010% S 0.023% P - 0.26% Ni - 0.90% Cr - 0.04% Mo - 0.17% Cu
a2 © 4-stecl,.
171
Composition: 0.44% C - 0.80% Mn - 0.31% Si - 0.013% S 0.030% P - 0.46% Ni - 0.96% Cr - 0.05% Mo - 0.18% Cu
HOOsGGsStcel,
172
Composition: 1.00% C - 0.30% Mn - 0.27% Si - 0.030% S 0.013% P - 0.21% Ni - 1.71% Cr - 0.04% Mo - 0.14% Cu 0.010% V - 0.02% Ti
PaO
seni. Steele
A-72
Composition: 0.42% C - 0.16% Mn - 0.44% Si - 0.049% S 0.042% P - 0.27% Ni - 13.40% Cr - 0.08% Cu
60;SC.7_ Steel,
173
Composition: 0.55% C - 0.88% Mn - 1.52% Si - 0.005% S 0.032% P - 0.07% Ni - 0.74% Cr - 0.01% Mo - 0.03% Cu
Composition: 0.64% C - 0.74% Mn - 1.61% Si - 0.020% S$ 0.016% P - 0.07% Ni - 0.61% Cr - 0.10% Cu
A0.C
Ves Steel,
173
Composition: 0.38% C - 0.41% Mn - 0.21% Si - 0.010% S 0.013% P - 0.03% Ni - 1.29% Cr - <0.10% Mo - 0.05% Cu 0.120% V
50 CV 4 Steel,
174
Composition: 0.53% C - 0.81% Mn - 0.27% Si - 0.016% S -
0.024% P - 0.07% Ni - 1.09% Cr - 0.01% Mo - 0.11% Cu 0.100% V
90 MV 8 Steel,
174
Composition: 0.81% C - 2.10% Mn - 0.29% Si - 0.003% S -
0.016% P - 0.06% Ni - 0.02% Cr - 0.01% Mo - 0.04% Cu 0.17% V - 0.05% W
15 MDV
4-05 Steel,
175
Composition: 0.14% C - 1.20% Mn - 0.23% Si - 0.017% S 0.016% P - 0.15% Ni - 0.10% Cr - 0.48% Mo - 0.15% Cu 0.065% V
16 MC 5 Steel, 175
Composition: 0.18% C - 1.10% Mn - 0.27% Si - 0.025% S 0.023% P - 0.28% Ni - 1.02% Cr - 0.04% Mo - 0.18% Cu
90 M 5 Steel, 176
Composition: 0.93% C - 1.25% Mn - 0.20% Si - 0.007% S 0.020% P - 0.24% Ni - 0.60% Cr - 0.15% Cu
50 NC 2 Steel,
0.014% P - 0.93% Ni - 0.80% Cr - 0.06% Mo - 0.10% Cu 0.010% V
10° NC 6 Steel, 2177
Composition: 0.11% C - 0.50% Mn - 0.30% Si - 0.005% S 0.017% P - 1.59% Ni - 0.64% Cr - <0.10% Mo - 0.31% Cu <0.03% V
Composition: 0.11% C - 0.44% Mn - 0.22% Si - 0.007% S -
Z10.N
177
Composition: 0.41% C - 0.55% Mn - 0.24% Si - 0.007% S -
176
Composition: 0.50% C - 0.78% Mn - 0.40% Si - 0.027% S$ -
0.010% P - 0.48% Ni - 0.52% Cr - 0.03% Mo - 0.12% Cu
ES
16 NC
6 Steel,
178
Composition: 0.15% C - 0.55% Mn - 0.30% Si - <0.010% S -
0.013% P - 1.38% Ni - 0.82% Cr - 0.09% Mo - 0.11% Cu
20 NC 6 Steel, 178
Composition: 0.19% C - 0.55% Mn - 0.30% Si - 0.010% S 0.018% P - 1.52% Ni - 0.81% Cr - <0.10% Mo - 0.20% Cu <0.030% V
14 NC
11 Steel,
179
Composition: 0.12% C - 0.51% Mn - 0.29% Si - 0.014% S -
0.013% P - 2.69% Ni - 0.70% Cr - 0.06% Mo - 0.18% Cu
35 NC 15 Steel, 179
Composition: 0.36% C - 0.53% Mn - 0.32% Si - 0.010% S -
0.013% P - 3.74% Ni - 1.86% Cr - 0.05% Mo - 0.13% Cu 0.002% Ti
Composition: 0.38% C - 0.44% Mn - 0.22% Si - 0.003% S 0.018% P - 3.40% Ni - 1.50% Cr - 0.15% Mo - 0.13% Cu 0.015% V
30 NC 11 Steel, 180
Composition: 0.32% C - 0.30% Mn - 0.20% Si - 0.008% S 0.017% P - 2.95% Ni - 0.69% Cr - <0.10% Mo - 0.31% Cu <0.030% V - 0.06% W
50 CD 4 Steel,
180
Composition: 0.52% C - 0.60% Mn - 0.40% Si - 0.011% S 0.013% P - 0.17% Ni - 1.00% Cr - 0.22% Mo - 0.38% Cu <0.05% V
18 CD
4 Steel,
181
Composition: 0.17% C - 0.80% Mn - 0.23% Si - 0.025% S 0.020% P - 0.21% Ni - 1.06% Cr - 0.24% Mo - 0.18% Cu -
0.006% V - 0.032% Ti
Composition: 0.15% C - 0.86% Mn - 0.28% Si - 0.010% S 0.014% P - 0.14% Ni - 0.84% Cr - 0.20% Mo
25 CD
4 Steel,
181
Composition: 0.25% C - 0.68% Mn - 0.21% Si - 0.090% S 0.018% P - 0.19% Ni - 1.10% Cr - 0.22% Mo - 0.16% Cu
35 CD 4 Steel, 182
Composition: 0.37% C - 0.79% Mn - 0.30% Si - 0.010% S 0.019% P - <0.17% Ni - 1.00% Cr - 0.18% Mo - 0.10% Cu
Composition: 0.36% C - 0.77% Mn - 0.28% Si - 0.010% S 0.019% P - 0.16% Ni - 0.96% Cr - 0.28% Mo
100 CD 7 Steel, 182
Composition: 1.07% C - 0.32% Mn - 0.31% Si - 0.016% S -
0.012% P - 0.17% Ni - 2.05% Cr - 0.18% Mo - 0.13% Cu
30 CD 12 Steel, 183
Composition: 0.30% C - 0.63% Mn - 0.29% Si - 0.016% S 0.010% P - 0.17% Ni - 2.99% Cr - 0.43% Mo - 0.13% Cu
Z 15 CD 5-05 Steel,
183
Composition: 0.11% C - 0.47% Mn - 0.24% Si - 0.015% S 0.016% P - 0.23% Ni - 4.48% Cr - 0.52% Mo - 0.15% Cu
45 SC 6 Steel,
184
Composition: 0.43% C - 0.95% Mn - 1.38% Si - <0.010% S 0.012% P - 0.03% Ni - 1.06% Cr - <0.10% Mo - <0.05% Cu
- 0.035% V
45 SCD 6 Steel,
184
Composition: 0.45% C - 0.55% Mn - 1.31% Si - 0.005% S -
0.013% P - 0.21% Ni - 0.60% Cr - 0.22% Mo - 0.27% Cu <0.05% V - trace Ti
Composition: 0.42% C - 0.70% Mn - 1.40% Si - 0.005% S 0.015% P - 0.24% Ni - 0.68% Cr - 0.19% Mo - 0.03%
EEE
aa
ne
45 MS 6 Steel,
Composition: 0.30% C - 0.56% Mn - 0.27% Si - 0.014% S 0.012% P - 1.75% Ni - 1.85% Cr - 0.49% Mo
Composition: 0.32% C - 0.35% Mn - 0.27% Si - 0.022% S -
Composition: 0.45% C - 1.50% Mn - 1.34% Si - <0.010% S 0.017% P - 0.03% Ni - 0.03% Cr - <0.01% Mo - 0.09% Cu 0.040% V
15 MDV
0.018% P - 2.10% Ni - 2.30% Cr - 0.64% Mo - 0.19% Cu
185
4-05 Steel,
Composition: 0.14% C - 1.20% Mn - 0.23% Si - 0.017% S -
0.016% P - 0.15% Ni - 0.10% Cr - 0.48% Mo - 0.15% Cu 0.065% V
186
20 CDV 5-08 Steel,
Composition: 0.15% C - 0.53% Mn - 0.26% Si - 0.013% S 0.020% P - 0.11% Ni - 1.04% Cr - 1.05% Mo - 0.15% Cu 0.250% V - 0.028% Al
Composition: 0.14% C - 0.96% Mn - 0.15% Si - 0.011% S -
0.017% P - 1.40% Cr - 0.96% Mo - 0.270% V
10 CD 9-10 Steel,
194
30 CND 8 Steel,
185
186
12 Steel,
194
40 NCD 18 Steel,
195
30 NCD
Composition: 0.30% C - 0.40% Mn - 0.30% Si - 0.016% S 0.015% P - 3.20% Ni - 0.86% Cr - 0.40% Mo - 0.17% Cu
Composition: 0.42% C - 0.40% Mn - 0.32% Si - 0.005% $ 0.010% P - 4.34% Ni - 1.56% Cr - 0.44% Mo - 0.05% Cu
20
ND
195
16 Steel,
Composition: 0.20% C - 0.63% Mn - 0.32% Si - 0.026% S -
0.017% P - 3.85% Ni - 0.25% Cr - 0.94% Mo - 0.17% Cu
40 CAD
6-12 Steel,
196
Composition: 0.15% C - 0.36% Mn - 0.44% Si - 0.020% § 0.022% P - 0.09% Ni - 2.24% Cr - 0.85% Mo - 0.23% Cu -
Composition: 0.40% C - 0.56% Mn - 0.53% Si - 0.001% $ 0.012% P - 0.21% Ni - 1.65% Cr - 0.23% Mo - 0.15% Cu -
0.097% Al - 0.01% Ti
1.100% Al
Comp caliion 2b C.210.5870, Mo - 0-407, Si -.0.01076,8-;
COLA i018 Niet 65% Ce - 0.647% Mo. 0.07% Cus0.380% V
Composition: 0.16% C - 0.49% Mn - 1.14% Si - 0.080% S 0.010% P - 0.25% Ni - 1.22% Cr - 1.05% Mo - 0.19% Cu 0.460% V - 0.030% Ti
potieclsC - 18T
SDN 0.41%
LO Composition:
0.45% Mn - 0.66% Si - 0.001% S -
197
WC 40 Steel,
100Composition:
0.98% C - 0.30% Mn - 0.16% Si - 0.003% $ -
30 NCD 2 Steel, 188
Composition: 0.28% C - 0.70% Mn - 0.29% Si - 0.014% S -
0.280% V - 3.66% W
15 NCDV 11 Steel,
0.011% P - 4.90% Cr - 1.07% Mo - 0.09% Cu - 0.550% V
0.011% P - 0.43% Ni - 0.70% Cr - 0.20% Mo - 0.20% Cu
20 NCD 2 Steel,
188
Composition: 0.21% C - 0.88% Mn - 0.31% Si - 0.002% § -
0.015% P - 0.17% Ni - 0.63% Cr - 0.28% Mo - 0.11% Cu 197
Composition: 0.16% C - 0.51% Mn - 0.27% Si - 0.019% S -
0.010% P - 2.59% Ni - 0.67% Cr - 0.49% Mo - 0.20% Cu 0.080% V
0.017% P - 0.65% Ni - 0.57% Cr - 0.26% Mo - 0.15% Cu
40 NCD 3 Steel, 189
Composition: 0.40% C - 0.80% Mn - 0.33% Si - 0.019% S 0.018% P - 0.58% Ni - 0.56% Cr - 0.28% Mo - 0.10% Cu
55 NCDV 7-05 Steel, 198
Composition: 0.58% C - 0.62% Mn - 0.39% Si - 0.012% S 0.015% P - 1.68% Ni - 1.35% Cr - 0.40% Mo - 0.01% Cu 0.100% V
35 NCD 5 Steel,
Z 38 CDWV 5
189
Composition: 0.33% C - 0.72% Mn - 0.24% Si - 0.010% $ 0.010% P - 1.22% Ni - 0.54% Cr - 0.17% Mo - 0.22% Cu
50 NCD 6 Steel, 190
Composition: 0.49% C - 0.57% Mn - 0.26% Si - 0.012% S 0.011% P - 1.62% Ni - 0.83% Cr - 0.24% Mo - 0.13% Cu
28 NCD 6 Steel,
190
Composition: 0.29% C - 0.78% Mn - 0.24% Si - 0.009% S$-
0.011% P - 1.62% Ni - 1.49% Cr - 0.44% Mo - 0.16% Cu 0.010% Ti
20 NCD 7 Steel,
191
Composition: 0.17% C - 0.63% Mn - 0.25% Si - 0.013% S 0.013% P - 2.02% Ni - 0.38% Cr - 0.138% Mo - 0.07% Cu -
0.010% Al
20 NCD 10 Steel,
191
Composition: 0.17% C - 1.23% Mn - 0.25% Si - 0.013% S 0.015% P - 2.45% Ni - 0.94% Cr - 0.40% Mo - 0.011% Ng -
0.042% Al
60 NCD 11 Steel, 192
Composition: 0.57% C - 0.65% Mn - 0.31% Si - 0.005% S -
0.010% P - 2.35% Ni - 0.75% Cr - 0.41% Mo - 0.13% Cu
32 CND 11 Steel, 192
Steel,
198
Composition: 0.37% C - 0.34% Mn - 0.95% Si - 0.008% S -
0.018% P - 0.17% Ni - 4.70% Cr - 1.40% Mo - 0.11% Cu -
0.500% V - 1.80% W
XC 48 Steel, 199
Composition: 0.50% C - 0.67% Mn - 0.24% Si - 0.022% S -
0.031% P
E 36 Steel,
199
Composition: 0.20% C - 1.37% Mn - 0.35% Si - 0.017% S 0.022% P - 0.007% N - 0.054% Al
35 M 6 Steel,
199
Composition: 0.34% C - 1.55% Mn - 0.18% Si - 0.028% S 0.026% P - 0.17% Ni - 0.08% Cr - 0.02% Mo
19 M Nb 6 Steel,
199
Composition: 0.19% C - 1.39% Mn - 0.26% Si - 0.019% S -
0.029% P - 0.043% Nb - 0.007% N - 0.046% Al
17 MV Az 6 Steel, 200
Composition: 0.17% C - 1.50% Mn - 0.34% Si - 0.018% S -
0.017% P - 0.110% V - 0.025% N - 0.082% Al
22 N 8 Steel, 200
Composition: 0.23% C - 0.56% Mn - 0.27% Si - 0.020% S 0.021% P - 2.06% Ni - 0.15% Cr - 0.01% Mo - 0.18% Cu
Composition: 0.31% C - 0.67% Mn - 0.30% Si - 0.010% S 0.010% P - 0.94% Ni - 3.00% Cr - 0.51% Mo - 0.19% Cu
20 NCD 8 Steel, 200
Composition: 0.19% C - 0.67% Mn - 0.20% Si - 0.020% S -
Composition: 0.16% C - 0.46% Mn - 0.20% Si - 0.013% S -
20 ND 8 Steel,
16 NCD
13 Steel,
193
0.008% P - 3.02% Ni - 1.02% Cr - 0.26% Mo - 0.12% Cu
35 NCD 16 Steel, 193
Composition: 0.36% C - 0.39% Mn - 0.30% Si - 0.005% S 0.010% P - 3.70% Ni - 1.65% Cr - 0.23% Mo - 0.12% Cu
Composition: 0.34% C - 0.35% Mn - 0.26% Si - 0.006% S 0.008% P - 3.55% Ni - 1.54% Cr - 0.31% Mo - 0.008% No
0.019% P - 2.00% Ni - 0.39% Cr - 0.09% Mo - 0.05% Cu
200
Composition: 0.24% C - 0.52% Mn - 0.27% Si - 0.012% S -
0.015% P - 2.10% Ni - 0.05% Cr - 0.32% Mo - 0.10% Cu
10 CAD 8 Steel, 201
Composition: 0.11% C - 0.46% Mn - 0.21% Si - 0.060% S -
0.020% P - 2.18% Cr - 0.31% Mo - 0.485% Al
30 CAD 6-12 Steel, 201
Composition: 0.28% C - 0.49% Mn - 0.32% Si - 0.050% S 0.012% P - 0.13% Ni - 1.65% Cr - 0.22% Mo - 1.050% Al
14 NCD 4 Steel, 201
Composition: 0.18% C - 1.08% Mn - 0.14% Si - 0.020% S -
0.027% P - 1.13% Ni - 0.88% Cr - 0.40% Mo
18 NCD 6 Steel,
201
Composition: 0.18% C - 0.86% Mn - 0.27% Si - 0.009% S -
0.010% P - 1.53% Ni - 1.05% Cr - 0.16% Mo - 0.13% Cu
80 DCV
42-16 Steel,
202
Composition: 0.81% C - 0.26% Mn - 0.21% Si - 0.002% S 0.021% P - 4.28% Cr - 3.98% Mo - 1.080% V
40 NDCV 18-11 Steel, 202
Composition: 0.41% C - 0.30% Mn - 0.36% Si - 0.006% S -
0.017% P - 4.80% Ni - 0.54% Cr - 1.13% Mo - 0.520% V
Z.40 WCYV
5.Steel,.
202
Composition: 0.38% C - 0.52% Mn - 0.37% Si - 0.022% S -
0.018% P - 0.08% Ni - 3.23% Cr - 0.44% Mo - 0.580% V 4.15% W
Pao we V9 Steel.” 202
Composition: 0.27% C - 0.43% Mn - 0.26% Si - 0.018% S 0.008% P - 0.10% Ni - 2.45% Cr - 0.13% Mo - 0.360% V 8.70% W
Z 20 CDNbYV 11 Steel, 203
Composition: 0.17% C - 0.39% Mn - 0.43% Si - 0.016% S$ 0.017% P - 0.60% Ni - 11.30% Cr - 0.75% Mo - 0.370% V -
0.410% Nb - 0.070% No
Z 65 WDCV 06-05 Steel,
203
Composition: 0.56% C - 0.27% Mn - 0.23% Si - 0.17% Ni -
4.00% Cr - 5.00% Mo - 1.800% V - 7.00% W - 0.40% Co
Z 60 WCV 18 Steel, 203
Composition: 0.60% C - 0.22% Mn - 0.19% Si - 0.20% Ni 4.65% Cr - 1.00% Mo - 1.350% V - 17.80% W - 0.72% Co
xXG:38 Steel; 203
Composition: 0.36% C - 0.66% Mn - 0.27% Si - 0.016% S 0.020% P - 0.20% Ni - 0.21% Cr - 0.02% Mo - 0.22% Cu 0.060% Al
XC
38 Steel,
204
Composition: 0.37% C - 0.69% Mn - 0.33% Si - 0.019% S 0.017% P - 0.06% Ni - 0.04% Cr - 0.05% Mo - 0.013% Ng
Y, 90 Steel, 204
Composition: 0.93% C - 0.31% Mn - 0.11% Si - 0.010% S 0.012% P - 0.20% Ni - 0.12% Cr - <0.10% Mo - 0.62% Cu 0.03% V
Y, 120 Steel, 204
Composition: 1.29% C - 0.20% Mn - 0.27% Si - 0.005% S 0.015% P - 0.09% Ni - 0.04% Cr - 0.01% Mo - 0.08% Cu
41 S'7 Steel, 205
Composition: 0.42% C - 0.62% Mn - 1.78% Si - 0.013% S -
0.043% P - 0.18% Ni - 0.05% Cr - 0.01% Mo - 0.22% Cu trace V - 0.03% Ti
Z 120 M
12 Steel,
205
Composition: 1.28% C - 12.35% Mn - 0.35% Si - 0.009% S
0.031% P - 0.28% Ni - 0.01% Mo - 0.23% Cu
10 N 8 Steel,
205
Composition: 0.08% C - 0.29% Mn - 0.16% Si - 0.035% S 0.007% P - 2.06% Ni - 0.08% Cr - 0.02% Mo - 0.13% Cu
7 4 orCrs Steel; *205
Composition: 0.11% C - 0.49% Mn - 0.45% Si - 0.050% S -
0.012% P - 0.13% Ni - 12.00% Cr - 0.02% Mo - 0.07% Cu -
0.020% V - 0.06% W
18 C 3 Steel, 206
Composition: 0.20% C - 0.72% Mn - 0.30% Si - 0.010% §S 0.010% P - 0.27% Ni - 0.79% Cr - 0.02% Mo - 0.02% Cu
730 Crs
steel
206
Composition: 0.29% C - 0.40% Mn - 0.85% Si - 0.050% S -
0.023% P - 0.18% Ni - 12.32% Cr - <0.10% Mo - 0.12% Cu
<0.05% V
70 C1 Steel, 206
Composition: 0.72% C - 0.35% Mn - 0.20% Si - 0.050% S 0.011% P 0.06% Ni - 0.28% Cr - 0.049% Cu
95 C 3 Steel,
206
Composition: 0.88% C - 0.41% Mn - 0.24% Si - 0.010% S -
0.010% P - 0.10% Ni - 0.78% Cr - 0.05% Mo - 0.12% Cu
100+G=3.Steel,
4207
Composition: 0.97% C - 0.27% Mn - 0.26% Si - 0.006% S -
0.010% P - 0.05% Ni - 0.77% Cr - <0.01% Mo - 0.04% Cu
30 MS 6 Steel,
207
Composition: 0.29% C - 1.33% Mn - 1.30% Si - 0.016% S 0.008% P - 0.12% Ni - 0.10% Cu
30 SC 6 Steel, 207
Composition: 0.28% C - 0.92% Mn - 1.49% Si - 0.018% S 0.001% P - 0.12% Ni - 0.99% Cr - 0.10% Cu
12 NC
15 Steel,
207
Composition: 0.18% C - 0.35% Mn - 0.33% Si - 0.015% S 0.008% P - 3.42% Ni - 0.86% Cr - 0.08% Mo - 0.16% Cu
40 NC 18 Steel. 208
Composition: 0.42% C - 0.60% Mn - 0.41% Si - 0.012% S 0.013% P - 4.40% Ni - 1.25% Cr - 0.05% Mo - 0.14% Cu 0.02% Al
20 ND 8 Steel,
208
Composition: 0.21% C - 0.55% Mn - 0.29% Si - 0.010% S 0.008% P - 1.84% Ni - 0.07% Cr - 0.20% Mo - 0.09% Cu
12 ND
16 Steel,
208
Composition: 0.08% C - 0.35% Mn - 0.06% Si - 0.020% S -
0.010% P - 4.06% Ni - 0.07% Cr - 0.88% Mo - 0.15% Cu
30 C 5 Steel, 208
Composition: 0.30% C - 0.50% Mn - 0.25% Si - 0.016% S 0.012% P - 0.09% Ni - 1.28% Cr - 0.09% Cu - 0.050% V
30 CV 5 Steel, 209
Composition: 0.32% C - 0.40% Mn - 0.21% Si - 0.016% S 0.007% P - 0.11% Ni - 1.30% Cr - 0.10% Mo - 0.13% Cu 0.125% V
140 C 10 Steel, 209
Composition: 1.43% C - 0.22% Mn - 0.21% Si - 0.013% S 0.020% P - 0.11% Ni - 2.55% Cr - 0.08% Mo - 0.05% Cu 0.015% V
100 WC 10 Steel, 209
Composition: 1.15% C - 0.38% Mn - 0.38% Si - 0.008% S 0.018% P - 0.21% Ni - 0.74% Cr - 0.02% Mo - 0.12% Cu 1.20% W
30 SCD 6 Steel, 209
Composition: 0.28% C - 0.59% Mn - 1.25% Si - 0.048% S 0.055% P - <0.05% Ni - 0.92% Cr - 0.22% Mo - 0.03% Cu
45 SCD 6 Steel, 210
Composition: 0.50% C - 1.05% Mn - 1.48% Si - 0.044% S 0.048% P - <0.05% Ni - 1.20% Cr - 0.20% Mo - 0.04% Cu
Z 40 CSD 10 Steel, 210
Composition: 0.30% C - 0.48% Mn - 2.20% Si - 0.012% S <0.005% P - 0.12% Ni - 10.50% Cr - 1.00% Mo - 0.07% Cu
0.012% V
18 NCD-4 Steel, 210
Composition: 0.17% C - 0.63% Mn - 0.28% Si - 0.011% S 0.022% P - 1.13% Ni - 0.49% Cr - 0.13% Mo - 0.10% Cu
120 NCD 5-02 Steel, 210
Composition: 1.18% C - 0.63% Mn - 0.28% Si - 0.011% S 0.022% P - 1.13% Ni - 0.49% Cr - 0.13% Mo - 0.10% Cu
30 NCD 8 Steel, 211
Composition: 0.32% C - 0.55% Mn - 0.27% Si - 1.90% Ni 1.80% Cr - 0.58% Mo
EEE
nn
30 NC 12 Steel, 211
Composition: 0.33% C - 0.51% Mn - 0.32% Si - 0.016% S 0.008% P - 3.38% Ni - 0.83% Cr - 0.03% Mo - 0.13% Cu
35 NC
11 Steel,
211
Composition: 0.37% C - 0.59% Mn - 0.26% Si - 0.025% S -
0.017% P - 2.54% Ni - 0.94% Cr - 0.12% Mo - 0.20% Cu
10 NC 12 Steel, 212
Composition: 0.10% C - 0.33% Mn - 0.26% Si - 0.005% S 0.010% P - 3.02% Ni - 0.68% Cr - 0.19% Mo - 0.14% Cu
14° NC
22 Steel,
212
Composition: 0.15% C - 0.32% Mn - 0.35% Si - 0.005% S -
0.016% P - 3.09% Ni - 0.84% Cr - 0.14% Mo - 0.12% Cu
32 \NGBD: 15 Steel,” 212
Composition: 0.31% C - 0.50% Mn - 0.28% Si - 0.005% S 0.010% P - 3.33% Ni - 1.20% Cr - 0.50% Mo - 0.15% Cu <0.03% V - 0.08% W
30 NCD 12 Steel, 213
Composition: 0.30% C - 0.40% Mn - 0.30% Si - 3.20% Ni 0.86% Cr - 0.40% Mo
35 NCD 16 Steel, 213
Composition: 0.36% C - 0.39% Mn - 0.30% Si - 0.005% S -
0.010% P - 3.70% Ni - 1.65% Cr - 0.23% Mo - 0.12% Cu
16 NC
Z 130 WCV 12-04-04 Steel, 217
Composition: 1.43% C - 0.17% Mn - 0.29% Si - 0.045% S 0.023% P - 0.15% Ni - 4.18% Cr - 0.87% Mo - 4.350% V 11.00% W
Z 80 WCDX 12-04-02-02 Steel, 217
Composition: 0.82% C - 0.29% Mn - 0.25% Si - 0.010% S 0.032% P - 0.20% Ni - 4.10% Cr - 1.60% Mo - 2.060% V 12.10% W
Z 85 WCV 18-04-02 Steel, 217
Composition: 0.79% C - 0.17% Mn - 0.18% Si - 0.026% S 0.035% P - 0.08% Ni - 4.00% Cr - 0.20% Mo - 2.110% V 18.15% W - 0.17% Co
Z 30 WCKV 09-03 Steel, 218
Composition: 0.28% C - 0.54% Mn - 0.96% Si - 0.003% S 0.025% P - 0.54% Ni - 2.80% Cr - 0.13% Mo - 0.240% V 8.77% W - 2.05% Co
Z 80 WKCV 18-05-04-01 Steel, 218
Composition: 0.80% C - 0.53% Mn - 0.28% Si - 3.80% Cr -
1.050% V - 17.40% W - 4.62% Co |
Z 80 WKCV 18-10-04-02 Steel, 218
Composition: 0.80% C - 0.29% Mn - 0.28% Si - 0.026% S 0.018% P - 4.40% Cr - 0.37% Mo - 1.600% V - 19.20% W 9.30% Co
Composition: 0.89% C - 0.50% Mn - 0.18% Si - 3.90% Cr -
18 Steel, 213
Composition: 0.15% C - 0.48% Mn - 0.33% Si - 0.010% Si 0.012% P - 4.21% Ni - 1.00% Cr - 0.20% Mo - 0.21% Cu
100 CV 6 Steel,
214
Composition: 0.86% C - 0.35% Mn - 0.34% Si - 0.012% S 0.005% P - 0.58% Ni - 1.62% Cr - <0.01% Mo - 0.05% Cu 0.174% V
Z 100 CDV 5 Steel, 214
Composition: 0.91% C - 0.32% Mn - 0.37% Si - 0.006% S 0.016% P - 5.20% Cr - 1.07% Mo - 0.09% Cu - 0.420% V
45 WC 20-04 Steel, 214
Composition: 0.48% C - 0.27% Mn - 0.67% Si - 0.005% S 0.010% P - 0.14% Ni - 1.20% Cr - 0.02% Mo - 0.21% Cu 0.013% V - 2.34% W
Composition: 0.45% C - 0.34% Mn - 0.20% Si - 0.007% S 0.019% P - 0.44% Ni - 1.25% Cr - <0.10% Mo - 0.14% Cu 0.360% V - 2.20% W
40 WCDS 35-12 Steel, 215
Composition: 0.40% C - 0.34% Mn - 0.26% Si - 0.010% S 0.032% P - 0.12% Ni - 2.85% Cr - 0.16% Mo - 0.14% Cu 0.260% V - 3.39% W
Z 80 WCV 18-04-01 Steel, 215
Composition: 0.81% C - 0.17% Mn - 0.23% Si - 0.019% S 0.018% P - 0.08% Ni - 4.25% Cr - 0.09% Mo - 1.080% V 17.60% W - 0.05% Co
35 NC 15 Steel, 215
Composition: 0.38% C - 0.44% Mn - 0.22% Si - 0.003% S 0.018% P - 3.40% Ni - 1.50% Cr - 0.15% Mo - 0.13% Cu 0.015% V
35 NCDV 10 Steel, 216
Composition: 0.34% C - 0.52% Mn - 0.37% Si - 2.65% Ni 1.80% Cr - 0.53% Mo - 0.15% V - 0.20% Cu
Z 200sG23Steels.
216
Composition: 1.78% C - 0.27% Mn - 0.25% Si - 0.010% § 0.025% P - 0.35% Ni - 11.70% Cr - 0.61% Mo - 0.090% V 0.63% W
Z 160 CDV 12 Steel, 216
Composition: 1.56% C - 0.37% Mn - 0.20% Si - 0.001% S 0.020% P - 0.26% Ni - 12.46% Cr - 0.54% Mo - 0.10% Cu 0.65% V - 0.28% W
Z 85 DCWV 08-04-02-02 Steel, 217
Composition: 0.85% C - 0.27% Mn - 0.24% Si - 0.023% S 0.024% P - 4.03% Cr - 8.00% Mo - 1.380% V - 1.43% W 0.19% Co
1.030% V - 19.10% W - 9.66% Co
Z 150 WK VC 12-05-05-04 Steel,
219
Composition: 1.46% C - 0.10% Mn - 0.27% Si - 0.033% §S -
0.031% P - 3.72% Cr - 0.47% Mo - 0.09% Cu - 4.100% V 13.70% W - 5.00% Co
Z 165 WKVC 12-10-05-04 Steel, 219
Composition: 1.64% C - 0.21% Mn - 0.31% Si - 0.005% S 0.021% P - 4.50% Cr - 0.66% Mo - 5.050% V - 11.64% W 11.35% Co
55 NCDV 7 Steel, 219
Composition: 0.55% C - 0.68% Mn - 0.30% Si - 0.004% S 0.014% P - 1.65% Ni - 1.00% Cr - 0.35% Mo - 0.11% Cu -
0.220% V - 0.08% W
Z 80 WDCV 6 Steel, 219
Composition: 0.76% C - 0.25% Mn - 0.35% Si - 0.031% S 0.025% P - 4.54% Cr - 5.75% Mo - 2.050% V - 6.60% W 0.86% Co
Z 85 WDKCV
06-05-05-04-02
Steel,
220
Composition: 0.84% C - 0.22% Mn - 0.23% Si - 0.014% S -
0.025% P - 4.36% Cr - 4.95% Mo - 1.830% V - 6.48% W 4.85% Co
Z 130 WDCV 06-05-04-04 Steel,
220
Composition: 1.29% C - 0.26% Mn - 0.43% Si - 0.006% S 0.025% P - 4.42% Cr - 4.10% Mo - 4.000% V - 5.54% W 0.37% Co
Z 110 DKCWV 09-08-04-02-01 Steel, 220
Composition: 1.11% C - 0.24% Mn - 0.27% Si - 0.007% S 0.023% P - 3.91% Cr - 9.50% Mo - 1.210% V - 1.47% W 8.35% Co
BENELUX
STEELS,
Example
Page,
032 (SAE
1035),
221 - 242
223
224
Composition: 0.36% C - 0.60% Mn - 0.26% Si - 0.032%
S - 0.012% P
034 (SAE 1045),
224
Composition: 0.45% C - 0.59% Mn - 0.28% Si - 0.03% S
- 0.015% P - 0.06% Ni - 0.05% Cr - 0.14% Cu
XVili
038,
224
183 (SAE 6150),
Composition: 0.771% C - 0.784% Mn - 0.16% Si -
0.021% S - 0.013% P
041 (SAE 1330), 225
- 0.015% P - 1.23% Cr - 0.27% V
311 (AISI D1 Tool Steel,
Composition: 0.26% C - 1.48% Mn - 0.28% Si - 0.015%
S - 0.015% P - 0.08% Ni - 0.02% Cr - 0.01% Mo 0.14% Cu
045, 225
Composition: 0.36% C - 1.59% Mn - 0.26% Si - 0.038% S
- 0.02% P
Sion pes:
Composition: 0.09% C - 0.45% Mn - 0.40% Si - 0.01% S
- 0.02% P - 0.18% Ni - 12.30% Cr
287 (AISI D3 Tool Steel),
226
Composition: 2.09% C - 0.52% Mn - 0.33% Si - 12.76%
Cr
505,
226
Composition: 0.145% C - 0.27% Mn - 0.02% Si - 0.005%
S - 0.012% P - 9.12% Ni
507, 226
Composition: 0.315% C - 0.14% Mn - 0.01% Si - 0.006%
S - 0.01% P - 9.12% Ni
506, 227
Composition: 0.14% C - 0.27% Mn - 0.01% Si - 0.005%
S - 0.09% P - 9.12% Ni - 4.07% Co
DOS. 227
Composition: 0.325% C - 0.13% Mn - 0.15% Si - 0.005%
S - 0.09% P - 9.05% Ni - 4.07% Co
004.2227
Composition: 0.22% C - 1.25% Mn - 0.25% Si - 0.04% S
- 0.03% P - 0.33% Cr
091 (SAE 34/35), 228
Composition: 0.285% C - 0.62% Mn - 0.30% Si-2.55%
Ni - 0.71% Cr
144, 228
Composition: 0.12% C - 0.52% Mn - 0.22% Si - 0.014%
S - 0.015% P-4.15% Ni - 0.86% Cr
092, 228
Composition: 0.34% C - 0.49% Mn - 0.30% Si-4.30% Ni
- 1.16% Cr
455 229
Composition: 0.14% C - 0.68% Mn - 0.67% Si - 0.012%
S - 0.024% P - 2.95% Ni - 17.98% Cr - 0.06% Mo 0.04% Al - 0.10% Co - 0.10% Cu
085 (SAE 4125), 229
Composition: 0.26% C - 0.73% Mn - 0.243% Si - 0.016%
S - 0.018% P - 0.175% Ni - 1.065% Cr - 0.255% Mo
081 (SAE 1435), 229
Composition: 0.36% C - 0.72% Mn - 0.28% Si - 0.018%
S - 0.077% P - 0.006% Ni - 0.97% Cr - 0.23% Mo 0.10% Cu
082 (SAE 4140), 230
Composition: 0.41% C - 0.82% Mn - 0.29% Si - 0.022%
S - 0.035% P - 0.165% Ni - 1.005% Cr - 0.18% Mo
280, 230
Composition: 0.55% C - 0.58% Mn - 0.43% Si - 0.021%
S - 0.013% P - 0.20% Ni - 0.79% Cr - 0.42% Mo 0.19% Cu - 0.025% Al
503, 230
Composition: 0.625% C - 0.30% Mn - 0.20% Si - 0.015%
S - 0.015% P-1.60% Cr - 0.30% Mo
290 (AISI A2 Tool Steel), 231
Composition: 0.95% C - 0.50% Mn - 0.24% Si - 0.011%
S - 0.018% P - 0.26% Ni - 4.90% Cr-1.03% Mo - 0.22%
Cu - 0.02% Al
ee
231
Composition: 0.53% C - 0.62% Mn - 0.25% Si - 0.01% S
231
Composition: 0.90% C - 1.07% Mn - 0.30% Si - 0.49%
Cr - 0.638% W
213, 232
Composition: 0.33% C - 0.38% Mn - 0.30% Si - 1.06%
Cr-1.01%
PUNO
W
ON:
Composition: 0.64% C - 0.39% Mn - 0.67% Si - 1.20%
Cr-1.68%
509,
W
232
Composition: 0.21% C - 1.46% Mn - 0.38% Si - 0.019%
S - 0.016% P - 0.45% Mo
007,
233
Composition: 0.201% C - 1.55% Mn - 0.26% Si - 0.019%
S - 0.025% P - 0.39% Cr - 0.005% Al - 0.11% Nb
21598253
Composition: 0.46% C - 0.39% Mn-1.40% Si - 0.30% Ni
- 1.41% Cr - 0.10% V - 0.0017%
005,
Bo
233
Composition: 0.224% C - 1.498% Mn - 0.226% Si -
0.02% S - 0.022% P - 0.037% Ni - 0.33% Cr - 0.195%
Mo - 0.054% Al
297, 234
Composition: 0.70% C - 1.91% Mn - 0.35% Si - 0.009%
S - 0.009% P - 0.98% Cr - 1.40% Mo
312 (AISI 02 Tool Steel),
234
Composition: 0.85% C - 1.98% Mn - 0.40% Si - 0.46%
Cr - 0.14% V
150 (SAE 8620),
234
Composition: 0.20% C - 0.80% Mn - 0.27% Si - 0.017%
S - 0.018% P - 0.58% Ni - 0.49% Cr - 0.18% Mo
454, 235
Composition: 0.67% C - 1.09% Mn - 0.31% Si - 0.016%
S - 0.027% P - 0.75% Ni - 1.70% Cr - 0.36% Mo 0.04% Cu
458, 235
Composition: 1.485% C - 0.80% Mn - 0.46% Si - 0.028%
S - 0.028% P - 0.40% Ni - 1.24% Cr - 0.55% Mo
113 (SAE 4340), 235
Composition: 0.43% C - 0.49% Mn - 0.33% Si - 0.008%
S - 0.02% P - 1.51% Ni - 1.10% Cr - 0.33% Mo
453, 236
Composition: 0.345% C - 0.42% Mn - 0.43% Si - 0.015%
S - 0.015% P - 3.43% Ni - 1.36% Cr - 0.23% Mo 0.041% Al - 0.19% Cu
295, 236
Composition: 0.54% C - 0.53% Mn - 0.36% Si - 0.005%
S - 0.011% P - 3.14% Ni - 1.02% Cr - 0.34% Mo
504,
236
Composition: 0.25% C - 0.469% Mn - 0.235% Si -
0.023% S - 0.007% P - 3.65% Ni - 1.65% Cr - 0.395%
Mo - 0.008% Ng - 0.013% Al
114,
237
Composition: 0.36% C - 0.50% Mn - 0.31% Si - 0.014%
S - 0.02% P - 4.04% Ni - 1.99% Cr - 0.54% Mo - 0.28%
Cu
292,
23:7
Composition: 0.37% C - 0.58% Mn - 0.41% Si - 0.007%
S - 0.021% P - 0.53% Ni - 16.20% Cr - 1.10% Mo
206, 237
Composition: 0.325% C - 0.54% Mn - 0.22% Si - 1.103%
Cr - 0.63% Mo - 0.17% V
ee
—
a
451,
Molybdenum
238
S - 0.016% P - 0.23% Ni - 1.18% Cr - 1.15% Mo 0.27% V
368, 238
Composition: 0.28% C - 0.24% Mn - 0.29% Si - 0.005%
S - 0.024% P - 0.18% Ni - 2.68% Cr - 2.84% Mo 0.50% V
294 (AISI D2 Tool Steel), 238
Composition: 1.62% C - 0.40% Mn - 0.48% Si - 0.01% S
- 0.024% P - 12.44% Cr - 0.80% Mo - 0.83% V
271 (AISI S1 Tool Steel),
- 0.15% Mo
Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr
- 0.30% Mo
Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr
- 0.38% Mo
Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr
- 0.50% Mo
Silicon Steel Series,
239
Composition: 0.37% C - 0.34% Mn - 0.94% Si - 0.015%
S - 0.02% P - 4.80% Cr - 1.34% Mo - 1.19% V
006, 239
Composition: 0.18% C - 1.36% Mn - 0.21% Si - 0.025%
S - 0.014% P - 0.91% Ni - 0.26% Cr - 0.837% Mo 0.057% V - 0.048% Al
502, 240
Composition: 0.29% C - 0.52% Mn - 0.32% Si - 1.34%
Ni - 0.77% Cr - 0.25% Mo - 0.19% V
501, 240
Composition: 0.22% C - 0.76% Mn - 0.32% Si - 0.023%
S - 0.012% P - 2.657% Ni - 1.276% Cr - 0.51% Mo 0.203% V - 0.002% Al
452, 240
Composition: 1.16% C - 0.30% Mn - 0.57% Si - 0.009%
S - 0.006% P - 0.71% Ni - 1.79% Cr - 0.27% Mo 1.30% W
354, 241
Composition: 0.545% C - 0.46% Mn - 0.26% Si-4.12%
Ni - 1.16% Cr - 0.48% Mo - 0.80% W
0.10% C - 0.7% Mn - 0.3% Si Steels (Mo
Additions), 248
Composition: Fe - 0.10% C - 0.74% Mn - 0.29% Si
Composition: Fe - 0.09% C - 0.72% Mn - 0.29% Si - 0.28%
Mo
Composition: Fe - 0.10% C - 0.71% Mn - 0.29% Si - 0.54%
Mo
0.10% C - 0.7% Mn - 0.3% Si - B Steels (Mo
Additions), 249
Composition:
0.0050%
B
Composition: 0.37% C - 0.49% Mn - 0.32% Si - 0.0033% Mo
Composition: 0.36% C - 0.50% Mn - 0.32% Si - 0.077% Mo
Composition: 0.36% C - 0.50% Mn - 0.31% Si - 0.19% Mo
241
0.40% C - 0.8% Mn - 0.3% Si Steels (Mo
Additions), 251
Composition:
Composition:
Composition:
Composition:
241
S - 0.006% P - 4.64% Cr - 4.80% Mo - 2.45% V - 7.12%
WwW
365 (H 11 Tool Steel), 242
0.40%
0.38%
0.40%
0.40%
C - 0.83%
C - 0.82%
C - 0.82%
C - 0.80%
Mn
Mn
Mn
Mn
- 0.34%
- 0.32%
- 0.35%
- 0.33%
Si - 0.01%
Si - 0.26%
Si - 0.53%
Si - 0.79%
Mo
Mo
Mo
Mo
0.39% C - 0.8% Mn - 1.5% Si Steels (Mo
Additions), 252
Composition:
Composition:
Composition:
Composition:
Composition: 0.40% C - 0.48% Mn-1.01% Si - 0.01% S 0.014% P - 0.36% Ni - 5.13% Cr - 1.72% Mo - 0.50% V
- 0.25% W - 0.13% Cu - 0.015% Al - 0.11% Co
242
0.40%
0.39%
0.38%
0.37%
C - 0.81%
C - 0.80%
C - 0.80%
C - 0.80%
Mn
Mn
Mn
Mn
- 1.48%
- 1.48%
- 1.47%
- 1.47%
Si - 0.02%
Si - 0.26%
Si - 0.52%
Si - 0.79%
Mo
Mo
Mo
Mo
0.10% C - 1.4% Mn - 0.3% Si - B Steels (Mo
Additions), 253
Composition: 1.42% C - 0.43% Mn - 0.38% Si - 0.025%
S - 0.005% P - 4.42% Cr - 0.70% Mo - 4.55% V 12.99% W - 4.97% Co
A\2 242
Composition: 0.088% C - 1.45% Mn - 0.35% Si - 0.0055% B
Composition: 0.10% C - 1.46% Mn - 0.34% Si - 0.26% Mo 0.0051% B
Composition: 1.19% C - 0.31% Mn - 0.29% Si - 0.021%
Composition: 0.11% C - 1.43% Mn - 0.35% Si - 0.52% Mo -
0.0062% B
0.40% C - 1.3% Mn
S - 0.01% P - 4.54% Cr - 5.10% Mo - 3.29% V - 7.92%
W - 12.27% Co
Additions),
STEELS,
- 0.32% Si - 0.0048% B
0.0054% B
0.37% C - 0.5% Mn - 0.30% Si Steels (Mo
Additions), 250
Composition: 0.95% C - 0.24% Mn - 0.28% Si - 0.018%
MOLYBDENUM
C - 0.66% Mn
Composition: 0.093% C - 0.70% Mn - 0.36% Si - 0.51% Mo -
S - 0.013% P - 0.31% Ni - 2.36% Cr - 0.22% Mo 0.32% V - 8.59% W - 0.16% Cu - 0.013% Al
405 (T 15 Tool Steel),
0.096%
Composition: 0.097% C - 0.70% Mn - 0.36% Si - 0.26% Mo -
Composition: 0.31% C - 0.32% Mn - 0.41% Si - 0.014%
411 (AISI Tool Steel),
247
Composition: Fe - 0.07% C - 0.93% Mn - 0.99% Si - 0.27%
Mo - 0.32% Cr
Composition: Fe - 0.07% C - 0.93% Mn - 1.50% Si - 0.27%
Mo - 0.32% Cr
Composition: Fe - 0.07% C - 0.93% Mn - 2.00% Si - 0.27%
Mo - 0.32% Cr
Composition: 0.415% C - 0.34% Mn - 0.52% Si - 1.40%
Cr - 0.31% V - 2.28% W
367 (H 13), 239
361 (AISI H 21 Tool Steel),
Steel Series, 246
Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr
- 0% Mo
Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr
Composition: 0.20% C - 0.70% Mn - 0.57% Si - 0.009%
243 - 296
- 0.3% Si - B Steels (Mo
254
Composition: 0.40% C - 1.32% Mn - 0.33% Si - 0.004% Mo 0.004% B
Composition: 0.40% C - 1.33% Mn - 0.35% Si - 0.08% Mo -
Chromium
Steel Series,
Composition: Fe - 0.05%
Mo - 0% Cr
Composition: Fe - 0.05%
Mo - 0.16% Cr
Composition: Fe - 0.05%
Mo - 0.30% Cr
Composition: Fe - 0.50%
Mo - 0.48% Cr
0.003% B
245
Composition: 0.40% C - 1.33% Mn - 0.36% Si - 0.18% Mo -
C - 0.9% Mn - 1.20% Si - 0.40%
0.003% B
0.39% C - 1.4% Mn - 0.3% Si Steels (Mo
Additions), 255
C - 0.9% Mn - 1.20% Si - 0.40%
Composition:
Composition:
Composition:
Composition:
C - 0.9% Mn - 1.20% Si - 0.40%
C - 0.9% Mn - 1.20% Si - 0.40%
XX
0.39%
0.40%
0.39%
0.38%
C - 1.46%
C - 1.47%
C - 1.45%
C - 1.45%
Mn
Mn
Mn
Mn
- 0.36%
- 0.37%
- 0.37%
- 0.36%
Si - 0.038% Mo
Si - 0.26% Mo
Si - 0.49% Mo
Si - 0.76% Mo
0.10% C - 0.7% Mn - 0.3% Si - 0.3% Ni - B
Steels (Mo Additions), 256
Composition: 0.10% C - 0.71% Mn - 0.28% Si - 0.33% Ni -
0.0040% B
Composition: 0.11% C - 0.75% Mn - 0.31% Si - 0.34% Ni -
0.24% Mo - 0.0047% B
0.40% C - 0.8% Mn - 0.3% Si - 4.5% Ni Steels
(Mo Additions),
264
Composition: 0.41% C - 0.76% Mn - 0.35% Si - 4.45% Ni -
0.01% Mo
Composition: 0.40% C - 0.75% Mn - 0.35% Si - 4.43% Ni 0.25% Mo
Composition: 0.11% C - 0.73% Mn - 0.31% Si - 0.35% Ni -
0.53% Mo - 0.0053% B
0.10% C - 0.7% Mn - 0.3% Si - 1.4% Ni - B
Steels (Mo Additions), 257
Composition: 0.097% C - 0.69% Mn - 0.31% Si - 1.45% Ni -
Composition: 0.40% C - 0.74% Mn - 0.36% Si - 4.40% Ni -
0.47% Mo
0.40% C - 0.3% Mn - 0.2% Si - 4% Co Steels
(Mo Additions), 265
Composition: 0.10% C - 0.72% Mn - 0.33% Si - 1.43% Ni -
Composition: 0.40% C - 0.34% Mn - 0.17% Si - 0.01% Mo 3.76% Co
Composition: 0.39% C - 0.32% Mn - 0.18% Si - 0.48% Mo -
0.26% Mo - 0.0053% B
3.72% Co
0.0048% B
Composition: 0.099% C - 0.67% Mn - 0.32% Si - 1.46% Ni -
Composition: 0.40% C - 0.33% Mn - 0.16% Si - 0.95% Mo -
0.51% Mo - 0.0058% B
3.90% Co
0.10% C - 0.7% Mn - 0.3% Si - 3.0% Ni-B
Steels (Mo Additions), 258
0.10% C - 0.7% Mn - 0.3% Si - 0.3% Cr - B
Steels (Mo Additions), 266
Composition: 0.11% C - 0.72% Mn - 0.31% Si - 3.03% Ni -
Composition: 0.10% C - 0.68% Mn - 0.32% Si - 0.29% Cr -
0.0052% B
0.0038% B
Composition: 0.11% C - 0.73% Mn - 0.32% Si - 3.06% Ni -
Composition: 0.11% C - 0.70% Mn - 0.35% Si - 0.28% Cr -
0.24% Mo - 0.0050% B
0.25% Mo - 0.0045% B
Composition: 0.11% C - 0.74% Mn - 0.34% Si - 3.03% Ni -
0.55% Mn - 0.0057% B
0.20% C - 0.6% Mn - 0.3% Si - 3.0% Ni Steels
(Mo Additions), 259
Composition: 0.11% C - 0.70% Mn - 0.35% Si - 0.28% Cr 0.50% Mo - 0.0057% B
0.10% C - 0.7% Mn - 0.3% Si - 0.7% Cr - B
Steels (Mo Additions), 267
Composition: 0.21% C - 0.58% Mn - 0.28% Si - 2.95% Ni -
Composition: 0.10% C - 0.70% Mn - 0.29% Si - 0.76% Cr -
0.004% Mo
0.0036% B
Composition: 0.20% C - 0.58% Mn - 0.31% Si - 2.90% Ni -
Composition: 0.11% C - 0.72% Mn - 0.32% Si - 0.75% Cr -
0.25% Mo
0.22% Mo - 0.0052% B
Composition: 0.21% C - 0.56% Mn - 0.27% Si - 2.95% Ni 0.51% Mo
0.36% C - 0.8% Mn - 0.3% Si - 0.7% Ni Steels
(Mo Additions), 260
Composition: 0.10% C - 0.71% Mn - 0.32% Si - 0.7% Cr -
0.51% Mo - 0.0060% B
0.10% C - 0.7% Mn - 0.3% Si - 1.4% Cr-B
Steels (Mo Additions), 268
Composition: 0.36% C - 0.80% Mn - 0.30% Si - 0.75% Ni -
Composition: 0.10% C - 0.72% Mn - 0.29% Si - 1.43% Cr -
0.02% Mo
0.0059% B
Composition: 0.37% C - 0.79% Mn - 0.31% Si - 0.74% Ni -
Composition: 0.11% C - 0.75% Mn - 0.33% Si - 1.46% Cr -
0.24% Mo
0.25% Mn - 0.0059% B
Composition: 0.36% C - 0.78% Mn - 0.31% Si - 0.73% Ni 0.49% Mo
0.56% Mo - 0.0066% B
Composition: 0.36% C - 0.75% Mn - 0.29% Si - 0.72% Ni -
0.82% Mo
0.37% C - 0.8% Mn - 0.3% Si - 1.4% Ni Steels
(Mo Additions), 261
Composition: 0.37% C - 0.85% Mn - 0.36% Si - 1.44% Ni 0.02% Mo
Composition: 0.37% C - 0.85% Mn - 0.37% Si - 1.44% Ni 0.24% Mo
Composition: 0.37% C - 0.84% Mn - 0.36% Si - 1.40% Ni -
0.47% Mo
Composition: 0.36% C - 0.82% Mn - 0.35% Si - 1.41% Ni ;
0.74% Mo
0.36% C - 0.8% Mn - 0.3% Si - 2.6% Ni Steels
(Mo Additions), 262
Composition: 0.36% C - 0.86% Mn - 0.37% Si - 2.62% Ni -
0.02% Mo
Composition: 0.36% C - 0.84% Mn - 0.38% Si - 2.60% Ni J
0.24% Mo
dComposition: 0.36% C - 0.83% Mn - 0.36% Si - 2.60% Ni -
0.49% Mo
Composition: 0.35% C - 0.80% Mn - 0.36% Si - 2.58% Ni -
0.78% Mo
}
.
Composition: 0.11% C - 0.75% Mn - 0.32% Si - 1.44% Cr Composition: 0.10% C - 0.72% Mn - 0.33% Si - 1.43% Cr -
1.03% Mo - 0.0064% B
0.35% C - 0.8% Mn - 0.3% Si - 0.3% Cr Steels
(Mo Additions), 269
Composition: 0.36% C - 0.83% Mn - 0.38% Si - 0.34% Cr 0.01% Mo
Composition: 0.35%
C - 0.83% Mn - 0.39% Si - 0.35% Cr -
0.24% Mo
Composition: 0.35% C - 0.80% Mn - 0.38% Si - 0.35% Cr 0.51% Mo
Composition: 0.34% C - 0.80% Mn - 0.38% Si - 0.34% Cr 0.78% Mo
0.40% C - 0.8% Mn - 0.3% Si - 0.3% Cr Steels
(Mo Additions), 270
Composition: 0.41% C - 0.86% Mn - 0.36% Si - 0.33% Cr 0.01% Mo
Composition: 0.40% C - 0.87% Mn - 0.36% Si - 0.34% Cr 0.25% Mo
Composition: 0.41% C - 0.84% Mn - 0.35% Si - 0.35% Cr -
0.49% Mo
:
Composition: 0.41% C - 0.84% Mn - 0.34% Si - 0.35% Cr 0.77% Mo
0.39% C - 0.8% Mn - 0.3% Si - 3.5% Ni Steels
(Mo Additions), 263
Composition: 0.39% C - 0.71% Mn - 0.39% Si - 3.53% Ni
;
0.02% Mo
Composition: 0.39% C - 0.69% Mn - 0.29% Si - 3.56% Ni -
0.24% Mo
;
Composition: 0.38% C - 0.68% Mn - 0.29% Si - 3.48% Ni -
0.48% Mo
————
a
————E———————E————————
SS
ee
ee
ee
0.39% C - 0.8% Mn - 1.5% Si - 0.7% Cr Steels
(Mo Additions), 279
0.37% C - 0.8% Mn - 0.3% Si - 0.7% Cr Steels
(Mo Additions), 271
Composition: 0.37% C - 0.85% Mn - 0.37% Si - 0.74% Cr 0.02% M
Con nertiont 0.37% C - 0.85% Mn - 0.39% Si - 0.73% Cr -
Composition: 0.40% C - 0.84% Mn - 1.50% Si - 0.74% Cr 0.02% Mo
;
ie 0.40% C - 0.84% Mn - 1.50% Si - 0.74% Cr ea
Caraneation: 0.37% C - 0.84% Mn - 0.37% Si - 0.74% Cr -
as
0.26% M
0.26%
0.50% M
0.52%
0.77
Composition: 0.39% C - 0.82% Mn - 0.26% Si - 1.00% Cr -
4150,
(Mo
ame0.38% C - 0.82% Mn - 1.48% Si - 0.72% Cr -
:
o
Additions),
280
Composition: 0.38% C - 1.50% Mn - 0.40% Si - 0.77% Cr -
0.02% Mo
272
0.37% C - 1.49% Mn - 0.41% Si - 0.77% Cr 5
a
cae
:
0.36% C - 1.47% Mn - 0.41% Si - 0.76% Cr
See
eerie
Composition: 0.53% C - 0.83% Mn - 0.34% Si - 0.92% Cr -
0.21% Mo
0.36% C - 0.8% Mn
(Mo Additions),
0.39% C - 0.84% Mn - 1.49% Si - 0.73% Cr -
0.37% C : 1.4% Mn - 0.3% Si - 0.7% Cr Steels
SAE 4140, 272
SAE
Mo
oe
Cohesion: 0.37% C - 0.82% Mn - 0.36% Si - 0.73% Cr -
0.76% M
0.21% Mo
Mo
- 0.3%
Si - 1.5% Cr Steels
Composition: 0.36% C - 1.46% Mn - 0.42% Si - 0.75% Cr -
273
0.78% Mo
Composition: 0.36% C - 0.82% Mn - 0.37% Si - 1.54% Cr -
0.85% Mn - 0.3% Si - 1.4% Ni - 0.7%
0.12% C - (Mo
281
Additions),
Mo
0.01%
Composition: 0.36% C - 0.86% Mn - 0.38% Si - 1.54% Cr -
Cr Steels
0.26% M
;
of
Bee eerition: 0.36% C - 0.85% Mn - 0.37% Si - 1.52% Cr -
eee
0.50% M
ee
Lr
:
,
:
npg an ay C - 0.87% Mn - 0.34% Si - 1.43% Ni -
0.35% C - 0.82% Mn - 0.36% Si - 1.51% Cr -
eon ee ~ 0.85% Mn ~ 0.33% Si - 1.41% Ni -
Ha
C - 0.85% Mn - 0.4% Si - 2821.4%Ni - 0.7%
0.11%
Cr - B Steels (Mo Additions),
|
odious),
OtoeeComposition:
214
0.81% C - 0.76% Mn - 0.50% Si - 6.04% Cr 0.035% M
Ceeditiont 0.81% C - 0.73% Mn - 0.45% Si - 6.10% Cr 1.05%
°
0.
ir -
;
0.84% Mo
0.80% C - 0.7% Mn - 0.5% Si - 6.0% Cr Steels
0.12% C - 0.87% Mn - 0.35% Si - 1.44% Ni -
Ripe
M
a
rey
;
Cereals 1.03% C - 0.76% Mn - 0.50% Si - 6.03% Cr -
Sek
ates ee
eek bine 1.02% C - 0.73% Mn - 0.46% Si - 6.08% Cr -
ea
ayee
038%
.76%
1.03%
275
co)
el
sae 1.35% C - 0.73% Mn - 0.45% Si - 6.00% Cr -
Ghee
- 0.38% Si - 1.42% Ni -
1t10ns),
Giaan
- 0.69% Mn - 0.40% Si - 0.20% Ni -
Toe eee pi
0.98% Mo
,
>
aa
;
- 0.69% Mn - 0.38% Si - 1.79% Ni -
fo}
r-0O.
,
M
:
- 0.36% Si - 1.44% Ni -
0.
=O
Cr - 0.
seen
Composition: 1.36% C - 0.77% Mn - 0.50% Si - 5.99% Cr 0.041%
o-
ae
ee
Me cee oe 0.4% Si - Ni - Cr Steels
1.35% C - 0.7% Mn - 0.5% Si - 6.0% Cr Steels
(Mo Additions),
r - 0.
:
M
A
:
i
ayici - 0.87% Mn - 0.37% Si - 1.45% Ni -
:
0.85% C - 0.7% Mn - 0.5% Si - 12.0% Cr Steels
peep eee Cee ~ 0.69% Mn - 0.38% Si - 0.20% Ni -
.
dditions),
276
(iorComposition:
0.85% C - 0.75% Mn - 0.45% Si - 12.0% Cr -
C - 0.7% Mn - 0.4% Si284- 0.8% Ni - 0.7%
0.40%
Cr Steels (Mo Additions),
eta oe 0.84% C - 0.72% Mn - 0.44% Si - 12.10% Cr 1.05% M
Serer apeste C - 0.74% Mn - 0.40% Si - 0.78% Ni ;
ee”
i
2
.
Cunnesition: 0.85% C - 0.71% Mn - 0.43% Si - 12.10% Cr -
Soe
5
iene.
0.7% Mn
Mo Additions),
a
0.75% Ce— 050% Me
aa
0.38%
ae
ee
0.74%
1.00% M
Oosiaen foi 1.36% C - 0.70% Mn - 0.43% Si - 11.9% Cr -
VU.
-
1.
cman
1.
-
:
Si - 1.4%
Ni
:
- 0.7%
;
Mo
ey C - 0.85% Mn - 0.35% Si - 1.45% Ni -
lke OO2 MG
OR ere
0.40% C - 0.7% Mn - 0.4% Si - 2.5% Ni - 0.7%
ele ietapert ere ri
-
- 0.3%
0.73% Cr - 0.24% Mo
Senora row C - 0.84% Mn - 0.34% Si - 1.46% Ni they
’
;
i
a
‘a
Composition: 0.41% C - 1.42% Mn - 1.52% Si - 0.02% Mo
ST dee
Mn
see C - 0.85% Mn - 0.33% Si - 1.46% Ni -
Cr - 0.01%
orate
3.06% M
0.40% C - 1.4% Mn - 1.5% Si Steels (Mo
Additions), 278
sition:
C - 0.8%
Cr Steels (Mo Additions), ; 285
Ciemoaition: 1.36% C - 0.72% Mn - 0.44% Si - 12.0% Cr -
oI
- 0.73% Mn - 0.40% Si - 0.78% Ni -
ce)
Composition: 0.40% C - 0.72% Mn - 0.40% Si - 0.78% Ni -
- 0.5% Si - 12.0% Cr Steels
277
Composition: 1 38% C - 0.74% Mn - 0.46% Si - 11.80% Cr -
0.078% M
a ane
r-U.
U.
ae
Cr Steels (Mo Additions),
Cameaition: 0.40% C - 1.38% Mn - 1.50% Si - 0.80% Mo
286
Composition: 0.40% C - 0.74% Mn - 0.38% Si - 2.57% Ni 0.75% Cr - 0.038% Mo
Composition: 0.40% C - 0.73% Mn - 0.38% Si - 2.58% Ni 0.75% Cr - 0.24% Mo
Composition: 0.39% C - 0.73% Mn - 0.35% Si - 2.51% Ni 0.75% Cr - 0.49% Mo
XXil
0.40% C - 0.8% Mn - 0.3% Si - 3.5% Ni - 0.8%
Cr Steels (Mo Additions), 287
18Ni350 Maraging Steel,
294
Composition: 0.008% C - 0.03% Mn - 0.03% Si - 17.4% Ni -
3.7% Mo - 0.17% Al - 12.4% Co - 1.62% Ti
Composition: 0.41% C - 0.76% Mn - 0.32% Si - 3.59% Ni -
Se
0.77% Cr - 0.038% Mo
Fe - 15.0%Co - 10.0% Mo Alloys,
Composition: 0.41% C - 0.76% Mn - 0.32% Si - 3.59% Ni -
0.77% Cr - 0.25% Mo
Composition: 0.004% C - 0.42% Mn - 0.12% Si - 9.95% Mo -
Composition: 0.40% C - 0.74% Mn - 0.31% Si - 3.56% Ni -
15.20% Co
0.77% Cr - 0.50% Mo
Composition: 0.004% C - 0.41% Mn - 0.15% Si - 9.95% Ni -
0.40% C - 0.7% Mn - 0.3% Si - 4.5% Ni - 0.7%
Cr Steels (Mo Additions), 288
0.75% Cr - 0.03% Mo
9.99% Mo - 15.30% Co
Composition: 0.003% C - 4.78% Mn - 0.21% Si - 10.04% Mo
- 15.33% Co
Carbon-Free Fe - 15.0% Co - 20.0% Mo Alloys,
Composition: 0.41% C - 0.73% Mn - 0.42% Si - 4.54% Ni -
296
Composition: 0.41% C - 0.74% Mn - 0.40% Si - 4.56% Ni -
0.75% Cr - 0.26% Mo
Composition: 0.003% C - 0.47% Mn - 0.13% Si - 20.02% Mo
Composition: 0.40% C - 0.73% Mn - 0.41% Si - 4.53% Ni -
- 15.00% Co
0.75% Cr - 0.50% Mo
0.40% Cr - 1.4% Mn
(Mo Additions),
Composition: 0.004% C - 0.43% Mn - 0.13% Si - 9.95% Ni -
- 1.5% Si - 0.7% Cr Steels
20.02% Mo - 15.13% Co
289
Composition 0.006% C - 4.938% Mn - 0.23% Si - 20.17% Mo 15.33% Co
Composition: 0.41% C - 1.44% Mn - 1.50% Si - 0.75% Cr -
6.01% Mo
Composition: 0.40% C - 1.43% Mn - 1.51% Si - 0.76% Cr -
0.26% Mo
VANADIUM
Composition: 0.39% C - 1.41% Mn - 1.49% Si - 0.74% Cr 0.51% Mo
Mn-V
Composition: 0.39% C - 1.39% Mn - 1.48% Si - 0.73% Cr -
0.77% Mo
Ni-Cr-Si-Mo-V
Steel Series,
290
0.81% Cr - 0.40% Mo - 0.067% V
Composition: 0.32% C - 0.86% Mn - 1.44% Si - 0.51% Ni -
1.01% Cr - 0.49% Mo - 0.071% V
Composition: 0.35% C - 0.86% Mn - 1.55% Si - 0.21% Ni 1.21% Cr - 0.58% Mo - 0.037% V
Composition: 0.35% C - 0.86% Mn - 1.58% Si - 0.23% Ni -
1.50% Cr - 0.58% Mo - 0.071% V
0.40% C - 1.4% Mn - 1.4% Si - 1.4% Ni - 0.8%
Cr Steels (Mo Additions), 291
Composition: 0.41% C - 1.42% Mn - 1.42% Si - 1.37% Ni 0.78% Cr - 0.03% Mo
Composition: 0.41% C - 1.41% Mn - 1.41% Si - 1.36% Ni 0.78% Cr - 0.26% Mo
Composition: 0.40% C - 1.39% Mn - 1.37% Si - 1.34% Ni -
0.76% Cr - 0.52% Mo
Composition: 0.40% C - 1.37% Mn - 1.38% Si - 1.31% Ni 0.75% Cr - 0.73% Mo
0.40% C - 0.3% Mn - 0.2% Si - 8.0% Ni - 4.0%
Co Steels (Mo Additions), 292
Composition: 0.39% C - 0.30% Mn - 0.20% Si - 8.0% Ni 3.89% Co
Composition: 0.39% C - 0.29% Mn - 0.22% Si - 7.78% Ni 0.44% Mo - 3.87% Co
Composition: 0.39% C - 0.28% Mn - 0.20% Si - 8.04% Ni -
293
Composition: 0.08% C - 1.0% Ni - 12.0% Cr - 2.0% Mo -
0.3% V
Composition: 0.08% C - 1.0% Ni - 12.0% Cr - 2.0% Mo
293
Composition: 0.012% C - <0.03% Mn - <0.05% Si - 17.6%
Ni - 3.1% Mo - 0.10% Al - 8.3% Co - 0.08% Ti
Maraging
Steel,
18Ni300 Maraging
Steel,
18Ni250
299 - 308
Composition: 0.19% C - 1.44% Mn - 0.37% Si - 0.007% S -
1.00% Mo - 3.90% Co
Steel,
Steels (As Rolled),
0.011% P - 0.10% Cr - 0.08% Ni - 0.01% Mo - 0.17% V 0.20% Cu - 0.03% Al - 0.010% N
Composition: 0.20% C - 1.45% Mn - 0.30% Si - 0.005% S 0.012% P - 0.11% Cr - 0.10% Ni - 0.02% Mo - 0.08% V 0.14% Cu - 0.01% Al - 0.010% N
Composition: 0.20% C - 1.46% Mn - 0.34% Si - 0.008% S 0.013% P - 0.12% Cr - 0.10% Ni - 0.02% Mo - 0.14% V 0.19% Cu - 0.03% Al - 0.012% N
Composition: 0.06% C - 1.97% Mn - 0.37% Si - 0.020% S 0.006% P - 0.45% V - 0.029% Al - 0.009%
Composition: 0.06% C - 2.00% Mn - 0.37% Si - 0.005% S 0.006% P - 0 - 0.45% V - 0.029% Al - 0.009% N
Composition: 0.07% C - 1.99% Mn - 0.25% Si - 0.004% S 0.013% P - 0.48% V - 0.038% Al - 0.008% N
Composition: 0.07% C - 1.90% Mn - 0.24% Si - 0.006% S 0.010% P - 0.08% Mo - 0.43% V - 0.06% Al - 0.009% N
0.08% C - 1.0% Ni - 12.0% Cr - 2.0% Mo - 0.3%
0.3% V
18Ni200 Maraging
Structural
297 - 370
Composition: 0.04% C - 1.90% Mn - 0.11% Si - 0.021% S 0.019% P - 0.09% V - 0.02% Al - 0.009% N
Composition: 0.06% C - 1.95% Mn - 0.29% Si - 0.003% S 0.010% P - 0.010% Mo - 0.25% V - 0.037% Al - 0.008% N
Composition: 0.07% C - 1.94% Mn - 0.30% Si - 0.003% § 0.009% P - 0.010% Mo - 0.14% V - 0.038% Al - 0.007% N
Composition: 0.09% C - 1.48% Mn - 0.25% Si - 0.060% S 0.014% P - 0.010% Cr - 0.010% Ni - 0.010% Mo - 0.04% V 0.010% Cu - 0.047% Al
Composition: 0.11% C - 1.28 % Mn - 0.31% Si - 0.018% §S 0.031% P - 0.08% V - 0.005% N
Composition: 0.11% C - 1.23% Mn - 0.31% Si - 0.018% S 0.031% P - 0.08% V - 0.005% N
Composition: 0.11% C - 1.40% Mn - 0.55% Si - 0.063% V
Composition: 0.14% C - 1.52% Mn - 0.48% Si - 0.004% S 0.011% P - 0.071% V
Composition: 0.14% C - 1.53% Mn - 0.36% Si - 0.008% S 0.009% P - 0.06% Cr - 0.03% Ni - 0.01% Mo - 0.04% V 0.02% Cu - 0.057% Al
Composition: 0.15% C - 0.90% Mn - 0.40% Si - 0.05% V 0.014% N
Composition: 0.15% C - 1.30% Mn - 0.27% Si - 0.009% S$ 0.010% P - 0.15% Cr - 0.15% Ni - 0.04% Mo - 0.13% V 0.19% Cu - 0.02% Al - 0.010% N
Composition: 0.16% C - 1.42% Mn - 0.44% Si - 0.021% S 0.032% P - 0.025% V - 0.003% Ti - 0.002% Nb - 0.042% Al
Composition: 0.33% C - 0.86% Mn - 1.62% Si - 1.80% Ni -
V Steel,
STEELS,
294
Composition: 0.02% C - 0.09% Mn - 0.09% Si - 17.8% Ni 0.0021% B - 0.12% Al - 7.9% Co - 0.42% Ti
294
Composition: 0.02% C - 0.07% Mn - 0.07% Si - 18.4% Ni -
4.9% Mo - 0.003% B - 0.09% Al - 8.8% Co - 0.66% Ti
a
XXill
I
Mn-V-N Structural Steels (As Rolled),
310
Ey
Orie
pan
Composition: 0.07% C - 1.57% Mn - 0.49% Si - 0.008% S 0,0005% B - 0.01% Cu - 0.066% Al
308 -
0.004% P - 0.01% Cr - 0.01% Ni - 0.27% Mo - 0.05% V -
Composition: 0.12% C - 0.83% Mn - 0.30% Si - 0.005% S -
Oe
ee
0.03% V 0;
1,
53 yee = 1.11%
Mo -- 0.03%
Nii.-0.49%
.
ion: 0.16% C - 1.40% Mn - 0.04% Si - 0.012% S Composit
0.11 V - 0.04% Al - 0.018%N
P -04%
0.0
V -
ei
0.02% Al-0.038%N
0.016% P - 0.27% Mo - 0.05% V - 0.018% Al - 0.004% N
0.013% P - 0.57% Ni - 0.13% V -
Composition: 0.17% C - L5ee Me ; eae : Ce oe
:
a
0.012% P - eae. setae He
0
=8,008
belies
0.002% Nb - 0.
0.001% S 0.82% Mn - 0.26%NbSi- -0.040%
Composition: 0.06% C - - 0.08%
Al V - 0.04%
0.015% P - 0.25% Mo
0.003% N
Composition: 0.17% C - 1.48% Mn - 0.30% Si - 0.021% S 0.034% P - 0.035% Cr - 0.075% Ni - 0.02% Mo - 0.15% V 0.04% Cu - 0.028% Al - 0.018%
- 0.32% Si - 0.005% S Composition: 0.19% C - 1.55% Mn 0.01%
Al - 0.017% N
311
324 - 326
0.007% P - 0.25% Cr - 1.07% Ni - 0.05% Mo - 0.08% V -
Composition: 0.06% C - 1.21% Mn - 0.25% Si - 0.001% S 0.014% P - 0.25% Mo - 0.08% V - 0.044% Nb - 0.036% Al -
0.15% Cu Mn-V-Ti Structural Steels (As
Rolled), 311 - 312
0.003% N
Composition: 0.05% C - 1.17% Mn - 0.26% Si - 0.015% S -
Composition: 0.07% C - 1.49% Mn - 0.26% Si - 0.001% S -
0.016% P - 0.04% V - 0.01% Ti
ee E - 0.25% Mo - 0.08% V - 0.042% Nb - 0.036% Al -
Composition: 0.06% C - 1.27% Mn - 0.30% Si - 0.080% S ote Oe
Mo
-
Fear
Structural Steels (As Rolled),
Mn-Mo-Nb-V
Composition: 0.15% C - 0.71% Mn - 0.28% Si - 0.005% S -
elas , Maal ae Se
A Siki sou Mac
n-O0.
ORT
Composition: 0.15
- 0-0.10%
Composition: 0.17% C - 1.75% Mn - 0.20% Si
Ni-V Structural Steels (As Rolled),
it
Composition: 0.09% C - 1.03% Mn - 0.28% Si - 0.015% S -
ODS
0.010% P - 0.01% Cr - 0.01% Ni - 0.31% Mo - 0.10% V -
Composition: 0.10% C - 1.51% Mn - 0.44% Si - 0.008% S -
0.09% Nb - 0.021% Al
0.033% P - 0.05% V - 0.013% Ti - 0.002% Nb - 0.033% Al
Composition: 0.12% C - 1.72% Mn - 0.28% Si - 0.005% S 0.016% P - 0.20% Mo - 0.06% V - 0.038% Nb - 0.068% Al 0.0001% N
Composition: 0.14% C - 1.44% Mn - 0;.23% Si - 0.007% S 0.011% P - 0.065% Cr - 0.23% Ni - 0.035% Mo - 0.10% V 0.03% Nb - 0.48% Cu - 0.028% Al - 0.013% N
Mn-Nb-V,
313 - 317
Composition: 0.05% C - 1.82% Mn - 0.39% Si - 0.012% S 0.018% P - 0.06% V - 0.055% Nb - 0.011% Al - 0.011% N
Composition: 0.06% C - 1.21% Mn - 0.25% Si - 0.001% S 0.015% P - 0.31% Ni - 0.07% V - 0.043% Nb - 0.30% Cu 0.041% Al - 0.003% N
Composition: 0.07% C - 1.35% Mn - 0.29% Si - 0.004% S -
Quenched
327 - 339
0.005% P - 0.08% V - 0.025% Nb - 0.036% Al - 0.006% N
and
Tempered
Structural
Steels,
Composition: 0.08% C - 1.52% Mn - 0.37% Si - 0.007% S 0.023% P - 0.21% Cr - 0.10% Ni - 0.10% V - 0.05% Nb -
Composition: 0.09% C - 0.94% Mn - 0.28% Si - 0.008% § 0.010% P - 0.10% Cr - 2.54% Ni - 0.64% Mo - 0.04% V -
0.34% Cu - 0.02% Al - 0.008% N
Composition: 0.06% C - 1.69% Mn - 0.25% Si - 0.001% S 0.015% P - 0.31% Ni - 0.08% V - 0.043% Nb - 0.30% Cu 0.040% Al - 0.003% N
Composition: 0.06% C - 2.33% Mn - 0.38% Si - 0.008% S 0.025% P - 0.40% Cr - 0.01% Ni - 0.01% Mo - 0.08% V -
0.07% Cu - 0.029% Al
Composition: 0.09% C - 0.59% Mn - 0.57% Si - 0.010% S 0.015% P - 2.00% Cr - 0.56% Mo - 0.37% V - 0.18% Ti 0.005 % B - 0.41% W
Composition: 0.09% C - 1.01% Mn - 0.32% Si - 0.009% S 0.011% P - 0.52% Cr - 1.49% Ni - 0.52% Mo - 0.05% V -
0.048% Nb - 0.01% Cu - 0.035% Al
0.002% B - 0.25% Cu - 0.055% Al
Composition: 0.09% C - 0.82% Mn - 0.29% Si - 0.013% S$ -
Composition: 0.10% C - 1.53% Mn - 0.35% Si - 0.010% S cae
P - 0.01% Mo - 0.07% V - 0.05% Nb - 0.045% Al -
0.019% P - 0.12% Cr - 1.85% Ni - 0.53% Mo
0.007%
N
0.01
- 0.04% V -
=O)
Composition: 0.10% C - 1.48% Mn - 0.36% Si - 0.008% S 0.014% P - 0.019% V - 0.003% Ti - 0.023% Nb - 0.046% Al
aires - 2.00% Mn - 1.09% Si - 0.005% S$ tac
’
0.012% P - 1.80% Cr - 0.65% Mo - 0.15% V
Composition: 0.11% C - 1.60% Mn - 0.30% Si - 0.002% S -
Composition: 0.10% C - 0.76% Mn - 0.22% Si - 0.007% S -
0.017% P - 0.09% V - 0.005% Ti - 0.032% Nb - 0.021% Al
0.012% P - 0.68% Cr - 0.85% Ni - 0.48% Mo - 0.07% V -
Mn-V-Nb-Ti,
0.001% B - 0.21% Cu
317
Composition: 0.11% C - 0.52% Mn - 0.26% Si - 0.012% S 0.007% P - 0.56% Cr - 4.92% Ni - 0.53% Mo - 0.08% V -
Composition: 0.10% C - 1.50% Mn - 0.37% Si - 0.007% S 0.011% P - 0.022% V - 0.023% Ti - 0.023% Nb - 0.044% Al
Mn-Mo-V
324
Structural Steels (As Rolled),
0.10% Cu - 0.04% Al
318 -
Composition: 0.11% C - 0.85% Mn - 0.31% Si - 0.009% §S -
Composition: 0.04% C - 1.19% Mn - 0.30% Si - 0.001% $ P - 0.02% Cr - 0.02% Ni - 0.33% Me - 0.09% V 0.002%
0.01% Nb - 0.087% Al
0.007% P - 0.51% Cr - 1.80% Ni - 0.48% Mo - 0.08% V B - 0.27% Cu - 0.077% Al
0.002%
Composition: 0.11% C - 0.56% Mn - 0.28% Si - 0.005% S -
Composition: 0.04% C - 1.90% Mn - 0.11% Si - 0.021% S -
0.017% P - 1.08% Cr - 0.04% Ni - 0.31% Mo - 0.22% V -
0.019% P - 0.19% Mo - 0.09% V - 0.02% Al - 0.009% N
0.08% Cu - 0.01% Al
Composition: 0.04% C - 1.90% Mn - 0.11% Si - 0.021% S -
Composition: 0.12% C - 0.75% Mn - 0.06% Si - 0.008% S -
0.007% P - 0.57% Cr - 2.62% Ni - 0.48% Mo - 0.05% V 0.002%
B - 0.25% Cu - 0.062% Al
Composition: 0.12% C - 0.73% Mn - 0.37% Si - 0.003% § 0.008% P - 5.75% Cr - 0.55% Mo - 0.24% V - 0.16% Ti -
0.019% P - 0.19% Mo - 0.09% V - 0.02% Al - 0.009% N
Composition: 0.04% C - 1.90% Mn - 0.11% Si - 0.021% S 0.019% P - 0.34% Mo - 0.09% V - 0.02% Al - 0.009% N
Composition: 0.06% C - 1.96% Mn - 0.32% Si - 0.003% S -
0.011% B - 0.26% W
P - 0.18% Mo - 0.22% V - 0.020% Al - 0.005% N
0.006%
Composition: 0.06% C - 1.70% Mn - 0.50% Mo - 0.10% V -
Composition: 0.12% C - 0.55% Mn - 0.68% Si - 0.010% S -
0.012% P - 2.05% Cr - 0.55% Mo - 0.32% V - 0.08% Ti 0.006% B - 0.32% W
0.020% N
Composition: 0.06% C - 1.46% Mn - 0.14% Si - 0.003% S 0.018%
P=
0.20%
Cr
- 0.02%
Ni - 0.25%
Mo
- 0.03%
Composition:
Vie
0.13%
C-
0.71%
Mn
- 0.56%
Si -
5.43%
Cr
0.01% Cu - 0.035% Al
0.47% Mo - 0.20% V - 0.16% Ti - 0.010% B - 0.19% W
0.004% P - 0.01% Cr - 0.01% Ni - 0.27% Mo - 0.05% V Cu - 0.064%
0.01%
0.018% P - 0.23% Cr - 0.01% Ni - 0.27% Mo - 0.05% V 0.01% Cu - 0.010% Al
-
Composition: 0.13% C - 1.16% Mn - 0.31% Si - 0.017% S$ -
Composition: 0.07% C - 1.52% Mn - 0.47% Si - 0.008% S -
i
xxiv
Composition: 0.13% C - 0.60% Mn - 0.29% Si - 0.016% S -
Composition:0.40% C - 0.60% Mn - 1.00% Si - 0.003% S -
0.010% P - 0.98% Cr - 0.01% Ni - 0.31% Mo - 0.20% V -
0.010% P - 5.00% Cr - 1.30% Mo - 0.40% V
0.02% Cu- 0.010% Al
Composition: 0.14% C - 0.53% Mn - 0.54% Si - 0.006% S -
Composition:0.43% C - 0.90% Mn - 0.32% Si - 0.30% Cr 0.10% V - 0.03% Nb - 0.015% Al - 0.015% N
o.0aay Be Pt a - apeti - 0.03% V - 0.006% Ti
omposition:
0.15%
C - 0.57%
Cr-Ni-Mo-V
Mn - 0.28% Si - 0.019% S -
0.013%
P - 0.63% Cr - 0.91% Ni - 0.61% Mo - 0.30% V 0.032% Al
Composition: 0.14% C - 0.50% Mn - 0.30% Si - 0.008%
0.008% P - 0.38% Cr - a Hi otek ae “ ee
0.01% Cu - 0.010% Al
$ i
0.014% P - 1.08% Cr - 0.72% Ni - 1.25% Mo - 0.31% V
Composition: 0.15% C - 3.06% Mn - 0.59% Si - 0.005% $ -
Composition: 0.27% C - 1.36% Mn - 0.50% Si - 0.006% S 0.016% P - 0.58%
Cr - 0.68% Ni - 0.34% Mo - 0.08% V
Composition: 0.32% C - 0.40% Mn - 0.40% Si - 1.43% Cr 3.30%
Ni - 0.33%
Composition:
0.33%Mo C - - 0.19%
0.89% VMn - 0.24% Si - 0.009% S -
0.020% P - 0.14% Cr - 0.04% Ni - 0.46% Mo - 0.09% V 0.09% Cu - 0.70% W
Composition:
0.15% Ci - 0.77% 7 MnMa - O200.20% Si2 - 0.011% ° S moines pee
y
0.23%
Nb
i
Cr - 4.25% Ni - 0.45% Mo - 0.10% V -
0.008% P - 1.13% Cr - 0.15% Ni: - 1.19% Mo - 0.22% V
Composition:
Si
~ <0,070% $ - 0.14-0.20%
<0.070% P C - - 0.60-1.00% : Mn - 0.17-0.37%
a
<
‘ <0.25% Cu
0.05-0.09% V ~
Composition’
O:S8/01C
Ot Mooie- 0.12%
ae
0.004%
P : - 1.09%
Cr - S029)
3.60% NiMaia
- 0.72%
V 0.002% Ti
0.013%
Nb
0.09%
Cu
0.009%
Al
See
:
<0.25% Cr - <0.25% Ni
Composition: 0.22% C - 1.45% Mn - 0.30% Si - 0.006% $ -
Composition: 0.34% C - 0.26% Mn - 0.13% Si - 0.007% S -
0.010% P - 0.61% Cr - 5.10% Ni - 0.53% Mo - 0.09% V
0.020% P - 0.98% Cr - 0.01% Ni - 0.45% Mo - 0.03% V -
Cc
elas
C
% M
1% Sii - 0.010 % Ss =
no Oy?
omposition: 0.34% C - 0.62
0.006% P - 1.22% Cr - 2.80% Ni - 0.50% Mo - 0.09% V
0.01% Cu - 0.044% Al
Composition: 0.23% C - 0.53% Mn - 0.30% Si - 0.018% P -
1.55% Cr - 0.30% Ni - 0.29% Mo - 0.21% V - 0.11% Cu
et
OF
Oe
Sr
Quenched and Tempered
Engineerin
ee
se MES ial as a
Composition: 0.24% C - 0.74% Mn - 0.25% Si - 0.016% S 0.012% P - 0.37% Cr - 0.67% Ni - 0.52% Mo - 0.03 V
Composition: 0.26% C - 0.76% Mn - 0.32% Si - 0.012% S -
Composition: 0.37% C - 0.83% Mn - 0.35% Si - 0.006% S 0.017% P - 0.87% Cr - 1.70% Ni - 1.18% Mo - 0.18% V
Composition: 0.38% C - 0.46% Mn -0.26% Si - 0.008% S -
ee
Composition: 0.26% C - 0.75% Mn - 0.26% Si - 0.014% $ -
precel “ onic 0.45% Ni - 0.45% Mo - 0.12% V -
Si - 0.015%
uae veS -
07eMo - 0.003% V 01s70.
0.8290Cr C- 50.19%
Compesition
NiMin- 0.03%
P - 0.94%
0.008%
0.010% P - 0.45% Cr - 0.81% Ni - 0.61% Mo - 0.05% V
- 0.80%Mo=
Mn 0.11%
1.67% Ni.
0.26%Ce.C -0.08%
Composition:
P "6 UE%
pose
0.01% Git < 0.013% a
x
;
;
;
:
a
'
eel aU Deane
0.007% Ti - 0.21% Cu - 0.01% N
Composition: 0.39% C - 0.77% Mn - 0.39% Si - 0.032% S -
0.006% P - 0.96% Cr - 0.14% Ni - 0.08% Mo - 0.05% V 0.21% Cu - 0.01% N
340 -
Mn-V Quenched and Tempered Steels,
341
i
Composition: 0.34% C - 1.31% Mn - 0.24% Si - 0.10% V 0.018% Al - 0.016% N
Composition: 0.40% C - 0.83% Mn - 0.33% Si - 0.007% S 0.011% P - 1.00% Cr - 1.75% Ni - 0.46% Mo - 0.12% V 0.07% Cu - 0.010% Al
0.001% P - 0.10% Cr - 0.10% Ni - 0.01% Mo - 0.11% V 0.14% Cu - 0.02% Al
Composition: 0.49% C - 0.78% Mn - 0.26% Si - 0.012% S 0.018% P - 1.04% Cr - 0.50% Ni - 0.96% Mo - 0.09% V
0.018% P - 0.02% Cr - 0.01% Ni - 0.12% Mo - 0.07% V -
0.012% P - 0.76% Cr - 1.53% Ni - 0.24% Mo - 0.14% V -
Composition: 0.35% C - 1.62% Mn - 0.47% Si - 0.008% S -
Composition: 0.56% C - 0.67% Mn - 0.31% Si - 0.023% S -
Composition: 0.38% C - 1.63% Mn - 0.30% Si - 0.016% S -
0.06% Cu - 0.010% Al
Prestressed Concrete
0.01% Cu - 0.021% Al
Composition: 0.45% C - 1.34% Mn - 1.45% Si - 0.013% S -
Steels,
ition:
tevce
=
=
OGRE =UOT Mie age
es
342
Rail
- 343
oe
- 0.018%
Al - 0.
0.024% P - 1.01% Cr - 0.51% Ni - 0.49% Mo - 0.07% V -
S 0.86% Mn - 1.62% Si - 0.014%Vee
Composition: 0.33% C - 1.80%
Ni - 0.40% Mo - 0.07%
;
0.024%
-
Ni
P-
0.81%
Cr
0.040% Al - 0.020% N
5
-
.
Composition: 0.35% C - 0.86% Mn - 1.55% Si - 0.014%V S- -
0.023% P - eee - 0.21% Ni - 0.58% Mo - 0.06%
345 - 347
V
0.80-1.20% ara
-ET
tea Ya
0.037% Al - 0.022% N
Cr-Mo-V Quenched and Tempered Engineering
Steels,
’
Composition: 0.27% C - 0.77% Mn - 1.39% Si - 1.64% Cr -
P - 0.67% Mo - 0.07% V
0.016%
Composition: 0.35% C - 1.51% Mn - 0.28% Si - 0.007% S 0.64% Mo - 0.14% V
- 0.015% S -
0.20% Ni - 0.56% Mo - 0.07% V
- 1.40% Si - 0.78% Cr oe C ea
eS
.
O
o
1-0.
ath
Can paniion: 0.82% C - 0.86% Mn - 1.54% Si - 0.014% $ -
Tempere
-Moj
es, 344 = 345,
Ba
:
Si - 0.009% S 0.34%
Mn
Composition: 0.30% C - 1.91%
;
- 0.021% N
Ct
Or
ea
-
-
#0:
S
pring
0.035% Ti - 0.20% Cu - 0.01% N
C-
HS
Composition: 0.78% C - 1.61% Mn - vay S|Sey E -
0.007% P - 0.96% Cr - 0.13% Ni - 0.07% Mo - 0.06% V -
0.33%
356
Steels,
S Pian
Composition: 0.40% C - 0.75% Mn - 0.27% Si - 0.034% S -
Composition:
0.
- 0.46% Mo - 0.05% V 0.012%
0.010% CrAl - 0.01% Ni
0.05% CuP -- 1.58%
ee
V - 0.10% Cu A
0.015% P - 1.29% Mo - 0.21%
2.16% Mn - 0.32% Si - 2.02%
i-
Composition: 0.73% C - 0.77% Mn - 0.27% Si - 0.010% S -
0.021% Ti - 0.20% Cu - 0.022% Al - 0.01% N
+4: n: 0.39% C - 0.76% Mn - 0.28% Si: - 0.033% S Compositio
0.
- eel
0.
Composition: 0.65% C - 1.14% Mn - ue
0.024% P - 1.15% Cr - 0.15% V - 0.00
Composition: 0.38% C - 0.78% Mn - 0.29% Si - 0.030% S 0.005% P - 0.99% Cr - 0.14% Ni - 0.08% Mo - 0.06% V -
a -ee
ae
0.
Ti
.047%
n-
0.005% Al - 0.007%N 35 P
Cr-V-Ti Quenched and Tempered Engineering
Steels.
1.4
0.030% P - 0.05% Cr - 0.03% Ni - 0.19% V - 0.03% Cu -
fe
ane
-
Composition: 0.69
eee
nro
ase
an
0.002% Al - ie
342
355
Wires,
Composition: 0.67% C - 1.39% Mn - 0.75% Si - 0.009% S 0.015% P - 0.03% Cr - 0.32% Ni - 0.19% V - 0.40% Cu -
.
0.022% P - 0.10% V
Cr-V Quenched and Tempered Engineering
ee
pana
0.35% C - 0.86% Mn - 1.55% Si - 0.014% S -
0.024% P - 1.50% Cr - 0.23% Ni - 0.58% Mo - 0.07% V 0.039% Al - 0.022% N
~ XXY
a
Composition: 0.55% C - 0.50% Mn - 0.87% Si - 0.035% S 0.02% P - 0.10% Cr - 0.10% Ni - 0.55% Mo - 0.22% V
Composition: 0.64% C - 0.73% Mn - 0.82% Si - 0.011% S 0.014% P - 1.26% Cr - 0.05% Ni - 0.16% V - 0.03% Cu 0.006% Al - 0.012% N
High-Temperature
Creep-Resistant
Steels,
361
- 364
Composition: 0.11% C - 0.53% Mn - 0.35% Si - 0.010% S 0.015% P - 2.28% Cr - 0.04% Ni - 1.00% Mo - 0.20% V 0.03% Cu - 0.010% Al
Composition: 0.12% C - 0.47% Mn - 0.31% Si - 0.010% $ -
0.014% P - 2.16% Cr - 0.16% Ni - 0.88% Mo - 0.17% V 0.05% Cu - 0.010% Al
Composition: 0.12% C - 0.65% Mn - 0.26% Si - 0.015% S -
0.007% P - 1.16% Cr - 0.01% Ni - 1.02% Mo - 0.26% V 0.02% Cu - 0.010% Al
Composition: 0.18% C - 0.53% Mn - 0.26% Si - 0.007% S -
0.012% P - 1.00% Cr - 0.96% Mo - 0.19% V
Composition: 0.20% C - 0.45% Mn - 1.03% V - 0.-002% N
Composition: 0.21% C - 0.48% Mn - 0.97% Si - 2.92% Ni 1.09% V - 0.01% Al
Composition: 0.24% C - 0.45% Mn - 2.92% Ni - 1.09% V 0.55% Al
Tool and Die Steels,
365 - 367
1-3/4 Mn (SAE 1330), 380
Composition: 0.30% C - 1.80% Mn - 0.15% Si - 0.020% P 0.020% S
1-1/4 Mn (SAE 1536), 381
Composition: 0.36% C - 1.20% Mn - 0.20% Si - 0.020% P 0.020% S
381
1-1/2 Mn (SAE 1536-1541),
Composition: 0.36% C - 1.50% Mn - 0.20% Si - 0.020% P 0.020% S
382
1-3/4 Mn (SAE 1541, 1335-1340),
Composition: 0.38% C - 1.80% Mn - 0.25% Si - 0.025% P 0.020% S
1-3/4 Mn (SAE 1547, 1345), 382
Composition: 0.46% C - 1.80% Mn - 0.25% Si - 0.020% P 0.015% S
383
1 Mn + S (SAE 1212-12L14),
Composition: 0.10% C - 1.10% Mn - 0.20% Si - 0.020% P 0.250% S
1 Mn + S (SAE 1140-1146),
383
Composition: 0.42% C - 1.15% Mn - 0.20% Si - 0.020% P 0.160% S
1-1/2 Mn + S (SAE 1139), 384
Composition: 0.44% C - 1.50% Mn - 0.20% Si - 0.020% P -
Composition: 0.37% C - 0.51% Mn - 1.00% Si - 5.10% Cr 1.26% Mo - 0.97% V
Composition: 0.75% C - 0.31% Mn - 0.22% Si - 0.019% S -
0.250% S
1-3/4 Si Mn,
0.025% P - 4.25% Cr - 0.20% Ni - 1.45% V - 17.54% W
Composition: 0.92% C - 0.31% Mn - 0.35% Si - 0.019% S 0.025% P - 4.10% Cr - 4.90% Mo - 1.88% V - 6.20%
W
Composition: 1.06% C - 4.43% Cr - 0.44% Mo - 2.32% V -
0.030% S
2 Si Mn,
-
7.90% Co
Composition: 2.50% C - 2.00% Cr - 0.60% Ni - 5.20% Mo 7.20% V
0.030% S
Stainless Steels, 368 - 369
1/2 Ni,
Composition: 0.20% C - 12.00% Cr - 1.00% Mo - 0.30% V
Composition: 0.20% C - 0.48% Mn - 0.36% Si - 0.012% S -
386
0.55% C - 0.65% Mn - 0.20% Si - 0.025% P - 0.025% S 0.65% Ni
1 Ni, 387
Composition: 0.36% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 0.85% Ni
Composition: 0.43% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 0.85% Ni
0.016% P - 12.80% Cr - 0.13% Ni - 0.03% Mo - 0.05% V 0.01% Cu - 0.036% Al
Composition: 0.20% C - 0.51% Mn - 0.33% Si - 0.006% S 0.022% P - 11.80%
385 - 386
Composition: 0.54% C - 0.85% Mn - 1.90% Si - 0.030% P 0.030% S - 0.10% Cr - 0.02% Mo - 0.16% Ni
Composition: 0.59% C - 0.85% Mn - 1.90% Si - 0.030% P 0.030% S
Composition: 0.62% C - 0.85% Mn - 1.90% Si - 0.030% P -
10.32% W - 3.92% Co
Composition: 1.13% C - 0.51% Mn - 0.50% Si - 0.022% S 0.025% P - 4.02% Cr - 8.80% Mo - 1.24% V - 1.80% W
Cr - 0.49% Ni - 1.00% Mo - 0.31% V -
0.03% Cu - 0.010% Al
1-1/2 Ni,
BRITISH
STEELS,
ENGINEERING
1005-1006),
371 - 451
0.015% S - 0.20% Cr - 0.05% Mo - 1.50% Ni
3 Ni, 388
Composition: 0.30% C - 0.51% Mn - 0.32% Si - 0.011% P 0.007% S - 0.07% Cr - 3.03% Ni - 0.032% Al - <0.01% Ti
377
3-1/2 Ni,
Composition: 0.05% C - 0.25% Mn
0.06 C (SAE
1005-1006),
1008),
377
0.005% S - 0.05% Cr - 3.65% Ni - 0.045% Al - 0.07% Cu
Composition: 0.33% C - 0.74% Mn - 0.23% Si - 0.031% P 0.027% S - 0.07% Cr - 0.11% Mo - 3.47% Ni
378
Composition: 0.40% C - 0.62% Mn - 0.26% Si - 0.007% P -
Composition: 0.06% C - 0.50% Mn
0.005% S - 0.23% Cr - 0.10% Mo - 3.45% Ni
5 Ni, 390
Composition: 0.10% C - 0.40% Mn - 0.20% Si - 0.020% P 0.020% S - 4.8% Ni
9 Ni, 391
1-1/4 Mn (SAE 1518-1524),
378
Composition: 0.19% C - 1.20% Mn - 0.20% Si - 0.020% P -
0.020% S
1-1/2 Mn (SAE 1518-1524),
379
Composition: 0.19% C - 1.50% Mn - 0.20% Si - 0.020% P -
0.020% S
1-1/4 Mn (SAE
1525-1527),
0.020%
1-1/2 Mn (SAE
1526-1527),
389 - 390
Composition: 0.10%C - 0.53% Mn - 0.26% Si - 0.007% P -
Composition: 0.06% C - 0.30% Mn
0.06 C (SAE
388
Composition: 0.16% C - 0.60% Mn - 0.25% Si - 0.020% P -
Introduction, 373 - 376
0.05 C (SAE
384
Composition: 0.40% C - 0.85% Mn - 1.75% Si - 0.030% P -
Composition: 0.09% C - 0.45% Mn - 0.25% Si - 0.010% P -
0.012% S - 0.10% Cr - 0.04% Mo - 9.00% Ni - 0.030% Al
1/2 Cr (SAE 5015, 4118), 391
Composition: 0.15% C - 0.40% Mn - 0.20% Si - 0.020% P 0.020% S - 0.40% Cr
379
Composition: 0.28% C - 1.20% Mn - 0.20% Si - 0.020% P -
380
Composition: 0.28% C - 1.50% Mn - 0.20% Si - 0.020% P -
0.020% S
SS
nn
ne
XxXVI
TE
Tn
3/4 Cr (SAE 5117-5120, 4118), 392
1-1/2 Mn Mo, 403 - 405
Composition: 0.20% C - 0.80% Mn - 0.20% Si - 0.020% P -
Composition: 0.27% C - 1.55% Mn - 0.20% Si - 0.025% P -
0.020% S - 0.80% Cr
0.025% S - 0.28% Mo
1 Cr, 392
Composition: 0.20% C - 0.75% Mn - 0.30% Si - 0.020% P WV) 0.020% S - 0.95% Cr
Cr (SAE 5130-5132),
393
ee Composition: 0.30% C - 0.70% Mn - 0.20% Si - 0.020% P a
Composition: 0.30% C - 1.55% Mn - 0.20% Si - 0.025% P 0.025% S - 0.28% Mo
Composition: 0.32% C - 1.50% Mn - 0.18% Si - 0.020% P 0.020% S - 0.27% Mo
Composition: 0.35% C - 1.55% Mn - 0.20% Si - 0.025% P -
0.020% S - 1.05% Cr
0.025% S - 0.28% Mo
Composition: 0.38% C - 0.70% Mn - 0.25% Si - 0.020% P -
0.020% S - 0.27% Mo
Composition: 0.38% C - 1.50% Mn - 0.25% Si - 0.020% P 0.020% $ - 0.45% Mo
1/2 Cr,
393
Composition: 0.37% C - 1.50% Mn - 0.18% Si - 0.020% P -
0.020% S - 0.50% Cr
1 Cr (SAE 5140), 394
Composition: 0.39% C - 0.70% Mn - 0.20% Si - 0.020% P -
1-1/4 Mn Cr, 406 - 407
0.020% S - 1.05% Cr
394
5046),
1/2 Cr (SAE
ined
ee
Composition: 0.22% C - 1.10% Mn - 0.21% Si - 0.015% P -
Bohs - 0.60% Cr - 0.02% Mo - 0.18% Ni - 0.08% V -
:
:
O:70769Min =10 2676 Si:002070 B=
1 Cr (SAEa 5145-5150), 395
pe
Noe
Composition: 0.20% C - 1.25% Mn - 0.25% Si - 0.025% P -
:
C Mn -- 0.35%
Si P Ccomposition:
tion: 0.50%
0.
- 0.75%
0.
0.
- 0.025%
0.
0.020% S - 1.20% Cr
1/2 Cr (SAE 5060, 5155-5160),
0.015% S$ - 1.15% Cr - 0.02% Mo - 0.15% Ni
é
:
1-1/2 Si Cr,
395
407
satin
Composition: 0.59% C - 0.60% Mn - 0.25% Si - 0.025% P 0.025% S - 0.65% Cr - 0.20% Ni
3/4 Cr,
u
Composition: 0.16% C - 1.15% Mn - 0.25% Si - 0.020% P -
;
Sonne ES ere Ci 0.757% Mn- 1:50% 31". 0.0207,
3-1/2 Si Cr 408 :
396
st
Composition: 0.60% C - 0.85% Mn - 0.25% Si - 0.025% P -
;
akan
0.025% S - 0.75% Cr
=
tegee ‘ORIN
SaP ens ame
1-1/2 Ni Mn, 408
bam
»)
ob ee 51405-51409),
396
.
omposition: 0.07% C - 0.50% Mn - 0.40% Si - 0.020% P -
Pooh
13 Cr (SAE
Composition: 0.16% C - 1.40% Mn - 0.25% Si - 0.020% P 0.015% § - 0.20% Cr - 0.05% Mo - 1.50% Ni
opener
oe
51410),
397
1-3/4 Ni tek
Mo (SAE 4615-4620), 409 .
0.12% C - 0.50% Mn - 0.40% Si - 0.020% P - 0.010% $ 12.5% Cr - 0.20% Ni
13 Cr (SAE 51420),
397
- 398
ae eae
1-3/4 Ni Mo, 409
.
Composition: 0.24% C - 0.55% Mn - 0.20% Si - 0.020% P -
Composition: 0.17% C - 0.40% Mn - 0.38% Si - 0.020% P -
0.020% S - 12.5% Cr - 0.20% Ni
|
:
ah
Composition: 0.24% C - 0.27% Mn - 0.37% Si - 0.021% P -
=e
=
=
greta
Mo
(SAE
1/4 Mo,
alk
400
‘A
Soe
4023
ee. is
ha
:
é
Composition: 0.10% C - 0.40% Mn - 0.20% Si - 0.020% P -
&
0.020% S - 0.20% Mo - 5.00% Ni
=?
4024),
41]
3/4 Ni Cr,
- 0.90% Mn - 0.30% Si - 0.020% P -
Composition: 0.15% C - 0.80% Mn - 0.20% Si - 0.020% P a
l eee
eet att
i -
nS:
Composition: 0.38% C - 0.80
Composition: 0.15% C - 1.40% Mn -
a
0.020% S - 1.55% Cr - 1.55% Ni
2NiCr,
414
Composition: 0.16% C - 0.50% Mn - 0.31% Si - 0.013% P -
ee
0.
me ane ort
Composition: 0.14% C - 0.50% Mn - 0.25% Si - 0.020% P -
0.025% P -
sieisedde
1-1/2 Mn (SAE 1513-1518),
‘
Sr
Composition: 0.15% C - 0.75% Mn - 0.25% Si - 0.020% P 0.020% S - 0.95% Cr - 1.45% Ni
SONG
«ASSL
x
Ss NE
ee enn ae
Composition: 0.22% C - 0.60% Mn - 0.257% S1--0.0207%'P 0.020% S - 0.50% Mo
icinedi
Sa
Composition: 0.35% C - 0.75% Mn - 0.23% Si - 0.020% P 0.020% S - 0.65% Cr - 1.30% Ni
Composition: 0.40% C - 0.75% Mn - 0.23% Si - 0.020% P -
yi hie GAR H41S-4422), 01
1/2 Mo, 402
ie
Composition: 0.16% C - 0.80% Mn - 0.20% Si - 0.020% P -
400
4042),
401
AMG GAE-4047)
;
ae aie - 0.80% Mn - 0.25% Si - 0.025% P ee
0.014% S - 1.95% Cr - 0.03% Mo - 2.02% Ni - 0.030% Al
i - 0.020% P -
3-1/4 Ni Cr,
0.020% S
415
P Composition: 0.12% C - 0.50% Mn - 0.20% Si - 0.020%
0.020% S - 0.90% Cr - 3.25% Ni
ee
:
Soa
5 Na No. 2 has Gr Os on
Composition: 0.40% C - 0.80% Mo - 0.30% Si - 0.025% P -
0.021% S$ - 0.53% Mo
410
40% C - 0.48% Mn - 0.15% Si - 0.016% P -
- 0.009% P Composition: 0.18% C3 - 0.47% Mn ‘ - 0.27% Si
:
Composition: 0.32% C - 0.80% Mn - 0.30% Si - 0.025% P -
yao
:
Ni Mo,
-3/4
ie eG
b)
i
Composition: 0.17% C - 0.60% Mn - 0.25% Si - 0.020% P -
0.020% S - 0.30% Mo
0.020% S - 0.20% Cr - 0.25% Mo - 1.80% Ni
vat a Bae ee. a Repo ree a
3-1/2 Ni Mo. (SAE 4815-4820), 410
0.010% S - 13.3% Cr - 0.06% Mo - 0.32% Ni
Composition: 0.32% C - 0.30% Mn - 0.30% Si - 0.020% P -
ares
a dale
399
4012),
Mo (SAE
1/4EE
Re a ee: eee
ee
Xxvil
ee
a
3 Cr Mo,
3 Ni Cr, 415
426 - 427
Composition: 0.20% C - 0.50% Mn - 0.25% Si - 0.020% P 0.020% $ - 3.10% Cr - 0.52% Mo
Composition: 0.32% C - 0.57% Mn - 0.20% Si - 0.020% P 0.020% S - 1.15% Cr - 3.00% Ni
4NiCr, 416
Composition: 0.15% C - 0.40% Mn - 0.15% Si - 0.020% P -
Composition: 0.28% C - 0.50% Mn - 0.25% Si - 0.020% P 0.020% S$ - 3.10% Cr - 0.52% Mo
Composition: 0.30% C - 0.50% Mn - 0.20% Si - 0.020% P 0.020% S - 1.25% Cr - 4.10% Ni
18 Cr Ni (SAE 51431), 417
0.020% S - 3.05% Cr - 0.40% Mo - 0.30% Ni
3-1/4 Cr Mo, 428
Composition: 0.17% C - 0.60% Mn - 0.14% Si - 0.020% P -
0.012% S - 17.98% Cr - 0.06% Mo - 2.95% Ni - 0.04% Al 0.10% Co - 0.10% Cu
Composition: 0.26% C - 0.60% Mn - 0.14% Si - 0.020% P 0.020% S - 3.25% Cr ~ 0.55% Mo
0.020% S - 1.15% Cr - 4.10% Ni
Composition: 0.32% C - 0.55% Mn - 0.25% Si - 0.020% P -
0.020% S - 3.25% Cr - 0.55% Mo
Composition: 0.14% C - 0.68% Mn - 0.67% Si - 0.024% P -
1/2 Cr Mo,
- 418
417
5 Cr Mo (SAE 51501),
0.020% S - 0.60% Cr - 0.55% Mo
1/2 Cr Mo,
418
3/4 Cr Mo,
418 - 419
Composition: 0.20% C - 0.75% Mn - 0.25% Si - 0.020% P 0.020% S - 0.40% Cr - 0.45% Mo
Composition: 0.12% C - 0.45% Mn - 0.30% Si - 0.015% P -
0.015% S - 0.85% Cr - 0.60% Mo - 0.16% Ni
Composition: 0.27% C - 0.60% Mn - 0.13% Si - 0.030% P 0.022% S - 0.74% Cr - 0.55% Mo - 0.19% Ni
3/4 Cr Mo (SAE 4161), 419
Composition: 0.60% C - 0.85% Mn - 0.25% Si - 0.020% P 0.020% S - 0.80% Cr - 0.30% Mo
1 Cr Mo,
420
429
Composition: 0.14% C - 0.45% Mn - 0.26% Si - 0.016% P -
Composition: 0.14% C - 0.55% Mn - 0.25% Si - 0.020% P -
0.025% S - 4.66% Cr - 0.56% Mo - 0.13% Ni
5 Cr Mo,
429
9 Cr Mo,
430
Composition: 0.28% C - 0.50% Mn - 0.25% Si - 0.020% P 0.020% S - 5.00% Cr - 0.55% Mo
Composition: 0.12% C - 0.70% Mn - 0.30% Si - 0.025% P -
0.020% S - 9.0% Cr - 1.00% Mo
1 Cr V (SAE 6150), 430
Composition: 0.50% C - 0.75% Mn - 0.25% Si - 0.025% P -
0.025% S - 0.95% Cr - 0.05% Mo - 0.15% Ni - 0.20% V
1-1/2 Mn Ni Mo, 431
Composition: 0.19% C - 1.60% Mn - 0.20% Si - 0.020% P -
0.020% S - 0.25% Mo - 0.55% Ni
Composition: 0.18% C - 0.75% Mn - 0.25% Si - 0.020% P 0.020% S - 1.00% Cr - 0.20% Mo
2 Si Cr Mo, 431
Composition: 0.60% C - 0.85% Mn - 1.90% Si - 0.025% P -
0.020% S - 1.05% Cr - 0.22% Mo
1/2 Ni Cr Mo (SAE 8115, 8615-8617),
Composition: 0.26% C - 0.70% Mn - 0.25% Si - 0.020% P -
0.025% S - 0.30% Cr - 0.25% Mo
432
421
Composition: 0.15% C - 0.80% Mn - 0.20% Si - 0.020% P -
0.020% S - 1.00% Cr - 0.20% Mo
1/2 Ni Cr Mo (SAE 8622-8627, 8720, 8822), 432
1 Cr Mo (SAE 4130),
Composition: 0.30% C - 0.50% Mn - 0.25% S - 0.020% P -
421
1 Cr Mo (SAE 4135),
Composition: 0.34% C - 0.65% Mn - 0.25% Si - 0.020% P -
0.020% S - 1.05% Cr - 0.25% Mo
1 Cr Mo
(SAE
422
C - 0.80%
Mn - 0.25%
ition: 0.36%
i
Si - 0.020%
x
P -
1 Cr Mo (SAE 4140-4142), 422
Composition: 0.40% C - 0.85% Mn - 0.20% Si - 0.020% P -
0.020% $ - 1.05% Cr - 0.30% Mo
1 Cr Mo
(SAE
4145-4147),
0.020% $ - 1.00% Cr - 0.20% Mo
(SAE
4147-4150),
Mo - 0.55%
Ni
Composition: 0.41% C - 0.85% Mn - 0.25% Si - 0.020% P 0.020% S - 0.50% Cr - 0.25% Mo - 0.55% Ni
1/2 Ni Cr Mo (SAE 8645-8650),
434
0.010% S - 0.58% Cr - 0.20% Mo - 0.60% Ni
1/2 Ni Cr Mo (SAE 8660),
434
Composition: 0.60% C - 0.85% Mn - 0.25% Si - 0.025% P -
1-1/4 Cr Mo (SAE 4137), 424
Composition: 0.37% C - 0.85% Mn - 0.25% Si - 0.020% P -
11/4 Cr Mo (SAE 4140-4142),
Cr - 0.20%
S - 0.50%
1/2 Ni Cr Mo (SAE 8640-8642, 8740), 433
423
0.020% S$ - 1.00% C - 0.22% Mo
424
Composition: 0.42% C - 0.85% Mn - 0.25% Si - 0.020% P 0.020% $ - 1.15% Cr - 0.20% Mo
1-1/4 Cr Mo,
0.020%
433
a ma C- Bees Mn - Bad Si - 0.020% P -
Composition: 0.48% C - 0.75% Mn - 0.34% Si - 0.020% P -
Composition: 0.50% C - 0.85% Mn - 0.25% Si - 0.020% P -
0.020% S - 1.15% Cr - 0.20% Mo
1/2 Ni Cr Mo (SAE 8625-8630),
423
Composition: 0.46% C - 0.85% Mn - 0.25% Si - 0.020% P -
1 Cr Mo
Composition: 0.24% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 0.50% Cr - 0.20% Mo - 0.55% Ni
pore
4135-4137),
Ce Merrie an
0.020% S - 0.50% Cr - 0.20% Mo - 0.55% Ni
0.025% S - 0.50% Cr - 0.20% Mo - 0.55% Ni
3/4 Ni Cr Mo,
435
1 Ni Cr Mo,
435
Composition: 0.40% C - 0.65% Mn - 0.25% Si - 0.020% P 0.025% S - 0.75% Cr - 0.25% Mo - 0.85% Ni
Composition: 0.36% C - 0.65% Mn - 0.25% Si - 0.020% P -
0.020% S - 1.05% Cr - 0.22% Mo - 1.05% Ni
11/2 Ni Cr Mo, 436 - 438
Composition: 0.16% C - 0.80% Mn - 0.20% Si - 0.020% P -
425
0.020% S - 1.05% Cr - 0.15% Mo - 1.40% Ni
Composition: 0.15% C - 0.60% Mn - 0.30% Si - 0.030% P -
Composition: 0.16% C - 0.50% Mn - 0.25% Si - 0.020% P -
0.030% $ - 1.25% Cr - 0.50% Mo
0.020% S - 1.65% Cr - 0.20% Mo - 1.55% Ni
Composition: 0.36% C - 0.70% Mn - 0.25% Si - 0.020% P 0.020% S - 1.50% Cr - 0.25% Mo - 1.50% Ni
Composition: 0.35% C - 0.55% Mn - 0.27% Si - 0.031% P 0.022% S - 1.23% Cr - 0.51% Mo - 0.14% Ni
2-1/4 Cr Mo, 426
Composition: 0.40% C - 0.60% Mn - 0.25% Si - 0.020% P 0.020% S - 1.20% Cr - 0.15% Mo - 1.50% Ni
Composition: 0.14% C - 0.46% Mn - 0.23% Si - 0.010% P 0.010% $ - 2.28% Cr - 1.05% Mo - 0.21% Ni
Composition: 0.40% C - 0.60% Mn - 0.25% Si - 0.020% P -
0.020%
S - 1.20% Cr - 0.30% Mo
ee
Xxvili
- 1.50% Ni
1-3/4 Ni Cr Mo,
438 - 439
12 Cr Mo V (SAE 51420 mod),
Composition: 0.16% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 1.05% Cr - 0.15% Mo - 1.80% Ni
Composition: 0.41% C - 0.70% Mn - 0.25% Si - 0.020% P 0.020% S - 0.80% Cr - 0.25% Mo - 1.80% Ni
2 Ni Cr Mo, 439 - 440
Composition: 0.17% C - 0.60% Mn - 0.20% Si - 0.020% P 0.020% S - 1.55% Cr - 0.20% Mo - 2.00% Ni
Composition: 0.30% C - 0.48% Mn - 0.25% Si - 0.020% P 0.020% S - 2.00% Cr - 0.40% Mo - 2.00% Ni
2-1/2 Ni Cr Mo,
440 - 441
Composition: 0.31% C - 0.60% Mn - 0.25% Si - 0.020% P -
0.020% S - 0.65% Cr - 0.55% Mo - 2.55% Ni
Composition: 0.40% C - 0.60% Mn - 0.25% Si - 0.020% P 0.020% S - 0.65% Cr - 0.55% Mo - 2.55% Ni
3 Ni Cr Mo, 441 - 442
0.030% S - 12.00% Cr - 1.00% Mo - 0.65% Ni - 0.30% V
OTHER
Composition: 0.12% C - 0.53% Mn - 0.28% Si - 0.020% P -
0.010% S - 0.58% Cr - 0.20% Mo - 3.20% Ni
3-1/2 Ni Cr Mo (SAE 9310), 442
Composition: 0.138% C - 0.50% Mn - 0.20% Si - 0.020% P 0.020% S - 0.85% Cr - 0.18% Mn - 3.40% Ni
4 Ni Cr Mo, 443 - 444
Composition: 0.15% C - 0.40% Mn - 0.25% Si - 0.020% P 0.018% S - 1.15% Cr - 0.20% Mo - 4.10% Ni
L6 Tool Steel,
Composition: 1.36% C - 1.84% Mn - 1.14% Si - 1.81% Ni -
0.15% Cr - 1.41% Mo - 0.38% Graphite
2315, 458
Composition: 0.19% C - 0.57% Mn - 0.22% Si - 0.015% P 0.023% S - 3.60% Ni - 0.09% Cr - 0.05% Mo
2340, 459
Composition: 0.40% C - 0.89% Mn - 0.31% Si - 0.021% P 0.011% S - 3.34% Ni - 0.11% Cr
0.020% S - 1.80% Cr - 0.35% Mo - 4.00% Ni
1/2 Cr Mo V, 444
Composition: 0.12% C - 0.55% Mn - 0.25% Si - 0.020% P 0.020% S - 0.40% Cr - 0.60% Mo - 0.15% Ni - 0.25% V
1 Cr Mo V, 445
Composition: 0.22% C - 0.60% Mn - 0.30% Si - 0.020% P 0.020% S - 1.15% Cr - 0.60% Mo - 0.13% Ni - 0.22% V
9% Nickel
Low
Carbon
Steel,
459
Composition: 0.10% C - 0.77% Mn - 0.28% Si - 8.56% Ni 0.05% Cr - 0.02% Mo
445
3120 Steel, 460
Composition: 0.21% C - 0.61% Mn - 0.24% Si - 0.017% P 0.016% S - 1.35% Ni - 0.67% Cr - 0.02% Mo - 0.04%
3190 Steel, 460
Composition: 0.91% C - 0.65% Mn - 0.23% Si - 0.013% P 0.026% S - 1.35% Ni - 0.60% Cr - 0.03% Cu
Composition: 0.37% C - 0.62% Mn - 0.29% Si - 0.032% P -
0.026% S - 1.19% Cr - 0.59% Mo - 0.13% Ni - 0.22% V
446
Composition: 0.30% C - 0.60% Mn - 0.25% Si - 0.010% P -
0.015% S - 2.50% Cr - 0.20% Mo - 0.30% Ni - 0.18% V
3-1/4 Cr Mo V, 446
Composition: 0.39% C - 0.60% Mn - 0.15% Si - 0.020% P 0.020% S$ - 3.25% Cr - 0.95% Mo - 0.20% V
1 Cr Al Mo, 447
Composition: 0.33% C - 0.65% Mn - 0.30% Si - 0.020% P 0.020% S - 1.15% Cr - 0.20% Mo - 1.00% Al
1-1/2 Cr Al Mo, 447 - 448
3240 Steel,
461
Composition: 0.43% C - 0.52% Mn - 0.29% Si - 0.025% P -
0.021% S - 1.76% Ni - 1.19% Cr - 0.05% Mo - 0.06% Cu
3330 Steel, 461
Composition: 0.29% C - 0.21% Mn - 0.06% Si - 0.026% P 0.017% S - 3.25% Ni - 1.45% Cr
Krupp
Composition: 0.31% C - 0.55% Mn - 0.30% Si - 0.020% P -
0.15 C Steel,
462
Composition: 0.15% C - 0.45% Mn - 0.20% Si - 0.013% P 0.020% S - 4.03% Ni - 1.54% Cr - 0.03% Mo
0.020% S - 1.60% Cr - 0.20% Mo - 1.10% Al
Composition: 0.39% C - 0.55% Mn - 0.30% Si - 0.020% P 0.020% S - 1.60% Cr - 0.20% Mo - 1.10% Al
Composition: 0.42% C - 0.65% Mn - 0.30% Si - 0.020% P 0.020% $ - 1.65% Cr - 0.33% Mo - 1.00% Al
1-1/2 Mn Ni Cr Mo,
457
Composition: 0.72% C - 0.85% Mn - 0.23% Si - 0.018% P 0.010% S - 1.75% Ni - 0.94% Cr
Composition: 0.75% C - 0.70% Mn - 0.25% Si - 1.35% Ni 0.75% Cr - 0.30% Mo - 0.15% V
A10 Tool Steel, 458
Composition: 0.30% C - 0.60% Mn - 0.25% Si - 0.020% P 0.020% S - 1.25% Cr - 0.30% Mo - 4.10% Ni
Composition: 0.34% C - 0.50% Mn - 0.20% Si - 0.020% P -
2-1/2 Cr Mo V,
453 - 520
Composition: 0.22% C - 1.30% Mn - 1.36% Si - 1.88% Ni 0.22% Cr - 0.38% Mo
AMS 6428 and 6434, 456
Composition: 0.32% C - 0.72% Mn - 0.19% Si - 0.012% P 0.021% S - 1.70% Ni - 0.82% Cr - 0.31% Mo - 0.12% Cu 0.17% V
Composition: 0.31% C - 0.55% Mn - 0.25% Si - 0.020% P -
V,
STEELS,
8640 & 8740, 455
Composition: 0.42% C - 0.89% Mn - 0.30% Si - 0.018% P 0.015% S - 0.58% Ni - 0.52% Cr - 0.24%
AMS 6416 (300-M), 455
Composition: 0.43% C - 0.83% Mn - 1.55% Si - 0.021% P 0.009% S - 1.84% Ni - 0.91% Cr - 0.40% Mo - 0.12% V
AMS 6418, 456
0.020% S - 1.05% Cr - 0.28% Mo - 3.00% Ni
1-1/4 Cr Mo
451
Composition: 0.20% C - 0.70% Mn - 0.25% Si - 0.030% P -
Krupp
0.90C Steel,
462
Composition: 0.89% C - 0.39% Mn - 0.19% Si - 4.00% Ni 1.58% Cr
4330 Steel, 463
Composition: 0.33% C - 0.69% Mn - 0.41% Si - 0.043% P 0.028% S - 1.41% Ni - 0.72% Cr - 0.28% Mo
4330 Mod. (Si + V) Steel, 463
449 - 451
Composition: 0.27% C - 1.35% Mn - 0.24% Si - 0.025% P 0.025% S - 0.45% Cr - 0.20% Mo - 0.75% Ni
Composition: 0.33% C - 1.35% Mn - 0.24% Si - 0.025% P -
0.025% S - 0.45% Cr - 0.20% Mo - 0.75% Ni
Composition: 0.37% C - 1.35% Mn - 0.24% Si - 0.025% P 0.025% S - 0.45% Cr - 0.20% Mo - 0.75% Ni
Composition: 0.38% C - 1.40% Mn - 0.25% Si - 0.030% P 0.030% S$ - 0.50% Cr - 0.20% Mo - 0.75% Ni
Composition: 0.43% C - 1.35% Mn - 0.24% Si - 0.025% P 0.025% S - 0.45% Cr - 0.20% Mo - 0.75% Ni
Composition: 0.34% C - 0.98% Mn - 1.37% Si - 0.015% P -
0.005% S - 1.82% Ni - 0.95% Cr - 0.42% Mo - 0.14% V
4630 Steel, 464
Composition: 0.32% C - 0.74% Mn - 0.31% Si - 0.015% P 0.014% S - 1.70% Ni - 0.12% Cr - 0.23% Mo
4695 Steel, 464
Composition: 0.95% C - 0.58% Mn - 0.24% Si - 1.79% Ni
0.25% Mo
ee
~ 3633155
I
on
SAE
EX-1
Steel,
465
Composition: 0.17% C - 0.49% Mn - 0.29% Si - 0.010% P -
0.015% S - 5.07% Ni - 0.18% Cr - 0.24% Mo - 0.10% Cu
SAE
EX-2 Steel,
465
Composition: 0.69% C - 0.42% Mn - 0.80% Ni - 0.20% Cr 0.13% Mo
8695 Steel,
466
Composition: 0.95% C - 0.82% Mn - 0.23% Si - 0.56% Ni -
0.52% Cr - 0.19% Mo
9310 Steel, 466
Composition: 0.11% C - 0.70% Mn - 3.19% Ni - 1.26% Cr -
0.11% Mo
9315 Steel,
467
Composition: 0.95% C - 0.60% Mn - 0.22% Si - 3.27% Ni 1.23% Cr - 0.18% Mo
6F4 Tool Steel,
468
Composition: 0.22% C - 0.50% Mn - 0.30% Si - 0.016% P 0.026% S - 2.80% Ni - 2.95% Mo
6F5 Tool Steel,
468
Composition: 0.55% C - 0.90% Mn - 1.00% Si - 2.75% Ni 0.40% Cr - 0.45% Mo - 0.13% V
2-3/4 Nickel Forging Steel,
469
Composition: 0.29% C - 0.77% Mn - 0.23% Si - 0.34% P -
0.31% S - 2.72% Ni - 0.04% Cr - 0.05% Mo
2-1/2 Nickel
Saw Steel,
0.011% S - 7.61% Ni
7-1/2% Nickel Steel, 0.50% C,
475
7-1/2% Nickel Steel, 0.80% C,
475
0.016% S - 7.53% Ni
7-1/2% Nickel Steel, 1.2% C,
475
Composition: 0.48% C - 0.22% Mn - 0.16% Si - 0.006% P 0.16% S - 7.61% Ni
Composition: 0.79% C - 0.21% Mn - 0.22% Si - 0.008% P Composition: 1.18% C - 0.22% Mn - 0.22% Si - 0.008% P -
0.016% S - 7.64% Ni
0.023% S - 2.50% Ni - 0.13% Cr - 0.08% Mo - 0.12% Cu
VCM Nitriding Steel, 470
Composition: 0.32% C - 0.76% Mn - 0.014% P - 0.018% S -
0.70% Ni - 1.06% Cr - 1.01% Mo
2-1/2 Ni - 1/2 Mo - V Turbine
Rotor Steel,
47C
Composition: 0.34% C - 0.71% Mn - 0.22% Si - 0.039% P 0.028% S$ - 2.52% Ni - 0.14% Cr - 0.42% Mo - 0.02% V
5-1/4 Ni - 1/4 Mo-
V,
471
Composition: 0.23% C - 0.52% Mn - 0.25% Si - 5.35% Ni -
0.20% Cr - 0.27% Mo - 0.08% V
Ni-Cr-Mo-V-Cu-B, 471
472
Composition: 0.33% C - 0.57% Mn - 0.23% Si - 0.005% P -
0.007% S - 3.26% Ni - 0.85% Cr - 0.09% Mo
3 Ni-Cr-Mo-V, 472
Composition: 0.32% C - 0.51% Mn - 0.19% Si - 0.013% P 0.009% S - 3.02% Ni - 1.37% Cr - 0.48% Mo - 0.18% V
4-1/4 Ni - 1-1/2 Cr - 1/10 Mo,
473
Composition: 0.35% C - 0.44% Mn - 0.14% Si - 0.016% P -
0.008% S - 4.23% Ni - 1.43% Cr - 0.13% Mo
4-1/4 Ni - 1-1/2 Cr - 1/3 Mo, 473
Composition: 0.33% C - 0.51% Mn - 0.17% Si - 0.013% P -
0.009% S - 4.16% Ni - 1.44% Cr - 0.31% Mo
474
Composition: 0.51% C - 0.23% Mn - 0.17% Si - 0.006% P 0.017% S - 5.26% Ni
5% Nickel Steel, 0.80% C,
474
Composition: 0.79% C - 0.23% Mn - 0.22% Si - 0.007% P -
0.015% S - 5.25% Ni
5% Nickel Steel, 1.2% C,
10% Nickel, 0.80% C,
476
Composition: 0.77% C - 0.20% Mn - 0.22% Si - 0.006% P 0.019% S - 10.01% Ni
10% Nickel Steel, 1.2% C, 476
Composition: 1.17% C - 0.21% Mn - 0.22% Si - 0.009% P 0.019% S - 10.30% Ni
Fe-1V-0.2C Steel, 476
Composition: 0.19% C - 0.92% V
Fe-1V-1AI1-0.2C Steel, 476
Composition: 0.21% C - 0.96% V - 0.97% Al
Fe-1V-1.5Ni-0.2C,
476
Fe - 0.19 C - 1.81 Mo Steel,
477
Composition: 0.19% C - <0.002% Mn - 0.004% Si - 0.006% P
- 0.002% S - 1.81% Mo
Fe - 4Mo - 0.4C Steel,
477
Composition: 0.43% C - 4.0% Mo
Fe - 4 Mo - 1.0C Steel,
477
Composition: 1.0% C - 4.0% Mo
Fe - 2.3% Mo - 0.22% C Steel,
477
Composition: 0.22% C - 2.3% Mo
Fe-C-Mo
Steels,
478
Composition: 0.14% C - <0.003% Mn - 0.0009% Si - 0.002%
P - 0.002% S - <0.005% Ni - <0.004% Cr - 2.29% Mo -
Composition: 0.15% C - 0.92% Mn - 0.26% Si - 0.014% P 0.020% S - 0.88% Ni - 0.50% Cr - 0.46% Mo - 0.32% Cu 0.06% V - 0.003% B
5% Nickel Steel, 0.50% C,
475
Composition: 0.51% C - 0.21% Mn - 0.16% Si - 0.005% P 0.016% S - 10.11% Ni
Composition: 0.20% C - 1.46% Ni - 0.96% V
469
Composition: 0.76% C - 0.41% Mn - 0.20% Si - 0.012% P -
3-1/4 Ni-Cr-Mo,
474
Composition: 0.29% C - 0.15% Mn - 0.13% Si - 0.010% P -
10% Nickel Steel, 0.50% C,
467
Composition: 0.17% C - 0.59% Mn - 0.30% Si - 3.18% Ni 1.12% Cr - 0.13% Mo
9395 Steel,
7-1/2% Nickel Steel, 0.25% C,
i
474
Composition: 1.26% C - 0.21% Mn - 0.23% Si - 0.009% P 0.019% S - 5.30% Ni
<0.002% Cu - <10 ppm N - 168 ppm O
Composition: 0.15% C - <0.002% Mn - 0.001% Si - 0.001% P
- 0.006% S 2.55% Mo
Composition: 0.17% C - 0.002% Mn - 0.003% Si - 0.002% P 0.004% S - 0.030% Ni - 0.002% Cr - 2.94% Mo - 0.007% Co 0.004% Cu - 0.002% Al - 0.003% V - 0.004 N
Composition: 0.15% C - 3.40% Mo
Composition: 0.15% C - 3.67% Mo
Composition: 0.14% C - 3.98% Mo
Composition:
Composition:
Composition:
Composition:
0.19%
0.19%
0.19%
0.17%
Composition:
Composition:
Composition:
Composition:
Composition:
Composition:
Composition:
Composition:
Composition:
0.20%
0.18%
0.24%
0.24%
0.26%
0.25%
0.24%
0.23%
0.24%
C - 2.30%
C - 2.56%
C - 2.98%
C - 3.76%
Mo
Mo
Mo
Mo
C - 4.00% Mo
C - 4.25% Mo
C - 2.31% Mo
C - 2.56% Mo
C - 2.94% Mo
C - 3.19% Mo
C - 3.76% Mo
C - 4.00% Mo
C - 4.28% Mo
Fe - 7.6 Ni - 0.48 C Steel,
478
Composition: 0.48% C - <0.01% Mn - 0.011% Si - 0.003% P
- 0.004% S - 7.64% Ni - <0.01% Cr - <0.01% Al
Fe - 0.61C Steel, 478
Composition: 0.61% C - 0.01% Mn - 0.014% Si - 0.003% P 0.005% S - <0.01% Ni - <0.01%
Cr - <0.01% Al
Fe - 0.13C - 2.99 Cr Steel,
479
Superhardening
Composition: 0.18% C - 0.002% Mn - 0.001% Si - 0.001% P -
12TT Steel,
486
Composition: 0.42% C - 1.75% Mn - 0.36% Si - 0.031% P -
0.006% S - 2.99% Cr
Low Carbon 2.4-4.15% Cr Steels, 479
Ponmmoattion: 0.16% C - <0.02% Ni - 2.40% Cr - <0.02% Mo
0.029% S - 0.24% Ni - 0.28% Cr - 0.12% Mo - 0.17% Co 0.020% Sn - 0.11% Al
D-6ac High Strength Steel, 486
- <0.001%
B
Composition: 0.17% C - <0.02% Ni - 3.16% Cr - <0.02% Mo
Composition: 0.45% C - 0.80% Mn - 0.25% Si - 0.55% Ni 1.15% Cr - 1.0% Mo - 0.05% V
- <0.001% B
Deep Hardening
Steels,
487
ys caine 0.14% C - <0.02% Ni - 3.83% Cr - <0.02% Mo
Composition: 0.65% C - 0.79% Mn - 0.35% Si - 1.27% Ni -
Composition: 0.15% C - <0.02% Ni - 4.15% Cr - <0.02% Mo
Composition: 0.60% C - 0.37% Mn - 0.24% Si - 3.22% Ni -
= <0;
1.00% Cr - 0.29% Mo
- <0.001% B
Fe - 10 Cr Steel,
2.14% Cr - 0.07% Mo
480
Composition: 0.35% C - 0.69% Mn - 0.24% Si - 3.25% Ni -
Composition: Fe - 0.003-0.007% C - 9.6% Cr
PecCiGr
Steel.
1.32% Cr - 0.48% Mo - 0.27% V
480
Ni-Cr-Mo
’
SA
Steel.
481
Ses
0.029% Nb
SAE
Composition: 0.86% C - 0.66% Mn - 0.38% Si - 0.040% P -
1513 + Cb (Nb),
0.024% S - 2.47% Ni - 1.21% Cr - 0.50% Mo
Composition: 0.60% C - 0.60% Mn - 0.30% Si - 0.035% P -
482
0.024% S - 2.75% Ni - 1.25% Cr - 0.50% Mo - 0.12% V
Composition: 0.42%C - 0.67% Mn - 0.31% Si - 0.030% P -
482
AONE
Composition: 0.10% C - 0.38% Mn - 0.62% Si - 0.013% P -
uaa peetekg aeles 2 sree Si - 4.02% Cr SAE as ee
- 2.99% W
Composition: 0.10% C - 0.42% Mn - 0.25% Si - 0.018% P -
cg?
0.013% S - 0.27% Ni - 2.16% Cr - 0.96% Mo
3M,
483
ee
ee c- an NES oa Si - 0.017% P -
0.016% S - 0.34%
Croloy 5,: 483
Ni - 2.95%
Cr - 0.94%
EO
Mo
0.013% S - 0.27% Ni - 2.16% Cr - 0.96% Mo
ae
Steels,
492
S - 8.8
r
eee C - 0.33% Mn - 0.35% Si - 0.020% P -
Composition: 1.04% C - 0.18% Mn - 0.35% Si - <0.01% P <0.01% $ - 4.0% Cr
Composition: 1.05% C - 0.31% Mn - 0.35% Si - 0.017% P -
Ces
.
0.52% Cr - 0.47% Mo
485
Paes
0.012% S - 5.7% Cr
Composition: 0.16% C - 0.81% Mn - 0.19% Si - 1.80% Ni -
0.48% Cr - 0.66% Mo
3% Mo Low Carbon Tool Steels,
Cr
os rede C - 0.33% Mn - 0.35% Si - 0.016% P -
sect
Composition: 0.22% C -0.79% Mn - 0.82% Si -0.87% Ni
PS 55 Steel,
ae
S- 1.04%
COs
a
491
ae C - 0.39% Mn - 0.25% Si - 0.020% P -
eS
0.013%
0.011%
485
=
eee Cre ees Mn - 0.27% Si - 0.02% P -
1.0% C High-Chromium
484
Composition: 0.2% C - 0.6% Mn - 1.0% Ni - 1.0% Cr - 0.4%
0,
Hypereutectoid Carbon Steels, 493
Composition: 1.20% C - 0.91% Mn - 0.23% Si - <0.003% P -
485
Composition: 0.22% C - 0.50% Mn - 0.30% Si - 0.016% P oe
gues
0.026% S - 2.80% : - atone
i- 0.016% P n - 0.
C - 0.63
Composition: 0.24%
0.002% Ss
:
compere 1.48% C - 0.90% Mn - 0.24% Si - 0.002% P 0.0039
Composition: 1.72% C - 0.90% Mn - 0.25% Si - <0.003% P <0.003% S _
0.027% S - 2.95% Mo
Composition: 0.10% C - 0.50% Mn - 0.26% Si - 0.017% P -
403/410 Stainless Steels,
0.025% S - 2.95% Mo
494
Composition: 0.06% C - 12.8% Cr
Composition: 0.10% C - 12.4% Cr
Composition: 0.12% C - 12.3% Cr
Non-Superhardening NPL.D Steel, 486
Composition: 0.43% C - 1.58% Mn - 0.42% Si - 0.022% P 0.042% S$ - 0.24% Ni - 0.27% Cr - 0.12% Mo - 0.18% Co 0.033% Sn - 0.005% Al
2
EEE
=
A
: pee 5vee a : Hie Cr
teel;
E
Composition: 0.10% C - 0.42% Mn - 0.25% Si - 0.018% P -
:
hosaseseee
Composition: 0.93% C - 0.50% Mn - 0.26% Si - 0.01% P -
0.017% $ - 0.28% Ni - 8.40% Cr - 0.96% Mo
2-1/4 Cr - 1 Mo Steel, 484
sys
E
cay are Gi.
: 0.
le
- 0.
i- 0.
0.02% S rome
- 0.017% Cr - :0.006% Mo - 0.003-0.01%
e Al
Peewee
Composition: 0.12% C - 0.50% Mn - 0.45% Si - 0.013% P -
32 Steel,
Le
teen)
nee
0.02% S - 0.58% Cr - 0.30% Mo
3.5% Chromium Magnet Steel,
0.036% S - 0.07% Ni - 7.50% Cr - 0.45% Mo
Croloy 9M, 483
PS
:
0.02% S - 0.60% Cr - 0.16% Mo - 0.003-0.01% Al
Composition: 0.12% C - 0.53% Mn - 0.55% Si - 0.015% P -
Mo
hd; Sane - 0.17% Si - 0.013% P -
20200i
Composition: 0.76% C - 0.82% Mn - 0.25% Si - 0.02% P -
Croloy 7, 483-
0.2% Carbon
,
panne
OG 0
0:75Cr 6:6- 0.10%
Compontion:
0.02%
S - 0.004%
MoNan- 0.003-0.01% Al
Composition: 0.12% : C - 0.46% Mn - 0.35% Si - 0.012% P 0.016% S - 0.20% Ni - 4.79% Cr - 0.54% Mo
Steel,
ar tdnee - 1.00% Cr - 0.48% Mo
ec
0.012% S - 0.17% Ni - 1.15% Cr - 0.48% Mo - 0.10% Cu
Croloy 2-1/4, 482
Croloy
:
0.022% S - 1.06% Cr - 0.54% Mo - 0.12% V
0.11% C - 1.51% Mn - 0.34% Si - 0.003% S -
1-1/4,
488 - 489
Composition: 0.59% C - 0.96% Mn - 0.28% Si - 0.032% P -
Compoosition: 0.12% C - 1.23% Mn - 0.23% Si - 0.03% Al
Croloy
Steels,
,
482
eel,
e
0.020% S - 2.35% Ni - 0.75% Cr - 0.52% Mo - 0.11% V
Alloy
Composition: Fe - 0.1% C - 13.0% Cr
HSLA
488
.
Composition: 0.32% C - 0.58% Mn - 0.30% Si - 0.032% P -
position: Fe - 0.22% C - 10.6% Cr
Fe-Cr-C Steels,
Steel,
eae
Composition: Fe - 0.19% C - 4.5% Cr
EE
XX
el
LE
nn
403 Stainless Steel,
H14 Tool Steel,
495
H16 Tool Steel,
0.04% max P - 0.08% max S - 11.50-13.00% Cr
416 Stainless Steel,
6.90% W
H21 Tool Steel, 507
Composition: 0.28% C - 3.25% Cr - 0.25% V - 9.00% W
D2 Tool Steel, 507
Composition: 0.12% C - 0.79% Mn - 0.74% Si - 0.017% P 0.08% Zr
496
Composition: 0.62% C - 0.30% Mn - 0.17% Si - 16.59% Cr
440B Stainless Steel,
Composition: 1.50% C - 11.50% Cr - 0.80% Mo - 0.20% V
496
D4 Tool Steel,
Composition: 0.93% C - 0.49% Mn - 0.43% Si - 18.40% Cr 0.55% Mo
0.1% C - 13.0% Cr Steels,
A2 Tool Steel,
497 - 498
1.04% Mo - 0.25% V
O1 Tool Steel, 509
Composition: 0.85% C - 1.18% Mn - 0.26% Si - 0.50% Cr 0.44% W
Composition: 0.13% C - 0.50% Mn - 0.45% Si - 0.034% P -
O2 Tool Steel,
0.010% S - 0.52% Ni - 13.2% Cr - 0.99% Co
Composition: 0.13% C - 0.49% Mn - 0.15% Si - 0.012% P 0.010% S - 0.51% Ni - 12.4% Cr - 4.9% Co
S1 Tool Steel,
Composition: 0.10% C - 0.48% Mn - 0.55% Si - 0.024% P -
S2 Tool Steel,
499
S5 Tool Steel,
0.30% Mo
P2 Tool Steel,
0.17% C - 0.56% Mn - 0.46% Si - 0.35% Ni - 20.96% Cr 0.04% Mo - 0.013% Al - 0.12% N
Mo
P2 (Carburized Case) Tool Steel,
499
Mo
500
P4 Tool Steel,
Composition: 0.81% C - 0.24% Mn - 0.26% Si - 0.016% P -
5.12% Cr - 0.51% Mo
500
P20 Tool Steel,
Composition: 0.83% C - 0.32% Mn - 0.25% Si - 3.89% Cr -
0.25% Mo
L1 Too! Steel,
Composition: 0.85% C - 4.00% Cr - 8.00% Mo - 1.90% V
501
L2 Tool Steel,
F2 Tool Steel,
502
514
Composition: 1.32% C - 0.28% Mn - 0.50% Si - 0.22% Cr -
Composition: 0.85% C - 4.00% Cr - 0.75% Mo - 2.10% V -
3.51% W
W1 Tool Steel,
502
515
Composition: 0.95% C - 0.25% Mn - 0.20% Si
Composition: 1.14% C - 0.22% Mn - 0.16% Si
Composition: 0.72% C - 0.23% Mn - 0.43% Si - 4.04% Cr 4.72% Co - 1.24% V - 18.38% W
W2 Tool Steel,
503
516
Composition: 6.95% C - 0.20% V
Composition: 0.73% C - 4.00% Cr - 2.00% V - 14.00% W
W4 Tool Steel,
503
pees
r
Composition: 0.80% C - 4.00% Cr - 0.75% Mo - 5.00% Co 2.00% V - 14.00% W
Fe-Ni-Cr
504
516
1.05-1.15% C - 0.30% Mn - 0.50% Si - 0.25%
Steels,
517
Composition: 0.10% C - 0.40% Mn - 0.30% Si - <0.005% P -
Composition: 0.40% C - 1.05% Si - 5.00% Cr - 1.35% Mo 0.35% V
<0.015% S - 4.00% Ni - 17.0% Cr - 0.005% N
Composition: 0.11%C - 0.38% Mn - 0.33% Si - <0.005% P -
504
<0.015% S - 7.25% Ni - 15.6% Cr - 0.005% N
Composition: 0.32% C - 0.35% Mn - 0.95% Si - 4.86% Cr 1.45% Mo - 1.29% W
H13 Tool Steel,
514
Composition: 0.45% C - 0.70% Mn - 1.00% Cr - 0.20% V
1.25% V - 18.59% W
H12 Tool Steel,
513
Composition: 1.01% C - 0.50% Mn - 0.30% Si - 1.21% Cr
Composition: 0.72% C - 0.27% Mn - 0.39% Si - 4.09% Cr -
Tool Steel,
513
Composition: 0.30% C - 0.75% Mn - 0.50% Si - 0.80% Cr -
4.30% Mo - 1.30% V - 5.79% W
M10 Tool Steel, 501
H11
512
Composition: 0.14% C - 0.41% Mn - 0.21% Si - 0.19% Ni -
0.007% S - 4.10% Cr - 4.69% Mo - 1.64% V - 5.95% W
T8 Tool Steel,
512
Composition: 0.07% (max) C - 0.55% Ni - 1.35% Cr - 0.20%
24.85% Cr - 0.02% Mo - 0.010% Al - 0.17% N
T7 Tool Steel,
511
Composition: 0.07% (max) C - 0.55% Ni - 1.35% Cr - 0.20%
Composition: 0.24% C - 0.46% Mn - 0.42% Si - 0.26% Ni -
18.50% W
T4 Tool Steels,
511
Composition: 0.60% C - 0.75% Mn - 1.90% Si - 0.25% Cr -
17.20% Cr - 0.06% Mo - 0.010% Al - 0.038% N
442 Stainless Steel, 499
T2 Tool Steel,
510
Composition: 0.50% C - 0.35% Mn - 1.0% Si - 0.018% P 0.013% S - 0.19% Ni - 0.11% Cr - 0.50% Mo
Composition: 0.09% C - 0.40% Mn - 0.33% Si - 0.34% Ni -
T1 Tool Steel,
510
Composition: 0.50% C - 1.25% Cr - 0.20% V - 2.75% W
0.011% S - 0.51% Ni - 13.3% Cr - 8.0% Co
Composition: 0.13% C - 0.42% Mn - 0.33% Si - 0.025% P 0.012% S - 0.49% Ni - 13.5% Cr - 11.9% Co
M2 Mod Tool Steel,
509
Composition: 0.87% C - 1.78% Mn - 0.29% Si - 0.027% P 0.010% S - 0.15% Ni - 0.20% Cr - 0.038% Mo
Composition: 0.13% C - 0.52% Mn - 0.22% Si - 0.023% P 0.008% S - 0.48% Ni - 12.8% Cr - 1.87% Co
M2 Tool Steel,
508
Composition: 0.97% C - 0.48% Mn - 0.40% Si - 4.58% Cr -
0.012% S - 0.46% Ni - 12.50% Cr - 0.45% Co
446 Stainless Steel,
508
Composition: 2.25% C - 11.50% Cr - 0.80% Mo - 0.20% V
Composition: 0.11% C - 0.49% Mn - 0.10% Si - 0.016% P 0.013% S - 0.48% Ni - 12.80% Cr
Composition: 0.12% C - 0.49% Mn - 0.09% Si - 0.024% P -
430 Stainless Steel,
506
Composition: 0.54% C - 0.62% Mn - 0.93% Si - 7.83% Cr -
495
0.190% S - 0.25% Ni - 12.82% Cr - 0.05% Mo - 0.037% N -
440A Stainless Steel,
506
Composition: 0.40% C - 1.15% Si - 5.25% Cr - 4.25% W
Composition: 0.15% C - 1.00% max Mn - 0.50% max Si -
Fe-Ni-Mn
Steels,
518
Composition: 0.016% C - 3.62% Mn - 0.04% Si - 23.2% Ni -
505
0.001% N - 0.015% O
Composition: 0.05% C - 3.73% Mn - 22.94% Ni - 0.015% N
Composition: 0.40% C - 1.05% Si - 5.00% Cr - 1.35% Mo 1.10% V
nee
Eee
EE
ES
eee
KL
Ni-Al-Ti-Cb
Steel,
519
1010 Mo Steel,
Composition: 0.010% C - 0.08% Mn - 0.08% Si - 24.9% Ni -
0.26% Al - 1.58% Ti - 0.15% Cb (Nb)
Alnico Steels, 519
a,
C
Composition: 0.10% C - 0.52% Mn - 0.21% Si - 0.002% P 0.005% S - 0.0063% B - 0.050% Al - 0.0007% N
ee C - 14.92% Ni - 34.25% Co - 3.20% Cu
- 2.10 Ti C - 14.92%
ition: 0.008%
‘ paeesiuen ree
2%
Ni -
1036
Steel,
532
: 0.37% C - 1.45% Mn - 0.25% Si
Composition:
10B36
84.
Ni - 34.50% Co - 2.88% Cu
Steel,
Composition: 0.014% C - 14.76% Ni - 34.50% Co - 3.05% Cu
533
Composition: 0.36% C - 1.45% Mn - 0.25% Si
- 7.10% Al - 6.25% Ti
Ticonal 600, 520
SAE 1038 Steel, 534
Composition: 0.38% C - 0.70% Mn - 0.25% Si - 0.015% P -
_Composition: 13.6% Ni - 24.0% Co - 3.0% Cu - 7.85% Al
0.030% S - 0.063% Al - 0.003% N
Ticonal 800, 520
someon: 13.75% Ni - 23.7% Co - 2.9% Cu - 8.0% Al 1.8% Nb
Ticonal 1500, 520
eure 14.3% Ni - 34.1% Co - 3.6% Cu - 7.55% Al 5.
i
;
Ticonal 600 Si-Mod.,
- 0.22% Si - 0.002% P -
0.007% S - 0.56% Mo - 0.003% Ae 0.002% N
1010 Mo-B Steel, 532
Composition: 0.025% C - 14.90% Ni - 34.75% Co - 3.55% Cu
- 7.00% Al - 0% Ti
Ss
531
Composition: 0.11% C - 0.50% Mn
Composition: 0.38% C - 0.70% Mn - 0.25% Si
- 0.015% P - 0.030% S - 0.063% Al - 0.003%
N]
SAE 1040 Steel, 535
Composition: 0.39% C - 0.72% Mn - 0.23% Si - 0.010% P 0.018% S
SAE 1541 Steel, 535
520
Composition: 13.45% Ni - 24.7% Co - 3.0% Cu - 7.95% Al -
Composition: 0.39% C - 1.56% Mn - 0.21% Si - 0.010% P -
0.8% Nb + Si
0.024% S
ADDITIONAL
STEELS,
.
SAE 15B41 Steel, 536
Composition: 0.42% C - 1.61% Mn - 0.29% Si - 0.006% P -
521 - 607
0.019% S - 0.004% B
Low Carbon
Low Alloy High Strength Steels,
VAN-80 HSLA Steel,
536
:
Composition: 0.18% C - 1.28% Mn - 0.40% Si - 0.004% P -
523 - 524
5 eae AO:a vy,Ae Al - 0.018% N
Composition: 0.12% C - 0.83% Mn - 0.30% Si - 0.004% P -
05%
$ ‘ - ee
0.30% Cuee
- 1.11% Ni- 0.53% eaeCr - 0.49% ats
Mo eee
Composition: 0.41% C - 0.86% Mn - 0.26% Si - 1.28% Ni 0.71% Cr
Composition: 0.22% C - 0.83% Mn - 0.24% Si - 0.007% P -
0.011% S - 0.30% Cu - 1.06% Ni - 0.54% Cr - 0.51% Mo -
SAE 4024 Steel,
0.029% sol. Al
Composition: 0.22% C - 0.85% Mn - 0.24% Si - 0.008% P -
Composition: 0.24% C - 0.88% Mn - 0.33% Si - 0.23% Mo
SAE 4047 Steel, 538
a
SEIS
ay
tah ras = re
Composition: 0.51% C - 0.81% Mn - 0.25% Si - 0.26% Mo
LOS
SAE 4130 Steel, 539
2.6 Ni - a 0.4 e Mo Steel, 525
:
Composition: 0.30% C - 0.52% Mn - 0.18% Si -<0.02% P -
Composition: 0.31% C - 0.47% Mn - 0.34% Si - 0.021% P 0.019% S - 0.26% Ni ~ 0.92% Cr - 0.17% Mo
SAE
0.021% S - 2.64% Ni - <0.05% Cr - 0.37% Mo - <0.015% Al
Composition:
C - 0.52%
(0),
Mn
SAE
326
- 0.11% Si -
ition: 0.26% C - 0.41% Mn - 0.22% Si - <0.02% P -
0.024% 32.91 Ni - 1.98% Cr - 0.69% Mo - <0.015% Al
3-1/2NiCrMoV Turbine Disk Steel, 528
ition: 0.3%
none
Gee
AISI S7 Tool Steel,
529
1.32% Mo
‘tion:
0.51%
eae
1010 Steel, 531
‘tion: 0.12%
Fa aonan
C - 0.34% Mn
‘
C - 0.70
verre
oe
n - 0.42%
Si -
0.
-
0.91% Cr - 0.40% Mn - 0.12% V - 0.083% Al
Composition: 0.50% C - 0.71% Mn - 0.30% Si - 3.20% Cr -
Duracut Chipper Knife Steel,
4315 cee 542
SAE 4340+Si Steel, 544
Composition: 0.43% C - 0.83% Mn - 1.55% Si - 1.84% Ni -
;
-
aie
0.72% Cr - 0.20% Mo
- 3.64% Ni - 1.63% Cr -
C - 0.3% Mn
- 541
0.029% S - 1.84% Ni - 0.78% Cr - 0.35% Mo
SAE 4330 Steel, 543
Composition: 0.26% C - 0.60% Mn - we Si - 0.008% P 0.007% S - 1.77% Ni - 0.70% Cr - 0.32% Mo
SAE 4340 Steel, 544
Composition: 0.41% C - 0.87% Mn - 0.28% Si - 1.83% Ni -
oles. See = fase _ OAT% Vee net ..
0.040% Al
3 Nei? Cro-'0:7:Mo' Steel, 327
C
oe
Composition: 0.16%
P -
<0.02%
540
;
?
ie
Composition: 0.12% C - 0.57% Mn - 0.29% Si - 1.86% Ni 0.47% Cr - 0.18% Mo - 0.07% V - 0.0014% B
Composition: 0.26% C - 0.72% Mn - 0.72% Mn - 0.29% Si <0.02% P - 0.025% S - 0.11% Ni - 1.01% Cr - 1.04% Mo 0 23% V - <0.015% Al
Cr - 0.5 Mo Steel,
Steel,
Composition: 0.44% C - 1.04% Mn - 0.29% Si - 1.13% Cr -
eS
526
1 Cr'- | Mo - 0.2 V Steel,
qn
AY
Pomposhian: 0.37% C - 0.77% Mn - 0.98% ve - 0.21% Mo
0.30% C - 0.41% Mn - 0.28% Si - <0.02% P -
0.014% S - 3.64% Ni - <0.05% Cr - 0.47% Mo - 0.058% Al
2 Nie*1.3
4140
525
3.6 Ni - 0.5 Mo Steel,
537
SAE
4640 Steel,
545
Composition: 0.42% C - 0.71% Mn - 0.28% Si - 1.77% Ni -
530
0.24% Mo
- 0.40% Si - 0.32% Ni -
SAE 4815 Steel, 545
ave.
C - 0.50% Mn - 0.16% Si - 0.004% P -
Composition: 0.14% C - 0.45% Mn - 0.22% Si - 3.42% Ni 0.21% Mo
’ SAE 5140 Steel, 546
Composition: 0.42% C - 0.87% Mn - 0.25% Si - 0.89% Cr
e
En
Sex
es
ee
SAE
5160 Steel,
HSLA
546
SAE
52100 Steel,
6115 Steel,
ASTM A710 Mod. Composition: 0.06% C - 1.45% Mn 0.35% Si - 0.97% Ni - 0.72% Cr - 0.42% Mo - 1.25% Cu 0.040% Nb
548
Composition: 0.16% C - 0.85% Mn - 0.34% Si - 0.009% P 0.019%
560
0.88% Ni - 0.71% Cr - 0.20% Mo - 1.12% Cu - 0.035% Nb
547
Composition: 1.06% C - 0.33% Mn - 0.32% Si - 1.44% Cr
SAE
Steels,
ASTM A710 Composition: 0.05% C - 0.50% Mn - 0.28% Si -
Composition: 0.63% C - 0.86% Mn - 0.23% Si - 0.83% Cr
HSLA 80/10 Composition: 0.05%
S - 0.92% Cr - 0.15% V
- 1.00% Mn - 0.34% Si -
Composition: 0.17% C - 0.82% Mn - 0.31% Si - 0.52% Ni -
1.77% Ni - 0.72% Cr - 0.50% Mo - 1.25% Cu - 0.040% Nb
HSLA 100 Composition: 0.06% C - 0.83% Mn - 0.37% Si 3.48% Ni - 0.58% Cr - 0.59% Mo - 1.66% Cu - 0.28% Nb
0.24C-Mn-Mo-V Composition: 0.24% C - 1.67% Mn - 0.39%
Si - 0.14% Ni - 01.17% Cr - 0.22% Mo - 0.11% V
0.50% Cr - 0.20% Mo
0.35C-Mn-Mo-V Composition: 0.35% C - 1.40% Mn - 0.76%
SAE
6135 Steel,
549
Composition: 0.67% Mn - 0.45% Si - 0.98% Cr - 0.23% V
SAE
SAE
8620 Steel,
8620 Steel,
550
551
Si - 0.06% Ni - 0.07% Cr - 0.19% Mo - 0.14% V
Cu-Ni-Mo-Cb
Composition: 0.21% C - 0.71% Mn - 0.30% Si - 0.002% P -
0.006% S - 0.63% Ni - 0.49% Cr - 0.17% Mo - 0.014% Cu 0.014% Al
Composition: 0.21% C - 0.71% Mn - 0.30% Si - 0.002% P 0.006% S - 0.63% Ni - 0.49% Cr - 0.17% Mo - 0.014% Cu 0.014% Al
SAE 8630 Steel, 552
Composition: 0.31% C - 0.94% Mn - 0.26% Si - 0.009% P 0.023% S - 0.59% Ni - 0.53% Cr - 0.21% Mo
SAE 8640 Steel, 553
Composition: 0.16% C - 0.58% Mn - 0.53% Si - 0.009% P -
0.005% S - 1.41% Cr - 0.59% Mo - 0.062% sol. Al - 0.0003%
B
Mn-Mo-V-N Steel, 562
Composition: 0.15% C - 1.49% Mn - 0.39% Si - 0.018% P -
0.015% S - 0.50% Mo - 0.16% V - 0.14% N
CrMoZr Structural Steel, 562
Composition: 0.17% C - 0.84% Mn - 0.54% Si - 0.019% P -
0.011% S - 0.89% Cr - 0.40% Mo - 0.031% Al - 0.09% Zr
2-1/4Cr - 1Mo Steel, 563
555
Composition: 0.09% C - 0.44% Mn - 0.26% Si - 0.008% P 0.010% S - 2.25% Cr - 0.99% Mo
Composition: 0.11% C - 0.41% Mn - 0.43% Si - 0.012% P -
Composition: 0.87% C - 1.21% Mn - 0.28% Si - 0.52% Cr 0.58% W
555
0.012% S - 0.25% Ni - 2.10% Cr - 1.02% Mo
1Cr-0.5Mo Stuctural Steel, 564
Composition: 0.62% C - 0.72% Mn - 1.72% Si - 0.46% Mo
- 0.7Si Steel,
556
Composition: 0.19% C - 0.60% Mn - 0.30% Si 0.023% P 0.021% S - 1.07% Cr - 0.48% Mo - 0.047% Al
Composition: 0.038% C - 3.83% Mn - 0.72% Si - 0.005% P -
0.019% S - 0.04% Ni - 0.02% Cr - <0.005% Mo - 0.04% Cu -
1Cr-0.5Mo-B
0.080% Al - <0.005% Nb - <0.005% Ti
Fe - 2.9Mn - 0.7Si Steel,
556
557 - 558
Composition: 0.061% C - 1.0% Mn - 1.0% Si
Composition: 0.08% C - 1.17% Mn - 0.70% Si - 0.62% Mo
Composition: 0.061% C - 1.13% Mn - 0.77% Si - 0.28% Cr -
0.30% Mo
Hot-Rolled
Dual Phase Steel,
558
2.7Ni-0.9Cr-0.25Mo-B
C-Mn Steels, 559
Composition: 0.12% C - 1.33% Mn - 0.28% Si - 0.011% P 0.009% Ss
HY-80
Composition: 0.11% C - 1.99% Mn - 0.29% Si - 0.012% P 0.009% S
;
565
Steel,
565
Steel,
566
Composition: 0.15% C - 0.32% Mn - 0.31% Si - 2.72% Ni -
1.52% Cr - 0.41% Mo
Composition: 0.19% C - 0.30% Mn - 0.04% Si - 0.007% P -
0.005% S - 3.30% Ni - 1.78% Cr - 0.50% Mo - 0.004% Al
Low C MnNiMoB Steel, 567
Composition: 0.015% C - 1.99% Mn - 0.31% Si - 0.006% P -
Composition: 0.11% C - 1.58% Mn - 0.28% Si - 0.013% P -
Composition: 0.11% C - 1.73% Mn - 0.29% Si - 0.009% P -
Steel,
0.32% C - 0.13% Mn - 0.15% Si - 0.090% P - 0.005% S 9.05% Ni - 4.07% Co
0.004% S - 1.00% Ni - <0.01% Cr - 0.29% Mo - 0.017% Al -
0.009% S
0.010% S
Structural
0.0017% B
9Ni-4Co Ultrahigh-Strength
0.064% Al
Steel,
564
Composition: 0.19% C - 0.57% Mn - 0.35% Si - 0.018% P 0.009% S - 2.72% Ni - 0.87% Cr - 0.25% Mo - 0.10% V -
Composition: 0.06% C - 1.19% Mn - 0.87% Si - 0.38% Mo -
Iron-Manganese-Nickel
Steel,
0.025% S - 1.03% Cr - 0.49% Mo - 0.006% B - 0.041 Al
0.016% S - 0.02% Ni - 0.04% Cr - <0.005% Mo - 0.03% Cu 0.033% Al - <0.005% Nb - <0.005% Ti
Steels,
Structural
Composition: 0.19% C - 0.62% Mn - 0.36% Si - 0.022% P -
Composition: 0.037% C - 2.90% Mn - 0.73% Si - 0.009% P -
Mn-Mo-Si-Cr
561
0.009% S - 0.39% Ni - 11.59% Cr - 0.98% Mo - 0.002% Al 0.28% V - 0.0323% N
1-1/4Cr - 1/2Mo Steel Plate, 561
Composition: 0.15% C - 0.65% Mn - 0.58% Si - 0.009% P 0.005% S - 1.40% Cr - 0.59% Mo - 0.027% sol. Al
Composition: 0.44% C - 0.88% Mn - 0.34% Si - 0.49% Ni 0.65% Cr - 0.14% Mo, B
SAE 9260 Steel, 554
Composition: 0.57% C - 0.91% Mn - 1.95% Si
SAE 9840 Steel, 554
Composition: 0.43% C - 0.84% Mn - 0.25% Si - 1.00% Ni 0.81% Cr - 0.23% Mo
Fe - 3.8Mn
Steel,
Composition: 0.20% C - 0.47% Mn - 0.24% Si - 0.026% P -
Composition: 0.37% C - 0.87% Mn - 0.25% Si - 0.56% Ni -
AISI S5 Tool Steel,
561
12.0% Cr - 1.0% Mo-V
0.44% Cr - 0.18% Mo
SAE 86B40 Steel, 553
AISI 01 Tool Steel,
Steel,
Composition: 0.14% C - 0.98% Mn - 0.35% Si - 0.009% P 0.012% S - 1.21% Ni - 0.32% Cr - 0.40% Mo - 0.63% Cu 0.032% Al - 0.014% N - 0.02% Cb
0.002% B
HY-80 Steel,
568
Composition: 0.1% C - 0.1% Mn - 0.05% Si - 10.0% Ni 8.0% Co - 2.0% Cr - 1.0% Mo
559
Composition: 0.11% C - 3.00% Mn - 0.16% Si - 1.70% Ni -
0.25% Mo
TS ————ee TTT
EE
HeSCOGAY
V-Mo-Ti
Steel,
569
BS En
Composition: 0.18% C - 0.81% Mn - 0.26% Si - 0.40% Ni 0.49% Cr - 0.17% Mo - 0.056% Ai - 66 ppm N
BS En 17 Steel,
0.59% Cr - 0.09% Mo - 0.07% V - 0.021% Al - 0.34% Ti 150 ppm N
0.028% S - 0.24% Ni - 0.10% Cr - 0.41% Mo
BS En 19 Steel,
0.023% S - 0.24% Ni - 1.19% Cr - 0.37% Mo
BS En 235 Steels: 577
570
Composition: 0.033% C - 0.57% Mn - 0.22% Si - 0.006% P -
Composition: 0.32% C - 0.61% Mn - 0.28% Si - 0.018% P -
0.007% S - 8.63% Ni - 0.13% Cr - 0.02% Mo - 0.032% Al -
0.013% S - 3.22% Ni - 0.63% Cr - 0.22% Mo
BS En 26 Steel, 578
0.0083% No
QNi-Mo Steel, 571
Composition: 0.095% C - 0.48% Mn - 0.27% Si - 0.008% P 0.008% S - 9.30% Ni - 0.17% Cr - 0.51% Mo - 0.045% Al 0.008% No
15Mo3 Steel, 571
Composition: 0.38% C - 0.56% Mn - 0.15% Si - 0.011% P -
0.005% S - 2.42% Ni - 0.74% Cr - 0.46% Mo
BS Ene lit Steel
0.032% S - 1.27% Ni - 0.55% Cr
BS En 160 Steel, 579
Composition: 0.41% C - 0.48% Mn - 0.13% Si - 0.016% P -
571
0.043% S - 1.75% Ni - 0.17% Cr - 0.22% Mo
Composition: 0.11% C - 0.56% Mn - 0.30% Si - 0.015% P -
42Cr Moé4 Steel,
0.015% S - 0.07% Ni - 0.84% Cr - 0.48% Mo - 0.01% V 0.002% Al - 0.011% N
10CrMo 9 10 Steel, 571
seat - 0.31% Ni - 1.03% Cr - 0.17% Mo - 0.28% Cu 0.01
0.27C-1.17Mn-0.31Si-0.48Cr-0.0013B
0.013% S - 2.43% Cr - 1.06% Mo - 0.01% V - 0.012% N
571
0.0013B
Weld Zone CCTs,
0.007% S - 0.29% Ni - 6.31% Cr - 0.51% Mo - 0.04% V -
572
C-Mn
Composition: 0.19% C- 0.46% Mn - 0.34% Si - 0.019% P 0.013% S - 0.09% Ni - 7.83% Cr - 2.02% Mo - 0.01% V 0.005% Al - 0.013% N
mI2CEoe
9.1 Steel,
5/2
C-Mn-Ni
582 - 584
Weld Metals,
585 - 588
Composition: 0.05% C - 0.98% Mn - 0.33% Si - 0.017% P 0.011% S - 0.06% Ni - 0.06% Mo - 45 ppm N - 446 ppm O
Composition: 0.04% C - 1.20% Mn - 0.41% Si - 0.024% P 0.014% S - 1.10% Ni - 0.07% Mo - 120 ppm N - 430 ppm O
Composition: 0.05% C - 1.18% Mn - 0.38% Si - 0.022% P 0.010% S - 2.52% Ni - 0.08% Mo - 178 ppm N - 482 ppm O
Composition: 0.04% C - 1.29% Mn - 0.38% Si - 0.030% P 0.017% S - 3.58% Ni - 0.08% Mo - 141 ppm N - 432 ppm O
0.009% S - 0.39% Ni - 11.49% Cr - 0.98% Mo - 0.28% V 0.002% Al - 0.0323% N
12Cr-1Mo-1W-V-Nb Steel, 572
Composition (approx.): 0.1% C - 0.5% Mn- 0.25% Si - 12.0%
Cr - 1.0% Mo - 0.28% V - 0.06% Nb - 1.0% W
18-0-1 Steel, 573
Composition: 0.54% C - 0.44% Mn - 0.33% Si - 0.023% P -
Ti-Oxide
0.023% S - 4.02% Cr - 0.42% Mo - 1.24% V - 7.44% W
6-5-2-Steel, 573
Composition: 0.51% C - 0.40% Mn - 0.41% Si - 0.023% P 0.030% S - 3.94% Cr - 2.45% Mo - 1.24% V - 1.50% W
Bearing Steel,
589
Composition: 0.079% C - 1.839% Mn - 0.20% Si - 0.0007% P 0.0007% S$ - 0.002% Al - 0.012% Ti - 0.0015% N - 0.0017% O
Composition: 0.092% C - 1.42% Mn - 0.20% Si - 0.0010% P 0.0008% S$ - 0.020% Al - 0.0015% N - 0.0020% O
573
Si-Mn Steel,
Composition: 0.52% C - 0.42% Mn - 0.47% Si - 0.028% P 0.030% S - 3.97% Cr - 3.15% Mo -1.15% V - 0.99% W
Steel,
Weld Metals,
0.005% S - 0.05% Ni - 0.01% Mo - 94 ppm N - 352 ppm O
Composition: 0.07% C - 2.12% Mn - 0.33% Si - 0.023% P 0.008% S - 0.06% Ni - 0.01% Mo - 81 ppm N - 317 ppm O
X20CrMoV121 Steel, 572
Composition: 0.20% C - 0.47% Mn - 0.24% Si - 0.026% P -
1524MoV
581
Composition: 0.06% C - 0.56% Mn - 0.41% Si - 0.023% P 0.008% S - 0.05% Ni - 0.01% Mo - 71 ppm N - 411 ppm O
Composition: 0.07% C - 1.35% Mn - 0.52% Si - 0.022% P -
Composition: 0.09% C - 0.30% Mn - 0.62% Si - 0.022% P 0.008% S - 0.14% Ni - 9.29% Cr - 1.01% Mo - 0.04% V 0.009% Al - 0.018% N
2-9-2 Steel,
580
Composition: 0.094% C - 1.32% Mn - 0.3% Si
Composition: 0.18% C - 1.3% Mn - 0.27% Si
0.003% Al - 0.015% N
Steel,
Steel,
Composition: 0.27% C - 1.17% Mn - 0.31% Si - 0.48% Cr -
Composition: 0.08% C - 0.58% Mn - 0.68% Si - 0.019% P -
8Cr-2Mo
579
Composition: 0.41% C - 0.66% Mn - 0.25% Si -0.008% P -
Composition: 0.10% C - 0.49% Mn - 0.24% Si - 0.013% P -
7..stecl,
57s
Composition: 0.35% C - 0.65% Mn - 0.13% Si - 0.035% P -
Composition: 0.16% C - 0.60% Mn - 0.26% Si - 0.015% P0.009% S - 0.31% Mo - 0.03% V - 0.004% Al - 0.009% N
MA2CrMo.
577
Composition: 0.44% C - 0.60% Mn - 0.22% Si - 0.023% P -
0.017% S - 0.10% Cr
4 4 Steel,
576
Composition: 0.38% C - 1.49% Mn - 0.25% Si - 0.036% P -
Rail Steel, 570
Composition: 0.77% C - 0.95% Mn - 0.22% Si - 0.014% P -
13CrMo
576
0.028% S - 0.26% Ni - 0.16% Cr - 0.27% Mo
Composition: 0.20% C - 0.70% Mn - 0.29% Si - 0.10% Ni -
ONi Steel,
16 Steel,
Composition: 0.33% C - 1.48% Mn - 0.18% Si- 0.028% P -
590
Composition: 0.09% C - 0.81% Mn - 0.11% Si - 0.017% P 0.013% S - 0.11% Cu - 0.0050% N - 0.014% O
574
Composition: 0.25% C - 0.40% Mn - <0.10% Si - 3.50% Ni -
Si-Mn-Ti-B Steel, 590
Composition: 0.11% C - 1.16% Mn - 0.29% Si - 0.013% P 0.011% S - 0.08% Mo - 0.10% Cu - 0.043% Ti - 0.0034% B 0.0057% N - 0.020% O
Tl Steel, 591
Composition: 0.32% C - 0.74% Mn - 0.25% Si - 0.037% P -
Composition: 0.15% C - 1.00% Mn - 0.23% Si - 0.014% P 0.023% S - 0.94% Ni - 0.53% Cr - 0.45% Mo - 0.34% Cu 0.004% Ti - 0.0014% B - 0.05% V - 0.008% Sn
Composition: 0.22% C - 1.54% Mn - 0.35% Si -0.014% P 0.036% S - 0.11% Mo - 0.11% V - 0.011% N
3.5NiCrMoV
Rotor Steel,
574
1.50% Cr - 0.50% Mo - 0.10% V
Cr-Mo-V Rotor Steel, 575
0.036% S - 0.34% Ni - 1.04% Cr - 1.20% Mo - 0.24% V
B.S. En 12 Steel, 575
Composition: 0.43% C - 0.95% Mn - 0.21% Si - 0.018% P 0.024% $ - 0.93% Ni - 0.15% Cr - 0.04% Mo
SAE
1320 Steel,
591
Composition: 0.24% C - 1.59% Mn - 0.23% Si - 0.024% P 0.019% S
me
XXXV
I—Ii
I
SAE
1050 Steel,
Composition: 0.50% C - 0.91% Mn
SAE
4340 Steel,
4142 Steel,
Composition: 0.23% C - 0.85% V
Composition: 0.20% C - 0.023% Nb - 1.04% V - 15 ppm N -
593
Composition: 0.40% C - 0.70% Mn - 0.31% Si - 0.010% P -
0.026% S - 0.16% Ni - 1.11% Cr - 0.16% Mo - 0.15% Cu
SAE 52100 Steel, 594
13 ppm O
Composition: 0.15% C - 0.020% NB - 0.75% V - 40 ppm N 41 ppm O
Composition: 0.99% C - 0.37% Mn - 0.24% Si - 0.011% P 0.022% S - 0.07% Ni - 1.50% Cr - 0.01% Mo - 0.11% Cu
Composition: 0.09% C - 0.016% Nb - 0.48% WV - 40 ppm N -
59 ppm O
Composition: 0.04% C - 0.02% Mn - 0.020% Nb - 0.55% V -
595
Composition: 0.44% C - 0.50% Mn - 0.18% Si - 0.42% Ni -
5 ppm N - 1 ppm O
Austenitic Steel, 613
Composition: 0.059% C - 1.138% Mn - 0.34% Si - 25.15% Ni -
0.22% Cr
0.82 C Steel,
595
15.39% Cr - 0.86% Al - 4.30% Ti - 0.01% N
Composition: 0.82% C - 0.50% Mn - 0.18% Si - 0.42% Ni 0.22% Cr
Ni-Cr Steel,
Composition:
Composition:
Composition:
Composition:
596
597
Fe-V-C
Composition: 0.36% C - 1.45% Ni - 1.1% Cr - 0.27% Mo
Fe-0.2C-5Cr
Steel,
Steel,
597
Alloy Steel,
597
Composition: 0.105% C - 0.0035% Si - 0.0015% P - 0.003% S
- 0.0005% O
598
Composition: 0.105% C - 1.53% Mn - 0.0035% Si - 0.0015%
P - 0.0617% S - 0.0001% O
Nb Steel,
599
Composition: 0.10% C - 1.54% Mn - 0.0035% Si - 0.0015% P
- 0.0012% S - 0.04% Nb - 0.0003% O
3.25% Si Steel,
Composition: 0.06% C - 0.42% Mn - 0.014% Si - 0.002% P -
0.009% S - 0.006% Cu - 0.018% Nb - 0.051% Al - 0.004% N
Composition: 0.05% C - 0.42% Mn - 0.045% Si - 0.002% P 0.009% S - 0.006% Cu - 0.035% Nb - 0.057% Al - 0.004% N
Nb HSLA
Steel,
HSLA
602 - 603
Si - 0.018% P Al - 0.0058% N
Si - 0.017% P Al - 0.0061% N
Composition: 0.059% C - 1.70% Mn - 0.12% Si - 0.018% P -
605 - 606
0.011% S - 0.29% Mo - 0.080% Nb - 0.022% Al - 0.0062% N
Composition: 0.062% C - 1.75% Mn - 0.12% Si - 0.018% P 0.011% S - 0.03% Mo - 0.075% Nb - 0.029% Al - 0.0102% N
Composition: 0.20% C - 0.87% Mn - 0.30% Si - 0.38% Mo 0.003% B - 0.006% N - 0.052% Zr
Steel,
619 - 621
Composition: 0.063% C - 1.71% Mn - 0.11%
0.011% S - 0.03% Mo - 0.084% Nb - 0.024%
Composition: 0.060% C - 1.74% Mn - 0.12%
0.011% S - 0.29% Mo - 0.075% Nb - 0.022%
Composition: 0.10% C - 0.88% Mn - 0.35% Si - 0.66% Mo 0.003% B - 0.005% N - 0.044% Zr
Nb
Steels,
Composition: 0.062% C - 1.71% Mn - 0.12% Si - 0.016% P 0.011% S - 0.02% Mo - 0.074% Nb - 0.025% Al - 0.0060% N
Composition: 0.10% C - 0.88% Mn - 0.34% Si - 0.39% Mo -
Steel,
618
- 0.02% Al - 0.006% (max) N
Composition: 0.065% C - 1.25% Mn - 0.18% Si - 0.045% Nb
- 0.08% Al - 0.006% (max) N
601
0.003% B - 0.005% N - 0.046% Zr
0.1C-0.66Mo-B Steel, 604 - 605
0.2% C - 0.38% Mo-B
Steels,
Composition: 0.067% C - 1.23% Mn - 0.20% Si - 0.040% Nb
Composition: 0.10% C - 0.87% Mn - 0.33% Si - 0.24% Mo 0.002% B - 0.005% N - 0.048% Zr
0.1C-0.39Mo-B
616
0.011% S
Composition: 0.030% C - 0.08% Mn - 3.30% Si - 0.006% P 0.012% S
Nb Steels, 617
0.0038% N
Composition: 0.02% C - 1.60% Mn - 0.16% Si - 0.043% Nb 0.017% Ti - 0.0018% B - 0.0020% N
Steel,
615
Composition: 0.051% C - 0.21% Mn - 3.44% Si - 0.010% P -
Low-Carbon Bainitic Steel, 600
Composition: 0.08% C - 1.57% Mn - 0.28% Si - 0.011% P 0.002% S - 0.07% V - 0.03% Nb - 0.018% Ti - 0.042% sol. Al
0.1C-0.24Mo-B
615
0.010% S - 0.05% Ti - 0.01% Al - 0.0052% N
Composition: 0.058% C - 1.67% Mn - 0.20% Si - 0.005% P 0.010% S - 0.11% Ti - 0.03% Al - 0.0062% N
Composition: 0.075% C - 1.51% Mn - 0.30% Si - 0.005% P 0.010% S - 0.18% Ti - 0.02% Al - 0.0084% N
Composition: 0.050% C - 1.43% Mn - 0.27% Si - 0.005% P 0.010% S - 0.25% Ti - 0.01% Al - 0.0070% N
598
Composition: 0.57% C - 0.82% Mn - 0.30% Si - 0.016% P -
Steel,
C - 0.031% Nb
C - 0.036% Nb - 0.003% B
C - 1.07% Mn - 0.033% Nb
C - 0.031% Nb
Composition: 0.072% C - 1.50% Mn - 0.24% Si - 0.005% P -
0.019% S - 1.16% Ni - 1.07% Cr - 0.26% Mo
Carbon Steel, 598
C-Mn
Alloy Steel,
0.002% N
Ti Bearing Steels,
Composition: 0.18% C - 1.09% V
Low
Fe - 0.07%
Fe - 0.09%
Fe - 0.07%
Fe - 0.07%
Composition: 0.12% C - 0.02% Mn - 0.02% Mo - 0.46% V -
Composition: 0.23% C - 5.1% Cr
Fe-0.2C-1V
613 - 614
Alloy Steels,
Fe-Nb-C
Composition: 0.30% C - 0.27% Mn - 0.019% P - 0.019% S 3.50% Ni - 1.25% Cr
SAE 4337 Steel,
611 - 612
Steels,
Carbon
0.33% Mo
0.44 C Steel,
609
592
Composition: 0.42% C - 0.78% Mn - 1.79% Ni - 0.80% Cr -
SAE
PRECIPITATION,
TIME-TEMPERATURE
- 652
592
607
0.15C Steel,
Composition: 0.16% C - 1.41% Mn - 0.36% Si - 0.018% P 0.017% S - 0.031% Nb - 0.020% sol. Al - 0.0054% N
622 - 623
Composition: 0.17% C - <0.1% Mn - 0.04% Si - <0.001% P -
0.004% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - <0.017%
Al - <0.01% V
Composition: 0.14% C - <0.1% Mn - 0.14% Si - <0.001% P 0.004% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - 0.013% Al
- <0.01% V
Composition: 0.17% C - <0.1% Mn - 0.36% Si - <0.001% P -
0.006% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - <0.005%
Al - 0.01% V
ee
XXXVI
Composition: 0.16% C - <0.1% Mn - <0.1% Si - <0.001% P
- 0.005% S - 0.94% Ni - <0.01% Cr - <0.1% Mo - 0.007% Al
Ferritic Stainless Steels,
- <0.01% V
Composition: 0.17% C - <0.1% Mn - 0.04% Si - <0.001% P -
0.004% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - <0.017%
Al - <0.01% V
Composition: 0.14% C - <0.1% Mn - 0.14% Si - <0.001% P 0.004% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - 0.013% Al
- <0.01% V
Composition: 0.17% C - <0.1% Mn - 0.36% Si - <0.001% P 0.006% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - <0.005%
Al - 0.01% V
P - 0.008% S - 0.05% Ni - 24.60% Cr
Composition: (A6) 0.06% C - 0.36% Mn - 0.65% Si - 0.024%
P - 0.008% S - 0.08% Ni - 31.00% Cr
Composition: (A7) 0.08% C - 0.72% Mn - 0.80% Si - 0.05%
Ni - 33.03% Cr
25Cr-3Mo-4Ni Ferritic Stainless Steel, 633
Composition: 0.014% C - 0.29% Mn - 0.27% Si - 0.019% P -
0.011% S - 3.90% Ni - 24.53% Cr - 3.54% Mo - 0.32% Al 0.17% Nb
Composition: 0.013% C - 0.29% Mn - 0.27% Si - 0.012% P 0.009% S - 4.66% Ni - 24.41% Cr - 3.50% Mo - 0.012% Al 0.32% Nb - 0.08% Ti
Composition: 0.16% C - <0.1% Mn - <0.1% Si - <0.001% P
- 0.005% S - 0.94% Ni - <0.01% Cr - <0.1% Mo - 0.007% Al
- <0.01% V
Composition: 0.17% C - <0.1% Mn - 0.04% Si - <0.001% P 0.004% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - <0.017%
Al - <0.01% V
Austenitic
Composition: 0.16% C - <0.1% Mn - <0.1% Si - <0.001% P
Esshete
- 0.007% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - 0.039%
Al - <0.01% V
Composition: 0.15% C - <0.1% Mn - <0.1% Si - <0.001% P
- 0.004% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - 0.078%
Al - <0.01% V
Stainless Steels,
624 - 625
0.008% AlgOg - 0.0058% acid soluble N
Composition: 0.05% C - 0.35% Mn - 0.008% Si - 0.013% P -
0.027% S - 0.03% Ni - 0.02% Cr - 0.03% Cu - 0.058% Al 0.008% AlgO2 - 0.0058% acid soluble N
Composition: 0.055% C - 0.33% Mn - 0.006% Si - 0.010% P 0.022% S - 0.020% Al - 0.0088 acid soluble N
Composition: 0.043% C - 0.35% Mn - 0.004% Si - 0.010% P 0.023% S - 0.079% Al - 0.0072% acid soluble N
Do
ae
De
3Mn 5B beSteel,
626
3Mn 20B Steel,
627
Si - 0.014% Al Composition:
0.0005% C B- 2.86% Mn - 0.21%
0.00018%
N - 0.089%
Steel,
P - 0.012% S - 9.0% Ni - 18.7% Cr - 0.026% N
316 - Composition: 0.05% C - 1.81% Mn - 0.63% Si - 0.029%
P - 0.010% S$ - 11.9% Ni - 16.6% Cr - 2.3% Mo - 0.024% N
321 - Composition: 0.05% C - 1.76% Mn - 0.59% Si - 0.024%
P - 0.008% S - 10.5% Ni - 17.6% Cr - 0.35% Ti - 0.011% N
627
0.002% $ - 0.04% Al - 0.008%
.
Ti - 0.0030%
347 - Composition: 0.05% C - 1.64% Mn - 0.59% Si - 0.019%
Cr - 0.025% N - 0.87% Nb
P - 0.014% S - 10.4% Ni eh- 17.6%
al
N - 0.0014% B
Tempaloy
Composition: 0.05% C - 1.5% Al - 0.0019% N
Composition: 0.02% C - 0.003% Al - 0.0034% N
ei
A-1 - Composition: 0.07% C - 1.71% Mn - 0.66%
Y
Si - 0.028% P - 0.005% S - 9.8% Ni - 18.0% Cr - 0.06% Ti 0.033% N - 0.138% Nb
628 - 629
enG27
Compont
639
304 - Composition: 0.05% C - 1.73% Mn - 0.60% Si - 0.028%
Composition: 0.08% C - 1.4% Mn - 0.25% Si - 0.008% P -
Fe-C Alloys,
636 - 638
7.78% C Cr
27.78%
Austenitic Stainless Steels,
Composition: 0.061% C - 3.02% Mn - 0.23% Si - 0.008% Al 0.0009% N - 0.0020% B
HT-50
635
Laboratory Experimental Heat. - Composition: 0.04% C 0.38% Mn - 0.54% Si - 0.024% P - 0.015% S - 0.08% Ni -
;
hee
635
P - 0.030% S - 0.30% Ni - 25.51% Cr
625
N Steel,
0
Steel,
304 - Composition: 0.06% C - 0.52% Mn - 0.53% Si - 0.018%
P - 0.014% S - 9.14% Ni - 19.17% Cr
347 - Composition: 0.05% C -1.56% Mn - 0.32% Si - 0.018%
P - 0.016% S - 10.30% Ni - 17.86% Cr
316 - Composition: 0.04% C - 1.54% Mn - 0.58% Si - 0.024%
P - 0.015% S - 11.96% Ni - 17.27% Cr - 2.47% Mo
309 - Composition: 0.13% C - 1.54% Mn - 0.39% Si - 0.024%
P - 0.015% S - 13.40% Ni - 23.21% Cr
310 - Composition: 0.05% C - 1.95% Mn - 0.37% Si - 0.023%
P - 0.007% S - 21.09% Ni - 27.23% Cr
446 - Composition: 0.14% C - 0.70% Mn - 0.64% Si - 0.021%
0.027% S - 0.03% Ni - 0.02% Cr - 0.03% Cu - 0.058% Al -
a
634
Composition: 0.05% C - ~9.0% Ni - ~18.0% Cr
Composition: 0.038% C - ~9.0% Ni - -18.0% Cr
Composition: 0.05% C - 0.35% Mn - 0.008% Si - 0.013% P -
Fe-0.07%
1250 Austenitic
304 Stainless Steel,
- 0.004% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - 0.15% Al
Steels,
Stainless Steel,
0.019% S - 0.17% Ni - 23.23% Cr - 0.46% N
- <0.01% V
Carbon
Cr-Mn-C-N
Composition: 0.43% C - 13.54% Mn - 0.25% Si - 0.008% P -
Composition: 0.10% C - 6.0% Mn - 0.5% Si - 9.6% Ni 15.25% Cr - 1.02% Mo - 0.3% V - 1.1% Nb - 0.0066% B
Composition: 0.14% C - <0.1% Mn - <0.1% Si - <0.001% P
Low
633
Composition: (A4) 0.06% C - 0.31% Mn - 0.59% Si - 0.026%
316 Stainless
Steel,
640
Composition: 0.033% C - 1.55% Mn - 0.44% Si - 0.022% P -
ay
0.022% S - 13.6% Ni - 16.4% Cr - 2.12% Mo - 0.025% N -
ee
(Carbon Steel,
Composition: 0.046% C - 0.35% Mn - 0.020% P - 0.018% S -
0.03% sol. Al, 0.010% insol Al - 0.006% N
0.0012% B - 0.18% Co - 0.07% Cu
Composition: 0.021% C - 1.74% Mn - 0.41% Si - 0.030% P -
Composition: 0.12% C - 0.5% V
Composition: 0.12% C - 1.3% Mo
Composition: 0.023% C - 1.74% Mn - 0.73% Si - 13.1% Ni -
Low
Ferritic Steel,
0.007% S - 12.3% Ni - 17.2% Cr - 2.40% Mo - 0.080% N 0.0032% B - 0.21% Co - 0.15% Cu
630
2-1/4 Cr - 1% Mo Steel,
631 - 632
Composition: 0.15% C - 0.50% Mn - 0.18% Si - 0.018% P 0.012% S - 0.165% Ni - 2.12% Cr - 0.94% Mo - 0.077% Cu 0.009% Sn
12% Cr Martensitic Steels,
17.3% Cr - 2.66% Mo
316 Stainless Steel,
642
Composition: 0.066% C - 1.57% Mn - 0.21% Si - 12.3% Ni 17.4% Cr - 2.05% Mo
Composition: 0.05% C - 1.68% Mn - 0.44% Si - 0.023% P -
632
0.012% S - 11.85% Ni - 16.81% Cr - 2.21% Mo - 0.16% Cu 0.030% Al - 0.007% Sn - 0.002% Pb - 0.002% B
Composition: 0.21% C - 13.2% Cr - 0.024% N
Composition: 0.18% C - 0.58% Mn - 0.31% Si - 0.18% Ni -
11.7% Cr - 0.49% Mo - 0.01% Al - 0.38% V - 0.20% Nb -
0.033% N
TEE
ee
ee
MxXVil
aaa
a
316 Austenitic
Stainless Steel,
TIME-TEMPERATURE
653 - 700
642
Composition: 0.06% C - 1.72% Mn - 0.40% Si - 0.012% P 0.007% S - 13.30% Ni - 17.30% Cr - 2.33% Mo - 0.003% Ti
Titanium
Modified
316 Stainless Steel,
643
SAE
1050 Steel,
C-Mn
Steel,
C-Mn-B
644
Composition: 0.45% C - 0.77% Mn - 0.35% Si - 0.015% P 0.013% S - 0.72% Cr
644
SAE
<0.01% Ti - <0.001% B - 0.10% Cu - 0.039% No
308CRE Stainless Steel, 644
645
Composition: 0.142% C - 1.20% Mn - 0.56% Si - 19.08% Ni -
0.023% S - <0.1% Ni - 2.1% Cr - 1.0% Mo
Ni-Cr
645 - 646
0.011% S - 13.55% Ni - 16.80% Cr - 4.80% Mo - 0.039% N
Composition: 0.050% C - 0.67% Mn - 0.49% Si - 0.016% P 0.011% S - 13.45% - 17.05% Cr - 4.73% Mo - 0.145% N
Austenitic Steel, 647
0.020% S - 3.53% Ni - 0.84% Cr
Alloy Steel, 661 - 663
Composition: 0.33% C - 0.23% Mn - 0.06% Si - 0.013% P 0.021% S - 3.78% Ni - 1.79% Cr
Composition: 0.44% C - 1.64% Mn - 0.06% Si - 0.029% P 0.022% S - 1.84% Ni - 1.64% Cr - 0.40% Mo - 0.15% V
Fe-30Cr (Alloy 90) Steel, 664
15.6% Cr - 4.10% Ti - 0.009% N
647 - 648
Cr - 0.08% Mo - 0.004% N
Austenitic Stainless
Composition: 0.002% C - <0.01% Mn - <0.01% Si - 13.60%
Cr - 1.88% Mo - 0.004% N
Composition: 0.24% C - 1.72% Mn - 2.13% Si - 0.008% P -
Composition: 0.044% C - 0.64% Mn - 0.31% Si - 18.04% Cr -
0.010% S - 22.8% Ni - 25.7% Cr - 0.016% N
316 Stainless Steel, 649
0.01% Mo - 0.091% N
Composition: 0.043% C - 0.64% Mn - 0.31% Si - 18.03% Cr 1.94% Mo - 0.092% N
19-12-3 Weld
Composition: 0.044% C - 0.64% Mn - 0.31% Si - 17.94% Cr -
1.93% Mo - 0.052% N - 0.42% Ti
Ti-stabilized Steel - Composition: 0.013% C - 0.45% Mn -
Wrought 316 Steel Composition: 0.04-0.10% C - <2.00% Mn
- <1.00% Si - <0.045% P - <0.030% S - 10.6-14.0% Ni 16.0-18.5% Cr - 2.00-3.00% Mo
0.27% Si - 0.020% P - 0.011% S - 17.4% Cr - 2.02% Mo 0.0148% N - 0.24% Ti
19-12-3 Weld Metal Composition: <0.08% C - 0.50-2.50%
Nb-stabilized Steel - Composition: 0.013% C - 0.49% Mn 0.27% Si - 0.019% P - 0.013% S - 17.4% Cr - 2.00% Mo -
Mn - <1.00% Si - <0.040% P - <0.035% S - 10.0-14.0 Ni 17.0-20.0 % Cr - 2.5-3.5% Mo
Duplex Stainless Steel,
0.0095% N - 0.35% Nb
650
Duplex
Composition: 0.028% C - 1.63% Mn - 0.45% Si - 0.031% P 0.012% S - 5.00% Ni ~ 21.8% Cr - 3.12% Mo - 0.113% N 0.05% Cu
Uranus
50 Duplex Stainless Steel,
Stainless Steel,
651
Composition: 0.03% C - 0.7% Mn - 0.6% Si - 5.0% Ni 26.0% Cr - 1.3% Mo
Composition: 0.02% C - 0.94% Mn - 0.48% Si - 0.02% P 0.009% S - 6.64% Ni - 25.3% Cr - 2.96% Mo - 0.49% Cu 0.11% N - 0.32% W
Stainless Steels,
666
5Mo Composition: 0.025% C - 0.26% Mn - 0.10% Si - 0.012%
P - 0.015% S - 7.38% Ni - 24.49% Cr - 4.99% Mo - 0.36% N
6Mo Composition: 0.018% C - 0.28% Mn - 0.14% Si - 0.011%
P - 0.012% S - 9.18% Ni - 23.82% Cr - 5.98% Mo - 0.20% N
650
Composition: 0.032% C - 0.62% Mn - 0.45% Si - 0.022% P 0.021% S - 7.38% Ni - 21.08% Cr - 2.39% Mo - 1.33% Cu 0.003% B - 0.071% N - <0.01% Ti (33% ferrite)
Duplex
664 - 665
Composition: 0.002% C - <0.01% Mn - <0.01% Si - 0.001%
P - 17.35% Cr - 0.01% Mo - 0.003% N
Composition: 0.004% C - <0.01% Mn - <0.01% Si - 0.001%
P - 17.61% Cr - 2.02% Mo - 0.004% N
Composition: 0.003% C - <0.01% Mn - <0.01% Si - 13.68%
Composition: 0.11% C - 1.76% Mn - 0.70% Si - 0.02% P 0.011% S - 19.75% Ni - 24.66% Cr - 0.31% Mo - 0.051% Al 0.12% Cu - 0.0015% B - 0.005% Pb - 0.004% Sn
Wrought 316 Stainless Steel and
Metal, 649
660
Ferritic Stainless Steels,
Composition: 0.046% C - 1.14% Mn - 0.36% Si - 25.5% Ni -
Cast 25.7%Cr-22.8%Ni
Steel, 648
Steel,
Composition: 0.26% C - 0.66% Mn - 0.07% Si - 0.026% P -
Composition: 0.042% C - 1.50% Mn - 0.45% Si - 14.34% Ni 17.76% Cr - 4.72% Mo - 0.025% N
Composition: 0.048% C - 0.80% Mn - 0.64% Si - 0.017% P -
310 Stainless Steel,
657
0.015% S - 0.14% Ni - 0.13% Cr - 0.25% Mo
SAE 3140 Steel, 658 - 659
2.25Cr-1Mo Steel, 660
Composition: 0.07% C - 0.50% Mn - 0.38% Si - 0.020% P -
0.015% S - 9.98% Ni - 19.96% Cr - <0.01% Mo - 0.04% V 0.57% Ti - 0.002% B - 0.03% Cu - 0.011% Ng
17 13 Steel,
4047 Steel,
Composition: 0.48% C - 0.83% Mn - 0.28% Si - 0.019% P -
Composition: 0.043% C - 1.96% Mn - 0.62% Si - 0.011% P -
22.45% Cr
X 5 CrNiMo
656
0.032% S - 0.0034% B
SAE 5140 Steel, 657
Composition: 0.068% C - 1.61% Mn - 0.49% Si - 0.018% P 0.012% S - 10.28% Ni - 20.89% Cr - 0.05% Mo - 0.06% V -
Austenitic Stainless Steel,
Steel,
Composition: 0.26% C - 1.67% Mn - 0.32% Si - 0.021% P -
Composition: 0.088% C - 1.06% Mn - 0.42% Si - 8.0% Ni 24.85% Cr - 0.0115% N
308 Stainless Steel,
655
Composition: 0.26% C - 1.63% Mn - 0.28% Si - 0.021% P 0.034% S
643
Composition: 0.06% C - 1.69% Mn - 0.54% Si - 0.012% P 0.006% S - 9.58% Ni - 17.48% Cr - 0.50% Ti - 0.011% N
Stainless Steel,
655
Composition: 0.46% C - 0.75% Mn - 0.02% P - 0.034% S 0.03% Ni - 0.12% Cr
Composition: 0.057% C - 1.41% Mn - 0.03% Si - 0.005% P 0.004% S - 13.96% Ni - 17.52% Cr - 2.51% Mo - 0.29% Ti -
0.004% N
321 Stainless Steel,
EMBRITTLEMENT,
ELI Ferritic Stainless Steel,
666
Composition: 0.074% C - 0.12% Si - 0.013% P - 0.002% S -
3.93% Ni - 24.8% Cr - 4.05% Mo - 0.0117% N - 0.51% Nb
Ferritic Cr-Mo-Ni Stainless Steels, 667
29Cr-4Mo Ferritic Stainless Steel, 668
29-4 Ferritic Stainless Steel,
668
Composition: 0.004% C - 0.1% Mn - 0.1% Si - 0.01% P -
0.015% S - 0.1% Ni - 29.0% Cr - 4.0% Mo - 0.012% N
XXXVili
29%Cr-4Mo-2Ni
Ferritic Stainless Steel,
669
316L Stainless Steel,
Composition: 0.0040% C - 0.04% Mn - 0.02% Si - 0.007% P 0.012% S - 2.17% Ni - 29.5% Cr - 4.0% Mo - 0.0146% N 0.06% Al - 0.0011% O
Uranus
50 Duplex
Stainless Steel,
669
0.013% S - 12.62% Ni - 18.42% Cr - 3.00% Mo - 0.020% Ng
304L Stainless Steel, 682
Composition: 0.020% C - 1.40% Mn - 0.41% Si - 0.032% P 0.013% S - 10.30% Ni - 18.10% Cr - 0.32% Mo - 0.24% Cu -
Composition: 0.032% C - 0.62% Mn - 0.45% Si - 0.022% P -
0.021% S - 7.38% Ni - 21.08% Cr - 2.39% Mo - 1.33% Cu -
0.039% N
304 Stainless Steel, 682 - 685
Composition: 0.038% C - 1.60% Mn - 0.45% Si - 0.021% P -
0.071% N - 0.003% B - <0.01% Ti (33% ferrite)
AL-6X
Austenitic Stainless Steel,
669
Composition: 0.02% C - 1.5% Mn - 0.4% Si - 0.02% P -
0.019% S - 9.2% Ni - 18.4% Cr - <0.03% Ti - <0.03%
Cb+Ta - 0.027% Al+Ta
18%Cr-8%Ni Austenitic Stainless Steel, 685
304 Stainless Steel, 686 - 687
0.002% S - 24.5% Ni - 20.5% Cr - 6.3% Mo
12% Cr Ferritic Stainless Steel, 670 - 671
Composition: 0.009% C - 12.77% Cr - 0.002% N - 0.15% Ti
Composition: 0.006% C - 12.66% Cr - 0.018% Ni - 0.40% Ti
Composition: 0.069% C - 0.01% Si - 0.003% P - 0.009% S -
9.4% Ni - 18.6% Cr - 0.002% N
Composition: 0.002% C - 13.20% Cr - 0.011% N - 0.42% Ti
Fe-26Cr
Ferritic Stainless Steel,
Composition: 0.063% C - 0.01% Si - 0.060% P - 0.003% S -
672
9.4% Ni - 17.6% Cr - 0.001% N
Composition: 0.0023% C - 0.01% Mn - 0.106% Si - 0.018% P
Composition: 0.068% C - 0.01% Si - 0.003% P - 0.033% S -
- 0.015% S - 0.072% Ni - 25.5% Cr - 0.01% Mo - 0.0083% N
18Cr-2Mo-Ti Stabilized Ferritic Stainless Steel,
9.6% Ni - 18.6% Cr - 0.002% N
Composition: 0.022% C - 0.01% Si - 0.004% P - 0.006% S 9.2% Ni - 18.5% Cr - 0.01% N
Composition: 0.022% C - 0.01% Si - 0.060% P - 0.006% S 9.2% Ni - 18.2% Cr - 0.01% N
Composition: 0.005% C - 0.030% S - 9.5% Ni - 18.5% Cr
Composition: 0.078% C - 1.12% Mn - 0.41% Si - 0.025% P -
672 - 673
Composition: 0.023% C - 0.33% Mn - 0.16% Si - 0.019% P -
0.012% S - 0.33% Ni - 17.15% Cr - 2.23% Mo - 0.04% Cu -
0.05% Co - 0.61% Ti
Austenitic Stainless Steels, 673 - 676
0.027% S - 8.49% Ni - 18.1% Cr - 0.21% Cu
316 Stainless Steel, 687
Composition: 0.069% C - 9.4% Ni - 18.6% Cr - 0.002% N
Composition:
Composition:
Composition:
Composition:
0.035% N
0.045%
0.028%
0.013%
0.067%
C - 9.51% Ni - 17.22% Cr - 0.003% N
C - 9.2% Ni - 18.5% Cr - 0.010% N
C - 9.5% Ni - 18.5% Cr - 0.010% N
C - 8.76% Ni - 17.67% Cr - 2.0% Mo -
Composition: 0.057% C - 0.54% Si - 1.67% Mn - 0.035% P 0.025% S - 12.77% Ni - 17.14% Cr - 2.21% Mo - 0.31% Cu
20% Cr and 12 to 46% Ni Stainless Steels,
316 Stainless Steel, 689
Composition: 0.067% C - 8.80% Ni - 17.65% Cr - 2.03% Mo -
0.013%
0.015%
0.069%
0.077%
C - 8.49% Ni - 17.30% Cr - 0.037% N
C - 8.77% Ni - 17.96% Cr - 0.097% N
C - 9.4% Ni - 18.6% Cr - 0.002% N
C - 11.6% Ni - 18.08% Cr - 2.0% Mo -
Austenitic 308 Stainless Steel,
Duplex
0.067% C - 8.80% Ni - 17.65% Cr - 2.03% Mo -
AISI 321 Stainless Steel,
Rolled Stainless Steel and
Metal, 692 - 693
Composition: 0.029% C - 1.54% Mn - 0.52% Si - 0.03% P 11.88% Ni - 18.13% Cr - 0.13% N
Composition: 0.030% C - 1.6% Mn - 0.38% Si - 0.03% P 7.88% Ni - 18.58% Cr - 0.108% N
Composition: 0.038% C - 1.59% Mn - 0.49% Si - 0.03% P 9.52% Ni - 20.22% Cr - 0.083% N
677 - 678
0.025% C - 9.0% Ni - 18.0% Cr
0.028% C - 21.65% Ni - 25.29% Cr - 0.041% N
0.026% C - 14.97% Ni - 18.02% Cr - 0.027% N
11% Ni - 18.5% Cr
679 - 680
18%Cr-15%Ni
Stainless Steel,
678
P Composition: 0.07% C - 0.38% Si - 1.50% Mn - 0.031%
0.008% S - 11.75% Ni - 18.41% Cr - 0.81% Cb - 0.050% No
Rolled Stainless Steel and
Weld Metal, 693
Weld
18Cr-12Ni-2.8Mo
Composition: 0.025% C - 0.69% Mn - 0.72% Si - 12.84% Ni 18.44% Cr - 2.75% Mo, Ferrite content 0.3%
Rolled Stainless Steel and
Metal, 694
Rolled Stainless Steel and
Weld Metal, 694
18Cr-10Ni
Weld
18Cr-12Ni-2
to 3Mo
Austenitic Cr-Ni-Mo Steel X 5 CrNiMo
694
17 13,
Composition: 0.042% C - 1.50% Mn - 0.45% Si - 14.34% Ni 17.76% Cr - 4.72% Mo - 0.025% N
P Composition: 0.08% C - 1.28% Mn - 0.41% Si - 0.020%
No
0.030%
Cb
0.77%
Cr
18.30%
Ni
0.022% S$ - 10.72%
304L Stainless Steel,
18Cr-10Ni
Composition: 0.039% C - 0.69% Mn - 0.72% Si - 10.57% Ni 18.63% Cr - <0.01% Mo, Ferrite content = 0.5%
Composition: 0.023% C - 0.70% Mn - 0.74% Si - 10.62% Ni 19.09% Cr - <0 01% Mo, Ferrite content 1.1%
Composition: 0.016% C - 0.72% Mn - 0.80% Si - 11.09% Ni 19.28% Cr - <0.01% Mo, Ferrite content = 0.7%
0.030% C - 14.37% Ni - 17.78% Cr - 2.04% Mo
347 Stainless Steel,
690 - 692
Composition: 0.09% C - 1.17% Mn - 0.37% Si - 13.4% Ni 18.1% Cr - 0.51% Ti - 0.017% N
8.83% Ni - 18.02% Cr - 0.002% N
678
689 - 690
0.008% S - 9.82% Ni - 20.95% Cr
Composition: 0.068% C - 1.89% Mn - 8.67% Ni - 17.72% Cr
- 0.091% N
Composition: 0.028% C - 1.64% Mn - 0.34% Si - 0.03% P 9.78% Ni - 16.29% Cr - 2.53% Mo - 0.078% N
Composition: 0.034% C - 1.51% Mn - 0.64% Si - 0.04% P -
304 Stainless Steel,
308 Stainless Steel,
Composition: 0.040% C - 1.76% Mn - 0.41% Si - 0.016% P -
0.096% N
Composition:
- 0.024% N
Composition:
Composition:
Composition:
Composition:
689
Composition: 0.040% C - 1.76% Mn - 0.41% Si - 0.016% P 0.008% S - 9.82% Ni - 20.95% Cr
0.064% C - 8.53% Ni - 17.38% Cr - 0.124% N
Austenitic Steel,
688
Composition: 0.057% C - 1.65% Mn - <0.07% Si - <0.025%
P - 0.007% S - 12.44% Ni - 16.62% Cr - 2.32% Mo - 0.135%
Cu - <0.01% Ti - <0.01% Nb
0.096% N
Composition:
Composition:
Composition:
Composition:
0.097% N
Composition:
Composition:
681
Composition: 0.023% C - 1.40% Mn - 0.32% Si - 0.018% P -
681
Si - 0.021% P Composition: 0.022% C - 1.04% Mn - 0.34%
0.018% S - 9.39% Ni - 19.31% Cr - 0.053% Ng
a
EXeveUIEX:
ee
Alloy 800,
Composition: 2.89% C - 3.08% Mn - 0.61% Si - 17.0% Cr -
695 - 699
1.49% Mo
Composition: 0.019% C - 1.21% Mn - 0.49% Si - 33.5% Ni -
Composition: 2.94% C - 0.78% Mn - 0.58% Si - 1.16% Ni -
20.6% Cr - 0.01% Cu - 0.51% Al - 0.46% Ti - 0.027% N
17.6% Cr - 0.54% Mo
Composition: 0.029% C - 0.63% Mn - 0.48% Si - 0.007% P -
Composition: 2.93% C - 0.76% Mn - 0.56% Si - 2.07% Ni 17.5% Cr - 0.45% Mo
Composition: 2.90% C - 0.76% Mn - 0.55% Si - 0.61% Ni -
0.011% S - 33.40% Ni - 21.30% Cr - 0.07% Cu - 0.41% Ti -
0.18% Al - 158 ppm N
Composition: 0.028% C - 0.56% Mn - 0.46% Si - 0.008% P -
0.004% S - 33.20% Ni - 21.50% Cr - 0.07% Cu - 0.50% Ti 0.05% Al - 150 ppm N
17.4% Cr - 1.43% Mo
Composition: 2.93% C - 0.76% Mn - 0.55% Si - 1.10% Ni 17.4% Cr - 2.43% Mo
Composition: 2.91% C - 0.77% Mn - 0.58% Si - 17.4% Cr -
Composition: 0.030% C - 0.60% Mn - 0.39% Si - 0.008% P -
0.005% S - 33.80% Ni - 21.75% Cr - 0.07% Cu - 0.55% Ti 0.19% Al - 154 ppm N
Composition: 0.029% C - 0.59% Mn - 0.45% Si - 0.008% P -
0.56% Mo - 1.02% Cu
Composition: 2.93% C - 0.77% Mn - 0.55% Si - 17.5% Cr -
0.012% S - 33.25% Ni - 21.75% Cr - 0.07% Cu - 0.50% Ti -
0.56% Mo - 1.95% Cu
0.28% Al - 150 ppm N
Composition: 0.030% C - 0.61% Mn - 0.49% Si - 0.007% P -
Composition: 2.96% C - 0.79% Mn - 0.52% Si - 17.5% Cr -
0.005% S - 33.25% Ni - 21.85% Cr - 0.07% Cu - 0.20% Ti -
1.55% Mo - 0.98% Cu
0.20% Al - 150 ppm N
Composition: 0.029% C - 0.61% Mn - 0.47% Si - 0.007% P -
Composition: 2.88% C - 0.78% Mn - 0.60% Si - 16.9% Cr 1.52% Mo - 1.74% Cu
Composition: 2.96% C - 0.79% Mn - 0.93% Si - 17.5% Cr 1.55% Mo - 0.98% Cu
Composition: Fe - 2.19% C - 11.65% Cr - 0.02% Mo
0.005% S - 33.45% Ni - 21.40% Cr - 0.06% Cu - 0.31% Ti 0.19% Al - 151 ppm N
Carpenter 20Cb-3 Stainless Steel Strip,
700
699 -
C
Composition: 0.036% C - 0.23% Mn - 0.38% Si - 0.020% P -
Duplex Stainless Steels,
Composition: Fe - 2.65% C - 12.65% Cr
Composition: Fe - 2.55% C - 12.40% Cr - 1.25% Mo
700
Composition: Fe - 2.41% C - 12.15% Cr - 2.45% Mo
Composition: 0.030% C - 1.29% Mn - 0.78% Si - 0.022% P -
0.014% S - 5.14% Ni - 24.75% Cr - 1.80% Mo - 0.071% N
Composition: Fe - 3.51% C - 12.20% Cr - 0.02% Mo
Composition: 0.020% C - 1.19% Mn - 0.31% Si - 0.027% P -
Composition: Fe - 3.39% C - 11.95% Cr - 1.36% Mo
0.009% S - 5.52% Ni - 21.90% Cr - 2.97% Mo - 0.151% N
Composition: Fe - 3.25% C - 11.80% Cr - 2.60% Mo
Composition: Fe - 2.08% C - 15.85% Cr - trace level Mo
Composition: Fe - 2.05% C - 15.60% Cr - 0.81% Mo
Composition: Fe - 1.96% C - 15.40% Cr - 2.20% Mo
IRONS, 701 - 766
V aan
{
:
ition: Fe he - 2.13% % C - 11.30% Cr - 1.41% sMo
vender
Me
Composition: Fe - 1.05% © - 10.8% Cr - as.807
0.02% Mo
0.004% S - 33.70% Ni - 19.76% Cr - 2.25% Mo - 3.14% Cu 0.79% Cb
LE
Composition: Fe - 2.67% C - 14.95% Cr - trace level Mo
\
Composition: Fe - 2.67% C - 15.20% Cr - 1.09% Mo
Gray Cast Irons, 703 - 704
Composition: 3.63% C -2.92% GC* - 0.71% CC** - 0.53%
Composition: Fe - 2.60% C - 15.20% Cr - 1.95% Mo
Mn - 1.75% Si - 0.56% P - 0.10% S
Composition: Fe - 3.58% C - 14.45% Cr - trace level Mo
Composition: 3.68% C - 2.56% GC* 1.12% CC** - 0.37%
Composition: Fe - 3.58%
Composition: Fe - 3.56%
Composition: Fe - 4.10%
Composition: Fe - 3.96%
Mn - 1.20% Si - 0.28% P - 0.11% S - 2.03% Ni
Composition: Fe - 1.17% C - 0.75% Mn - 2.0% Si - 0.30%
Mo - 0.60% Cu
Malleable
Irons,
704 - 705
Composition: Fe - 2.58% C - 0.42% Mn - 1.37% Si - 0.15%
Mo - 0.001% B
Composition: Fe - 2.58% C - 0.40% Mn - 1.44% Si - 0.32%
Composition: Fe - 2.08% C - 20.55% Cr - <0.01% Mo
Composition: Fe - 2.04% C - 20.55% Cr - 0.61% Mo
Mo - 0.001% B
Composition: Fe - 2.57% C - 0.48% Mn - 1.44% Si - 0.27%
Composition : Fe - 1.98%
Composition: Fe - 2.67%
Composition: Fe - 2.54%
Composition: Fe - 2.45%
Composition : Fe - 3.62%
P - 0.11% S - 0.05% Cr - 0.008% Al - 0.0028% B
White Irons, 706
C - 0.13% Mn
C - 0.44% Mn
C - 0.72% Mn
C - 0.03% Mn
C - 0.02% Mn
C - 0.03% Mn
C - 0.02% Mn
- 1.21%
- 1.22%
- 1.24%
- 1.25%
- 1.23%
- 1.23%
- 1.20%
Si - 0.008%
Si - 0.007%
Si - 0.007%
Si - 0.015%
Si - 0.064%
Si - 0.123%
Si - 0.275%
S
S
S
S
S
8
S$
White Cast Irons, 707 - 753
Composition: 2.93% C - 0.78% Mn - 0.60% Si - 17.4% Cr -
0.04% Mo
Composition: 2.90%
0.48% Mo
Composition: 2.93%
Cr-1.59% Mo
Composition: 2.91%
Cr-2.89% Mo
Composition: 2.89%
C - 14.80% Cr - 1.45% Mo
Composition : Fe - 4.13% C - 18.22% Cr - 0.05% Mo
Composition: Fe - 4.08% C - 18.00% Cr - 1.14% Mo
Composition : Fe - 3.96% C - 17.55% Cr - 2.53% Mo
0.017% Mo - 0.002% B
2.75%
2.71%
2.70%
2.73%
2.73%
2.83%
2.71%
C - 15.10% Cr - trace level Mo
Composition: Fe - 3.81% C - 14.75% Cr - 2.50% Mo
Composition: Fe - 2.60% C - 0.42% Mn - 1.43% Si -
Composition:
Composition:
Composition:
Composition:
Composition:
Composition:
Composition:
C - 14.65% Cr - 0.52% Mo
C - 14.60% Cr - 1.47% Mo
C - 0.75% Mn - 0.56% Si - 17.6% Cr C - 0.76% Mn - 0.59% Si - 17.5%
C - 20.25% Cr - 2.14% Mo
C - 20.75% Cr - <0.01% Mo
C - 20.22% Cr - 1.52% Mo
C - 19.82% Cr - 2.94% Mo
C - 20.35% Cr - <0.01% Mo
Composition: Fe - 3.51% C - 20.10%
Composition: Fe - 3.40% C - 19.85%
Composition: Fe - 2.95% C - 25.82%
Composition: Fe - 2.87% C - 25.50%
Composition: Fe - 2.72% C - 25.15%
Cr - 1.37% Mo
Cr - 3.40% Mo
Cr - 0.02% Mo
Cr - 1.22% Mo
Composition: Fe - 3.70% C - 25.32%
Composition: Fe - 3.66% C - 24.95%
Composition: Fe - 3.52% C - 24.65%
Composition: Fe - 4.31% C - 24.80%
Cr - 0.02% Mo
Cr - 1.53% Mo
Cr - 2.52% Mo
Cr - 2.67% Mo
Cr - 0.02% Mo
Fe - 4.10% C - 23.67% Cr - 1.32% Mo
Composition: Fe - 3.94% C - 23.45% Cr - 2.94% Mo
Composition:
C - 0.76% Mn - 0.59% Si - 17.5%
C - 1.56% Mn - 0.60% Si - 17.4% Cr -
1.49% Mo
ss
CC
xl
ee
Ductile Irons,
754 - 766
Composition: Fe - 3.62% C - 0.32% Mn - 2.46% Si-1.17%
Ni-Mo alloyed ductile iron
Ni - 0.49% Mo
Composition: Fe - 3.37% C - 2.62% Si - 0.31% Mn
oo ate Fe - 3.33% C - 0.32% Mn - 2.69% Si - 0.25%
°
Composition: Fe - 3.32% C - 0.31% Mn - 2.58% Si - 0.49%
Composition: Fe - 3.59% C - 0.29% Mn - 2.71% Si -
0.024% P - 0.007% S - 0.04% Cr-0.03% Ni - 0.02% Mo -
0.024% Mg
Composition: Fe - 3.60%
0.022% P-0.009%
C - 0.37% Mn-3.68% Si - 0.022%
P - 0.007% S - 0.04% Cr - 0.03% Ni - 0.03% Mo - 0.027%
Mg
Mo
Composition: Fe - 3.37% C - 0.31% Mn - 2.62% Si -
Composition: Fe - 3.61% C - 0.20% Mn - 2.83% Si -
s
0.022% P - 0.009% S - 0.04% Cr - 0.04% Ni - 0.02% Mo -
Composition: Fe - 3.34% C - 0.32% Mn - 2.65% Si -
0.025% Mg
Composition: Fe - 3.54% C - 0.31% Mn-3.45% Si - 0.024%
0.022% P - 0.008% s - 0.20% Mo
Composition: Fe - 3.33% C - 0.32% Mn - 2.69% Si -
P - 0.005% S - 0.04% Cr - 0.04% Ni - 0.02% Mo - 0.023%
Mg
0.022% P - 0.008% s - 0.25%
Composition: Fe - 3.32% C - 0.31% Mn - 2.58% Si -
Composition: Fe - 3.87% C - 0.44% Mn - 2.32% Si -
0.024% P - 0.008% S - 0.49% Mo
0.040% P - 0.011% S - 0.02% Cr - 0.01% Mo - 0.094% Mg
Composition: Fe - 3.33% C - 0.31% Mn - 2.57% Si -
Composition: Fe - 3.79% C - 0.42% Mn - 2.75% Si -
0.024% P - 0.008% S - 0.75% Mo
0.039% P - 0.010% S - 0.02% Cr - 0.04% Mo - 0.050% Mg
Composition: Fe - 3.47% C - 0.33% Mn - 2.47% Si -
Composition: Fe - 3.86% C - 0.43% Mn - 2.31% Si -
0.022% P - 0.011% S - 0.05% Ni - 0.50% Mo - 0.044% Mg
0.039% P - 0.012% S - 0.02% Cr - 0.37% Mo - 0.042% Mg
Composition: Fe - 3.39% C - 0.32% Mn - 2.45% Si -
Composition: Fe - 3.77% C - 0.42% Mn - 2.74% Si -
0.023% P - 0.011% S - 0.61% Ni - 0.50% Mo - 0.041% Mg
Composition: Fe - 3.36% C - 0.32% Mn - 2.46% Si -
0.038% P - 0.011% S - 0.02% Cr - 0.43% Mo - 0.047% Mg
Composition: Fe - 3.60% C - 0.38% Mn - 2.61% Si -
0.023% P - 0.011% S - 1.17% Ni - 0.49% Mo - 0.044% Mg
0.005% S - 0.02% Cr - 0.01% Mo - 0.01% Cu - 0.025% Al -
0.041% Mg - 0.0027% B
Composition: Fe - 3.33% C - 0.32% Mn - 2.40% Si -
0.024% P - 0.008% S - 2.37% Ni - 0.50% Mo - 0.038% Mg
Composition: Fe - 3.62% C - 0.37% Mn - 2.70% Si -
Composition: Fe - 3.24% C - 0.31% Mn - 2.36% Si -
0.005% S - 0.02% Cr - 0.08% Mo - 0.08% Cu - 0.021% Al -
0.024% P - 0.008% S - 4.82% Ni - 0.49% Mo - 0.034% Mg
0.043% Mg - 0.0023% B
Composition: Fe - 3.47% C - 0.33% Mn - 2.47% Si - 0.05%
Ni - 0.50% Mo
Composition: Fe -3.39% C - 0.32% Mn - 2.45% Si - 0.61%
0.003% S - 0.07% Cr - 0.24% Mo - 0.07% Cu - 0.020% Al 0.040% Mg - 0.0024% B
Composition: Fe - 3.61% C - 0.35% Mn - 2.75% Si -
Composition: Fe - 3.58% C - 0.32% Mn - 2.69% Si -
Ni - 0.50% Mo
0.004% S - 0.02% Cr - 0.46% Mo - 0.06% Cu - 0.017% Al 0.040% Mg - 0.0008% B
li
=a
eee
ioe
>
Meee
£0
ne A
»
7-7,
ete me:
aw.
ea
762
eens.
_
fi
0
7
aah
|
[ae
7
a=
aoe
oe
°
s
eee
od
=
«q
*
,
ae
a
~
=
>
=
.
eld
~
5
>
a
a
b=
7
Te
“PP.
>
ee o2@
Ua.
“(
- > ee
i
<*
2
-
sy
Mad
ser
i>-e
-
om
ane
aie
meee
i rasevy
;
2
—
~9-<en
-C
«Fees
;
~~.
:
|
® wah
eer
‘
:
=
>
-
;
a.
- 3 F424
nee
a
ee
ee
(ORO
6 ow
eer
c
fi.
;
H
7
>
.7
-
=
, ie
tort
™~
e
an a Ae |
-
=
ay
oa
ihe
$92+<*
e,
= ove on
a
a
is
s
4
a
[=
—
-
Aa
Be
&*e'
-
> =
:
Saar.
,
|
ae)
7
sr
=
Ao
leone
oY
rT
a
eens
~
ay
:
a6
C OeSete
«2D
=p
ek
@
ire
7
ss
O_oee
| omntacee
oO
a
+ ~ sbi.
(opener,
:
‘
CaaS
=a
ae
yan oraes
<a
td
? ae. =
dare
.
US Steels
l-T Diagrams
Atlas of Time-Temperature Diagrams
Significance of the Isothermal Transformation Diagram
When
steel
any
constant
in the austenitic
temperature
state
is held at
lower
than
the
minimum at which its austenite is stable, it
will in time
transform.
The
course
of
isothermal transformation may be represented
by
plotting
percentage
of austenite
transformed against corresponding
elapsed
time at constant temperature in the manner
illustrated in the upper portion of Fig. 1.
.
3
tw
3,
i
afewanl
egal
i
TYPICAL ISOTHERMAL TRANSFORMATION
CURVE AT 700°F
§
eee
Ending
ies
°
50%
z
3
i
Beginning
£
=
+
Jio00
Shape and position of
curves of the I-T diagram
The form of each of the curves constituting
the I-T diagram
and their position with
respect to the time axis depend upon the
composition and grain size of the austenite
which transforms. Certain alloying elements,
Or
combinations
60)
2
5
10
Fig. 1. Diagram
isothermal
toz
TIME - SECONDS
showing how
transformation
108
104
measurements
of
summarized
by
are
the isothermal transformation diagram
For a given steel austenitized
way,
information
given
in a particular
by a series
of such
curves,
each
determined
at a _ different
constant temperature, can be summarized in
a single diagram, as illustrated in the lower
portion of Fig. 1. This type of diagram,
which
constitutes
the so-called isothermal
transformation diagram (I-T diagram, TTT
diagram,
time
or S-curve) of the steel, shows
required
transform,
completely
temperature
to
for
austenite
proceed
halfway,
to
begin
and
to
the
to
be
transformed
at any _ constant
in the range covered by the
curves. Thus, the I-T diagram of a steel may
be regarded as a kind of map which charts
the transformation of austenite as a function
of
temperature
and _ time
and
permits
approximation of how the steel will respond
to any mode of cooling from the austenitic
state.
SOURCE:
change
the
purposes, it suffices to state that, with few
exceptions, an increase in alloy content or in
grain size of the austenite always retards
isothermal transformation (moves the curve
toward the right) at any temperature higher
than about 482°C (900°F): that is, above what
has been called the "nose" or "knee" of the
beginning curve. This retardation is reflected
Material
I
elements,
in the greater hardenability of steel with
higher alloy content or larger austenite grain
size; indeed, it is generally recognized that
response of a steel to any specified heat
treatment which involves transformation of
austenite
is
largely,
if
not’
entirely,
determined by those factors which influence
the time required for isothermal transformation, and hence, the shape and position of
the curves which comprise the I-T diagram.
TEMPERATURE
°F
-
os
of
form of the curve in a characteristic way; in
effect, this permits classification of steels on
the basis of the type of curve. For present
used
Each diagram
contains sufficient information
to identify
the steel to which
it
pertains with respect to principal elements of
its composition,
austenitizing
temperature
employed, and usually the austenite grain
size established at that temperature. In most
cases, the steels were made commercially in
an electric or open-hearth furnace, cast in
large ingots, and then reduced to relatively
small cross-section, such as bars 1/2 to 1-1/2
inches in diameter. Specimens were prepared
in such a way that a representative area of
the entire cross-section was examined, no
effort
having
been
made
to
minimize
possible segregation
by discarding certain
portions in the cross section; consequently,
the
I-T
diagrams
are
believed
to
be
reasonably representative of austenite transformation as it occurs in commercial grades
of steel.
Conventions for constructing
the I-T diagrams
diagram is
transformation
The isothermal
drawn upon a uniform-size chart having a
I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh, 1963
EE
eee
ae
Atlas of Time-Temperature Diagrams
4
a
linear scale of temperature drawn vertically
and
a logarithmic
scale of time drawn
horizontally. The logarithmic time scale is
used in conformance
with well-established
practice
in order
to encompass
both
the very
short and
extremely
long
encountered. Time intervals
time _ intervals
of 1 minute, |
hour,
are
1
day
and
1
week
shown
for
convenience in locating familiar reference
points on the basic logarithmic scale of time
in seconds. The basic temperature scale is in
degrees
Fahrenheit
but
a__
reference
Centigrade scale is also shown to the left.
The
significance
of
the
various
lines,
numbers,
and
symbols
comprising’
the
diagram
proper
is discussed
below
under
each appropriate subheading.
Martensite
A
formation
horizontal
line,
labeled
M,,
appears
on
the
indicates
line
this
diagram;
each
temperature at which martensite starts to
form on quenching from the austenitizing
temperature. Upon further cooling below this
temperature, more and more martensite will
form. The percentage of austenite transform-
ed to martensite as cooling progresses is
indicated
on
the
diagrams
by
arrows
pointing to the temperatures at which the
austenite
is half
90%
transformed
the
M,,
transformed
(Msg,) and
(Mg).
2 shows
how
temperatures
are
of transformation
of
Ms o and
Figure
Mogg
is
determined.
A,-Ag Temperatures
uw
The A, (austenite start) and Ay, (austenite
finish) temperatures,
represented
by horizontal lines near the top of the diagram,
correspond
respectively
to the lower
and
upper limit of the so-called critical range.
Because these temperatures are limiting or
ceiling temperatures
for isothermal
transformation, they are a significant feature of
the diagram.
e
'
on
<
o
°
z
a
SG
z
Ww
>
ro]
we
°
w
«
=}
e
<
4
wd
a
=
Ww
—
For
the
determination
of
the
A, and
A,
temperatures, specimens are heated to and
held for a relatively long time at each of a
series of temperatures in the vicinity of the
austenite
start
and
austenite
finish
temperatures. The A, temperature is chosen
as that temperature at which a trace amount
of austenite forms in the ferrite matrix and
does
not
increase
perceptibly
in amount
when
the holding
denotes
time is doubled.
the maximum
tempering
Thus, A,
temperature
that
can
be
used
without
forming
a
significant
amount
of austenite
in the
particular steel being considered. Similarly,
As denotes the maximum
temperature at
which a barely detectable amount of ferrite
can
exist
in
a hypoeutectoid
steel.
eutectoid and hypereutectoid steels, the
In
Ags
temperature is only slightly higher than A,
and
is
of
relatively
little
practical
significance. Therefore, only the A, is given
on the diagrams for such steels.
On
some
of the
diagrams
the
A, and
%
20
40
MARTENSITE
60
Bo
OBSERVE
id
Fig. 2. Typical example
austenite to martensite
These particular percentages of martensite
have no special significance and are used
merely to convey some idea of the progress
of transformation of austenite to martensite
as
cooling
continues
below
M,. The
temper-
ature for 90% martensite, rather than that
for some
higher
percentage,
was
chosen
because these measurements became increasingly less reliable with greater percentages
of martensite, and because some of the steels
may
retain an appreciable
percentage
of
austenite, the precise amount being dependent upon several complex factors.
Ags
temperatures are noted as "estimated." This
indicates
that
these
temperatures
were
calculated according to an empirical formula
In many diagrams, the data on martensite
formation were obtained by direct measure-
designed to estimate A, and Ay,
such
ment using a metallographic
was
the
——————————
Se
case,
the
M,,
technique.
When
Msg,
Mg
and
Atlas of Time-Temperature Diagrams
5
se
appear
without
a qualifying
note. In others,
these temperatures were calculated according
to an empirical formula developed for this
the M,, Msg, and Mgg symbols
and
purpose,
are designated as "estimated temperatures." It
should be noted that these are not to be
construed as highly precise temperatures, for
the
of
composition
the
cases
some
in
exactly
known
not
either
was
austenite
carbides) or the
of undissolved
(because
was not within the range to
composition
which the empirical formula applies.
curve
extends
from
the first
near
the As
Acm, or A, temperature down to the line
labeled M,. This so-called beginning line is
drawn through points representing the time
required
at
each
temperature
level
investigated
for a measurable
amount
of
austenite to transform. In its simplest form
the beginning line has a "C" shape with a
Minimum
time
value
at
a_ temperature
usually in the vicinity of 538°C (1000°F);
alloying elements, especially those of the
carbide-forming type, such as chromium and
molybdenum, cause the beginning curve to
assume
a more
complex
shape.
The percentage of transformation product
necessary
for
a
measurable
beginning
depends upon the sensitivity of the technique used
in following
the progress
of
transformation; in most of the curves about
0.1% transformation served as the basis for
locating the beginning line.
In
all
but
eutectoid
left. which
a
few
steels,
diagrams
that
second
curve
the
the
starts in the vicinity of A, and
exception
to the above
statement
occurs
in the diagrams of the 9200 series and
certain
other
diagrams
in
which
the
appearance
of the microstructure
in the
range
of the
538-482°C
lower
diagrams,
a
prevented
portion
reliable
of the
cross-hatched
farthest
toward
the
right
never cross A,. It extends from near A, down
below M, will in time transform isothermally
location
line; in these
zone
below
the
M,
_horizontal--this
portion of the ending line is shown dashed
because some
uncertainty exists as to its
correct location, reliable measurement being
relatively difficult in this region.
|
In some of the higher alloy steels a portion
of the ending curve lies beyond the range of
the chart, but it may be logically assumed
that the ending
line is continuous
since
austenite
is unstable
at all temperatures
below
A,
and
in
time
will
presumably
transform. In certain steels the time required
for austenite to transform completely below
M, and at temperatures in the vicinity of
482°C is far beyond the duration of ordinary
heat treatments.
The line labeled "50%" and located between
the beginning and ending lines represents the
time
required
at
each
temperature
for
transformation of half of the total austenite.
It is included to give. some idea as to the
progress of transformation and is especially
useful in regions of a diagram in which the
beginning and ending lines are not parallel.
represent
from
extends
down
to about
482°C
where
it
merges with the beginning line, represents
the beginning of transformation to ferritecarbide aggregate (pearlite in its broadest
sense) in the range of temperature where the
first product of austenite transformation is
either proeutectoid ferrite or proeutectoid
carbide.
An
curve
to below M,. A specimen quenched below M,
will transform, at least in part, to martensite
during cooling and hence strictly isothermal
of all of the austenite is
transformation
impossible below M,. The portion of the
temperature
any
reaches
which
austenite
extended
at the left of the diagram,
encountered,
broad
represents
the
time
required
at
each
temperature for the last trace of austenite to
transform. This curve approaches but can
to what for all practical purposes may be
regarded as bainite. The time required is
indicated by the portion of the ending line
Curves of the I-T diagram
Starting
The
has _ been
drawn to indicate uncertainty of the point at
which it merges with the beginning line.
The principal
curves of the I-T diagram
have been drawn as broad lines, not only so
that they
will stand
out among
fainter
coordinate lines but also to emphasize that
their exact location on the time scale is not
highly precise even for the particular steel
sample represented. Portions of these lines
are often shown as dashed lines to indicate a
much higher degree of uncertainty. Thus, all
portions of lines extending to the left of the
2-second coordinate are dashlines because for
times less than about 2 seconds reliable and
accurate measurements were not possible by
the methods used.
In this connection, it should be recognized
that the I-T diagram is designed to represent
the overall pattern of transformation in a
and particularly in
particular composition
regions
in
Sa
which
transformation
ae
occurs
Atlas of Time-Temperature Diagrams
6
aD
rapidly should not be regarded as always
being a summary of a complete set of highly
precise
quantitative
measurements.
The
principal fundamental difficulty is that even
a very small piece of steel requires some
appreciable time interval to cool throughout
to the temperature of the isothermal bath.
The order of magnitude of this time interval
is influenced by many factors including:
1.
the cross-section
of the specimen,
2.
the agitation
it receives
when
immersed in the isothermal bath, and
3.
the composition, volume, and
ature of the isothermal bath.
temper-
When quenching in a lead-alloy bath such as
is commonly
used in determining an I-T
diagram, rapid movement of the specimen
through the bath is especially desirable since
mechanical stirrers are relatively ineffective
in agitating such a heavy liquid. Consequently, an accurate evaluation of the time to
reach bath temperature after immersion is
rarely feasible.
When transformation begins within a few
seconds and proceeds rapidly as in the "nose"
region of a plain carbon
steel, the time
required
for the specimen
to reach
the
temperature of the bath is a considerable
portion
of the
total
time
required
for
transformation.
An _ additional
difficulty
arises
from
the
circumstance
that
heat
generated by transformation
(recalescence)
may prevent a specimen from ever quite
reaching
bath
temperature
until
after
transformation is completed.
Despite these limitations, a beginning line
even
in the "nose" region of a rapidly
transforming
steel
can
be
located
with
sufficient
accuracy
for
many _ practical
purposes. This is possible because accumulated knowledge of the kinetics of isothermal
transformation
makes
it
possible’
to
rationalize the entire reaction from a limited
number
of measurements. The method
of
plotting isothermal data first proposed by
Austin and Rickett is especially useful in
estimating a beginning time from measured
data for longer times. It is also true that the
beginning
curve has a characteristic
"C"
shape which is modified in a_ predictable
way by certain alloying elements. Since a
large number
of I-T diagrams, including
many
for steels which
transform
slowly
direct
accurate
permit
to
enough
measurement at all temperature levels, are
EE
now
available,
accurate
direct
limited
difficulty
in
measurements
temperature
range
need
obtaining
within
a
not
construction
of a reasonably
reliable
region
the
of
for
I-T
diagram
a
prevent
"nose"
rapidly
transforming steel.
A given
a
from
I-T diagram, even if constructed
precise
of highly
set
complete
measurements, is truly accurate only with
respect to transformation of the particular
sample of steel used in its determination.
Other samples of the same grade of steel
may
vary
appreciably
in the exact
time
required for transformation to begin and to
end
at
each
temperature.
In_
practice,
isothermal
data
are
usually
used
in
connection with the heat treatment of pieces
of steel very much larger than the small
specimens
used
in
developing
an_
I-T
diagram. Although it appears that the mass
of the sample does not per se appreciably
influence transformation rates provided the
difference in cooling time (from immersion
to attainment of thermal equilibrium with
the isothermal bath) at the center of a large,
as compared to a small, piece of steel is
taken into account, it frequently happens
that the large piece encompasses a greater
range of composition
due to segregation.
Hence, portions of the large piece may begin
to transform somewhat
sooner
and finish
transformation
somewhat
later
than _ is
indicated by the I-T diagram.
Thus, the usefulness of an I-T diagram is not
seriously impaired by failure to obtain a
highly precise measurement of the beginning
time at all temperature levels. Considerable
judgment is often required in constructing
an I-T diagram from experimental data, and
equal
judgment
is
required
in _ its
interpretation
with
respect
to conditions
different from those under which it was
determined. The experienced user will not
read into an I-T diagram an unduly high
degree of accuracy, nor condemn it because
it 1s not always based upon a complete set of
highly precise measurements.
The use of a dashline to the
second
coordinate
has been
left of the 2explained
as
representing a relatively high degree of
uncertainty as to the exact location of the
line in this region. In some instances, other
portions of a beginning or an ending line
may
appear
as
a dashline
because
the
number or kind of measurement
did not
serve to locate the dashed portion with quite
the same certainty realized elsewhere.
cars
Atlas of Time-Temperature Diagrams
>
Fields of the I-T diagram
Hardness
Each field on the diagram above M, is
labeled to indicate the phases observed in
At the right-hand edge of many of the
diagrams a series of HRC numbers indicates
the hardness of a specimen held only long
specimens austenitized and then quenched
and
held
isothermally
within
the
timetemperature limits of each field. The region
above the A; temperature and to the left of
the beginning line is labeled A for austenite
which was presumed to have existed in this
region because specimens treated within the
time-temperature limits of this field were
entirely martensitic when quenched to room
temperature. In a few of the diagrams, the
austenitizing treatment did not dissolve all
carbides in austenite and this is indicated on
each of such diagrams.
The region labeled A+F or A+C
between
the
beginning
line
which
and_
lies
the
intermediate broad line represents the timetemperature region in which austenite and a
proeutectoid phase were observed. The latter
is ferrite (F) in a hypoeutectoid steel and
carbide (C) in a hypereutectoid steel. This
field is, of course, missing in a eutectoid
composition. The A+F (or A+C) field extends
from near A, (or Acm) usually down
to
about 482°C where the field is pinched out
due to the merging of its two boundary lines.
after transformation
enough at each temperature to transform all
of
the
austenite,
measured
at
room
temperature.
In all these steels hardness increases as the
transformation
temperature
decreases,
although in the intermediate region in the
vicinity of 538°C
Microstructure
In practically all steels hardenable by heat
treatment,
the
character
of the
ferritecarbide aggregate is determined primarily by
the temperature at which it formed; there is
the same general sequence of microstructures
ranging in appearance from coarse lamellar
at the higher temperature to fine acicular at
the lower levels. Regardless of differences in
composition, familiarity with this sequence
in only a few steels makes it possible merely
by examining the I-T diagram for any steel
to make a reasonably good prediction as to
its
microstructure
temperature
The field labeled A+F+C--which is bounded
at the right by the ending line, at the left by
the right-hand
boundary of the A+F (or
A+C) field at higher temperatures, and by
the beginning line at lower temperatures--
extends from A, or somewhat above, down to
M,. Samples
held at any constant
temperature
for a time period within the limits of the
A+F+C field were observed to contain the
three phases: (1) austenite (observed at room
temperature as martensite); (2) ferrite; and
(3) carbide. Either ferrite or carbide may
exist separately as a proeutectoid constituent
and
in
addition
the
two
are_
usually
intimately associated with each other in the
form of an aggregate constituent. The latter
is classified
as
pearlite
at
higher
temper-
atures and bainite at lower temperatures; at
intermediate temperatures both pearlite and
bainite may form. The labeling of fields on
the basis
of phases
formed
avoids
the
necessity of classification of all microconstituents resulting from austenite transformation
at constant
temperature
and
thus
simplifies the diagram.
The field to the right of the ending line is
labeled F+C to indicate that only ferrite and
there is often an inversion
in this overall trend.
at
each
transformation
level.
Characteristic differences in microstructure
exist between steels of markedly different
composition, but these differences are more
readily taken into account when the I-T
diagram is available for comparison with
those of more
familiar steels. Thus, the
presence
of
proeutectoid
ferrite
in the
microstructure is indicated by an "A+F" field
on
the
I-T
diagram.
For
a
particular
austenite grain size, the relative amount of
proeutectoid ferrite is roughly proportional
to
the
temperature
and A; The character
difference
between
A,
of the ferrite-carbide
aggregate
is
primarily
determined
by
transformation
temperature
so
that
the
difference in its appearance among different
steel compositions is usually less than that
which
results
from
a_
difference
in
of little more
temperature
transformation
than 38°C. In general, acicular aggregates
usually classified as bainite form from the
vicinity of the "nose" temperature (the lower
"nose" if there happen to be two) down to M,.
Microstructures formed in many alloy steels,
particularly those containing strong carbideas _ chromium,
such
elements
forming
and vanadium, are somewhat
molybdenum
different from those in plain carbon steel,
converted by the transformation process to
yet the same general trend is common to all
by the I-T
indicated
modifications
with
these phases.
0
E
ee
E
a
E
carbide are present, all austenite having been
Atlas of Time-Temperature Diagrams
8
er
diagram.
It is generally
true
that
two
different steels with similar I-T diagrams
will also have
similar
microstructure
at
corresponding temperature levels, and hence
quite similar
mechanical
properties
when
heat treated alike. When it is necessary to
discontinue a particular composition that has
long been successfully used, it is a sound
rule to select a substitute which has an I-T
diagram
as nearly as possible
like that of the
old one. If this can be done, very little
modification of heat-treating practice will
be required when the new composition is
substituted for the old.
APPLICATION OF I-T
DIAGRAMS TO HEAT TREATMENT
Quenching
tempering
and
The
common
most
method
of hardening
steel
by heat treatment consists of heating to a
temperature
at which
the steel
becomes
austenitic and then cooling fast enough,
usually by quenching in a liquid such as
water or oil, to avoid any transformation of
the austenite until it reaches the relatively
low-temperature
range
within
which
it
transforms
to
the
hard, = martensitic
microstructure. The minimum rate of cooling
necessary is related to the location with
respect to the time scale of the "nose" of the
I-T diagram. In Fig. 3, illustrating a quench
and
temper
type of heat
treatment,
the
CUSTOMARY
QUENCHING
AND
TEMPERING
cooling curves as drawn lie to the left of the
"nose" and thus indicate full hardening on
quenching.
One
of the curves
represents
cooling at the surface of a quenched piece of
steel, whereas
the other curve
represents
cooling at the center of the same piece.
Locations between surface and center would,
of course, cool at intermediate rates. In Fig.
3, austenite transforms entirely to martensite
as the steel cools through the temperature
range of martensite formation, as indicated
by cross-hatching on the cooling curves. A
tempering cycle such as usually follows the
quenching operation is illustrated schematically merely to complete the picture. The
I-T diagram has no bearing on the tempering
operation unless the austenite-to-martensite
transformation is incomplete, as sometimes
happens.
In this case,
retained
austenite
usually transforms during tempering to the
transformation product indicated by the I-T
diagram.
Martempering
MARTEMPERING
:;’”YDih,.
QQ
AARARARARRERE
x
BORN
TEMPERED TO
DESIRED HARDNESS
TEMPERATURE
Xw
PR
TEMPERED
MARTENSITE
TIME - LOG
SCALE
Fig. 4. Schematic chart illustrating relationship
of martempering to a typical I-T diagram
TEMPERATURE
\
NATRANSFORMATION
TIME- LOG
PRODUCT
TEMPERED
MARTENSITE
SCALE
Fig. 3. Schematic chart illustrating relationship
of hardening
type
of quench and temper
treatment to a typical I-T diagram
Application
of the I-T diagram to martempering is illustrated in Fig. 4. In this heat
treating process, the steel is quenched into a
bath at a temperature in the vicinity of M,
and held in the bath until the center of the
piece reaches bath temperature, after which
it 1s removed and allowed to cool in air.
Again, if complete hardening is to occur,
austenite must cool with sufficient rapidity
to avoid transformation at the "nose" of the
I-T
diagram.
Since
it shows
the
M,
temperature, the I-T diagram is useful in
_ Atlas of Time-Temperature Diagrams
ee
9
eee
selecting the optimum bath temperature for
martempering and in estimating how long
the steel may be held in the bath without
forming bainite.
moderately hard bainite. Steels contaniiii.,
certain alloying elements or combinations of
alloying elements may have an I-T diagram
of
such
nature
that
unique
hardening
treatments are feasible. In such diagrams
there
Austempering
Austempering is a hardening process based
upon isothermal transformation of austenite
to bainite. Hence the I-T diagram, or at least
its lower portion, is not only useful but
almost indispensable. In an ideal austempering
treatment,
austenite
is transformed
isothermally, or nearly so, and as illustrated
in Fig. 5 the I-T diagram shows the time
required
for austenite
to transform
and
hence
the
minimum
duration
of
the
austempering
treatment.
The
I-T
diagram
is
also useful in planning austempering treatments
because
it shows
the
temperature
range within which bainite forms and the
hardness
of
bainite
as
a
function
of
temperature.
AUSTEMPERING
may
be
a
"nose" separated
transformation.
Annealing
softening
lower
by
as
well
a region
as
an
upper
of
very
slow
or
The
aim
of the heat
treatment
in the
foregoing examples has been to harden steel,
but it may be equally important to know
how to avoid hardening. In this case, the
curve
of
the
I-T
diagram _ representing
completion of transformation is the important
one.
For
instance,
in conventional
annealing in which steel initially in the
austenitic state is slowly and continuously
cooled, as shown in Fig. 6, the I-T diagram
in conjunction
with
the
cooling
curve
indicates the approximate temperature range
in which transformation occurs and when
slow cooling may be safely discontinued. It
is also possible to estimate in advance a
cooling rate that will allow austenite to
transform completely in a temperature range
sufficiently high to develop the desired soft
microstructure without unnecessary expenditure of time.
CONVENTIONAL
ANNEALING
TEMPERATURE
>W
MQ
QQ
GGG
ES
PRODUCT
con
Siam
S Ss
~S
BAINITE
TIME -— LOG
SGALE
Fig. 5. Schematic chart illustrating relationship
of austempering to a typical I-T diagram
TEMPERATURE
—
Other applications
to hardening
PRODUCT
minor
or
treatments,
hardening
Special
variations of regular hardening
practice,
may
be
based
upon
the
specific
pattern
of
austenite transformation for a particular
steel. Thus, in high carbon steel there is
opportunity
for
variation
cycle. When
austenite
transform
to
Ve
in
the
hardening
has cooled below the
"nose" of the I-T diagram,
martensite
it will inevitably
or
at
least
to
TIME - LOG
Fig. 6. Schematic
FERRITE
& PEARLITE
SCALE
chart illustrating relationship
of conventional annealing cycle to a typical
T diagram
I-
In many alloy steels there is a pronounced
minimum
in the ending line of the I-T
diagram at a relatively high temperature.
Atlas of Time-Temperature Diagrams
10
nee eeUEEEaNEUES EES SEER RUE
nnn
Assuming that the transformation produced
at this temperature is satisfactory, as is often
the case, advantage may be taken of the
The I-T diagram is useful in planning heat
treatments and in understanding why steel
responds as it does to a particular
heat
time-temperature
coordinates
of
this
minimum to design a short annealing cycle.
As shown in Fig. 7, this is accomplished by
cooling the steel initially in the austenitic
state
as
rapidly
as
convenient
to
the
temperature of the minimum in the ending
line and then holding it approximately at
treatment, but it cannot be used directly to
predict
accurately
the
course
of
transformation as it occurs during continuous cooling. It is possible, however, to derive
this temperature for the time required to
transform austenite completely. Subsequently
the steel may be cooled in any convenient
manner.
ISOTHERMAL
ANNEALING
from
the
I-T
diagram
another
timetemperature-transformation
diagram
which
while not highly accurate, is of considerable
aid in bridging the gap between isothermal
and continuous cooling transformation. This
diagram will be referred to as the cooling
transformation diagram (C-T diagram). It is
necessary to derive only a few C-T diagrams
in order to demonstrate their relationship to
the I-T
diagram;
once
the
fundamental
difference
between
the
two
types.
of
transformation diagrams is recognized, it is
possible
to interpret
diagram with
conditions.
TEMPERATURE
~s
rationally
any
to continuous
I-T
cooling
C-T diagram for
eutectoid carbon steel
anand
FERRITE
AND
PEARLITE
TIME -LOG
more
respect
SCALE
Fig. 7. Schematic chart illustrating relationship
of isothermal annealing cycle to a typical I-T
diagram
Transformation on
continuous cooling
In heat-treating operations involving continuous cooling from the austenitic condition,
transformation
occurs
over
a _ range
of
temperatures rather than at a single constant
temperature, and therefore the final structure is a mixture of isothermal transformation products. The I-T diagram, particularly
the examination of isothermal microstructures
incidental
to its construction,
aids
greatly in classifying the microstructure of
steel transformed during continuous cooling.
If the I-T diagram is at hand, it is possible
to visualize at what stage of the cooling
cycle different structures formed; this facili-
tates changes in heat treatment necessary to
obtain more of the desirable and less of the
undesirable structures.
In Fig. 8, a C-T diagram has been derived
and superimposed on the I-T diagram of a
eutectoid
carbon
steel,
chosen
for
this
purpose because of its relative simplicity.
The
cooling
rates
plotted
measurement
of
temperature
indicated
locations
in an
are
based
upon
change
at
end-quenched
bar
such as is commonly
used in
hardenability. At the top of the
measuring
chart, the
measured
hardness
curve
has
been
superimposed
over
a sketch
of the endquench bar. Four representative locations (A,
B, C, D) along the bar have been related by
means of each corresponding cooling curve
to the I-T and C-T diagrams; austenite at a
particular
location
transforms
when _ its
cooling curve passes through a shaded zone
of
the
C-T
diagram.
The
type
of
microstructure resulting from transformation
in each
zone
is given
and
the
final
microstructure on reaching room temperature
is listed in the lower portion of the chart.
This
correlation
shows
the
origin
of
microstructures in the end-quenched bar and
the reason why hardness changes along the
bar. Thus, at point A the hardness is high
because the cooling rate at this point was
fast enough to miss the pearlite zone of the
C-T diagram
and
austenite
transformed
entirely to hard martensite.
At point B,
hardness is lower because the cooling curve
for this point intersected the pearlite zone
and austenite transformed in part to fine
pearlite. The
remainder
of the austenite
transformed
to martensite during cooling
Atlas of Time-Temperature Diagrams
1]
SS
through
Some
a
much
acicular
lower
aggregate
temperature
range.
(bainite) would
also
be present after cooling at a rate such as
represented by curve B, but for simplicity
this is not indicated on Fig. 8. The cooling
rates at point C and at point D are slow
enough in relation to the C-T diagram to
the
in_
transformation
complete
permit
pearlite zone. The structure at C and D is
pearlite which is coarser and softer at D
than at C. This correlation is not highly
accurate for three principal reasons:
1.
in the vicinity of the "nose" of the I-T
diagram the beginning line is subject
to experimental error because of
very short time periods involved;
2.
recalescence occurs during transformation
so
that
the
actual
cooling
departs from
the cooling curve
as
drawn
once
transformation
is well
under
3.
the
way; and,
derivation of the C-T diagram from
the I-T diagram is only an approximation.
ENO-QUENGH
HARDENABILITY
A
05 ‘10
HARDNESS
~~.
-RC 205
| DISTANCE FROM
'
18
2
QUENCHED
\
Nevertheless,
the
chart
does
show,
in
principle
at least, how
the I-T diagram
through
the medium
of a C-T diagram
derived from it, can be correlated with a
typical
heat
treatment
which
involves
austenite transformation as it occurs during
continuous cooling.
Consideration of the I-T diagram in relation
to the location of lines of the C-T diagram
in Fig. 8 shows that the "nose" of the former
has,
in
effect,
been
moved
downward
and
toward
the right by continuous
cooling.
Thus, direct use of isothermal "nose" times
for predicting hardenability leads to considerable error in the direction of a predicted hardenability lower than is actually
obtained.
In comparing
hardenability
of
different
isothermal
reasonably
compositions,
the
respective
"nose"
times
are,
however,
a
reliable indicator of the relative
order of hardenability. In the plain carbon
steel represented in Fig. 8, bainite, which
forms isothermally within the range 454°C to
204°C,
is sheltered
by an _ overhanging
pearlite "nose," and bainite is not formed in
any
appreciable
quantity
on _ ordinary
continuous cooling in this steel. That is, the
rates
of bainite
formation
are
so slow
relative to rates of pearlite formation that
austenite cooled slowly enough to permit
formation of bainite has already completely
transformed to pearlite before cooling down
to bainite-forming temperatures. In analyzing I-T diagrams and C-T diagrams, it is
important to note that the former are usually
interpreted by scanning from left to right
along
a temperature
level,
whereas
the
C-T
diagram is interpreted by scanning downward from upper left to lower right along a
cooling curve.
C-T diagram
for 4140 steel
WO
RTEHSITE
ee
S=S
WARTENSITE AND
MODULER PEARLITE
rime
PEARLITE
COOLING TRANSFORMATION
DIAGRAM
_—_———_ ISOTHERMAL TRANSFORMATION DIAGRAM
——— COOLING CURVES
anor siete TRANSFORMATION DURING COOLING
ae
10.
TIME
-SECONDS
Fig. 8. Correlation of continuous cooling and
isothermal transformation diagrams with endquench hardenability
carbon Steel
test
data
for
eutectoid
An analogous continuous cooling transformation diagram for a typical alloy steel, SAEAISI 4140, has been derived from the I-T
end-quench
with
correlated
and
diagram
hardenability in Fig. 9. In this alloy steel,
steel
eutectoid
carbon
plain
the
unlike
previously considered, the pearlite zone lies
relatively far to the right and does not
"shelter" the bainite region. Consequently,
the ferrite-carbide aggregate structure in the
bar is bainite rather than
end-quenched
pearlite. Because 4140 is hypoeutectoid in
field
ferrite
a proeutectoid
composition,
appears both on the I-T diagram and on the
C-T diagram. The interpretation of Fig. 9 is
similar to that of the previously discussed
Atlas of Time-Temperature Diagrams
12
eutectoid
carbon
steel
diagram.
Again,
several
representative
locations
along the
end-quenched bar are related to a hardness
curve and to the C-T diagram by means of
the
cooling
curve
at
each _ location.
Considered
together,
Figs.
8
and
9
demonstrate the difference in transformation
on continuous cooling of two steels having
different types of I-T diagrams.
The fields of the C-T diagram are displaced
downward and to the right with respect to
analogous fields of the I-T diagram. An
overhanging "nose" on the I-T diagram may
preclude transformation to acicular microstructures formed on continuous cooling to
lower temperatures by permitting complete
transformation in the "nose" region. In steels
in which
a_ considerable
proportion
of
proeutectoid ferrite is formed, continuously
cooled austenite
may
become enriched
in
carbon on reaching intermediate and low
temperatures,
to such an extent
that the
bainite zone and the martensite zone are
appreciably lowered in temperature as compared to these zones on the I-T diagram.
Even if feasible, a precise derivation of an
I-T
or
C-T
diagram
would
rarely
be
limitations in mind, the I-T diagrams are
useful
in
interpreting
and_
correlating
observed
transformation
phenomena
on a
rational basis even though austenite transforms during continuous cooling rather than
at a constant
END-QUENCH
HARDENABILITY
TEST
~RG
HARDNESS
SS
Temperature
°F
-
RK
KSA
WS
Co
A
SER
@*
Martensite
ae
Mortensite, Ferrite
end Bainite
FertaaBonite
Mortensite, Ferrite
and Balnite
Cooling
war-
ranted since a particular I-T or C-T diagram
exactly represents but one sample. Samples
from
other
heats,
or
even
from _ other
locations in the same heat, are likely to have
slightly different I-T or C-T diagrams. When
used
with
discrimination
and _ with
its
temperature.
LEGEND
'
2
5
10
transformation diagram
Isothermal transformation diagram)
Cooling curves
Transformation during cooling
10?
10°
104
Time - Seconds
Fig. 9. Correlation of continuous cooling and
isothermal transformation diagrams with endquench hardenability test data for 4140 steel
Atlas of Time-Temperature Diagrams
13
Type: 1006/1008
Type: 1019
Composition: Fe - 0.06% C - 0.43% Mn Grain size: 7 (rimmed
Composition: Fe - 0.17% C - 0.92% Mn Grain size: 0-2
steel) Austenitized at 913°C (1675°F)
Austenitized at 1316°C (2400°F)
°C
°C
°
Tae
800
2
700
700
Le
600
600
86RB
78RB
&
5 500
= 500
ra
<
li 400
tt
S
J
-
19
<
ul
5 400
S
300
200;-
= 300
400
eepe
100
200
Sigs
i
Je
100
*
coin
HOUR
()
LUI
O'S 275)
0
102
I WEEK]
Liki
103
|
0.51
5
2
02
0
TIME - SECONDS
Composition: Fe - 0.35% C - 0.37% Mn Grain size: 75% 2-3,
Austenitized at 927°C (1700°F)
25% 7-8 Austenitized at 843° C (1550°F)
TL
omy
cs
i
800
°C
3
800
700
700
IEE
he
85RB
600)
9ORB
500
22
e
ee
=a pall
1400 Aa
7 As
'OOOF
100
I ul
102
TIME — SECONDS
| DAY
104
1
10°
]
-F+O
10&
F
a)
lis
25
27
oe
=
Ms +
Mook
400
200}/—+
4
XK
Mso,
NI
|
4
Estimated
50
a
43
—
——
1-T
DIAGRAM
+
ane
10%
=
—
IHOUR
102
+135
Ab
+
LMIN.
0512
i>
i
Temperature
| WEEK 48
U
3
Zz
12
-
{HOUR
m @
25
a
100
102
7
|_|
*
800
200
sl
-
+
TEMPERATURE
300
DIAGRAM
+——}
if
600
200)
At+F
Wee
A+Frec
500
400
300
TEMPERATURE
A
4
Ar =="
1200)
34
400
ro
600
14
°
10°
104
Type: 1035 Mod.
Composition: Fe - 0.20% C - 0.81% Mn Grain size: 8-9
pate I
10>
TIME - SECONDS
Type: 1021
°C
42
°
10#
—
LOAY | 1WEEK!52
104
105
10&
TIME - SECONDS
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
eee
ae
Atlas of Time-Temperature Diagrams
14
Type: 1045/1050 + Cu
Composition: Fe - 0.48% C - 0.57% Mn- 0.20% Si - 0.46% Cu
Grain size: 65% 8, 35% 5 Austenitized at 843°C (1550°F)
Type: 1045/1050
Composition: Fe - 0.47% C - 0.57% Mn - 0.06% Cu Grain size:
50% 8, 50% 5 Austenitized at 843°C (1550°F)
2¢
°
o (%
F
800
oF
800
1400
700
1400 :
1200
18
21 9
700
o
600
27
600
oe,
asta
30 ¢
3| Ae)
2500
®
800
352
=
¢ 400
= 300
60
200}
Te
oan
600
deat
0512
510
102
10 3
10 4
10 5
29go
30 v
© 400
§E 300+
200}
400
100
00
isle
ccitiaat
200
28m,
(
800
ASE
(ULE Soe
400
O
10 6
34 2
e
600
°F
Hina
are
eae)
102
Time - seconds
Type: 1045/1050
16
22 &
oa
rill
1000
Seo]
i)
1200
103
104
10°
108
:
Time, seconds
+ Cu
+ Cu
Type: 1045/1050
Composition: Fe - 0.49% C - 0.57% Mn - 0.97% Cu Grain size:
Composition: Fe - 0.49% C - 0.54% Mn - 0.20% Si - 1.49% Cu
50% 8, 50% 4 Austenitized at 843°C (1550°F)
Grain size: 50% 8, 50% 5 Austenitized at 843°C (1550°F)
AC
ine)N
rdness-Rc
ie)
Hardness
Temperature
Temperature
aR ereede a
0512
510
io2
o>
Time - seconds
SOURCE:
10%
105
108
os 12
510
10? | 1025)
1O8—
Time, seconds
R.A. Grange, et al., "Effect of Copper on the Heat Treating Characteristics of Medium-Carbon
Transactions, Vol 51, 1959, pp 377-393
SSS
Steel,” ASM
A1O®
0°
Atlas of Time-Temperature Diagrams
15
Type: 1050
Type: 1055 Mod.
Composition: Fe - 0.50% C - 0.91% Mn Grain size: 7-8
Composition: Fe - 0.54% C - 0.46% Mn Grain size: 7-8
Austenitized at 910°C (1670°F)
°C
800
Austenitized at 910°C (1670°F)
oF
°
SG
2
g
&
800
1400
rf
§
1200
18
700
700
600
Wd
1000
600
28
& 500
Ee
a
20
23
WwW
2
= aoe
See
200+
400
'00/—
200
oo
Ee
©
ty 400
Se
ta
a. 400
28
= £00
32
800
25
ae
a.
48
56
F 300
ou
42
rt
efi
50
200+
400
ool
i200
a
reine:
I WEEK| 62
ctuul
0
0512
,
Eitlul
50
I-T
eopounre
0512
5 0
TIME - SECONDS
Type:
1060
Type:
|HOUR
TT
104
10°
102
[
DAY
| WEEK]
58
10&
10°
1060 Mod./1065
Mod.
Composition: Fe - 0.64% C - 1.13% Mn Grain size: 7
Austenitized at 910°C (1670°F)
i
@
GF)
2
800
g
ook
g
700
oT |
A
i
26
600
[
Best
72)
a)
Al
Ww
35
w
Bic
<
38
28
=
© s00
=
a
i
ney CeO:
Composition: Fe - 0.63% C - 0.87% Mn Grain size: 5-6
Austenitized at 816°C (1500°F)
=
"]
|
1 MIN.
108
DIAGRAM
1
Fa TT
0
+
4
35
F+C
36
<
+
37
Wr
400
a
F 300
42
a
44
fo)
a
50
=
55
~~
|
he}
=
200
DIAGRAM
100
1oe
:
65
10&
TIME
- SECONDS
of
eaasine
|
T
| MIN
LHOUR
tafol veto Ly tal oftu
5 10
102
TIME
10%
104
[WEEK]
105
65
LU 10&
- SECONDS
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
ee
Atlas of Time-Temperature Diagrams
16
Type: 1080
Type: 1086/1095
Composition: Fe - 0.79% C - 0.76% Mn Grain size: 6
Composition: Fe - 0.89% C - 0.29% Mn Grain size: 4-5
Austenitized at 899°C (1650°F)
Austenitized at 885°C (1625°F)
CG
TMT
1
cer
A
800
|7 3
8oo}-
i
700
700
OL a LL
+ z
A
if
F
a
32
600
+
ee
=
e 400
600
+40
a
are
ir
>
relealee
4\
=
A.
re
tu) 400
40
=
=
42
a
te
F
33
38
50
300
+
=
-
300;-
22
=| 55
200
47
+
ih
200
+
57
— 58
—h\
100
|
Estimated
Temperature
iz
of
cid
O51
2)
velo fv tit bated
50
102
10%
TIME
100
IDAY | IWEEK! 66
IHOUR
MIN.
pti
10%
i
10°
+
=
1
108
ATA
TTTA
50
10?
0512
IHOUR
I MIN.
- SECONDS
TOTO
10%
TIME
Type: W1 Tool Steel
LDAY | IWEEKI 66
10%
10°
10&
- SECONDS
Type: 1320
Composition: Fe - 1.13% Cc =, 0.30% Mn Grain size: 7-8
Composition: Fe - 0.20% C - 1.88% Mn Grain size: 7-8
Austenitized at 910°C (1670°F)
Austenitized at 927°C (1700°F)
:
6
oF
fT
Ieat
Py=r)
TM
1400;
Ss =
Cy,
7
700
+ A+G
es
ptm
>
700
43
45
F+C
+6
800}
i
i
146
—
ne
heft
-
Ly 400
50% >
&
F 300h
=
sneer
+
5S 500;—
ie
iey)
o
if
1000},
|
ive
;
=
ry
+
|
1200
600}-—
w
ptm
600
A
a7
Trae
a
51
55
SS
=
200+
400h—-
le Ce
a
TTT
:
2
iShatoen
2ey
z
:
|2001-4
8IRB
600}-
wi
/
12
eo
Ue
5 500 i
a
a
=
800
31
tu 400}a
4\
a
F 3oop 60°
60
+ M5
+
So
wv
Ste
62
200+
400}—
100+
200
7
*
Mso
10OF-
ae
200
ip
Tock
L |* csrimores
MIN.
IHOUR
temperanere | fi
0.5 | 2 5 10
LDAY | I WEEK] 65
mit
102
TIME
SOURCE:
DIAGRAM
103
min
104
105
eee
10&
i
Estimated
LMIN,
4
IHOUR
ni
051
;
2
5 0
— SECONDS
I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA,
1963
:
LDAY
mi
10 2
E nae
10
TIME
—- SECONDS
bli
IL
i
ea
‘Terpercture
ull,
10
10°
EEK
=
108
i
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH TO Sabie
ag
caa
SSSMSSSmmmmMhsesssssssfsss
————
—
SSSSSS
—__——
Atlas of Time-Temperature Diagrams
Type: Carburized
17
1320 (0.4% C)
Type: Carburized
Composition: Fe - 0.4% C - 1.88% Mn Grain size: 75% 7-8, 25%
3-5 Austenitized at 927°C (1700°F)
S55
Austenitized at 927°C (1700°F)
oF
800
3
800
3
1200
Es
7
600
5 500
a
Ceo
‘
°¢
1400)
700
Ww
|
0°
200}-
400
!00F
200)
—_
TM
2
g
700
:
23
600
3!
25
w
34
oy
= 500
31
-
a 400
a
Px
43
ci300
ne
41
g
oF
z
23
1000)
300|-
1320 (0.6% C)
Composition: Fe - 0.6% C - 1.88% Mn Grain size: 5-8
bi
53
200
100
EEK! 6 |
y
0512
58
102
TIME
103
104
108
EEK] 65
0
108
Litt
|
0512
510
102
TIME
- SECONDS
108
lu
104
108
- SECONDS
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
Type: Carburized
1320 (0.8% C)
Composition: Fe - 0.8% C - 1.88% Mn Grain size: 5-8
Austenitized at 927°C (1700°F)
|
RC
$HARDNESS-
TEMPERATURE
TIME - SECONDS
Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American
Society for Metals, Metals Park OH, 1977
———————————————————————————————
18
Atlas of Time-Temperature Diagrams
Type: Carburized
1320 (1.0% C)
Composition: Fe - 1.0% C - 1.88% Mn Grain size: 7-8
Austenitized at 927°C (1700°F)
°C
oF
800
L
1400
-RC
HARDNESS
700
1200
600
1000:
500
re) o
400
TEMPERATURE
200+
400
!10OF
200
°o
0512
50
102
10>
107
10°
10&
TIME - SECONDS
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
Type: Carburized
1320 (1.2% C)
Composition: Fe - 1.2% C - 1.88% Mn Grain size: 6-8
Austenitized at 927°C (1700°F)
°C
400
300,
TEMPERATURE
200
100
0512
50
102
103
104
TIME - SECONDS
105
106
Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
——$—$—$—$—$—$—————LLL
Se
LE
SSS
Atlas of Time-Temperature Diagrams
19
Type: 1335
Composition: Fe - 0.35% C - 1.85% Mn Grain size: 70% 7,
30% 2 Austenitized at 843°C (1550°F)
°C
oF
800
1400
Type: 1340
Composition: Fe - 0.43% C - 1.58% Mn (low Mn) Grain size:
8-9 Austenitized at 885°C (1625°F)
o.
°C
3
800
8
8
15
86RB
1200
600
15
1000
& s00
<
S
o 400
poe
= 300;
600
200;-
400
100F
200
=
700
=
700
WwW
°
g
600
18
Ww
a
& 500
33
q
23
23
.
as 400
ae
S 300
bile
33
S
abe
ieee
200
100
i
ws
EK/ 59
LMIN.
°
°
OSiln2)
5110
102
105
10%
10°
|HOUR
Lt LL
10&
0512
5 0
TIME - SECONDS
1 LHI
102
10%
| DAY
| WEEK! 62
10°
108
ol
104
TIME - SECONDS
Type: Fe-Ni-C
Type: 2340
Composition: Fe - 0.56% C - 0.26% Mn - 1.97% Ni Grain size:
Composition: Fe - 0.37% C - 0.68% Mn - 3.41% Ni Grain size:
8-10 Austenitized at 804°C (1480°F)
7-8 Austenitized at 788°C (1450°F)
°C
TIT
800
r
2
°C
| 3
800
Laj=
700
E18
700
T
ale
600
q
|
|
rr 400
|
|
T
|
1400
g
:
600
J
© s500}-
-
a
1200
|
w
ce
Ww
1000
32
$ 500
El
2 400
a
<
800)
a
a
F 300
ue Pa
is -
Galas
aie
a
|
mea
0512
|
tT
II |
5 0
eee
iI
10?
10%
TIME - SECONDS
rt
EK 300
60°
200+
400
'00}- 200
LDAY | | WEEK|64
|HOUR
LMIN.
|=
(oy
ain
| | | | | I-T DIAGRAM
ot coolLL aco
{8°
tu
104
|
10°
°
108
0512
50
102
TIME - SECONDS
PA, 1963 as published in Atlas of Isothermal
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
a
20
Atlas of Time-Temperature Diagrams
Type: Fe-Ni-C
Type: 2512
Composition: Fe - 0.59% C - 0.25% Mn - 3.90% Ni Grain size:
Composition: Fe - 0.10% C - 0.52% Mn - 5.00% Ni Grain size:
7-8 Austenitized at 927°C (1700°F)
8-10 Austenitized at 804°C (1480°F)
°C
°C
800
800
700
700,
HARONESS-RC
600
14
«=) 500
=
L
ra 400
fae
t="
400
+
=
uu
500
31
=
HARDNESS
RC
-
600
46
300)
300
TEMPERATURE
=|
200
400
+
F |1—1M90 |
'00/-
*
200+
+—-
|
|
\
| MIN
I
O51
|
Estimated
Temperature
—
0
2
ae
53
200
|-T DIAGRAM
| i
Us So IU
5 10
102
|HOUR
S|
| DAY
Ll
stimoted
100
Temperoture
|
Lawl
103
| WEEK]
64
thy
105
10&
TIME
TIME - SECONDS
Type: Carburized
Type: Carburized
2512 (0.4% C)
Composition: Fe - 0.4% C - 0.52% Mn - 5.00% Ni Grain size:
25% 3, 75% 7-8 Austenitized at 927°C (1700°F)
eG
104
10%
102
50
0512
10&
10°
- SECONDS
2512 (0.6% C)
Composition: Fe - 0.6% C - 0.52% Mn - 5.00% Ni Grain size:
80% 4-5, 20% 7 Austenitized at 927°C (1700°F)
°C
oF
800
800
8
”a
1400
1200
z
4
<a
=x
HARDNESS
RC
-
600
600
A)
w
700
700
1000
(ae,
5 500
4
tj 400
800
400
a
a3300
200
23
500
=
27
800
<
A+F+C—-@€
ie
ale riaea
YS
TEMPERATURE
30op- 60°
200}
400
400
Ms
200
100
| WEEK!
°
22
40
ae
=toe)
ins
elles
no
o50%
5!
tt
Lt Mso
100
—- F + C—++—++—_+-_
55
I- T DIAGRAM
2o0h—-—1Mo0|_|
58
Ne
+—
LMIN.
HOUR
IDAY | IWEEK| 6g
(e}
i}
OS
2S
TIME - SECONDS
10
102
10%
104
105
1o&
TIME - SECONDS
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1 963 as published in Atlas of Isothermal
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
Ue
a
Atlas of Time-Temperature Diagrams
/44|
Type: Carburized 2512 (0.8% C)
Type: Carburized
Composition: Fe - 0.8% C - 0.52% Mn - 5.00% Ni Grain size: 6
Composition: Fe - 1.0% C - 0.52% Mn - 5.00% Ni Grain size:
Austenitized at 927°C (1700°F)
2512 (1.0% C)
6-7 Austenitized at 927°C (1700°F)
°F
°C)
S
A
-—+ Approx. Acm-—1--
800
|
1400
140
Approx.
zAG
[SS
gs
30
35
=
PAE
xz
5
+—
4
|
324
=
Lt
30
A+F+C
800
tu 400
=
<q
z
a9
=p
Cs
1000)
5 500
o
e
3
Sp
600]
26
4
pee
1200
.
~
A
700
WW
i}
i
37
~
45
~
35
a
a2
e 3001
600
A——+
200}-
400
jam
49
53
46
©
en
oe
|1-T DIAGRAM
2
i
100
200!
Seas]
—s
ts i
I MIN.
'
| DAY
|HOUR
| WEEK]
50
ie)
0512
50
102
10%
104
10
10&
TIME - SECONDS
bd
TIME - SECONDS
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
Type: Carburized
2512 (1.2% C)
Composition: Fe - 1.2% C - 0.52% Mn - 5.00% Ni Grain size: 7
Austenitized at 927°C (1700°F)
x Z tH
Whe
TEMPERATURE
TIME - SECONDS
Society for Metals, Metals Park OH, 1977
Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American
Atlas of Time-Temperature Diagrams
22
Type: 2910
Type: 5140
Composition: Fe - 0.08% C - 0.49% Mn - 8.94% Ni Grain size:
10-12 Austenitized at 843°C (1550°F)
Composition: Fe - 0.42% C - 0.68% Mn - 0.93% Cr Grain size:
6-7 Austenitized at 843°C (1550°F)
°C
oF
°C
oF
F
800
4
1400
z
13
700
1200
24
600
Ww
& s00
q©
uj 400
31
1000)
WwW
800
q
PP
37
Be
S
44
fe
ee.
S
300}-
60°
200}
400
26
=
ee
eae
|- T DIAGRAM
'00F
200
+
|
I MIN.
MIN
Z
0512
50
a
|HOUR
102
103
LWEEK 62
| WEEK) ae
104
108
108
102
TIME - SECONDS
108
104
10°
108
TIME - SECONDS
Type: 5160
Type: 52100
Composition: Fe - 0.61% C - 0.94% Mn - 0.88% Cr Grain size: 7
Austenitized at 843°C (1550°F)
Composition: Fe - 1.02% C - 0.36% Mn - 0.20% Ni - 1.41% Cr
Grain size: 9 Austenitized at 843°C (1550°F)
cca
mm
7M
800
:
°6)—F
Zz
800
1400}
<
1200
33
Ww
1000
43
w
32
5 200
=
800
39
=
700)
22
600
= 500
tu) 400
=
FE
300
45
y
1400
¢
1200
Sil
1000
36
700
40
a
2
\8
600
ti 400
36
35
800
41
a
Austen!
=
600
50
Undissolved
bd 300
600
Corbldes
57
200}
400
46
t
Be
4 Ms
200;
400
+Ms50
100
200
|
Bee
58
Mao
20
;
EEK|65
05!
2
5 10
102
TIME
10%
- SECONDS
104
10%
mt
i
0
cence
tit
OSA
2)
85) 10
Paiitol E
etn
102
TIME
fut
103
104
10>
10&
- SECONDS
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation
and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
ens
Atlas of Time-Temperature Diagrams
23
Type: Fe-C-Cr
Composition: Fe - 0.33% C - 0.45% Mn - 1.97% Cr Grain size:
6-7 Austenitized at 871°C (1600°F)
°C
Type: Fe-C-Cr-Mo
Composition: Fe - 0.11% C - 0.38% Mn - 0.44% Si - 5.46% Cr -
0.42% Mo Grain size: 7-8 Austenitized at 899°C (1650°F)
3
°G
ta
800
<'
800
700
i
700
COP
32
28
600
oF
1400
WW
1200
27
w
31
& 500
:
35
‘
SS
tu 400
800
F 300
ea
300}
600
200+
400
100
200
2 500
4
tw 400
200
eS
1000
=
:
Sa
WEEK!
58
r)
r)
oie)
5) 6
10?
103
104
10°
10®
0512
50
TIME - SECONDS
102
103
104
108
108
TIME - SECONDS
Type: 410
Type: Fe-C-Ni-Cr-Mo-V
Composition: Fe - 0.11% C - 0.44% Mn - 0.37% Si - 0.16% Ni -
Composition: Fe - 0.22% C - 0.54% Mn - 0.64% Ni - 12.46% Cr
12.18% Cr Grain size: 6-7 Austenitized at 982°C (1800°F)
- 0.99% Mo - 0.29% V Grain size: 4-5 Austenitized at 1010°C
(1850°F)
°C
800
700
600
WwW
5
—
a
=)
Wi
(400
a
o
=
<
=
500
a
Ww
p=
a
F 300
200
100
ie)
0512
TIME - SECONDS
50
102
TIME
10%
10%
10>
“10
- SECONDS
as published in Atlas of Isothermal
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963
Transformation
1977
and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH,
ee
24
Atlas of Time-Temperature Diagrams
Type: 4027
Type: 4037
Composition: Fe - 0.26% C - 0.87% Mn - 0.26% Mo Grain size:
7 Austenitized at 857°C (1575°F)
Composition: Fe-0.35% C - 0.80% Mn - 0.25% Mo Grain size: 7
Austenitized at 857°C (1575°F)
°C
2
4G
800
43
800
TP
2
g
@
1400
<
700
82RB
700
600
ny
aoe
88RB
1200
13
al
it¢
Ww
& 500
i
fra
24
32
Fae
i 400
40
ss
- 300
18
Ww
1000
a
800
& 500
a
tu 400
=
00/-
200
Terenalore
qr
:
0512
TT
104
nr a
102
10%
50
LDAY
I WEEK]
10>
4!
89°
200+
400
100}
200
tet
|HOUR
33
= 3001.
200
{25
509
|
ae
pes
10&
| MIN.
Lo
OSM OSIIO
9
|HOUR
Lill
102
TIME — SECONDS
| DAY
103
| WEEK
| enn
105
|
|
LL
104
56
10&
TIME — SECONDS
Type: Fe-C-Mo
Type: 4047
Composition: Fe - 0.42% C - 0.20% Mn - 0.21% Mo Grain size:
5-6 Austenitized at 871°C (1600°F)
Composition: Fe - 0.48% C - 0.94% Mn - 0.25% Mo Grain size:
6-7 Austenitized at 816°C (1500°F)
°C;
800
°F
I
1400)
a
700
A
Tm
Got he
ie
IES
ae
1200)
}
=o)
¢
a
w
5 500
1000 }
t He
A+F+C
4
et
i
Rom
4
is
‘fall
88RB
16
t
i
23
alles
F+C
yam
ry]
I
rym)
A
fe
GS
g
(eae eaeear
|
|
=
12001-A
600}
|
Ww
1000
BS Gee
IL
17mm 2
|
400-7
roo
=
600
2
| |:
=
=e
—
le
f
= hey
72
\
ec
sles
Re
©
iy 400
a
—
300;
60°
Se 5O%
Ms £
al
Mso
Moot|
=
if
|
=
\.7%
Bec
a
+—
+—
_
AF
1
ue
fe
+
40
ty 400;—
(aw,
ils
449
400
ai
c
OC
200
i
5
|-T
erasine
Lectuul
CE
ee
j
a 300|- S00R===t
fe
LMIN.
Wo?
HOUR
Wo?
J+
200+
400
=
iy
bv Eycou)
TIME
il
DIAGRAM
Ms
eal
Mso
i™
Moot
eaten
t
150
|
na
[
—
+—
1- T DIAGRAM
=|
100 200
DAY
| WEEK| 60
Se
ay
else
oe
|
=
3]
200}
35
!
800
il
ale
0512
ATi
- SECONDS
510
| MIN.
OT
102
OTT
IHOUR
103
omen
104
| DAY
I WEEK] 63,
108
106
eT
TIME - SECONDS
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation
and Cooling Transformation Diagrams, American
Society for Metals, Metals Park OH, 1977
CaN
NS
ttc
ti
genes
Atlas of Time-Temperature Diagrams
25
Type: 4068
Type: Fe-C-Mo
Composition: Fe - 0.68% C - 0.87% Mn - 0.24% Mo Grain size
Composition: Fe - 0.97% C - 1.04% Mn - 0.32% Mo Grain size
7-8 Austenitized at 899°C (1650°F)
eG
7-8 Austenitized at 843°C (1550°F)
oF
16
800
oF
800
HARDNESS-RC
|
w
1400
As
1200}
S00
1000
+
;
ea
a*
al
po
ily
Zz
a=
al
A
4
27
34
\
if
37
ey
* austenite
XN
Undissolved
Corbides
hn
ng
a-F 300
Gale
TEMPERATURE
200+
400
ile
200+
400
=
33
800
400
&
&
eo
A+F+C
500}-
tw 400
a
TM
fi
al
800
=
P
100o}—+—
ge
Ss 500
=
rym 7 Trym
ix’
700
1200
600
TM]
|
1400)
700
=
+
F
Meso
\
43
C
47
59
|
Ms 7
100F
200
NNSA
INS
=
=
LMIN.
|
a0
102
TIME
Type: Mn-Mo
:
62
Ns
lie 200
fe)
OSs
=[
10>
HOUR
OF
|
104
LDAY | IWEEK| 66
|
0512
50
102
- SECONDS
103
104
10°
10°
TIME - SECONDS
Type: Fe-C-Mo
Weld Metal
Composition: Fe-0.10% C - 1.63% Mn - 0.41% Mo Grain size
5-6 Austenitized at 1093°C (2000°F) for 20 s
°C
cS)
Composition: Fe - 0.22% C - 0.79% Mn - 0.50% Mo Grain size:
8-9 Austenitized at 899°C (1650°F)
°C
x
4
g=
800
on
o
HARONESS-RC
c
a
x
700
76RB
600
83RB
500
25
32
400
300
TEMPERATURE
TEMPERATURE
200
jimoted
Estimated
Temperature
1 MIN.
{HOUR
vr iTc
er [8
|__
=|
J
|
:
seas eratars
| MIN.
eis | ey
400,
102
10%
DAY
104
10°
| WEEK!
T
39
10&
TIME — SECONDS
TIME - SECONDS
in Atlas of Isothermal
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published
Metals Park OH, 1977
Transformation and Cooling Transformation Diagrams, American Society for Metals,
Se
EE EEE
or
Atlas of Time-Temperature Diagrams
26
Type: Fe-C-Mo
Type: Fe-C-Mo
Composition: Fe - 0.40% C - 0.42% Mn - 0.53% Mo Grain size:
6-7 Austenitized at 871°C (1600°F)
hea
2
es
Z
6-7 Austenitized at 871°C (1600°F)
TTT
TP
apy
"GF
soo
é
anil
3
20
Ww
ee
& 500
28
-
+
1200
600/-
Ww
1000
f
u& 500}-
Ir
=
\
a
a
\
=
t—1Mso
r|
OF
Teaceuie
| |
Lowi
0512
5 10
MIN
Pa
1
102
TIME
IWEEK] 69
|
108
104
108
F+o
LW ool. 6004
of
108
Msi
!
ij
Moo
ial
[Te
,
36
“SN
400
100} 2001
eo
+26
800
200
*
T
i
he ac
Kage eel
Me
es19
rome
45
200
At+F
ae:
37
hy)
80RB
=
| |
7
7
© ie
= soe
a
II
©
Po
5
her Tas
te 7
ef
;
-
At
|—+
rol
700
600
ity
Composition: Fe - 0.36% C - 0.17% Mn - 0.82% Mo Grain size
DAG RRA
+
7
teeta
eee loo
*
i
-—— remperctre
t
0512
LMIN
TTT
50
- SECONDS
45
IHOUR
TT
102
TIME
103
LDAY | IWEEK] 59
10%
108
108
- SECONDS
Type: Fe-C-Mo
Type: Fe-C-Ni
Composition: Fe - 0.33% C - 0.41% Mn - 1.96% Mo Grain size:
3-4 Austenitized at 1038°C (1900°F)
Composition: Fe - 0.40% C - 0.57% Mn - 3.49% Ni - 0.01% Mo
Grain size: 8 Austenitized at 871°C (1600°F)
Sines
2
*C
“ar
cre}
:
800
is
Late)
=
1200
28
700
18
600
W
< na
a
800
a
F soof-
0°
200;-
400
‘ory
100/—
200
fine
hea
:
B
13
1000
22
368
& 500
Pe
47
a
38
40
=
+
600
Ww
% 500
x
1400
700
31
'000
0
qo yal 800
30
=
F soof-
£00
200}
400
100
200
fale
porticles
Beaten
LWEEK| 57
0
0512
50
102
108
TIME - SECONDS
SOURCE:
WEEK| 5g
ie)
104
108
10&
0512
50
102
103
104
108
108
TIME - SECONDS
I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
N-_e«_-:___@_,
,
0 0.0009._S_a“es_“lH
...0.0.0.
——_—_—_—_—_——___—_—_—_(:::_—
tlas of Time-Temperature Diagrams
27
Type: Fe-C-Ni-Mo
Composition: Fe - 0.41% C - 0.60% Mn - 3.51% Ni - 0.21% Mo
Grain size: 7-8 Austenitized at 871°C (1600°F)
Type: Fe-C-Ni-Mo
Composition: Fe - 0.39% C - 0.56% Mn - 3.53% Ni - 0.74% Mo
Grain size: 8-9 Austenitized at 871°C (1600°F)
a
4
ll
800
‘
800
700
©
<
700
\2
600
1200
Ww
1000
rt]
& 500
—
<q
« Ags
800
S
600
soo}
ak
7
@& 500
25
r=
qt
30
or ya!
39
Cs
47
Rol
1
1
Teta; ta ecteeeat
3
aies
[=e@
+
s+
1200-—++
600)
LO
+
1400
2
1400)
1
myn
ig
L
1000)
A
I
|
800
-
L
600
=
Ss
F>—Ms0
200k
400
200}
400+-——4M90
/—7
ou
=
100F
200
'00F-
EEK 58
°
O51
2
g00b
Cems
om
Na
|
HOUR
LMIN.
TT
5910
12)
=|
DIAGRAM
St
4
O15
108
TIME
I-T
102
10%
10
TIME
— SECONDS
| DAY
| WEEK! 58
10°
10°
- SECONDS
Type: Fe-C-Si
Type: Fe-C-Si
Composiion: Fe - 0.50% C - 0.23% Mn - 0.53% Si - 0.05% Cr
Composition: Fe - 0.54% C - 0.23% Mn - 1.27% Si - 0.05% Cr
Grain size: 20% 2-3, 80% 7 Austenitized at 843°C (1550°F)
Grain size: 40% 3-4, 60% 7 Austenitized at 871°C (1600°F)
ro
8
°C
800
é
800
700
Ks
£G
|
oF
1200\
600
24
W
& 500
Be
a0
1000
Ww
& 500}-
35
q
43
a
afj 400
=
= 300,- we
oe
=
:
-
=
:
nye
-
—
FL
28
ie
=
80:
0
31
cles
ry36
a=
N
46
Ms
+= 52
2 300 als +=
200|/- jojeaiea
|
|
51
62
.
an
ey Soe TT
0512
in
100 200
|
100
=
fe
54
200
102
TIME
SOURCE:
600
& soo
=
2
nT
A
700
2\
=
2
eee
ye
—SeEovEeeen
Ge]
1400-— ,. —
=
<
TT pM
[
103
—- SECONDS
104
10°
10®
0512
50
102
DAY
(HOUR
I MIN.
es
(WEEK!
vb Poth Yt
oh CA Lael Pathol cal
10°
10%
108
63
0
TIME - SECONDS
published in Atlas of Isothermal
I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as
1977
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH,
i
Atlas of Time-Temperature Diagrams
28
Type: Fe-C-Si-Cr
Type: Fe-C-Si-Cr
Composition: Fe - 0.55% C - 0.78% Mn - 1.62% Si - 0.77% Cr
Grain size 6 Austenitized at 899°C (1650°F)
Composition: Fe - 0.53% C - 0.24% Mn = 2.32% Sit= 0.32% Cr
Grain size: 50% 2-3, 50% 7 Austenitized at 982°C (1800°F)
°C). °F
‘
°C
800
z
800
32
700
1400
<
700
1200)
37
1000
42
ei
“yi
& 500
me
a44
uj
a 400
E 300;
°°
ok
» 300
200;-
400
100
200}
600
a
42
& 500
q
600
q
400
a
Fa
57
=
200
100
| WEEK! 65
°
Mm
O51
2
©
102
108
104
108
0
108
0512
580
TIME — SECONDS
102
103
TIME
104
108
108
- SECONDS
Type: Fe-C-Si-Cr
Type: 9260
Composition: Fe - 0.51% C - 0.25% Mn - 3.80% Si - 0.32% Cr
Composition: Fe - 0.62% C - 0.82% Mn - 2.01% Si - 0.07% Cr
Grain size: 30% 3-5, 70% 7-8 Austenitized at 1038°C (1900°F)
Grain size: 6-7 Austenitized at 871°C (1600°F)
*
a
=F
800
800}-
=
:
ETT
Pp
PUT
:
3
nm @
700
ol a
600
WwW
5
Ww
1000
aSs 500 =
500
=
36
\
33
33
e
ac
uj 400
=
800
uu) 400}-
.
(oe
E 300
rad eer
See
200F
400
100/—
200
=
=
36
43
50
55
200
oa
of
al +
+
E
LMIN
Osa
2
50
+
i
IHOUR
cll) 2 veto 3 foDetut 4 cf
5
10
10
TiME - SECONDS
SOURCE:
LDAY | WEEK| 64
0
10
10 6
0
ae
0512
510
monet
102
IWEEK|@5
103
104
pada
08
108
TIME — SECONDS
I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
—_—_——_—_—_—_—_X
PXRnkRkn ra _
Atlas of Time-Temperature Diagrams
2?
Type: 9261
Composition: Fe - 0.62% C - 0.95% Mn - 2.01% Si - 0.15% Cr
Grain size: 6-7 Austenitized at 871°C (1600°F)
°C
Type: 9262
Composition: Fe - 0.62% C - 0.86% Mn - 2.13% Si - 0.33% Cr
Grain size: 6 Austenitized at 871°C (1600°F)
°C
°F
800
-RC
HARONESS-RG
HARONESS
700
600
600
500
400
TEMPERATURE
600
TEMPERATURE
200
200
400
100
200
0512
TIME — SECONDS
50
102
10%
104
10°
10&
TIME - SECONDS
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Diagrams, American Society for Metals, Metals Park OH, 1977
Transformation and Cooling Transformation
O
E
eee
ee
Atlas of Time-Temperature Diagrams
30
Type: 6145
Type: 6150
Composition: Fe - 0.43% C - 0.74% Mn - 0.92% Cr - 0.16% V
Grain size: 8 Austenitized at 843°C (1550°F)
Composition: Fe - 0.53% C - 0.67% Mn - 0.93% Cr - 0.18% V
Grain size: 9 Austenitized at 843°C (1550°F)
°G)
°F
800
:
ieee
SCs
pT
|
A
:
L
2
;
;
z
|
S's
;
800/-
1200
26
1200
600}-
105
600}-
Ww
1000
& soofE
33
sles
Ww
1000
& 500}=
Pee
800
“Sif
a
=|44
r2
5
300}- 60°
oes
of
Lt fiat
OS alee
I MIN.
Patil
on
Petit
102
|HOUR
Ealtunt
103
TIME
| DAY
104
bh
105
iF
3!
36
7
36
31
39
800
=
Lil ool 600
52
200+
|
400
ical 200[+-+* esa
IWEEK]
eal
é
=
20
45
|
H
‘od
SSSI
a
200;+- 400
'20F- 200
-
a
700
afk
700}—
r
1400
Me
iy
ry
it
6!
L—
of
10
051
clu!
2
MIN
Evil
5 10
102
— SECONDS
TIME
Type: Fe-C-Cr-Mo-V
|HOUR
Pvt
LDAY
Viti
103
| WEEK]
Pati) |ruil
104
10°
65
1o&
- SECONDS
Type: Fe-C-Cr-Mo-V
Composition: Fe - 0.23% C - 0.82% Mn - 1.22% Cr - 0.53% Mo
Composition: Fe - 0.40% C - 0.78% Mn - 1.25% Cr - 0.53% Mo
- 0.22%
- 0.22%
V Grain
size: not given Austenitized
Cer
at 843°C
mm pT
PTT
@
°¢,
‘si
3
ete
|—=-7—+-+ |
<
Tay
800
1400
“|
=}
g
700
ele]
ipa
solved
Carbides)
50%
1000
-
3 400
|
i
Hh
Le
1000
© 500
=_
7
Nt
40
oe
Pass
<
th400
sa
=
|
400
(1600°F)
te
600
WwW
F, +¢
|
Feesoolsacoe
200}-
+
at 843°C
1200
=
=a) pal
800
size: not given Austenitized
°F
aan
os)
=—|—-
S 500
=
V Grain
1400
ra
1200
WwW
(1600°F)
‘lineal
|
el oral
Gale
POO
e400
100
200
M
* Estimated
100)
200
* Estimoted
Temperature
if
Te
0
|
0512
50
102
TIME
SOURCE:
HOUR
Lili
103
— SECONDS
UW
104
108
|-T
Temperature
4
DIAGRAM
af
108
‘
Aer
a s
amie
LU
|
la
Tan
| DAY
ae
a
ae
TIME
- SECONDS
I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
SSS
SSS
Atlas of Time-Temperature Diagrams
31
Type: Fe-C-Cr-Mo-V
Composition: Fe - 0.33% C - 0.84% Mn - 1.05% Cr - 1.07% Mo
- 0.26% V Grain size: 7 Austenitized at 1010°C (1850°F)
Type: Fe-C-Mn-Ni-V
Composition: Fe - 0.20% C - 1.44% Mn - 0.49% Ni - 0.16% V
Grain size: 12 Austenitized at 843°C (1550°F)
o
°C
oF
|
800
E
1400)
“Ay
*
an
1
T pry
|
|
1200
WwW
o
> 500)
rd
-————
|
A
LF
a
KS
:
~ ine
700
meene)
\
30
34
SS
S|
440
600
=
—-Ms
=
wu 300
600
200}
400
a6
ij
sm
42
45
1*
lawl
T
1200
WW
1000
ra
800
lu 400
a
&
i 300
600
200k
400
100}
200
7
-T
200
4
encacure
DIAGRAM
{4
|
°
1400
me
5 500
hs
Ih
1 ie.
J
al Sine
i
(—s0%4
iy
2
=
ogtiga
+Ft
m
100
é
Se=
Aas
2
+—|— |
800
tJ/'400
a
°,
i
ek.
= -
-}+——
(ooo
8
pa
eee el
ae
7‘00
600
ya
[
LMIN.
IHOUR
Temperchiret
Estimoted
LpAY | |WEEK
oO
)
0512
50
102
10%
104
105
10&
0512
50
TIME - SECONDS
102
10>
104
10>
10&
TIME - SECONDS
Type: Fe-C-Ni-Mo-V
Type: Fe-C-Ni-Mo-V
Composition: Fe - 0.26% C - 0.57% Mn - 2.20% Ni - 0.48% Mo
- 0.09% V Grain size: not given Austenitized at 843°C (1550°F)
Composition: Fe - 0.24% C - 0.69% Mn - 3.35% Ni - 0.50% Mo
- 0.09% V Grain size: not given Austenitized at 843°C (1550°F)
°C
2
°C
er
si
1400
|
7
Ato
1-743
—
A
a
1000
Wy
iaa
(32,
A +
F
apcts
‘
~~
50%tt
WwW
600
=! ara
+—
400
+,
tl [=
SEs
|-T
700
z
27
ie
a
43
ro
eal
a
800
=
2c
ra eines
DE
ae
200F
[ I.
g3
1
E4
tJ
& 400
F 300
'
oa
= =
rs
Z
A+F+e
wes
=
imalpsae
i
Sa
l
|+ +
a
<1
t BL
=
al
Z
ok
&
4
200
Saat
0
1200
mo
ee
= 400
5
800
Fra}
poe
a
Penge
a
LMIN.
OSieano7
600
Pe
tah
DIAGRAM
100F
Taiaull
if
a
eee
Tt
*
100/—
oF
oF
200
Temperature
IHOUR
102
10%
TIME — SECONDS
104
105
108
)
TIME - SECONDS
in Atlas of Isothermal
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published
1977
OH,
Park
Metals
Metals,
for
Society
American
n
Diagrams,
Transformatio
Cooling
n
and
Transformatio
ee
EEE
Atlas of Time-Temperature Diagrams
oe
Type: Fe-C-Mn-Ni-Cr-Mo-V
Type: Fe-C-Mn-Ni-Cr-Mo-V
Composition: Fe - 0.27% C - 0.84% Mn - 0.60% Ni - 0.73% Cr -
Composition: Fe - 0.25% C - 0.88% Mn - 0.59% Ni - 0.73% Cr -
0.90% Mo - 0.11% V Grain size: 7 Austenitized at 927°C
0.88% Mo - 0.23% V Grain size: 6 Austenitized at 1010°C
(1700°F)
°C
800
(1850°F)
oF
1400
{8}
2
800
16
700
&
700
1200)
25
600}
WW
g
oF
Zz
1400
<
W
1200
3I
28
600
1000)
ive]
& 500
33
1000
& 500
<
mie
<
fi 400
ss
600
aF 300
600
200}
400
200}
400
100
200
100
200
ta 400
a
aFr 300
2
id
39
o
43
Estimated
Temperature | _
35
44
LMIN.
°
|
0.51
f°)
2
108
TIME
|HOUR
LLU
0512
| DAY
| WEEK!
cul | iffil =|
5 10
102
—- SECONDS
TIME
10%
104
10>
10&
- SECONDS
Type: 3140
Type: 3310
Composition: Fe - 0.38% C - 0.72% Mn - 1.32% Ni - 0.49% Cr
Grain size: 7-8 Austenitized at 843°C (1550°F)
Composition: Fe - 0.11% C - 0.45% Mn - 3.33% Ni - 1.52% Cr
Grain size: 9 Austenitized at 899°C (1650°F)
ne
800}
*)
mill
rym
1400-4
700
=W
TT &
pS
<=
a g
e
&
Cia
c= = =)
ie
Se
1200
13
600
ira)
=
t
& soo}
=
<eal
+
26
ra
=
4 4
34
800
(at
=
= 300
600}
200K
400}
|
Es
rm
5
ul
=
LMIN
heat
OS
48
+
Kae = sett
of
iva
—
2
5, 10
iHOUR
Lisl
102
A Lu
103
TIME - SECONDS
104
| DAY | |WEEK]
l
105
60
108
1400
TT
|
TM
2
3
z
Ae
600/—
21
t—
mM
eek
:
1200:
+20
1ooo}_ +4
es
=
15
Ga
OT;
L-
*
.
400
100/—
200} ||
| 36
Mso
Mga
600)
200;-
Of
34
Ll y,*}
800k
a
=
re 300
12
1000F A
& s500}ss
Para
84RB
I-T DIAGRAM | |
,
OS)
1
™ esnmeres
=
| MIN
0
2
|
a
|HOUR
a TT
SiO
102
TIME
10%
=
+
104
iDAY | |WEEK] 42
105
10&
- SECONDS
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
eee
Atlas of Time-Temperature Diagrams
33
Type: Carburized 3310 (0.4% C)
Type: Carburized
Composition: Fe - 0.4% C - 0.45% Mn - 3.33% Ni - 1.52% Cr
Composition: Fe - 0.6% C - 0.45% Mn - 3.33% Ni - 1.52% Cr
Grain size: 65% 8, 35% 5 Austenitized at 927°C (1700°F)
ne
poe hs
er
1400
t
Bk.
acai
PTT
PTT
TT
ne
A
RIGS
eal
;a
[fe
5
% s00}-
2<
ty 400f-
Ms
=
t=]
F+CO 423
600}-
eae
=
400
100F
ob
200
ae
t—
LL
0512
7
‘B
en Ese PHELSN Bers =e
e=
te
é
r
14
27
= s00e.6OCh
b
A
f
toatl
5 10
=!
el
7
Wo
at
F+e
l-sox
t t
t
200
|-T
|
~=
+
al
ata!
|
=
a
=
48
ii
1:
|
LMIN
Z
[
800
© s00-
=
ase
1- T DIAGRAM
Ue ee Eis Li
as
26
tel
lial
5lana 0
*
TTI
PTTT |
po
et
+Mgo
fe
1400/4
ra seem
ae,
ee
Mso
200}
ie
[
20
pala
os
b—
700
|
as
a
F 300f- 6°
—_ $
=
=
|
800
a
800
—t
|
Qa
3
TTT PATI
TTT
4) “FT PAT
TTT
TT
-A+F
4
A
1000
Grain size: 6 Austenitized at 927°C (1700°F)
hohe
=
so0Ww
ATT
A
3310 (0.6% C)
+
55
ai
~
i
DIAGRAM
f-
100
46
_)52
t:
+
|
| DAY
HOUR
| WEEK]
69
beat! Tito) Cetinh 1i
Viv
102
TIME
|HOUR
UM an
0
10&
108
104
10%
MIN
102
TIME
—- SECONDS
10%
am
104
| DAY
et
[WEEK]
10°
62
10°
- SECONDS
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
Type: Carburized
3310 (0.8% C)
Composition: Fe - 0.8% C - 0.45% Mn - 3.33% Ni - 1.52% Cr
Grain size: 8 Austenitized at 927°C (1700°F)
°C
800
700
TEMPERATURE
200
100
0512
50
102
103
104
105
1o®
TIME - SECONDS
American Society for Metals, Metals Park OH, 1977
Atlas of Isothermal Transformation and Cooling Transformation Diagrams,
Atlas of Time-Temperature Diagrams
34
Type: Carburized 3310 (1.0% C)
Type: 4130
Composition: Fe - 1.0% C - 0.45% Mn - 3.33% Ni - 1.52% Cr
Grain size: 4-5 Austenitized at 927°C (1700°F)
Composition: Fe - 0.33% C - 0.53% Mn - 0.90% Cr - 0.18% Mo
Grain size: 9-10 Austenitized at 843°C (1550°F)
16)
oF
HARDNESS-RG
n
-RC
HARDNESS
TEMPERATURE
TEMPERATURE
+
|- T DIAGRAM
|
1
|
Estimated
lt
Temperature
of QSEttmel
al
2 750
—
LMIN.
102
i 105a
|HOUR
eT
104
10°
|DAY
| WEEK!
0
4g
10&
A510 rr
102
|
0512
TIME - SECONDS
I MIN.
|HOUR
103
104
| DAY
| WEEK! 56
10°
10&
TIME - SECONDS
Type: 4137/4140
Type: 4150 Mod.
Composition: Fe - 0.37% C - 0.77% Mn - 0.98% Cr - 0.21% Mo
Grain size: 7-8 Austenitized at 843°C (1550°F)
Composition: Fe - 0.55% C - 0.60% Mn - 1.03% Cr - 0.19% Mo
- 0.36% Ni Grain size: 7-8 Austenitized at 843°C (1550°F)
°C
°C
800
800
HARDNESS-RC
HARDNESS-RC
700
700
600
600
31
38
4\
W
WwW
© soo
& 500
=
i=
31
<
=
39
ai 400
tu 400
4
- 300
g
45
Ww
F 300
51
200
200
100
100
a
°
O5 le 2.50
TIME
- SECONDS
102
TIME
10%
104%
10>
10
- SECONDS
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation
and Cooling Transformation Diagrams, American
Society for Metals, Metals Park OH, 1977
a
aaa
eee
Atlas of Time-Temperature Diagrams
35
Type: 4317
Type: 4340
0.24% Mo Grain size: 7 Austenitized at 927°C (1700°F)
0.33% Mo Grain size: 7-8 Austenitized at 843°C (1550°F)
Composition: Fe - 0.17% C - 0.57% Mn - 1.87% Ni - 0.45% Cr -
Composition: Fe - 0.42% C - 0.78% Mn - 1.79% Ni - 0.80% Cr -
G
Z
SRS
800
rd
soot
é
qoS i
:
86RB
600
13
Wy
1400-1
700}-
33
rE
a
05 400
ey
py
é
=
15
eS
w
1000
© s00
=
< ei800
ox
=
=
FJ 300
i
[
|
100
200
of
ts
}
|| LMIN
ttl
|vit
0512
510
102
bay
ree 200
LHOUR
103
LDAY | IWEEK! 4g
e
104
nT
10°
+—4
32
4\
48
51
Mso
200. 400-4 Moo
r
|
+
+——_|_
|
-+——
|-T DIAGRAM ++—_+++——
24
Med
=
| +++
*
Son
|
20
i— A
b
= 3001 °°
200}- 400}—+
L
2
A
HIi As
feoole
600
MG
Sy
rt
|
108
ea
&
of
+.
|-T DIAGRAM
0512
cell
510
TIME - SECONDS
su
Seah
Lyitll |
ysl
102
t—
|
|HOUR
MIN
105
LDAY | | WEEK| 62
| yh
104
10°
10&
TIME - SECONDS
Type: 4360
Type: 4615
Composition: Fe - 0.62% C - 0.54% Mn - 0.67% Si - 1.79% Ni -
Composition: Fe - 0.15% C - 0.63% Mn - 1.90% Ni - 0.24% Mo
0.60% Cr - 0.32% Mo Grain size: 7-8, occasional 4 Austenitized
Grain size: 8 Austenitized at 927°C (1700°F)
at 982°C (1800°F)
Shh
A
800
mM
e
|
2
1400
700
i
As aI
600
=
& soo}=
Ps
tj 400;-
g
|
ea
|
800
S
a
Fe
SS cee
x
200;-
400
100f—
200)
Mso*
® Estimores
Moo i
ed
1S
26
zs
ae
°
87RB
r ime
ie400
eS
85RB
1000)
=
tw 400
=
ea
S 300- “aa
1200
&= 500
A
Z
800
6
[a=
600)
w
|
3
1400
700
+
il
1000
oF
800
g
1200}-4+—_+_+
Ww
2G,
*
Ei
Temperature
0512
Cy ital
50
Lith
°
Oye
aps
Swe
OE
Temperatur
it -
0512
50
102
108
TIME - SECONDS
104
10°
10S
TIME — SECONDS
SOURCE:
in Atlas of Isothermal
I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published
Metals Park OH, 1977
Transformation and Cooling Transformation Diagrams, American Society for Metals,
._
Atlas of Time-Temperature Diagrams
36
Type: 4640
Type: 4815
Composition: Fe - 0.36% C - 0.63% Mn - 1.84% Ni - 0.23% Mo
Grain size: 7-8 Austenitized at 843°C (1550°F)
e
FL
TM
pr
Tym) 2
Me)
|3
800
=
700
800|—
6
===
1400
700}-
fel.
—
1200
L~
>]
1000}
2 Od=
IL
23
OTL
|
ft
42
48
t= =
F 300f- | °°
cs
400
100
200
[
0
Tym
=
oe
|
z
Ww
q
tj
a 400
a
F 300
|
|
200+
mm)
& 500
32
a
0111]
IF
600
is
a
65 400+ ao
oe
3
600;-
Ww
:
Composition: Fe - 0.16% C - 0.52% Mn - 3.36% Ni - 0.19% Mo
Grain size: 8-9 Austenitized at 899°C (1650°F)
I-T DIAGRAM
IMIN.
0.512
5 10
aT
10?
TT
TIME
IHOUR
200
DAY | IWEEK| 60
TT
108
100}—
104
10°
oF
108
|
T
al
A
OT
400
=
ft
is
200+
+
|1-T
|sacar
|
7]
DIAGRAM
|
|
Temperature
=
0512
| IMIN
AAA
510
- SECONDS
IHOUR
OT Tc
TO
102
10
TIME
LDAY | IWEEK] 4g
104
108
108
—- SECONDS
Type: 4815 (1.0% C)
Type: 8620
Composition: Fe - 0.97% C - 0.52% Mn - 3.36% Ni - 0.19% Mo
Grain size: 7 Austenitized at 982°C (1800°F)
Composition: Fe - 0.18% C - 0.79% Mn - 0.52% Ni - 0.56% Cr 0.19% Mo Grain size: 9-10 Austenitized at 899°C (1650°F)
<
|
00
LL
s
2
800
1400
A
700
E
aes
e
1200}—+
600
iW
z
700}-
~e
i
|
31
Sor
38
fp
A
[
lis
LL
RANE:
z
e
i
= isere
2
16
1000
19
& 500}|
ot
<
=e
AGO
Inn
tJ 400;—
48
Ws soot. 60°
36
a
ES
53
200/— 400;
200F
GS
RL
Ato
=
g
100/—
+4
=
600}
WW
GO
EL
1400;
\7
=
a afl
L
1200
=
2 500
=
74
800}—
+
1000
WwW400}-
Vea
sy
a
3
*
L
0512
Mst
eerennis
(oe
+
LMIN.
mim
5 10
HOUR
eT
UT
10?
10%
|
a.
200
=
100}- 200
LDAY | I WEEK] 62
ull
min
10%
10°
400+
\- T DIAGRAM
* eavimores
OF
10&
LE
0512
TIME - SECONDS
|
Temperature
bs
510
LIN
illu
102
TIME
HOUR
HEL
LLL
108
IDAY | IWEEK] a6
|
104
108
108
— SECONDS
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
hl
TCT
—eee—e—e—
I
— ——————e_
Atlas of Time-Temperature Diagrams
37
SS
Type: 8630
Composition: Fe = 0.30% C - 0.80% Mn - 0.54% Ni - 0.55% Cr 0.21% Mo Grain size: 9 Austenitized at 871°C (1600°F)
a
a
Soi
PL
Ag -4—}—--
a
4-4-4
|
4-}
Type: 8660
Composition: Fe - 0.59% C - 0.89% Mn - 0.53% Ni - 0.64% Cr 0.22% Mo Grain size: 8 Austenitized at 843°C (1550°F)
Th
Poy,
+ - Z
800}-
A
<
82RB
18
et
S
26
E
as
ac
a
42
E
36
=
OOO
LL
V8
1400
&
1200
24
1000
35
800
34
;
600}—
Ww
32
sy JOS]
-
32
WW
ALLL On LOL
700;—
13
w
vee
ee
Ps
29
tw 400;-
a
43
e cyaile G89
49
=
55
200+
400
'00/— 200
of
0512
Lv
luol Pvatul
510
|
ee
Pvt
| vebuot (vito
102
103
10%
TIME — SECONDS
10°
64
Alc
10°
0.51 2
10®
TIME - SECONDS
Type 8745
Type: 9420
Composition: Fe - 0.44% C - 0.90% Mn - 0.45% Ni - 0.54% Cr -
Composition: Fe - 0.24% C - 0.94% Mn - 0.47% Si - 0.30% Ni -
0.22% Mo Grain size 9-10 Austenitized at 843°C (1550°F)
0.34% Cr - 0.14% Mo Grain size: 7-8 Austenitized at 899°C
‘
(1650°F)
g
©
Tom
<
800}
ne
16
700}
&
12
aa
7
23
Ww
26
S
E=
26
30
ve)
S
be
WW
49
r
12
600}—
17
&= soot
26
p=¢
35
a
443
5 400+
ri
F- 300+
of
0512
|
ea
BOO ToC aie
[
lenewpecties
T
—
I MIN.
flats (ati sith LH
50
we
fo®
IHOUR
Tul
TIME - SECONDS
10
LDAY | IWEEK| 6}
Lect
Te
8
4"
F+oO
Ww
=
0. Sl
2755
cell
0
LDAY | IWEEK| 50
IHOUR
LMIN.
l
=]
|
| eee
4
100 200b
of
jae
1- T DIAGRAM
vat! (oft
102
10%
veoh |tid
104
105
10&
TIME —- SECONDS
I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Society for Metals, Metals Park OH, 1977
Transformation and Cooling Transformation Diagrams, American
SOURCE:
NEE
EEE
eae
Atlas of Time-Temperature Diagrams
38
Type: 9440
Type 9860
Composition: Fe - 0.38% C - 1.08% Mn - 0.70% Si - 0.34% Ni 0.40% Cr - 0.11% Mo - 0.030% Zr Grain size 10-11 Austenitized
at 857°C (1575°F)
Composition: Fe - 0.57% C - 0.82% Mn - 1.16% Ni - 1.07% Cr 0.26% Mo Grain size: 4-5 Austenitized at 927°C (1700°F)
°C
oF
800
Ay
7
1400
A
ea
=
A
°C
<
%
z
800
i
6
oe
<
700
22
427
600
32
i
Sj
+
=
700
1200
18
600
w
1000
5 500)
<
800)
26
w
27
% 500
oT
<
33
u 400;-
uj 400
iz
=
soo}
be
$
300}-
60°
200+
400
'00F
200)
60°
=
200}- 400
100F
(Sh
200+
ah
LMIN.
HOUR
LDAY | I WEEK| 60
Oe
ry
LUA
oye) (|) (2
0512
50
102
103
TIME
104
108
PE
Le)
108
102
103
104
10°
108
TIME - SECONDS
- SECONDS
Type: Fe-Ni-Cr-Mo
Type: Fe-Ni-Cr-Mo
Composition: Fe - 0.14% C - 0.26% Mn - 2.21% Ni - 1.05% Cr 0.26% Mo Grain size: not given Austenitized at 899°C (1650°F)
Composition: Fe - 0.13% C - 0.16% Mn - 3.08% Ni - 1.76% Cr 0.49% Mo Grain size: not given Austenitized at 899°C (1650°F)
©
Far am
800
7
BOh
i
1400
1400
700
1200
600
WW
}
700
/\
600
A
=
1200
{000
% 500
ra
=
WW
b a
2
=
=
ee
= 300f-
°°
200+
400
200
=
60°
200K
400
100
200
I MIN.
L|
‘Saal iccac SO
oa
|HOUR
|
5 10
DIAGRAM
{ 4
ee
0512
FE 300}
1-T DIAGRAM
he
)
800
W 400
—
100}
1000
5 500
80o}-+
W 400
gas
800
L iH
102
TIME
|IHOUR
HLL
108
—- SECONDS
104
108
108
°
0512
510
102
TIME
103
104
105
108
- SECONDS
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
—_——<—S—
ees
$<
Atlas of Time-Temperature Diagrams
39
Type: Fe-Ni-Cr-Mo
Composition: Fe - 0.55% C - 0.83% Mn - 1.15% Ni - 1.01% Cr -
0.48% Mo Grain size: not given Austenitized at 899°C (1650°F)
sO
a
FTL
1400)
OTUL
%
Af
=I
;
7OO}-—
“Oy
a3
800
<
=
ieee
30
32
1000
Ex
800
1
[
sr
|
a
400 be
100F
200
—
of
ww
1000}
F
800
rales
60°
i
+
2
aF 300}
49
55
200k
400}——Ms *
100
200
7
Felnaled ae
celuol
0512
22
29
WW 400
Ns
eae
|
|
57
*
200}
z3
=
i
Ps
.
F soot °°
“h
a
1200
ae
i”
W 400;—
B
ats
=a
600
& 500
2
He
t
700
oes
|
rr
1400
=i
As
L
Ww
Composition: Fe - 0.51% C - 0.73% Mn - 2.74% Ni - 0.99% Cr -
0.45% Mo Grain size: not given Austenitized at 899°C (1650°F)
NOEL
1200/4
600}© soo
OU (1, OnORL111 PRE
ij
8o0o}-
Type: Fe-Ni-Cr-Mo
5 0
|
5
eet
LMIN.
Epi
Lyell
102
TIME
{HOUR
Evite
104%
10%
LDAY
cdi
10°
| WEEK
Eth
DIAGRAM
[ Estimated
Lo
JI
Temperature
1 MIN.
0
HOUR
TT
eT
102
510
0512
108
- SECONDS
TIME
104%
10%
L
| DAY
108
10°
- SECONDS
Type: Nitralloy, 135 Mod.
Type: 1060/10B60
Composition: Fe - 0.41% C - 0.57% Mn - 1.57% Cr - 0.36% Mo
- 1.26% Al Grain size: 7-8 Austenitized at 927°C (1700°F)
Composition: Fe - 0.63% C - 0.87% Mn - none or 0.0018% B
Grain size: 5-6 for both Austenitized at 816°C (1500°F) Boron
°
CG)
°
g
Be
Foo
°C
1400
2
ue
800
1200
30
w
2°°
a
200+
400
'00F
200)
35
5 aay
28
rsies:
33
LWEEK| 60
fc)
0512
50
102
10?
TIME - SECONDS
104
10°
1000
45
3
60°
86RB
12
600
& 500
soo}
West
-—J
1200)
1000
< soot.
Z
700
3
600
2
1400
22
700
w
oF
=
As
800
treated: black lines
ao
f *1600°F
106
S
re 300
S00
200+
400
100
200
Yansasare
r
6
0512
50
EEK] 42
1
I MIN.
102
10>
10%
105
10&
TIME - SECONDS
published in Atlas of Isothermal
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as
Park OH, 1977
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals
LEE
40
Atlas of Time-Temperature Diagrams
Type 4317/43B17
Type: 4615/46B15
Composition: Fe - 0.17% C - 0.57% Mn - 1.87% Ni - 0.45% Cr -
Composition: Fe - 0.15% C - 0.63% Mn - 1.90% Ni - 0.24% Mo
0.24% Mo / Fe - 0.14% C - 0.81% Mn - 1.81% Ni - 0.49% Cr -
/ Fe - 0.16% C - 0.60% Mn - 1.92% Ni - 0.27% Mo - 0.0017% B
0.27% Mo - 0.0030% B Grain sizes: 7 for 4317, and 4-7 for
43B17 Austenitized at 927°C (1700°F) Boron treated: black
Grain sizes: 8 for 4615, and 3-7 for 46B15 Austenitized at
927°C (1700°F) Boron treated: black lines
nes
Caan:
°C
oF
ys,
800
1400
é
700
1200
ey
B6RB
1200 aDa
soot
Lf
a
600
12
500
oe
4pg
|
e
oe
28
E
33
td2
o
a
uJ
=
—
— 300f-
80°
200}
400
100}
200!
a
a
a
300/—
ete
Ay
|
a
*
=
/
x
Fe
fe 50%, =
is
bet {Meo
ert eae
600
°
O52)
S00
10?
108
104
108
oF
|
Ct
ag
ai
t Sa
|
|
17
26
|
+=
33
a
|
T
1
|
|
|
—
eal
|
|
evens
|
0512
AN
|
|-T DIAGRAM
el
+
L
} |
niet
Le
100 200
ES
ree
a
|
T
200;- 400
ene
4
é
|
?
7\
800-7).
si ii
|
Ze
7.
EEK) 42
oi
| \_
can
40 }-
|
rir
le
i
A
+
soo
ae
|
[ T At
1400
©
=
TMT
2
d
B00
/
mT
510
| iMiv.
(tet:
a
ee
102
108
108
my
|
|rpay
104
10°
WEEK] 43
ull is
0
TIME - SECONDS
TIME - SECONDS
Type 5160/51B60
Type 8620/86B20
Composition: Fe - 0.61% C - 0.94% Mn - 0.88% Cr / Fe 0.64% C - 0.88% Mn - 0.83% Cr - 0.0006% B Grain sizes: 7 for
5160, and 6-7 for 51B60 Austenitized at 843°C (1550°F) Boron
treated: black lines
Composition: Fe - 0.23% C - 0.72% Mn - 0.59% Ni - 0.52% Cr 0.21% Mo / Fe - 0.22% C - 0.76% Mn - 0.57% Ni - 0.51% Cr 0.20% Mo - 0.0025% B Grain sizes: 8 for 8620, and 9 for 86B20
Austenitized at 927°C (1700°F) Boron treated: black lines
5S
Maes
TM
1400)
cGy.
800
cae
700
se
700
1200)
34
600
w
2
re]
¥
800
1000
=
ti 400
a.
ey
300}
600
=
= ia
F001 Sa RAL On OL
flea
a
OL
Cac (clea Nalos
OT
ede
8
5
1400
<
it
1200
4\
& 500)
~2E
13
600
20
42
w
32
& 500
1000
39
<
45
tr 400
(at
a
oa
300}
600
200}-
400}
23
26
20
=
S57,
200}-
400
-——
+—
imoted
100F
200
'00F
EEK! 65
r)
0512
50
lo
IWEEK] 4g
0
0512
TIME - SECONDS
SOURCE:
Temperature
200
50
102
TIME
108
104
108
108
- SECONDS
I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation
and Cooling Transformation Diagrams, American
Society for Metals, Metals Park OH, 1977
———————————
nnn
I
—I——
(
Atlas of Time-Temperature Diagrams
4]
Type: 8650/86B50
Composition: Fe - 0.50% C - 0.77% Mn - 0.60% Ni - 0.51% Cr 0.22% Mo (0.21% Mo for 86B50, plus 0.0016% B) Grain size: 9
for both Austenitized at 843°C (1550°F) Boron treated: black _
lines
Type: 8680/86B80
Composition: Fe - 0.79% C - 0.77% Mn - 0.58% Ni - 0.50% Cr -
:
0.21% Mo / Fe - 0.78% C - 0.86% Mn - 0.59% Ni - 0.49% Cr 0.21% Mo - 0.0025% B Grain size: 8 for both Austenitized at
843°C (1550°F) Boron treated: black lines
TTP
TTI
HARONESS-RC
|
HARONESS-RC
™
800
400
600
TEMPERATURE
TEMPERATURE
OS
102
V2; = 5710
10>
TIME
104
0.51
102
5 0
2
- SECONDS
10%
TIME
Type: 80B20
104
- SECONDS
Type: 81B40
Composition: Fe - 0.18% C - 0.57% Mn - 0.31% Ni - €.31% Cr -
Composition: Fe - 0.43% C - 1.02% Mn - 0.31% Ni - 0.48% Cr -
0.15% Mo - 0.0009% B Grain size: 8 Austenitized at 927°C
0.13% Mo - 0.0009% B Grain size 7 Austenitized at 843°C
(1700°F)
(1550°F)
Ss
7
1000
ie
aN .
=F
S
=
15
2
ie
|
* Estimated
S|
Temperature
200
{
1
L
1-T
0512
51
At
al
1200
600 ly
+
1000
A
lu
TTY pT TYP TTT
=
SSeslees
es
45
=
|
5
=
|
i
+
\h
hE
F+C
7|~ A+ F+C
800
A
E
3W500, 600=- Mc
Je
2
aes
oy
tas
<
ei 400
ae
eis
alk
TPT |TTT
FS
35
\s-50%
\
re
_|43
ii
\
iesitat
ed
rook
1
il
|
1-T DIAGRAM
+
~—
LI
1400-4
As
200K
DIAGRAM
| MIN.
°
Ty
t—-Ms9]
-
400
“is
700}—
8
10
| 600}—-
100;—-
Sa
38
iS
80o}-
Fe
800
g0¢
200}
=
+
Qa
a
g
>
e<[S=
eo
e
TU
L
& 500;-a 400
om
a
[Nests
1200
600;—
WwW
bh
im
7OO;-
Pal
rel
LTV]
|
A
1400}—,
<
Ml
Baul
Hg
800
HOUR
PLE
102
DAY
103
TIME — SECONDS
104
| WEEK)
cell |
itu
|
LU
Py Lh
10°
106
102
TIME
108
104
- SECONDS
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
Transformation
ee
e
ee
ee
42
Atlas of Time-Temperature Diagrams
Type: 86B45
Type: 94B17
Composition: Fe - 0.45% C - 0.89% Mn - 0.59% Ni - 0.66% Cr 0.12% Mo - 0.0015% B Grain size: 6-7 Austenitized at 843°C
(1550°F)
Composition: Fe - 0.19% C - 0.77% Mn - 0.42% Ni - 040% Cr 0.12% Mo - 0.0018% B Grain size: 7-8 Austenitized at 927°C
(1700°F)
°C
800
oF
TMM
1400}—+—+-
700}-
r=
1200}
600}—
At +=
+
AS
4
=
1000
ie
oeAls
800
=
600
200;-
400
100
200)
g
800
@
9
4+
33
ty
7
T
e
Z
<
Se
1200
i
10
1000
ae ar
Bo)
600
15
w
3 500
34
= ee
oe
43
a
26
800
=
re 300|-
60°
200;-
400
!00F
200)
=
33
ace ee
ie
+
Ms
* Estimated
Moo}
;
T
ee
29
5!
:
700
3I
A—
oF
1400
23
a
he 300
°C
mee
[
rr
& s00}-
Ley
2
Temperature
|
|
a
al
|-T DIAGRAM
)
ATT a TT
O}Sslee
SO
102
TIME
10°
104
T
EEK! 62
108
LMIN.
)
108
0512
|IHOUR
104
103
102
50
- SECONDS
LDAY | IWEEK! 4g
Pav am TTT
TIME
108
108
—- SECONDS
Type: 98B45
Type: USS Cor-Ten
Composition: Fe - 0.46% C - 0.79% Mn - 0.91% Ni - 0.77% Cr 0.18% Mo - 0.0021% B Grain size: not given Austenitized at
Composition: Fe - 0.12% C - 0.45% Mn - 0.41% Si - 0.12% P 0.31% Ni - 0.62% Cr - 0.26% Cu Grain size: 5-6 Austenitized at
843°C (1550°F)
°C
800
oF
1400
1200
°C
g
800
a
700
24
600
tw
899°C (1650°F)
:
&
700
3I
1000
38
& 500
Steel
oF
id
2
1400
<
90
1200-A
88
1000
97
600)
Ww
94
& 500
q
q
& 400
a
oar
44
br 400
oe
aF 300}
60°
a
a 300}
60°
200}
400
200}-
400
100F—
200)
'00F
200
Mg
I-T DIAGRAM
0
0
0512
50
102
10>
104
105
10&
wl
0512
50
TIME - SECONDS
UMIN.
HOUR
Lyall {veto Taito |
102
10>
104
105
10&
TIME - SECONDS
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation
and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
i
se
~ Atlas of Time-Temperature Diagrams
Type: USS
43
T1 Steel
Composition: Fe - 0.15% C - 0.92% Mn - 0.88% Ni - 0.50% Cr -
0.46% Mo - 0.06% V - 0.32% Cu - 0.0031% B Grain size: 6-7
Austenitized at 913°C (1675°F)
na
f
:
Composition: Fe - 0.39% C - 0.89% Mn - 0.48% Si - 0.68% Ni 0.95% Cr - 0.50% Mo - 0.03% V - 0.002% B Grain size: 7-5
Austenitized at 843°C (1550°F)
LO
OPE
800
Type: USS Strux
F
Aries
Z
Ae
1400
1499
700
760
1200
4as+—|-4—
_|
=
800
:
400
ra 500
aa
©
S00
=
3
tl 400
200
400
A
i
|
“Estimated
100
°
200
ait
ois!
2
Temperature
ae
AtFtG
vit
(5/0
|
102
Ly vtnt Litt
104
105
1
F+e
20
=
2i
200
400
100
200
=Fw,
ss
=
F+o
448
t
\
ooh
mated Temperature
a
ae
|
|"T DIAGRAM
+
HOUR
IDAY | IWEEK
10°
nn
108
0
I
LMIN.
0512
508
jm
102
TIME
- SECONDS
TIME
Type: USS
|
°°
&
es UW
SS
f+t+-50%
F 300}
aei
a
ve
I-T DIAGRAM
+
{
I MIN.
tilt
tot
Se
At+F
&
80°
+
LAtryC
A
ee
a 500
F 300}
gaa
a nsf
600
1000
tu
4
ee
(eS
=
S
stallsee oleeaces
ie06
600
&
mm
mmm
ee
TT
rT
eae
Airsteel X 200
Type: 1021/1021
Composition: Fe - 0.44% C - 0.79% Mn - 1.63% Si - 2.10% Cr 0.54% Mo - 0.06% V Grain size: not given Austenitized at
954°C (1750°F)
LDAY | WEEK
HOUR
103
104
|
108
Nl
108
—- SECONDS
+ 1 Ni
Composition: Fe - 0.20% C - 0.81% Mn / Fe - 0.18% C - 0.67%
Mn - 1.07% Ni Grain sizes: 8-9 for 1021, and 7-8 for 1021 + 1
Ni Austenitized at 927°C (1700°F) for 1021 and 843°C
(1550°F) for 1021 + 1 Ni Black lines: 1021 + 1 Ni
AG
|
HARONESS-RC
800
25
HARDNESS-RC
700
@ 2) D o
600
500)
46
TEMPERATURE
TEMPERATURE
100)
200
cSEstimated
+
it
Temperature
+
+
+
+
I MIN.
°
LL)
0512
50
=
HOUR
LI
LT
102
| DAY
Atul
10%
104
| WEEK
100
vf
10°
106
°
TIME — SECONDS
TIME —- SECONDS
PA, 1963 as published in Atlas of Isothermal
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh
Metals Park OH, 1977
Transformation and Cooling Transformation Diagrams, American Society for Metals,
EEE
Atlas of Time-Temperature Diagrams
44
Type: 1021 + 1 Ni / 1021 +1Ni+B
Type: 1021 + Ni / 1021 + 1 Ni + Mn>
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni / Fe - 0.19%
C - 0.75% Mn - 1.04% Ni + 0.0021% B Grain sizes: 8
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni / Fe- 0.17%
C - 1.65% Mn - 1.07% Ni. Grain size: 6 Austenitized at 816~C
Austenitized at 927°C (1700°F) Black lines: 1021 + 1 Ni+ B
(1500°F) Black lines: 1021 + 1 Ni + Mn
go
800
TF
rTM
hated
:
1400
rym
2
°C
peteerall
3
800
a
700
700
1200
—
86RB
1000
-
18
600
w
g
q
thes!
600
23
22
& 500
33
32
Fe
36
a
= 30of-
600
2- 300
200}-
400
200
100F
200
°
'3
b
400
s
Es
64RB
"
& 500
&
6
tii 400
0512
100
|
I MIN.
50
AT
iri AT
102
103
EEKl ag
104
108
46
0
0512
10&
50
TIME — SECONDS
102
103
104
108
10&
TIME — SECONDS
Type: 1021 + 1 Ni / 1021 + 1 Ni + 0.5 Cr
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni / Fe - 0.21%
C - 0.75% Mn - 1.08% Ni - 0.48% Cr Grain size: 9 Austenitized
at 927°C (1700°F) Black lines: 1021 + 1 Ni + 0.5 Cr
Type: 1021 + 1 Ni / 1021 + 1 Ni+1 Cr
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni / Fe - 0.21%
C - 0.78% Mn - 1.09% Ni - 0.99% Cr Grain size: 10
Austenitized at 927°C (1700°F) Black lines: 1021 + 1 Ni+ 1 Cr
x“
2
cc
2
800
¢
800
Z
z
Oo
ae
700
86RB
600
2
iit
600
18
lJ
\7
WwW
2i
% 500
23
& 500
aA
ta 400
5 400
=
Qa
a
WJ
- 300
uJ
t-
<
31
=
=
200
300
200
100
100)
;
EEK| 45
0512
50
102
TIME
SOURCE:
<
10%
104%
10>
10&
:
re
0512
50
- SECONDS
102
TIME
103
104
105
108
— SECONDS
I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
——_—_::
ee
vO
Atlas of Time-Temperature Diagrams
45
Type: 1021 + 1 Ni / 1021 + 1 Ni+2Cr
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni / Fe - 0.22%
C - 0.77% Mn =,1.08% Ni - 1.91% Cr Grain size: 8 Austenitized
at 927°C (1700°F) Black lines: 1021 + 1 Ni +2 Cr
°C
°
Tn
fe
800
Type: 1021 + 1 Ni / 1021 + 1 Ni + 0.25 Mo
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni / Fe - 0.18%
C - 0.65% Mn - 1.09% Ni - 0.26% Mo Grain size: 6-7
Austenitized at 871°C (1600°F) Black lines: 1021 + 1 Ni + 0.25
Mo
Z
f
z
2
4
6
1400
700
600
42
700
14
1200
18
80RB
86RB
600
ira
2 SOS
<
w
1000
q
a
tJ 400
800
& 500
tJ 400
43
a
7
-
TTY
800
|
300
18
ae
35
a!
$
te 300
cou)
200
>
200+
400
LDAY | IWEEK} 66
100;=
200
te
0
—
100;—
=
200
|
0
0512
tit
50
LMIN.
IHOUR
|
Evita
mM
SO
TIME
-—
ee
SiS
0:50
SECONDS
iweex| 47
OT
5:10
25
104%
103
TIME
Io
10°
- SECONDS
Type: 1021 + 1 Ni / 1021 + 1 Ni + 0.5 Mo
Type: 1021 + 1 Ni / 1021 + 1 Ni + 0.75 Si
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni / Fe - 0.21%
C - 0.70% Mn - 1.08% Ni - 0.49% Mo Grain size: 10
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni / Fe - 0.18%
C - 0.75% Mn - 0.71% Si - 1.07% Ni Grain size: 9 Austenitized
Austenitized at 927°C (1700°F) Black Lines: 1021 + 1 Ni + 0.5
at 927°C (1700°F) Black lines: 1021 + 1 Ni + 0.75 Si
Mo
°C
BC
a
@
800
é
700
3
800
<
700
—
trea
rab
1400
A
As
Ze
o
2
tt
1
a
=
84RB
12
10
19
rg 500
5
ie AAs F4G
\
= Sr
a
Be
<
800
a
a
600
600
An
2
<a
1200
84RB
a
DAt
lu 400
+M,
7
iS
28
fn
F+C
=
i
bei
34
ao
oa
=
tw 400
S
= 300
300f
60°
200+
400
100
200)
]
/
I-T DIAGRAM
if
200
'!00/—
200)
ali
O52)
(5.0
IDAY | WEEK| gg
HOUR
LMIN.
LI
°
+
{tut
1 hi
idl
102
TIME
10%
10%
nT
10>
aa
0512
106
LU
LUT
)
510
iat
IHOUR
I MIN.
]
102
I
103
104
IDAY | IWEEK! 47
LI wl |
108
108
TIME —- SECONDS
- SECONDS
PA, 1963 as published in Atlas of Isothermal
SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh
Park OH, 1977
Metals
Metals,
for
Society
American
Diagrams,
ion
Transformat
Cooling
and
Transformation
i
ee
Atlas of Time-Temperature Diagrams
46
Type: 1021 + 1 Ni / 1021 +1 Ni +2
Si
Type: 1030 Mod
Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni / Fe - 0.19%
C - 0.75% Mn - 2.09% Si - 1.06% Ni Grain size: 7 Austenitized
Composition: Fe - 0.27% C - 1.12% Mn
Grain size: 0-2 (black lines) Austenitized at 1288°C (2350°F)
at 954°C (1750°F) Black lines: 1021 + 1 Ni + 2 Si
Grain size: 7-8 (gray lines) Austenitized at 852°C (1565°F)
°C
oF
800
°C
Z
<
1400
2
800
700)
z
700
1200
600
17
600)
20
1000
Ww
& 500
25
=
36
Is
mT
18
& 500
24
<
:
5 400
oe
=F 300f- 6°
isj
a. 400
200}-
400
200
100F
200
a
=
15
5 300
100
I WEEK] 4g
EEK! 54
n)
t)
0512
50
102
TIME
10%
104%
105
106
Osile2
15.0
102
-— SECONDS
10>
104
10>
10&
TIME - SECONDS
Type: 4140
Type: Fe-C-Mo
Composition: Fe - 0.37% C - 0.77% Mn - 0.98% Cr - 0.21% Mo
Composition: Fe - 0.22% C - 0.79% Mn - 0.50% Mo
Grain size: 2-3 (black lines) Austenitized at 1093°C (2000°F)
Grain size: 7-8 (gray lines) Austenitized at 843°C (1550°F)
Grain size: 1-2 (black lines) Austenitized at 1371°C (2500°F)
Grain size: 8-9 (gray lines) Austenitized at 899°C (1650°F)
°C)
800
°F
1400
1200
=
800
rapa
reser
ci
clots
200}-
400
'00F
200
a,
a:
45
bi 400
i
air
=
50
a
CH
+
8
LD he
18
TTL
21
eee
1000
SSS
800; 4
M Ene
oe
|+
ns
eer
oe
Le
36
wot | [VIN
soo}
600 nn i
200;-
400
100F
200
\ ———
\
al
1-T DIAGRAM
t—
Tees
| WEEK] 60
|
UNG
IMIN.
HOUR
aces
DAY
| WEEK]
48
)
0512
5 0
10&
TIME - SECONDS
SOURCE:
LL
At dia
At<2:
600
& s00
)
jas
rie
1200
31
29
Ay
700
26
1000
2
g
il
.
—+-11
a
1400
Seng
600
& 500
‘ctr
Bao
=
700
ni
;
®
0512
50
102
103
104
108
108
TIME - SECONDS
I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal
Transformation
and Cooling Transformation Diagrams, American
Society for Metals, Metals Park OH, 1977
————————————————————
eco
Atlas of Time-Temperature Diagrams
Type: 1086/1095
4/
+ 0.25% V
Type: 52100
Composition: Fe - 0.87% C - 0.30% Mn - 0.27% V
Grain size: 2-3 (black lines) Austenitized at 1052°C (1925°F)
Composition: Fe - 1.02% C - 0.36% Mn - 0.20% Ni - 1.41% Cr
Grain size: 3 (black lines) Austenitized at 1066°C (1950°F)
Grain size: 9 (gray lines) Austenitized at 843°C (1550°F)
Grain size: 11 (gray lines) Austenitized at 816°C (1500°F)
°C
:
a
800
Z
soot
700
32
TOOL
600
42
600
0
.
=
38
Ww
= 500
*
& s00}Ee
ws400
F+C
1)
Ne 50%,
é
200+
st sks
es
ee
'00;-
a
100
Estimated
O51
2
5710
102
{tl
102
6) Lo
OB
10&
108
104
103
| |
hell
(0)
Temperature
°
61
|
be
2c
6
LDAY | WEEK!
ee
LMIN.
4
i
154
4
Al
200
WEEK| 66
;
50
59
DIAGRAM
I-T
+—+t
|
dl
35
400
aes
\
SS
200
mle
4
ea
ys
800
52
on
AF+C
= 300} 6°
F 300
51
t—
+
A
=
50
=
45
alee
te
<
1000)
WwW
36
“Al
a
lie
Pe
a
PS
1200
=
Wl 400
<
fisaat
arr
1400;—-—+
=
z
A
|
103
104
105
10&
TIME - SECONDS
TIME - SECONDS
Type: Fe-C-Mo
Composition: Fe - 0.97% C - 1.04% Mn - 0.32% Mo
Grain size: 5-6 (black lines) Austenitized at 954°C (1750°F)
Grain size: 7-8 (gray lines) Austenitized at 843°C (1550°F)
°C
oF
800
1400
700)
1200)
600
Ww
c
5 500
=
1000
=
800
tj 400
a
ai
= S00;
te
200+
400
100F-
200
fo)
0512
50
102
TIME
SOURCE:
105
10%
105
10&
- SECONDS
in Atlas of Isothermal
I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published
Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977
OS
eee
ee
ee
Atlas of Time-Temperature Diagrams
48
Type: Fe-C (Carbon)
Composition: Fe - 0.54% C - 0.46% Mn / Fe- 0.89% C - 0.30%
Mn / Fe - 1.13% C - 0.30% Mn Beginning of transformation at
left, ending at right
1200 | 4
Serr
eH —|
TT
| TT
MUA |
fail | Steel
1-Hypo-Eut.
2-Eutectoid
1000
Hl
iia ui aad =
1400 |Jey Hi asa
ANI 3-Hyper-Eut
%C
O54
089
%Mn
0.46
0.30
1.13
elena
srrereih
fT
200
pit cia am
|
_
W 600
0.30
5 S)
vy
©
on
Bi
2
:600
I)|Ta
& alt
yin
ve
A
100
Beginning
Type: Fe-C-Mn
1000.
ee R
|
Mig!
nN
pr eee Stic
051
c
it
Q
Mis
H 3008
il
In 211 ee
in
pili
ii200
aaa
le
ee ete
10000 }
Time in ee
0000
100000
i
(Manganese)
Composition: Fe - 0.59% C - 0.30% Mn / Fe - 0.54% C - 0.45%
Mn / Fe - 0.50% C - 0.91% Mn / Fe - 0.64% C - 1.138% Mn /
Fe - 0.65% C - 1.32% Mn Beginning of transformation at left,
ending at right
lARtaE te
ai
OU MICAUIATes
NIN
*C.
Temperature,
SOURCE:
E.S. Davenport, "Isothermal Transformation in Steels,” Transactions of American Society for Metals, Vol 27, December
1939, pp 837-886
————
Atlas of Time-Temperature Diagrams
49
nn
Type: Fe-C-Ni (Nickel)
Composition: Fe - 0.59% C - 0.20% Mn / Fe - 0.61% C - 0.19%
Mn - 0.94% Ni / Fe - 0.57% C - 0.17% Mn - 1.94% Ni / Fe -
0.55% C - 0.17% Mn - 3.88% Ni Beginning of transformation at
left, ending at right
Am
,
a
e
H
atf
eH
SSeS
esau
realli
et
i a
Hera
eet th
C200
ST
og ii ta MTUA atS Tall Ge
a
NH
|
¥ 800
Hes
ma
HEH
‘
iy
05?
:
i
ees
Enoing
Time in Seconds
Type: Fe-C-Cr
|
| | soo
Series
ut
|
:600
Mt
00
ry)
100000
(Chrominum)
Composition: Fe - 1.13% C - 0.30% Mn / Fe - 1.17% C - 0.30%
Mn - 0.26% Cr Beginning of transformation at left, ending at
right
ml roi
Omani ie
Carbon
Stee! “or %C
1000
s
tf
7
CM
QO
OLO
peli
Mtn
4
pa
He
aa
%Mn
213
080
Wi? WnO30.
|
lll
is
MB i!
3! iw Hi.
1
g
.é
2
8
TSH ul
iii
i
rau ane
SOURCE: E.S. Davenport, "Isothermal Transformation in Steels,” Transactions of American Society for Metals, Vol 27, December
1939, pp 837-886
ese
EEE
Atlas of Time-Temperature Diagrams
50
Type: Fe-C-Cr
(Chromium)
Composition: Fe - 0.35% C - 0.37% Mn / Fe - 0.37% C - 0.37%
Mn - 0.93% Cr / Fe C - 0.68%
Mn- 0.57% Cr / Fe - 0.42%
0.32% C - 0.45% Mn - 1.97% Cr Beginning of transformation at
eas
ar
fimd i) i waite i
left, ending at right
“S i
mnuamall
‘i i
200 Cr
ae
ally
Ih
2
|
it
a}
>
A~ |
Qa
|
Chromium Shien
Medium Carbon Steel
%Cr
Tempereture,
°C.
8
Temperature,
°F
0
as}
Type: Fe-C-Mo
(Molybdenum)
Composition: Fe - 0.35% C - 0.37% Mn / Fe - 0.42% C - 0.20%
Mn - 0.21% Mo / Fe - 0.40% C - 0.43% Mn - 0.52% Mo / Fe 0.36% C - 0.17% Mn - 0.82% Mo / Fe - 0.33% C - 0.41% Mn 1.96% Mo Beginning of transformation at left, ending at right
mat
MOP
Tra |
1200
1000 |
at1
Haitee
i
MS aii
seit te!eA
THT
I S00
c5
400 $
as
3
g 500
||
Beginning
Si
Molybdenum Series
i>
:
100
%C
0.35
Stee! %Mo
Qo
FsQ i
SOURCE:
1S Ul
MIS 600
ees
= ol
&
5 400
|
fi200
5
|
3
1 300 &
|
S
200 is
.
Time in Seconds
1000.
10000
100000
Ending
E.S. Davenport, "Isothermal Transformation in Steels,” Transactions of American Society for Metals, Vol 27, December
1939, pp 837-886
EE
eee
ee
E
Dene
EEE
Atlas of Time-Temperature Diagrams
ol
Type: Fe-C-V
(Vanadium)
Composition: Fe - 0.88% C - 0.41% Mn / Fe - 0.90% C - 0.47%
Mn - 0.20% V The curves are for 50% transformation
of T_T 001
woof
Hill
a
il|Hil Hh aii II
ant
eel aT
i700
ail
7200
1000
I 500
Ni
HY S00
Sb
wi
§ 60.
Q
ug
900
s
Vanadium Series
400
Steel
HV
%HC
%MA
A
Q0
020
088
0.90
‘O41
047
| 300
Nil
200
200
|
a
an
0
054
1000
‘0
|
10000
Time for a,% Peano
Type: Fe-C-Co
(Cobalt)
Composition: Fe - 0.95% C - 0.45% Mn / Fe - 0.95% C - 0.48%
Mn - 0.95% Co / Fe - 0.98% C - 0.49% Mn - 1.98% Co
Beginning of transformation at left, ending at right
meen) aia
a
ith!
limiii|
l
e
fi
n
A
I
Hi
com ROT
Ael
wz
I
1000
* 800
SA
rca mall (crit ie
|
SHS
IN Out J
NS Ih
Foo iS
| SHELTIE HTMUTS
§ 600
a
s
400
200
Ee
|
|
Ms
Q
Cobelt Senies
Steel
1
2
%Co
QO
%C
095
095 O95
198 098
'
il is
jook
%Mn
045
”
0.48
0.49
is
ki,
38
=
35
SOURCE:
e
Hi
0
Society for Metals, Vol 27, December
E.S. Davenport, "Isothermal Transformation in Steels,” Transactions of American
1939, pp 837-886
eS
ee
ee
7
see
=
a?
ata
a0 Pee Co
an
—ta
===_y
(awe
ey
ane
me pian’)
Ae
>
ri:
Vv aa
Tian
Pink i>: pales ohhae
British En Steels
l-T Diagrams
Atlas of Time-Temperature Diagrams
55
Transformation Characteristics of Direct-Hardening Nickel-Alloy Steels
Isothermal
transformation
constituent and of pearlite, and there is often
uncertainty
whether
a transformation
has
diagrams
When a Steel
is quenched
from
a temperature
at which it is austenitic, to temperatures at
which austenite is no longer the stable phase,
it transforms ultimately to mixtures of ferrite
and carbide or to martensite. The time taken
for transformation to ferrite and carbide, at
each of a series of temperatures,
can be
represented
by a diagram
relating temperature, time, and progress of transformation.
Diagrams of this type are known as isothermal
transformation diagrams and they have for
many years made a major contribution to the
understanding and control of the heat treatment of alloy steels.
The
most
direct
of
the
commonly
used
methods
of obtaining
the data
for these
diagrams is the microscopic method originally
used
by Davenport
austenitizing
appropriate
small
and
Bain.! This involves
samples
temperature,
of the steel at an
quenching
to
ance,? and hardness,”* have also been used by
various
investigators,
but
these
and _ the
dilatation method, when used alone, do not
provide the detailed information obtainable
from microscopical examination. For example,
not
the
Heal and Mykura,® and more recently Gillam
and Cole,’ demonstrated the possibility of
following transformations
by measuring, as
transformation proceeds, the changes in the
intensity of a line in the X-ray diffraction
pattern of either the gamma
or the alpha
phase. This method, although experimentally
somewhat
cumbersome,
has
the
attractive
feature of being even more direct than the
microscopical method, and also of providing
information not otherwise obtainable.
a sub-
critical temperature,
holding at that lower
temperature for progressively increasing times,
and finally quenching to room temperature.
By microscopical examination of the quenched
samples it is then possible to determine the
time taken for the transformation to start, the
tate. at which
it proceeds;,
and
the (time
required for its completion. This method is
still the most reliable of those available for
studying
steels
which
undergo
rapid
_isothermal transformation; it is, however, timeconsuming, and considerable skill is required
to interpret
the
large
number
of microstructures which must be examined to provide
an accurate diagram. It is consequently often
more
convenient
to follow
the course
of
transformation by measuring the changes in
some physical property accompanying transformation and, since breakdown of austenite
is accompanied by an expansion, and changes
of length are readily measured, the dilatation
method is by far the most widely adopted.
Techniques involving measurement of changes
in magnetic
permeability,? electrical
resist-
they do
between
proceeded
to completion
or has stopped at
some stage of partial transformation.
Consequently, it is customary to supplement the
results obtained by these less direct methods
by
some
microscopical
examination.
For
example, the isothermal diagrams presented in
the
Iron
and
Steel
Institute
Atlas®
were
determined
by the combined application of
the dilatation and microscopical methods.
reliably
usually differentiate
proeutectoid
of a
separation
Results
of experimental
observations
at a
series of subcritical temperatures are usually
presented on a single diagram, the ordinates
and abscissae of which represent, respectively,
the temperature and the time of transform-
ation. Smooth curves are drawn through points
indicating the time required for transformation to start at various temperatures and
through those indicating the time required for
complete
transformation.
Additional
curves
may
be drawn
to indicate
the
time
required
for various percentages of transformation, and
the
separation
of
proeutectoid
ferrite
is
frequently distinguished from the transformation of austenite to pearlite. The critical
transformation temperatures of the steel (Ac,
and Acs) and the martensite reaction range
are usually indicated by horizontal lines but
the lengths of the lines used for this purpose
have, of course, no significance.
All the samples used for the determination of
the isothermal transformation diagrams presented
here
were
taken
from
batches
of
commercial steel. The analyses, grain sizes and
methods
of manufacture
are given in the
pages showing the relevant isothermal transformation diagrams. Specimens were machined
from material which had been hot-rolled and
cold-drawn to 9 s.w.g. wire or to 0.030-in.
thick tape.
All the micrographs in this introduction are at 64% of their original size
Limited, London,
SOURCE: Transformation Characteristics of Direct-Hardening Nickel-Alloy Steels," The Mond Nickel Company
1950
(eS
E
ee
ee
ee
Atlas of Time-Temperature Diagrams
56
Each specimen was austenitized for 30 minutes. The temperature adopted was usually at
or near the center of the range recommended
in
the
appropriate
British
Standard
En
specification.
The
diagrams
for the more
rapidly transforming steels (B.S. En 12, 111
and 160) were determined solely by the microscopical
method.
Those
for the remaining
steels were derived from a consideration of
dilatation curves and of the microstructures
of samples quenched after being allowed to
transform to various stages. No tests extended
beyond
24 hours. A_ general
view of the
isothermal and accessory equipment employed
is provided in Fig. 1.
The Ac, and Acg temperatures shown on the
diagrams were determined from continuous-
heating
dilation
test specimens
used
curves.
were
for the isothermal
heating
rate
was
The
dilatometer
of the same
tests
adopted,
and
types as those
and
a standard
100°C
per
hour,
over the range 500 to 870°C. The M,, Myo, Mso,
Mg) temperatures were determined according
to the method
Troiano.
introduced
The
values
hardness
by Greninger
developed
by
the
and
steel,
when isothermally transformed at each of a
series of temperatures, are indicated on the
right-hand side of each diagram. The bold
figures indicate the hardness values of the
fully transformed
steel. Figures
in_ italics
apply to cases where transformation had not
started or was incomplete after 24 hours; such
hardness values are of the structures develop-
ed by holding at the selected temperatures for
24 hours followed
by quenching
to room
temperature. For example, after 24 hours at
650°C, the 4.25% Ni-Cr Steel (B.S. En 30A) had
transformed at only 8%, and on quenching to
room temperature, the remaining 92% of the
structure transformed to martensite. Thus, al-
Fig. 1 General view of equipment used for the
determination of isothermal trans formation
diagrams at the Birmingham Laboratory of The
Mond Nickel Company Limited
The method adopted for the presentation of
the diagrams is in most respects conventional.
The time-scale is logarithmic and is based on
seconds, but for convenience of reference it is
marked in minutes and hours.
A hypoeutectoid steel generally transforms in
the pearlite range in two stages: separation of
proeutectoid ferrite followed by separation of
pearlite. The start of transformation to pearlite,
as
distinct
from _ separation’
of
proeutectoid
ferrite, has been indicated
in
these diagrams by a heavy broken line, which
will be referred to as the "carbide line." The
position of this line was determined from a
consideration
of
the
microstructures
of
partially transformed samples. This line does
not
necessarily
indicate
the
end
of the
separation of pro-eutectoid ferrite, since it is
probable that the ferrite and pearlite stages of
the transformation overlap to an appreciable
extent. In certain diagrams, where the pearlite
and the bainite reactions overlap, the full
extent of this line has not been shown, owing
to the difficulty of defining
adequate
its position with
accuracy.
eS
though the product of transformation at 650°C
was of low hardness, the final structure had
the relatively high hardness of 590 D.P.N.
This steel, however, transformed completely at
600°C in less than 24 hours. The room-temperature structure of. a sample transformed at
that temperature contained no martensite, and
had a hardness value of 210 D.P.N.
General features of
isothermal transformation
diagrams
Isothermal
transformation
takes
place
by
processes involving nucleation and growth of
nuclei. If a sample of steel is austenitized and
then quenched to a subcritical temperature,
for a definite period of time after the sample
reaches this temperature, there will be no
microscopically detectable sign of transformation. This initial period is usually referred to
as the "incubation
period,"
or "period
of
induction."
At the end of the incubation
period, nuclei are visible in the structure and
transformation
proceeds
by the growth
of
these nuclei, and of course, by the development and growth of additional nuclei.
The
type
of
structure
formed
depends
primarily on the temperature at which the
transformation occurs, but is influenced also
by the composition of the steel. The general
features
of an
isothermal
transformation
diagram may conveniently be discussed by
~ Atlas of Time-Temperature Diagrams
57
reference to the diagram (Fig. 2) for the low
alloy (B.S. En 100) type of steel.
Between
the upper
and
lower equilibrium
transformation temperatures (Az and Aj) only
ferrite
is
formed
by
isothermal
transform-
ation.
The
separation
is preceded
by an
incubation period and proceeds by nucleation
and growth, but some of the austenite remains
untransformed. Reaction ceases when austenite and ferrite are present in the proportion
indicated by the equilibrium diagram at the
chosen temperature. With falling temperature
of
ferrite
which can form increases up to a
amount which depends on the steel.
between
Ags and
A,
limiting
In the range between
the
amount
the A, temperature
and
about 550°C, transformation
occurs in two
stages: precipitation of ferrite, followed by
formation of pearlite. The amount of ferrite
formed decreases as the temperature of transformation
is lowered,
and the amount
of
pearlite increases proportionally; the carbon
content of the pearlite decreases, therefore, as
the temperature of its formation is lowered.
B00}
Ac
Se
|
|
eS
|
|
|
|
Ac,
700
|
es
j
:
role
‘
\
1
Austenitizing Temperature 860°C
|
:
i!
i
|
if
|
i
1
|
ke
,
|-
|
;
.
a
im eyRN tens,
a
ER eS
so
$
=
aS
410 DPN
TRANSFORMATION
~
‘i
L
'
=
260 DPN
[o}
-s<——————
600
FERRITE & PEARLITE
<
LINE
(|
i
G
——>
IN
FERRITE
&
PEARLITE
770 DPN.
3/0 DPN.
330 DPN.
amet
The above remarks apply to a hypoeutectoid
steel. The proeutectoid constituent in a hypereutectoid steel would, of course, be cementite.
The interlamellar spacing of pearlite depends
on the temperature at which it is produced.
For example, pearlite formed just below the
A, temperature is readily resolved under the
microscope
(Fig. 3), having coarse carbide
lamellae which tend to globularize, but as the
temperature of transformation is reduced the
pearlite becomes progressively finer until that
formed towards the lower end of the pearlite
formation range is usually too fine to be
resolved with a light microscope (Fig. 4). The
lamellar form of these structures is revealed,
however, with the electron microscope (Fig. 5).
As would be expected, this change in the pearlite structure is accompanied by an increasé of
hardness.
Figure 6 shows various stages in the formation
of a ferrite-pearlite structure in a high-carbon
2.5% Ni-Cr-Mo steel (B.S. En 26). The microstructures
represent
samples’
isothermally
transformed for various times at 650°C, and
then water-quenched. Figures 6a and 6b illustrate the early part of the transformation,
during which ferrite precipitation predominates.
Figures
6c and
6d demonstrate
the
subsequent separation of pearlite. The microstructure shown in Fig. 6d represents complete
isothermal transformation, but in the other
three samples isothermal transformation was
eth
TRANSFORMATION
TO MARTENSITE
i
TEMPERATURE
Centigrade
Degrees
The diagram for the B.S. En 100 steel shows,
in the vicinity of 550°C, a very narrow range
of temperature
within which formation of
pearlite is not preceded by formation of ferrite (Fig. 2). This range is wider in some steels
(e.g., B.S. En 110), but in others formation of
pearlite is always preceded by formation of
ferrite (e.g., B.S. En 25).
te
0%
19% 0%
2
MINUTES
yo
%
My
}
too
|.
|
4=
+4
i
G
Ti
20
|
|
2
SECONDS
cf
DURATION
OF ISOTHERMAL
ay
Of
2
HOURS
5
10
201
DAY.
TREATMENT
Fig. 2 Isothermal trans formation diagram for
low alloy steel (B.S. En 100) austenitized at
Fig. 3 Ferrite and a coarse lamellar pearlite
formed by isothermally transforming a sample
of low Ni-Cr steel (B.S. En 111) at 700°C.
Etchant: 4% picric acid in alcohol
860°C
EEE
Atlas of Time-Temperature Diagrams
58
<
PEARLITE
FERRITE
>
Fig. 4 Ferrite and fine irresolvable pearlite
formed by isothermally transforming a sample
of low Ni-Cr steel (B.S. En 111) at 600°C.
Etchant: 4% picric acid in alcohol
incomplete
and
the
matrix
in
consists
of martensite
formed
water-quenching treatment.
Within the temperature
each
case
during
the
range between Ag and
the lower limit of the pearlite range (540°C, in
Fig. 2) the incubation period at first becomes
shorter
and
then
longer
with
decreasing
temperature of transformation. Simultaneously, the rate of reaction
passes through a
maximum. The part of the curve at which the
incubation
period
reaches
a minimum
is
Fig. 5 Ferrite and pearlite in a sample of B.S.
En 100 low alloy steel, isothermally transformed
at 630°C. Electron micrograph. Preshadowed
evaporated aluminum
replica
usually referred to as the pearlite "nose" or
"knee" and is of considerable importance since
its position on the time scale may determine
the hardenability of a steel.
The structures produced in the lower temperature range of transformation (e.g., between
540 and 310°C, in Fig. 2) are usually referred
to as "bainite" or "intermediate" structures.
These are harder than pearlite, the hardness
increasing progressively as the temperature of
formation
is lowered.
Bainite
structures
vary
b
14 hours
x 850
d
24 hours
x 850
greatly in appearance, but one characteristic
type, which is formed at temperatures towards
the upper end of the range, has many of the
general characteristics of proeutectoid ferrite
although it is more irregular in outline and
has no marked
tendency
to precipitate
at
grain boundaries
(Fig. 7). At intermediate
temperatures
in the
bainite-formation
range,
separation of ferrite is followed rapidly by
precipitation of carbide, within or near the
ferrite phase (Fig. 8). At the higher intermediate
temperatures
the carbide
particles
dispersed in the ferrite are relatively coarse,
but these become progressively finer and more
numerous as the temperature of transform-
ation is lowered (Fig. 9 and 10). The bainite
structures formed in the lower temperature
range have a dark-etching acicular appearance
not
readily
distinguishable
from
that
of
tempered martensite (Fig. 11). Such structures
ee
c
19 hours
x 850
Fig.6 Various stages in the formation of a
ferrite-pearlite structure in a 2.5% Ni-Cr-Mo
high-carbon Steel (B.S. En 26) austenitized at
835°C and isothermally transformed for the
times indicated at 650°C. Etchant: 2% nitric acid
in alcohol
Atlas of Time-Temperature Diagrams
consist
of a very
fine
dispersion
59
of carbide
particles in a ferrite matrix (Fig. 12), and it is
probable that the two phases separate almost
simultaneously. Until recently there was some
doubt regarding the mechanism of formation
< MARTENSITE
of acicular bainite, but Ko and Cottrell! have
demonstrated that the lower-bainite needles
are formed by nucleation and growth. By
observing the surface-relief effects produced
on a polished surface when a steel transforms
from austenite to bainite, these authors have
4 UPPER
<
BAINITE
Fig. 9 Upper bainite and martensite in 2.5% NiCr-Mo high-carbon steel (B.S. En 26), partially
trans formed isothermally at 475°C. Electron
micrograph. Preshadowed evaporated aluminum
replica
shown that the mechanism of growth is such
that the bainite lattice is coherent with that
Fig. 7 Upper bainite structure developed ina
B.S. En 26 steel (2.5% Ni-Cr-Mo high-carbon),
austenitized at 835°C, and isothermally
transformed at 500°C for 90 h. Etchant 2%
nitric acid in alcohol
of the parent austenite. In this respect, the
formation of bainite is unlike that of ferrite
and pearlite, which
result from incoherent
growth.
The pearlite- and bainite-formation ranges of
the B.S. En 100 steel (Fig. 2) overlap between
540
and
480°C,
and
within
this
range
formation of upper bainite is followed by
separation
of a dark-etching pearlite. This
change is illustrated by Fig. 13a and 13b.
The diagram for the B.S. En 110 (low Ni-CrMo) steel also shows a partial overlap of the
two ranges of transformation. A greater extent
of overlap is apparent on the diagram for the
B.S. En 22 (3.5% nickel) steel, and in the
diagram for the B.S. En 12 (1% nickel) steel
the two ranges overlap to such an extent that
it is difficult to distinguish them individually.
INTERMEDIATE
BAINITE
§<—MARTENSITE
¢
1 hour 30 minutes
x 850
Fig. 8 Three stages in the formation of
intermediate bainite in a 2.5% Ni-Cr-Mo high-
x 10,000
Fig. 10 Intermediate bainite and martensite in
and isothermally transformed for the times
2.5% Ni-Cr-Mo high-carbon steel (B.S. En 26),
partially trans formed isothermally at 450 °C.
Electron micrograph. Preshadowed evaporated
alcohol
aluminum
carbon steel (B.S. En 26), austenitized at 835°C,
indicated at 450°C. Etchant: 2% nitric acid in
replica
Atlas of Time-Temperature Diagrams
reaction
starts.!!
On
the
other
hand,
the
bainite reaction is, in general, steadily retarded by progressive increase of carbon content.
Alloying elements differ in the nature and
magnitude
of their
effects
on
isothermal
transformations. Nickel!!1215 and manganese!l14 retard the pearlite and bainite transformations
fairly
uniformly
at
all
temper-
atures.
Copper
and
silicon
are
similar
to
nickel in their effects on isothermal transformations, but their retarding effect is much
weaker.
Cobalt!5 appears
of transformation
to increase
the rate
at all temperatures.
Molybdenum!)1214,16,17
= and
= chromium?!?18
strongly
retard
the pearlite
reaction,
but
affect the bainite reaction to a much smaller
c
5 minutes
x 850
d
1 hour
x 850
Fig. 11 Four stages in the formation of lower
bainite in a 2.5% Ni-Cr-Mo high-carbon steel
(B.S. En 26), austenitized at 835°C and
isothermally transformed
for the times indicated
at 340°C. Etchant: 2% nitric acid in alcohol
By contrast, the pearlite and bainite ranges in
the diagrams of steels containing appreciable
amounts
of chromium
or molybdenum
are
separated by a range of temperature within
which
austenite
is relatively
stable.
For
example, the diagram for the B.S. En 25 (2.5%
Ni-Cr-Mo) steel shows that no transformation
occurs within 24 hours at temperatures in the
range 525 to 565°C.
The general effect of carbon, and of all the
common alloying elements except cobalt, is to
move
the curves
of the isothermal
transformation diagram to the right, i.e., to delay
the
initiation
of
transformation
and _ to
decrease
the
rate
at which
the _ reaction
proceeds. Compare, for example, the curves
for B.S. En 12 (1% nickel) steel and B.S. En
30B (4.25% Ni-Cr-Mo) steel.
Increase
of carbon
the incubation period and accelerates the rate
of reaction. This latter effect, it has been
suggested, is due to the nucleating action of
particles
Vanadium,
in the amounts
in which
it is
normally added to hardenable steels, increases
pearlite- and bainite-incubation periods only
slightly, but, markedly prolongs the reaction
times of both types of transformation.!9
Small
amounts
0.003%,
have
of
marked
boron,
effects
of
the
on
the
order
of
rates
of
LOWER
BAINITE->
MARTENSITE—>
[ag
content, up to the eutectoid
percentage, retards the pearlite reaction but
further increase of carbon content shortens
carbide
extent. These elements also raise the temperature range within which the pearlite reaction
occurs and lower that over which the bainite
reaction
takes
place.
Consequently’
the
isothermal transformation diagrams for steels
containing appreciable amounts of either of
these elements frequently show a "bay" of
austenite stability between the two reaction
zones.
rejected
before
the pearlite
ee
Fig. 12 Lower bainite and untempered
martensite in a 2.5% Ni-Cr-Mo high-carbon steel
(B.S. En 26), partially trans formed isothermally
at 320°C. Electron micrograph. Preshadowed
evaporated aluminum replica
Atlas of Time-Temperature Diagrams
6]
nickel.
Hodge,
Giove
and
Storm?‘
have
also
demonstrated than an addition of 0.3% molybdenum is about twice as effective in retarding transformation in a steel containing 3%
nickel as in one containing 1% chromium.
The martensite
reaction
The upper and lower limits of the martensite
range,
i.e., the temperatures
at which
the
formation of martensite starts and finishes,
are usually designated M, and Mg, respectively.
The
additional
symbols
Myo,
Msg
and
Mgg
indicate the temperatures at which 10, 50 or
90%
of the austenite
has transformed
to
martensite.
The
martensite
reaction
is fundamentally
different
from
the
pearlite
and _ bainite
reactions. If a sample of steel is austenitized
b =.2: hour 45 minutes
and cooled to a temperature just below its M,
temperature sufficiently rapidly to prevent
transformation in either the pearlite or the
bainite range, a small fraction of the austenite
x 850
Fig. 13 The formation of upper bainite and
pearlite in a low alloy steel (B.S. En 100),
austenitized at 860°C, and isothermally
transformed for the times indicated at 500°C.
Etchant: 2% nitric acid in alcohol
transformation of a steel. This element retards
the formation of ferrite and of bainite but,
although the start of the pearlite reaction is
delayed by the presence of boron, the total
time required to complete the pearlite reaction
is not usually affected appreciably.2%?!
Increase in grain size retards formation of
pearlite
by
reducing
the
grain
boundary
surface area available for nucleation, but has
little, if any, effect on the rate of formation
of bainite structures.27?
Combinations
of
—
weakened
by the
however,
two
or
combinations
presence
clear
more _ alloying
are
products.
For
shown
transformation
presence
example,
that
to
that
particularly
transformation
have
of another.
indications
delaying
nickel
a
to
They
certain
effective
in
non-martensitic
have
using certain
been
of
a
rates
made
steel
can
that
be
the
M,
lowered
by
of cooling?> and
that in
some highly alloyed steels the reaction can be
suppressed
if very high cooling rates are
used.2© These suggestions have not, however,
been supported by other investigators.2”78
It has been
shown
by Machlin
and
Cohen?9
retards
isothermal
extent
chromium
not
proceed
uniformly
with
falling
temperature below M,, but occurs in a series
of "bursts," in which groups of martensite
needles are generated almost simultaneously.
This "burst" phenomenon is less apparent in
polycrystalline alloys, since the temperatures
at which
the bursts
occur
vary
for the
individual crystals and the integrated effect is
one of continuous uniform transformation.
Miller?*
and
Brophy
greater
of manganese,
claims
temperature
that the formation of martensite in single
crystals of a 70% iron, 30% nickel alloy does
elements have complex effects on isothermal
transformations and a great deal of systematic
work is required to determine to what extent
the effects of one element are intensified or
are,
will transform to martensite. If cooling is
continued
to lower temperatures, additional
martensite will form as the temperature falls.
The individual needles or plates of martensite
are formed almost instantaneously from the
austenite, and it is generally accepted that the
reaction is essentially not time-dependent. It
cannot, therefore, be suppressed by the use of
high cooling rates. On the other hand, isolated
in
or
the
moly-
bdenum than when it is present alone, and
that similarly these elements are more effective in the presence, than in the absence, of
a
If the cooling of a low-alloy or medium-alloy
steel through the martensite temperature range
is interrupted,
further
transformation
to
martensite ceases. In certain highly alloyed
steels (e.g., steels containing 0.6% C, 6% Mn
isothermal
and 0.7% C, 15% Cr), however,
EEEnEEIEEEE
Atlas of Time-Temperature Diagrams
62
ee ee
formation of martensite has been observed to
follow athermal
formation
of this constit-
vente 222}
This
effect
is, of course,
quite
carbon and alloying elements
similar discrepancies.
will also lead to
distinct from the isothermal
formation
of
bainite at temperatures within the martensite
range, which is well recognized. Recent work
has shown that this bainite-forming reaction
may be nucleated more readily in austenite
partially transformed to martensite than in
i.e., the temperature at
reaction ceases, is more
difficult to determine experimentally, but the
that
the
limited
published
indicate
data
effects of different alloying elements on the
Carbon
and
most
temperature
depress
the
M,
austenite containing no martensite.1°*2
of
the
alloying
elements
The My temperature,
which the martensite
M; temperature are similar in magnitude to
their effects on the M, temperature.*”'*% It has
been suggested,
that the M,-M;
however,
range
is extended
with
increase
the
of carbon content.*® Steven and Haynes*? have
effects of alloying elements are, however,
relatively slight compared with that of carbon.
shown that for a limited range of carbon
contents (0.32 to 0.44%) and a wide range of
alloy contents,
the
at which
temperatures
various proportions of martensite are formed
can be obtained from the following equations:
temperature
of
steel;
Since low M, temperatures favor the retention
of austenite and promote the development of
internal stress and quenching cracks, the mild
effects, in this respect, of alloying elements in
general
and
of nickel
and
chromium
in
particular must be regarded as advantageous.
chemical
compositions.3%:34:35.36.37
How-
ever, Steven and Haynes*? determined the M,
temperatures of a wide range of steels and
found
that
none
of these
formulae
was
adequately reliable. In preference they offer
the following formula for steels within the
composition range: carbon 0.1 to 0.55%, silicon
0.1 to 0.35%, manganese 0.2 to 1.7%, nickel
trace
to
5%,
chromium
ttrace
to
3.5%,
molybdenum trace to 1%.
Mg in deg.
This formula illustrates the relative magnitude of the effects of the more common
alloying elements. Thus 1% carbon depresses
about
14 times as much as
would 1% of manganese, and manganese has
twice the effect of nickel
or chromium.
Silicon, at least in amounts up to about 0.4%,
appears
to have
a negligible effect. Cobalt
been reported to raise M, temperatures.1*38
has
The usefulness of the above formula and of
other formulae which have been proposed for
calculating M, temperatures
from chemical
composition, is limited by the fact that they
presume complete and uniform solution of all
carbon and alloying elements in the austenite.
If a steel contains carbide which is undissolved at the austenitizing temperature, as is
frequently
of
strong
the case
when
appreciable
carbide-forming
amounts
elements
are
present, the observed M, temperature will be
higher
than
would
be expected
from the
of
macro-segregation
and
Microformulae.
EE
3
9
Mf deg.C.=
Ms —215 +15
The Greninger and Troiano method used to
determine
the
martensite
transformation
temperatures shown on the diagrams, involved
quenching small samples of each steel from
the austenitizing temperature to a series of
temperatures within and near the martensite
formation range. These samples were tempered
immediately, for a time and at a temperature
which would darken the martensite formed,
but
would
not
allow
isothermal
transformation, and
were
then quenched
to room
temperature.
The
proportion
of
tempered
martensite
in the microstructure
of each
sample was measured, and from the results the
C =
561-474(%C)-33(%Mn)-17(%Ni)-17(%Cr)-21(%Mo)
the M, temperature
10+
47+
Mg) deg. C. = Ms — 103 + 12
A number of formulae have been proposed for
calculating the M, temperatures of steels from
their
M,, deg. C.=Ms—
M,;, deg. C. = Ms—
M,
Mio,
Msp
and
Mog p temperatures
were
estimated.
The microstructures of several samples used to
determine the martensite formation range of a
sample of 1.25% Ni-Cr-Mo steel (B.S. En 24)
are reproduced in Fig. 14. In these structures
the progress
of the reaction
with falling
temperature is illustrated by the increasing
proportion
of
the
dark-etching
tempered
martensite. For a few of the steels of lower
alloy content (B.S. En 12, 111 and 160) the
progress of martensite formation at temper-
atures below M, could not be recorded because
it was found impossible experimentally
to
separate the effects of bainite and martensite
formation.
The hardness
is governed
of a fully martensitic
by
its
carbon
content
structure
and
is
produced
by
influenced to only a negligible extent by the
Presence of alloying elements. The generally
accepted relationship between
the hardness
and carbon
content
of martensite
Atlas of Time-Temperature Diagrams
63
quenching small samples®9 is shown in Fig. 15.
However,
relatively
indicated
in commercial
practice involving
large sections, the hardness values
are frequently not attained*? since
the rate of cooling through the martensite
transformation
temperature
range
may
be
sufficiently slow to permit the martensite
formed at temperatures above about 200°C to
undergo
tempering
during
cooling
to this
temperature. This is usually referred to as
"self-tempering." It will be appreciated that
failure
to develop
maximum
hardness
may
.
Ly
as
+
be
of
solution
also to incomplete
attributed
carbide or the presence of ferrite, pearlite,
~
fede
LoShen)
i
*
steal ©
3
|
|
C
HARDNESS
ROCKWELL
Saale
EQUIVALENT
HARDNESS
D.P.N.
200
a2
HEE
0-2
0-4
PER
CENT
0-6
CARBON
0-8
1-0
Fig. 15 The relationship between hardness and
carbon content of martensite
therefore appear that even when the carbon
content is not high the martensite reaction
does not always proceed to completion above
room
temperature.
This may
be a _ normal
characteristic
of
the
martensite
reaction.
Alternatively, it may be a secondary effect
due to other reactions.
For example,
the
precipitation of ferrite prior to the martensite
reaction will increase the carbon content of
Fig. 14 Four stages in the transformation of
austenite to martensite in a 1.5% Ni-Cr-Mo steel
the parent
(B.S. En 24), austenitized at 835°C, and
ature is depressed below room temperature,
retention of austenite at room temperature is
to be expected. It is very likely that the
precipitation of proeutectoid ferrite or the
formation
of some
upper-bainite
structure,
which would have a closely similar effect, is
responsible for at least some of the retained
austenite observed in quenched samples.
quenched to the temperatures indicated. Etchant:
2% nitric acid in alcohol. The martensite formed
at each quenching temperature has been
darkened by tempering immediately at 550°C
for 20 s, before quenching to room temperature
bainite, or retained
austenite,
in the asquenched microstructures. On the other hand,
the
maximum
hardness
high-carbon
steels
martensite
if relatively
value
may
of
quenched
exceed
that
large amounts
of
of hard
carbide particles are present in the martensite
matrix.
Small
amounts
retained in lowat room
steels
are
frequently
and medium-alloy
and
temperature
structural
it would
of
austenite
austenite
and
thereby
depress
both
the M, and M,; temperatures. If the M, temper-
Inhomogeneity
of the steel when
in the
austenitic condition may also contribute to
austenite retention. Such inhomogeneity may
have
persisted
from
the
original
as-cast
structure or may even be developed by heat
treatment.
For example, very short austenitizing cycles, such as those associated with
welding, may be insufficient to allow complete diffusion of carbon, and zones originally
aE
Ee
EERE
Atlas of Time-Temperature Diagrams
64
nnn
of high carbon content, e.g., pearlite grains,
may not be completely dispersed. As a result,
certain grains in the steel will have lowerthan-average
martensite
transformation
ranges, and if the total magnitude of this and
other effects is sufficient, austenite may be
retained at room temperature.
The martensite
formation
ranges of many
high-carbon steels, including certain carburized steels, overlap room temperature. Retention of austenite at room temperature must
therefore be expected in such steels. If the
steel is to be tempered to a relatively low
tensile
level,
the
retained
austenite
will
transform during the tempering treatment, but
if the steel is to be used in a lightly tempered
condition as in, for example, a carburized
case,
the
tempering
temperature
may
be
too
low to effect removal of austenite. In such
circumstances, sub-zero treatment is the most
effective
method,
cooling
being
extended
through the lower portion of the martensite
temperature
range
and
the
breakdown
of
austenite to martensite continuing with falling
temperature in the normal manner.
To some
extent,
retention
of austenite
is
favored and its removal by sub-zero treatment
is complicated
by a phenomenon
usually
referred
to as "stabilization" of austenite.4! 4?
It has already been pointed out that if cooling
between
the
M,
and
Mg temperatures
is
interrupted,
transformation
to
martensite
ceases. This effect is accompanied
by an
increase in the stability of the untransformed
austenite
and
when
cooling
is resumed
transformation does not start immediately as
might be expected, but only after a distinct
degree of under-cooling, the extent of which
depends on the temperature and the duration
of the interruption. In certain circumstances a
proportion of the austenite may even become
wholly resistant to sub-zero treatments.
The phenomenon of austenite stabilization has
been most frequently observed in high-carbon
steels, but evidence of its occurrence in steels
of medium-carbon
content
has
also
been
obtained.®?43
In addition, it has been shown
that raising the chromium content of a 1%
carbon-chromium steel increases its sensitivity
to austenite stabilization, thus rendering subzero treatment less effective. On the other
hand, nickel and manganese in steels of the
reduce _ the
will
content
carbon
same
roomat
stabilization
to
susceptibility
the
promote
thus
and
temperatures,
effectiveness of refrigeration.*4
The
presence
of
retained austenite
appreciable
amounts
of
in a quenched
structure
EEE
EEEEEEEEEEEEEEEEEEEEEESES ERE
is some
there
Further,
hardness.
lowers
evidence to suggest that this phase is trainsensitive
it may
that
and
decompose
to
martensite when plastic deformation occurs
during
mechanical
presence
tempered
of
at
testing.4°46
the
Thus,
retained austenite in
less than 250°C may
a_ steel
lead to
elastic limit and yield stress values which are
low in relation to the tensile strength. Temper-
ing a hardened steel at these low temperatures
does effect an improvement in its mechanical
internal
by relieving
properties of course
quenching stresses to a great extent. Tempering at temperatures above 250°C often results
retained
isothermal
of
in
transformation
austenite, although in some types of steel the
austenite may not transform at the tempering
temperature but may undergo "conditioning"
and then transform to bainite or martensite
during
cooling
tempering.4748
after
The
presence of martensite in the tempered steel
structure will have a deleterious effect on its
properties
in such
cases
the
impact
and
application of a second tempering treatment is
desirable.
The influence of structure
on mechanical properties
Hardened and tempered steels develop the best
combination of tensile strength, ductility and
notched-bar
impact
properties
when
their
structures consist wholly of tempered martensite. The
presence
of ferrite,
pearlite
or
bainite usually lowers the values for proofstress, impact, fatigue-strength and, in certain
instances,
elongation
and _ reduction-of-area
associated with a given tensile strength. It is
therefore desirable to avoid transformation to
Structures other than martensite during the
hardening operation. Achievement of the optimum structure depends on several factors, the
more
important
of
which
are
the
transformation characteristics of the steel, the
size and the shape of the part to be treated,
and the quenching conditions adopted.
The more rapidly the steel transforms, i.e., the
shorter the incubation periods indicated by
the isothermal
transformation
diagram, the
faster must it be cooled to prevent transformation to structures other than martensite. The
cooling
rates
which
can
be achieved
in
practice are limited by the size of the component being treated and thus, although a
given quench may fully harden a small bar of
steel, it may not be rapid enough to ensure
full hardening in a larger bar of the same
material. The rate of cooling can be increased
by Increasing
in
the
the severity
absence
of
ence
SS
other
eee
of the quench
considerations,
eS
a
and.
Ee
the
Atlas of Time-Temperature Diagrams
65
a
most drastic quenching medium would always
be
used,
since
this
would
ensure
full
hardening to the greatest depth. The steep
temperature
gradients associated
with high
rates of cooling, however, increase the dangers
of distortion
and
cracking
and
make _ it
advisable to use the slower but safer oilquenching or air-cooling whenever practicable.
Examination
of a selection
of isothermal
transformation diagrams will show that with
some steels the pearlite reaction is more easily
avoided than the bainite reaction, whereas
with other steels the reverse is true. By a
suitable choice of composition it is usually
possible,
however,
to
retard
the
pearlite
transformation sufficiently to avoid formation of that structure when the steel is hardened even in the largest sizes. Transformation
to bainite on the other hand, is less easily
avoided and, unless highly alloyed steels are
used, the development of some of this structure towards the center of medium-to-large
sections
must
be
tolerated.
Fortunately,
presence of bainite, and particularly
bainite, affects mechanical
properties
much smaller extent than does pearlite.
the
lower
to a
Special heat treatments
based on isothermal
transformation diagrams
Martempering consists of quenching from the
austenitizing
temperature
into a bath
of
molten metal, salt, or other suitable medium at
a temperature just above the M, temperature
of the steel, holding at that state for sufficient time to allow equalization of temperature throughout the part and then cooling,
usually in air, to room temperature. By cooling rapidly to just above the M, temperature,
transformation to pearlite is prevented, and
during subsequent cooling to room temperature the martensite reaction occurs almost
simultaneously
through
the section, thereby
minimizing
internal
stress,
distortion
and
quench cracking.
If full hardening is to be developed, it is
obviously essential that no transformation to
at the martempering
occur
bainite should
temperature and it therefore follows that the
time required for thermal equalization should
not exceed the bainite incubation period at
This applies particularly
ss
the case of carburized parts. Unfortunately,
the bainite incubation periods for most of the
low-alloy construction steels are too short in
the
relevant
temperature
range
to
allow
substantial equalization of temperature in any
but the smallest sections. The transformation
characteristics of many of the higher-carbon
steels which
might be expected to benefit
more from the treatment are, on the other
hand, eminently suitable for martempering.
If the bainite incubation period is too short
for martempering, two compromises are possible: either to allow partial transformation to
bainite to occur at the martempering temperature and thereby derive the benefits of a
martempering treatment with some sacrifice
of mechanical properties; or, alternatively, to
use an "interrupted
quench."
As_ previously
indicated,
many
isothermal
transformation
diagrams show a temperature range between
the pearlite and the bainite reactions within
which
austenite
quenching
is
relatively
to a temperature
within
stable.
By
this range,
holding long enough to allow equalization of
temperature,
and
then
oil- or air-cooling
through the martensite range, it is possible to
obtain some of the benefits of martempering
for a steel which would be unsuitable for full
martempering.
On the basis of isothermal transformation diagrams, a number of special heat treatments
have been evolved but these procedures, which
are considered in this section, are not included in the provision made in current B.S. En
specifications.
this temperature.
eee
to
It is frequently inconvenient
to quench a
component into a salt or molten bath at the
martempering
temperature,
and
in_ these
circumstances,
"time
quenching"
may _ be
adopted.
For
this
treatment,
the
part
is
quenched in oil, withdrawn when it reaches
the
martempering
temperature,
and _ then
allowed
to cool immediately
in air. Time
quenching is less beneficial than martempering but is much more readily applied under
production
conditions and is of undoubted
value in reducing cracking and distortion.
The oil-cooling curves of Fig. 16, 18 and 20
should
assist in determining
the requisite
quenching times for various sections. These
curves represent the cooling of infinitely long
cylindrical bars of a deep-hardening steel, and
are unaffected
by transformations
for the
range
of
temperature
shown.
The
quenching
conditions used in their determination are
believed
to be typical of those used
in
practice for bars treated individually. The
cooling curves of bars quenched in bundles
will, of course, be very different.
A close approximation to the cooling curve
applicable
to the centers of other simple
shapes such as rectangular bars, plates, cubes
and
spheres,
when
quenched
in a given
medium is provided by the cooling curve for
ee
e—e—eeye—EE—————————————————————————
ae
Atlas of Time-Temperature Diagrams
o a °o
°C
TEMPERATURE
' o ~a
Temperature
Fractional
U
°C
TEMPERATURE
Temperature
Fractional
U
:
6
DIAMETER - inches
=
|
450L
!
———
!
2
SECONDS
5
the
10
20
=
4
2
Ss
10
20
40"
MINUTES
TIME
UsxT-Tz
ina
uf
HOUR
APPROXIMATE EQUIVALENT SECTIONS
LONG BARS AND LARGE PLATES
OF
Rectangular Bar
Thickness
Breadth
2
|
10
5
|
DIAMETER - inches
_—
a
\
=e
__|
|
AYO
Wet
0-65
-\0-60
2
SECONDS
MINUTES
HOUR
Fig. 17 Air-cooling curves for the axial position
of i-in. to 6-in. diameter bars
where T «Temperature of bar at any Instant.
T,=Initial temperature of bar.
Tz=Temperature of the cooling medium
the center of a cylindrical bar possessing the
same
ratio of volume-to-surface
area..°? A
selection of equivalent sections of bars and
plates obtained by this method is given in the
table below. The
values
were
derived
for
infinitely long round and rectangular bars,
and the plate length and breadth were also
considered to be infinite.
Diameter
I
|
a
TIME
Fig. 16 Oil-cooling curves for the axial position
of 1-in. to 6-in. diameter bars
Round Bar
vik
eet
In view
of what
has
been
said
of the
disadvantages of bainitic structures in steels
of low- and medium-carbon content, it may
seem strange deliberately
to promote
their
development. In certain circumstances
however, and notably when the carbon content is
high,
these
structures
do
possess
certain
advantages. For example, Davenport, Roff and
Bain,>!
Volume—Surface
i
austempering
temperature
after
transformation is usually not important, and depending
on the properties required, the steel may or
may not be subsequently tempered.
Area
have
shown
that
better
ductility
is
developed by austempering high-carbon steels
to hardness
values
of the
order
of 50
Rockwell C (approx. 520 D.P.N.) than by fully
hardening and tempering to the same hardness
value.
Again,
Bennek
and
Bandel®?
have
shown that the creep properties of certain
bainite structures in the temperature range
400 to 500°C are superior to those of tempered
martensite.
Austempering
treatments
are
intended
to
develop microstructures consisting wholly or
substantially of bainite. Accordingly, the steel
is austenitized, cooled to the selected temperature at a rate sufficiently rapid to avoid
prior transformation
to ferrite or pearlite,
held at that temperature for the time required
for complete transformation, and then cooled
to room temperature. The temperature chosen
for austempering
depends on the hardness
required and the rate of transformation of the
variations in
steel. In view of the known
transformation characteristics which can exist
given
any
of
bars
and
billets
within
commercial steel, it is advisable to austemper
for approximately double the time indicated
by the appropriate isothermal transformation
the
from
of cooling
rate
The
diagram.
a
The
tensile
and
impact
properties
of
austempered steels of low- or medium-carbon
content are, however, generally inferior to
those of fully hardened and tempered steels,
and
austempering
is usually
advantageous
except as a method of avoiding the dangers of
cracking and distortion associated with the
martensite reaction.
In isothermal annealing, the steel is austenitized
and
then
allowed
to
transform
as
completely
as possible
in the
pearlite
range.
This treatment is usually applied with
object of softening the steel sufficiently
machining
and
cold-forming
operations.
the
for
For
isothermal annealing it is not necessary to
quench the steel to the selected transformation
temperature,
temperature
but very slow cooling
should
be
avoided
to this
because
Atlas of Time-Temperature Diagrams
67
ee
o Kor ooa u
10-75
°C
TEMPERATURE
actional
=0-70Temperature
£
i
os
SECONDS
MINUTES
HOUR
TIME
iaTeiizs
wt
where T= Temperature of bar at any instant.
Ty=Initial temperature of bar.
Ta=Temperature of the cooling medium
The type of pearlite formed during isothermal
annealing
is strongly
influenced
by
the
austenitizing temperature adopted; the latter
must be closely controlled if the most suitable
structure is to be developed. Low austenitizing
temperatures just above the Ag temperature or
slightly
lower
temperatures.
at
which
austenitization
is incomplete,
promote
the
development of spheroidal carbide, whereas
high austenitizing temperatures favor production of lamellar carbide. The particular type
of carbide to be preferred depends on the
nature of the forming operation to which the
part
is to be subjected.
For example,
a
spheroidal structure is usually preferred to
cold-heading operations and for turning, but a
lamellar structure is often chosen for milling,
drilling and broaching.
Fig. 18 Oil-cooling curves for the mid-radius
position of 2-in. to 6-in. diameter bars
L °e u
| |
Fractional
Temperature
-|0-75
°C
TEMPERATURE
—t-—
$00
factional
-UL
2) xrc) FTemperature
1
=
:
pales -rches
|
|
7
\I)
|
—|\0-65
|
|
—}0-S5
4 50 he
i
2
SECONDS
|
s
4
10
20
40
1
2
MINUTES
$
10
20
40
i
HOUR
TIME
Fig. 19 Air-cooling curves for the mid-radius
position of 1-in. to 6-in. diameter bars
additional
before
proeutectoid
the annealing
ferrite
may
temperature
separate
is reached,
thus promoting the development of a banded
structure
and
thereby
impairing
machinability. This effect is most likely to occur in
steels of low-carbon content such as are used
for
carburizing.
As
in
austempering,
oes aT
2
SECONDS
hee
it is
of
variation
for
provide
to
advisable
transformation characteristics within any one
batch of steel by allowing double or treble the
transformation time indicated as necessary by
the isothermal diagram. In cooling from the
austenitizing temperature to the temperature
selected for isothermal annealing, it is often
one
from
samples
to transfer
convenient
furnace to another; the air-cooling curves in
i
eee
Se
(nae
a7
\ioee
ee
F
2
MINUTES
in
uo
ae
ar
HOUR
TIME
Fig. 20 Oil-cooling curves for the “near-surface”
position of 2-in. to 6-in. diameter bars
The austenitizing temperature also markedly
influences
the
time
required
to.
effect
transformation to pearlite; low austenitizing
temperatures
favor
more
rapid
rates
of
transformation.
Consequently,
it is usually
possible to reduce annealing times by using
lower austenitizing temperatures than those
employed for hardening. Data illustrating the
influence
of austenitizing
temperature
on
pearlite-reaction times for the alloy-rich steels
are presented
with the relevant isothermal
transformation diagrams. The effects observed
are due partly to the smaller
grain size
developed at the lower austenitizing temperatures
and
partly
to
the
presence
of
undissolved carbides, which reduce the alloy
content of the austenite and serve as nuclei
for transformation.
Fig. 17, 19 and 21 provide an indication of
In selecting the transformation temperature
the temperature drop which will occur during
for isothermal
annealing, a compromise
is
the transfer and the length of time available
often
necessary.
Temperatures
just
below
the
for the operation.
EE
EEE
EEE
ane
Atlas of Time-Temperature Diagrams
68
a
eee
eee
of
is governed
by the same
globular carbide structures with low hardness
values, but in such conditions transformation
rates are slow and there is a tendency for
ferrite
bands
to form.
At slightly
lower
temperatures towards the pearlite nose of the
isothermal diagram, transformation rates are
higher
and
more
lamellar
structures
are
developed. Consequently, the optimum anneal-
isothermal
annealing.
A,
temperature
favor
the
development
ing
temperature
depends
on
the
type
of
structure required and the time which can be
allowed for the treatment. Sometimes a useful
compromise is to allow most of the transformation to take place at a high temperature
where a soft structure is formed, and then to
cool to a lower temperature at which transformation is completed more rapidly.
required
rate
considerations
as for
indications
of the
the
trans-
Some
of cooling
through
transform
too
formation range can be derived by superon the isothermal
imposing cooling curves
n so obtained is
informatio
the
diagram, but
slower
and, in practice,
only approximate
cooling rates than those indicated by the
diagram will generally be found necessary. A
study of the isothermal transformation diagram and the hardness values of the structures
formed at different temperatures will indicate, however, the temperature range over
which controlled cooling is necessary and below which
relatively rapid cooling is permissible.
Some
pearlite
steels
range
for
the
slowly
application
isothermal or continuous cooling
Such steels are usually annealed
TEMPERATURE
SECONDS
MINUTES
HOUR
TIME
U=T -T;
where
Ti-Ta
T « Temperature
of bar at any
instant
T= Initial temperature of bar.
Ta=Temperature of the cooling medium
Fig. 21 Air-cooling curves for the “near-surface”
position of I-in. to 6-in. diameter bars
The formation of globular carbide is often
promoted
by holding
the steel for several
hours at a temperature just below the A,
temperature
prior
to
heating
to
the
austenitizing
temperature.°*
This
treatment
causes the carbide particles to agglomerate,
and in consequence they do not dissolve so
readily at the austenitizing temperature and
serve
as
nuclei
for
the
precipitation
of
globular carbide during subsequent transformation in the pearlite range.
Continuous
cooling
annealing
is
often
less
time consuming than isothermal annealing for
large components
or large batches of steel
which would require considerable time for the
entire mass to cool to the optimum isothermal
transformation
temperature.
For continuous
cooling annealing, selection of the austenitiz-
and the rate of cooling
ing temperature
through the transformation temperature range
in _ the
of
either
annealing.
by a pro-
longed tempering treatment, often referred to
as subcritical annealing. This type of treatment serves to globularize the carbide structure and is adequate for many purposes, but
for a steel which
is to undergo difficult
machining operations it is sometimes advantageous to use a two-stage treatment. The first
stage involves austenitizing the steel, allowing
it to transform
as far as possible in the
pearlite range either during slow cooling or
isothermally, and then cooling to room temperature. During cooling to room temperature
that portion of the austenite which did not
transform to pearlite transforms to the harder
bainite and martensite
structures, and this
part of the structure is softened during the
second stage of annealing which comprises a
prolonged tempering treatment just below the
A, temperature.
Continuous cooling
transformation diagrams
A number of attempts have been made to
derive from isothermal transformation diagrams
information
on
the _ transformations
likely to occur at known rates of continuous
cooling.
Notable
amongst
these
are
the
methods
which
have
been
suggested
by
Scheil,®4 Steinbert®> and Manning and Lorig,®®
for calculating
the temperatures at which
transformation begins during cooling. Other
methods have been proposed by Grange and
Kiefer®’ and by Pumphrey
and Jones®® for
deriving the temperatures for various stages
of transformation. Although some degree of
success has been claimed for these methods,
their general applicability is limited.
One of the difficulties in the calculation of
temperatures for the start of transformation
—”,.,rrrreseeeee
OE
EE
Atlas of Time-Temperature Diagrams
69
a
arises from the apparent complexity of the
interrelationships
the
between
nucleation
processes
at various
temperatures.
Several
investigators have endeavored to resolve this
oil-quenched cylindrical bars;
relation is shown in Fig. 27.
yet to be found. Calculation of the progress of
transformation
during
continuous
cooling,
using isothermal transformation data, is also
difficult for various reasons. Firstly, it is
uncertain to what extent transformation products formed at one temperature nucleate
ed here
provides
transformation
data
for
various positions in oil-quenched cylindrical
problem,°?®6!
but a satisfactory solution has
transformations
at
lower
temperatures.
Secondly, partial transformation in one temperature range may modify the composition of
the untransformed austenite and thus alter its
temperat lower
behavior
transformation
atures.
For
example,
separation
of
proeutectoid ferrite in the pearlite range will
increase the carbon content of the untransformed austenite and this enriched austenite
a
will
more
transform
consequence
as
reluctantly in the bainite range and will have
a lower M, temperature than austenite of the
original composition. Thirdly, the heat liberated during transformation
retards cooling,
often with marked effects on the progress of
transformation. It is extremely difficult to
take the heat of transformation into account
when deriving continuous cooling transformation data from isothermal diagrams and the
various methods of calculation which have
this
proposed
ignored
have
been
hitherto
factor.
The limitations of isothermal diagrams for application
to continuous
cooling
conditions
have stimulated efforts to develop diagrams
which
would
formation
portray
under
such
the
progress
conditions.
of
trans-
The
major
difference between the methods used to determine the two types of diagram is that in
isothermal studies the progress of transformation with time is measured for a series of
constant temperatures, whereas for continuous
cooling conditions the progress of transformation with falling temperature is measured for
a series of cooling cycles.
Determination and presentation
of continuous cooling
transformation diagrams
Various methods of determining and presenting continuous
cooling transformation
data
a
typical
cor-
The method used in determining the continuous cooling transformation diagrams present-
bars of infinite length, varying in diameter
from | in. to 6 in. This size range covers the
maximum ruling sections quoted in the British
Standards Institution’s Schedule of Wrought
Steels (B.S. 970, 1955). Since full details of the
method used have been described elsewhere
only the broad
given here.
outline
of
the
procedure
is
In view of the obvious practical difficulties
involved in recording transformations which
occur in bars quenched directly in oil, the
cooling rates characteristic of oil-quenched
bars were obtained by air-cooling smaller bars
of appropriate sizes. Steven and Mayer?? have
shown that the diameter of an oil quenched
bar and the equivalent size of bar which cools
in air at the same rate over the temperature
range of 700 to 300°C are connected by the
following equation:
Log Dy =
1:59 log Do + log b
where D, =
Diameter ofair-cooled bar
Do =
Diameter of oil-quenched bar
b
0-052, 0-045 and 0-036 (where D, and
=
Do are in inches)
for cooling at the axis, mid-radius and a near-surface position,
respectively, of the oil-quenched bar. Where Dy, and Do
are in millimetres, corresponding values for b are 0-0077,
0-0067 and 0-0053.
The
transformations
occurring
in the aircooled
bars
were
ingeneral
followed
dilatometrically;
a view
of the apparatus
employed is shown in Fig. 22. For the smallest
bar size studied however (0.9-in. diameter bars
quenched in oil) information on transformation
characteristics
was
obtained
by
a
microscopical
method.
This
method
also
involved simulating oil-cooling by air-cooling,
but
cooling
was
interrupted
at
various
temperatures by quenching in water, and the
progress of transformation with temperature
was derived from a microscopical study of the
quenched
samples.
A_
typical
series
of
microstructures
showing
the
progress
of
transformation in a B.S. En 12 steel cooled at
the rate of a 0.9-in. diameter oil-quenched bar,
is reproduced in Fig. 23.
have been described in the literature. Some of
these have employed purely arbitrary cooling
rates, but others have used the range of
cooling rates along the length of a Jominy
end-quench hardenability test-piece. The cool-
Continuous cooling transformation diagrams
for each of the steels dealt with in this article
are presented with the isothermal transformation diagrams, but it will be convenient to
of
the
characteristics
discuss
general
piece method
the one for the B.S. En 111 steel (see Fig. 24).
ing rates obtained
by the end-quench
test-
can be correlated with those of
continuous
cooling
diagrams
EEE
as
typified
by
Atlas of Time-Temperature Diagrams
70
As in isothermal transformation diagrams, the
ordinate scale of the diagram shown in Fig. 24
represents
represents
temperature,
the
abscissa
scale
oil-quenched bar diameter, and the
diagram
shows
the temperatures
at which
transformation
starts
and
reaches’
various
stages of completion (10, 50, 90 and 100%)
when
l-in. to 6-in. diameter
bars are oilquenched from the austenitizing temperature.
It will be noted that there are three scales
along the bottom of the diagram. The top
scale should be used to assess the progress of
transformation at the axes of oil-quenched
bars (r/b = 0, where r = distance from axis of
bar, and b = radius of bar); the second
third scales are for use in assessing
oil-quenched bar of the B.S. En 111 steel (Fig.
24) would transform is indicated by drawing
an ordinate from the 3-in. position on the
and
this
upper scale representing bar diameter,
which
at
temperatures
the
reading
ordinate
which
intersects
the
lines
of the
diagram
depict progress of transformation.
Thus,
and
the
progress of transformation at the mid-radius
(r/b = 0.5) and "near-surface" (r/b = 0.8) bar
positions.
The
temperature
material
range
at the axis
within
which
the
of, say, a 3-in. diameter
a 540°C.
x 850
b 500°C.
x 850
e
x 850
d
x 850
450°C.
350°C.
Fig. 23 Four stages in the transformation of
austenite to bainite in 1% nickel steel (B.S. En
12) when cooled at the rate of a 0.9-in. diameter
oil-quenched bar. Etchant: 2% nitric acid in
alcohol. Small test pieces were air-cooled to the
temperatures indicated to simulate this cooling
rate, and were then water-quenched
transformation would begin at 600°C, 50% of
the austenite would be transformed when the
temperature at the axis reaches 505°C, and
transformation would be complete at 400°C.
An ordinate drawn from the 3-in. position on
the scale
representing
the
"near-surface"
Fig. 22 General view of the dilatometric
apparatus used for the determination of
continuous-cooling transformation diagrams. The
movable furnace employed for austenitizing the
steel samples is seen in the lower part of the
apparatus; above this is the dilatometer and
camera used for recording the dilatation of the
specimen. During cooling the specimen is
enclosed in a small compartment, the front panel
of which has been removed for this illustration to
provide a view of the lower part of the
dilatometer
EE
position shows that the temperatures for the
same stages of transformation of the material
near the surface of the bar would be 565, 495
and 360°C respectively.
The transformation lines of the continuous
cooling
diagrams
transformation
are
not
continued below the M, line to join up with
the corresponding
martensite
transformation
lines, since at temperatures below about 300°C
the method
of air-cooling
small
bars
to
simulate the cooling of oil-quenched bars does
not
provide
a
sufficiently
close
match
of
Atlas of Time-Temperature Diagrams
71
LS
cooling rates to justify the application
method
of the
to these lower temperatures.
The structures which can be expected in the
as-quenched bars are indicated beneath each
diagram, e.g., in the diagram for the B.S. En
111 steel it is shown that with increasing bar
diameter, the resulting structures consist of
martensite,
martensite
+ bainite, ferrite +
pearlite + bainite, and ferrite + pearlite. No
attgmpt is made to indicate the proportions of
the various constituents when two or more are
present in the as-quenched bars, but a useful
guide in this respect is provided by the curves
of
the
diagram
showing
percentages
of
transformation. In general, transformation at
temperatures above 550°C may be accepted as
giving ferrite and pearlite structures, whereas
between
this
temperature
and
the
M
temperature bainite is formed.
.
.
e
8
The
as-quenched
hardness
values
to
be
expected in the oil-quenched
bars are also
shown with each continuous cooling transformation
diagram.
These’
values’
were
obtained
on the equivalent air-cooled testpieces.
A 2-in. diameter oil-quenched bar of this steel
starts to transform at 500°C, and at 485°C 50%
of the transformation to bainite is complete.
This high-temperature
bainite is of lower
carbon content than the austenite from which
it is formed, consequently the remaining aus-
General features of
continuous cooling
transformation diagrams
The continuous
cooling transformation
diagram for the B.S. En 111 steel shown in Fig.
24 illustrates the various features of transformation which are encountered in diagrams
of this type. Transformation of the austenite
at the axes of oil-quenched bars more than
4.25-in. diameter results in the formation of
ferrite
and _ pearlite.
The
transformation
occurs in a fairly narrow range of temperature, for example,
at the axis of a 5-in.
diameter
bar
transformation
starts
is much
wider.
tenite becomes
on
enriched in carbon
gos
I
?
4
¢
e
and the M,
‘cam
122
Austentelzing Temperature
¢
i4
8457
Sen
TRANSFORMATION TO.
BAINITE STRUCTURES
t
t
1
1
1
1
1
'
1
i
1
at 650°C,
and
is completed
when
the
temperature
reaches 590°C. At 4.25-in. diameter, the transformation lines representing the later stage of
transformation fall sharply to lower temperatures, and for bars between 2.25-in. and 4.25in. diameter, the temperature range of trans-
formation
In the size range in which ferrite/pearlite
Structures are the first to separate during
cooling,
the temperature
for the start-oftransformation
usually
decreases
gradually
with
decreasing
bar
diameter,
but
when
bainite is the first constituent to form there is
often a range of bar sizes in which the
temperature
for the start-of-transformation
remains constant, or falls less rapidly. Thus,
the minimum diameter for pearlite formation
is often indicated by an inflection in the
curve representing the start-of-transformation;
in the
continuous
cooling
transformation
diagram for the B.S. En 111 steel this is shown
at the 2.25-in. diameter position. For bars
smaller than 2.25-in. diameter, the product of
transformation in this steel is therefore either
wholly bainitic, or martensitic, or contains a
proportion of each of these constituents. The
critical diameter below which it is possible to
obtain full hardening by oil-quenching is not
shown
precisely
in the continuous
cooling
transformation diagram of the BS. En 111
steel, since it is less than the smallest diameter
which could be tested, but the trend of the
start-of-transformation line suggests that it is
about 0.8-in.
R
FERRITE & PEARLITE
STRUCTURES
é
4
0%
Degrees
TEMPERATURE
Centigrade
:
0% 909,
fo“ey
100%
FERRITE PEARLITE &
BAINITE STRUCTURES
Transformation
In this size-range,
of
starts with a separation
transformation
ferrite and pearlite, followed by bainite at a
lower
temperature.
occur
together
The
over
but as the temperature
pearlite gradually
two
a range
reactions
falls, the formation
gives way
may
NEAR-SURFACE
,
ae ase
eel!
ati
=
1
1
to formation
of
AS-QUENCHED
of
bainite. With decreasing bar diameter below
4.25-in., the amount of ferrite and pearlite
formed decreases, until 2.25-in. diameter little
or no pearlite appears in the microstructure.
=
;
Sas
:
20
vs
HARDNESS
Pe
270
VALUES
ae
260
a
w
of temperature,
wb
D.P.N.
:
260
2s
20 235
:
26
aa
ms
Fig. 24 Continuous cooling trans formation
diagram for B.S. En 111 steel austenitized at
845°C
Atlas of Time-Temperature Diagrams
72
8585656555555
i
temperature of the steel is depressed. At small
diameters, the bainite is formed
at lower
temperatures and its carbon content approaches that of the initial austenite. With decreas-
ing bar size, the M, temperature
is therefore
gradually restored to the normal value for the
steel. This feature is not shown by every steel,
however,
since
the amount
of low-carbon
bainite formed is often insufficient to increase significantly the carbon content of the
remaining austenite.
Many
of the deeper-hardening
steels, when
oil-quenched as I-in. to 6-in. diameter bars, do
not transform to ferrite/pearlite structures,
and the continuous cooling diagrams of these
steels merely show a zone of bainite transformation. Typical examples are provided by
the diagrams presented for the B.S. En
25, 26, 100 and 110 steels.
23, 24,
The
transformation
data
given
by
the
continuous
cooling
diagrams
for quenched
bars
provide
a useful
indication
of the
suitability of a steel for applications in which
specific mechanical properties after tempering
are required. In the low Ni-Cr steel B.S. En
111 (Fig. 24), bars up to a diameter of about
0.75-in. would
be fully hardened
by oilquenching,
and
after
lightly
tempering
a
satisfactory combination of tensile and impact
properties should be obtained at high tensile
strengths. Slightly larger bars containing a
proportion of bainite could be tempered to
somewhat
lower
strengths
and would
have
impact-resistance adequate for most purposes.
However, as the bar size increases beyond the
critical diameter for full hardening by oilquenching, the proportion of bainite in this
steel
increases
rapidly,
and
even’
with
relatively small sections it is unlikely that
sufficiently close control of heat treatment
could
be maintained
to secure
consistent
properties at relatively high tensile strengths.
Tempering to intermediate strength levels is
therefore advisable for all bar sizes up to
about 1-1/8-in. diameter. Bars between 1-1/8-in.
and 4-in. diameter should be tempered to still
lower
tensile
levels
to secure
satisfactory
impact-resistance,
and those of more
than
about 4-in. diameter would be suitable only
for relatively low-strength applications.
Limitations of
transformation
diagrams
Certain limitations inherent in both isothermal and continuous cooling transformation diagrams should be borne constantly in mind.
i
Each diagram is based on a study of samples
taken from a single cast of steel. Other casts
of the same type of steel may, because of
alloy content,
and
carbon
their different
rmation
transfo
their
in
ially
differ substant
characteristics, while still conforming to all
requirements of the specification. Particularly
wide variations are to be expected from lowalloy steels likely to contain variable amounts
of residual alloying elements.
It should also be remembered that the small
samples used for determining transformation
representnot be completely
diagrams may
ative of the cast as a whole. Other parts of
the cast may
yield significantly
different
results. Furthermore, there may be variations
the section
of individual
across
bars or
forgings®”, some
zones of which
will usually
transform more readily and others less readily
suggest.
would
Such
the
diagram
than
differences are at a maximum in castings and
are believed to be progressively reduced by
forging and rolling. At best, the diagram can
show no more than the average transformation
characteristics of the cast.
The transformation diagrams
are not appreciably affected
of many steels
by quite wide
variations of austenitizing time and temperature, but if the steel contains appreciable
amounts of strong carbide-forming elements
the effect may be significant. Raising the
austenitizing
temperature
of such a
steel
causes progressive solution of alloy carbide
and alters the composition of the austenite,
which
in turn
affects
the transformation
characteristics
of the steel at subcritical
temp-
eratures. Similarly, varying the austenitizing
time at a given temperature may modify the
transformation
characteristics,
although
the
magnitude of this effect is appreciably less.
Subject
to
these
limitations,
isothermal
and
continuous cooling transformation diagrams
can be of great assistance in controlling the
heat treatment of alloy steels. The isothermal
transformation diagrams presented in this section portray the fundamental transformation
characteristics on which the behavior of the
steels during
heat
treatment
largely depends
and they are of direct value in the application
of special heat treatments based on this type
of diagram. The continuous cooling transformation diagrams are of particular value for
directly assessing the transformation behavior
of simple shapes quenched in oil; they obviate
the need
for
use
of continuous
cooling
transformation data of uncertain value derived
by
calculation
from _ isothermal
diagrams.
Atlas of Time-Temperature Diagrams
73
ee
a
Hardenability
Hardenability refers to the ability of a steel
to form martensite when cooled at a variety
of rates from an austenitizing temperature; it
is related therefore to the maximum thickness
of section
which
can
be fully hardened
throughout. It is not concerned with the maximum hardness obtainable in the steel; as has
already
been indicated (see Fig. 15), this
depends almost entirely on carbon content and
is substantially independent of alloy content.
For example, a 1% carbon steel rapidly cooled
after austenitizing will develop a much higher
hardness than a 3% nickel steel containing
only 0.3% carbon, but the nickel steel will
have the greater hardenability because it will
harden fully through a larger section.
The difference between hardness and hardenability may be illustrated by considering
the response to hardening of two steels A and
B, steel "A" having the lower carbon content
but the higher alloy content. Suppose that
several different sized bars of each of these
steels are quenched under identical conditions,
transversely sectioned, and tested for hardness
from the surface to the axis. If the hardness
of each bar is then plotted in the form of a
curve of hardness values vs. distance from the
axis, two sets of "hardness-transverse" curves
are obtained, such as those shown in Fig. 25.
It will be noted that the 0.5-in. and 1-in.
diameter
bars of steel "A" have hardened
completely, whereas the 2-in. diameter bar has
only partially hardened, and the 3-in. diameter bar has not hardened to any extent. On
the other hand, the 0.5-in. diameter bar of
steel "B" has hardened
fully, but the 1-in.
diameter bar has only partially hardened, and
neither the 2-in. nor the 3-in. diameter bars
have hardened appreciably. Thus, the rate at
which
a l-in. diameter
bar cools
in the
particular
quenching
medium
adopted,
has
been sufficient to harden fully steel "A", but
not steel "B." The higher-alloy steel "A" despite
its lower maximum hardness, is therefore said
to have greater hardenability than steel "B,"
since under similar quenching conditions it
will harden
in greater diameters, although
steel "B" is capable of developing the greater
maximum hardness.
Hardenability
is expressed
quantitatively
in
diameters" or "ruling secdiameter of a steel may be
defined as the maximum diameter in which,
after quenching in a selected medium, it will
develop a specified hardness or a structure
containing a specified proportion of martenterms of "critical
tions." The critical
site either at the axis or at some other chosen
point.
The
proportion
ee
specified
is
usually
between
50 and
100% martensite
and the
hardness values specified are usually those of
predominantly martensitic structures. It will
be appreciated that the smaller the proportion
of martensite
or
the lower
the hardness
required, and the more efficient the quench
specified, the greater will be the critical diameter of a given steel. To facilitate comparisons, the effect of the quenching medium can
be eliminated mathematically by converting
the critical diameter to an "ideal critical dia-
meter." The latter is the critical diameter for
an infinitely fast quench, ie., a theoretically
ideal quench which reduces the surface of the
sample instantaneously to the temperature of
the quenching
medium.
The "ideal critical
diameter" will clearly be greater than the
critical diameter for a quench in, say, oil or
water.
STEEL A
STEEL B
x3
3
DPN
HARDNESS
DISTANCE
0
FROM
|
inch
AXIS
1
DISTANCE
FROM
AXIS
inch
Fig. 25 Hardness traverse curves to illustrate
differences in hardenability. Steel A has the
greater hardenability, steel B higher maximum
hardness, but less hardenability
Instead of using the as-quenched
martensite content as a criterion,
hardness or
the harden-
ability of a steel can be assessed in terms of
mechanical properties. The critical diameter
of a steel is then the largest diameter which
can be hardened and tempered to develop a
selected
at some
of the
combination of mechanical properties
specified position in the cross-section
bar. The critical diameter
is then
usually
referred
section."
This
ment
and
to
method
control
as
a
maximum
"ruling
of hardenability
is that commonly
assess-
employed
in Great Britain and it is used extensively in
the British Standards Institution’s Schedule of
Wrought Steels (B.S. 970, 1955). The specifications included in this schedule stipulate
several maximum ruling sections for each type
of direct-hardening steel, and these are associated with certain minimum tensile and Izod
impact requirements for test pieces machined
ee
EE
Atlas of Time-Temperature Diagrams
74
NN
from the axial or mid-radial
positions of
round bars. Thus, each ruling section dictates
the minimum hardenability of the steel if the
specified
mechanical
properties
are to be
obtained.
Influence of chemical
composition on hardenability
All the common alloying elements including
manganese,
copper,
nickel,
chromium
and
molybdenum increase hardenability; cobalt has
the reverse effect.t5 Addition of carbon up to
at
least
the
eutectoid
content,
improves
hardenability and the small percentages of
silicon and phosphorus usually present in steel
also exert a positive effect. Sulfur, on the
other hand, by combining with manganese to
form sulfide, reduces the alloy content of the
austenite
and
impairs’
hardenability.
The
presence
of about 0.003%
boron
markedly
enhances hardenability but further increase of
boron has no addition effect and may impair
forgeability.
As would be expected, austenitic grain size
also exerts an influence
on _ hardenability:
hardenability is increased by increase of grain
Size.
In
1942
Grossmann®?
proposed
a
method
of
calculating hardenability from chemical composition and grain size. This involved allotting
to the steel a basic hardenability or critical
diameter (Dc) dependent on its carbon content
and grain size, and then multiplying
this
value in turn by a series of factors to allow
for the effect of each of the alloying elements
present. Thus Di, the critical diameter of an
ideal quench, was obtained from an equation
of the following type:
Di = De X A(% Mn) X B(% Si) X C(% Ni), etc.
ation of the effects of alloying elements on
isothermal transformation characteristics. In a
steel hardened to a 50% martensitic structure,
the remainder of the as-quenched structure
will in some cases consist of pearlite, in others
it will consist of bainite, and in still other
cases both pearlite and bainite transformations may precede the formation of martenthe
site. As
already
mentioned,
alloying
elements vary in the extent to which they
affect rates of transformation in the pearlite
and bainite ranges. For example, molybdenum
markedly retard the pearlite
and chromium
reaction, but have a much less potent effect
on the bainite reaction; thus an addition of
molybdenum to a steel
effect on hardenability
the
A, B, C, etc. were multiplying factors
were claimed to be characteristic of the
effects of the elements on hardenability.
The critical diameters
obtained
by Grossmann
were related to as-quenched structures containing 50% of martensite and no stipulation
was
made
products
regarding
of
the
nature
of
transformation
which
might
other
be
present. It soon became apparent that although
the method was fairly successful when applied
to low-alloy steel, it was unreliable when
applied to steels of higher alloy content. As
Hollomon
reason
for
have
and
Jaffe?
this
is apparent
———<___
———_.,
pointed
from
x
out, the
a considers«_@WX—
of
pearlite,
same
the
but
addition to a steel, the hardenability of which
is limited by the formation of bainite, will
have
a
much
therefore,
which
smaller
attend
assumes,
any
effect.
Failure
method
of
must,
calculation
as does the Grossmann
method,
will
that a given addition of an element
always have the same effect on hardenability.
From
considerations
such
as
the
above,
Hollomon and Jaffe decided that the hardenability of a steel should be assessed by two
factors--pearlitic
hardenability
and _ bainitic
hardenability--the former value representing
the largest diameter that will harden without
the formation of pearlite and the latter the
largest diameter that will harden without the
formation of bainite. The effective hardenability of a steel is then the smaller of these
two values. These investigators decided that
the bulk of Grossmann’s multiplying factors
had been determined under such conditions
that
they
probably
applied
to _ pearlitic
hardenability. In deriving multiplying factors
they assume that changes in the percentages
of carbon,
manganese,
nickel,
copper
and
silicon will produce
the same
changes
in
bainitic as they do in pearlitic hardenability,
that
where
which
formation
will have a marked
if this is limited by
changes
in molybdenum
and
grain
size
have negligible effects on bainitic hardenability, and that chromium has only half the
effect on bainitic that it has on pearlitic
hardenability. These assumptions are, at the
most, no better than rough approximations,
but the information required to assess more
accurately the effects of alloying elements on
bainitic hardenability is not yet available.
This concept of pearlitic and bainitic hardenability is an important contribution to the
understanding
modified
of the subject,
approach
but even
will not provide
calculation of hardenability
composition.
from
this
a reliable
chemical
Atlas of Time-Temperature Diagrams
a
Measurement
of
75)
hardenability
8
The most reliable method of assessing the
hardenability of a steel is to quench bars of
various sizes and examine their microstructures
or
determine
their
hardnesses
and
mechanical properties directly. This, however,
is a tedious and time-consuming method and
of
quantities
of large
‘use
the
involves
material, a feature which
is often inconvenient, particularly during the development
stages of a steel. Continuous cooling transformation diagrams provide an assessment of
test by
but the end-quench
hardenability,
Jominy” has been used most widely for this
CURVE X
HARDNESS
D.P.N.
x
CURVE
109
02
04
06
03
1-0
DISTANCE FROM QUENCHED
12
14
END OF BAR
16
8
Y
20
inch
Fig. 26 Examples of end-quench curves for
steels of high and medium hardenability
purpose.
the
The Jominy end-quench test involves austenitizing a test bar 4-in. long by 1-in. diameter,
and then quenching it under standard con-
ditions by a water jet which
impinges on one
end only of the specimen. The sample consequently cools very rapidly at the quenched
end and progressively less rapidly towards the
Opposite
end.
The
hardness
of
the
endquenched bar is determined at closely spaced
intervals along its length, at a standard depth
below the surface, and these values are plotted
against the distance from the quenched end to
give
end-quench
hardenability
of
curves of the type shown in Fig. 26.
A
deep-hardening
horizontal
steel
end-quench
will
curve,
give
"X," which
indicates
that
the
develop
substantially
martensitic
when cooled at any rate within
covered
medium
an
similar
Jominy
almost
to curve
steel
will
structures
the range
by the end-quench
test. A steel of
hardenability, however, will give a
curve similar to curve "Y," which shows that
within the range of cooling rates developed
over the first 0.2 in. of the test specimen the
steel
will
develop
substantially
martensitic
structures, but over the range of cooling rates
developed
within
0.2 to 0.4 in. from the
quenched end of the specimen it will harden
only partially. When cooled at slower rates
such a steel will transform
transformation products.
wholly
to
soft
structures
hardenability,
basis
are
and simple
adequate
for
comparisons
most
on this
purposes.
For
more detailed comparisons, however, a number
of particular points on the Jominy curve have
been used; these include the position at which
the steel develops 50% martensite, or the
distance over which the steel develops a fully
martensitic structure. Both of these must be
determined
by microscopical
rr
examination
of
the
end-quenched
test
Application of end-quench
hardenability curves
During
duction
the period shortly after
of the Jominy end-quench
the introtest it was
widely claimed’”:?3 that the curves so obtained
could be used to forecast the hardness of different points across the section of quenched
bars. The method recommended
involved a
knowledge
of the cooling
rates
developed
along the length of the Jominy test specimen
during end-quenching,
and of the cooling
rates of quenched bars, and it was assumed
that the quenched bar would develop the same
hardness as that developed at that point on
the Jominy test specimen which cooled at the
same rate. However, neither the cooling curve
of the end-quenched
specimen
nor of the
quenched bar is linear, and consequently a
variety of cooling-rate criteria are possible;
two that have been widely used are the rate
of cooling at 704°C (1300°F) and the "“halftemperature-time," i.e., the time taken to cool
to the arithmetical mean of the austenitizing
temperature
and
the
temperature
of
the
quenching
Clearly the position of the steep part of the
end-quench
curve
provides
an
index
of
along
specimen. Other criteria which have been used
include the distance to some selected hardness
level, or to the inflection point of the curve.
Each
of
these
criteria
has
a
field
of
usefulness in correlating the influence of the
variables controlling hardenability.
medium.
Steven and Mayer‘? have
demonstrated that the cooling rate over the
temperature interval 700 to 500°C is a more
satisfactory criterion.
The
work
of the
tee’4 showed
that
Hardenability
the hardness
Sub-Commit-
of quenched
bars could not be calculated with accuracy
from end-quench
hardenability curves, and
demonstrated that the discrepancies between
values calculated from these curves and those
actually developed are due mainly to transnae
Atlas of Time-Temperature Diagrams
The end-quench
test can
be used also to
indicate
the hardness
to be expected
in
quenched and tempered bars. For this purpose,
the specimen is end-quenched in the normal
manner and then uniformly tempered before
hardness testing. The hardness of a quenched
and tempered steel bar should then be the
same as the hardness at the equivalent Jominy
distance indicated by Fig. 27. The error in
forecasting the hardness of a quenched and
tempered
bar
decreases
as the
tempering
temperature is raised, and for tempering temperatures above 500°C, it is almost negligible.
BAR
OIL-QUENCHED
OF
DIAMETER
inch
The
02
04
06
08
EQUIVALENT
JOMINY
10
12
DISTANCE
4
16
Steel Institute
inch
Fig. 27 Equivalent Jominy distances for the axis
(r/b = 0), mid-radius (r/b = 0.5), and “nearsurface” positions (r/b = 0.8) of oil-quenched
bars
verse and longitudinal variations of hardenability within steel billets of normal commer-
cial
quality.”>
The
standard
1-in.
diameter
end-quench
test piece is usually machined
from 1-1/8-in. diameter hot-rolled bar, and the
hardness measurements along the length of the
bar reflect the hardening response only of the
material near the surface of the bar. Endquench hardenability curves should therefore
be used only semi-quantitatively to forecast
the behavior of quenched bars. For example, a
Jominy curve can be used to decide whether a
bar of given size is likely to harden fully, to
harden partially, or to transform completely
to soft transformation products when quench-
ed in oil. For this purpose,
the relationship*9
between end-quench hardenability curves and
oil-quenched bars shown in Fig. 27 should be
satisfactory. Curve "Y" of Fig. 26 will serve to
illustrate the use of the relationship. The
equivalent Jominy distances for the axes of
oil-quenched 0.5-in., l-in., and 2-in. diameter
bars are, respectively, 0.15, 0.30 and 0.62-in.
These distances correspond to the top portion,
the mid-slope
and
the lower
flat of the
Jominy curve. Thus, the 0.5-in. diameter oilquenched
bar may
be expected
to harden
fully, but the l-in. diameter bar will only
partially harden, and the 2-in. diameter bar
will fail completely to harden at the axis.
The relationship shown in Fig. 27 is based on
equality of cooling rates over the range 700 to
500°C, between the cooling curves of an endquench test specimen, as reported by Russell
and
Williamson,’®
oil-quenched
Mayer.49
bars
and
as
the cooling curves
reported
end-quench
by Steven
hardenability
curves
present-
ed here were determined in accordance with
the procedure recommended in the Iron and
of
and
Special
Report
No. 36, 1946.74
The end-quenched specimens were subsequently tempered at several temperatures to provide
an indication of the hardness values to be
expected from each steel when quenched and
tempered.
Limitations of end-quench
hardenability curves
An end-quench
hardenability
curve
suffers
from disadvantages similar to those outlined
for transformation diagrams, i.e., the test data
provided by a single test do not indicate the
variations
which
may
be encountered
in
different
steels
conforming
to
a_
given
specification. Due to the effects of micro- and
macro-segregation, appreciable differences in
hardenability can also exist between different
samples
of
the
same
cast
of
steel.
As
mentioned
previously,
the
standard
endquench test provides hardenability data for
the material at the surface of a l-in. diameter
test piece, and when this test piece has been
machined from 1-1/8-in. diameter rolled bar
the
information
obtained
can
often
be
misleading if steel with transverse hardenability variations is used. These limitations
can be particularly important if the steel is to
be used in a lightly tempered condition after
quenching, because in sections of critical size
small variations in hardenability can cause
significant
differences
in the
degree
of
hardening. A single end-quench
test will,
however, indicate the bar size range which
may be critical in this respect, should transverse hardenability variations be suspected.
Providing
end-quench
its limitations
test
provides
are
a
recognized,
simple
means
the
of
assessing the hardenability of a steel and it is
particularly useful because it can be applied
for controlling the heat treatment of steels
under production conditions.
EE
»
Atlas of Time-Temperature Diagrams
Sh
rr
Effects of tempering
Hardened
Stresses
steels
or
invariably
"quenching
contain
stresses,"
internal
which
are
greater the more drastic the quenching treatment and the more complex the shape of the
hardened
components.
Sometimes
these stresses
are relieved
to some
deformation,
extent by induced
but\this
may
plastic
be accompanied
by
a certain
amount
of distortion. Hardened
steels also lack toughness and ductility to an
extent which depends on the composition of
and
of
the
degree
steel
the
hardening
achieved. Tempering is effected, therefore, to
relieve the quenching stresses and to provide
improved toughness and ductility insofar as
this is compatible with tensile strength adequate for service requirements.
Amongst other things, the toughness and ductility of a steel depend to a large extent on
the nature, size and distribution of the carbides dispersed in the ferrite matrix, and the
effects of tempering are due mainly to the
changes which
occur in these carbides on
heating.
condition
tempering,
atoms
of
internal
stresses
are
high.
On
carbides are precipitated, and iron
the lattice are rearranged,
thus
providing
considerable
stress
relief.
The
nature of the carbide which separates during
the first stage of tempering has not been
definitely established, but there is sufficient
evidence to show that it has a composition
between
that of FegC and that of Fe,C.7778
This carbide has been termed €-iron carbide.
The separation of €-iron carbide, at least in
high-carbon
steels,
begins
at about
100°C79
and this carbide subsequently decomposes to
cementite at higher temperatures. The first
stage of carbide separation from a martensitic
steel
is sometimes
accompanied
by a
slight
increase
of hardness,
but
this hardening,
which has been ascribed to the formation of
& -iron carbide,®° is accompanied by softening
due to the simultaneous removal of carbon
from the martensite matrix. Depending on the
amount of carbide that precipitates, either
hardening
or softening
may
therefore
be
observed. The marked softening that occurs at
higher tempering temperatures is associated
with the formation of cementite and complete
carbon depletion of the martensite.
The relief of internal stresses and the breakdown
of the martensite
atomic
lattice on
tempering up to about 250°C results in some
improvement in ductility and toughness, and
in an
increased
ratio
of yield
stress
to
breaking strength in tension. The optimum
values of yield or proof stress are usually
obtained after tempering at 300 to 325°C, but
as the tempering temperature is raised above
about
250°C
there
is, for most steels, an
intermediate range of tempering temperature
which causes loss of toughness. The extent of
this temperature
range, and the degree of
embrittlement occurring within it, varies with
the alloy content and is also affected by other
Fig. 28 Untempered
martensite in a low Ni-Cr-
Mo steel (B.S. En 110), austenitized at 860°C
and water quenched. Electron micrograph.
Preshadowed evaporated aluminum replica
variables,
such
as the presence
of small
amounts of those elements which are normally
regarded as impurities. An example of the
influence of alloy content on the extent of the
embrittlement range is provided by the response to tempering of steels containing about
2% of silicon. Certain steels of this type can
be tempered
at temperatures
up to about
300°C without serious embrittlement®!
or loss
of tensile strength, and this renders it possible
to obtain high ratios of yield stress to tensile
strength at high tensile levels.
Martensite decomposition
and associated effects
It has
and
been
Cohen®®
suggested
that
by
Lement,
Averbach
this embrittlement,
which
generally reaches a maximum on tempering at
the
steel,
temperatures of the order of 350°C, is assositic
marten
ed
harden
In a fully
a
in
ciated with the resolution of €-iron carbide
carbon is almost entirely in solid solution
and the precipitation of cementite films along
this
body-centered tetragonal lattice and in
e
————EO
ee
Atlas of Time-Temperature Diagrams
78
a
martensite plate boundaries. At temperatures
above the embrittlement range, however, the
softening of the matrix due to carbon depletion causes an increase in ductility which
eventually overcomes the embrittling effect of
the cementite films.
coalescence
of carbides
The nature
of carbides
in a fully
hardened
and tempered 1.5% nickel-chromium-molybdenum steel are given in Fig. 28 and 30.
in tempered alloy steels
during the
initially formed
The cementite
percenthigh
containing
steels
of
tempering
ages
of
change
elements
carbide-forming
to
gradually
more
stable
tends
alloy
to
car-
bides.82:8:84:85 The rate at which these changes
Fig. 29 Tempered
martensite in a low Ni-Cr-Mo
steel (B.S. En 110), water-quenched from 860°C
and tempered 1h at 350°C. Electron
micrograph. Preshadowed
replica
evaporated aluminum
(Editor’s Note: A more up-to-date review of
embrittlement associated with the tempering
of steels can
be found
in Properties and
Selection: Irons, Steels, and High-Performance
Alloys, Vol 1, 10th ed., Metals Handbook, ASM
International, Materials Park OH, 1990, pp
689-736)
Fig. 30 Tempered martensite in a low Ni-Cr-Mo
steel (B.S. En 110), water-quenched from 860°C
and tempered at 550°C. Electron micrograph.
Preshadowed
evaporated aluminum
replica
The further softening produced by tempering
at which
that
than
higher
temperatures
cementite formation is complete is associated
with coalescence of carbides, resulting in a
further increase in ductility and toughness.
Structures illustrating the precipitation and
a
occur is governed to some extent by the rate
of diffusion of carbon, but more particularly
by the rates of diffusion of the alloying
elements in the ferrite matrix. At low temperatures, the diffusion
rates are too low to
enable the composition
of the carbides to
change significantly within normal tempering
only at the
times and the change
occurs
temperatures
or on prohighest tempering
longed treatment at intermediate temperatures.
In low- and medium-alloy steels of the types
included here, however, formation of stable
alloy carbides
does
not occur
even
after
prolonged
tempering
at high temperatures,
although
the alloy content
of the _ initial
cementite increases as tempering progresses.
The formation of carbides of increased alloy
content leads to a diminution in the alloy
content
expected
strength
of
the
that
ferrite
this
and
would
of the ferrite
also
it
matrix,8®
would
be
reduce
the
apart
from
any effect which the coalescence of carbides
might have. In these steels the low rates of
diffusion of the alloying elements which have
a strong affinity for carbon tend, however, to
reduce coalescence of carbides, and in order
to temper to a given tensile strength it is
usually
necessary
to
employ’
tempering
temperatures somewhat higher than would be
used for plain carbon
steels. Consequently,
internal
stresses
can
be
removed
more
effectively.
In steels which are incompletely hardened, the
extent
to which
carbides
coalesce
during
tempering
is influenced
by the size and
dispersion of the carbides initially present in
the untempered material. If the carbides are
relatively coarse and well separated, as in
coarse lamellar pearlite, little further change
is effected in the size and distribution of the
carbide unless high tempering temperatures or
long tempering times are applied. Within the
times normally
used for tempering, coalescence of carbides
generally
occurs
to a
Significant
extent
only
if the tempering
temperature is higher than that at which the
initial
structure
was
formed
during
the
hardening treatment.
Atlas of Time-Temperature Diagrams
ee
79
REFERENCES
E.S. Davenport, E.C. Bain, "Transformation of Austenite at Constant Subcritical Temperatures," Trans. AIME,
ae
1930, vol 90, pp 117-154
ation of Austenite in Pure Iron-Nickel
and Iron-Nickel-Molybdenum Alloys
Containing 0.55% Carbon," Trans. ASM,
H.A. Smith, "Reactions in the Solid
State. I. Initial Course of Subcritical
Isothermal Diffusion Reactions in
Austenite
AIME,
1949, vol 41, pp 1145-1164
in an Alloy Steel," Trans.
13.
M.P. Sheehan, C.A. Julien, A.R. Troiano,
"The Transformation Characteristics of
Ten Selected Nickel Steels," Trans. ASM,
1949, vol 41, pp 1165-1181
14.
C.R. Austin, J.R. Doig, "The Suppression
of Pearlite in Manganese-Molybdenum
1935, vol 116, pp 342-362
F.B. Rote, W.C. Truckenmiller, W.C.
Wood, "Electrical Resistance Method
the Determination of Isothermal
Austenite Transformations," Trans.
ASM, 1942, vol 30, pp 1359-1373
D.A. Scott, W.M. Armstrong, F.A.
Forward, "Influence of Nickel and
Molybdenum on Isothermal Transform-
for
Steels," Trans. ASM,
1946, vol 36, pp
336-360
R.L. Rickett, F.C. Kristufek, "The
Microstructure of Low Carbon Steel,"
Trans. ASM, 1949, vol 41, pp 1113-1141
15;
Atlas of Isothermal Transformation
Diagrams of B.S. En Steels (2nd Ed.),
Iron and Steel Institute, Special Report
No. 56, 1956
H.T. Heal, H. Mykura,
"An
J.R. Blanchard, R.M. Parke, A.J. Herzig,
"The Effect of Molybdenum on the
Isothermal Subcritical Transformation
of Austenite in Low and Medium
Carbon Steels," Trans. ASM, 1941, vol
29, pp 317-335
X-Ray
Method for the Study of Phase Changes
at High Temperatures," Metal Treatment
and Drop Forging,
pp 129-135
1950, vol 17, No. 61,
J.R. Blanchard, R.M. Parke, A.J. Herzig,
"The Effect of Molybdenum on the
Isothermal Subcritical Transformation
of Austenite in Eutectoid and Hypereutectoid Steels," Trans. ASM, 1943, vol
31, pp 849-868
E. Gillam, D.G. Cole, "S-Curves. Completion below the M, Temperature," /ron
and Steel, 1953, vol 26, pp 471-474
N.P. Allen, L.B. Pfeil, W.T. Griffiths,
"Determination of Transformation
Characteristics of Alloy Steels,” Iron
and Steel Institute, Second Report of the
Alloy Steels Research Committee, Special
Report No. 24, 1939, Section XIII, pp
369-390
T. Lyman, A.R. Troiano, "Isothermal
Transformation of Austenite in 1%
Carbon, High-Chromium Steels," Trans
AIME, 1945, vol 162, pp 196-220
19.
20.
T.G. Digges, C.R. Irish, N.L. Carwile,
"Effect of Boron on the Hardenability
of High-Purity Alloys and Commercial
Steels," Jnl. Res. Nat. Bur. Standards,
1948, vol 41, pp 545-574
21,
Atlas of Isothermal Trans formation
Diagrams, United States Steel Company,
Pittsburgh, 1951
T. Ko, S.A. Cottrell, "The Formation of
Bainite," Jnl. Iron Steel Inst., 1952, vol
172, pp 307-313
kis
E.S. Davenport, "Isothermal Transformation in Steels," Trans. ASM, 1939, vol
27, pp 837-886
Hardening
of Alloy Steels of Various Compositions," Arch. f.d. Eisenhuttenwesen, 1949,
vol 20, pp 13-18
in Steel," Trans. ASM, 1940,
vol 28, pp 537-562
W. Bischof, "Investigations on the
Intermediate Transformation
A.B. Greninger, A.R. Troiano, "Kinetics
of the Austenite to Martensite Trans-
formation
M.F. Hawkes, R.F. Mehl, "The Effect of
Cobalt on the Rate of Nucleation and
the Rate of Growth of Pearlite," Trans.
AIME, 1947, vol 172, pp 467-492
Atlas of Time-Temperature Diagrams
80
nn
a.
23:
32:
G.R. Brophy, A.J. Miller, "An Appraisal
33;
P. Payson, C.H. Savage, "Martensite
Reactions in Alloy Steels," Trans. ASM,
1944, vol 33, pp 261-275
167, pp 654-663
34.
J.M. Hodge, J.L. Giove, R.G. Storm,
"The Hardenability Effect of
Molybdenum," Trans. AIME, 1949, vol
185, pp 218-227
L.A. Carapella, "Computing A” or M,
(Transformation Temperature on
Quenching) from Analysis," Metal
Progress, July 1944, vol 46, p 108
35.
R.A. Grange, H.M. Stewart,
"Temperature Range Martensite
Formation," Trans. AIME., 1946, vol 167,
pp 467-490
36.
A.E. Nehreberg, in Contribution to
Discussion on Grange and Stewart (see
Composition,"
255
Trans. AIME,
1946, vol
C.L.M. Cottrell, "Is M, Temperature
Influenced
Temperature of Formation of
Martensite and Bainite in Low-Alloy
Steels - Some Effects of Chemical
Composition," Jnl. Iron and Steel Inst.,
1956, vol 183 pp 349-359
of the Factor Method for Calculating
the Hardenability of Steel from
24.
W. Steven, A.G. Haynes, "The
W.T. Griffiths, L.B. Pfeil, N.P. Allen,
"The Intermediate Transformation in
Alloy Steels," Iron and Steel Institute,
Second Report of the Alloy Steels
Research Committee, Special Report No.
24, 1939, Section XII, pp 343-367
by Cooling Rate?" Brit.
Welding Jnl., 1954, vol 1, no 4, p 160
26.
G.V. Kurdyumov, O.P. Maksimova,
"Kinetics of the Transformation of
Austenite into Martensite at Low
Temperatures," Doklady Akademii Nauk
S.S.S.R., 1948, vol 61, pp 83-86
35 above), Trans. AIME.,
pp 494-498
37.
E.S. Rowland,
1946, vol 167,
S.R. Lyle, "The Appli-
cation of M, Points to Case Depth
oT
on the Martensite Transformation in
S.A.E. 1050 Steel," Trans. ASM, 1954, vol
46, pp 1225-1250
28.
293
30.
Ws
Measurement,”
pp 27-46
M.R. Meyerson, S.J. Rosenberg,
"Influence of Heat-Treating Variables
S.A. Kulin, M. Cohen, "On the
Martensitic Transformation at
Temperatures Approaching Absolute
Zero," Trans. AIME, 1950, vol 188, pp
1139-1143
S.C. Das Gupta, B.S. Lement,
"Isothermal Formation of Martensite at
Sub-zero Temperatures in a High
Chromium Steel," Trans. AIME, 1951,
vol 191, pp 727-731
1946, vol 37,
38.
H.H. Chiswik, A.B. Greninger,
"Influence of Nickel, Molybdenum,
Cobalt and Silicon on the Kinetics and
Ar” Temperatures of the Austenite to
Martensite Transformation in Steels,"
Trans. ASM, 1944, vol 32, pp 483-516
39.
J.L. Burns, T.L. Moore,
R.S. Archer,
“Quantitative Hardenability," Trans.
ASM, 1938, vol 26, pp 1-21
E.S. Machlin, M. Cohen, "Burst
Phenomenon in the Martensitic
Transformation,” Trans. AIME, 1951, vol
191, pp 746-754
G.V. Kurdyumov, O.P. Maksimova,
"Contribution to the Problem of
Formation of Martensite Nuclei,"
Doklady Akademii Nauk S.S.S.R., 1950,
vol 73, pp 95-98
Trans. ASM,
F.T. Sisco, Modern Metallurgy for
Engineers, 2nd Ed., Pitman Publishing
Corporation, New York, 1948, p 499
41.
W.J. Harris, M. Cohen, "Stabilization of
the Austenite-Martensite Transformation," Trans. AIME, 1949, vol 180, pp
447-470
42.
T. Ko, B. Edmondson, "Thermal
Stabilization of Austenite in Nickel
Steels," Acta Metallurgica, 1953, vol 1,
No. 4, pp 466-467
43.
H. Esser, H. Cornelius, "The
Mechanisms
in the Tempering of
Quenched Steels," Arch. f.d.
Eisenhuttenwesen, 1934, vol 7, pp
693-697
Atlas of Time-Temperature Diagrams
81
———
44.
J.O. Ward, M.D. Jepson, J.R. Rait,
"Effect of Alloying Elements on the
Breakdown of Austenite at Sub-zero
56.
Temperatures - Part I," Jnl. Iron and
Steel Inst., 1952, vol 170, pp 1-9
45.
L.S. Castleman, B.L. Averbach, M.
Cohen, "Effect
of Retained Austenite
upon Mechanical Properties," Trans.
ASM, 1952, vol 44, pp 240-256
46.
B.L. Averbach, S.G. Lorris, M. Cohen,
"Stress-Induced Transformation of
Retained Austenite in Hardened Steel,"
Trans. ASM, 1952, vol 44, pp 746-756
47.
48.
49.
G.K. Manning, C.H. Lorig, "The
Relationship between Transformation
at Constant Temperature and
Transformation during Cooling," Trans.
AIME, 1946, vol 167, pp 442-463
O73
R.A. Grange, J.M. Kiefer, "Transformation of Austenite on Continuous
Cooling and its Relation to Transformation at Constant Temperature,"
Trans. ASM,
O. Zmeskal, M. Cohen, "The Tempering
of Two High-Carbon High-Chromium
Steels," Trans. ASM, 1943, vol 31, pp
380-408
J.A. Cameron, "Bainitic Retained
Austenite," Jnl. Iron and Steel Inst.,
1956, vol 183, pp 260-267
58.
W.I. Pumphrey, F.W. Jones, "InterRelation of Hardenability and
Isothermal Transformation Data," Jani.
Iron and Steel Inst., 1948, vol 159, pp
137-144
29)
J.H. Hollomon, L.D. Jaffe, M.R. Norton,
"Anisothermal Decomposition of
Austenite," Trans. AIME, 1946, vol 167,
pp 419-439
60.
L.D. Jaffe, "Anisothermal Formation of
Bainite and Pro-eutectoid Constituents
in Steels," Trans. AIME, 1948, vol 176,
pp 363-376
W. Steven, G. Mayer, "A Method of
Simulating the Oil-Cooling of Steel
Bars," Jnl. Iron and Steel Inst., 1951, vol
169, pp 370-376
1941, vol 29, pp 85-114
61.
P.T. Moore, "Anisothermal
Deposition
of Austenite in a Medium-Alloy Steel,"
50.
Jnl. Iron and Steel Inst., 1954, vol 177,
pp 305-311]
H.J. French, O.Z. Klopsch, "The
Characteristics of Some Quenching
Sil:
a2,
Curves," U.S. Bureau of Standards
Technical Publication No. 313, 1926
62.
E.S. Davenport, E.L. Roff, E.C. Bain,
"Microscopic Cracks in Hardened Steel,
Their Effects and Elimination," Trans.
ASM, 1934, vol 22, pp 289-310
C.A. Liedholm, "Continuous Cooling
Transformation Diagrams from
Modified End-Quench Method," Metal
Progress, January 1944, vol 45, pp 94-99
63.
A.W. McReynolds, "Electrical Observations of the Austenite-Martensite
Transformation in Steel," Jnl. Applied
H. Bennek, G. Bandel, "The Influence
of Genesis of Crystalline Structure
Resulting from Heat-Treatment and
Alloy Content on the Creep Strength of
Steel," Stahl und Eisen, 1943, vol 63, pp
653-700
Physics,
64.
1946, vol 17, pp 823-833
A. Rose, W. Strassburg, "The Application of TTT Continuous Cooling
Diagrams to Heat-Treatment Problems,"
Arch. f.d. Eisenhuttenwesen,
EEE
G.R. Brophy, "Cycle Annealing of
Hypo-eutectoid Steels," Jron Age, 13
December
54.
55.
1945, vol 156, pp 69-71
E. Scheil, "Initiatory Period of the
Austenite Transformation," Arch. f.d.
Eisenhuttenwesen, 1935, vol 8, pp
565-567
S. Steinberg, "Relationship between
Rate of Cooling, Rate of Transformation, Under-Cooling of Austenite and
Critical Rate of Quenching," Metallurg.,
1938, vol 13, no 1, pp 7-12
1953, vol 24,
pp 505-514
65.
R.D. Chapman,
for Determining
W.E. Jominy, "A Method
the Continuous
Cooling Transformations in Steel,"
Trans. ASM, 1955, vol 47, pp 869-883
66.
W. Steven, G. Mayer, "Continuous
Cooling Transformation Diagrams of
Steels," Jnl. Iron and Steel Inst., 1953,
vol 174, pp 33-45
re
EE
Atlas of Time-Temperature Diagrams
82
mm
67.
E.H. Bucknall, "A Note on the Effect of
Tie
K.H. Jack, "Structural Transformations
in the Tempering of High-Carbon
Steels," Jnl. Iron and Steel Inst., 1951,
vol 169, pp 26-36
78.
C.S. Roberts, B.L. Averbach, M. Cohen,
"The Mechanism and Kinetics of the
First Stage of Tempering,” Trans. ASM,
1953, vol 45, pp 576-599
79.
D.P. Antia, S.G. Fletcher, M. Cohen,
"Structural Changes During the
Tempering of High-Carbon Steel,"
Trans. ASM, 1944, vol 32, pp 290-324
80.
B.S. Lement, B.L. Averbach, M. Cohen,
"Microstructural Changes on Tempering
Iron-Carbon Alloys," Trans. ASM, 1954,
the Location of the Test-Piece on the
Jominy Hardenability of Billets,"
Symposium on the Hardenability of Steel,
Iron and Steel Institute, Special Report
No. 36, 1946, pp 120-131
68.
M.A. Grossmann, M. Asimow, S.F.
Urban, "Hardenability, its Relation
to
Quenching and Some Quantitative
Data," Symposium on Hardenability of
Alloy Steels, ASM, 1938, pp 124-190
69.
70.
71.
TZ.
73.
74.
M.A. Grossmann, "Hardenability
Calculated from Chemical
Composition," Trans. AIME, 1942, vol
150, p 227
vol 46, pp 851-877
J.H. Hollomon, L.D. Jaffe, "Hardenability Concept," Trans. AIME, 1946, vol
167, pp 601-612
81.
W.E. Jominy, A.L. Boegehold, "A
Hardenability Test for Carburizing
Steel," Trans. ASM, 1938, vol 26, pp
574-599
A.G. Allten, P. Payson, "The Effect of
Silicon on the Tempering of Martensite," Trans. ASM, 1953, vol 45, pp
498-525
82.
W.E. Jominy, "Hardenability Tests,"
Symposium on Hardenability of Alloy
Steels, ASM, 1938, pp 66-87
W. Crafts, C.M. Offenhauer, "Carbides
in Low-Chromium Steel," Trans. AIME,
1942, vol 150, pp 275-282
83.
W. Crafts, C.M. Offenhauer, "Carbides
in Low Chromium-Molybdenum Steels,"
Trans. AIME, 1943, vol 154, pp 361-372
84.
T. Lyman, A.R. Troiano, "Influence of
Carbon Content upon the Transformations in 3% Chromium Steel," Trans.
ASM, 1946, vol 37, pp 402-444
85.
K. Kuo, "Carbides in Chromium,
Molybdenum and Tungsten Steels," Jni.
Iron and Steel Inst., 1953, vol 173, pp
363-375
86.
W.P. Rees, B.E. Hopkins, H.R. Tipler,
"Tensile and Impact Properties of IronSilicon, Iron-Nickel, Iron-Chromium
and Iron-Molybdenum Alloys of High
Purity," Jnl. Iron and Steel Inst., 1954,
vol 177, pp 93-110
M. Asimow, W.F. Craig, M.A.
Grossmann, "Correlation between
Jominy Test and Quenched Round
Bars," §S.A.E. Journal, July 1941, vol 49,
p 283
Symposium on the Hardenability of Steel,
Tron and Steel Institute, Special Report
No. 36, 1946
viey
H. Allsop, W. Steven, "A Study of the
Relationship between End-Quench
Hardenability Curves and the Hardness
of Bars Quenched in Oil," Symposium
on the Hardenability of Steel, Iron and
Steel Institute, Special Report No. 36,
1946, pp 199-252
76.
T.F. Russell, J.C. Williamson, "Surface
Temperature Measurements During the
Cooling of a Jominy Test-Piece,"
Symposium on the Hardenability of Steel,
Iron and Steel Institute, Special Report
No. 36, 1946, pp 34-46
Atlas of Time-Temperature Diagrams
83
I
1% Ni Steel (B.S. En 12)
Chemical
Composition,
c
Specification:
Rs
Man,
|= si
%
End-Quench
|4
Mn j ns
—
=
eee
0.48 |0 33 | 1-50 |0-05 0-05
mE
=
=
100 (=
f=
;
Hardenability
Curves
amma
aay!
caratae a
i
a
Zz
Q
< i"
Diagram
04
Continuous
go
S
5
=)
fe
5
f=
<
2
i
a,
Sy
2
5
et
<
fe
i
Qu
10% 5% 90%,
100% Transformation
2
BR 300 |
|
|
&
06
AH
SOY, 0%,
|
AXIS
i
10
i
Siee
8B
10
20
QUENCHED
22
END
Cooling Transformation
—
1
|
:
o8
FROM
OO
24
26
OF BAR
Diagram
————.
2
a]
100% Transformation
300
rs
ase
pet
guns)
Austenitinng Temperature 845°C
fa
DISTANCE
o%
ale eae
Panes
a
Grain Size, 3 (A.s.T.M.)
Isothermal Transformation
2
rat
or
Grain Size :—As-Quenched Grain Size, 7 & 8 (A‘s.T.M.)
McQuaid-Ehn
ah
iz a
0-08 |0-02
0:34 |0-20 |1-06 |0-04 0-037, 0-75
Steel Studied
1% Ni Steel (B.S. En 12)
°
DIAMETER OF OILQUENCHED BAR, inch
od
ehh
1
—~
2
a
ee
3
=
4
—
=
5
=e!|
‘
AS QUENCHED HARDNESS VALUES D.P.N.
\
L
DURATION
?
.i
10
20
Of ISOTHERMAL
40
1
2
5
10
7i}
TREATMENT
Hardness
values
in bold figures are shown
of the fully
transformed steel; the values in italics represent structures
developed by holding at the selected temperatures for 24 hours
and then quenching to room temperature
ean
PO
eC:
etl
Us
SO, BSED
Atlas of Time-Temperature Diagrams
84
nnn
Cc
Si
Min.
Max.
0:35
0-45
0-10
0-35
Steel Studied
0:40
0:26
Ss
P
0-50
0-80|0-05
Mn
f
{0-05
Gr
Mo
3-25 |
3-75 0:30;
Ni
—
|
0-62 |0-005 | 0-007 3:45
z
4.
Peer,
<<.
|
ome
:
|
n
D2 40!
I
Grain Size, 5 & 6 (A.S.T.M.)
a
|
| Tempered at 575°C
300)
|
Tempered
at625°C
=
I nol
Isothermal
Transformation
Diagram
ol
|
i
alee
o2
[z
|
cant
cea
|
800
|
+
1
|
|
|
|
j
|
'
|
{
i
;
Austenitizing Temperature
.
|
1
|
|
|
|
'
|
|
O4
oe
DISTANCE
860°C
:
H
|
||
A sx
METHOD OF MANUFACTURE:—Basic Electric Arc
Grain SIZE:—As-Quenched Grain Size, 5 (A.s.T.M.)
McQuaid-Ehn
ce
hyQ
}
0-28 | 0-10
Curves
Hardenability
End-Quench
Composition, %
Specification:
EE UEEEEE EEE EEE
3.5% Ni Steel (B.S. En 22)
3.5% Ni Steel (B.S. En 22)
Chemical
nnn
oe
10
FROM
2
4
Mek
16
8
20
QUENCHED
Ss)
22
END
24
|
rod
OF BAR
H
I
pe
Diagram
Cooling Transformation
Continuous
-
—
-
-
—---——-—
+ | 730 DPN
art
eels]
Austeniciting Temperature 860°C
480 DPN
3/0 DPN
°C
TEMPERATURE,
°C
TEMPERATURE,
imal
ACC
o%
|
0%
%O%
W%
100% Transformation
10%
DIAMETER
BAR ramen
ar
QUENCHED
soy,
100%, Transformation
RY
OF OILBAR,
inch
ae
ee
a
Errect oF AUSTENITIZING TEMPERATURE
100 |——+
0%
Austenieizing Temperacure °C
on Rens To Ann ar wel os [ne [sf
Incubation Period ..
ea
minute
Time for 50 per cent transformation hour
End ofTransformation...
hour
Final Hardnets
DURATION
6
Of ISOTHERMAL
3
2
TREATMENT
Hardness values
in bold figures are shown
of the fully
transformed steel; the values in italics represent structures
developed by holding at the selected temperatures for 24 hours
and then quenching to room temperature
AS QUENCHED
l
HARDNESS
550
520
490,
410
VALUES
330
no
D.P.N.
US
310
J
Atlas of Time-Temperature Diagrams
85
3% Ni-Cr Steel (B.S. En 23)
Chemical
3% Ni-Cr Steel (B.S. En 23)
Composition, %
GW
Specification:
Min.
Max.
Steel Studied
End-Quench
| Mn)
s
| P
| Ni
| Cr
Basic Electric Arc
Hardenability
cats Als
| Mo
0-25 0-10 0-45/ — | — | 2-75| 0-50 | —
0:35 | 0:35 0-70 |0-05 |o-05 |3-50 |1-00 |0-65¢
0-33 | 0:23 0-57 |0-007|0-005 |3-26 |0-85 |0-09
METHOD OF MANUFACTURE:—
GRAIN SizE:—
si
i
if
*
a
Curves
¥
1
«
is
«=«606)SCO8SCD
i)
ry
1@
>
§
20
22
a
“
a4
26
0
* Optional
i: a
s : i i
8
As-Quenched Grain Size, 9 (A.s.T.M.)
McQuaid-Ehn Grain Size, 4 to 5 (a.s.T.M.)
s
Isothermal
Transformation
Diagram
D.P.N.
HARDNESS
02
04
: e |
DISTANCE
alah: Cart
et
Continuous
‘
700
680 DPN
FROM
QUENCHED
END
Cooling Transformation
:
ri
4
‘
OF BAR
Diagram
T
€
T
its
cenricerrer
ry
4
| Austenitizing Temperacure
|
035°C
7
450 DPN
+1 4210 DPN
4.
610 DPN:
:
B
5
a
i
|
370 DPN
fy
+ 4 360 OPN
fy
5
|
|
a
&
=
=
fa
|
ae
ie
&
6ree
$00
|
fa
BH
=
5
P|
BS
a
QUENCHED
wee
NeansurACe
ri.
i
t
2
AS QUENCHED
‘
4
Day
Hardness
values
transformed
steel;
Of ISOTHERMAL
TREATMENT
bold
shown
in
the
figures
values
in
are
italics
of
represent
the
fully
structures
developed by holding at the selected temperatures for 24 hours
and then quenching to room temperature
3
HARDNESS
5
585
.
.
5
si hi
:
i
3
SSS
DURATION
BAR, inch
?
oS
6
7
VALUES
SSS
*
580
:
4S
Pete
D.P.N.
535
3
520
5
Atlas of Time-Temperature Diagrams
86
se
ea
1.5% Ni-Cr-Mo Steel (B.S. En 24)
Chemical
1.5% Ni-Cr-Mo Steel (B.S. En 24)
End-Quench
Composition, %
Hardenability
Curve
a
is
tle
Z
Specification:
Gc
Si
Min.
Max.
0:35
0-45
0:10
0-35
0-70 0-05
Steel Studied
0-36
0-22
0°52 |0:005 QrOO THe: 52) Mol
0-45)
—
1:30
1:80
0-05
0-90
1°40
0-20
0-35
Se
inept
re aa |
Ay wo
AQ so
evOn27:
METHOD OF MaNUFACTURE:—
Basic Electric Arc
Grain Size:—
As-Quenched Grain Size, 7 & 8 (A.S.T.M.)
3 seo | Tempered
at525%
McQuaid-Ehn Grain Size, 4 to 5 (A.s.7.M.)
Zz, ae
:
3
Tempered at 650°C
i)
Isothermal
Transformation
ee
800}
|
ac
| |
eee
ne
a
\
Austenitizing Temperature 835°C
!
{
& 200
Diagram
04
DISTANCE
Continuous
oat
|
|
z
|
eet
700 |
|
oo
180 DPN
700
06
os
10
FROM
12
4
[en
16
20"
QUENCHED
END
Cooling Transformation
la ~~
+
aa)
awmnase
OF BAR
Diagram
=
; aan |
|
|
Austenitizing Temperature
835°C
210 DPN
|
oo
|
Oo
°
|
{
a
fy
i
a
500 }
a
fox] 400
i]
=
300
1oy%,
:
<—,,
0%
;
90%
°C
TEMPERATURE,
latesraxeneroutes
|
See
0%
|
—4,,
10%
50%
9% Transformation
DIAMETER OF OILQUENCHED BAR, inch
|
=
|
-{
Errect oF AUSTENITIZING TEMPERATURE
ON Response TO ANNEALING AT 650°C
Incubation Period
+. minute
Time for SO per cent transformation minute
End of Transformation
Final Hardness
SECONDS
DURATION
ah
Gn
cies
a)
MID-RADIUS
\
[er [we [|
8
65
6
38
2
19
{
minute
Span
MINUTES
Of ISOTHERMAL
HOURS
DAY
TREATMENT
Hardness values
in bold figures are shown
of the fully
transformed steel; the values in italics represent structures
developed by holding at the selected temperatures for 24 hours
and then quenching to room temperature
Baer
ee SIS
SSS
eeaLays465
$00
3
410
:
380
:
37s
z
Mm
ail
40
Atlas of Time-Temperature Diagrams
87
a
eee
2.5% Ni-Cr-Mo
- Medium
(B.S. En 25)
Carbon Steel
2.5% Ni-Cr-Mo - Medium
Chemical Composition, %
Specification:
c
Si
Mn
End-Quench
Ss
P
| Ni
Min.
0-27
Max.
0-10
0:50
0-35
0:35
0-70
O05
Steel Studied
0-32
| 0:27
0:56
0-012 |0-018 | Doar
— |—
| Cr
Mo
z
| 2-30! 0-50, 0-40
{0-05
Hardenability Curves
i
5
ns
»
4
%0
q
a
af
0
3s
02
O4
o6
os
10
12
14
6
a
20
22
oT
°
=) $00
+#0-51
METHOD OF MANUFACTURE:—
GraIN SizE:—
el
a”
2-80 |0-80 |0-70
|0:74
Carbon Steel
(B.S. En 25)
Basic Electric Arc
As-Quenched Grain Size, 7 & 8 (A.s.T.M.)
7 <
ica}
McQuaid-Ehn Grain Size, 3 to 4 (a.s.T.M.)
Zz oa
a
{eo
Isothermal Transformation
|
vie
|
Diagram
< al
|
DISTANCE
|
FROM
QUENCHED
END
24
26
OF BAR
|
Pa
Continuous
Cooling Transformation
we:
T
;
7
i
Diagram
T
r
Auscenitizing Temperature
7
835°C
OD
°
Oo
f
~
“
:
naz
rs}
e
me
>
S soo
os} 400
\
Sg
5
|
=
2
ooo
:
&
—n,
~
1,
DIAMETER
,
EFFECT OF AUSTENITIZING TEMPERATURE
ON RESPONSE TO ANNEALING AT 650°C
Incubation Period
Time for 50 per cent transformation
hour
End of Transformation
hour
;
<
axis L
values
bold
figures
5
AS QUENCHED
t
Of ISOTHERMAL
in
i
—
OF OILBAR,
=
inch
.
;
A
Austenitizing Temperature °C
Final Hardness
DURATION
QUENCHED
a
BAR.Recent
on
Hardness
m% 4
Ds
=
seo
are
TREATMENT
shown
of
the
fully
transformed steel; the values in italics represent structures
developed by holding at the selected temperatures for 24 hours
and then quenching to room temperature
i
HARDNESS
if
525:
485
:
VALUES
45.
430.
D.P.N.
406
*
380ata
Atlas of Time-Temperature Diagrams
88
2.5% Ni-Cr-Mo - High Carbon Steel
(B.S. En 26)
2.5% Ni-Cr-Mo - High Carbon Steel
(B.S. En 26)
Chemical Composition, %
Specification:
Cc
Si
Min.
Max.
0:36
0:44
0:10
0:35
Steel Studied
0-38
| 0-15
METHOD
OF MANUFACTURE:—
GRAIN SizE:—
Mn
End-Quench Hardenability Curves
| s
P
Ni
O- 50 | oo
0:70 /0-05
‘0:05
|330
|0:56
Cr
| Mo
/ 0°50 0-40
0-80 |0-70
.
700(-
Z,
|
-
age
Branly
;
‘
he
tes
Be Noe, di a
e358C ‘
A, 0
.
| Tempered at 250°C
|0:005 0 o11| 2° 42 |0: 74 |0:46
=| ai
Basic Electric Arc
4 of Tempered a¢ SS0°C
As-Quenched Grain Size, 8 (A.s.T.M.)
FE)
McQuaid-Ehn
Zz al
Grain Size, 5 (A.s.T.M.)
|_ Tempered ax 425°C
Aa
Isothermal
Transformation
rr |
|
ic
s|ate
|
ae
p
ee Bh ee
Se
|
Diagram
ae
|
=
tal
A iol
|
eee. ey
c |
3
:
z
¢
=
F
cs
EES
glk
a
aea
eo
WA
600
°
Bj
0-6
08
FROM
1-0
Ete 12
|
epee
a 20
16
ie
1-4
QUENCHED
22
END
24
26
OF BAR
Cooling Transformation Diagram
Continuous
700 DPN
700
:
ea
ae
Austenitizing Temperacure
« 200
:
x
eee 400 DPN
Oo
|
Oo
04
f
|
|
Aan
02
DISTANCE
3
|
|
700 | ac
Po
2”
=
MeRrithe Temmermietisre
4
O5°C
s00
oa
|
|
So) e l
|
500 |
fom}
5
tae
&
fe
fe
S100 |
5
}
Oy
e=
|
|
=)
740 DPN
|
=
fs]
%
10%
0%,
%
Ms
oe
.
nea
°
pees
—e
H
100%, Transformation
|
+,
(can
o%
Seat
ae
E
1
pee
ni
monsons |
y
100
Erect oF AUSTENITIZING TEMPERATURE
+ |ON Response TO ANNEALING AT 650°C
———v—
Final Hardness
'
2
SECONDS
s
10
Hardness
values
401
2
MINUTES
S10
20
Of ISOTHERMAL
in
|
Sal
bold
figures
are
40
1
2
HOURS
$s
10
201
DAY
of
the
°
1
1
'
=
aa
“ae
eS
3
fi os
ee
2
=
=
3
i
3
eee Med BO
TREATMENT
shown
|__
4
s
4
ad
4
5
ve
s
=
é
if
6
4
T
AS QUENCHED HARDNESS VALUES D.P.N.
one
20
DURATION
|
i
‘Avscenitizing Temperature °C
Se
NEAR-SURFACE
50% Transformation
DIAMETER OF OILQUENCHED BAR, inch
ceatreeto|
a
10%
fully
transformed steel; the values in italics represent structures
developed by holding at the selected temperatures for 24 hours
and then quenching to room temperature
OC ees
Atlas of Time-Temperature Diagrams
89
I
a
a
3.5% Ni-Cr-Mo Steel (B.S. En 28)
Chemical
Composition, %
Specitication:
| C
| Ni
|
| ¢r
0-25/ 0-10; — ' — | — |3-00]
0-40
|0:35 0-70 0-05 |0-05 | 4-50)
Min.
Max.
| Mo
| v
0-75 |0-20) —
1-50| 0-65 | —
0-32 |0-19 | 0-51 {0-009 |0-013 |3-02 |1-37 | 0-48 | 0-18
Steel Studied
METHOD OF MANUFACTURE:—
Basic Electric Arc
GRAIN SizE:—
As-Quenched Grain Size, 9 (A.s.T.M.)
McQuaid-Ehn Grain Size, 6 (A.s.1.M.)
Isothermal
Transformation
in
|
Us
|
Se
|
|
||
|
|
Seer
\
700}
|
Sea
—
|
|
i
\
i
ee
Ac
i:
Diagram
|
|
taal
7
Austenitizing Temperature
late
| ta
es
|
||
|
=|
7
835°C
|
ee l=)
i
—
—
680 DPN
°C
TEMPERATURE,
300)
MS
:
:
:
0% 10% 0%
Errect oF AUSTENITIZING TEMPERATURE
9%
100%, Transformation
Austenitizing Temperature °C
ON ResPONse TO ANNEALING AT 650°C
100
)
Incubation Period
Time for SO per cent transformation hour
End of Transformation
hour
Final Hardness
DPN
03s
#10
790
“7
22
12
"
|
L
'
|
2
SECONDS
5
"tor
20;
DURATION
40:
2
MINUTES
s}
to
20:
40°11
Of ISOTHERMAL
2
HOURS
S10
20%
DAY
TREATMENT
in bold figures are shown
of the fully
Hardness
values
transformed steel; the values in italics represent structures
developed by holding at the selected temperatures for 24 hours
and then quenching to room temperature
End-Quench
™
z
‘eo
;
T
s
Hardenability
T
10
s
2»
ne
0
5
Curves
7
“s
“
aie
»
T
ss
Sais
co)
“)
24
=26
|
ay’ “|
=) $00
n
wn
“0
fz)
Tempered at 525°C
Tempered
(ied) 4-
--
a 600°C
Tempered at 625°C
z Me
|
aie
ic
02
o4
DISTANCE
o6
o8
FROM
Lo
.
12
14
16
QUENCHED
18
210
END
22
OF BAR
ee
Atlas of Time-Temperature Diagrams
90
ee
Sn
4.25% Ni-Cr-Mo
4.25% Ni-Cr Steel (B.S. En 30A)
Chemical
Chemical
Composition, %
Specification:
c
Si
Min.
Max.
0-26
0-34
0-10
0-35
Mn
Steel Studied
0:35
0:14 |0-44
s
P
Ni
0-40|—
0-60 | 0-05 | 0-05
lo.
008 ||0-016
4: 23 |1-43 | 0-13
Isothermal
800
|
|
{
4
Spams
3
4
ae
0:26
0:10
0-40
Max.
0:34
0:35
0-60
0-05
Steel Studied
0-33
0:17
0°51
0-009 0:013| 4-16 | 1-44 | 0-31
a
820°C
4
—
| 3-90
1-10! 0-20
0:05
| 4:30
1-40 | 0-40
Grain Size, 4 to 5 (a.s.T.M.)
Diagram
|Bicda | ease
|
Pita.
;
!
|
eel
Hehe isliasPost meyates
|
|
Ac,
r
nt
}\
=9
590 DPN.
pes
| 210 DPR
Ne
id
|
|
|
|
+-—-
ai
=
:
600
o
t
H
i
|
ti
i
700
4
soe
r
SS ed
>
600
|
Keele:
J
630 DPN
|
$
'
|
‘
ty
+
340 DPN
430 DPN
710 OPN
Seat
°
a
fs)
$00
'
=)
&
<
foe
|
660 DPN
|
400
640 DF
1
|
Ay
2
|
ie
{-
|
Eee
pet
$00
680 DPN
|
=
&
Min.
Isothermal Transformation
ra
|
700
Mn
McQuaid-Ehn
Austenitizing Temperature
Ac,
| S
Specification:
Si
METHOD OF MANUFACTURE:—
Basic Electric Arc
GRAIN Size:—
As-Quenched Grain Size, 9 (A.s.T.M.)
Diagram
]
|
%
Cc
Grain Size, 4 to 5 (A.s.T.M.)
Transformation
ire
Steel (B.S. En 30B)
Composition,
3:90 | 1-10
4-30
1-40
METHOD OF MANUFACTURE:—
Basic Electric re
Grain SizE:—
As-Quenched Grain Size, 9 (a.s.T.M.)
McQuaid-Ehn
eae
440 DPN
300 | Ms
en
4
re
is
|
\
Ld
|
|
i
200
te
°C
TEMPERATURE,
'
.
Errect oF AUSTENITIZING TEMPERATURE
-
|ON
Response
TO
Incubation Period
ANNEALING
AT
.
Erect oF AUsTENMZING TEHPERATURE
Auscenitizing Temperature °C
ov Resonst ro Anwenune ar ewre| eee[ne [re [78]:
600°C
minuce
Time for SO per cent transformation
End of Transformation
Final Hardness
Tae
to
FOr
Time for50percenttransformation hour
=
Austenite transformed after24hr. per cent
Final Hardness ,
OPN
2G
SECONDS
Se
0208)
sei
MINUTES
DURATION
a
ye
wor
HOURS
Of ISOTHERMAL
i)
2
$
10
20
401
2
s
10
20
40
1
2
5
10
207
DAY
TREATMENT
DURATION
Of ISOTHERMAL
TREATMENT
Hardness values in bold figures are shown of the fully
transformed steel; the values in italics represent structures
developed by holding at the selected temperatures for 24 hours
and then quenching to room temperature
The values in italics represent structures developed by holding
at the selected temperature for 24 hours and then quenching to
End-Quench
End-Quench Hardenability Curves
Hardenability
Curves
room temperature
z
Hated
i
[
s
*
Py
Q
Tempered at 475°C
=
wa
Y
«|
1s
=
—
Tempered
at475°C
fx
Zw
3
T
10
Ucn
20
as
T
T
»
ay
‘Tas
2
eels eer eae
s
ay
ss
|
3
|
7
-.
|
=
+
=
|
~
=
Q
Weoloten Sere
HARDNESS
D.P.N
02
O4
es,
06
08
DIAMETER
10
———
12
14
ee
16
8
ee
20
OF OIL-QUENCHED
22
|
24
26
BAR, inch
=
pale
=
02
O4
6
DIAMETER
o8
bo
42
14
16
i
8
20
OF OIL-QUENCHED
22
'
24
ea
26
BAR, inch
Atlas of Time-Temperature Diagrams
Low
Chemical
9]
Alloy Steel (B.S. En 100)
Low Alloy Steel (B.S. En 100)
Composition, %
Specification:
Cy
Min.
Max,
0-35
GRAIN
Mn
Si)
|
— | 1-20! —
0-45
Steel Studied
METHOD
si
0-50
PANG
Auscenitizing Temperature 860°C
1:38 0-031 0-033
se
Acid Open Hearth
0:74
0:53
| 0-16
Tempered at SS0°C
Tempered at 600°C
Tempered a¢ 650°C
8
Transformation
ra
800]
a
|
Curves
ee
10-05 | 1-00 0-60
|0-25
SIzE:— _ As-Quenched Grain Size, 8 (A.s.7.M.)
McQuaid-Ehn Grain Size, 4 (a.s.T.M.)
Isothermal
Hardenability
se -; fo
— — | 0-50}
0-30 |0-15
1-50 0-05
|0-40 0-24
OF MANUFACTURF:—
End-Quench
ro
crite
5|
Diagram
=
Kis
D.P.N.
HARDNESS
tooL
T
Aurtenitizing Temperature
ac | <=
02
860°C
|
O4
O6
DISTANCE
Continuous
exat 410 OPN
es:
oe
10
FROM
ee
a ae
}
0 600
16
18
:
20
22
END
26
Diagram
all
| Austenitizing Temperature 860°C
||
|
|
4
24
OF BAR
i
|
+--——
ie]
14
Cooling Transformation
eats
O
12
QUENCHED
:
sn
|
|
pe
a
=)
: 500
|
Ay
=
400
<3)
al
300
“e
0%
°C
TEMPERATURE,
10%
0%
100% Transformation
MH
10
«—",
BAR POSITION
0
+
=
=
1
4
°
rt
L
:
2
s
10
20
40
SECONDS
values
transformed
2
5
10
20
40
MONUTES
steel;
in
the
bold
1
|
2
$s
10
HOURS
Of ISOTHERMAL
DURATION
Hardness
4
figures
are
in
italics
values
201
DAY
TREATMENT
shown
of
represent
the
fully
structures
developed by holding at the selected temperatures for 24 hours
and then quenching to room temperature
t
Jt
i
BAR,
$80
1
3
n
4
Ses
zs
5
1
HARDNESS
$80
inch
4
4
2
100%, Transformation|
Wh,
|
OF OIL3
Lt
AS QUENCHED
|
\
2
1
°
NEAR-SURFACE L
l
1
DIAMETER
; QUENCHED
axis Lo
MID-RADIUS L
100
o%
|
i
90%
1
10%
!
il
i
5
L
VALUES
ee ye
6
1
eeeMS
‘6
J
D.P.N.
60
Atlas of Time-Temperature Diagrams
OZ
a
Low Ni-Cr-Mo
Chemical
Low Ni-Cr-Mo Steel (B.S. En 110)
Steel (B.S. En 110)
ae
Specification:
0-35
0-45
0:10
0:35
0-40
0-80
—
0-05
=
0:05
1:20'
1:60
0:90)
1-40
0:10
0:20
Steel Studied
|0:44
0:23
0-58
0-004 '0:029
1:40
1:26
0-11
METHOD
GRAIN
OF MANUFACTURE:—
S1zE:—
Isothermal
[ |
800
Diagram
ee
eta
2
|
«“
“5
ia
16
‘6
be)
3S
20
22
A
ca
i
8
Transformation
Bet
ee
i}
Basic Electric Arc
As-Quenched Grain Size, 7 to 8 (A.s.T.M.)
McQuaid-Ehn Grain Size, 6 (A.s.T.M.)
(
Ac,
aS
9 As ene-quenched 0
Min.
Max.
Curves
Hardenability
End-Quench
Composition, %
|
‘
h
8
ae ela eivenrersrtre Bere
.
;
j
al
t
200 DPN
D.P.N
HARDNESS
a.)
06
DISTANCE
Continuous
(08
fom
FROM
tae
QUENCHED
END
Cooling Transformation
24
246
OF BAR
Diagram
700 r —--
‘
t
8
t
lasmaered
2
Auscenitizing Temperature
860°C
|
1
220 OPN
240 DPN
230 DPN
°C
TEMPERATURE,
°C
TEMPERATURE,
H,
Cl
'
park
a
DIAMETER
'
2
Ss
10
SECONDS
DURATION
20
40
1
eer
2
s
10
20
cals
40
MINUTES
Of ISOTHERMAL
4
2
HOURS
aes
s
10
t
201
DAY
TREATMENT
Hardness values
in bold figures are shown
of the fully
transformed steel; the values in italics represent structures
developed by holding at the selected temperatures for 24 hours
and then quenching to room temperature
|
50%,
OF OIL-
_QUENCHED BAR, inch
=
f
s
AS QUENCHED
eal
10%
a
NEAR-SURFACE L
aaa
0%
sis.
4
HARDNESS
| GIS:
610.
605
ni
S75
i
7
5
VALUES
530
rn
m0A
| 40:
D.P.N.
400:
Atlas of Time-Temperature Diagrams
93
Low Ni-Cr-Steel (B.S. En 111)
Chemical
Low Ni-Cr-Steel (B.S. En 111)
Composition, %
Specification:
Si
"ma
isa
P
| N
|G
Min.
0-30
0-10
Max.
0:40
0-35
“60
0:90
0: 05
—
0-05
1:00
1:50
0-45
0-75
0-35
| 0-13
| 0-65 |0-032:0-035
1:27.
0-55
Steel Studied
GraIN
End-Quench
Ce
Size:—
Hardenability
Curves
As-Quenched Grain Size, 7 (A.s.T.M.)
McQuaid-Ehn
Grain Size, 2 to 3 (A.s.T.M.)
SaaS
Isothermal ears
5
BEBE Sr?
ee
fodRat
an re
D.P.N.
HARDNESS
02
04
A
DISTANCE
06
=
08
ame
10
FROM
a
12
4
ee
16
16
QUENCHED
20
22
END
24
16
OF BAR
i
SS
Continuous
200 DPN
Cooling Transformation
700 rc
Oo
+
Diagram
=
r
4
oud
°
sa
e=4
=)
500
BH
<
fe
i]
Ay
400
2
|
0%
10%
$0%
90%
100%
a
Transformation
&
°C
TEMPERATURE,
ay
“4
100% Transformation
DIAMETER
BAR POSITION
QUENCHED
woh
1
2
AS QUENCHED
itz
ploiiiipi
1
2
s
40
20
40 1
SECONDS
values
2
Ss
t0
20
MINUTES
DURATION
Hardness
tiit
in
figures
1
2
5
10
HOURS
Of ISOTHERMAL
bold
40
on
are
2014
DAY
TREATMENT
shown
of
the
fully
transformed steel; the values in italics represent structures
developed by holding at the selected temperatures for 24 hours
and then quenching to room temperature
1
290
He
‘
OF OILBAR,
3
HARDNESS
vs
chert
v0
inch
ane
260
wieteers
i
s
‘
VALUES
10
.
ws 240 235
D.P.N.
20
as
i
Atlas of Time-Temperature Diagrams
94
2% Ni-Mo Steel (B.S. En 160)
2% Ni-Mo Steel (B.S. En 160)
Chemical
End-Quench
Composition, %
Specification:
Cc
Si
Mn:
Min.
Max,
0-35
0°45
0-10
0:35
0-30
0-60
Steel Studied
GRAIN
Size:—
Isothermal
§
P
|
;
Ni
Cr
1:50
2:00
=
_
0:20
0:35
0-41 0-13 0-48 0-043 0-016 1°75
0-17
0-22
y=
0:05
0:05
As-Quenched
Grain Size, 6 to 7 (A.S.7.M.)
McQuaid-Ehn
Grain Size, 2 and
Transformation
Hardenability
700
fsael
a
5
z
TT
5
x»
1
els
as
30
|
Curves
T
if
3s
|
19
“
.
matt
4s]
0!
ma
mijlimerces
|
55]
ad
ay
Avstentiang Temperature 845°C
)
A sw
oe
wn
3 (a.s.7.M.)
TA m
=
Tempered at $25°C
Qe
a
Diagram
>
at
Fool
02
5 06Ee
08
04
DISTANCE
5S) DPN
= oe
==
es,
ae
190 DPN
ee
12
14
(6
16
10
FROM
20
QUENCHED
22
END
24
2-4
OF BAR
Continuous Cooling Transformation Diagram
PA
a
ne
;
i
on
||
ee
200 DPN
|
ié)
210
|
a
°
as
|
:
500
Ay
400
>
|
Pp
;
eal
1
=]
eee
eee
piece
|
wD
(2)
DPN
3)
=
f&
&
Ce
300
0%)
10%
Se
N%
109%
Transformation
|
|
DIAMETER
200
BARPOSITION
+
.
|
hj !
|
QUENCHED
Met
100
4
—=
|
t
et
he
ee
2
s
10
SECONDS
DURATION
20
|
40
1
‘
s
10
|
oe
f
| ea
=
ee
=
ee
7 4
ae
5t
ie
5
seeps
40
MINUTES
Of ISOTHERMAL
1
AS QUENCHED
|
LL
ea |
|
20
aha
i
"3
=
=
=
ee
4
yet
=F
-
s
(cdo taca
—-
pat ee
*
6
—_— SS
=e
7
t
t
[ Peete
2
a
———
ce SAAC
=
|
|
‘
1
F
|
— |
;
scene
|
OF OIL-
BAR, inch
2
HOURS
s
10
201
DAY
TREATMENT
Hardness values
in bold figures are shown
of the fully
transformed steel; the values in italics represent structures
developed by holding at the selected temperatures for 24 hours
and then quenching to room temperature
525
aay
26S
©
HARDNESS
250
°
250
°
245*
VALUES
240
.
240
:
240
:
D.P.N.
2s=
230
te
Atlas of Time-Temperature Diagrams
95
En 42 (1074/1075) *
En 44 (1095)
Composition: 0.75% C - 0.70% Mn - 0.33% Si - 0.20% Ni 0.17% Cr - 0.02% Mo Grain size: 5-6 Austenitized at 800°C
(1472°F) for 30 min
Composition: 0.96% C - 0.55% Mn - 0.32% Si - 0.08% Ni 0.11% Cr - 0.01% Mo Grain size: 5 Austenitized at 780°C
(1436°F) for 30 min
* Closest US grade designations are given
ie
900
nat
800};
a
maa
at
mand
ss
Pr
ia
Cn
isco
300
1.300
HH,200
rH.200
1100
CONTIN
—s
1000,
e
2
L000
MNT
ENOIN
=
>
wl
«
5
2
re
2
2
=
cee
ea
Se
wl
RSS
CS
& 400 Baba
z
—————
TT
ann
tii 400
a
ie
|
4,500
s
|-—
kK
fe
TTT
400
700
2
EH
TT Trmtseo
PT
600
HE
geo
ENS
<
aN
BAINSS,
es
#
Coon I
é
200 €
=
w
700
a
=
PT
500 a Seen
ies
FR BHR TAIT IL
Cy a
A
oo
=
400
=
a
ae
atl
a
aa
Hite
BOTT)
Tit
tT
:°
°
8#
TIME HELD IN CONSTANT
START
OF
100.
Dara
| |t4300
|
Sey
=I
ico
an
TI
_
FROM
50
|__010
>a Ey
i
—
:
TEMPERATURE
QUENCH
(SECONDS)
8
BATH
=
OFT
OV
WI
aE.
=p
TIME
soe
OO
LONN
OF
2 885
HELD IN CONSTANT
FROM
START
OF
ONT
ONO) OO
EO°o
=
°
8 888
ao
w
TEMPERATURE
QUENCH
(SECONDS)
BATH
Gate
900 Oe
mae
an
°
8 006
000
=
2°
4
En 15 (1536)
En 14B (1527)
Composition: 0.33% C - 1.54% Mn - 0.23% Si - 0.18% Ni 0.15% Cr - 0.05% Mo Grain size: 8 Austenitized at 860°C
(1580°F) for 30 min
0.12% Cr - 0.04% Mo Grain size: 8 Austenitized at 860°C
900
909
za
|
Ay
11
-
=
t|
+
=
f+
iia (nl
s
i+
ine
CONTENT
;
|
+
}
iS
THT
mi
|
BEEN
i
ol Tio f{]{s0 90 4 100
TRANSFORMATION
aps
om
1.100
+
Te s
41.000
Hi4”
2
oe
<
2
<
a
Sesh
800g
AA
a
s
mes
=
ea
°
ARE
ti
el ila
+}
600
st 5
ww 1 Pa
_%
en
.
ae
2
a
&@400
o3
|
iz
soo
4
+
1
,|
$s
+
400
|
cm
i 4
ale
zZ
2
oOo
wr
BTU.
a
2
x1
ake Bagge) 202= Mie
ieee6 2666
eee 5
“4 @
TW
IN CONSTANT TEMPERATURE
Jone aTAR OF QUENCH (SECONDS)
BATH ee
SS —
|
pig
|
Py
TT
Cot
;a
im
14
ie
+
iii
EREEIE
Et t
}
|
A|
tt
iE
a
700 jw=
00
T
]
pt
cH
rT
ae
OS Pane LL
aig
aaa}|
x
Ed
OHS 0
=
O00 LO Omn0.0) Om OWrOl0 NOMEO MEOLONO
UO
a
Tit
+1
300
ia
it]
TTT
tt TH6 tio so 90 1oo_t
Ht
“T—T71_ TRANSFORMATION. %
#
<
}
300
“a|
iss
.
5
+
|
Sealelet
tT
=
300
—
i
—+
is
fantasia
|
=a
2 4 400
a:
|
ih
700
1.200
T
a
800
L300
=
5<
lod
Hi
600
«
roves
1.400
700
4 500
(1580°F) for 30 min
1500
T
wet
2
Composition: 0.29% C - 1.67% Mn - 0.26% Si - 0.21% Ni -
1400
Ac:
800
e
500
nae
WT]
PT
2 ae a)
ee SEE
ae
a
ADE
=
=
600
Ms
Co ia
en
el Daw ANT
+
z=
0° wl
&
-
Ce
TT + Eu
Tin
“5 HHH
tt tat
meniid
=e
aOu O10
Dig
a
TIME
A
tt abies
= oti
;
{ig —O
171 101477 St100
Tot
|
Tit
UT
00)
Cain OiO
ORLON
COCUTS
Tile
ee eeSee eeSOS aeOO O10 Oe
HELD IN CONSTANT TEMPERATURE BATH
FROM START OF QUENCH (SECONDS)
.
S
Special Report No. 56, The Iron and Steel
SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition,
Institute, London, 1956
een
eee
Atlas of Time-Temperature Diagrams
96
ne
En 45 (9260)
EEE
’
En 12 (1030 + 0.9% Ni)
Ni Composition: 0.33% C - 0.62% Mn - 0.21% Si - 0.89%
Composition: 0.55% C - 0.87% Mn - 1.74% Si - 0.16% Ni -
0.10% Cr - 0.05% Mo Grain size: 7-8 Austenitized at 845°C
0.10% Cr - 0.02% Mo Grain size: 7-8 Austenitized at 915°C
(1678°F) for 30 min
(1553°F) for 30 min
se
900
1600
1600
1500
800 As
A)
1,400
t+
1,300
=
1200
i
calle
sae |
=
Til
200
|
V4
1,100
0
600
1.100
Ee,
=
oto
i]
1,000 uu
yp
500
5
=
800
oo
rm
ad
Ms (CALC) ss
w
ai
Sot
NT
300
lo
O
ie
50
10
90
TRANSFORMATION — “le 4
200
100
z
:
+
EA
|
8
Om OLOMmOMN ONO TON Om OlmQLONOMEO
FOS
TIME
EES
=
700 ji
hae
H
500
8
soc
=
TT
=I
mM
E
z
==
Shoo
°
1
TIME
HELD
000
0
aan
FROM
=
89 999
020
9
wm
a Eien)ee1.0 a° S}a
8
9
HELD IN CONSTANT
TEMPERATURE
BATH
FROM
START OF QUENCH
(SECONDS)
a
to}
990
0
°
888a
8h en 8 ao
2
IN CONSTANT
START
9
>
ES
OF
TEMPERATURE
QUENCH
(SECONDS)
8
fe)
3
Boo
poly fey
s
aSligo
U
te)
8
8 888
8
9 9 9
O
BATH
En 11 (5060)
En 18 (5150)
Composition: 0.59% C - 0.66% Mn - 0.34% Si - 0.17% Ni 0.65% Cr - 0.02% Mo Grain size: 8 Austenitized at 840°C
0.98% Cr - 0.04% Mo Grain size: 5-6 Austenitized at 860°C
(1544°F) for 30 min
Ww
a
rea
Cwey ke)
#:
800 &
1
of.
72
900
a
Bae
300
12
1,000‘
mani
be
al
5
S
ION - %
TRANSFORMAT
}
366
hse
Pott
*
% 400
500
|_
x
OOS
=
&
600
i
8
LN
XN
a 400
3
5
d
Con
4H
Sg
Fs
a0 i2
&
°
T
700 |AC)
1,300
=
=
toe
f} __1_J
:
AC
|,400
Ac,
°
800
;
Ls00
Composition: 0.48% C - 0.86% Mn - 0.25% Si - 0.18% Ni -
(1580°F) for 30 min
ele) PT
Com
=
[|]
mel
a
Con
cot _|
ae
RE
i
Cte!
°c
TEMPERATURE TEMPERATURE
TEMPERATURE
TIME
HELD IN CONSTANT TEMPERATURE
BATH
FROM
START OF QUENCH (SECONDS)
SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron
and Steel
:
Institute, London, 1956
TEMPERATURE
Atlas of Time-Temperature Diagrams
on
———————————————————
En 31 (52100)
En 56 (420 Stainless Steel)
Composition: 1.08% C - 0.53% Mn - 0.25% Si - 0.33% Ni -
Composition: 0.24% C - 0.27% Mn - 0.37% Si - 0.32% Ni -
1.46% Cr - 0.06% Mo Grain size: 7 Austenitized at 820°C
13.3% Cr - 0.06% Mo Grain size: 7 Austenitized at 960°C
(1508°F) for 30 min
(1760°F) for 30 min
900
7”
i
600
=I
800
SIE
|s00
Ac,
1,400
700
=
1,300
ones
4
cK)
XN
TT
)
4 S00
5
=
|
int
1,200
1100
aS
=F
1000
a
900
<
i
t
S
ca
Ww
300
to
iS
=
e
wl
HH 500
400
|
[] TRANSFORMATION = %
Y
+——+
300
E
|
S
_
700 =ju
Litt
200 i
100
w
Re
LG
600
SS
=
+
F
B
800
= 400
s
tt)
°
BRENIG
Zz
2
=u
cen
OO
EAM,
TO
HOU
m1
=
TIME
HELD
IN CONSTANT
FROM
START
2
18
a)
CO
=
NOLOmO)
TO"O'O)
RO
OF
SI
NOmmOnG
IO,
TORO.
MO
eO20
Pa
TEMPERATURE
QUENCH
200
(SECONDS)
>
12
2 1090
0
9)
Or
NO
NEO LOmOnmO
JO, NOLO NON nO
OC ORS
Ee.
BATH
=
Ce | xX)
9 °
Q
lt
°
°
Q
8
TIME
HELD IN CONSTANT
FROM
START
OF
TEMPERATURE
QUENCH
(SECONDS)
8
BATH
as
En 16 (4032)
En
Composition: 0.33% C - 1.48% Mn - 0.18% Si - 0.26% Ni -
Composition: 0.38% C - 1.49% Mn - 0.25% Si - 0.24% Ni -
0.16% Cr - 0.27% Mo Grain size: 7-8 Austenitized at 845°C
0.14% Cr - 0.41% Mo Grain size: 8 Austenitized at 845°C
(1553°F) for 30 min
(1553°F) for 30 min
900
17 (4037)
900
Ac3
1600
poe
}
800
1]
1,400
-—14
AC,
1,400
1,200
tit
AOS
2
4
kK
<
“ -
“a 500
tiyas
2
w
|
t
900 w
ai
+ |
<
800g2
a
5|
mins
|
=
fe)
90)
TRANSFORMATION
ia
7oo a
w
In
=<:
+
et
600
Be
400
Z
Os
if
moe
2
T TEMPERATURE
aT OF QUENCH
BA TH
(SECONDS,
Atlas of Isothermal Transformation
Institute, London, 1956
a
S|
OHH
PONS
=
te
=
<
800 2
:
rd
700 &
300
eee
Ta
|
et
= =
+H
i
Ht
joan
100
at
ron
ann _
400
TL
300
|
=
ene
ial
Zui
CHtHt
°
600
=
TRANSFORMATION ~ %
ele)
TSyI00
0
29
OPO MONEO.
Ug CIOMONELO
ank 8 MOLOMO
Vek ceNOEF Se
oie LehBakes
MGS TY
ohiey oy
{oy
TIME, HELD
SOURCE:
200
oe
1
7
900 w
a 400
300
a
1,000
7
Ms
%
200
‘ 500
1100
=a
=
53
ae
tT
300
—
L200
=
600
000
iM
Ms
7
1100
[er
i
1,300
=
700
¥e00.
i
=
700
\soo
800
p=
=
pe
|
Es.
ek be
Ac,
1600
Ac .
500
te
2
7
000
06
a
Site
EI
OHH
$3
ha}
09000
0090
9
9000
200
TP
St100
°
SRP OMCT CSR= ee0)GC4) OlececOO".
cremeg
TIME HELD IN CONSTANT
FROM
START
OF
TEMPERATURE
QUENCH
(SECONDS)
BATH
a
Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel
Atlas of Time-Temperature Diagrams
98
En 21 (2330)
En 111 (3135)
Composition: 0.33% C - 0.74% Mn - 0.23% Si - 3.47% Ni -
Composition: 0.37% C - 0.89% Mn - 0.28% Si - 1.24% Ni 7
.
|
0.07% Cr - 0.11% Mo Grain size: 7-8 Austenitized at 840°C
0.63% Cr - 0.05% Mo Grain size: 8 Austenitized at 845°C
(1544°F) for 30 min
(1553°F) for 30 min
BeSeuiie?
900
500
800
AC
“ESR
900
eet
800
|
|,400
700 Re
=e
=
isle,
700
1200
600
as
1,100
ame)
a
fHELL
at
1000,
r
a
°
w 500
P
800 &
>
:é
&&
700 3
-
3cee
-
2
F
as
ae
2
&
al
3ae
=
ee
TOT
300 ws =e
600
=
aoe
[ITRANSFORMATION ~ %o_|_|
300 =
pee
200
400
i
100
le
z
1s at
“wwe
200
300
ig
L
200
1oo
>=
TBH 00
8 888 8 $88 8 888 8 888 8
TIME
HELD
FROM
IN
CONSTANT
START
OF
SECS ROCIO
TEMPERATURE
QUENCH
(SECONDS)
BATH
i
SCTE
ae
3
TIME
HELD
FROM
IN
CONSTANT
START
OF
TEMPERATURE
QUENCH
(SECONDS)
BATH
g
=
En 47 (6150)
En 19 (4140)
Composition: 0.51% C - 0.72% Mn - 0.27% Si - 0.15% Ni =
0.94% Cr - 0.05% Mo - 0.20% V Grain size: 7 Austenitized at
Composition: 0.41% C - 0.67% Mn - 0.23% Si - 0.20% Ni 1.01% Cr - 0.23% Mo Grain size: >8 Austenitized at 860°C
875°C (1607°F) for 30 min
(1580°F) for 30 min
SoS [isos tas
=
800
=
ao
Kee
ae
700
600
ep
aa
=.
tise
oO
Ke
e
«
H
<
F
:
i:
e
iS
2
a
coy
g
a 400
a
=
fa
: 500
w
Nah
100
m
ose
TIME
HELD IN CONSTANT
TEMPERATURE
BATH
START OF QUENCH (SECONDS)
FROM
100,000
TIME
HELD
FROM
IN
CONSTANT
START
OF
TEMPERATURE
QUENCH
(SECONDS)
BATH
10,000 30,000
20,00050,000
100,000*—
SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel
Institute, London, 1956
TIME
, Special Report No. 56, The Iron and Steel
SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition
Institute, London, 1956
.
I
HELD IN CONSTANT
FROM START OF QUENCH (SECONDS)
TEMPERATURE
BATH
BNOH
NINES]
++
NIW
°
:
||
ett
}|
iz
x
z
2
Z
Fa=
fe)is
a
io
S lor
z
|
!
{|
°
Be
al
{
{1
Tot
ee
|
=
/
|
|
|_|
=
\
;
=
if
oa
=
o
°
|2 | Z|
°
7
es
oes
oe
SEEEEEE
°
.
x
a2
Bey faa]
820
oS
'
Sa
me
=
:
5
4
a
rH
pa
MET
K
H
Hh
A
:
|
2
O
0.20% Cr - 0.31% Mo Grain size: 6-8 Austenitized at 870°C
E
s
°
ha
&
°
©
lMae v4aa
oo
Ax
ee
~
rar
v2)
©
ee
S
;
ro
E
56
a wa
=
ro
Ee
Pe
Ez
b>
HY
bu
o.
Fs
=r
& za
4s
A
ira
$
000%00!
>
|| je
He
KNIT
TIME HELD IN CONSTANT
FROM
PNT
5
START
OF
QUENCH
13
H ,N
TT
NOTIN I
ie
I
SS
one
Ss
2
°
9
U
39
°
00
=
an
TEMPERATURE
(SECONDS)
BATH
°
[|
6Nu
”
0
@
bd
OmoaL
NO)“
a
2
oN
HH SH
ae
aie.
a
Saas
—]
2
Q
$
9
07
o
:
oor
o[|
ON
=
8
°Calan
Je
=
SRD
Oo
es
<4
3aN.LvaadnaL
4d,
cH 7
es
|
=
==
5
ra
| q
H
8
O
CT
PT
fem U2 ome eT
9
38
090
9.0
nom
=
ED
-O8
O.
oF
PO.
oe
ze
:
re
00 xs
Ae)
°
00
Composition: 0.41% C - 0.58% Mn - 0.28% Si - 0.15% Ni 1.39% Cr - 0.74% Mo Grain size: 7-8 Austenitized at 870°'C
E
x
fo)
a
=
2=
TS
eS
o
8
om
RE
z;
=
% oO
ov
3
<U
0 =
00 &
Ncam
te x
2 oe
=)
tan
ts
Do
FA
ae
Sha
o
fOr
a = ss
OO OL
Oo
ar.
BO
fe)
YT
eis
oe
so)
feoSa
ro)
fh
fe
7
ce
9 TL
wo
UTZ
Pa mania
TT ATTN
UT
3aNivesdN3L
4,
+
=
=
0)
RN
re
Vy
S
LLY
i
=
5
SuNLvesdW3al
2,
ee,
aeod
||
VA
Feessqaeses=e
2.mo88
=
Meee
3ansvasdnaL
ote
°
2 Z,
see
a
“| So
oe
|
a's
< N
m3
K+
o
S
Sy
qh
oO'
Nn
6 wD
ee
tons
oe
oO
wes
es
qo
Ora
oO
°
Be AB
Bx02TJ
omc
oO o irs} i—
w 3srz]
8-1 By Saco Gio be uns Sie th ipa
pe mee See babe Pies
000'Oo! Ayal
000%0s
Olt NOH
o00'o€
000‘'0z
000'o!
000'2
o00'e|
o00's
OOO"!
0s
002
ooe
001
os
oc
oz
if
=
a
9
En 20
ol
"
012
€om
Fe
z
or
7
SeNLVeSdNSL
°
“
°
D3,
jae:
BUNLVeSdNSL
°
3,
°
Atlas of Time-Temperature Diagrams
99
En 20
a
TIME HELD IN CONSTANT TEMPERATURE BATH
FROM START OF QUENCH (SECONDS)
Composition: 0.19% C - 1.37% Mn - 0.14% Si - 0.56% Ni -
2
Atlas of Time-Temperature Diagrams
100
En 23 (3435 + Mo)
En 25 (3430 +. Mo)
Composition: 0.31% C - 0.62% Mn - 0.20% Si - 2.63% Ni -
Composition: 0.32% C - 0.61% Mn - 0.28% Si - 3.22% Ni 0.63% Cr - 0.22% Mo Grain size: 7 Austenitized at 830°C
(1526°F) for 30 min
0.64% Cr - 0.58% Mo Grain size: 6-7 Austenitized at 835°C
(1535°F) for 30 min
900
1600
B00
S00
a3
1,400
700 |Ac,
1,300
1,200
600
1,100
2
=
&
—=
1000
°
900 w
500
&
=
{"
e
5
800g
& 400
&
w
bE
700 i
300
Ms |—
=
TRANSFORMATION — %
BSCE
Soe)
200
400
i
300
100
200
He
=
°
TEMPERATURE
600
-
am
nun
OVO)
Sane
ONO
Or
x
P= 100
8 oOo
Oo
isd
seer
8
°
°
8
°
os SG) ge
°
°
90
8“ 98 588
090
an
TIME
HELD
FROM
IN CONSTANT
START
TEMPERATURE
OF QUENCH
(SECONDS)
Ef>Ay|
0
8
g
“
Oo
TIME
BATH
HELD
FROM
IN CONSTANT
START
OF
TEMPERATURE
QUENCH
(SECONDS)
BATH
En 30B (3335 + Mo)
En 110 (4340)
Composition: 0.32% C - 0.47% Mn - 0.29% Si - 4.13% Ni 1.21% Cr - 0.30% Mo Grain size: 7 Austenitized at 820°C
Composition: 0.39% C - 0.62% Mn - 0.23% Si - 1.44% Ni -
(1508°F) for 30 min
(1553°F) for 30 min
vee
Iii
Soi
Saas
1.11% Cr - 0.18% Mo Grain size: 7 Austenitized at 845°C
Saas
Cry
70O
600
‘fel
°S
wu° fe)
TEMPERATURE
TEMPERATURE
TEMPERATURE
oo oO
am w
TIME
HELD
FROM
IN CONSTANT
START
OF
TEMPERATURE
QUENCH
(SECONDS)
BATH
TIME HELD IN CONSTANT TEMPERATURE BATH
FROM START OF QUENCH (SECONDS)
SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel
Institute, London, 1956
Atlas of Time-Temperature Diagrams
10]
En 24 (4340)
En 26 (4340)
Composition: 0.38% C - 0.69% Mn - 0.20% Si - 1.58% Ni 0.95% Cr - 0.26% Mo Grain size: 6-8 Austenitized at 835°C
Composition: 0.42% C - 0.67% Mn - 0.31% Si - 2.53% Ni 0.72% Cr - 0.48% Mo Grain size: 6-7 Austenitized at 830°C
(1535°F) for 30 min
(1526°F) for 30 min
900
800 |AC3
bad
hee
800
TTT
1.400
aE
=
Ac, fara
1600
700
1,300
700
1,200
1,100
600
2
z=
—
=
rdse
@
é
600
fees,
2
,
900 Ww
w Be)
is
800 &
=
uw
w
nd
wi
3
es
2
iY
a
=
i
Ms
Joo
-
5
P
3
ad
-
600
300
TRANSFORMATION - %
200
ee
300
400
200
300
loo
le
Z
z
2
°
=
am
w
co
=
ey
ee
=-
ai
eee
eee
100
100
1
S
200
w
Oo
go
9
“~*~
8
lj
—
22828 8 883 8 888 2 888 §
=
wom
eee aetna ta
6
9°
9
8
:
En 100 (8640/8740)
En 28
Composition: 0.40% C - 1.34% Mn - 0.21% Si - 1.03% Ni 0.53% Cr - 0.22% Mo Grain size: 6 Austenitized at 845°C
(1553°F) for 30 min
Composition: 0.25% C - 0.52% Mn - 0.15% Si - 3.33% Ni 1.14% Cr - 0.65% Mo - 0.16% V Grain size: >8 Austenitized at
830°C (1526°F) for 30 min
900
°c
TEMPERATURE
TEMPERATURE
STANT
TRE
TEMPERATURE
POML START Loe QUENCH
(SECONDS)
BATH
TEMPERATURE
TEMPERATURE
TIME
HELD
FROM
IN
CONSTANT
START
OF
TEMPERATURE
QUENCH
(SECONDS)
BATH
and Steel
SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron
Institute, London, 1956
Atlas of Time-Temperature Diagrams
102
Neen
eee
eee
eeee
neem
En 351 (3120)
En 351 (3120)
(1598°F) for 30 min
(1526°F) for 30 min
EEUU EEEEEEEE EEE EERE
Composition: 0.17% C - 0.88% Me - 0.22% Si ee
0.59% Cr - 0.05% Mo Grain size: 6 Austenitized at
Composition: 0.17% C - 0.88% Mn - 0.22% Si - 0.86% Ni 0.59% Cr - 0.05% Mo Grain size: 6 Austenitized at 870°C
900
900
1500
800
700
T
1500
Acs
800
=
1400
J
|
600
\600
alt
=
1,400
Ac,
1,300
FOO
1,300
=
i200
1,100
600
1,100
soe
1200
>
i?
500
rd
=
<=
Fs
2 400
=
se
posts
v
900 w
w
FI
z
CAO)
soo 2
|
7
We
10
iu
wu
SE
RANSFORMATION
%
aaa Ss
Ms (CALC,
<
=
600
300
Lt
pt
+++
=
imal
so
%o
-—/
wie
=
200
700
i
2
4
600
—_
400
a
sood<<
an
11h
Bauoue
sea
300
900 w
100
'90
TRANSFORMATION
500
i) ee
+
200
=
500
Hiss
90!
fe
1000
500
[
i
400
at ©
|
100
att
°
=n
‘jeg
Tat
T
I
=
ES
OlOTONO NNO
nn ONN ORONO
@
ow
@ Wow
۩
477
ae
TIME
HELD
FROM
IN
CONSTANT
START
OF
it
I3
a
Ww
ao
(SECONDS)
3
=
“—-
=
BATH
0900
8
vam
°
zI
°
=
HELD IN CONSTANT
FROM
START
an
&
a
=|100
fe]
w
TEMPERATURE
OF QUENCH
(SECONDS)
ie}
© 0
=<
nm
BATH
©
8
oO
En 351 (3120 at 0.9% C)
0.57% Cr - 0.03% Mo Grain size: >8 Austenitized
at 830°C
(1526°F) for 30 min
AC
{S00
1,300
4 500
F
iat
TRANSFORMATION
-°% O
a 400
=
ia
IO
(5
[e)
10
—
1000 ue
2
900
2
s00 &
-
JOO w>
ea]
200
:
ge
THES
a
ROO
anti
||
PTT
t—
600
~
<
Fs
T
Ht
RANSFORMATION-‘ -9 OL -NIO|( So(90-}HHFi00
=|
M
[|
H
Ee
T
etter 200
HeOH
=
as
HELD
FROM
IN CONSTANT
START
OF
ee
TEMPERATURE
QUENCH
(SECONDS,
See
2
ae
333
BATH
1 - 2% carbide present at austenitizing temperature
SOURCE:
>
E
Ss
a
NESE
iz
300
200
{14300
——
700 i
“S
J
600
HHH
pM==
100
500
©)
=
400
TERI H
eee
i
SI 00
—SeralonivOmmOlOm
OME O NIOLON
GS. ORORO
10101. Ol
O80LONNOLOM
90108 ON
0 110m
ON (OlOmOmZO
OLOT Ona O
TIME
Beadie
at
400
thf
|_|
4
Ms
=5
°
900 w
a
=
I
1
1H
=
a 400
Ww
500
‘=P 1a
1,000
fet
at
1}
300
1,300
=
a
ais
1,400
COMMS
600
100
ei
gsi
a)
AC,
700
200
A
tt
500
sli
=
—_
x
1600
at
BOs
1,400
|
ooo
| nu
-.
|
ie
°
2
2
S|
900
800
'00
360
Composition: 0.92% C - 0.93% Mn - 0.30% Si - 0.90% Ni -
1600
200
300
a
O
OC NOOO HONNQIONO 1 On NQTONO
ain) 4) ONONO) 0
MOIS
esac MOR OLOmS
OUCH ORO CMCC
=
amu
Q 010)16) 716)
0 06
Carburized
900
é<
z
=)
hal
ial
=
(1598°F) for 30 min
(3
=
=
=
4
TIME
Carburized En 351 (3120 at 0.9% C)
Composition: 0.92% C - 0.93% Mn - 0.30% Si - 0.90% Ni 0.57% Cr - 0.03% Mo Grain size: >8 Austenitized at 870°C
700
rT
=
rT
++
ONON Ol KO
te me te
0
000
9
Att
100
Shoo
r2
COMO
i ow
600
6
TEMPERATURE
QUENCH
200
|
_j-si
S|
=
=
ian
300
eis
Al
+
=e
IH
a7
PEs
:
Hat2
Zz
e
©
TIME
=
|
Z|
8B eeo
Skee
HELD IN CONSTANT
FROM
START
OF
8
6
2
SES
888
en
TEMPERATURE
QUENCH
(SECONDS)
BATH
8
300
ee
a
8} 60
SBR
8
eS 8
8
>
86 088
6
1 - 2% carbide present at austenitizing temperature
Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel
Institute, London, 1956
Atlas of Time-Temperature Diagrams
103
En 352 (3120)
Composition: 0.20% C - 0.71% Mn - 0.15% Si - 1.13% Ni 0.80% Cr - 0.05% Mo Grain size: 6-7 Austenitized at 865°C
(1589°F) for 30 min
900
Sea
PSI mmo
ia
new
aon
(=
aan
a
HH
PT
En 352 (3120)
Composition: 0.20% C - 0.71% Mn - 0.15% Si - 1.13% Ni 0.80% Cr - 0.05% Mo Grain size: 6-7 Austenitized at 800°C
(1472°F) for 30 min
SOC Garam mea ino
Rea
a.
%6
bit2
"¢
soo
>
TEMPERATURE
TEMPERATURE
|
3
TEMPERATURE
far]
HH
TEMPERATURE
===
====
wy
} tC)
nitEH=
t+
SSeeo=
ae
==SS
a
bs
H
a
an
Co
oo
0
°
°°
°
°°
aes
TIME
Carburized
ss
pres eo Goh oeseo ce meres
°
HELD
FROM
IN
CONSTANT
START
OF
TEMPERATURE
QUENCH
(SECONDS)
°
Qeo.[U°8
eS 6 OOO
BATH
°
Pao
am
w
PBS
°Q
9 °
:
RTI
9
°
°
28
OG
°
°°
°
Pes hei’
4 cog cars
baa
TIME
En 352 (3120 at 1% C)
Carburized
Composition: 0.96% C - 0.74% Mn - 0.26% Si - 1.19% Ni 0.84% Cr - 0.09% Mo Grain size: >8 Austenitized at 865°C
(1589°F) for 30 min
HELD
FROM
IN
CONSTANT
START
OF
TEMPERATURE
QUENCH
(SECONDS)
BATH
rim
En 352 (3120 at 1% C)
Composition: 0.96% C - 0.74% Mn - 0.26% Si - 1.19% Ni 0.84% Cr - 0.09% Mo Grain size: >8 Austenitized at 800°C
(1472°F) for 30 min
900
al
ia
1600
ae
soo
800
1,400
Ac,
1,300
—
7900
=a
600
2
w
z<
2
a
2
F
ao
SS
i SUNY
w
sco
F:
a 400
F
F
iu
8
RT OF QUENCH (SECONDS)
Tee
1 - 2% carbide present at austenitizing temperature
7
a
400
=
OC
=+H+
5=
z
seal!
SONLOTOLO!
eee
=e
Z|
ONNO1On
See
0.0
300
fe
2=
828
BS loleee
pes
Oot ae
18
8
88eQ
18 FO
SS
>
g
BOP ae
TIME QOM START OF QUENCH (SECONDS)
1 - 2% carbide present at austenitizing temperature
2nd edition, Special Report No. 56, The Iron and Steel
SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels,
Institute, London,
1956
2
700
200
ps
:
S
=
yw
800g
a
sai
a
co
=
al
=
f
ey
900
300
ME
ett
©
|
{
R
<
a
a
a5
1100
i
_|TRANSFORMATION-% |
He
;
w
1200
al
Atlas of Time-Temperature Diagrams
104
En 33
En 33
Composition: 0.11% C - 0.36% Mn - 0.21% Si - 2.89% Ni 0.28% Cr - 0.09% Mo Grain size: >8 Austenitized at 770°
Composition: 0.11% C - 0.36% Mn - 0.21% Si - 2.89% Ni 0.28% Cr - 0.09% Mo Grain size: 8 Austenitized at 865°C
C (1418°F) for 30 min
(1589°F) for 30 min
900
600
7OO
600
°c
w
°°
° ° oO
Ms
> fe} °
>)
@ ° °fe)
TEMPERATURE
TEMPERATURE TEMPERATURE
300
200
ele)
Ei
\[DAy.
ro) °
HOUR
|
NM
88
Min Os
OO
am
50
TIME
HELD
IN CONSTANT
=
°
°
“
°
°
9
10,000
FROM
START
OF
TEMPERATURE
QUENCH
SECONDS)
BATH
50,000
100,000
TIME
HELD
FROM
IN CONSTANT
START
OF
TEMPERATURE
QUENCH
(SECONDS)
BATH
1% carbide present at austenitizing temperature
Carburized En 33
Composition: 0.95% C - 0.40% Mn - 0.26% Si - 2.95% Ni -
Carburized En 33
Composition: 0.95% C - 0.40% Mn - 0.26% Si - 2.95% Ni -
0.36% Cr - 0.08% Mo Grain size: >8 Austenitized at 865°
C (1589°F) for 30 min
0.36% Cr - 0.08% Mo Grain size: >8 Austenitized at 770°C
(1418°F) for 30 min
900
700
12)
w
«
°c
500
rz
<
4
& 400
=
ti
i
w
5
[|
300
200
TEMPERATURE
TEMPERATURE
NSFORMATION ’O]|
NSB
100
TIME
HELD IN CONSTANT
TEMPERATURE
BATH
FROM
START OF QUENCH (SECONDS)
20% ferrite present at austenitizing temperature
SOURCE:
5% carbide present at austenitizing temperature
Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and
Steel
Institute, London, 1956
Atlas of Time-Temperature Diagrams
105
En 36 (9310)
En 36 (9310)
.Composition:
ae sige pay oeZ 0.38% Mn - 0.13% Si: - 3.26% Ni
é -
ne
Composition:
0.11% C - 0.38% Mn - 0.13% Si, - 3.26% Ni; -
Grain size: >8 Austenitized at 860°C
(1580°F) for 30
30 minMo
0.87% Cr - 0.08% Mo Grain size: >8 Austenitized at 770°C
(1418°F) for 30 min
900
1600
800
LE
S00
Fro
1,400
|!
700
1,300
200
600
ae)
v
(as
any
all
ye
1100
=
1000
e
4 500
&
&&
&
F
t
if
ry
% 40°
900 w
&
=
90
10
RANSFORMATION” °%
1
300
soon
&
(aa
lal
res
be
=
700 @
600
=
Seal
500
=I
400
200
aI
300
200
loo
ninety
PS
GS Ss
23 RS
=—
N18;
HF
8
4
ee
LO
OO
Ha aspen
the
7,
—
ic
eae
;
oS
8Q
8
Fal
z
ars
aie
8
aoa
\
x
BHtSloe
nes Se
8
090
0
=
am
oo
0
98
°
w
°
10% ferrite present at austenitizing temperature
En 36 (9310)
En 36 (9310)
Composition: 0.14% C - 0.46% Mn - 0.19% Si - 3.55% Ni 1.11% Cr - 0.12% Mo Grain size: 6-7 Austenitized at 860°C
Composition: 0.14% C - 0.46% Mn - 0.19% Si - 3.55% Ni 1.11% Cr - 0.12% Mo Grain size: >8 Austenitized at 770°C
(1418°F) for 30 min
(1580°F) for 30 min
900
900
1400
|
a0
700 AC
1
oA
ce
ia
:
Ps
900
pee
=i
-—FTELTRANSFORMATION - % |
:
Saat
300
600
e
900
a
a 400
lo |50 TAM
TRA
F
TION,
400
L
:
2
oa
on
> ar
=|
pa}
=
PBee
iI
4
|
100
8
i
Ky
|
ele}
8 eae eee Pees
2 ae 8 aoe g
TEMPERATURE BATH
OF QUENCH
QUENC
TIME ROM
ctaRT. OF
Ou START
(SECONDS)
600
500
400
200
300
1
‘os
100
2
=!00
es
am
wm
Doo OP ESE
TIME
HELD
FROM
IN CONSTANT
START
OH
4
1+S}100
=|!
LRSS Moe es
ct ee oka
TEMPERATURE
OF QUENCH
C 200
[nd
pa
=
°
(SECONDS)
BATH
2 - 5% ferrite present at austenitizing temperature
SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel
Institute, London, 1956
ee
g
yooh
300
tf200
iw
800g
a2
Ms
=
500
200
arr
eraes
i 522.
&g
=
1100
2
2
te
:
800 &
=>—
1,300
1.200
600
1000
}
tt
=
ees
1,100
Ms
2 400
700 tAC
200
R
ww eee
1400
1,300
=
600
L600
\s00
fools
oe)
aco} ACs
5
eit
1600
=
Atlas of Time-Temperature Diagrams
106
Carburized
Carburized En 36 (9310 at 0.7% C)
En 36 (9310 at 0.7% C)
Composition: 0.70% C - 0.35% Mn - 0.16% Si - 3.24% Ni -
Composition: 0.70% C - 0.35% Mn - 0.16% Si - 3.24% Ni 0.96% Cr - 0.06% Mo Grain size: >8 Austenitized at 860°C
0.96% Cr - 0.06% Mo Grain size: >8 Austenitized at 770°C
900
900
(1418°F) for 30 min
(1580°F) for 30 min
if
600
Ht
800
500
fea a aaa
700
+—
FAC,
1,300
=
CT
=
Lt
800
|,400
700
1,200
600
1,100
|
[
2
tt
woe?
[3
iS
-
=~
_-
&5
I
5 400
j
+
TRANSFORMATION
2.0 “ION S5OMK90/(1l00
v
w
4
2
&
FHtH70
CTT
300
ess
900 w
«
Fs)
soos@
a
|
600
~
=
iS
200
300
ne
|
100
le
ize
NE OME
OTOMO NN OOO
SOE
BORE CFO
HELD
FROM
IN
CONSTANT
START
200
fe)
=i
a
ed
=!00
ONNOm
(Or OU ONMOM
OO! 01
ORONO
MOMONNOTONO
9
SN
066
OM
TEMPERATURE
OF QUENCH
(SECONDS)
2
10
IO
0006
VOT Ol
OO
am
BATH
100
>
xe
=z
2
797»
TIME
[a
2
=
maou
$
300
400
—
gfm
& 400
500
2001MS
Cae
w
w
>
-
&
rs
600
=
oe
500
°
°
°
0
)
10
wn
8
fe)
TIME
HELD
FROM
IN CONSTANT
START
OF
TEMPERATURE
QUENCH
(SECONDS,
pe
1 - 2% carbide present at austenitizing temperature
Carburized
Carburized
En 36 (9310 at 1% C)
En 36 (9310 at 1% C)
Composition: 1.00% C - 0.30% Mn - 0.12% Si - 3.27% Ni 0.90% Cr - 0.07% Mo Grain size: 8 Austenitized at 860°C
Composition: 1.00% C - 0.30% Mn - 0.12% Si - 3.27% Ni 0.90% Cr - 0.07% Mo Grain size: >8 Austenitized at 770°C
(1580°F) for 30 min
(1418°F) for 30 min
900
>]
Pees
Coon
soo
800
=
700
oy
1,400
FAc
1,300
=I)
200
600
1,100
nat
2
4 50°
CoM
=
ooo
THT
&
|
<B
om
nt
=
U
=
+4
wl
ae
-E
<
:
==)
Joo a
a
=
F
300
SSon0
wy
5
a
a
=
w
600
=
i
°AP
¥
fofo} <
“
eee
Boo
a
2
900 &
000
ss
500
tH
200
=
ct
+
—
Hi
offal HR EERE
HE HE tht
s
at
°
=F
aan
o
>t
2
3
>
2
Si
i=
OH
PS100
oO
9
900
Be
Fes
HELD IN CONSTANT
FROM
i
Zz
POP
TIME
400
=
START
°
GT
8
(Oe
=;
oo06U€U°8lCUQ
888
OVOROw
ao
TEMPERATURE
OF QUENCH
(SECONDS)
BATH
8
Teo
°
o
ae
BOLO
MONE
000
am
1 - 2% carbide present at austenitizing temperature
[}
QUOMO ME OME OLOMOTNO
ey i
39
8com
o.
90
9°
&
C
8
9°
fe}
am
TIME
HELD
FROM
IN CONSTANT
START
OF
TEMPERATURE
QUENCH
(SECONDS)
w
BATH
O°
‘010
ano
10.
g
6
1 - 2% carbide present at austenitizing temperature
SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel
Institute, London, 1956
’
Atlas of Time-Temperature Diagrams
107
En 39A (9310)
En 39A (9310)
Composition: 0.11% C - 0.38% Mn - 0.09% Si - 4.15% Ni 1.33% Cr - 0.07% Mo Grain size: >8 Austenitized at 770°C
(1418°F) for 30 min
Composition: 0.11% C - 0.38% Mn - 0.09% Si - 4.15% Ni 1.33% Cr - 0.07% Mo Grain size: 7 Austenitized at 865°C
(1589°F) for 30 min
900
900
Oo
TTT
[
[|
w
«
>
La
q
&
2
Fr
a
cit
ues!
cot
Coe
w
a8
an
TEMPERATURE
TEMPERATURE
5,000
fscees
4
TIME HELD IN CONSTANT TEMPERATURE BATH
FROM START OF QUENCH (SECONDS)
TIME
HELD IN CONSTANT TEMPERATURE BATH
FROM START OF QUENCH (SECONDS)
Carburized En 39A (9310 at 0.5% C)
Composition: 0.54% C - 0.34% Mn - 0.26% Si - 3.92% Ni 1.28% Cr - 0.07% Mo Grain size 7 Austenitized at 865°C
(1589°F) for 30 min
Carburized En 39A (9310 at 0.5% C)
Composition: 0.54% C - 0.34% Mn - 0.26% Si - 3.92% Ni 1.28% Cr - 0.07% Mo Grain size: >8 Austenitized at 770°C
(1418°F) for 30 min
900
900
ae
600
(e)
"6
o
Wo
500
w
«
°
500
w
a
e<
e
<
@
w
&
w
a
400
a
z
-
TEMPERATURE
=
w
F
200
100
TIME
HELD IN CONSTANT TEMPERATURE
BATH
ROM START OF QUENCH (SECONDS)
Less than 1% carbide present at austenitizing temperature
TIME
HELD IN CONSTANT TEMPERATURE BATH
FROM START OF QUENCH (SECONDS,
A trace of carbide present at austenitizing temperature
SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel
Institute, London, 1956
Atlas of Time-Temperature Diagrams
108
Carburized
En 39A
(9310 at 1% C)
Carburized
En 39A
(9310 at 1% C)
Composition: 1.02% C - 0.47% Mn - 0.27% Si - 4.15% Ni -
Composition: 1.02% C - 0.47% Mn - 0.27% Si - 4.15% Ni -
1.22% Cr - 0.05% Mn Grain size: 7 Austenitized at 865°C
(1589°F) for 30 min
1.22% Cr - 0.05% Mo Grain size: >8 Austenitized at 770°C
(1418°F) for 30 min
900
mane
Ty
800
700
600
2
§
=
(ee
v
a
s
<
g
z
&
z
2
Zrs
Z
500
ae
FE
i
300
200
100
28S
©)
me
o_=
Spee
Soda eae
°
a
Bae
a
TIME
HELD
FROM
IN
CONSTANT
START
OF
TEMPERATURE
QUENCH
(SECONDS)
BATH
TIME
1 - 2% carbide present at austenitizing temperature
HELD
FROM
IN
CONSTANT
START
OF
ee
TEMPERATURE
QUENCH
(SECONDS)
eee
°
00
0
CEES
BATH
es
2 - 3% carbide present at austenitizing temperature
En 34
En 34
Composition: 0.16% C - 0.53% Mn - 0.18% Si - 1.56% Ni 0.26% Cr - 0.25% Mo Grain size: 8 Austenitized at 865°C
(1589°F) for 30 min
Composition: 0.16% C - 0.53% Mn - 0.18% Si - 1.56% Ni 0.26% Cr - 0.25% Mo Grain size: 8 Austenitized at 770°C
(1418°F) for 30 min
900
A
C
——
weet
800
—
1600
=
EEF
—
Te
700 |Ac,
1,400
COT
600
TC
200
1
1100
(s)
zal
&nee
ae
.
1,300
L
E
=
Te
(catc
aS sottt-9o
Z
5
=
100
4000
6
ae¥
zw
-
e
:
a
z
i
2<
§
wi
5
F
-
s00
[TTT TRANSFORMATION-%
100 2
w
600
300
4
500
200
400
ula
300
100
200
Zz
:
—
nn
wn
>
=
ca
TESS
TIME
HELD
FROM
IN
=100
Fee
are
Smee 8 $38 §
CONSTANT
START
YU)
OF
TEMPERATURE
QUENCH
(SECONDS)
BATH
<7
[]
:
TIME
HELD IN CONSTANT
TEMP! oe
FROM
START OF QUENCH
(SECOND:
°
25% ferrite present at austenitizing temperature
SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel
’
Institute, London, 1956
- Atlas of Time-Temperature Diagrams
Carburized
109
En 34
Carburized
Composition: 0.99% C - 0.56% Mn - 0.29% Si - 1.61% Ni 0.32%
Cr for
- 0.29%
Mo Grain size: 8 Austenitized at 865°C
(1589°F)
30 min
ce
iH]
—
na
HH
En 34
Composition: 0.99% C - 0.56% Mn - 0.29% Si - 1.61% Ni 0.32% Cr - 0.29% Mo Grain size: >8 Austenitized at 770°C
(1418°F) for 30 min
l
HI600
°c
TEMPERATURE
==
a
J
SES
Ay
Ft
FH
TIME
HELD IN CONSTANT TEMPERATURE BATH
FROM START OF QUENCH (SECONDS)
TIME
1 - 2% carbide present at austenitizing temperature
20,000
30,000
HELD IN CONSTANT TEMPERATURE BATH
FROM START OF QUENCH (SECONDS)
2 - 3% carbide present at austenitizing temperature
En 39B (9315)
En 39B (9315)
Composition: 0.15% C - 0.38% Mn - 0.20% Si - 4.33% Ni 1.16% Cr - 0.17% Mo Grain size: 7 Austenitized at 865°C
(1589°F) for 30 min
Composition: 0.15% C - 0.38% Mn - 0.20% Si - 4.33% Ni 1.16% Cr - 0.17% Mo Grain size: >8 Austenitized at 770°C
(1418°F) for 30 min
900
900
1600
soo
800
C.
|
700
1,400
|
1,300
Ac,
1,200
a
1,100
si
aL
r)
,
=
w
x:
&
=
00
.
[4
w
s
:
a
é
rn
w
aé
w
% 400 M
i
re
E
4000,
r
900 wW
g
Fs
7:
800g
if
s
.
sy=
F
TH HiE
=
700 &
=
5
O10
TRANSFORMATION ~ 7
600
300
500
400
200
|
300
|
| +t
100
Ee
TIME
HELD IN CONSTANT
FROM
START
OF
TEMPERATURE
QUENCH
(SECONDS)
BATH
81
£8
.
Fr
Nici alyON
TIME
fs
2
ty4
H
S
OTO
pee
TOO
MOTO
NOME
OME
OTO SOME
3
>
1
S100
°OMNOTOoo
9
O°
am
ie}
8 G.oy ORES
6 866 eeOF8) SOOT
ES RS a) eNO
HELD IN CONSTANT TEMPERATURE BATH
FROM START OF QUENCH (SECONDS)
SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report
Institute, London, 1956
200
Z)
Zz
=.
No. 56, The Iron and Steel
Atlas of Time-Temperature Diagrams
110
2D
flBRZO
aOR
NEi
5368
Osis
SF
maw
=>
msES
Sin erase
2
Ud0xaAd
eeos
Carburized En 39B (9315 at 0.6% C)
Composition: 0.56% C - 0.47% Mn - 0.18% Si - 4.25% Ni 1.16% Cr - 0.18% Mo Grain size: mixed 7 and finer Austenitized
a
at 865°C (1589°F) for 30 min
900
e
800
°
3
790
x0
Srxer
Are
ons
8o2G
ae
3
8
Sete
x z
Saline
«8 ee
PS
aBO
oat
wwe
sO
pre
&
on”
i
eee
°
g
AV}
ine
A
yA
°
8
600
2,
a)
aunivasd
g
BanlvasdnaL
Beaks
v2
Wal
Banivasdn3at
7)
2,
sunivasdwal
°°
o
30
NX
N
°
°&
TT
TATTTIN\_ ANNI Ls
HT
TNT ND ONT bes]
200
°
9°
200
100
TIME
HELD IN CONSTANT
FROM
START
OF
TEMPERATURE
QUENCH
(SECONDS)
TIME
BATH
HELD
FROM
IN CONSTANT
START
TEMPERATURE
OF QUENCH
(SECONDS)
BATH
Less than 0.5% carbide present at austenitizing temperature
Less than 0.5% carbide present at austenitizing temperature
Carburized
Carburized
En 39B (9315 at 0.9% C)
Composition: 0.93% C - 0.50% Mn - 0.30% Si - 4.25% Ni 1.18% Cr - 0.16% Mo Grain size: 8 and finer Austenitized at
865°C (1589°F) for 30 min
1.18% Cr - 0.16% Mo Grain size: finer than 8 Austenitized at
770°C (1418°F) for 30 min
Do
3,
“
s8NLVesdW3L
SUNLVESdNSL
v
a
TIME HELD IN CONSTANT
START
<p
KO NT
TEMPERATURE
OF QUENCH
(SECONDS)
BATH
1 - 2% carbide present at austenitizing temperature
SOURCE:
TIME HELD IN CONSTANT TEMPERATURE BATH
FROM START OF QUENCH (SECONDS)
2 - 3% carbide present at austenitizing temperature
Atlas of Isothermal Transformation Diagrams of B.S. En Steels , 2nd edition, Special Report No. 56, The Iron and Steel
Institute, London, 1956
JaNiveadWaL
fa
PE
FROM
En 39B (9315 at 0.9% C)
Composition: 0.93% C - 0.50% Mn - 0.30% Si - 4.25% Ni -
Atlas of Time-Temperature Diagrams
] I]
En 355
En 355
Composition: 0.20% C - 0.61% Mn - 0.23% Si - 2.00% Ni 1.65% Cr - 0.19% Mo Grain size: 8 Austenitized at 800°C
(1472°F) for 30 min
Composition: 0.20% C - 0.61% Mn - 0.23% Si - 2.00% Ni 1.65% Cr - 0.19% Mo Grain size: 8 Austenitized at 870°C
(1598°F) for 30 min
900
1600
Ac3
Pan
i
Ac
700
t
Coan
Tit
~
au
°¢
ia
a=
«<
a 400
TEMPERATURE
TEMPERATURE
as
Cont
/
sea
1
Moo
Tr
t
|
;
4
5
-
1200
Cot
San aac pe
4 500
400
{
q
2
—
1,300
st
600
L500
|iI
‘
mS
:
Bi
Lf
1000,
t
Z
900 w
&
=
800g<
aiw
=
zi
M Ms
fed
i
a
°
o!Tsoll
im
moan
"
90
TRANSFORMATION
300
=
% |
mi
700
|
600
a
|_|
500
si a aaa
200
400
}iitt
300
100
5
z
=
i)
TIME
=H MEM
HELD IN CONSTANT TEMPERATURE BATH
FROM START OF QUENCH (SECONDS)
NOOO:
= Sin imgn)
TIME
3
>
=a
OH
Shi00
LOM OOO
HO
66
OlNOTONOTNC
© 660
©
|
IQMIOTO 0
FO Oromo)
Ea
IM
HELD IN CONSTANT
FROM
200
Z|
START
OF
MO
aOn
OLOm
Om.
=
NEO OS
Os
TEMPERATURE BATH
TION
am
OcOm
Onn:
QUENCH
OO)
0
ww
fe)
(SECONDS)
2 - 5% carbide present at austenitizing temperature
Carburized En 355
Composition: 0.93% C - 0.71% Mn - 0.38% Si - 2.10% Ni -
Carburized
En 355
1.70% Cr - 0.20% Mo Grain size: 7 Austenitized at 870°C
Composition: 0.93% C - 0.71% Mn - 0.38% Si - 2.10% Ni 1.70% Cr - 0.20% Mo Grain size: 7 Austenitized at 800°C
(1598°F) for 30 min
(1472°F) for 30 min
900
990.
1600
oo
800
700
—
a a
ae
Ht
Ht
Cn
arn
man
ew
oa
a
enue
i
U
a
600
an8
ez
——
<a
SS
soe
SS
Oo
2c
w° °
Hit
"et
Ht TTS!
2
8
LL
4
TEMPERATURE
600
300
200
=
TEMPERATURE
ae
200
100
on
0
é
IME
000
oo
nnn
HH
maar
cH
CH]
HHH
4!
one
an
1MIN
e
jo
w
Ms
loo
ey
Q
res)
o.6°
=
5
Ht
annie
°°
Fee 0D
0.
HELD IN CONSTANT TEMPERATURE BATH
FROM START OF QUENCH (SECONDS)
10,000
50,000
2% carbide present at austenitizing temperature
TIME
HELD IN CONSTANT TEMPERATURE BATH
FROM START OF QUENCH
(SECONDS)
3% carbide present at austenitizing temperature
56, The Iron and Steel
SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No.
Institute, London, 1956
OTT
°
7
=
TEMPERATURE
SMahes:
Titatat
2 400
~° °
‘e
[S
N
°
fe
°°°
a
oe
Atlas of Time-Temperature Diagrams
112
En 353
En 353
Composition: 0.18% C - 0.93% Mn - 0.26% Si - 1.34% Ni -
Composition: 0.18% C - 0.93% Mn - 0.26% Si - 1.34% Ni 1.11% Cr - 0.11% Mo Grain size: finer than 8 Austenitized at
870°C (1598°F) for 30 min
1.11% Cr - 0.11% Mo Grain size: finer than 8 Austenitized at
800°C (1472°F) for 30 min
A) SSSR
a
iia aeagonn
REO
ipa anoMN
°c
TEMPERATURE
TEMPERATURE
TIME
Carburized
HELO
FROM
IN CONSTANT
START
OF
TEMPERATURE
QUENCH
(SECONDS)
TEMPERATURE
TEMPERATURE
TIME
BATH
Carburized
En 353
HELD IN CONSTANT
FROM
START
OF
TEMPERATURE
QUENCH
(SECONDS)
BATH
En 353
Composition: 1.00% C - 0.99% Mn - 0.28% Si - 1.42% Ni 1.12% Cr - 0.11% Mo Grain size: finer than 8 Austenitized at
Composition: 1.00% C - 0.99% Mn - 0.28% Si - 1.42% Ni -
880°C (1616°F) for 30 min
800°C (1472°F) for 30 min
1.12% Cr - 0.11% Mo
Grain size: finer than 8 Austenitized
at
900
cc
2¢
#
eicd
CTrNIn
SIO
ait
TEMPERATURE
==
w ° Oo
2
§
w
=
vi
E
&
=§ 400
<
o¥
<
TEMPERATURE
100
nt
isSan ceI EER ERUIUIE
HY
SEAS,
°
—
pits ae:
E
ae
gan
Ooi
ee
Cecaeceesg
ae 8 8 gog
°o.lU°8
=
°
°°
TIME HELD IN CONSTANT TEMPERATURE BATH
FROM START OF QUENCH (SECONDS)
TIME HELD IN CONSTANT TEMPERATURE BATH
FROM START OF QUENCH (SECONDS)
1 - 2% carbide present at austenitizing temperature
1 - 2% carbide present at austenitizing temperature
ano
°
°
SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel
Institute, London, 1956
Atlas of Time-Temperature Diagrams
En
354
113
(4320)
Composition:
En
0.19%
C - 0.90% Mn
- 0.21% Si - 1.87% Ni -
1.08% Cr - 0.18% Mo Grain size: finer than 8 Austenitized at
870°C (1598°F) for 30 min
_Tin
7
—_
44
rin
ico
,
:
a
900
Thy
1
400
iii
Se
=
it
L
41500
ST
Th
a
ars. 0
= 4 ae
Bb
0°
tinea
=
z
%
21
Ms |___ flit
£400
z
iS
=
O
y
.
=
<
care
Ai}
50
90
RANSFORMATION
%o
es
=
Cin
Kk
AGRON
2
>
2 400
+3
700 ww
4
J
4 500
E
800a
ta
=
Ms
-
|
=
ttt
te
tt
tt
a
4
}
10
TRANSFORMATION
ital
}
}
tis3800 &
Pit
ws
$
|
°
= °°
“r= 2282 8 888 8 883 3 888 8
=-—
TIWE
HELD
FROM
IN
CONSTANT
START
OF
ah40
TEMPERATURE
QUENCH
(SECONDS)
6
o°9 g
BATH
[
g
ri
Liisi
a
_t Cooni
[ mal
|
ag
|
tT
-
HH
sll
=
ht
z
iit
_1 11
|
°%o
ret
2.
=
900
Bim
600
300
°
- 0.21% Si - 1.87% Ni -
ae
——Sasanssersadaer
en alas er!
SS
C - 0.90% Mn
TiT#k00
= soe
|
700
0.19%
1.08% Cr - 0.18% Mo Grain size: finer than 8 Austenitized at
ws
tail
Fe
(4320)
820°C (1508°F) for 30 min
900
Fes
354
Composition:
iw
3
ito
O
100
pene
Ht
“we 2 eee § 882 8 883 2 888 8
ae
a
TIME
HELO
FROM
IN
CONSTANT
START
OF
CPCS
TEMPERATURE
QUENCH
(SECONDS)
en Ser
go
9g
8
BATH
ars
1 - 2% carbide present at austenitizing temperature
Carburized
En 354 (4320 at 1% C)
Carburized
En 354 (4320 at 1% C)
Composition: 0.97% C - 1.00% Mn - 0.33% Si - 1.93% Ni 1.13% Cr - 0.23% Mo Grain size: 8 Austenitized at 870°C
(1598°F) for 30 min
Composition: 0.97% C - 1.00% Mn - 0.33% Si - 1.93% Ni 1.13% Cr - 0.23% Mo Grain size: 8 Austenitized at 820°C
(1508°F) for 30 min
soo
90°
B00
700
°F
G
TEMPERATURE
TEMPERATURE
§
“Cc
TEMPERATURE
TEMPERATURE
CK OK
SK 7
9OPIG
KITS
AT TY
Tote)
1090
Ug
°
a9
°
°
S
TE
T_ TEMPERATURE
gu START OFQUENCH (SECONDS)
BATH
1 - 2% carbide present at austenitizing temperature
g
.;
TIME HELD IN CONSTANT TEMPERATURE
FROM
START
OF QUENCH
(SECONDS)
BATH
8
1 - 2% carbide present at austenitizing temperature
En Steels, 2nd edition, Special Report No. 56, The Iron and Steel
SOURCE: Atlas of Isothermal Transformation Diagrams of B.S.
Institute, London, 1956
~~
-_
-
ch er
ve
28
faeg
=
- are;
German Steels
l-T and CCT Diagrams
iz
a
t=
Saga
a a ame
—
1
o
wt
* Hi
Vd
te:
aoe7
7
i
n
Pp
- e
SS"
ee
Atlas of Time-Temperature Diagrams
117
German Steels - Example Diagram
Holding time, 15 min, brought up to temperature in 3 min
Austenitizing temperature
7000
900
800
Temperature
700
es
Se
nes
;
&
3S 500
S
a
S
|
: ieRace
E SBTC wi
SOARS
100
1
eh
SUS
Sekunden
YANN
fie
“oe
Seconds
Time
A +1
F
Pe
O
Zw
M
RA
1;2...
79
Minuten
Bereich des Austenits und Karbids
Bereich der Ferritbildung
Bereich der Perlitbildung
Hiirtewerte in HV
Bereich der Zwischenstufen-Gefiigebildung
Bereich der Martensitbildung
Restaustenit
Gefiigeanteile in Prozent
100
1000
i
Minutes
Area for austenite and carbides
Area for ferrite formation
Area for pearlite formation
Hardness in HV
Area for intermediate structure (bainite formation)
Area for martensite formation
Residual austenite
(refers to numbers on curves)
proportion of structure formed, in percent
Atlas of Time-Temperature Diagrams
118
Ck 45 0.44%
C - 0.66%
Mn
(SAE
1042)
Composition: 0.44% C - 0.66% Mn - 0.22% Si - 0.022% P 0.029% S - 0.15% Cr - 0.02% V Austenitized at 1050°C
(1922°F)
Austenitisierungstemperatur 1050°C
(Haltedauer5min) aufgeheizt in1 min
Gains
Zaiie im
aaa
Sinaian
3
> 600
iS
Ea
Acy = 735°C
c
= "GC SErtt
: actpsi UlinZ
i
aes TL Pes fel[I
Acg = 785°C
ae
S
=
& 400
300
in
50°
ee
200
Bereich des Austenits
Bereich der Ferritbildung
P Bereich der Perlitbildung
90°%o
Zw Bereich der Zwischenstufen-Gefugebilaung
M_ Bereich der Martensitbildung
© Aartewerte3 in HRcaiebzw. in HV
700
IT
A
F
°
Z
eerier
1
os
RE
es
10
Minuten
19%
100
Zeit—>
105
eae
a
1000
7
108
70000
10
Stunden
100
Ck 45 0.44% C - 0.66% Mn (SAE 1042)
Composition: 0.44% C - 0.66% Mn - 0.22% Si - 0.022% P 0.029% S - 0.15% Cr - 0.02% V Austenitized at 880°C (1616°F)
7000
ee
eee
ee
680 C
3 min) aufgeheizt in@ min
SS
=
&
AGT =(735°C
3
8
Acg = 785°C
%
:
=
,
Me
Bereich des Austenits
Bereich der Ferritbildung
R
Bereich der Pertitbilduni
Bereich der Zwischenst
Geftigebildung
Bereich der Martensit=
bildung
Hartewerte in HRebzwAV
2... befligeanteile in Yo
CCT
Ssekunden
0
HW
0
4%
100
Minuten
7000
7
Zi
10
fi ——<—<———
oo
SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf
7
Stunden
Germany, 1954
5
as
=
e
ae
Atlas of Time-Temperature Diagrams
119
C 70 W 1 0.76% C - 0.29% Mn (SAE
1078)
Composition: 0.76% C - 0.29% Mn - 0.22% Si - 0.008% P 0.008%
S - 0.11% Cr - 0.17% Cu - 0.019%
0.02% V Austenitized at 810°C (1490°F)
Mo - 0.07% Ni -
Austenitisierungstemperatur 870 °C
Haltedauer 70min, aufgeheiztin 7min
al eeteer til eelLil
mal
Revue CHET
in
°C
Temperatur
Ht 3
Lie eee a
ye
Austenitisierungstemperatur 870 °C
Haltedauer 10 min, aufgeheizt in 3 min
Sees
Ses Se
aS
SS600 =
cas
eal
)
Ll
Bc T
ivi
aa
eK
‘: ENS
TIER
\
Sal LERAVIA ALRITE
ET ENV
5 900
i
3
;
th AN INCMICLERC EH
vs Ht
ae
AN
MITT
Ni
100
ry
300
cor,
G1
Ht
syasee CAN eS Te
Sekunden
t
LONE <3 =
10?
L
7
703
19
Minuten
10*
t
100
|
10§
1000
A+K_
Area for austenite and carbides
F
K
Area for carbide formation
F+K _ Area of nonlamellar eutectoids
22
Area for pearlite formation
Z
Cementite
O
Hardness in HV
10Z
10% Cementite
We?
Zw
Area for intermediate structure (bainite formation)
M
Area for martensite formation
RA
Residual austenite
Area for ferrite formation
;
(refers to numbers on curves)
proportion of structure formed, in percent
Ac; = 720°C
Acg = 740°C
Mg after austenitizing 10 min 810°C : 245°C
M, after austenitizing 10 min 860°C : 210°C
SOURCE:
Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, 1954
EE
eee
120
Atlas of Time-Temperature Diagrams
C 100 W 1 1.03%
Steel)
C - 0.22%
Mn
(AISI WI
Tool
Composition: 1.03% C - 0.22% Mn - 0.17% Si - 0.014% P -
0.012% S - 0.07% Cr - 0.14% Cu - 0.01% Mo - 0.10% Ni - trace
V Austenitized at 780°C (1436°F) IT; Austenitized at 790°C
(1454°F) CCT
Austenitisierungstemperatur 790 °C |
Haltedauer 10min, aufgeheizt in 17min
ee Gos eee
PTfee
ile
‘siink mmiinAl
ETT
ettETTT
it
immerse Gane
ee
iSane eee
in
°C
Temperatur
TE eS eSisaMl
imc
i
IT
2
Austenitisierungstemperatur 790 °C
Haltedauer 10 min, aufgeheizt in 3 min
aesSa
[LS
CCIE
PE NAAL INTEALIATA
ata CCEA TAC
Temperatur
°C
in
CCT
0
= SHENINK TAIN ILE
all Bese Te INS Be Te
o7
7
10?
10°
70%
ry
Sekunden
te
Zeit ——>
d
70
Minuten
100
0.
wes
A+K _
Area for austenite and carbides
F
Area for ferrite formation
K
Area for carbide formation
F+K_
Area of nonlamellar eutectoids
O
Hardness in HV
10Z
10% Gementite
Zw
Area for intermediate structure (bainite formation)
1;2
(refers to numbers on curves)
M
Area for martensite formation
é
P
RA
Area for pearlite formation
Z
Residual austenite
Cementite
.
proportion
of structure formed
Acyp = 717°C
Acie = 736°C
M, after austenitizing 10 min at 790°C : 175°C
Mg after austenitizing 10 min at 860°C : 160°C
SOURCE:
Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany,
ee
1954
,
ae eres
t
Atlas of Time-Temperature Diagrams
12]
0.48% C - 1.98% Mn
Composition: 0.48% C - 1.98% Mn - 0.28% Si - 0.020%P 0.011% S Austenitized at 850°C (1562°F)
1000
Austenitisierungstemperatur 850 °C
Ps
(Haltedauer 7 min) aufgeheizt in 2 min
800
es
: ST
; HT
Gamlel
Esa
Ags (ee aera a
eeBet
esc CIC
700}——
sea
et
©, 600
3 aah
=
c
s 400
HN
ulani me
Z
Ms.
200
W
Tet
Bereich des Austenits
Bereich der Ferritbildung
Bereich der Perlitbildun
Bereich
der Zwischenstufen-
ue
sat eit SMILE || a aed
Bereich der Martensit =
bildung
phe
4,96 befugeanteile in %/o
IT
abe)
|
7000
Austenitisierungstemperatur 850 °C
Af
800
(Haltedauer 7 min) aufgeheiztin 2 min
SSS
S= oT
Ne
700}—
S
©
600
<
= 500
=
S400
s
N
ANE
Ht
300|M-
AUK mee
Bereich des Austenits
Bereich der Ferritbildung
A
\
a
da
aN
Bereich der Perlitbildun
ak
Bereich der Zwischensty,
Gefugebildung
Bereich der Martensit «
bildung
Hartewerte in HRe bzw. HV
200
100
pas
o
4... Gefiigeanteile in °/o
a
Ls
7
a
a
es
exunden
.
10°
100
Minuten
7
1000
10
:
Zest ——>
106
es
ee
Stunden
10000
700
Acy = 720°C
Acg = 765°C
M, = 290°C
ty,
SOURCE:
Atlas zur Warmebehandlung
der Stahle, vol 1, Verlag Stahleisen mbH,
Dusseldorf,
EE
ee
Germany,
1954
Atlas of Time-Temperature Diagrams
122
0.98%
C - 1.84%
Mn
Composition: 0.98% C - 1.84% Mn - 0.08% Si - 0.023% P -
0.011% S Austenitized at 900°C (1526°F)
Austenitisierungstemperatur
$00 °C
(Haltedauer 6 min) aufgeheizt in @ min
PE
va Ne [ooMpa
et
esas
ea
Pea
rE
HHP
HP Ne
bel 1
CHAE
A
Bereich des Austenits
P
ZW
Bereich der Perlitbildun
Bereich der Zwischenst ‘en-
CCCI
CCHIT
ee
es
A
Te
Jetta ee
in
Temperatur
°C
Eee
SBS
SS
SS
La
ae
ee
© Hartewertein
HRcbzw. HV
ee,
7399 beftigeanteileinYo
IT
0
SE
EH
Smale
SS
{SS
Austenitisierungstemperatur 900 °C
(Haltedauer
10min) aufgeheizt in 3 min il
Yt
ae
BANGae
CN ERC
PTUTE LPNS TT
col CMAN
A
in
°C
Temperatur
CCAICC TINNY
AS
A
A
Bereich des Austenits
P
Bereich
der Perlitbildun
Zw Beruth den Dwschoratihe
Gefugebildung
\
M_
IF]K
Bereich der Martensit=
bildung
Bereich der Karbidbildung
(Zementit)
© dartewerte
inte bzw.HV
42... Gefigeanteilein"Io
CCT
0
y/
Sekunden
Le
ef
7
5
Le
100
eh,
1000
70000
Minuten
Zeit
>
Stunden
Aci, = 710°C
Accom= 750°C
M, = 120°C
SOURCE:
Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, 1954
eee
eee
Atlas of Time-Temperature Diagrams
123
0.73% C - 1.62% Si (71 Si 7)
Composition: 0.73% C - 0.73% Mn - 1.62% Si - 0.019% P=
0.012 S - 0.10% Cr - 0.19% Cu - 0.12% Ni - 0.01% V
Austenitized at 845°C (1555°F)
Austenitisierungstemperatur 845 °C
Maltedauer 10min, aufgeheizt in 3min
SST
ITLL
SUIMFADae =
=
|Ga) | (6||
SeA ALP1?
Pees
:
eC
> “|
LI.
alli
2
ee
Cee
Hiii
a LTT
Ga
SHIH ml TT
ti00 poe PSeab
alter!
S
iba
Austenitisierungstemperatur 845%
Haltedauer 70 min, aufgeheizt in 3 min
£
SSS
SVS
A) A_/L 9 4 \| a
Se
Sess
Ai
So Ses
—————
dl
rit
=e
iNwit aul tinh
ne
IE
HINSSINENIC
KL
of ASL AGS Pacto
Po
CCT
CTI Pall Weleae! 8& ae
Us
Sekunden
LOS
femme
100
10
7
Minuten
5
7000
Area for austenite and carbides
F
Aranioe rastite fdenetion
us
P
O
Zw
Area for carbide formation
Area for pearlite formation
Hardness in HV
Area for intermediate structure (bainite formation)
_
F+K
z
10Z
NEED
of nonlamellar eutectoids
Area
Camentits
10% Cementite
(refers to numbers on curves)
mt
Incrcensseorenos
AEA Ter
Residual austenite
A+K
RA
_
proportion of structure formed, in percent
Acy = 750°C
Acg= 775°C
M, after austenitizing at 845°C : 215°C
SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany,
nn
1954
EEE
Atlas of Time-Temperature Diagrams
124
0.30% C - 3.03% Ni (SAE
2330)
Composition: 0.30% C - 0.51% Mn - 0.32% Si - 0.011% P -
0.007% S - 0.032% Al - 0.07% Cr - 3.03% Ni - <0.01% Ti
Austenitized at 850°C (1562°F)
Austenitisierungstemperatur 8509 ¢
(Haltedauer 10 min) au, yeheizt in 3 min
HH ila
HEHEHE
CCHS
Pe ecsan oe Th
coe
é
:
B
z HE
in
°C
Temperatur
IT
9
Austenitisierungstemperatur
850° ¢
(Haltedauer 70min) TTTin 3 min
MEE HoH Boece i: ul
<
Ags
in
°C
Temperatur
CCT
0
07
mev tt
We
7
3
$
Sekunden
7
10
Area for austenite and carbides
Area for carbide formation
Area for pearlite formation
Hardness in HV
Area for intermediate structure (bainite formation)
Area for martensite formation
Residual austenite
F
F+K_
Z
10Z
1-52
Zeit-——>
A+K
K
P
O
Zw
M
RA
5
ad
Minuten
bo
a
al
Area for ferrite formation
Area of nonlamellar eutectoids
Cementite
10% Cementite
(refers to numbers on curves)
proportion of structure formed, in percent
Ac, = 690°C
Acg = 760°C
M, = 340°C
SOURCE:
SSS
Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany,
Se
1954
eee
eee
Atlas of Time-Temperature Diagrams
125
34 Cr 4 (SAE 5135)
an
Composition: 0.35% C - 0.656% Mn - 0.23% Si - 0.026% P 0.013% S - 1.11% Cr - 0.18% Cu - 0.05% Mo - 0.23% Ni <0.01% V Austenitized at 850°C (1562°F)
Austenitisierungstemperatur 650 C
(Haltedauer 5 min) aufgeheiztin 2 min
in
°C
Temperatur
A
F
P
Bereich des Austenits
Bereich der Ferritbildung
Bereich der Perlitbildung
M
Bereich der Martensitbildung
Zw Bereich der Zwischenstufen-Gefigebildung
O
Hartewerte in HRe bzw.in HV
40.80
Geftgeanteile in Io
IT
00
POE
ba
Austenitisierungstemperatur 850 °C
(Haltedauer 8 min) aufgeheizt in 3 min
J800 am
> 600
S
3s 500
© 499
ed
fi
peat
ls
SSS
ea
0
+k
Tal
4|
TT
SRY
CCT
0
an
MN
\
\ |
[Ne =
\
\
100
See
x XiHee
see KR
ea
ee
crn wt VAL EN
oe
300
200
ae
ee
ie
el ee
ah
P
Bereich
der Perlitbildun
ie Zw Bereich derZwischenst
aN
\
Bereich der Martensit=
Geftigebildung
CETTE
ANYaN
"
acs
Bereich
der Ferritbildung
NIE)
\aN
Na
Boel
F
ntti
rey
\ \ v
bildung
TTIel BS [Tb se
JODO!
10
Sekunden
107
\
7
|
10
10*
!
100
10>
1000
Minuten
ANE
i
10000
le
7
10
Stunden
Acy = 745°C
Acg = 795°C
M,
SOURCE:
= 360°C
Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, 1954
a
10°
126
Atlas of Time-Temperature Diagrams
41 Cr 4 (SAE
5140)
Composition: 0.44% C - 0.80% Mn - 0.22% Si - 0.030% P -
0.023% S - 1.04% Cr - 0.17% Cu - 0.04% Mo - 0.26% Ni <0.01% V Austenitized at 840°C (1544°F)
S 600
:‘an rE
Hor TH
iHN vsan
Peis
cf
— HH
a
§CSE
000s
Bes Ss (i
de
50 nA
a
A
Bereich des Austenits
P_
Bereich der Perlitbildung
F
Bereich der Ferritbildung
Zw Bereich der Zwischenstufen-befugebildung
4
Bereich der Martensitbildung
@ Hartewerte in HRe bzw. in HV
70;95 beftgeanteileinlo
IT
j
Austenitisierungstemperatur 840°C
(Haltedauer 8 min) aufgeheizt in 3 min
See
Sige
|
SSS
|
YAR
A
Ee
2)S
BAG
RN
PoE
\
am
Beall
Soo
=
cee
Temperatur
°C
in
Bereich des Austenits
F
Bereich der Ferritbildung
P Bereich
der Perlitbildun
Zw Bereich derZwischenstufen-
aa
ice
taht
CCHIT ase Tis
Gefugebildung
M
Bereich
der Martensit=
bildung
Hartewerte in HRe bzwHV
.. befigeanteile in o
CCT
0
7
10
Sekunden
2
7
10?
4
arr
B70,
Micuten
Ro
5
100
7
6
er
7000
70
Stunden
10000
100
Acy = 745°C
Acg = 790°C
M, = 355°C
SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf,
Germany, 1954
SS
ll
sssssssssssssssssssssssssSsh
Atlas of Time-Temperature Diagrams
127
100 Cr 6
Composition: 1.04% C - 0.33% Mn - 0.26% Si - 0.023% P -
0.006%
S - 1.53% Cr - 0.20% Cu - <0.0
Mo 1%
- 0.31% Ni<0.01% V Austenitized at 860°C (1580°F)
Austenitisierungstemperatur 860°C
Haltedauer 75min, aufgeheizt in 3min
a
in
°C
Temperatur
IT
Austenitisierungstemperatur 860°C
ree
15min, aufgeheizt in 3min
Set
FE
eae
Fea
| NSEaneaT ALL
PRIN
ACADEMIC TICETrT
LI
Ms\
Se
aa
BS Jf |
il
a
Temperatur
in
°C
CCT
©||Ife|Tels ||
a
(SEA
‘Sphanaen
Zeit
lL
——_>-
inf la
i.
Minuten
A+K
Area for austenite and carbides
K
je
O
Zw
M
RA
Area for carbide formation
Area for pearlite formation
Hardness in HV
Area for intermediate structure (bainite formation)
Area for martensite formation
Residual austenite
aan to* a
oe
100
|
aannes
A
he
108
1000
10000
-cammemenene
F
F+K_
Z
Area for ferrite formation
Area of nonlamellar eutectoids
Cementite
10Z
12
10% Cementite
(refers to numbers on curves)
proportion of structure formed, in percent
Acyp = 750°C
Acye = 795°C
Mg after austenitizing at 860°C : 245° C
Mg after austenitizing at 1050°C : 135°C
SOURCE:
Atlas zur Warmebehandlung
der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany,
a
1954
Atlas of Time-Temperature Diagrams
128
X 40 Cr 13 (AISI 420 Stainless Steel)
Composition: 0.44% C - 0.20% Mn - 0.30% Si - 0. 025% P -
Mo - 0.31% Ni0.010%S - 13.12% Cr - 0.09% Cu - <0.01%
0.02% V Austenitized at 980°C (1796°F)
a
Austenitisierungstemperatur HOC
Haltedauer75 min, aufgeheiztin gmin
POs
ISGHUIE
in
°C
Temperatur
IT
7000 [ince |See |enn]ofa | S| NN | | al | ome [Re | t
See
a BRENDA
NATE
stenitisierungstemperatur 980 0,C
icaHaltedauer-15 min, aufgeheiztin 3 min
SE SSNGh
MR RERSON@ URS Aaevs
$00'— NANA
et
700
%
S
Ss
600
(%
3
8 500
: CELINE NCTC
lL
lg
ale LINN ATESTATN
i SA
AEPANY
AGT as
AACHCCTIL
ee LULU | ie |ili] @ eto! [Tee ||
10
4
Sekunden
ae
‘
2
0°
7000
100
rien
10000
A+K
Area for austenite and carbides
F
Area for ferrite formation
‘
nee is ate yaaa
: +K
ae of nonlamellar eutectoids
oO
Hardness in HV
Zw
Area for intermediate structure (bainite formation)
10Z
ion Caen
M
aa
Area
for martensite
BE anal
cantante formation
1;2
(refers to numbers on curves)
proporti
: percent
portion of fatruct
structure fformed, in
Acjp = 790°C
Acie = 850°C
M, after austenitizing at 980°C : 280°C
M, after austenitizing at 1050°C : 145°C
SOURCE:
Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf
Germany, 1954
EES
Atlas of Time-Temperature Diagrams
129
X 210 Cr (AISI D3 Tool Steel)
Composition: 2.08% C - 0.39% Mn - 0.28% Si - 0.017% P 0.012% S - 11.48% Cr - 0.15% Cu - 0.02% Mo - 0.31% Ni 0.04% V Austenitized at 970°C (1778°F)
qe
TH
ee
Austenitisierungstemperatur 970°C
Haltedauer 15min, aufgeheizt in 3min
Ath
fa
NS
YHSsSs
Sy 0
Ea Hit te ras
aTSe
al
K
- natiSCA
HEE
LLL LULU ree tt
meETT
ANT Nore TTT
aita h
aaa
ee
.
al ee
in
°C
Temperatur
IT
‘Fe
il
700
elSFZeal ANpees aceTH
BPACNNIAY "on
CACTI ANTARCTIC Ah
4
Aaa
|}
°C
in
Temperatur
CCT
seraes
ORIG
saiasicePb tibet
o
10
zo"
Sekunden
See
7
Zeit —>
0
a
10
a
100
ee
1000
ee
10000
Minuten
A+K
K
P
Area for austenite and carbides
Area for carbide formation
F
F+K_
Area for ferrite formation
Area of nonlamellar eutectoids
Area for pearlite formation
Z
Cementite
oO
Hardness in HV
10Z
Zw
Area for intermediate structure (bainite formation)
Lee,
10% Cementite
(refers to numbers on curves)
M
RA
Area for martensite formation
Residual austenite
proportion of structure formed, in percent
Acyp = 768°C
Acie = 979°C
Mg after austenitizing at 970°C : 184°C
Mg after austenitizing at 1050°C : 70°C
SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany,
8
1954
ee
Atlas of Time-Temperature Diagrams
130
20 Mo
5
Composition: 0.23% C - 0.65% Mn - 0.30% Si- 0.013% P -
0.030% S - 0.051% Al - 0.12% Cr - 0.08% Cu - 0.50% Mo 0.05% Ni - 0.03% V Austenitized at 1050°C (1922°F)
Austenitisierungstemperatur 1050 ¢
Haltedauer a
min
of
Fj ENS
es
Suet
ae =
“TNT
Tetot
CECNIRNIN Mhcea
TAT inateAMICI ETH
:
TENORS TINT
: HEN SH
as
heehee [al BSes Tle TI)
SOURCE: Atlas zur Warmebehandlung der Stahle, vol 2, Werlag Stahleisen mbH, Dusseldorf, Germany,
a
1972
Atlas of Time-Temperature Diagrams
37 MnSi
13]
5
Composition: 0.38% C - 1.14% Mn - 1.05% Si - 0.035% P -
0.019% S - 0.23% Cr - 0.02% V Austenitized at 860°C (1580°F)
Austenitisierungstemperatur 860 %C
(Haltedauer 5 min) aufgeheiztin @ min
eH
ra
ee
neers ——— {—
—}
+
EE
at
S 600
s
1
2 500
S
S
Q
S 400
rai
a
i
A
alg
Bereich
der Ferritbildung
Bereich der Perlitbildung
Zw Bereich der Zwischenstufen-befugebildung
Cen
ett
M
O
700
IT
Bereich des Austenits
F
P
“
Bereich der Martensitbildung
Hartewertein HRe bzw. in HV
0
7000
Austenitisierungstemperatur 860 °C
pe
(Haltedauer 7 min) aufgeheizt in 3 min
=
So
}———_}_f_}_} ee | __j——
Noe
2 Nos:
Pals
© g09
aT
a
Same
an ahAINE
\
Bereich des Austenits
Bereich der Ferritbildung
Bereich der Perlitbildun
Bereich der Zwischenstufen
Gefuigebildung
Bereich der Martensit=
bildung
&
300} —
200
100
CCT
a
7
SauRU ANT
ert
V
3) (2)cle
OO
2)g @)| ||@
res
,
Selonden
“ 12... Gefiigeanteile in "Io
I
7
|
age
7o*
|
100
105
I
1000
106
70000
Minuten
w
Zeit
———>
10
Stunden
700
Acy = 735°C
Acg = 795°C
M, = 380°C
SOURCE:
Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany,
EE
ee
1954
mmmuaeee
Atlas of Time-Temperature Diagrams
[SZ
16 MnCr
5 (SAE 5115)
Composition: 0.16% C - 1.12% Mn - 0.22% Si - 0.030% P 0.008%
S - 0.015%
Al - 0.99%
Cr- 0.02%
Mo
- 0.12% Ni -
0.01% V Austenitized at 870°C (1598°F)
7000
Austenitisierungstemperatur 870° ¢
Th
70min) aufgeheizt in si
soo
St im SSS ols
STS SS
Ea
ASHEN TEaweapene CTT
PAUL DAN WASSMTTIC CTE
Cle NCICNTER NSN VAN
ES
fe Hin w cAN
ATTN
TAIN RRB
mei CATIA ENT ANTE TTL
CUI TSI 11S Teer eell | Ll
700\—
<2S
G&S
Temperatur
in
°C
CCT
0,7
704
708
ieee ins
Acyp = 750°C
Acg = 845°C
M, = 400°C
SOURCE: Atlas zur Warmebehandlung der Stahle, vol 2, Verlag Stahleisen mbH, Dusseldorf Germany, 1972
SSSSSSSSsSSsSSSSSSssssS
—
—
SSSSSSSSS
S$
Atlas of Time-Temperature Diagrams
133
50 CrV 4 (SAE 6145)
Composition: 0.47% C - 0.82% Mn - 0.35% Si - 0.035% P 0.015% S - 1.20% Cr - 0.14% Cu - 0.04% Ni - 0.11% V
Austenitized at 880°C (1616°F)
Austenitisierungstemperatur 680 C
(Haltedauer 5 min) aufgeheizt in? min
apt
Er
TT
ees Teer
een
BA es
Bonin&eeer
eri Ti tit
{S99
eve S| aleee aria
Steet tt
S 600
3
§ «00
A Bereich des Austenits
F Bereich der Ferritbildung
P Bereich der Perlitbildung
Zw Bereich der Zwischenstufen-befugebilaung
M Bereich der Martensitbildung
© Hartewerte in HRe bzw.in HV
80,93 befugeanteile in lo
IT
4
Austenitisierungstemperatur 880 °C
(Haltedauer 5 min) aufgeheizt in 3 min
oo NNN i
“TENN\S REC
COONAN
i
:
SS BN
oS
Bereich des Austenits
Bereich der Ferritbildung
Bereich der Perlitbildun
Bereich
der Zwischenstufen-
ect
HieN ANIL ;
ccc RANI
CCT
0
7
Tt SassPST
COT
10
107
Sekunden
7
10
tH
Gefugebildung
Bereich der Martensit=
bildung
Hartewerte in HRe bzwHV
.befiigeanteile in "a
10°
70*
1000
100
108
10000
Minuten
7
Zeit-——>
10
Stunden
Acy = 735°C
Acg = 780°C
M, = 300°C
SOURCE:
Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany,
ee
ee
ee
ee
1954
ee
Atlas of Time-Temperature Diagrams
134
50 CrV
4 (SAE
6150)
Composition: 0.55% C - 0.98% Mn - 0.22% Si - 0.017% P -
0.013% S - 1.02% Cr - 0.07% Cu - 0.01% Ni - 0.11% V
Austenitized at 880°C (1616°F)
Austenitisierungstemperatur 680 h
Ke‘Haltedauer & min) aufgeheizt in@ min
in
°C
Temperatur
as
ies =_—
F Bereich der rerretoidong
50 %
90 Yo
P Bereich der Perlitbildung
LP
Zw Bereich der Zwischenstufen-befugebiidung
i
M_
Bereich der Martensitbildung
©) tartewerte in HRe bzw. in H¥
70 Geftigeanteile in %o
IT
adiiaalie
Austenitisierungstemperatur 880 °C
(Haltedauer 5 min) aufgeheizt in 3 min
900
800
s
Big
zi
q
RN
ifTl
SSSA
a CHINNee
aa
See
Bereich des Austenits
Bereich der Ferritbilaung
Bereich der Perlitbildun
Bereich
der Zwischenst
ai
Gefugebildung
Bereich der Martensit=
ee
bildung
Hartewerte in HRe bzwHV
100
... beftigeanteile in Yo
CCT
G
10
Sekunden
5
n
7
10
|
I
100
Zeit
10
;
t
{ 7.
1000
Minuten
7
;
t ©
oe
100
Stunden
Acy = (PISKS.
Acg = 760°C
M, = 270°C
SOURCE:
Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf,
ee
Germany, 1954
Atlas of Time-Temperature Diagrams
135
0.15% C - 0.67% Mn - 1.20% Cr - 0.31% V
(SAE 6115)
Composition: 0.15% C - 0.67% Mn - 0.48% Si - 0.044%P 0.024% S - 1.20% Cr - 0.18% Cu - 0.25% Ni - 0.31% V
Austenitized at 920°C (1688°F)
7000
Austenitisierungstemperatur 920° ¢
alle
een ey
5 ee in fey
ia
ER
Sti
Saiinaiiinmiieeiieeinten
S 600
SS
=
oe
pee ct ee
PT
oe
ae
eas
Be Hh <1 eT
=
§8S ae
-
iS =e
reps:
ee
|||
50 |Zw
[aait
Ms
S
gy
§ yao|—
2 myeEE
is
100 ee
e
ee eee
ee
eae
aya
BG
aeSS WeaalFoe eee
+
Austenitisierungstemperatur
Hf
alee
920° C
le
LLL le in He
sul
ed ee CE Eteee
SS
ee
ye Gest
Ulisse sles
NES
SSESS teaT
ON EABSUEZEN ESS
ea NO —_— CS Sera
ie SHINER RS VON
iS z SS
ml
AG LAIN NEN
UPei
TOA
Bae
Ss
: 500
=
= yoo
x
ie
NNant
Perea MARIN
—
DiS
|¥\|
an
SB
"CP CIN_INLWSWN,WhtHIE
= PCTS CNG
: CHINE
TTE
Spesle||
©||
cr aLil1oll © ||@leepeete
NA
>
100
10?
Seiden
7
Zeit ——>
103
704
10
100
105
1000
Minuten
A+K _
K
P
Area for austenite and carbides
Area for carbide formation
Area for pearlite formation
F
F+K_
VA
Area for ferrite formation
Area of nonlamellar eutectoids
Cementite
Oo
Zw
Hardness in HV
Area for intermediate structure (bainite formation)
10Z
LZ
10% Cementite
(refers to numbers on curves)
M
RA
Area for martensite formation
Residual austenite
proportion of structure formed, in percent
Acy = 755°C
Acg = 870°C
M, = 435°C
1954
SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany,
ee
EEEEEEEEEEEEEEEeee
Atlas of Time-Temperature Diagrams
136
15 CrNi
6
Composition: 0.13% C - 0.51% Mn - 0.31% Si - 0. 023% P -
0.009% S - 0.010% Al - 1.50% Cr - 0.06% Mo - 1.55% Ni<0.01% V Austenitized at 870°C (1598°F)
Al
rV_
NS
ps
EIaes
Emae
ey
N Sr
in
Temperatur
°C
CCT
Zeit ins
Acyp = 735°C
Acg3 = 820°C
M, = 440°C
18 CrNi 8
Composition: 0.16% C - 0.50% Mn - 0.31% Si - 0.013% P 0.014% S - 0.03% Al - 1.95% Cr - 0.03% Mo - 2.02% Ni - 0.01%
V Austenitized at 870°C (1598°F)
Austenitisierungstemperatur 870° ¢
(Haltedauer 10 min) aufgeheiztin 3 min
epee
eSLINN
ail ll
NAN NIeH
in
°C
Temperatur
a
0,1
ArSane
7
oe
Acyp = 735°C
Acye = 750°C
SOURCE:
Atlas zur Warmebehandlung
ins
108
104
705
Acg = 790°C
M, = 450°C
der Stahle, vol 2, Verlag Stahleisen mbH, Dusseldorf, Germany,
1972
708
Atlas of Time-Temperature Diagrams
137
14 Nee pA
0.13%
C - 0.46%
Mn -0.26%
Si - Crete eae
0.012% S -“0.012% Al 0.78%
Cr - 0.16%
Cu - 0.04%
Mo
Compositi
3.69%Ni Austenitized at 870°C (1598°F)
=——
=
=
ae = N
rei
nani
2
in
s NG
pm ary,
SCHONaS
VA ne
CoS zai feu
rie Siar
NONINE
Oana
\\
fe
He
QT
7
i roe Recpe he &
=
e
x >ZA[G
»
ZA
ease
a0
aH
Acyp = 675°C
Acye = 715°C
Acg = 820°C
M, = 420°C
SOURCE:
Atlas zur Warmebehandlung der Stahle, vol 2, Verlag Stahleisen mbH, F Dusseldorf, Germany, 1972
e
e
e
e
Atlas of Time-Temperature Diagrams
138
25 CrMo 4 (SAE 4118)
Composition: 0.22% C - 0.64% Mn - 0.25% Si - 0.010% P -
0.011%
S - 0.97% Cr - 0.16% Cu - 0.2
- 0.33% NiMo3%
<0.01% V Austenitized at 875°C (1605°F)
Austenitisierungstemperatur 875 C
s
fi
eat
eeeee
(taltedauer§min) aufgeheiztin7 min
iE
ee
Ce
ES Tiaannatn
Hinzimape Freie
Tl
S 600
CTV
§
He
cL
S 500
FPL
Fae
il
CHE
SERIA REEF
aa
5
IT
0
a7
7
F Bereich der Ferritbildung
P Bereich der Perlitbilaung
Zw Bereich der Zwischenstufen-Gefugebildung
M_ Bereich der Martensitbidung
©) Hartewerte in HRe bzw. in HV
70,60 Gefugeanteile in %o
10?
Sekunden
109
te
ail
Bereich des Austenits
A
mM Cor
a300
1
10¢
-
108
ee
1
10
100
Minuten
1000
7
Gh
10000
10
Cae
100
Stunden
7000
FEST
Austenitisierungstemperatur 875°C
_
(Haltedauer 10 min) aufgeheizt in 2 min
Na Snes
ZN
N
NI
ea
TH
Bereich der Ferritbitdung
Bereich der Perlitbildun
el
Bereich
der Zwischenstufen-
she4
Y
| N
\
Bereich des Austenits
F
P
Gefugebildung
Bereich der Martensit=
bildung
oy
N
CELINE ANAM ntti ct
CCT
a
7
CHIPSTe BB) BEIfesse
70
0
Sekunden
7
aR
100
Minuten
7
4£005,—<—$—$—=—
==3
oT
0
i“
70
Stunden
70000
700
Acy = 730°C
Acg = 825°C
M, = 400°C
SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, 1954
en
196
Atlas of Time-Temperature Diagrams
139
34 CrMo 4 (SAE 4130)
Composition: 0.30% C - 0.64% Mn - 0.22% Si - 0.011% P 0.012% S - 1.01% Cr - 0.19% Cu - 0.24% Mo - 0.11% Ni <0.01% V Austenitized at 850°C (1562°F)
Austenitisierungstemperatur 850°C
(altedauer 5 min) aufgeheiztin 1 min
in
°C
Temperatur
A
F
P
Zw
Bereich des Austenits
Bereich der Ferritbildung
Bereich der Perlitbildung
Bereich der Zwischenstufen-befugebildung
M_
Bereich der Martensitbildung
O
Hartewerte in HRe bzw.in HV
35;50 Geftigeanteile in Yo
IT
7000
FOS
Austenitisierungstemperatur 850 °C
(Haltedauer 10 min) aufgeheizt in @ min
900
Eee
fe
600
700
S
S
aS
600
:
e
3
S
z= 400
\
t
at
ii
isBereich des Austenits
aN
Bereich der Ferritbildung
<
Bereich der Selatan
Bereich der Zwischenstu;
300
Gefugebildung
ang
Bereich der Martensit=
200
WHE
\
i
CCT
ke
.a
t
is
bildung
Hartewerte in HRe bzw.HV
By
Gi)
ee
©-
5... befligeanteile in lo
:
0
ig
Sekunden
! 10
7
:
:
I
77
10
10
#
me
100
1000
10000
Minuten
7
Zeit
—— >
10
100
Stunden
Ac} = 730°C
Acg = 795°C
M, = 385°C
SOURCE:
Germany, 1954
Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf,
Ee
ee
ee
EEE
140
Atlas of Time-Temperature Diagrams
42 CrMo
4 (SAE
4135/4140)
Composition: 0.38% C - 0.64% Mn - 0.23% Si - 0. 019% P -
Mo - 0.08% NiS - 0.99% Cr - 0.17% Cu - 0.16%
0.013%
<0.01% V Austenitized at 860°C (1580°F) IT; Austenitized at
850°C TT CCT
Austenitisierungstemperatur 860 %C
(Haltedauer§min) aufgeheizt in 7 min
eee
| [pt
in
°C
Temperatur
A
F
P
Bereich des Austenits
Bereich der Ferritbilaung
Bereich der Perlitbilaung
—| Zw Bereich der Zwischenstufen-befugebildung
| Bereich der Martensitbildung
@ Hartewerte in HRe bzw. in HV
50,60 Gefugeantelle in %o
IT
Austenitisierungstemperatur 850°C
(Haltedauer 10 min) aufgeheizt in 2 min
Swe
Bite:
fowl
7) SiS
es Xa
————==2 ae
Se
Oe
es
NONUINSERERINTIE ETT
:alPAN
if <li
ae NRENCE NICE SLT
&
}
\
&
8ae Bee“ALAA
©
A
Nhe Sere
300
sc
~
\h
4
Bereich des Austenits
F
Bereich
der Ferritbildung
P_
Bereich
der Pertitbildun
Zw Bereich derZwischenstufenGefugebildung
TINECAH cn
LNA
\
M
Bereich der Martensit=
i
bildung
ve LTS TieIST a Forme
+
0
70
Sekunden
3
T
¢
he
v
a,
nee
Zeit
100
7
5
10°
10°
Se
ee
1000
10
Stunden
10000
700
Acy = 730°C
Acg = 780°C
Mg = 360°C
SOURCE:
Neen
Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany,
ne
Eee
1954
Atlas of Time-Temperature Diagrams
14]
50 CrMo
4 (SAE 4150)
Z
Composition: 0.50% C - 0.80% Mn - 0.32% Si - 0.017% P -
0.022% S - 1.04% Cr - 0.17% Cu - 0.24% Mo - 0.11% Ni <0.01% V Austenitized at 850°C (1562°F)
dal eeienee 650
| ff
Haltedauer § min) aufgeheiztin 1 min
600
ele
es
ee
" TET ceeah
aes
=
pot
or
a 500
Com
TT LU
iliamiii
aie aul Ea
eS
Pe
S
NN
Ss 400
300
Ss
mea
Te
F
P
Zw
M_
©)
Bereich des Austenits
Bereich der Ferritbildung
Bereich der Perlitbilaung
Bereich der Zwischenstufen-befugebildung
Bereich der Martensitbildung
tartewerte in HRe bzw. in HV
90;58
Geftigeanteile in Yo
IT
Austenitisierungstemperatur 850°C
(Haltedauer 10 min) aufgeheizt in 2 min
:
:
MER SISNUGRY cal PNG TT
MECUENN SiS mit
5
:
:
S
&
x
\A
Neu iN
th
ae
Bereich des Austenits
F
der Ferritbildung
Bereich
P
ZW
Bereich der Perlitbildun
Bereich der Zwischenst eN-
Awe anNICH ae
ee
mee
NA rem
ny
Sa
UN
ee
ea
apeeesite
i
BIEL os
aks]
eee
ae
a
|
ne
ae
aes
ae
aie
|
fas
i
|=
©) tartewerte in HRebzwAV
CCT
0
1
10
Sekunden
|
7
\
ee
Wi
. Geftigeanteile in “/o
L
{
100
1000
0°
N
70000
Minuten
a)
Zeit
——>
10
700
Stunden
Aci = 726°C
Acg = 760°C
M,= 290°C
1954
SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany,
EES
10
'
Atlas of Time-Temperature Diagrams
142
20 MoCr
4
Composition: 0.22% C - 0.66% Mn - 0.30% Si - 0. 018% P -
0.011% S - 0.049% Al - <0.0005% B - 0.56% Cr - 0.18% Cu 0.44% Mo - 0.020% N - 0.15% Ni Austenitized at 890°C
(1634°F)
A ustenitisierungstemperatur 890 C
Manne
min
co
Aero
Svs Sasa =H aS
waivers
;
= Bain APUINGsal
= HE Ei aanteal
=
NN EA
600
B eel fine
os TaN
NE:
106
Zeit in §
Acyp = 740°C
Acje = 760°C
25 MoCr
Acgz = 865°C
s = 425-6
4
Composition: 0.27% C - 0.67% Mn - 0.20% Si - 0.017% P -
0.022% S - 0.034% Al - 0.002% B - 0.50% Cr - 0.45% Mo 0.005% N - 0.11% Ni Austenitized at 890°C (1634°F)
a
aoa
Bs
ia i5
Austenitisierungstemperatur 890 °C
Haltedauer 15 min
SiS bes SI ae
petLf
eal
BE SSS SE SSS
S
;saitee ANANTH
[ea
GBBLE
ANINIAND
uMCIN SHIEH
A
ee
NTL ACHE
WICC ETT
aaACTIN
NINE
epeee [IL@ UT]
°C
in
Temperatur
g 3 >x{—_
¢?
CCT
Ss
Qi
706
Zeit in §
Acyp = 740°C
Acg
Acje = 760°C
M, = 410°C
= 830°C
SOURCE: Atlas zur Warmebehandlung der Stahle, vol 2, Verlag Stahleisen mbH, Dusseldorf, Germany, 1972
Atlas of Time-Temperature Diagrams
143
StE 70 (Cr-Mo-Zr)
y
Composition: 0.17% C - 0.84% Mn - 0.54% Si - 0.019%P
0.011% S - 0.031% Al - 0.019% As - 0.89% Cr - 0.07% Cu -
0.40% Mo - 0.05% Ni - 0.008% Ng - 0.005% O» - 0.008% Sn0.01% V - 0.09% Zr Austenitized at 950°C (1742°F)
7000;
N To
CS
N
SSR
ii El OW
=KES Ee Cais EWG ad GO IL
CHINOYAS
Ze RIESE
COON NRE INN
BHI RSANAN TM TUT Uh
COUN SECT TH
COHAN THT
CCHICCAINENRE NTN
iSTeestTTT
CCOCCTSRSSSIeS
ele
Re
ae
ae
eral
vA er
Ae
LAY
TO
Austenitisierungstemperatur 950 C
ead
°C
in
Temperatur
CCT
106
Zeit in s
Acy = 765°C
Acg = 900°C
M, = 425°C
StE 47 (Ni-V)
Composition: 0.21% C - 1.52% Mn - 0.40% Si - 0.022% P 0.023%
S - 0.043% Al - 0.019%
N - 0.07% Ni - 0.138% V
Austenitized at 900°C (1652°F)
.
Austenitisierungstemperatur 900°C
Halfedauer 5min
SSS
a2 Ines
NI
asSA SISAAIS
I
ATTS
oes e
heeet"§
S
AN asunann
3
HRS va
S
peer
p |
We
ey
3
S
x
CCT
FF
Z
a
Zeit ins
ACT — 730°C
Acg = 850°C
M, = 410°C
SOURCE:
is
a
Atlas zur Warmebehandlung
der Stahle, vol 2, Verlag Stahleisen mbH, Dusseldorf, Germany,
1972
Atlas of Time-Temperature Diagrams
144
StE 47 (Ni-Ti)
Composition: 0.17% C - 1.45% Mn - 0.55% Si - 0. 016%
P
0.017% S - 0.055% Al - 0.74% Ni - 0.18% Ti Austenitized at
930°C (1706°F)
Sen
Austenitisrerungstemperatur 930 C
Halfedauer 5 min
NUN
rh
bi
ELT
bil
io
ak
eee
ee
ed
Fee
a) iis
a
Q Q|
HSN
HiCCeihe
ESSENS
Zeit in S
Acy = 715°C
Acg = 880°C
Mg = 420°C
SOURCE: Atlas zur Warmebehandlung der Stahle, vol 2, Verlag Stahleisen mbH, Dusseldorf, Germany, 1972
—————
ee
Atlas of Time-Temperature Diagrams
145
105 WCr 6
Composition: 1.03% C - 0.97% Mn - 0.28% Si - 0.016% P 0.018% S - 1.05% Cr - 0.25% Cu - 0.03% Mo - 0.13% Ni 1.15% W Austenitized at 815°C (1499°F)
Austenitisierungstemperatur 875 °C
Haltedauer 15 min, aufgeheizt in 3min
ri atiiee
iimatinnitiai
al |eh Te |
VCE rCrSti ICH
IS = |BliesMatIBat
Serr amaie
It .;
in
°C
Temperatur
300
IT
f|
CSS
0
Austenitisierungstemperatur 815 °C
Haltedauer 15 min, aufgeheizt in 3min
iS ~
no
Sas
ee
We
bal
il
NR Set
wea 2: NU SEAN a :
ie BERRA)
TENANT
in
Temperatur
°C
WALT
cK
INSISSUICTNIL Cin
Ss eee
iis! lée{II
TNR
CCT
:
10
10°
Paine
7000
Zeit—>
70000
Minuten
A+K _
K
P
Oo
Area for austenite and carbides
Area for carbide formation
Area for pearlite formation
Hardness in HV
Zw
Area for intermediate structure (bainite formation)
M
RA
Area for martensite formation
Residual austenite
Area for ferrite formation
Area of nonlamellar eutectoids
Cementite
10% Cementite
(refers to numbers on curves)
proportion of structure formed, in percent
Acyp = 730°C
Acie = 770°C
Mg after austenitizing at 815°C : 245°C
M, after austenitizing at 890°C : 155°C
SOURCE:
Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany,
ee
EEE
1954
Atlas of Time-Temperature Diagrams
146
0.20%
C - 1.20%
Mn
- 0.97%
Cu - 0.55%
Ni
Composition: 0.20% C - 1.20% Mn - 0.38% Si - 0.039% P 0.024% S - 0.06% Cr - 0.91% Cu - 0.55% Ni Austenitized at
870°C (1598°F)
Austenitisierungstemperatur 870 °C
(Haltedauer § min) aufgeheizt in 7 min
fc
Sit
asceret
oa
[|__| |+@2)
Bereich des Austenits
Bereich der Ferritbildung
in
Temperatur
°C
Bereich der Perlitbildun
Bereich der Zwischenstufen-
Geftigebildung
Bereich der Martensit=
bildung
Hartewerte in HRe bzw.HRb
IT
7000,
Austenitisierungstemperatur 870 °C
As
(haltedaver 8 min) aufgeheiztin 3 min
SERIE
SSS SSN
Leal[I
SNPSRENIN
700} <<PAS oe
ie}
?
= “iS EA
5 od
3 500
TURN
& yoo Ms \
iN
eae Nt
J00
Jee oF
ATT
ae ara
wie
®
Ss
IN
AN
Wie
INES nie
NH
ee
it
le
AK
\\
Gefugebildung
Bereich
der Martensit=
bildung
M
SAAUSGE
coro
Bereich
der Ferritbildung
Bereich der Perlitbildun
ZW Baraich der Zwischenetape
200
100
Bereich des Austenits
F
P
©) Aartewerte
inHRebzw.HRb
| || 8 foCAH
Gn |
70
Sekunden
ee
U
1,2... Gefugeanteile in "Jo
4
eee,
Minuten
IA
rae
100
5
I
|
7
10
ee
6
ORES
7000
Stunden
oked
100
Acy = 705°C
Acg = 805°C
M,= 395°C
SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf,
————S
ee
Germany, 1954
Atlas of Time-Temperature Diagrams
147
28 NiCrMo 7 4
Composition: 0.30% C - 0.46% Mn - 0.24% Si - 0.030% P 0.025% S - 1.44% Cr - 0.20% Cu - 0.37% Mo - 2.06% Ni <0.01% V Austenitized at 850°C (1562°F)
Austenitisierungstemperatur 850 %
(taltedauer§min) aufgeheizt in 2 min
ibe
maeses
55s
eae |
Sige este actos
ae
ee
S 600
S
1
3 500
©
g&
N
s 400
300
90
if
200
%
Bereich des Austenits
Bereich der Ferritbildung
Bereich der Perlitbildung
Zw Bereich der Zwischenstufen-Gefugebildung
M
ee
M
700
Vib
Bereich der Martensitbildung
ore
ee
Geftigeanteile in %o
30.70
0
7
10
10?
Sekunden
109
7
10%
_
10°
100
10°
7000
70000
Minuten
7
eat
0
)
700
Stunden
Austenitisierungstemperatur 850 °C
(Haltedauer 10 min) aufgeheizt in 2 min
ra
eee
oF eee = KOSa BS
hina
Ee
ee
eal
(alee)Orampera Oyler omc
Cisse
THT
TTT
Nii
NIKI
N NIAC AV AN
NAR
i
o t LNIN,
Bett
=}=
LIN ALIN Nae
raley
Slee
| ANY CNNSI
a =s8 CUCL
s
600
I]
\
S 500
N
.
ar mt
AI
NITY
ja
300
CCT
UI
N
ee
i®))
ee
ee
7
:
- sre ter ibiding
\
AVE
eh
NI
CTRL fl NINEURSmatted| Nl
at alkI ONINCTWL
CCHIT
Fie [etBetoet
ExISIE
N
SLUNG et
NN‘j
Ht
Eg)
uy
Sekunden
7
,
—
7
Zeit
——_>
Gefiigebildung
Bree der Martensit=
bildung
©) Aartewerte in HRc bzw. KV
1,15... Gefuigeanteile in lo
10
107
708
ae
700000
70000
7000
100
1
Minuten
Zw pal Atak
105 nT
194
107
a
P) Berelen derPeciitbildan
100
:
Stunden
Acy = 740°C
Acg = 115°C
M, = 350°C
Germany, 1954
SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf,
EEE
|
7000
Atlas of Time-Temperature Diagrams
148
X 45 NiCrMo
4
Composition: 0.40% C - 0.35%Mn- 0.20% Si - 0.010% P 0.015% S - 1.27% Cr - 0.16% Cu - 0.24% Mo - 4.03% Ni 0.04% V Austenitized at 860°C (1580°F)
Austenitisierungstemperatur 860 °C
500
Haltedauer 15 min, aufgeheiztin 3 min
i
err
eT
eT
S el
:oe aatiaailCCC
Sal
HEEaie
See a
> 00
; mAICI Stall anaail
Sy
300
i Per THC HCL CI
i SRE CCCI
IT
,
7000
Fen
Austenitisierungstemperatur 860 °C
Haltedauer 75 min, aufgeheizt in 3 min (
| fe
«SESE
Sos,
|
oS NOS SiS
RE Se A
900
th SAORI
:
ake
rm 600
ONT
RST
PAINT NTA
TT
ie
MAA et
:
ie S NUL ATA
will
fa iTATA AWE niteanMtHh
sal
ao
iseticait en \. |||
CHIPHIIL
@| Bp
AAS au
7
708
alll
HO
=>
Warten
bs
oe
vue
A+K _ Area for austenite and carbides
F
K
P
Area for carbide formation
Area for pearlite formation
F+K _ Area of nonlamellar eutectoids
Gementite
Z
O
Zw
M
RA
Hardness in HV
Area for intermediate structure (bainite formation)
Area for martensite formation
10Z
1;2
Residual austenite
Area for ferrite formation
10% Cementite
(refers to numbers on curves)
proportion of structure formed, in percent
Acyp = 680°C
Acje = 750°C
M, = 270°C
SOURCE:
Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany,
ee
1954
Atlas of Time-Temperature Diagrams
149
20 NiMoCr 6
Composition: 0.20% C - 0.62% Mn - 0.15% Si - 0.015% P 0.020% S - 0.015% Al - <0.0005% B - 0.47% Cr - 0.48% Mo 1.58% Ni Austenitized at 870°C (1598°F)
v4
1000
Austenitisierungstemperatur 870 °C
or
CCT
Haltedauer 15 min
KN
rl
NR RROSES
ECHINGE
I KREREERT RICHI
COI CINTA NICSE TTT
Teall NCTINASECST NINTH
CETL SI] Sele Silist BT eet 6111
Zeit in §
Acyp = 740°C
Acye = 760°C
Acg = 820°C
M,
= 415°C
Dusseldorf, Germany, 1972
SOURCE: Atlas zur Warmebehandlung der Stahle, vol 2, Verlag Stahleisen mbH,
7
EE
EEE
as
Atlas of Time-Temperature Diagrams
150
61 CrSiV
5
Composition: 0.58% C - 0.81% Mn - 0.89% Si - 0.013% P -
0.006%S - 1.27% Cr - 0.14% Cu - 0.02% Mo - 0.06% Ni 0.11% V Austenitized at 870°C (1598°F)
Austenitisierungstemperatur 870 Ml
Haltedauer 15 min, aufgeheiztin 3 min
in
°C
Temperatur
IT
7000
A aa=a
Talon
on
i ee
TS
mel {INL NSN
la
ia
sa IN
s
:
Peel
Ap
|
Pf STINT ASSEN
Ss
gan annaReOG 870°C
75 min, aufgeheizt in 3 min
eee
FeSSNS
~~
5
600
\
IE iere
I
iin
NT
te
Pa
teen
\
Nail
: SMHS
NAH NN
ope
ANA A ot
iteaoe SNAWA ALE LAL
,i PELICAN\\ INUIT
a
LL |Lie! erereerel] @ [Il © LI
+= 560
Th
10?
ener
Zeit ——>
a
0
Cee
_ 0
208
eee
700
7000
Minuten
70000
A+K _ Area for austenite and carbides
K
Area for carbide formation
P
Area for pearlite formation
F
Area for ferrite formation
F+K _ Area of nonlamellar eutectoids
Z
Cementite
oO
Zw
Hardness in HV
Area for intermediate structure (bainite formation)
10Z
1;2
RA
Residual austenite
M
Area for martensite formation
10% Cementite
(refers to numbers on curves)
proportion of structure formed, in percent
Acyp, = 745°C
Ace = 800°C
M, = 270°C
SOURCE:
Atlas zur Warmebehandlung
der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf
Ee
ee
Germany,
1954
ee
Atlas of Time-Temperature Diagrams
151
X 38 CrMoV
5 1 (AISI H 11 Tool Steel)
Composition: 0.39% C - 0.48% Mn - 0.94% Si - 0.013% P -
4
0.005% S - 5.53% Cr - 0.20% Cu - 0.87% Mo - 0.04% Ni 0.48% V Austenitized at 1030°C (1886°F)
;
vg |Austenitisierungstemperatur 1030" ¢
+2) (Haltedauer 15min) aufgeheiztin? min
in
°C
Temperatur
IT
A
RSet
aS
sss] i
SS
SSS
4
exe lala seieniatereereie 7030° ¢
Se
lr eaner 1smin) aufgeheizt in 3min
—_|Git
SS: tt [-—.
SS
SCR
See
is
yet A AAAfeelTT
HH hte
|EZ
AS
3. 4 Sas
eA
w + SS
7
rue
€
in
Temperatur
CCT
SEAT
: mata
0
70
Sekunden
‘
Zelt ——>
Sole
_
a
Je
Minuten
10°
el ee
700
7000
70000
A + K
Area for austenite and carbides
F
Area for ferrite formation
K
P
Area for carbide formation
Area for pearlite formation
F+K_
Z
Area of nonlameilar eutectoids
Cementite
oO
Zw
Hardness in HV
Area for intermediate structure (bainite formation)
Area for martensite formation
Residual austenite
10Z
1he2
10% Cementite
(refers to numbers on curves)
M
RA
proportion of structure formed, in percent
Acyp = 840°C
Acj, = 920°C
M, = 275°C
SOURCE:
Germany,
Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf,
1954
EERIE
152
Atlas of Time-Temperature Diagrams
45 CrMoV
6 7
Composition: 0.43% C - 0.75% Mn - 0.27 % Si - 0.011% P 0.011% S - 1.31% Cr - 0.72% Mo - 0.11% Ni - 0.23% V
Austenitized at 970°C (1778°F)
oo
80.
ee
Ce
cca
!
HOCH
CoH
Ter tir
CARS
ee ialaetis |S
9709 C
min) aufgeheiztin 3 min
Cee
tt
TT ealiaTH
aaiamilic
ree
TTT
:a feted SSnSRireatt
|il
pak Salle
eo UL | pee
Eee
; ase Cialsl He (leita
Ett
NE MICCHEfotict
th
. | feet
[e
SRE
eee
HSS
© 600
Ms
ais ee
stenitisierungstemperatur 70%
900 aeSSS
SGEN
ry Keo Cao OG
ee
LS Srey
Haltedauer 15 min) aufgeheiztin 3 min
(1
RENCSSRESS TENS
ADNAT
ID
NSE tel Lf
: CATIA TINA Picliaiill
‘ CATT ANNNMIET VT TL Mies)
SUAUIENIIS Scum min:ry AL[it
SURNENINSS
NaN AWFUL HE Sane
: FANpee
SneT TTTa
Jas HitaniLN RCTS ATI
a=
a
S|
CCT
a
e
:
Belanden
Te
Gsiy
peseele
=
| [6 lal
||
10°
10
ae
vines
7000
70000
At
Area for austenite and carbides
F
Area for ferrite formation
K
P
Area for carbide formation
Area for pearlite formation
F+K_
Area of nonlamellar eutectoids
O
Zw
Hardness in HV
Area for intermediate structure (bainite formation)
10Z
i; 2
10% Cementite
(refers to numbers on curves)
M
Area for martensite formation
RA
Z
Gementite
proportion of structure formed, in percent
Residual austenite
Acyp = 745°C
Acie = 830°C
M, = 325°C
SOURCE:
Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, 1954
a
a
Atlas of Time-Temperature Diagrams
153
StE 47 (Cu-Ni-V)
Composition: 0.12% C - 1.28% Mn - 0.40% Si - 0.015% P -
Z
0.016% S - 0.024% Al - 0.67% Cu - 0.62% Ni - 0.15% V
Austenitized at 900°C (1652°F)
Austenttisierungstemperatur 900 °C
ail 7min
OHSS
LI
=
ag
Cece
U
SS ic Senate
Gey
800
SEs
3
wee
e NR meus I Deeb HET aii
ee
ca
ee
liaNRE
fill
NEAR ICHHT I
NURCIRNTICT ey
ia
ae
(CNNOKENEANSIRE TET
eo) B[fees LU C1
OmeZ
Lonny aan
BE
Zeit in s
Acy
=
720°C
Acg = 860°C
M, = 475°C
StE 47 (Cu-Ni-Ti)
Composition: 0.12% C - 1.28% Mn - 0.40% Si - 0.015% P 0.016% S - 0.021% Al - 0.67% Cu - 0.62% Ni - 0.18% Ti
Austenitized at 900°C (1652°F)
av eE SNe
eet it
SRS
“INS
TNE AIA ati i
CLIINNTIN- NIEA alas
MIVA AN
PNW
EAE
°C
in
Temperatur
bh
Hie tettHTN AT
CCT
0
Zeit ins
Acy = 725°C
Acg = 875°C
M, = 475°C
1972
vol 2, Verlag Stahleisen mbH, Dusseldorf, Germany,
SOURCE: Atlas zur Warmebehandlung der Stahle,
See
eine
oe
Me z
154
Atlas of Time-Temperature Diagrams
56 NiCrMoV 7
Composition: 0.52% C - 0.70% Mn - 0.29% Si - 0.010% P 0.010%
S - 1.09% Cr - 0.43%
Mo - 1.72%
Ni - 0.14% V
Austenitized at 850°C (1562°F)
Austenitisierungstemperatur 850° C
(Haltedauer 15min) aufgeheiztin 3 min
TL Leal
aa
Ae |
ae
in
°C
Temperatur
seo
ait
HCH Ht
Sntiniinit
IT
Austenitisierungstemperatur 850° C
(Haitedauer 15 min) aufgeheizt in Smin
mb
Sta
So
Rsk SSS
SRICGNUACIINRNSSI CoM
CHICA ICES
ACCIIT
ea
PACATN
gi
CHIPS Ea
HST
SeateeslBeTH
NAN.
Temperatur
°C
in
cer
ia
il
10?
Sekunden
,
L20——>-
7
10?
10
100
Minuten
> +K _ Area for austenite and carbides
Area for carbide formation
F
F+K
P
O
Zw
M
RA
Area for pearlite formation
Z
Hardness in HV
;
a
:
Area for intermediate structure (bainite formation)
Area for martensite formation
Residual austenite
10Z
eo
1000
70000
Area for ferrite formation
Area of nonlamellar eutectoids
Cementite
10% Cementite
(refers to numbers on curves)
proportion of structure formed, in percent
Acyp = 710°C
Acje = 790°C
MM;=1275°C
SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf
SS
—————————
Germany, 1954
Atlas of Time-Temperature Diagrams
155
X 30 WCrV 5 3
Composition: 0.28% C - 0.39% Mn - 0.16% Si - 0.020% P 0.006% S - 2.35% Cr - 0.06% Mo - 0.06% Ni - 0.53% V - 4.10%
W Austenitized at 1090°C
TH
Leer
L
7090"
ee ¢
Leer
75 min) aufgeheizt ee
in 3 min
HIRRLLG Hit
EHH
dep 11
rr lel
eT
NT
zCU tt
Ei
CCU TIPE ira IT
SCHINCHICCTI HESS
CREM
TC
Pe
aa Saeeeatioartls an
C
in
Temperatur
i
See
IT
ca
aan
it.
tt
cout ieee
falUNCC HITE
FH
Acjp= 820°C
Acie
925°C
M, = 400°C
SASS STC
Bap SR
EA HENSTICLT
Sein
tes =a
ICN DAA
NORA
HI i
Temperatur
©
in
“Seeda {GTEC
vin ee \Mab AIT lalLT
ae MAK uleledals © | ||iolal||
7
70
70
Sekunden
F
A+K
_
Area for austenite and
d
70%
fe
i/
bid
carbides
77
7°
700
Minuten
0
ark
0°
7000
70000
75
Stunden
Area for carbide formation
F
Area for ferrite formation
Area for pearlite formation
F+K_
Area of nonlamellar eutectoids
Hardness in HV
Z
Cementite
Area for intermediate structure (bainite formation)
10Z
Area for martensite formation
1;2
10% Cementite
(refers to numbers on curves)
proportion of structure formed, in percent
Residual austenite
eos
ou
Germany, 1954
Dusseldorf,
mbH,
Stahleisen
Verlag
1,
vol
SOURCE: Atlas zur Warmebehandlung der Stahle,
Atlas of Time-Temperature Diagrams
156
X 30 WCrV
9 3
Composition: 0.28% C - 0.36% Mn - 0.11% Si - 0.008% P 0.004% S$ - 2.57% Cr - 0.03% Mo - 0.04% Ni - 0.35% V - 8.88%
W Austenitized at 1120°C TTT
Austenitisierungstemperatur
7720 ° C
(Haltedouer 15 min) aufgeheizt in 4 min
se
BS
2 700
Ss
c
S
&
8
\
nh
HIS
ee
fi
s© 500
Ms
aS
ge
Seay.
mt
50
[|
40
(aa
=i
oS
mae
_
L
636
6
i
IT
Acyp = 820°C
Acye = 925°C
Austenitisierungstemperatur 71¢0° C
ee 15 min) aufgeheizt in ¥ min
a
M,
= 420°C
HNN
Bae
AH
ave
Y
SS
§
S
a
S
>
M
a
N
Bg
|
nny
SIN
ae
ae
\
i ‘Y
7
ee
70°
onder
A+K
Area for austenite and carbides
Area for carbide formation
Area for pearlite formation
Zest
——>
Hardness in HV
Area for intermediate structure (bainite formation)
SPE
OUR
SOURCE:
Area for martensite formation
Residual austenite
Area for ferrite formation
70°
Z
Area of nonlamellar eutectoids
Cementite
10% Cementite
(refers to numbers on curves)
proportion of structure formed, in percent
Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, 1954
Atlas of Time-Temperature Diagrams
157
X 210 CrW 12
Composition: 2.19% C - 0.32% Mn - 0.26% Si - 0.027% P -
y
0.008% S - 11.75% Cr - 0.12% Cu - 0.12% Mo - 0.08% Ni 0.08% V - 0.84% W Austenitized at 970°C (1778°F)
;ae
res
TSE
Austenitisierungstemperatur 970°C
KI
Haltedauer 1§ min, aufgeheiztin 3min
SERN
PAE NUTSIE
ealTT
BBN ieee sas
EZ
sich Serna TN
Sentient
Mee
Ti
CiCHINENNERAATTC TAREE
SAUINEHANHIAR CINCH
CLUE
ATIRAAL ENCANA EINE
i ECE HERE
i
in
°C
Temperatur
CCT
0
cc mitment
Seinen
‘
Zeit ——__>—
7
See
Minuten
100
7000
10000
A+K _
K
12
Area for austenite and carbides
Area for carbide formation
Area for pearlite formation
F
Area for ferrite formation
F+K _ Area of nonlamellar eutectoids
Z
Cementite
Oo
Zw
Hardness in HV
Area for intermediate structure (bainite tormation)
10Z
1332
M
RA
Area for martensite formation
Residual austenite
10% Cementite
(refers to numbers on curves)
proportion of structure formed, in percent
Acjp = 770°C
Acye = 810°C
M, = 180°C
Atlas zur
a
SOURCE:
Warmebehandlung
der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany,
ES
1954
Atlas of Time-Temperature Diagrams
158
60 WCrV
7
Composition: 0.55% C - 0.34% Mn - 0.94% Si - 0.015% P 0.012%
S - 1.27%
Cr - 0.05%
Mo - 0.12% Ni - 0.18%
V - 2.10%
W Austenitized at 880°C (1616°F)
Austenitisierungstemperatur 860° C
(Haltedauer 15 min) aufgeheizt in3 min
S 600
ee HTH
Here
SEH Ran | @eal |_| at
“COWIE
s
3 500
&
x
fa
TTT]
eee
=
P
+o
1S
2)
Zw
a
el NS LL SiSian
a etsail
Z Ree
oar
ea
i
Austenitisierungstemperatur 860° C
75 min) aufgeheizt in 5min
on
ACip
os
—Bie B
a FP WO4
eee|
CAT
VNC
Ne
SNCS ui
‘ BATIINBNStSIN Nim
SasSS
“- Sas
7
SEE 14570
SSION Y
BS
\
Shes
> 500
VORA
S
: CONTACT
NWA \
“ope NATTA AN NIN
=
Lisate
4
Mt
aN
AL
FATTeT PAL
oe
}
tT
ch
main SEL
das [alll felfie [eeibeetele! [lo 6||
10
7
108
LN <=
ee
Ree
Sekunden
7
LL
100
Minuten
1000
10000
A+K_
Area for austenite and carbides
F
[Areatfor territenformation
K
P
O
Zw
Area for carbide formation
Area for pearlite formation
Hardness in HV
Area for intermediate structure (bainite formation)
F+K_
Z
10Z
1;2
Area of nonlamellar eutectoids
Gementite
10% Cementite
(refers to numbers on curves)
M
RA
Area for martensite formation
Residual austenite
proportion of structure formed, in percent
Acyp, = 775°C
Acie = 830°C
Me = 310°C
SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, 1954
—_—_—_—__
oor
——=v
EE
ET
Atlas of Time-Temperature Diagrams
159
45 CrVMowW 5 8
Composition: 0.39% C - 0.45% Mn - 0.58% Si - 0.018% P 0.003% S - 1.45% Cr - 0.47% Mo - 0.13% Ni - 0.70% V - 0.55%
W Austenitized at 1050°C (1922°F)
1000
See
Seem: Ll
= [I
Austenitisierungstemperatur 1050" ¢
(haltedauer 15 min) aufgeheiztin 2 min
rarieoaue! sae
S
SD
¥
V4
CHICSlibiiisPSHtttH
Sanna
eet
in
°C
Temperatur
IT
AiCSSENNGSTTS SIT
SE
CNT ANINSEE
EEE
TET
ANAL
Austenitisierungstemperatur
Ses
S
\
8
SSJ
7050° ¢
(Haltedauer 75min) aufgeheizt in 3min
7000 |>
\
\
f\ a
+7
he
RAMIUE
Se ae
ARANESEE
A
Till 6irsebisese's
Te Ul}
©
in
Temperatur
rN
-NUINCIN
CCT
]
70
dl
HOU. =>
a
Minuten
+K _ Area for austenite and carbides
Area for carbide formation
x
Area for pearlite formation
P
oO
Hardness in HV
Area for intermediate structure (bainite formation)
Zw
M
RA
Area for martensite fermation
Residual austenite
700
7000
10000
F
Area for ferrite formation
F+K _ Area of nonlamellar eutectoids
Cenientite
Z
10Z
10% Cementite
(refers to numbers on curves)
132
proportion of structure formed, in percent
Acjp = 790°C
Acy. = 900°C
M, = 360°C
SOURCE:
Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany,
EEE
1954
Atlas of Time-Temperature Diagrams
160
B 18 (AISI T1 High Speed Steel)
Composition: 0.81% C - 0.33% Mn - 0.15% Si-0.024% P 0.003% S - 3.77% Cr - 0.44% Mo - 0.12% Ni - 1.07% V 18.25% W Austenitized at 1230°C (2246°F)
Austenitisierungstemperatur 1230 oC
ae _ (Vorwarmung: 20min 850%)
ies al oe et a
es a=
Sa
ect
ee Pear
pee
ht
fatal
ee)
[SS
600 \
{tT {Ee
eter
Ss
AYE ELL Siitaeacmal
ies- SEU
hes
700
EEE
Ce SIC
HAH
Ht Biil
Beeen
in
°C
Temperatur
euie
:
ial
Be
50
an
M, = 160°C
yo)
HS ae en
Cc
Acyp = 810°C
Acje = 860°C
=
Elicafes ewaotto
eda etOa
aha
HEHE
corr
fom eae
7
Staes
(eS
7
Zeit ——>
EE
10
ee
100
ee
7000
ee
ee
70000
Minuten
D
Composition: 0.87% C - 0.32% Mn - 0.27% Si - 0.020% P -
0.005% S - 3.99% Cr - 0.80% Mo - 0.11% Ni - 2.52% V 11.91% W Austenitized at 1210°C (2210°F)
COT
TT essere el
ee We i a a
Sees
Snes
pe
at
| ee
PITT TTT TTeiekeae
anti
He
[era as
Sane
in
Temperatur
°C
IT
Se
Paspe
Teee geil ik
i
Sane
Aci) = 825°C
Acye = 890°C
M, = 205°C
mia
| OES
|| tis ES aaiMnill
ee
es HA
ieh
elblll
|WIT Ul
(te
7
Fetes
,
Zeit ——>
100
Minuten
7000
10000
A+K _
Area for austenite and carbides
F
Area for ferrite formation
K
Area for carbide formation
Area for pearlite
formation
:
F+K_
Z
Area of nonlamellar eutectoids
Cementite
Zw
Area for intermediate structure (bainite formation)
x
ls 3 peeuoEmieticn
ae
Residual austenite
P
Oo
RA
SOURCE:
Hardness in HV
s
;
af
10Z
1052
10% Cementite
(refers to numbers on curves)
proportion of structure formed, in percent
Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf
Germany, 1954
——_—_—_—_—$—_—$—_—_$_—$—_$—_———_—_—_—$_$_$_$<
Atlas of Time-Temperature Diagrams
16]
D Mo 5
Composition: 0.85% C - 0.31% Mn - 0.30% Si - 0.015% P 0.010%
S - 4.15% Cr - 4.79% Mo - 0.18%
Ni - 2.01%
W Austenitized at 1190°C (2174°F)
-
Vv - 6.34%
Austenitisierungstemperatur 1190 °C
Tauchzeit 1720s (Vorwarmung: 20min 850°C)
KUlGMIMMIIRTife=.
es |memes
[as|e |man oa |||
|
Ba
i | | ee |ane |
a ait
[es ees ee)Ace
SAT
eae
ikeos eo
CCCI Se ||
===
ee
aay
= a
—
8 500
Acje = 875°C
iy,
ICCC
ren
300
=ate
200
—— ee
byere ie
Soe rSS eer
eee
aes
7
708
Pei
l
7
Zei{——>
!
10
eel
100
MEE
Eeiis Snel
7000
eS
70000
Minuten
E 18 Co 5 (AISI T4 High Speed Steel)
Composition: 0.80% C - 0.30% Mn - 0.23% Si - 0.019% P -
0.005% S - 4.52% Co - 4.34% Cr - 0.78% Mo - 0.30% Ni 1.52% V - 17.89% W Austenitized at 1250°C (2282°F)
7000
Austenitisierungstemperatur 1250 °C
Tauchzeit 120s (Vorwarmung: 20min 850 %)
sete
(al
ae
oe
600}—
ae
=
=
ee
700
S 600
aS
Acyp = 820°C
$ 500
Acje
S
Ss400
M, = 180°C
S
ve l
865°C
eS
sie
LHL TTT TTT Gedis Rl
tt Te
. Lie
up
|
i
108
ye
Z eit} ——_>
A+K _ Area for austenite and carbides
es
i
a
a
AIT
Minuten
K
P
Area for carbide formation
Area for pearlite formation
oO
Zw
Hardness in HV
Area for intermediate structure (bainite formation)
M
Area for martensite formation
RA
=
F
Area for ferrite formation
_
F+K _ Area of nonlamellar eutectoids
Cementite
Z
10Z
1;2
10% Cementite
(refers to numbers on curves)
proportion of structure formed, in percent
Residual austenite
SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, 1954
oa
—
ee
—
>a
ing
CE
<_
:
'Me
—>
by rae
_———
=
7
we
es
roLe ’ _
. _
ra?
7
-
'
=
a}
.
a
French Steels
l-T and CCT Diagrams
i Znones
i
a a)
a
-
J
_
EP
6G TOD brn t-!
————-_
or
aa
Atlas of Time-Temperature Diagrams
XC
165
32 Steel
XC 38 Steel
Composition: 0.35% C - 0.69% Mn - 0.31% Si - 0.018% S 0.011% P - 0.31% Ni - 0.12% Cr - 0.04% Mo - 0.14% Cu Grain
size: 10 Austenitized at 850°C (1562°F) for 30 min
Bie
Ac;
Composition: 0.36% C - 0.66% Mn - 0.27% Si - 0.016% S 0.020% P - 0.02% Ni - 0.21% Cr - 0.02% Mo - 0.22% Cu 0.060% Al Grain size: 10-11 Austenitized at 850°C (1562°F) for
lh
ules
SS
800
3
q
2
Ac,
700
92 HRB
600
93
ee
S
92
s
5
98
E
2
97
= 400
3
=
2
= 500
5
"
calculé
300
46,5 HRC
200
100
56
0
1
2
5
10 20
50 100200
Temps en secondes
CCT
500 10°
ol
Imn
10°
|
2mn
|
15 mn
108
Pes
Th
2h
4h
8h
24h
UREN
IT
Eh
Riki
nae
Sh ie
Imn
Acy = 735°C
XC
ou ‘
2mn
15mn
fa
th
ne
2h 4h
Bh
Acg = 810°C
24h
M, = 360°C
42 Steel
Composition: 0.45% C - 0.52% Mn - 0.27% Si - 0.025% S 0.015% P - 0.12% Ni - 0.05% Cr - 0.01% Mo - 0.13% Cu Grain
Composition: 0.44% C - 0.72% Mn - 0.26% Si - 0.028% S 0.038% P - 0.09% Ni - 0.16% Cr - 0.02% Mo Grain size: 10
size: 9-10 Austenitized at 850°C (1562°F) for 30 min
Austenitized at 850°C (1562°F) for 30 min
——
900
3
3
800
A
Ac;
Ac,
700
93 HRE
97
99
9°
22 HRI
3
600
2= 500
é 400
E
E
Ms
300
200
100
si
2
1
5
10 20
50
100200
|
IT
Pe
Acy = 740°C
SOURCE:
Iman 2mn
Acg = 805°C
15mn
10°
10°
500 10°
|
th
|
|
|
2h 4h
Bh
24h
B
28 25| 220 215 200195
iam |e San ame [ee a a Ps |a
{2h
me Ole20
;
emps
CCT
ig
en
eSO : fas
500 7
ima 2mn
1Smn
is
a
secondes
Wb, Sy S¥Iso,
France, 1974
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris,
th
2h 4h
Bh
24h
Atlas of Time-Temperature Diagrams
166
XC 55 Steel
Composition: 0.53% C - 0.70% Mn - 0.35% Si - 0.010% S -
Composition: 0.52% C - 0.60% Mn - 0.28% Si - 0.017% S -
0.020% P - 0.24% Ni - 0.09% Cr - <0.10% Mo - 0.52% Cu <0.03% V Grain size: 11 Austenitized at 825°C (1520°F) for 15
0.020% P - 0.05% Ni - <0.04% Cr - <0.05% Mo Grain size: 9
Austenitized at 830°C (1526°F) for 30 min
min
-
900
2
2
2
800
2
Ac;
Ac,
700
99 HRB
22 HRC
600
25
°
.s 500
30
§
:
oe
e 400
F
F
“lL
ae
300
200
100
63
0
1
2
5
10
20
50
100200
|
|
1mn
2mn
Temps en secondes
IT
Acy = 735°C
500
10?
15mn
10°
10°
|
|
|
|
|
th
2h
4h
Bh
24h
Acg = 765°C
1
2
5
Temps en secondes
10
20
50
100200
500
10°
|
15mn
qimane2inn
CCT
|
10*
|
|
|
10°
|
th
2h
4h
8h
24h
M, = 240°C
XC 70 Steel
Composition: 0.75% C - 0.75% Mn - 0.24% Si - 0.010% S -
Composition: 0.72% C - 0,72% Mn - 0.34% Si - 0.026% S -
0.012% P - 0.43% Ni - 0.06% Cr - <0.10% Mo - 0.56% Cu <0.03% V Grain size: 12 Austenitized at 800°C (1420°F) for 15
0.031% P Grain size: 9-10 Austenitized at 850°C (1562°F) for
30 min
min
=
900
z
3
c
8
800
4
Ac,
700
20 HRC
21
600
30
©
oO
5
33
§ 500
I
7: 400
E
F
e
300
.
AMu
;100 PAAR
i
\\\
pt
be
86
5635503835
eS
32295 © 5 80 8)
a a a
0
1
2
5
10
20
|
ve
a
Acy = 735°C
SOURCE:
100200
50
Temps en secondes
|
eee
500
|
|
ENS
Acg = 750°C
|
1
10°
10*
10°
|
|
ONTS
rare
|
2
5
10
20
x
ccT
ree
eee
10000
0"
|
|
Imn
2mn
M, = 240°C
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France,
1974
0
i
15 mn
As
ae
Gp
500
-
2h
i
tf
a
Atlas of Time-Temperature Diagrams
167
55 S 7 Steel
Composition: 0.55% C - 0.61% Mn - 1.68% Si - 0.014% S 0.012% P - 0.19% Ni - 0.05% Cr - 0.01% Mo - 0.20% Cu - trace
V - 0.05% Ti Grain size: 11 Austenitized at 925°C (1700°F) for
15 min
900
i
Ac;
8
Composition: 0.55% C - 0.61% Mn - 1.68% Si - 0.014% S$ 0.012% P - 0.19% Ni - 0.05% Cr - 0.01% Mo - 0.20% Cu - trace
V Grain size: 11 Austenitized at 925°C (1700°F)
2
3
800
Ac,
fa]
700
20 HRC
600
29,5
§ 500
2
: 400
e
29
5
32
2
38,5
:
F
45,5
300
60,5
Ms
200
100
63
0
RGI)
Imn
Acpegwis-C
2mn
15 mn
th
|
"
Bh
24h
a
|
es
| Sire
ce
See
a
IT
2h
4h
Acg = 840°C
CCT
7
2
1
emps
en
16259744532, 29 25
el aes |e
ee ee
10
20
secondes
50
meee
500
ena
ma
|
4
a
te
ne
ciety
Dai
M, = 285°C
35 M 5 Steel
Composition: 0.33% C - 1.12% Mn - 0.30% Si - 0.027% S -
Composition: 0.33% C - 1.12% Mn - 0.30% Si - 0.027% S -
0.018% P - 0.24% Ni - 0.11% Cr - 0.04% Mo - 0.19% Cu -
0.018% P - 0.24% Ni - 0.11% Cr - 0.04% Mo - 0.19% Cu -
0.010% Al Grain size: 8-9 Austenitized at 850°C (1562°F) for 1
0.010% Al Grain size: 8-9 Austenitized at 850°C (1562°F) for 1
h
h
900
=
g
soo
a
Ac;
Ac,
|—-
a
700
:
eS
———
im
———
A
+F
600
ee
oe
90 HRB
ae
94
6
A+|F+C
9
§
}
E 400
-
=;
Ms
I
a
300
ee Eee
—
[AM
200
4
ii
‘aaa
100
2
e
ie
/
500
rE
98
/
++
—-+--—sa+
SC
27 HRC
Z
28
=
+
T
fi
an
52
10}
2
1
It
5
Tempsen secondes
Acy = 735°C
SOURCE:
10
20
50 ire
ete
500
ae
Acg = 800°C
mes
a
i
oa
i
Sa eras act
Saat
CCT
tsee
10
20
50 aH
1mn 2mn
M, = 355°C
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
500
10
3
15mn
he4 |
th
2h 4h
s
i:
8h
24h
Atlas of Time-Temperature Diagrams
168
45 M5
Composition: 0.47% C - 1.37% Mn - 0.36% Si - 0.025% S 0.015% P - 0.02% Ni - 0.15% Cr - 0.19% Cu Grain size: 11-12
Austenitized at 875°C (1610°F) for 30 min
900
Steel
Composition: 0.47% C - 1.37% Mn - 0.36% Si - 0.025% Ss
0.015% P - 0.02% Ni - 0.15% Cr - 0.19% Cu Grain size: 11-12
Austenitized at 875°C (1610°F) for 30 min
=
3
2
5
800
Ac;
fa)
Ac,
700
600
21 HRC
24
9
s 500
24
: 400
RY
e
Oo
¢
3
iS
41
300
50
Ms
200
100
62
0
i
5
Temps
IT
10
20
50
en secondes
100200
|
500
|
10?
|
1mn 2mn
15mn
10°
|
|
108
|
|
1h 2h 4h 8h
A,
|
24h
CCT
Temps
32)
5
10
20
en secondes
50
100200
|
an Bane
500
10°
10*
15mn
th 2h 4h 8h
|
|
10°
|
|
|
24h
25 M 6 Steel
Composition: 0.24% C - 1.58% Mn - 0.20% Si - 0.014% S 0.016% P - 0.20% Ni - 0.24% Cr - 0.02% Mo - 0.12% Cu 0.018% Co Grain size: 10-11 Austenitized at 875°C (1610°F)
Composition: 0.24% C - 1.58% Mn - 0.20% Si - 0.014% § 0.016% P - 0.20% Ni - 0.24% Cr - 0.02% Mo - 0.12% Cu 0.018% Co Grain size: 10-11 Austenitized at 875°C (1610°F)
for 30 min
for 30 min
900
=
Ac3
2
2
8
800
8
ral
Ac,
700
88 |
600
18
18
9
S
oO
P
500
29
é 400
B
Ms
3
ce
300
200
100
49
0
1
2
5
10
20
50
Temps en secondes
IT
100200
500
10°
Vee
mn
2mn
15mn
10*
10°
ale
le
et
|
1h
4h
Bh
24h
2h
1
CCT
2
5
10 20
50 100200
Temps en secondes
|
mn
SOURCE:
500 10°
|
2mn
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
15mn
10°
105
|
|
|
|
|
1th
2h
4h
Bh
24h
Atlas of Time-Temperature Diagrams
ie
10 N 14 Steel
oye
Composition: 0.11%C - 0.44% Mn - 0.22% Si - 0.007% S 0.010% P - 3.47% Ni - 0.10% Cr - 0.04% Mo - 0.15% Cu 0.007% Al Grain size: 10 Austenitized at 900°C (1652°F) for 30
!
min
900
~
Composition: 0.11% C - 0.44% Mn - 0.22% Si - 0.007% S 0.010% P - 3.47% Ni - 0.10% Cr - 0.04% Mo - 0.15% Cu Grain
size: 10 Austenitized at 900°C (1652°F) for 30 min
900
a
‘
800
ae
Cc;
*
oa
ae
SUSURSHINASURADE
|
—"
= SAO AN
BEAN
2
pele
cea a ea
—__
700
:
600
= 500
et
4
ae
ee oes ae ee
V
At F
vit
i
ane
Pa
300
—
|
|
et
P|
$a
(el
Acy = 670°C
|
|
Imn
2mn
\
300
~
200
100
SD AED AEO ED ie
en secondes
15mn
Ea
Ms
—
Temps
\’
50
08.
0
IT
|
Ve
s
|
i‘
ay
Noe See
\|
2
ae
200
2
i
|_—
A
= 500
Bae
4
V2
a
A
600
At+C
SiS i=
\
=|
ql
i
in
1
'
| A+F+4IC
: Ms
7]
Ac,
ei
EE
eli
bo
SJ
ie
ovaine
HRC
3
ih
|
|
|
|
|
th
2h
4h
Bh
24h
Acg = 820°
1
Temps
2
5
33 28 23]
Sas
10 20
en secondes
|
CCT
eee eee
50 100200 500 10°
|
Anon
isma
10°
10°
|
|
|
|
|
fh
Dhan
sh
oan
M, = 435°C
Z10N
Composition: 0.10% C - 0.46% Mn - 0.33% Si - 0.011% S 0.025% P - 5.00% Ni - 0.23% Cr - 0.04% Mo - 0.14% Cu Grain
size: 10 Austenitized at 850°C (1562°F) for 30 min
5 Steel
Composition: 0.10% C - 0.46% Mn - 0.33% Si - 0.011% S 0.025% P - 5.00% Ni - 0.23% Cr - 0.04% Mo - 0.14% Cu Grain
size: 9 Austenitized at 850°C (1562°F) for 30 min
Dureté
Rockwell
24 HRC
Température
°C
en
Température
°C
en
HRC]39 37 33 27 26 [231 225
‘
1
IT,
2.
5
Temps en secondes
Acy = 630°C
SOURCE:
10 20
50
100200
500
10°
?
|
cot
oe:
OEE nag Ee
=
°
Acg = 775°C
?
a
,
aOR
1
SER
CCT
ea
2
5
Kade ornciiane
10 20
214]HV]
eal
ae
iS
[ales
50
100200
ae
1mn 2mn
rey
Mg, = 410°C
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
500
Dice
15mn
105
10°
10°
th
2h 4h
8h
24h
Atlas of Time-Temperature Diagrams
170
Z10N
9 Steel
Composition: 0.09% C - 0.51% Mn - 0.27% Si - 0.008% S -
Composition: 0.09% C - 0.51% Mn - 0.27% Si - 0.008% S -
0.010% P - 9.00% Ni - 0.05% Cr - 0.03% Mo - 0.13% Cu -
0.010% P - 9.00% Ni - 0.05% Cr - 0.038% Mo - 0.13% Cu 0.012% Al Grain size: 11-12 Austenitized at 790°C (1454°F) for
0.012% Al Grain size: 11-12 Austenitized at 790°C (1454°F) for
30 min
30 min
=7
=$
900
900
8
c
800
2
ena
IL
lI
5
a
cs
Ac.3
600
2
aliens
=
Se
700
is
i
600
Ae,
Ac,
2
el
=
A+
°
<5 500
5 500
»2
—
=
|
emt Nf|eee
Nea
a=
[
+
o
5
é5
= 400
= 400
£
200
es
10\15
300
ae
200
ile
Fr
Ajt+M levis
8
200
|
fal
A+F
2
Ms
Z
45
P
a
ee
85
96
.
Le
100
100
0
1
2
§
10 20
50
500 10°
|
|
Temps en secondes
IT
100200
1S5mn
Ima 2mn
10°
|
th
|
|
2h 4h
°
©
Acy - 530°C
10°
Acg = 710°C
|
Bh
M,
&
|
2
Te
24h
= 345
38
40
40
42
42
HRC] 41,5
ae
®
Cc
CCT
Temps
saa
= 10 20
en secondes
a, 500
weiss
th
15mn
1mn 2mn
10°
10°
10?
Bh
2h 4h
24h
32 C 4 Steel
Composition: 0.32% C - 0.76% Mn - 0.30% Si - 0.010% S 0.021% P - 0.26% Ni - 1.08% Cr - 0.02% Mo - 0.17% Cu Grain
size: 10-11 Austenitized at 850°C (1562°F) for 30 min
Composition: 0.32% C - 0.76% Mn - 0.30% Si - 0.010% S 0.021% P - 0.26% Ni - 1.08% Cr - 0.02% Mo - 0.17% Cu Grain
size: 10-11 Austenitized at 850°C (1562°F) for 30 min
Rockwell
Dureté
°C
Température
en
Température
°C
en
300
200
I\
100
\_I\
50 45 38 31||224 193182171 176|
HV|
aro
aS
55
5
2
1
Temps en secondes
IT
‘
Acy = 755°C
SOURCE:
10
20
100200
50
|
mn
500
10°
|
2mn
|
15 mn
Acg = 810°C
1th
10*
|
|
|
10*
|
4h
8h
24h
2h
ee
ccT
5
10
20
Sian
Temps en secondes
Imn
500
10°
10*
|
|
|
2mn
1mn
th
M, = 350°C
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
|
2h
10°
4h
Bh
24h
Atlas of Time-Temperature Diagrams
17]
38 C 4 Steel
Composition: 0.38% C - 0.74% Mn - 0.26% Si - 0.010% S -
0.023% P - 0.26% Ni - 0.90% Cr - 0.04% Mo - 0.17% Cu Grain
size: 9-10 Austenitized at 850°C (1562°F) for 30 min
900
—
=
|
Ac,
——
|
|
eee
4
A
600
§ 500
oN
“A
=
Za
|
Be)
pty
i
a
i
bas
E
——|
|e
-
—+
e
Ac.
3
aye
3
4
Ac,
83 HRB
SELL:
~
700
92
21 HRC
600
9
Seis Cay
a
5 500
Wiles
: 400
[
+
FF
\
s
306
is
—
gai
—+_—,
9
Seer
aed
i
700
900
2
Ac.
800
Composition: 0.38% C - 0.74% Mn - 0.26% Si - 0.010% S$ -
0.023% P - 0.26% Ni - 0.90% Cr - 0.04% Mo - 0.17% Cu Grain
size: 9 Austenitized at 880°C (1616°F) for 30 min
4
2
+]
=
—4
37
a 400
re
*
Me
sf
r
ie
42
Mg
50
300
AiM
200
alt
100
|
200
1
100
F
sa
ie
a?
5
10
20
50
Temps en secondes
100200
|
500
|
15mn
Imo 2mn
IT
Acy = 750°C
10?
10°
|
th
|
iW
i
iciei.ged
105
|
2h 4h
Acg = 805°C
|
8h
i
CCT
24h
2
5
10 20
50
Temps en secondes
100200
|
500
|
Aa, DB
10°
10*
Ane
city Pe City i
|
|
10°
|
|
|
PLD
Mg = 325°C
42 C 4 Steel
Composition: 0.44% C - 0.80% Mn - 0.31% Si - 0.013% S -
Composition: 0.44% C - 0.80% Mn - 0.31% Si - 0.013% S -
0.030% P - 0.46% Ni - 0.96% Cr - 0.05% Mo - 0.18% Cu Grain
0.030% P - 0.46% Ni - 0.96% Cr - 0.05% Mo - 0.18% Cu Grain
size: 9 Austenitized at 850°C (1562°F) for 30 min
size: 9 Austenitized at 850°C (1562°F) for 30 min
io
900
Es
8
c
3
800
a
Ac;
92 HRB
700
Ac,
A
2
22,5 HRC
[Nw
5\
30
600
3 2
0}
|
Att FitC
2
oO
e3.
33
— 400 |
5 800
43
|=
0
oe
é
i=
=a
?
'
214 [HV
AA
é
\
Ms
51
am
APA RLIES
I
|
Pleats
Alt M
200
|
+
ee gyoe ee
100
{
HRC|59
5956535042
3836 27
2018
62
0
1
IT
oe
Acy = 750°C
2
5
ae
10
20
100200
50
m
a
500
|
15 mn
Ac3 = 790°C
|
i
2h 4h
2
1
haa
10°
Bh
24h
CCT
emps
ee
en
5
secondes
-
10
20
500
sla
1mn
2mn
M, = 310°C
Paris, France, 1974
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID,
EE
SOURCE:
i.
ha
Y
15mn
th
2h 4h
Bh
24h
Atlas of Time-Temperature Diagrams
172
100 C 6 Steel
Composition: 1.00% C - 0.30% Mn - 0.27% Si - 0.030% S -
Composition: 1.00% Cc = eS
0.013% P - 0.21% Ni - 1.71% Cr - 0.04% Mo - 0.14% Cu -
0.013% P - 0.21% Ni - 1.71%
(1562°F) for 30 min
(1562°F) for 30 min
0.010% V - 0.02% Ti Grain size: 7-8 Austenitized at 850°C
0.010% V- 0.02% Ti Grain size:
ee
a
Austenitized
7-8
S-
re as Bear
900
=
900
eee”
ee BLA
2
®
800
800
a
Ac,
Ac,
700
700
21 HRC
29
600
600
37
42
9°
oO
< 500
= 500
34,5
:
38
: aay
a28
E 400
47
=
300
53
Ms
60
§
300
Ms
\\|
ane
200
a100
“
‘
-
66
0
T
IT
Lae
i
E ee
Acy = 740°C
| ao
Hea
eee
Cian
|
SU
ial
|
15
2)
fi)
i
CCT
waa
Bn
P
es
a
\\
\K NO
TRF
Y
i
AW
\\
i fe cee
\
WE
238|HV|
mA Kaede
10) 201
ca
aes
50
an 2mn
500
Rae!
si
:
es
|
.
15mn
1h
2h 4h
8h
24h
M, = 240°C
Z 40 C 14 Steel
Composition: 0.42% C - 0.16% Mn - 0.44% Si - 0.049% §S -
Composition: 0.42% C - 0.16% Mn - 0.44% Si - 0.049% S -
0.042% P - 0.27% Ni - 13.40% Cr - 0.08% Cu Grain size: 6-7
Austenitized at 1000°C (1832°F) for 10 min
0.042% P - 0.27% Ni - 13.40% Cr - 0.08% Cu Grain size: 6-7
Austenitized at 1000°C (1832°F) for 10 min
900
=
z
Ac,
900
Ac,
=
ve
800
Cy,
89 HRB
700
21
96
700
20 HRC
600
600
2
: 500
o
s
500
fe
a 400
£
E 400
2
300
i
300
Meo
200
200
Mso
100
100
56
0
Tea
5
apie ag
IT
10820)
SO : ee
500 10?
1ma 2mn
ENGL
re
7
ie
Lalani)
esa
2c
|
A
1
CCT
Aci
825°C
SOURCE:
Mg
= 255°C
2
5
10 20
Temps en secondes
Myo = 205°C
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France,
50 100200
|
500 10?
|
|
1mn 2mn
15mn
1974
10°
10°
|
1h
|
|
|
2h 4h Bh
|
24h
Atlas of Time-Temperature Diagrams
173
60 SC 7 Steel
Composition: 0.55% C - 0.88% Mn - 1.52% Si - 0.005% S -
0.032% P - 0.07% Ni - 0.74% Cr - 0.01% Mo - 0.03% Cu Grain
size: 9 Austenitized at 850°C (1562°F) for 30 min
Composition: 0.64% C - 0.74% Mn - 1.61% Si - 0.020% S -
0.016% P - 0.07% Ni - 0.61% Cr - 0.10% Cu Grain size: 10
Austenitized at 850°C (1562°F) for 30 min
Dureté
Rockwell
Température
°C
en
Température
°C
en
T
1 2
5 10 20
Temps en secondes
50
I
100200
IP al
(hon
Acy = 765°C
500
10°
ertiatn
SSI
Ly
10°
alae
Ue
eae
Acg = 800°C
10°
ns a
1
2
Temps
CCT
5
10 20
50
en secondes
100200
|
|
Iman 2mn
500
10°
15mn
10°
|
th
10°
|
|
2h 4h
|
8h
|
24h
M, = 265°C
40 CV
5 Steel
Composition: 0.38% C - 0.41% Mn - 0.21% Si - 0.010% § 0.013% P - 0.03% Ni - 1.29% Cr - <0.10% Mo - 0.05% Cu 0.120% V Grain size: 9-10 Austenitized at 925°C (1700°F) for
Composition: 0.38% C - 0.41% Mn - 0.21% Si - 0.010% S 0.013% P - 0.03% Ni - 1.29% Cr - <0.10% Mo - 0.05% Cu 0.120% V Grain size: 9-10 Austenitized at 925°C (1700°F) for
30 min
30 min
.
900
$
3
Ac;
3
800
a
Ac,
96,5 HRB
700
24 HRC
4
600
32
4
29
7
31
£
39,5
§
£ 400
F
5
£
g
E
2
45,5
< 500
Ms
300
Mso
200
100
|_|
96,5
1
IT
2
5
Temps en secondes
SOURCE:
10
20
50
100200
io mn
puss
500
A i
ie
mn
ee
h
(ea SE aT
0
10*
10*
10°
1\
58 5756
1
pl
cor
2
10 20
5
S$
;
|
50 | ee
Imn 2mn
1974
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France,
52473
500 10°
|
A |
15mn
1h
2h 4h
i
Bh
24h
Ailas of Time-Temperature Diagrams
174
50 CV 4 Steel
Composition: 0.53% C - 0.81% Mn - 0.27% Si - 0.016% S 0.024% P - 0.07% Ni - 1.09% Cr - 0.01% Mo - 0.11% Cu 0.100% V Grain size: 9 Austenitized at 850°C (1562°F) for 30
Composition: 0.53% C - 0.81% Mn - 0.27% Si - 0.016% S 0.024% P - 0.07% Ni - 1.09% Cr - 0.01% Mo - 0.11% Cu 9.100% V Grain size: 9 Austenitized at 850°C (1562°F) for 30
min
mim
900
=
©
3
Ac;3,
S
800
2
=]
x
8
a
Ac,
700
90 HRB
600
30
20 HRC
33
w
<6
2
2
©
500
€
heo
400
30
3
34
Tenpérature
°C
en
43
300
50
Ms
200
100
61,5
0
din
Temps
Be
5
10
20
50
100200
en secondes
IT
Acy == 755°C
755°
|
|
Imn
2mn
500
10°
15mn
Acg ==
10°
1
108
|
|
|
|
|
wh
2h
4h
Bh
24h
800°C
2
§
10 20
Temps en secondes
50 100200
|
500 10°
2mn
15mn
1mn
CCT
10°
10°
|
|
|
|
|
1h
2h
4h
Bh
24h
Mg, a = 285°C
90 MV 8 Steel
Composition: 0.81% C - 2.10% Mn - 0.29% Si - 0.003% §S -
0.016% P - 0.06% Ni - 0.02% Cr - 0.01% Mo - 0.04% Cu 0.17% V - 0.05% W Grain size: 12 Austenitized at 800°C
(1472°F) for 30 min
Composition: 0.81% C - 2.10% Mn - 0.29% Si - 0.003% S 0.016% P - 0.06% Ni - 0.02% Cr - 0.01% Mo - 0.04% Cu 0.17% V - 0.05% W Grain size: 12 Austenitized
at 800°C
(1472°F) for 30 min
900
g
—— |
wd
es—
Rockwell
Dureté
eaec|
Ea
Je
/
600
ae
ea
Att F(R
A
———
98 HRB
}
22 HRC
te
iL
25,5
315
&
_
~
500
——
—
/
{
Ss
34
|
:
400
Ven
aos
=
SK
37
sieell
41
=
Température
°C
en
°C
Température
en
~N
ra.|
Se
ir
| |AM
[
|
64
pez:
IT
Acj =
5
Temps en secondes
10
20
50
100200
|
|
Imo 2mn
500
|
Hmn
|
Th
|
2h
53932
10*
10*
10°
|
4h
|
Bh
|
24h
ih
ccrT
730°C
SOURCE:
Temps en
2
5
10
20
d
secondes
M, = 170°C
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France,
50
100200
|
|
Imn
2mn
1974
500
10?
15mn
10*
108
i
ot
th
2h
4h
|
Bh
24h
Atlas of Time-Temperature Diagrams
175
15 MDV
Composition: 0.14% C - 1.20% Mn - 0.23% Si - 0.017% S -
4-05 Steel
=
0.065% V Grain size: 8 Austenitized at 900°C (1652°F) for 30
0.016% P - 0.15% Ni - 0.10% Cr - 0.48% Mo - 0.15% Cu -
Composition: 0.14% C - 1.20% Mn - 0.23% Si - 0.017% S 0.016% P - 0.15% Ni - 0.10% Cr - 0.48% Mo - 0.15% Cu 0.065% V Grain size: 8 Austenitized at 900°C (1652°F) for 30
min
min
900
Ac
=
ss
:
900
Ac;
oO
g
8
ac
2
S|
800
‘
Ac,
~_
coats
700
—>
|
++ |
\
\
AF
ae
=
i
A+IF +
aoe
90
Se
j—
95 HRB
\}
Pgs
©
<
S<
—
BE
A
600
x
a
——
500
wy
600
==
4
g RrIs
é
/
eal
A} FI+C
lL
<stes
21 HRC
a
Ee 400
24
i
AltM
Température
°C
en
300
200
200
100
100
|
HRC|
43
|
36 29 21][244 236 230 217/HV|186 173 141
(0)
1
2
Temps
5:
10
20
50
en secondes
100200
|
IT
fe}
Acy —= 740°C
500
|
2mn
Imo
10°
15mn
10°
|
1th
|
2h
108
|
4h
Acg == 885°C
|
Bh
1
|
24h
2
5
10 20
Temps en secondes
CCT
50 100200
hel
1mn
2mn
500 10°
1Smn
10°
i!
th
2h
4h
10°
|
Bh
24h
M, = 440°C
16 MC 5 Steel
Composition: 0.18% C - 1.10% Mn - 0.27% Si - 0.025% § 0.023% P - 0.28% Ni - 1.02% Cr - 0.04% Mo - 0.18% Cu Grain
size: 10 Austenitized at 850°C (1562°F) for 30 min
Composition: 0.18% C - 1.10% Mn - 0.27% Si - 0.025% S 0.023% P - 0.28% Ni - 1.02% Cr - 0.04% Mo - 0.18% Cu Grain
size: 10 Austenitized at 850°C (1562°F) for 30 min
~
900
=
3
8
ses
ae
Le
a
Ac;
25
5
800
a
700
|
A\+F
|A
\
t
600
alt ss
i
IE,
SS
Ac,
= >
87 HRB
91
. SS4
tCALFHIC
96,3
> aeNX
ro)
\ aT
pe zat
= 500
+
s
—-
=:
a
o
i
2
Al+ Fr+
S
2 400
‘S
31 HRC
|C
BD
aes
et
a
Température
°C
en
A|+ M
300
200
100
iat
47
0
1
IT
cs
Acq = 740°C
SOURCE:
2
5
aca
10 20
50
100200
i
1mn
2mn
=
si
|
mn
1h
500
°
Acg = 835°C
ee
|
4h
Bh
2h
43 3935 30 27 21] 205177 1
fee es ee ae ae
ae
ip
1
24h
1
e
CCT
Temps
2
5
en secondes
10 20
50
100200
tl
500 3
2mn
mn
1mn
th
Sp
|
108
|
4h
Bh
24h
2h
M, = 400°C
Paris, France, 1974
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID,
Nee
EERE!
Atlas of Time-Temperature Diagrams
176
a
0000S
i
90 M 5 Steel
Composition: 0.93% C - 1.25% Mn - 0.20% Si - 0.007% S -
0.020% P - 0.24% Ni - 0.60% Cr - 0.15% Cu Grain size: 11-12
Austenitized at 825°C (1520°F) for 30 min
a
Composition: 0.93% C = Pe
Bisa
al
Austenitized at
S
900
2
e
800
ue a POUT
0.020%P - 0.24%825°C
Ni - (1520°F)
0.6 a for 30imin
=
800
fal
fat
Aci
Ac,
700
fee
A
ce
Aroo\oo'y?
27 HRC
600
aoe
600
ato
00
1
39
9°
\
@ See
2
é
3
€
2
400
.
38
z 500
5
42
iS
rofl
ie
5\! | BO
3
Y
C
eee
:|
HOY
51
300
20HR
300
56
1
61
200
Ms
200
100
iy [elite Sea
Ms
A +|M
aN
Ske
£-|
{|
100
5
ae
i}
TT,
2
5
10
20
Uempciensecondes
50
100200
500
ee
dma 2mn
10°
1Smn
10*
Lionel
1h
HRCI|66 65 65 575640 34 36 31
10°
2h 4h
Bh
0
1
24h
2
5
“care eh eects
10 20
CCT
50 100200
500 10°
tmn 2mn
15mn
i
25 25
=
Pa
1h
10°
10°
|
2h 4h
8h
24h
50 NC 2 Steel
Composition: 0.50% C - 0.78% Mn - 0.40% Si - 0.027% S -
Composition: 0.50% C - 0.78% Mn - 0.40% Si - 0.027% S -
0.010% P - 0.48% Ni - 0.52% Cr - 0.08% Mo - 0.12% Cu Grain
0.010% P - 0.48% Ni - 0.52% Cr - 0.08% Mo - 0.12% Cu Grain
size: 10 Austenitized at 825°C (1520°F) for 30 min
size: 10 Austenitized at 825°C (1520°F) for 30 min
900
=
900
800
:
800
Ac;
Ac,
3
Ac,
Ac,
2
700
700
20 HRC
600
27
30
9
s
500
600
9
s
E 400
FE
36
500
: 400
e
44
Ms
300
51
300
Ms
Mso
200
200
100
100
[|
KN
605955 36 3430222120]/Hv|
a
0
0
1
IT
2
5
Temps en secondes
SOURCE:
10
20
Sa
mn
500
2mn
10?
15mn
Le
1h
2h
4h
108
Bh
|
24h
a
1
Cc
CT
2
5
10
20
Temps en secondes
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France,
ies
50
100200
|
|
Ape
1974
210
ieee
500
10?
Cty
10°
|
erie
|
105
|
einerine|
exe|
Atlas of Time-Temperature Diagrams
a7
————
a
35 NC 6 Steel
eee
0.41% C - 0.55% Mn - 0.24% Si - 0.007% S -
014%
P - 0.93% Ni - 0.80% Cr - 0.06% Mo - 0.10% Cu ee V Grain size: 11-12 Austenitized at 900°C (1652°F) for
Composition: 0.41% C - 0.55% Mn - 0.24% Si - 0.007% $ -
0.014% P - 0.93% Ni - 0.80% Cr - 0.06% Mo - 0.10% Cu 0.010% V Grain size: 11-12 Austenitized at 900°C (1652°F) for
30 min
wey
900
a
900
z
;
Nn
Ac,
$
Ac,
sinian
(really
F
rn
700
700
a
600
ww
A
1
93 HRB
|
IAS
(12
600
99
10
22 HRC
&
S)
2
2
Se cee
< 500
é
35,5
2
5 400
P
Ms
41
Mg
H
300
50
Ann
200
at
200
SS
-+
AkM
Jt
5 65\
60
89
;
30
5\2
1
Mso
=
]
r\+ ec
A
ies
400
8
5E
:
=
a
a
=:
es
Myo
100
100
i
59
HRCI5S
30 27 26 | 192191
545139
JHV
0
1
2
5
10
20
500
Pl
Temps en secondes
IT
100200
50
10°
|
qin Zar
15mn
10°
|
Th
0
108
ie
2h 4h
8h
|
2
1
24h
5
avempsteniecconcles
CCT
10 20
50
500
100200
fl
tmn 2mn
10?
15mn
104
10°
he hr tie
1h 2h 4h 8h
|
24h
10 NC 6 Steel
Composition: 0.11% C - 0.50% Mn - 0.30% Si - 0.005% § -
Composition: 0.11% C - 0.50% Mn - 0.30% Si - 0.005% § -
0.017% P - 1.59% Ni - 0.64% Cr - <0.10% Mo - 0.31% Cu -
0.017% P - 1.59% Ni - 0.64% Cr - <0.10% Mo - 0.31% Cu -
<0.03% V Grain size: 9 Austenitized at 925°C (1700°F) for 30
<0.03% V Grain size: 9 Austenitized at 925°C (1700°F) for 30
min
min
S
s
900
900
Ac;
8
Ac,
800
Fy
800
Ac,
Ac,
=o
—_—
j—|—
+}
82 HRB
600
_
65 |\- At+C
5
}
600
if
oo
va
‘A
A
a
=
—
700
700
‘ira ——
aes
80
;
86
g
= 500
91
§
=o400Me
-
y
2
s 500
99
£
23,5 HRC
&a
ca
+\E
25
=
—
0
\
P| A FM
\
300
300
200
200
iby
100
ial
HRC]
0
I
rears 21: seeer
y
SOURCE:
ae
abies
1mn
2mn
-
0?
10*
ale
|
2h 4h
Bh
;
I st
15mn
1h
10)
10°
24h
1
2
5
Taraaet an cecondes
CCT
j
25
10 20
25/223206B181156
50
100200
oa
tmn 2inn
Paris, France, 1974
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID,
EE
ee
ee
145 145 136
105
10°
500 10°
15mn
HV
pire
th
2h 4h
ot
8h
|
24h
a.
Atlas of Time-Temperature Diagrams
178
16 NC 6 Steel
Composition: 0.15% C - 0.55% Mn - 0.30% Si - <0.010% S 0.013% P - 1.38% Ni - 0.82% Cr - 0.09% Mo - 0.11% Cu Grain
size: 8-11 Austenitized at 900°C (1652°F) for 30 min
900
Composition: 0.15% C - 0.55% Mn - 0.30% Si - <0.010% S -
0.013% P - 1.38% Ni - 0.82% Cr - 0.09% Mo - 0.11% Cu Grain
size: 8-11 Austenitized at 900°C (1652°F) for 30 min
=o
z
Acy
8
ac
‘@
Fd
800
>
a
Ac,
700
82 HRB
600
85
600
S
§< 500
3
o
22 HRC
= 400
25
500
atc
Température
°C
en
300
200
200
100
100
42
0
1
2
5
10 20
50
Temps en secondes
100200
500 10°
2mn
15 mn
ag
|
4h
8h
ie
0
|
1mn
IT
Acy = 740°C
Th
2h
Acg = 835°C
(hy
24h
M, = 395°C
Temps
CCT
2
5
10
20
en secondes
50
|
Imn
100200
|
2mn
500
10°
10*
10°
|
|
|
|
|
|
1S5mn
th
2h
4h
Bh
24h
20 NC 6 Steel
Composition: 0.19% C - 0.55% Mn - 0.30% Si - 0.010% S -
0.018% P - 1.52% Ni - 0.81% Cr - <0.10% Mo - 0.20% Cu <0.030% V Grain size 10-11 Austenitized at 850°C (1562°F)
for 30 min
Composition: 0.19% C - 0.55% Mn - 0.30% Si - 0.010% S -
0.018% P - 1.52% Ni - 0.81% Cr - <0.10% Mo - 0.20% Cu <0.03% V Grain size: 10-11 Austenitized at 850°C (1562°F) for
30 min
900
=o
z=
8
iS
Ac;
800
2
ra}
Ac,
700
82 HRB
600
89
600
YAS)
o
c
o
500
500
2
26 HRC
2
3€ 400
F
30
Ms
400
Température
°C
en
300
Mso
300
200
200
Ms
100
100
44
0
1
2
5
Temps en secondes
IT
Acy = 740°C
SOURCE:
10
20
100200
50
10%
10*
10°
500
|
|
|
|
|
|
|
|
Imn
2mn
15mn
1h
2h
4h
Bh
24h
ie)
Acg —= 820°C
1
CCT
2
5
10 20
Temps en secondes
50 100200
aa
mn
2mn
M, = 375°C
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris,
France
1974
500 10°
15mn
10*
10°
SR
ee ae
th
2h
4h
Bh
24h
Atlas of Time-Temperature Diagrams
179
14 NC 11 Steel
Composition: 0.12% C - 0.51% Mn - 0.29% Si - 0.014% S$ -
0.013% P - 2.69% Ni - 0.70% Cr - 0.06% Mo - 0.18% Cu Grain
size: 9-11 Austenitized at 850°C (1562°F) for 30 min
900
~
o
a
x
Acs
c
=
Composition: 0.12% C - 0.51% Mn - 0.29% Si - 0.014% S -
0.013% P - 2.69% Ni - 0.70% Cr - 0.06% Mo - 0.18% Cu Grain
size: 9-11 Austenitized at 850°C (1562°F) for 30 min
900
8
800%
2
Ac;
5
800
(a)
Ac,
700
700
Ac,
od
85 HRB
°
5
600
89
3
500
s
500
o
3
2
3
rs
8
a
€
fF
3€ 400
400
Ms
Ms
32,5 HRC
300
300
200
200
100
100
228
42
ie)
2011
te)
1
Temps
2
5
10
20
50
100200
en secondes
IT
730
Ac,cy == 730°C
500
10?
10*
10°
!
|
i
|
|
|
|
Imn
2mn
15 mn
th
2h
4h
Bh
Acg c3 == 800°C
1
24h
CCT
2
5
10
20
Temps en secondes
50
100200
|
500
|
10°
10*
|
1mn 2mn
|
15mn
1h
|
10°
|
|
2h 4h Bh
|
24h
M, a = 380°C
35 NC 15 Steel
Composition: 0.36% C - 0.53% Mn - 0.32% Si - 0.010% S -
Composition: 0.38% C - 0.44% Mn - 0.22% Si - 0.003% S -
0.013% P - 3.74% Ni - 1.86% Cr - 0.05% Mo - 0.13% Cu -
0.018% P - 3.40% Ni - 1.50% Cr - 0.15% Mo - 0.13% Cu -
0.002% Ti Grain size: 9-11 Austenitized at 850°C (1562°F) for
0.015% V Grain size: 8 Austenitized at 850°C (1562°F) for 30
30 min
min
Rockwell
Dureté
600
©
i=
500
©
te
=]
s
a
a
iS
eo
400
Température
°C
en
\h
575756
2
1
IT
eee
Acy = 685°C
Msg = 205°C
SOURCE:
5
10°
50 | er
20
=.
mn
2mn
500
15 mn
Acg = 760°C
3
ha
10°
Th
2h
4h
Bh
M,
24h
li
CCT
a
5
Temps en secondes
10
20
100200
50
|
|
tmn 2mn
= 265°C
Mgg = 150°C
1974
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France,
500
15mn
10°
10*
10°
|
1h
|
|
|
2h 4h Bh
|
24h
Atlas of Time-Temperature Diagrams
180
30 NC 11 Steel
Composition: 0.32% C - 0.30% Mn - 0.20% Si - 0.008% S 0.017% P - 2.95% Ni - 0.69% Cr - <0.10% Mo - 0.31% Cu =
<0.030% V - 0.06% W Grain size: 12 Austenitized at 850°C
(1562°F) for 30 min
Composition: 0.32% C - 0.30% Mn - 0.20% Si - 0.008% S 0.017% P - 2.95% Ni - 0.69% Cr - <0.10% Mo - 0.31% Cu =
<0.030% V - 0.06% W Grain size: 12 Austenitized at 850°C
(1562°F) for 30 min
=
900
3
800
fa}
Acs
900
g
é
800
Acs
]
700
a
p—L
Ac,
Ac,
700
A
}—+
A\+
600
93 HRB
ee
SS
=
A+F+C\go
Fao
A
A
600
o
15
[s)
2\\5
‘ 500
¢ 500
s
2
200
100
peels Aaah
Ae
E 400
39
Y
ce
vy boARM
—4
+
AW F|\+c
32 HRC
i
200
Meo
i
-
L
5:
abe
eek
\
| (60 \70) XE >
+
=
100
sé
HRCI505050
47 40 3331 26 25 23||HV175
0
0
i)
IT
:
fem
E
£ 400
‘
bas
2
5
10
20
Temps en secondes
ea.
500
eee
Acy = 720°C
10°
,
et
eete
Ty
MMR
|
NS ST
Acg = 765°C
1
ti
zh
ccT
2
5
10
20
Temps en secondes
sateaees
nl
500
is
ay
is
Re
kite
Oza
ee
at
M, = 320°C
50 CD
4 Steel
Composition: 0.52% C - 0.60% Mn - 0.40% Si - 0.011% S 0.013% P - 0.17% Ni - 1.00% Cr - 0.22% Mo - 0.38% Cu <0.05% V Grain size: 10-11 Austenitized at 850°C (1562°F) for
Composition: 0.52% C - 0.60% Mn - 0.40% Si - 0.011% S 0.013% P - 0.17% Ni - 1.00% Cr - 0.22% Mo - 0.38% Cu <0.05% V Grain size: 10-11 Austenitized at 850°C (1562°F) for
30 min
30 min
900
=
3
i
Ac;
z
Ac,
>
800
a
700
91 HRB
20 HRC
600
26
°
oO
g 500
5
5 400
é
46
300
51
Ms
200
100
:
[\
63
0
1
2
sy
ieee oe
IT
10
20
50
100200
ial
1mn 2mn
500
10°
|
15mn
10°
oven
1h 2h 4h
met
Bh
10°
|
24h
ccT
1 2
5 10 20
Temps en secondes
SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France,
50 100200
ral ty
1974
500 10°
ye
10°
‘ ny fis A
10°
AR
Atlas of Time-Temperature Diagrams
18]
18 CD
4 Steel
—
Composition: 0.17% C - 0.80% Mn - 0.23% Si - 0.025% S 0.020%
P - 0.21% Ni - 1.06% Cr - 0.24% Mo - 0.18% Cu -
0.006%2 V - 0.032% Ti Grain size: 9-10 Austenitized at 925°C
(1700°F) for 30 min
Composition: 0.15% C - 0.86% Mn - 0.28% Si - 0.010% S 0.014% P - 0.14% Ni - 0.84% Cr - 0.20% Mo Grain size: 7-8
Austenitized at 900°C (1652°F) for 30 min
=
3
900
Ac
3
=
c
800
8
fa}
Ac,
72 HRB
700
78
600
ee
oO
°
s
500
&
23 HRC
5
£
es
= 400
F
§
28
Ms
Ee
me
300
200
100
42
)
1
2
5
5 emps en secondes
"
IT
10 20
50
100200
Pewa nau
500
4
i
Sue
LES
10°
Fede
LYN
5
iiemps en secondes
d
10 20
50
100200
Aieafl
500 a
|
ha
|
‘eam
ain
ap
by
als
te
BE
Mg = 385°C
Acg = 845°C
Acy = 755°C
2
1
CCT
25 CD
Composition: 0.25% C - 0.68% Mn - 0.21% Si - 0.090% S -
0.018% P - 0.19% Ni - 1.10% Cr - 0.22% Mo - 0.16% Cu Grain
size: 11 Austenitized at 900°C (1652°F) for 30 min
4 Steel
Composition: 0.25% C - 0.68% Mn - 0.21% Si - 0.090% S 0.018% P - 0.19% Ni - 1.10% Cr - 0.22% Mo - 0.16% Cu Grain
size: 7-9 Austenitized at 900°C (1652°F) for 30 min
Rockwell
Dureté
84,5 HRB
85
95
o
¢
c
5
25
oO
°
°5
3
27,5 HRC
:fet
31
ra5
38E
\
e
~]
a) it
srusut 3320 29020 195 1
49,5
IT
1 2
5
Temps en secondes
0 20
Acq = 750°C
SOURCE:
50 100200
‘ mn! Fmn
500 10°
ie
—
(e}
Acg = 820°C
10
|
|
|
|
din Mo ieath eta
105
|
heneaate
ie
CCT
(228
foo uni0720
Temps en secondes
en 100700 500 10°
1smn
1mn 2mn
fe)
= 365°C
M, as
France, 1974
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris,
a
ni,
1h
2h 4h
108
8
oir
Atlas of Time-Temperature Diagrams
182
35 CD
Composition: 0.37% C - 0.79% Mn - 0.30% Si - 0.010% S$ -
0.019% P - <0.17% Ni - 1.00% Cr - 0.18% Mo - 0.10% Cu
Grain size: 8-9 Austenitized at 850°C (1562°F) for 30 min
=
2
8
4 Steel
Composition: 0.36% C - 0.77% Mn - ene
0.010% fe
0.019% Pi= 0.167% Nia O0670Cr for00-28
Oe
30 min
Austenitized at 850°C (1562°F)
900
C
Ac;
Fe
800
a
NS
Ac,
87,5 HRB
700
92
25 HRC
600
9
26,5
é
33
= 400
-
45
"Ms
49
300
5
9
S apen
Mso
200
100
|
ef
3022 226 187
BSS
0
1
IT
2
5)
105520
eco
Acq = 750°C
7
ata
Imn
2mn
500
v
|
a
15 mn
Th
2h
\
4h
Acg = 800°C
8h
1
24h
CCT
2
Ue
5
10;°20
set
50
100200
500
es aie
10°
|HV
10*
15mn
10*
as nf A
ut
ays
M, = 335°C
100 CD 7 Steel
Composition: 1.07% C - 0.32% Mn - 0.31% Si - 0.016% S -
0.012% P - 0.17% Ni - 2.05% Cr - 0.18% Mo - 0.13% Cu Grain
size: 9-10 Austenitized at 850°C (1562°F) for 30 min
900
Composition: 1.07% C - 0.32% Mn - 0.31% Si - 0.016% S -
0.012% P - 0.17% Ni - 2.05% Cr - 0.18% Mo - 0.13% Cu Grain
size: 9-10 Austenitized at 850°C (1562°F) for 30 min
3
900
zg
é
:
i
om
a
Ac,
Ao,
700
25 HRC
eS
700
A
se
600
38
600
ig
9
Sane
2
2
38,5
2
E 400
42
oy
48
300
515
Ms
58
200
\
2
Asc
A
e
20
100
G
10
a0
Ms
Alec kM
_
path
IE
eee
=-
:
67
2
5
10 20
50
i mn
Temps en secondes
IT
Acyj = 750°C
100200
mn
500
10°
15 mn
;
:
Mg
= 245°C
10°
HRC]
10°
UP
pet
sl
ail
1h
2h
Bh
24h
4h
g
7 1
emps
2
5
10 20
——
rrcve
67 67
63
60 ) Het
4542 39 3431 27 26
500 op
|
&
1Smn
th
2h
|
ig
en secondes
CCT
SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France,
Se
5
a
100
1
IES
80
= 500
Mso
;
700
7\Ma vleWF + €
\
oa
100
ee
oO
5 500
£
A
a
ee
Tmo
1974
2mn
4h
Bh
24h
Atlas of Time-Temperature Diagrams
183
30 CD
Composition: 0.30% C - 0.63% Mn - 0.29% Si - 0.016% § 0.010% P - 0.17% Ni - 2.99% Cr - 0.43% Mo - 0.13% Cu
12 Steel
es
Composition: 0.30% C - 0.63% Mn - 0.29% Si - 0.016% S -
0.010% P - 0.17% Ni - 2.99% Cr - 0.43% Mo - 0.13% Cu Grain
size: 8-10 Austenitized at 950°C (1742°F) for 30 min
Rockwell
Dureté
97 HRB
20 HRC
°C
Température
en
Température
°C
en
jue2
emps
iTi
es.
en
BS
10 201950
secondes
ae
|
:
Ame Bar
Acy = 800°C
Ms0 = 270°C
500 i
15mn
|
a
|
.
1h 2h 4h Bh
24h
Acg = 835°C
Mgo = 190°C
(0)
1
a
&
Wop
COTM
Gh was
oe
rah Me
a
15 mn
He
: i i a or
M, = 325°C
Z 15 CD
5-05 Steel
Composition: 0.11% C - 0.47% Mn - 0.24% Si - 0.015% § -
Composition: 0.11% C - 0.47% Mn - 0.24% Si - 0.015% S -
0.016% P - 0.23% Ni - 4.48% Cr - 0.52% Mo - 0.15% Cu Grain
0.016% P - 0.23% Ni - 4.48% Cr - 0.52% Mo - 0.15% Cu Grain
size: 9 Austenitized at 900°C (1652°F) for 30 min
size: 9 Austenitized at 900°C (1652°F) for 30 min
Rockwell
Dureté
~ wo ae D fos}
Na
700
[oa]B
600
°
5
< 500
2
2
©
a— 400
2o
oO
§
2
2
&
E2
‘i
a
Ms
300
Mso
200
100
1
IT
2
5
ace ya
Rn
10 20
50 oes
|
1mn
2mn
500 10°
:
Le
15mn
1h
2h 4h
|
108
Bh
24h
:
|
SOURCE:
Acg = 845°C
areata
feet lea
é
CCT
Acy = 815°C
43 44 423938 _22)|230HV
HRC]45 45
ue
2 10 20
ae
emps
en
secon
les
eh
a
tmn 2mn
M, = 345°C
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
500
10°
3
ie
|
i
15mn
2h 4h Bh
1h
10°
24h
Atlas of Time-Temperature Diagrams
184
EE
e
en
45 SC 6 Steel
Composition: 0.43% C - 0.95% Mn - 1.38% Si - <0.010% $ -
0.012% P - 0.03% Ni - 1.06% Cr - <0.10% Mo - <0.05% Cu -
Composition: 0.48% C- 0.98% Mins Ore ° 5 ee
Ce
an
: ess
0.012% P - 0.03% Ni - 1.06% Cr - <0.
0.035% V Grain size: 10-11 Austenitized at 925°C (1700°F) for
0.035% W Grain size: 10-11 Austenitized at 925°C
30 min
30 min
900
=
900
Acs
te
Acs
) for
(1
2
en)
2
800
Ac,
fa]
Ac,
700
20,5
0,5 H HRC
700
A+
;
ss
23
600
A
31,5
9
= 500
2 400
39,5
fe
44,5
49
300
Mg
600
1
1S)
= 500
lL
3 400
=F
++
?
A
F
C
F
\
|
/
300
Ms
L
a“
BY
200
Moo.
100
_-
_
100
|
53
HRC}
0
:
IT
0
8
ia
Me bapateMr —|-
200
ar
1
2
a 10 20
ee Sac See OnNces
50 ios eo 500 10°
|
ae
|
i
1mn 2mn
1h
2h 4h
Bh
24h
15mn
0
CCT
1
8
fem
emps
en
6
aon
x
59
5857 5655493323
: 100 200 500 10°
eae
secondes
Aaa
221/193
|
of
ire
Grey
|HV
ae
ai
GD”
|
45 SCD 6 Steel
Composition: 0.45% C - 0.55% Mn - 1.31% Si - 0.005% §S -
0.013% P - 0.21% Ni - 0.60% Cr - 0.22% Mo - 0.27% Cu <0.05% V - trace Ti Grain size: 11 Austenitized at 900°C
(1652°F) for 30 min
Composition: 0.42% C - 0.70% Mn - 1.40% Si - 0.005% S -
0.015% P - 0.24% Ni - 0.68% Cr - 0.19% Mo - 0.03% Cu Grain
size: 9 Austenitized at 880°C (1616°F) for 30 min
Rockwell
Dureté
Température
°C
en
Température
°C
en
45
52
IT
§ 10 20
1 2
cs
sratinianteaccrd
p:
50
100200
al2mn
1mn
500 10°
15mn
ome
1th
2h
10°
eS4hFee
et
Bh
10°
|
24h
CCT
1
2
6
Temps en secondes
10 20
50
|
100200
500 10°
2mn
15mn
imn
Acy = 770°C
SOURCE:
°
Acg ia
= 860°C
°
M, == 310°C
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
|
10*
|
|
|
|
th
2h
4h
8h
10°
|
24h
Atlas of Time-Temperature Diagrams
185
45 MS 6 Steel
pes
as 0.45%C - 1.50% Mn - 1.34% Si - <0.010% S -
Composition: 0.45% C - 1.50% Mn - 1.34% Si - <0.010% $ -
017% P - 0.03% Ni - 0.03% Cr - <0.01% Mo - 0.09% Cu -
0.017% P - 0.03% Ni - 0.03% Cr - <0.01% Mo - 0.09% Cu -
30 min
30 min
0.040% V Grain size: 8-10 Austenitized at 925°C (1700°F) for
0.040% V Grain size: 8-10 Austenitized at 925°C (1700°F) for
900
a
900
g
8
Ac;
Ci
Ac,
800
:
800
Ac,
8
Ac,
700
700
26 HRC
600
28
600
| 30
°= 500
2= 500
5
33,5
=
E400
ox
2 400
2
e
47
300
51
300
Ms
Ms
Mso
200
200
Fa
he
1
2
Temps
5
10
20
en secondes
50
100200
500
ana 2a
IT
10°
10*
15mn
|
1h
|
|
|
Bh
2h 4h
Rema
0
=
0
108
1
|
Temps
CCT
24h
15 MDV
LIER
AEE
62 60 59 535 403
2
5
20
10
100200
50
500
|
en secondes
10°
10*
15mn
Ima 2mn
|
th
|
105
|
|
2h 4h 8h
|
24h
4-05 Steel
Composition: 0.14% C - 1.20% Mn - 0.23% Si - 0.017% S -
Composition: 0.14% C - 1.20% Mn - 0.23% Si - 0.017% S -
0.016% P - 0.15% Ni - 0.10% Cr - 0.48% Mo - 0.15% Cu -
0.016% P - 0.15% Ni - 0.10% Cr - 0.48% Mo - 0.15% Cu -
0.065% V Grain size: 8 Austenitized at 900°C (1652°F) for 30
0.065% V Grain size: 8 Austenitized at 900°C (1652°F) for 30
min
min
900
=
900
Ac;
&
Acs
800
8
800
(=)
Ac,
Ac,
700
fn
Tryon
GRE
Bar
Y
e
Ae
= 500
— 500
E Ms
21H
EB 400
24
2 Ms
: aoo
3
F
300
200
200
he
Acy = 740°C
SOURCE:
en secondes
0) 20
207100200)
be Lap
yee
his
50)
‘eam
Acg = 885°C
oh
of
2h
eR
Ba h
A it Fit |\C
CCT
+
—
HRC]
0
Temps
5
ssib
[AS salStab
100
;
vei
a
Pe
IT
7
Mso
300
100
2
g
600
95H
600
nan
nS
Aa +F
ie
1
2
&
Temps en secondes
@ ao
36 29 21/244 236 230 217 HV|186 173141
ee
ea oy
Mg, = 440°
France, 1974
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris,
nn
500 Ke
|
Tacaaiact
oe
,
ae mae
ie
Atlas of Time-Temperature Diagrams
186
20 CDV
Composition: 0.15% C - 0.53% Mn - 0.26% Si - 0.013% § -
0.020% P - 0.11% Ni - 1.04% Cr - 1.05% Mo - 0.15% Cu 0.250% V - 0.028% Al Grain size: 9-11 Austenitized at 950°C
(1742°F) for 2h
5-08 Steel
Composition: 0.14% C - 0.96% Mn - 0.15% Si - 0.011% S0.017% P - 1.40% Cr - 0.96% Mo - 0.270% V Grain size: 6-7
Austenitized at 975°C (1700°F) for 30 min
Ac;
900
800
Rockwell
Dureté
Ac,
HRB
700
o
PP
500
30 HRC
°C
Température
en
33,5
Temperature
°C
en
37
200
100
l
a
100200
50
20
10
5
12
Temps en secondes
|
|
——
IT
Acy = 780°C
1mn
2mo
ikea
|
|
|
|
Th
2h
4h
Bh
,
Acg = 925°C
41 40 36533 31530529
20
0
10°
10°
10°
500
15
if
24h
2
5
10
20
50
Temps en secondes
M, = 400°C
10 CD
Composition: 0.15% C - 0.36% Mn - 0.44% Si - 0.020% S -
CCT
100200
|
|
1mn
2mn
500
10°
10*
15mn
1th
108
||
|
2h
BH
4h
24h
9-10 Steel
Composition: 0.15% C - 0.36% Mn - 0.44% Si - 0.022% S -
0.022% P - 0.09% Ni - 2.24% Cr - 0.85% Mo - 0.23% Cu -
0.020% P - 0.09% Ni - 2.24% Cr - 0.85% Mo - 0.23% Cu -
0.097% Al - 0.01% Ti Grain size: 10 Austenitized at 975°C
0.097% Al - 0.01% Ti Grain size: 10 Austenitized at 925°C
(1700°F) for 30 min
(1700°F) for 30 min
a
:3
cxac LS]
NANG
8
g00
ee
-—+—+-
ts
zat
y
/
Alte ae
700
mie
[--
Soi
\Seeee
A+H+C
A
600
2
800
hes
,
ANS. ¥—
JAS
‘i
ry
96 HRB
700
:
>
é
A +\F
s 500
Pt
600
(oes.
iS
SS
5 500
es-
2
5z
las
300
§2
31,5 HRC
Sa
a
y
Bue
2
o
“er
A+E4C
Z
—
A
Hi
Ll
Ms
a
= 400
= Tihs
300
200
-
100
7
200
1
2
100
0
0
1
IT
i
Temps
2
5
en secondes
Acy = 790°C
10
20
50
Iman
a
he 500
2mna
3
i
|
15mn
1h
oO
Acg = 900°C
h
‘
2h
“
,
|
4h Bh
10
s
1
|
24h
Temps
2
5
10
20
en secondes
CCT
50
100200
Paris. France,
10°
10*
|
|
|
|
|
|
10°
|
2mn
15mn
1h
2h
4h
Bh
24h
M, == 385°C
SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID,
500
|
Imn
1974
Atlas of Time-Temperature Diagrams
1
28 CDV
Composition: 0.26% C - 0.58% Mn - 0.49% Si - 0.010% S -
~
5-08 Steel
Composition: 0.26% C - 0.58% Mn - 0.49% Si - 0.010% S -
0.014% P - 0.18% Ni - 1.65% Cr - 0.84% Mo - 0.07% Cu -
0.014% P - 0.18% Ni - 1.65% Cr - 0.84% Mo - 0.07% Cu -
30 min
30 min
0.380% V Grain size: 5-7 Austenitized at 1050°C (1922°F) for
900
0.380% V Grain size: 5-7 Austenitized at 1050°C (1922°F) for
=
F
900
8
Ac;
e
800
ne
z
700
21 HRC
oan
32
600
600
ay
:
a 400
é
©
E 400
© Ms
5
= 500
Me
300
300
200
200
100
:
1
IT
Acy
ba
¥
2)
5
10 20
Se rts aie
500 10°
|
‘<
|
ts
icant
15mn
1h
2h 4h
8h
24h
Mg,
Acg cS 910°C
780°C
=
50 | eS
=
ES
j
ERs
1
380°C
|
525151
CCT
2
Ee
5
10 20
SMEs
50
Bese
100200
500 10°
i 2mn
mn
re
1 mn|
adage pee
44 4140 36 36 35 a)
10*
10°
et oe an nA
As
Z 38 CDV 5 Steel
Composition: 0.41% C - 0.45% Mn - 0.66% Si - 0.001% S -
Composition: 0.41% C - 0.45% Mn - 0.66% Si - 0.001% S -
0.011% P - 4.90% Cr - 1.07% Mo - 0.09% Cu - 0.350% V Grain
size: 6-7 Austenitized at 1000°C (1832°F) for 30 min
0.011% P - 4.90% Cr - 1.07% Mo - 0.09% Cu - 0.350% V Grain
size: 6-7 Austenitized at 1000°C (1832°F) for 30 min
=
900
Ac;
=
Ac,
=
800
2
8
{a}
IS HRC
700
22
29
600
2
s
2
500
5
F
F
300
Ms
200
100
ht
ee
Temps
IT
Acy
=
en secondes
835°C
SOURCE:
5
10
20
50 | oe
sia
Acg
500
oe
=) 900°C
i
ae
ae
rie
CMR
M,
CCT
eth
=
Temps
2
5
en secondes
10
20
5 57 5346 26
SSE
ee he
Sa
a
0
le
|
6
50
ee
ye hes
280°C
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
500
tk
10°
an
Pee
:
ehae i
,
Atlas of Time-Temperature Diagrams
188
30 NCD 2 Steel
Composition: 0.28% C - 0.70% Mn - 0.29% Si - 0.014% S -
Composition: 0.28% C - 0.70% Mn - 0.29% Si - 0.014% S -
0.011% P - 0.43% Ni - 0.70% Cr - 0.20% Mo - 0.20% Cu Grain
size: 11 Austenitized at 850°C (1562°F) for 30 min
0.011% P - 0.43% Ni - 0.70% Cr - 0.20% Mo - 0.20% Cu Grain
size: 11 Austenitized at 850°C (1562°F) for 30 min
900
900
3
=
$
=
z
3
c
Acs
800
,
éwy
Ac,
28
800
32
a
Ac,
Ac,
af,
700
86 HRE
95
ace
600
2
9< 500
5 ae
3 400
30,5H
eeeive
ls 400
F
Ms
300
300
200
200
i:
—
a
0
8a
i
2)
See
1015208
Temps en secondes
5:50) 1001200)
|
IT
500110?
|
Tmn 2mn
10°
TL es
|
|
!
[i] sk[ea ae| ae |es ate]
ite
|
REPLY SSH RH
1
eA
2
5
10 20
50 100200
Temps en secondes
CCT
20 NCD
a
45 373229 26 22 19HV|207 180178 165
|
500 10°
|
|
1mn 2mn
15mn
10°
|
1h
|
10°
|
|
2h 4h 8h
|
24h
2 Steei
Composition: 0.21% C - 0.88% Mn - 0.31% Si - 0.002% S -
Composition: 0.21% C - 0.88% Mn - 0.31% Si - 0.002% § -
0.017% P - 0.65% Ni - 0.57% Cr - 0.26% Mo - 0.15% Cu Grain
0.017% P - 0.65% Ni - 0.57% Cr - 0.26% Mo - 0.15% Cu Grain
size: 9-10 Austenitized at 875°C (1610°F) for 30 min
size: 9-10 Austenitized at 875°C (1610°F) for 30 min
900
900
iS
8
wey
Ac;
800
Ac
8
800
a
Acy
Ac,
700
700
90,5
HRB
600
600
°
9
¢ 500
5
25 HRC
E
500
E
3 408
Fe
E 400
e
300
300
200
200
a
a
0
0
je
IT
5
Temps en secondes
Acy = 740°C
SOURCE:
10
20
a
Ae
500
re
10°
RRL
Acg = 835°C
ey
LRNn
|
,
ainwieine
24h
5
Temps en secondes
10
TRUS
47 4234 28 26 21| 22519918718
[ce
i
CCT
EGIL
HRC|
20
tea
50
100200
Su a
M, = 400°C
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
[a Ja eh
500
[ie rt (9B)
10°
ear
Ae
ey
yee
if
ee
Atlas of Time-Temperature Diagrams
189
40 NCD
Composition: 0.40% ce 0.80% Mn - 0.33% Si - 0.019% S 0.018% P - 0.58% Ni - 0.56% Cr - 0.28% Mo - 0.10% Cu Grain
size: 8 Austenitized at 850°C (1562°F) for 30 min
900
\
3 Steel
Composition: 0.40% C - 0.80% Mn - 0.33% Si - 0.019% S 0.018% P - 0.58% Ni - 0.56% Cr - 0.28% Mo - 0.10% Cu Grain
size: 8 Austenitized at 850°C (1562°F) for 30 min
a
28
Ac;
SS
3
800 *
ra}
Ac,
700
92 HRB
600
22,5 HRC
22,5
= 500
°
2 400
37,5
a
&
E
Ms
F
300
200
100
57,5
te)
=
1
emps
IT
2
en
5
10
20
secondes
.
bas
50
ae
500
10?
|
Imn
‘he
ie
|
2mn
iSmn
th
2h
4h
Bh
2
1
24h
5
10
20
Pe
ae
mn
2mn
500
ti
fa
10?
Temps en secondes
Acy = 750°C
Acg = 800°C
M, = 325°C
35 NCD
Composition: 0.33% C - 0.72% Mn - 0.24% Si - 0.010% S -
0.010% P - 1.22% Ni - 0.54% Cr - 0.17% Mo - 0.22% Cu Grain
size: 10-11 Austenitized at 850°C (1562°F) for 30 min
CCT
15mn
1h
2h
4h
Bh
24h
5 Steel
Composition: 0.33% C - 0.72% Mn - 0.24% Si - 0.010% S -
0.010% P - 1.22% Ni - 0.54% Cr - 0.17% Mo - 0.22% Cu Grain
size: 10-11 Austenitized at 850°C (1562°F) for 30 min
=
900
z
é
FE
a
800
Ac;
Ac,
700
92 HRB
98
600
S
x5
s
500
2
o
34 HRC
2
s
42
Fe
2
3
5
= 400
Ms
300
Moo
Moo
200
100
32 29 2
57
5 10 20
1 2
Tempsem, en secondes
$s
IT
SOURCE:
¥
500 10°
|
bo
2mn
15mn
1th
mn
dl
105
|
Bh
24h
10°
50 100200
Led!
2h
4h
0
1
2
5
Temps en secondes
CCT
10 20
50 100200
|
|
15mn
th
|
France, 1974
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris,
10°
10°
500 10°
|
1mn 2mn
|
|
2h 4h
|
8h
|
24h
Atlas of Time-Temperature Diagrams
190
50 NCD 6 Steel
Composition: 0.49% C - 0.57% Mn - 0.26% Si - 0.012% S 0.011% P - 1.62% Ni - 0.83% Cr - 0.24% Mo - 0.13% Cu Grain
size: 9-10 Austenitized at 850°C (1562°F) for 30 min
900
Composition: 0.49% C - 0.57% Mn - 0.26% Si - 0.012% S 0.011% P - 1.62% Ni - 0.83% Cr - 0.24% Mo - 0.13% Cu Grain
size: 9-10 Austenitized at 850°C (1562°F) for 30 min
3
g
8
iva
2
if
o
5
1
A
Oo
=
Ke
5
600
N
ATE
95 HRB
rte
A +
22 HRC
8
600
Sy
a
afi
SS =
500
ay
a
\
+ \‘|
400
°C
Température
en
A
H+
=
eeee
500
[ae
+ C
F +
|
400
Température
°C
en
\
\
300
Ms
+
=
48
[ade
|
200
=
100
4
100
—
I
|
62
1
Temps
IT
2
5
10
20
50
en secondes
100 200
|
mn
500
10?
|
2mn
1Smn
10°
(a
le
108
|
|
|
|
|
1h
2h
4h
Bh
24h
62 6054 49 41 35 34 29 26 21
ee
lied
63
Temps
CCT
2
5
10
20
62
50
en secondes
|
Imn
100200
500 10°
|
2mn
15 mn
ell
hice
1h
4h
2h
8h
24h
28 NCD 6 Steel
Composition: 0.29% C - 0.78% Mn - 0.24% Si - 0.009% §S 0.011% P - 1.62% Ni - 1.49% Cr - 0.44% Mo - 0.16% Cu 0.010% Ti Grain size: 11 Austenitized at 850°C (1562°F) for 30
Composition: 0.29% C - 0.78% Mn - 0.24% Si - 0.009% S 0.011%
P - 1.62% Ni - 1.49% Cr - 0.44% Mo
- 0.16% Cu -
0.010% Ti Grain size: 11 Austenitized at 850°C (1562°F) for 30
min
Rockwell
Dureté
88 HRB
99
600
500
400
Température
°C
en
Température
°C
en
Ms
45 HRC
300
200
100
i)
IT
2
5
10
20
50
100200
|
500 10°
mn
2mn
15 mn
Temps en secondes
i)
Th
2h
4h
8h
24h
CCT
2
ye
Temps en secondes
hes
42)
50 100 200
(ae
1mn
SOURCE:
2mn
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
500
10°
15 mn
th
2h
4h
8h
Atlas of Time-Temperature Diagrams
19]
20 NCD
Composition: 0.17% C - 0.63% Mn - 0.25% Si - 0.013% S -
7 Steel
Composition: 0.17% C - 0.63% Mn - 0.25% Si - 0.013% S -
0.013% P - 2.02% Ni - 0.38% Cr - 0.18% Mo - 0.07% Cu 0.010% Al Grain size: 10-11 Austenitized at 900°C (1652°F) for
30 min
0.013% P - 2.02% Ni - 0.38% Cr - 0.13% Mo - 0.07% Cu -
0.010% Al Grain size: 10-11 Austenitized at 900°C (1652°F) for
30 min
900
Ac;
800
700
Ac,
600
io
8
s 500
Oo
ate
:
300
200
100
te)
1
2
5
10 20
50
Temps en secondes
100200
|
|
Vial) eae
by
Acy = 685°
500 10°
10°
|
108
|
Pt
|
iron al
Hee
cic
Acg = 825°C
1
|
2
5
10 20
Temps en secondes
50
100200
fee
1mn 2mn
CCT
500 10?
|
15mn
10°
|
ea)
10°
|
1h 2h 4h 8h
|
24h
M, = 385°C
20 NCD
Composition: 0.17% C - 1.23% Mn - 0.25% Si - 0.013% S -
10 Steel
Composition: 0.17% C - 1.23% Mn - 0.25% Si - 0.013% S -
0.015% P - 2.45% Ni - 0.94% Cr - 0.40% Mo - 0.012% Ng -
0.015% P - 2.45% Ni - 0.94% Cr - 0.40% Mo - 0.011% Ng -
0.042% Al Grain size: 11 Austenitized at 850°C (1562°F) for 30
0.042% Al Grain size: 11 Austenitized at 850°C (1562°F) for 30
min
min
i
a
=
x
8
c
a9
2
rd
a
c
:
5
5
2
2
5
®
2
£
3E
3E
£
F
oO
o
1
it
2
ae
5
des
10 20
100200
500 10°
1ma 2mn
15mn
50
eo
|
|
|
|
24h
2
1
105
10°
|
1h 2h 4h Bh
CCT
T emps
en
5
secondes
10 20
ic ad Vs 500 10°
mn 2mn
1974
SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France,
15mn
dai
i
1h 2h 4h 8h
24h
Atlas of Time-Temperature Diagrams
192
60 NCD
11 Steel
Composition: 0.57% C - 0.65% Mn - 0.31% Si - 0.005% S -
Composition: 0.57% C - 0.65% Mn - 0.31% Si - 0.005% S -
0.010% P - 2.35% Ni - 0.75% Cr - 0.41% Mo - 0.13% Cu Grain
0.010% P - 2.35% Ni - 0.75% Cr - 0.41% Mo - 0.13% Cu Grain
size: 9-10 Austenitized at 850°C (1562°F) for 30 min
size: 9-10 Austenitized at 850°C (1562°F) for 30 min
=
z
900
8
800
e
Ac;
a
fa
be ah Vaeae
e
Cy
—
—
Na
A
23 HRC
Sy
600
6
°
|
500
5
E 400
5
E
550
:
S
g
A
-
ZA
se
49,5
A\t
300
Ms
200
FC
7
;
JE
1
Msy Pop —[Art3M-- 4—
4
4—-\-
755
4-7
|\
100
61,5
1
IT
5
2
10
Temps en secondes
20
100200
50
he
|
Id
1mn
2mn
15mn
1h
HRC]
2h 4h
2
1
|
Bh
62 62 62 61
24h
10 20
5
Composition:
0.31%
C - 0.67% Mn
- 0.30% Si - 0.010%
S -
50 100200
5351
363329
105
10°
500 10°
Tierapsventsccondes
Re
CCT
32 CND
62 62 6160
0
10°
10*
10?
500
Imn
2mn
1Smn
th
th
2h
4h
Bh
24h
- 0.30% Si - 0.010%
S -
11 Steel
Composition:
0.31% C - 0.67% Mn
0.010% P - 0.94% Ni - 3.00% Cr - 0.51% Mo - 0.19% Cu Grain
0.010% P - 0.94% Ni - 3.00% Cr - 0.51% Mo - 0.19% Cu Grain
size: 7-9 Austenitized at 900°C (1652°F) for 30 min
size: 7-9 Austenitized at 900°C (1652°F) for 30 min
=
Es
900
:
3
Ac
700
A
94 HRB
Ait\F \+ C
600
9
oO
&
§ 500
5
5 400
42,5 HRC
Ms
300
Mso
©
A
*|Sate
=itost
=
:
Fic
e
=
/
0
200
is
100
L
é
HRC|53
535352
53
535049
& Jo D0
son qo0 c0On sco niD®
44 43
42 4033
0
tee
IT
Tete
SOURCE:
See
eee aes
Imn
2mn
500 10°
,
A
15 mn
Th
2h
|
4h
Bh
iy
24h
1)
CCT
2
MEUTES CIV GESTS
Imn|
|
2mn
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
ee
ene
epee
rene
15mn
10°
|
1h
2h|
105
4h|
8h|
24h
Atlas of Time-Temperature Diagrams
193
16 NCD
Composition: 0.16% C - 0.46% Mn - 0.20%
Si - 0.013%
S :
:
0.008% P - 3.02% Ni - 1.02% Cr - 0.26% Mo - 0.12% Cu Grain
size: 9-10 Austenitized at 850°C (1562°F) for 30 min
900
13 Steel
Composition:
position: 0.16% C - 0.46% Mn - 0.20% Sii - 0.013% §S -
0.008% P - 3.02% Ni - 1.02% Cr - 0.26% Mo - 0.12% Cu Grain
size: 9-10 Austenitized at 850°C (1562°F) for 30 min
=
Es
8
2
c
800
Ac;
5
a
Ac,
700
A+F+C
600
85 HRB
°
2
oO
: 400
3
Faeants
S
= 500
300
200
100
44 HRC
2
1
Temps
IT
2
en
5
10 20
secondes
ee
30 =
!
1mn 2mn
Acy = 725°C
500 10°
|
oe
|
i
1Smn
1h
2h 4h Bh
24h
Acg = 780°C
0
COTE
7
2
oo
a
Ter: cu seeances
Ga ame
coo ae
he a
cas
ae
Fis
me ue be us ae
M, = 355°C
35 NCD
Composition: 0.36% C - 0.39% Mn - 0.30% Si - 0.005% S 0.010% P - 3.70% Ni - 1.65% Cr - 0.23% Mo - 0.12% Cu Grain
size: 10-12 Austenitized at 850°C (1562°F) for 30 min
16 Steel
Composition: 0.34% C - 0.35% Mn - 0.26% Si - 0.006% S -
0.008% P - 3.55% Ni - 1.54% Cr - 0.31% Mo - 0.008% No Grain
size: 9-10 Austenitized at 850°C (1562°F) for 30 min
3
gS
[s)
fe}
c
3
2)
[ay
&
Y
5
5
=
o
2
8
$
5
=
id
a
E
a
=
5
56 HRC
0
2.
1
5
ndes
IT
ea
aie
Acq = 700°C
SOURCE:
10 20
100200
50
|
1mn
|
2mn
500
10°
10°
|
smn
fo}
Acg ==. 785 e
th
|
|
2h 4h
Bh
108
1
|
Temps
CCT
24h
=
2
5
en secondes
10 20
100200
50
|
1mn
|
2mn
oO
Mg = 275°C
France, 1974
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris,
500
|
i5mn
10°
10°
10°
|
1h
|
|
2h 4h
|
Bh
|
24h
Atlas of Time-Temperature Diagrams
194
30 CND 8 Steel
Composition: 0.30% C - 0.56% Mn - 0.27% Si - 0.014% S -
Composition: 0.32% C - 0.35% Mn - 0.27% Si - 0.022% S -
0.012% P - 1.75% Ni - 1.85% Cr - 0.49% Mo Grain size: 12
0.018% P - 2.10% Ni - 2.30% Cr - 0.64% Mo - 0.19% Cu Grain
Austenitized at 875°C (1610°F) for 30 min
size: 9-10 Austenitized at 875°C (1610°F) for 30 min
3
900
x
i2
Ac3
5
800
o
a
Ac,
700
90 HRB
600
re)
oO
5
< 500
2
s
°
©
5
&
a
3
tS
€
©.
400
a
La
F
41 HRC
M.
ue
306
Mso
200
Moo
100
Se:
1
2
5
10
20
50
100200
Temps en secondes
500
10°
|
|
IT
Imn
2mn
Acy = 735°C
Acg = 780°C
10°
15mn
10
|
Eytan
|
|
th
2h
Bh
24h
4h
0
.
t
2
&
“Tames ent secondes
10
20
ccr
50
100200
500
10°
ial
1mn
2mn
,
rl
15mn
1h
|
2h
4h
8h
M, = 280°C
30 NCD
Composition: 0.30% C - 0.40% Mn - 0.30% Si - 0.016% S 0.015% P - 3.20% Ni - 0.86% Cr - 0.40% Mo - 0.17% Cu Grain
size: 12-13 Austenitized at 850°C (1562°F) for 30 min
900
12 Steel
Composition: 0.30% C - 0.40% Mn - 0.30% Si - 0.016% S -
0.015% P - 3.20% Ni - 0.86% Cr - 0.40% Mo - 0.17% Cu Grain
size: 12-13 Austenitized at 850°C (1562°F) for 30 min
=
ry
=
ot
Balai
|
800
ms
Ac,
|
—
~=
5
{
a=
=
—=
=
:
<
-
°°
ee
ciaalata aka
-_
2
ZL
23
2
€
‘=
:s
i
el ae
ea
ae
400
Tae
ES
)
:2
es ee
5
ties
1
Asa
|
a
E
e
300
46 HRC
Mgo
Phil A+IM
Moo
5 |
200
——s
100
[
a
\T\
50 50 41
55
0
1
IT
Temps
2
5
en secondes
10
20
50
100200
|
|
Imn
2mn
500
10°
10°
15mn
|
|
|
|
th
2h
4h
8h
10°
|
1
CCT
SOURCE:
2
5
Temps en secondes
10
20
50 100 200 500 10°
||
|
Poth
Imn
ihe
2mn
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
thimn,
ih
|
ah
sikh
Atlas of Time-Temperature Diagrams
195
40 NCD
Composition: 0.42% C - 0.40% Mn - 0.32% Si - 0.005% S -
0.010% P - 4.34% Ni - 1.56% Cr - 0.44% Mo - 0.05% Cu Grain
size: 11 Austenitized at 850°C (1562°F) for 30 min
18 Steel
Composition: 0.42% C - 0.40% Mn - 0.32% Si - 0.005% S -
0.010% P - 4.34% Ni - 1.56% Cr - 0.44% Mo - 0.05% Cu Grain
size: 11 Austenitized at 850°C (1562°F) for 30 min
Rockwell
Dureté
Température
°C
en
Température
°C
en
N
KAIARAT A
A
ss
v2
5
10
20
Temps en secondes
50
100200
|
500
|
15mn
Imn 2mn
IT
10°
10°
|
1h
See
10°
|
2h 4h
Sh
2
|
CCT
24h
20 ND
ul
5
10 20
Temps en secondes
50
100200
|
500
|
10?
|
15ma
Imn 2mn
10°
|
th
|
10°
|
2h 4h
|
Bh
|
24h
16 Steel
Composition: 0.20% C - 0.63% Mn - 0.32% Si - 0.026% S -
Composition: 0.20% C - 0.63% Mn - 0.32% Si - 0.026% S -
0.017% P - 3.85% Ni - 0.25% Cr - 0.94% Mo - 0.17% Cu Grain
0.017% P - 3.85% Ni - 0.25% Cr - 0.94% Mo - 0.17% Cu Grain
size: 10 Austenitized at 850°C (1562°F) for 30 min
size: 10 Austenitized at 850°C (1562°F) for 30 min
Cureté
Rockwell
Température
°C
en
Température
°C
en
49
1
Temps
IT
SOURCE:
2
5
en secondes
10
20
100200
50
|
ae
|
500
10°
10°
|
Loner
10°
|
|
ec
|
|
ty
|
ac
2
5
Temps en secondes
CCT
10
20
100200
50
|
|
ima
2mn
, IRSID, Paris, France, 1974
Courbes de Transformation des Aciers de Fabrication Francaise
500
10°
10*
10°
mn
|
|
|
|
|
1h
2h
4h
BH
24h
Atlas of Time-Temperature Diagrams
196
40 CAD
Composition: 0.40% C - 0.56% Mn - 0.53% Si - 0.001% S -
0.012% P - 0.21% Ni - 1.65% Cr - 0.23% Mo - 0.15% Cu 1.100% Al Austenitized at 900°C (1652°F)
6-12 Steel
Composition: 0.40% C - 0.56% Mn - 0.53% Si - 0.001% S 0.012% P - 0.21% Ni - 1.65% Cr - 0.23% Mo - 0.15% Cu 1.100% Al Austenitized at 900°C (1652°F)
3
=
x
8
[ra
“0
®si
fa}
700
20 HRC
22
600
31
iS
c5
o
S|
&
o
500
i=
(=©
400
Température
°C
en
a
100
59
1
2
S10)
20
50
Terps en secondes
100 200
|
Tmn
IT
Ac, = 790°C
500
|
2mn
10°
10°
|
th
1Smn
|
2h
eZ
ie
|
4h
CCT
|
Bh
Acg = 875°C
5
10
20
Temps en secondes
50
100200
500
|
|
Imo 2mn
24h
10°
10*
mn
|
th
2h
10°
|
4h
|
Bh
|
24h
M, = 320°C
18 CDSV §5 Steei
Composition: 0.16% C - 0.49% Mn - 1.14% Si - 0.080% S 0.010% P - 0.25% Ni - 1.22% Cr - 1.05% Mo - 0.19% Cu 0.460% V - 0.030% Ti Austenitized at 1050°C (1922°F) for 30
min
900
25
®
Composition: 0.16% C - 0.49% Mn - 1.14% Si - 0.080% S -
0.010% P - 0.25% Ni - 1.22% Cr - 1.05% Mo - 0.19% Cu 0.460% V - 0.030% Ti Austenitized at 1050°C (1922°F) for 30
ze
bere
900
: \AK wn ‘
5é
SNS
Ac,
ac
Ac
A
ae
ei
——
a
800
A+
FIA4IC
700
NS KS
|
ay
AEA
800
87 HRB
25 HRC
AS
700
30
Pais
ee
<¢
she
+
600
pam he
600
|
4
500
a
i
|
eet
ras
=
2
2
500
-
(
a
2
A itF] +/C
£
3
e 400
2
SIS
+
oM,
/
=a
7
=
331
—
37
}
Sos
irs
400
Température
°C
en
Ms
A+/M
300
Mso
300
200
-+
IL
200
100
Te
I
WP
}
+—J
100
ia ia
|
HRC|48 4746 41 40 38 38 3129
ies
48
0
1
Temps
IT
SOURCE:
2
5)
en secondes
10920)
100:200!
50)
|
1mn
500)
|
2mn
15mn
10°
10°
10#
th
|
|
|
2h
4h
Bh
|
i
24h
CCT
2
5
Temps en secondes
10
20
50
100200
|
|
1mn
2mn
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
500
10°
1Smn
20
10*
th
105
|
|
|
|
2h
4h
Bh
24h
Atlas of Time-Temperature Diagrams
197
100 WC 40 Steel
Composition: 0.98%C - 0.30% Mn - 0.16% Si - 0.003% S -
0.015% P - 0.17% Ni - 0.63% Cr - 0.28% Mo - 0.11% Cu -
0.280% V- 3.66% W Grain size: 10 Austenitized at 850°C
(1562°F) for 30 min
Composition: 0.98% C - 0.30% Mn - 0.16% Si - 0.003% $ -
0.015% P - 0.17% Ni - 0.63% Cr - 0.28% Mo - 0.11% Cu -
0.280% V - 3.66% W Grain size: 10 Austenitized at 850°C
(1562°F) for 30 min
900
800
Ac,
700
600
9
oO
§
5 500
300
Ms
200
Mso
100
5
1
IT
2
Temps
5
10
20
50
en secondes
100200
|
500
|
1mn 2mn
10°
10°
|
iSmn
|
th
2h 4h
8h
24h
15 NCDV
i
41 3938
ee
A
a ok Sa
10°
|
|
68 6766
1
2
5
10
20
50
Temps en secondes
CCT
100200
|
500
|
pine ihe
103
10*
|
i5mn
|
th
10°
|
2h 4h
|
8h
|
24h
11 Steel
Composition: 0.16% C - 0.51% Mn - 0.27% Si - 0.019% S -
Composition: 0.16% C - 0.51% Mn - 0.27% Si - 0.019% S -
0.010% P - 2.59% Ni - 0.67% Cr - 0.49% Mo - 0.20% Cu -
0.010% P - 2.59% Ni - 0.67% Cr - 0.49% Mo - 0.20% Cu -
0.080% V Grain size: 9-10 Austenitized at 950°C (1742°F) for
0.080% V Grain size: 9-10 Austenitized at 950°C (1742°F) for
30 min
30 min
ooo
3
z
Bibl:
Ac;
=
(2)
Ac,
700
600
= 500
2
E_
300
acy
“| cs A OB (re
A +|M
|-—-
1
a a
ers
|
|
100
2
1
10
5
20
IT
a
SOURCE:
as
100200
50
500
|
mn
2mn
15mn
1h
|
2h
Ue
10°
10*
10°
|
di
|
4h
|
|
Bh
24h
Temps
CCT
22
5
en secondes
10
20
100200
50
|
|
Imn
2mno
France, 1974
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris,
500
10°
1s5mn
10*
|
|
ih
2h
10°
Ms 4
at
Atlas of Time-Temperature Diagrams
198
55 NCDV
7-05 Steel
Composition: 0.58% C - 0.62% Mn - 0.39% Si - 0.012% S -
Composition: 0.58% C - 0.62% Mn - 0.39% Si - 0.012% S -
0.015% P - 1.68% Ni - 1.35% Cr - 0.40% Mo - 0.01% Cu -
0.015% P - 1.68% Ni - 1.35% Cr - 0.40% Mo - 0.01% Cu 0.100% V Grain size: 12 Austenitized at 850°C (1562°F) for 30
0.100% V Grain size: 12 Austenitized at 850°C (1562°F) for 30
min
min
900
=o
=
te
«
©4
800
5
a
——
b—-.
700
A
S
600
20 HI
i
28
600
oY
c
o
ra)
5
°
a)
Q
—
yeo
500
500
400
400
Température
°C
en
300
Ms
200
200
Mso
100
100
ce)
AZ
IT
Temps
5
10
20
50
en secondes
100200
|
500
|
10?
|
1mn 2mn
15mn
10*
|
1h
|
10°
|
2h 4h
|
Bh
1
|
24h
Temps
CCT
2
en
5
10
20
secondes
50
100200
|
|
1mn 2mn
500
10?
10*
|
|
15mn
|
1h
10°
|
|
2h 4h
Bh
|
24h
Z 38 CDWV 5 Steel
Composition: 0.37% C - 0.34% Mn - 0.95% Si - 0.008% S 0.018% P - 0.17% Ni - 4.70% Cr - 1.40% Mo - 0.11% Cu 0.500% V - 1.80% W Grain size: 8-9 Austenitized at 1000°C
(1832°F) for 30 min
Composition: 0.37% C - 0.34% Mn - 0.95% Si - 0.008% S 0.018% P - 0.17% Ni - 4.70% Cr - 1.40% Mo - 0.11% Cu 0.500% V - 1.80% W Grain size: 8-9 Austenitized at 1000°C
(1832°F) for 30 min
3
z3
900
8
c
Ac,
Fe2
5
fa)
800
90 HRB
oT,
21 HRC
~
pia ee
secondai
600
°
5
500
£
sa
400
E
i5
°C
Température
en
200
58
2
IT
Oe
Scene
Acy = 845°C
Msg = 250°C
SOURCE:
5
10
20
50
100200
i
el
10°
500
a
mn
2mn
15mn
Acg = 925°C
°
Mgo = 150°C
—
ro)
1h
2h
4h
8h
1
CCT
24h
2
5
Temps en secondes
10 20
50 100200
| |
Imn
2mn
fe)
= 315°C
M, en:
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
500 10°
|
15mn
10°
th
2h
108
4h
Bh
24h
Atlas of Time-Temperature Diagrams
199
XC 48 Steel
E 36 Steel
Composition: 0.50% C - 0.67% Mn - 0.24% Si - 0.022% S -
0.031% P Grain size: 8-9 Austenitized at 875°C (1610°F) for 30
min
°C
Température
en
Température
°C
en
1
CCT
Composition: 0.20% C - 1.37% Mn - 0.35% Si - 0.017% S -
0.022% P - 0.007% N - 0.054% Al Austenitized at 900°C
(1652°F) for 30 min
2
5
10 20
Temps en secondes
50
100200
|
500
|
10°
|
Imn 2mn
Sma
10°
|
1h
10°
|
|
2h 4h
|
Bh
|
24h
1
2
5
10 20
50
Temps en secondes
CCT
100200
500
10?
|
1mn 2mn
15mn
10°
|
1h
105
|
|
2h 4h
|
8h
|
24h
35 M 6 Steel
19 M Nb 6 Steel
Composition: 0.34% C - 1.55% Mn - 0.18% Si - 0.028% S 0.026% P - 0.17% Ni - 0.08% Cr - 0.02% Mo Grain size: 10-11
Austenitized at 850°C (1562°F) for 30 min
Composition: 0.19% C - 1.39% Mn - 0.26% Si - 0.019% S 0.029% P - 0.043% Nb - 0.007% N - 0.046% Al Austenitized at
900°C (1652°F) for 30 min
ve
oss ea Ss al
a
XNEN
S3
——
NGI
zie Ny
cube
Saeaee cae
Ac,
600
9°
o
S
¢ 500
E
i"
P
\—
{50%
a
iS 400
Fe
e
300
200
100
504641 26
caf
1)
CCT
©2555
Temps en secondes
10; 20
22 171
ence (eal
"S08 100)200!9500
|
|
1mn 2mn
223 213
|| a
|
th
|
|
2h 4h
|
Bh
|
24h
CCT
191176
160 154
fee eee |
1
108
10*
5510;
15mn
‘
2
5
Temps en secondes
10 20
50 100200
|
|
Ima 2mn
1974
SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France,
a
|
10°
10°
500 10°
1Smn
ee
|
th
|
|
2h 4h
|
Bh
|
24h
200
Atlas of Time-Temperature Diagrams
17 MV
Az 6 Steel
22 N 8 Steel
Composition: 0.17% C - 1.50% Mn - 0.34% Si - 0.018% S -
0.017% P - 0.110% V - 0.025% N - 0.082% Al Austenitized at
900°C (1652°F) for 30 min
=
Composition: 0.23% C - 0.56% Mn - 0.27% Si - 0.020% S -
0.021% P - 2.06% Ni - 0.15% Cr - 0.01% Mo - 0.18% Cu Grain
size: 9-10 Austenitized at 900°C (1652°F) for 30 min
ESN
eu
800
q
Ac,
u
700
.
\\
800
Lh
\
Ac,
5
700
600
600
°°
5
iY<
500
:
5
5600
2
5& 400
3
= Ms
2
oO
o
€
400
is
300
300
\\\
200
200
100
100
32
P
w
5
2
1
Temps en secondes
CCT
10 20
50
100200
|
Imn
2mn
ma
|
1th
|
4h
|
2h
1
|
Bh
|
24h
2
5
sreripetenisccandes
10°
10°
500 10°
24]219 206 176
I) Sc
10
20
| aa
50
el
imn
CCT
100200
2mn
162-149
a
500
a ||
10°
|
items
15mn
th
||
10*
2h
eaihnn
a
4h
Bh
10°
|
24h
20 NCD 8 Steel
20 ND
Composition: 0.19% C - 0.67% Mn - 0.20% Si - 0.020% S -
Composition: 0.24% C - 0.52% Mn - 0.27% Si - 0.012% S -
0.019% P - 2.00% Ni - 0.39% Cr - 0.09% Mo - 0.05% Cu Grain
size: 10-i1 Austenitized at 900°C (1652°F) for 30 min
8 Steel
0.015% P - 2.10% Ni - 0.05% Cr - 0.32% Mo - 0.10% Cu
Austenitized at 875°C (1610°F) for 30 min
Sraan
: ze
\
\
\
500
400
Température
°C
en
Température
°C
en
Ms
caleulé
300
200
100
206 19
(i
CCT
2
5
Temps en secondes
50 100200
|
mn
2mn
500 10°
15 mn
4
1
2
5
Temps en secondes
Th
2h
4h
8h
24h
10
20
50 100200
|
mn
2mn
SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
500 10°
15 mn
Th
2h
4h
8h
24h
Atlas of Time-Temperature Diagrams
201
10 CAD 8 Steel
30 CAD
Composition: 0.11% C - 0.46% Mn - 0.21% Si - 0.060% S -
0.020% P - 2.18% Cr - 0.31% Mo - 0.485% Al Grain size: 9-10
Austenitized at 975°C (1790°F) for 30 min
900
6-12 Steel
Composition: 0.28% C - 0.49% Mn - 0.32% Si - 0.050% S 0.012% P - 0.13% Ni - 1.65% Cr - 0.22% Mo - 1.050% Al Grain
size: 8-9 Austenitized at 900°C (1652°F) for 30 min
PNAS
NY
\ ae
Température
°C
en
°C
Température
en
Aca
eee
\
187 140
flivess2:
tT
CCT
e2
5
10
20
50
100200
Temps en secondes
|
mn
14 NCD
500
10°
|
2mn
15mn
10*
|
|
|
|
1th
2h
4h
Bh
24h
5
10
20
50
Temps en secondes
10°
|
100200
|
mn
CCT
|
2mn
500
10°
|
15mn
10*
|
1h
|
2h
10*
|
4h
|
Bh
|
24h
18 NCD 6 Steel
4 Steel
Composition: 0.13% C - 1.08% Mn - 0.14% Si - 0.020% S 0.027% P - 1.13% Ni - 0.88% Cr - 0.40% Mo Grain size: 8-9
Austenitized at 900°C (1652°F) for 30 min
900
Composition: 0.18% C - 0.86% Mn - 0.27% Si - 0.009% S -
0.010% P - 1.53% Ni - 1.05% Cr - 0.16% Mo - 0.13% Cu
Austenitized at 850°C (1562°F) for 30 min
7 eeSS
e =e
eeeey
Ac;
Ae; sh
800
800
Ac,
700
Ac,
700
600
HEINE
S
ec
PN Reeteas
AS AE
500
ao
o
2=
us
€ 400
Ms
300
\
200
\
2
HRC]
1
CCT
SOURCE:
~
4038
29
gS es a ee
5
lee
2
5
ae a
10 20
50
I
100200
al
1mn 2mn
27 2523}
a
500 is
15mn
178)
210 whaH
|
1h
=
: =
1
2h 4h
8h
24h
Temps
CCT
2
5
en secondes
10 20
50 100200
|
|
500 ".
2mn
15mn
mn
France, 1974
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris,
10°
10°
|
|
|
|
|
th
2h
4h
Bh
24h
Atlas of Time-Temperature Diagrams
202
80 DCV 42-16 Steel
Composition: 0.81% C - 0.26% Mn - 0.21% Si - 0.002% S$ 0.021% P - 4.28% Cr - 3.98% Mo - 1.080% V Grain size: 4
Austenitized at 1140°C (2084°F) for 30 min
40 NDCV 18-11 Steel
Composition: 0.41% C - 0.30% Mn - 0.36% Si - 0.006% S$ -
Mo - 0.520%V
P - 4.80% Ni - 0.54% Cr- 1.13%
0.017%
Austenitized at 875°C (1610°F) for 30 min
500
°C
Température
en
Température
°C
en
DuretésHRCobten
On
CCT
5
10
20
Temps en secondes
50
100200
| |
1mn 2mn
500
10°
15mn
10*
1h
|
10°
|
2h 4h
|
8h
i)
|
24h
Z 40 WCY 5 Steel
Composition: 0.38% C - 0.52% Mn - 0.37% Si - 0.022% S -
CCT
oa?
5
10
20
Temps en secondes
Z30 WCV
:
i
trempeidans Nal(ues apres 56,
50
100200
|
1mn
500
|
2mn
38 37
10°
15mn
10*
|
1h
10*
|
2h 4h
|
Bh
|
24h
9 Steel
Composition: 0.27% C - 0.43% Mn - 0.26% Si - 0.018% S -
0.018% P - 0.08% Ni - 3.23% Cr - 0.44% Mo - 0.580% V -
0.008% P - 0.10% Ni - 2.45% Cr - 0.13% Mo - 0.360% V -
4.15% W Grain size: 5 Austenitized at 1050°C (1922°F) for 30
8.70% W Grain size: 10 Austenitized at 1150°C (2102°F) for 30
min
900
Ac,
800
TEMA
\\\
900
Ac,
800
te
700
fh
|
600
Y
s
@
5
8
500
a€ 400
e6
Température
°C
en
a
300
iy
200
tT
|
1
CCT
SOURCE:
2
5
Temps en secondes
10 20
57 575
es
el ea
SAK 500 10°
|
mn
2mn
le Fe
my
15 mn
10°
iya cy
10°
EN
ahRees
1
CCT
i
at
IN
WALLA
A
AAR
|
52.
52515495 45,5
44425]? 79 HV
Mn Gne xce
ome
100
60 60
VK
2
5,
Temps en secondes
10,
20,
50
ee
500
10°
|
Iman
2mn
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
15mn
10*
10°
|
|
|
|
|
1th
2h
4h
8h
24h
Atlas of Time-Temperature Diagrams
Z 20 CDNbV
203
11 Steel
Z 65 WDCV
Composition: 0.17% Cc - 0.39% Mn - 0.43% Si - 0.016% S See ns ee
a
4 Sait Cr - 0.75% Mo - 0.370% V -
%
Ng
0)
=
0
:
1150°C (2102°F)
06-05 Steel
Composition: 0.56% C - 0.27% Mn - 0.23% Si - 0.17% Ni 4.00% Cr - 5.00% Mo - 1.800% V - 7.00% W - 0.40% Co
Austenitized at 1140°C
Grain size: 10-11 Austenitized at
(2084°F
(
i
emai
fone
900
900
Ac,
Ac,
800
800
700
700
600
600
95 500
°< 500
. 400
: 400
F
e
Ms
6
300
300
Ms
M50
200
200
|
es
a
10
5
am
1
53
52
|r
[ame
20
|
2mn
|
imn
Temps en secondes
CCT
Z 60 WCV
100200
50
50 49 4745 38
50
|
2h
|
1h
10
5
50
20
CCT
XC
18 Steel
Composition: 0.60% C - 0.22% Mn - 0.19% Si - 0.20% Ni 4.65% Cr - 1.00% Mo - 1.350% V - 17.80% W - 0.72% Co
Austenitized at 1200°C (2192°F) for 30 min
100200
500
|
2mn
ian
Temps en secondes
|
24h
|
Bh
|
4h
2
1
10°
10°
10°
|
15mn
a
ae[ee |
||
500
00
MT
10°
10*
10°
|
2h
|
1h
15mn
|
4h
|
8h
|
24h
38 Steel
Composition: 0.36% C - 0.66% Mn - 0.27% Si - 0.016% S 0.020% P - 0.20% Ni - 0.21% Cr - 0.02% Mo - 0.22% Cu 0.060% Al Grain size: <1 Austenitized at 1300°C (2372°F) for
30 min
3
2
96,5 HRB
98,5
98
eg
©
S
=
98
24 HRC
E
§
:
a
e
ec
33
42
1
CCT
SOURCE:
2.
5
Temps en secondes
10 20
100200
50
|
|
Imn
2mn
15mn
|
th
2h
|
108
10°
500 10°
|
4h
|
Bh
|
24h
IT
Temps
2
en secondes
Twas
ima
2hm
Paris, France, 1974
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID,
15mn
10s
10°
Epon AS 500 10°
|
th
2h
4h
Bh
24h
Atlas of Time-Temperature Diagrams
204
XC 38 Steel
¥7 90 Steel
Composition: 0.37% C - 0.69% Mn - 0.33% Si - 0.019% S 0.017% P - 0.06% Ni - 0.04% Cr - 0.05% Mo - 0.013% Ng Grain
0.012% P - 0.20% Ni - 0.12% Cr - <0.10% Mo - 0.62% Cu -
size: 10-11 Austenitized at 825°C (1520°F) for 8 min
Composition: 0.93% C - 0.31% Mn - 0.11% Si - 0.010% S$ -
0.03% V Grain size: 12 Austenitized at 800°C (1472°F) for 15
min
900
3
a45
900
8
c
@
Ac3
®5
800
(2)
Dureté
Rockwell
Ac,
700
90 HRB
91
600
600
91
96,5
500
500
98
21 HRC
400
°C
Température
en
400
Yempérature
°C
en
Ms
300
300
200
100
57
the
ae
5
10
20
Temps en secondes
50
|
Imn
IT
100200
|
500
2mn
10°
15mn
10°
|
1th
|
2h
io
|
4h
|
8h
|
24h
the
IT
Acj =
Y; 120 Steel
Composition: 1.29% C - 0.20% Mn - 0.27% Si - 0.005% S 0.015% P - 0.09% Ni - 0.04% Cr - 0.01% Mo - 0.08% Cu
Austenitized at 825°C (1520°F) for 30 min
900
22:
5
10
20
Temps en secondes
740°C
50
100200
|
Imn
|
2mn
500
10°
10*
|
Th
1Smn
|
2h
10*
|
4h
|
Bh
24h
M, = 195°C
Y,1 20 Steel
Composition: 1.29% C - 0.20% Mn - 0.27% Si - 0.005% S -
0.015% P - 0.09% Ni - 0.04% Cr - 0.01% Mo - 0.08% Cu Grain
size: >1 Austenitized at 1200°C (2192°F) for 30 min
900
3
3
x
8
c
©
800
2
5
fa)
Rockwell
Dureté
Ac,
700
23 HRC
37 HRC
30
600
600
41
32
2
Ss 500
2
2
€
feo
43
40
45
43
46,5
400
400
47
Température
°C
en
49
300
300
200
200
55
61
Ms estimeé
Ms
estimé
100
100
66
59'S
0
1
IT
2
5
Temps en secondes
10
20
100200
50
ee
1mn
2mn
500
|
15mn
10°
10*
10°
th
Nena
2h 4h
|
|
Bh
24h
1
IT
Temps
2
510520
5G
100200
|
|
|
|
|
|
|
Imn
2mn
1Smn
th
2h
4h
Bh
24h
en secondes
Acy = 735 re) Cc
SOURCE:
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
ee
500
10?
10°
10°
Atlas of Time-Temperature Diagrams
i
a
41S
a
u Steel
pee
0.42% C - 0.62% Mn - 1.78% Si - 0.013% S -
~ 0.18% Ni - 0.05% Cr - 0.01% Mo - 0.22% Cu - trace
:
205
er
V- 0.03% Ti Grain size: 12-8 Austenitized at 975°C (1790°F)
for 15 min
900
Ac;
=3
s
i
700
93 HRB
Z 120 M 12 Steel
Composition: 1.28% C - 12.35% Mn - 0.35% Si - 0.009% S -
0.031% P - 0.28% Ni - 0.01% Mo - 0.23% Cu Grain size: 5-6
Austenitized at 1050°C (1922°F) for 30 min
22 HRC
600
23
s 500
24
:
3
26,5
Fa
eae
37,5
F
°
26,5
(é)
$
E
45,5
Ms
he
Hh
50
300
A
“II
austénite
CeHoranulaire
cémentite
200
100
54
o
1
2
5
10 20
en secondes
Temps
tT:
100200
50
500
10*
10?
|
|
|
|
|
|
|
|
Imn
2mn
15 mn
Th
2h
4h
8h
24h
Acy = 780°C
1
5’
10;
20;
50
Ae; = 680°C
500
100200
ll
Imn
IT
Mg, = 325°C
Acg = 880°C
2
Temps en secondes
10°
2mn
10?
10*
|
|
[eo
ah
1Smn
th
2h
Bh
4h
10*
|
24h
M, = <-180°C
Ae3 = 900°C
10 N 8 Steel
Z 12 C 13 Steel
Composition: 0.08% C - 0.29% Mn - 0.16% Si - 0.035% S$
0.007% P - 2.06% Ni - 0.08% Cr - 0.02% Mo - 0.13% Cu Q = . r=
size: 10-11 Austenitized at 900°C (1652°F) for 30 min
Composition: 0.11% C - 0.49% Mn - 0.45% Si - 0.050% S 0.012% P - 0.13% Ni - 12.00% Cr - 0.02% Mo - 0.07% Cu 0.020% V - 0.06% W Grain size: 10 Austenitized at 1000°C
(1832°F) for 30 min
ea
o
900
ae
3
S
900
U0
«
Ac;
:
2
:
g
800
.—
E
=
c
=
(a)
g
1
800
75 HRB
700
ra
80
700
84
600
89
600
ss
3
gs 500
s
500
3
a— 400
:
(=o
i
Me
Ms
300
300
200
200
100
100
34 HRC
2
1
:
ieee
teste
10
20
100200
50
|
ae
ie
Acy = 705°C
SOURCE:
5
,
500
10°
5
in 2h
ee es
Acg = 820°C
i
5
2
1
Temps en secondes
8
oa
44 HRC
6
10°
Ye
IT
M, = 425°C
10
20
100 200
|
|
2mn
Imn
50
10°
|
1Smn
Acq = 820°C
°
Acgz == 900°C
ce)
Msg =— 300°C
Mgg = 260°C
er
France, 1974
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris,
a
500
10
a
|
th
|
2h
4h
Bh
24h
On
M, == 350°C
oO
Ee
Atlas of Time-Temperature Diagrams
206
18 C 3 Steel
Z 30 C 13 Steel
Composition: 0.20% C - 0.72% Mn - 0.30% Si - 0.010% § 0.010% P - 0.27% Ni - 0.79% Cr - 0.02% Mo - 0.02% Cu Grain
Composition: 0.29% C - 0.40% Mn - 0.85% Si - 0.050% S 0.023% P - 0.18% Ni - 12.32% Cr - <0.10% Mo - 0.12% Cu -
size: 6 Austenitized at 850°C (1562°F) for 30 min
<0.05% V Grain size: 10 Austenitized at 1000°C (1832°F) for
ee
3
30 min
z
3
Ac;
=
800
2
900
3
Ac,
=
g
2
8
800
a
Ac,
$8
700
85 HRB
86,5
600
700
91
600
93,5
2
< 500
96,5
S
=
20 HRC
=
5
e 400
2
Ms
500
=
26
é
33
Fa
= 400
300
300
Ms
200
36
Moo
100
100
46
0
ih
4
5
10
20
50
Temps en secondes
100200
500
10?
fi
IT
Imn
2mn
1S5mn
104
10*
|
te
1h
2h
0
|
4h
Bh
1
24h
2
5
10 20
50
Temps en secondes
100200
|
IT
—,
mn
Acy = 830°C
500
10°
|
|
2mn
‘San
10°
|
|
10°
|
|
vhle2ih athe Sih)
|
24h
M, a= 265°C
Msg = 205°C
Mgo = 155°C
70 C 1 Steel
95 C 3 Steel
Composition: 0.72% C - 0.35% Mn - 0.20% Si - 0.050% S -
Composition: 0.88% C - 0.41% Mn - 0.24% Si - 0.010% S -
0.011% P 0.06% Ni - 0.28% Cr - 0.049% Cu Grain size: 9-10
Austenitized at 850°C (1562°F) for 30 min
0.010% P - 0.10% Ni - 0.78% Cr - 0.05% Mo - 0.12% Cu
Austenitized at 850°C (1562°F) for 30 min
=
900
=
z
$
8
8
=
c
®
800
3
fa]
fa]
Ac,
93 HRB
700
18 HRC
28 HRC
25
27
9
600
32
39
9
5
32
sl
F
= 500
35
é
w5
é 400
42
:
FE
w“
:
F
48
300
52
58
Ms
200
61
100
64,5
66
0
1
iss
2
5
Temps en secondes
40)
-20
50
100200
|
Imn
|
2mn
500
10°
15mn
10°
|
1h
|
2h
10°
|
4h
|
Bh
|
24h
1
IT
2
5
Temps en secondes
10
20
50
100200
|
nic
|
aya
SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
eee?
OOO
500
10°
acing)
10°
|
|
ie
105
|
vim
|
|
oa
Atlas of Time-Temperature Diagrams
207
100 C 3 Steel
ee
.
30 MS 6 Steel
0.97% c - 0.27% Mn - 0.26% Si - 0.006% S -
OA”
P - 0.05% Ni > 0.77% Cr - <0.01% Mo - 0.04% Cu
rain size: 9 Austenitized at 850°C (1562°F) for 30 min
900
Composition: 0.29% C - 1.33% Mn - 1.30% Si - 0.016% S 0.008% P - 0.12% Ni - 0.10% Cu Grain size: 9 Austenitized at
925°C (1700°F) for 30 min
a
a
&3
Ss
8
:
:
800
5
Ac,
ra}
700
24,5 HRC
28,5
96,5 HRB
600
34
98,5
s 500
36
eZ
3
on
°
36
2
3
é 400
39
99,5
oO
§
20,5 HRC
$
g
:
EB
36
46,5
300
42,5
5
57
Ms
200
62
100
66
54,5
ie)
oe
IT
ae
ae
P
oo | eas
io
a8
Mohan
a
|
AS
im
haat
oe
Te
|
2
1
Na
ee
5
20
10
Temps en secondes
IT
50
100200
500
10?
10°
10*
|
|
|
|
4
Tmn
2mn
1Smn
th
2h
4h
|
|
8h
24h
M, = 215°C
Ac, = 750°C
15 Steel
30 SC 6 Steel
12 NC
Composition: 0.28% C - 0.92% Mn - 1.49% Si - 0.018% S -
Composition: 0.13% C - 0.35% Mn - 0.33% Si - 0.015% S -
0.001% P - 0.12% Ni - 0.99% Cr - 0.10% Cu Grain size: 9-10
0.008% P - 3.42% Ni - 0.86% Cr - 0.08% Mo - 0.16% Cu Grain
Austenitized at 925°C (1700°F) for 30 min
size: 9-13 Austenitized at 850°C (1562°F) for 30 min
=
Z
900
=
2
2
ay
800
8
g
eS
a
ra)
70
96,5 HRB
22 HRC
27
9
§
27
5
=
43,5
600
87 HRB
9< 500
PS
s
35 HRC
300
200
100
43
51
0
1
5
2
10
20
a
500
10°
|
condes
IT
See
1mn 2mn
15mn
1h
2h 4h
8h
24h
2
1
_
Oy
IT
emps
cP.
en
5
secondes
.
10
20
100200
50
|
|
Iman 2mn
Francaise, IRSID, Paris, France, 1974
SOURCE: Courbes de Transformation des Aciers de Fabrication
8
8
aaa
500
|
10°
)
ie
|
1h
2h oe 8h
15mn
|
iy
24h
eee
Atlas of Time-Temperature Diagrams
208
40 NC 18 Steel
20 ND 8 Steel
'
Composition: 0.42% C - 0.60% Mn - 0.41% Si - 0.012% S 0.013% P - 4.40% Ni - 1.25% Cr - 0.05% Mo - 0.14% Cu -
Composition: 0.21% C - 0.55% Mn - 0.29% Si - 0.010% S 0.008% P - 1.84% Ni - 0.07% Cr - 0.20% Mo - 0.09% Cu Grain
0.02% Al Grain size: 11-12 Austenitized at 850°C (1562°F) for
size: 10 Austenitized at 875°C (1610°F) for 30 min
30 min
900
&
&
900
g
:
oo
a:
cy
700
A
a
2
Ac;
700
—
i
Mee oars
Ac,
ol a
600
600
s
iP
500
S
§
s
Be
7
§
s
= 400
ee
300
ill
|=
I
= 400
el
aan
Ale FAC
Vi
500
i
+
ale
a
2
She =
=
ai
99 HRB
fe ==
==
A+(M
=
23 HRC
im
300
L
Ms
200
200
|
+
Mso
|
i
108
59,5 HRC
46,5
0
0
1
2
emps
IT
en
ae
12 ND
5
10
20
secondes
50
100200
|
‘:
500
|
Ima 2imn
10°
15mn
10°
|
th
|
10°
|
2h 4h
|
8h
1
|
24h
IT
16 Steel
emps
ae
2
en
5
10
20
50
secondes
:
ie
a
500
1mn 2mn
10°
i
Smo
1h
10°
|
|
2h 4h
8h
|
24h
30 C 5 Steel
Composition: 0.08% C - 0.35% Mn - 0.06% Si - 0.020% S 0.010% P - 4.06% Ni - 0.07% Cr - 0.88% Mo - 0.15% Cu Grain
size: 11 Austenitized at 850°C (1562°F) for 30 min
eeu
Composition: 0.30% C - 0.50% Mn - 0.25% Si - 0.016% S 0.012% P - 0.09% Ni - 1.28% Cr - 0.09% Cu - 0.050% V Grain
size: 10 Austenitized at 875°C (1610°F) for 30 min
=
2so
&z
Ac;
=
8
ae
s
é
é
800
;
®
2
88 HRB
ee
96
600
99,5
2
S
26 HRC
:
500
2
= so
22,5 HRC
5
26
2
30
5
34,5
40,5
300
200
100
36
0
i
IT
4
5
Temps en secondes
10
20
50
100200
|
1ma 2mn
500
10?
15mn
10°
|
1th
ie
10*
aa
2h 4h
8h
|
24h
2
IT
5
Temps en secondes
10
20
50
100200
ronal
Ima 2mn
SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
—_—
Orr
—ervee—
500
10°
1Sma
10°
lal
th
2h 4h
10°
on
Bh
|
24h
Atlas of Time-Temperature Diagrams
209
30 CV 5 Steel
Composition: 0.32% C - 0.40% Mn - 0.21% Si - 0.016% S 0.007% P - 0.11% Ni - 1.30% Cr - 0.10% Mo - 0.13% Cu -
0.125% V Grain size: 11 Austenitized at 875°C (1610°F) for 30
min
140 C 10 Steel
Composition: 1.43% C - 0.22% Mn - 0.21% Si - 0.013% S$ 0.020% P - 0.11% Ni - 2.55% Cr - 0.08% Mo - 0.05% Cu 0.015% V Grain size: 3-4 Austenitized at 1090°C (1994°F) for 1
h
900
Rockwell
Dureté
Dureté
Rockwell
98 HRB
26,5 HRC
41 HRC
29
43
30
51
27
30,5
34,5
Température
°C
en
Température
°C
en
39
300
55
AtM
200
100
+
52/5
10)
1
2
5
10
20
Temps en secondes
100200
|
Imn
IT
100 WC
50
500
|
2mn
10?
15mn
|
10°
|
th
|
2h
|
4h
|
8h
2
5
10
20
50
Temps en secondes
IT
100200
500
|
|
imn 2mn
10°
|
15mn
10°
|
Th
|
2h
108
|
4h
|
Bh
|
24h
30 SCD 6 Steel
10 Steel
Composition: 0.28% C - 0.59% Mn - 1.25% Si - 0.048% S -
Composition: 1.15% C - 0.38% Mn - 0.38% Si - 0.008% S 0.018% P - 0.21% Ni - 0.74% Cr - 0.02% Mo - 0.12% Cu 1.20% W Grain size: 12 Austenitized at 850°C (1562°F) for 30
0.055% P - <0.05%
Ni - 0.92% Cr - 0.22% Mo - 0.03% Cu
Grain size: 9-10 Austenitized at 925°C (1700°F) for 30 min
min
900
900
Rockwell
Dureté
Rockwell
Dureté
94 HRB
25 HRC
23,5 HRC
30
600
36
600
26
29
a
500
41,5
500
41,5
43,5
400
Température
°C
en
400
Température
°C
en
Ms
46
49,5
300
54
300
58
200
200
100
525
66
IT
5
2)
1
Temps en secondes
Acq = 750°C
10)
20
50
ha
100 200
500
hal
“id
4
iain 2mn
15mn
1th
2h
4h
1
Bh
24h
IT
Temps
2
By
en secondes
10)20:
50
100200
P|
ITmn
2mn
500
|
th
2h
M, = 180°C
IRSID, Paris, France, 1974
SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise,
i
tet
10°
smn
_——————————E————————————————
ae
4h
Bh
24h
Atlas of Time-Temperature Diagrams
210
45 SCD 6 Steel
Z 40 CSD
Composition: 0.50% C - 1.05% Mn - 1.48% Si - 0.044% S 0.048% P - <0.05% Ni - 1.20% Cr - 0.20% Mo - 0.04% Cu
Grain size: 8-9 Austenitized at 875°C (1610°F) for 30 min
10 Steel
0.012% V Grain size: 7-8 Austenitized at 1000°C (1832°F) for
Composition: 0.30% C - 0.48% Mn - 2.20% Si - 0.012% S -
<0.005% P - 0.12% Ni - 10.50% Cr - 1.00% Mo - 0.07% Cu -
30 min
900
900
3
iad
2
8
c
Ac;
800
Ac,
Rockwell
Dureté
700
26 HRC
22
2
800
a
98 HRB
21 HRC
700
21
31
600
35
26
600
500
2
&c 500
©
400
B
5
®
£ 400
25
Température
°C
en
44,5
49
300
Ms
Moon)
200
Myo
100
100
56
0
1
IT
2
5
10 20
Temps en secondes
50
100200
el
Imn
2mn
500 10°
15 mn
10°
[ee
Th
2h
Ie
Gl
4h
8h
1
10°
5
10 20
Temps en secondes
IT
24h
2
§0
100200
500 10°
Imn 2mn
15mn
|
ie}
Acq = 900°C
|
|
1h
105
|
|
2h 4h
|
Bh
Moo = 255°C
10)
Mgg —= 160°C
18 NCD-4 Steel
Composition: 0.17% C - 0.63% Mn - 0.28% Si - 0.011% S 0.022% P - 1.13% Ni - 0.49% Cr - 0.13% Mo - 0.10% Cu Grain
size: 10 Austenitized at 850°C (1562°F) for 30 min
10°
24h
Ms9 = 205°C
120 NCD 5-02 Steel
Composition: 1.18% C - 0.63% Mn - 0.28% Si - 0.011% S -
0.022% P - 1.13% Ni - 0.49% Cr - 0.13% Mo - 0.10% Cu
Austenitized at 850°C (1562°F) for 30 min
900
3
=
x
é
Ac;
2
2
800
800
5
A
Rockwell
Dureté
Ac,
Ac,
700
700
HRC
600
86 HRB
600
ty
5<
500
500
2
22
97,5 HRB
E 400
e Ms
21,5 HRC
3
400
Température
°C
en
300
200
200
Ms
100
100
Mso
42,5
Myo
0
1
2
5
Temps en secondes
IT
Acy = 730°C
SOURCE:
10 20
50 100200
|
|
Tmn
2mn
mn
fe)
Acg —= 830°C
as
10"
500 10°
|
ea
th
2h
4h
|
|
Bh
24h
0)
ly
IT
Temps
24
5
en secondes
10
20
50
100200
500
10°
10*
10§
|
|
|
|
|
|
|
|
Tmn
2mn
15mn
th
2h
4h
BH
24h
°
M, = 385°C
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
ae
EE
EEE
Atlas of Time-Temperature Diagrams
21]
30 NCD 8 Steel
Composition: 0.32% C - 0.55% Mn - 0.27% Si - 1.90% Ni 1.80% Cr - 0.58% Mo Grain size: 10 Austenitized at 875°C
(1607°F) for 30 min
900°C
600
UE TEE
PAPE
ELT tH
LLL ge
OUER RES
Oureté
Rockwell
Température
555
eo
IT
Temps
oe
iS) tS fer 1S
50
hy
en
Shee
-
MN
ono
(oS°
SS
©
SSS
CP ay So om
a
wo
secondes
SOURCE: G. Delbart, A. Constant, Courbes de Transformation des aciers de fabrication francaise, vol II, IRSID, Saint-GermainEn-Laye, 1956
30 NC 12 Steel
35 NC
Composition: 0.33% C - 0.51% Mn - 0.32% Si - 0.016% S 0.008% P - 3.38% Ni - 0.83% Cr - 0.038% Mo - 0.13% Cu Grain
size: 8 Austenitized at 825°C (1520°F) for 30 min
Composition: 0.37% C - 0.59% Mn - 0.26% Si - 0.025% S -
11 Steel
0.017% P - 2.54% Ni - 0.94% Cr - 0.12% Mo - 0.20% Cu Grain
size: 10-13 Austenitized at 850°C (1562°F) for 30 min
900
Rockwell
Dureté
Rockwell
Dureté
Ac
700
90 HRB
99 HRB
600
21 HRC
23 HRC
400
Température
°C
en
38
Ms
46
°C
Température
en
47
300
200
100
58
3,5
4
IT
Temps
2
5
en secondes
10
20
50 100200
el
1mn
2mn
108
500 10°
ft
|
15 mn
1h
2h
4h
1
|
Bh
2
5
Temps en secondes
24h
IT
10
20
50
100200
Pe
Imn
500
a
a
10°
aa
2mn
SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
EEE
15mn
1h
2h
4h
Bh
24h
Atlas of Time-Temperature Diagrams
212
10 NC
12 Steel
14 NC
12 Steel
Composition: 0.15% C - 0.32% Mn - 0.35% Si - 0.005% S -
Composition: 0.10% C - 0.33% Mn - 0.26% Si - 0.005% S -
0.010% P - 3.02% Ni - 0.68% Cr - 0.19% Mo - 0.14% Cu Grain
size: 9 Austenitized at 850°C (1562°F) for 30 min
0.016% P - 3.09% Ni - 0.84% Cr - 0.14% Mo - 0.12% Cu Grain
size: 8-9 Austenitized at 850°C (1562°F) for 30 min
=
900
3
800
3
fa]
=
é
2
Acy
fa}
Ac,
700
600
©)
85 HRB
(2)
6
= 500
5
é 400
Fr
Ms
300
200
100
43 Re
1
Tee
v2
5
oo poeweons
io
20
50
100200
10°
I
Imn
Acy = 710°C
500
|
2mn
Sima
10°
10°
ieee
Wh)
0
|
2h
4h
8ih
Acg = 800°C
1
24h
2
5
10 20
50
Tempsrenreccondes
IT
M, = 385°C
100200
500 10°
10°
|
|
|
|
|
|
|
2mn
15mn
th
2h
4h
BH
24h
32 NCD 15 Steel
Composition: 0.31% C - 0.50% Mn - 0.28% Si - 0.005% S 0.010% P - 3.33% Ni - 1.20% Cr - 0.50% Mo - 0.15% Cu <0.03% V - 0.08% W Grain size: 11 Austenitized at 850°C
(1562°F) for 30 min
Rockwell
Dureté
Température
°C
en
55
1
IT
SOURCE:
2
5
Temps en secondes
10°
20
50
100200
|
Iman
500
10°
|
2mn
15mn
10*
108
|
|
|
|
|
1h
2h
4h
Bh
24h
10°
|
imn
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
Snore
——————————————————
Atlas of Time-Temperature Diagrams
213
30 NCD 12 Steel
Composition: 0.30% C - 0.40% Mn - 0.30% Si - 3.20% Ni 0.86% Cr - 0.40% Mo Grain size: 12-13 Austenitized at 850°C
(1562°F) for 30 min
Ac3
| 3
Aci
1s
ale
hed
p=}
A=]
3
a
a
és;|
46Re
IT
Temps
SOURCE:
G. Delbart, A. Constant, Courbes de Transformation
En-Laye,
1956
35 NCD
16 Steel
en
secondes
des aciers de fabrication francaise, vol II, IRSID, Saint-Germain-
16 NC
18 Steel
Composition: 0.36% C - 0.39% Mn - 0.30% Si - 0.005% S 0.010% P - 3.70% Ni - 1.65% Cr - 0.23% Mo - 0.12% Cu Grain
Composition: 0.15% C - 0.48% Mn - 0.33% Si - 0.010% Si 0.012% P - 4.21% Ni - 1.00% Cr - 0.20% Mo - 0.21% Cu Grain
size: 10-12 Austenitized at 850°C (1562°F) for 30 min
size: 10-11 Austenitized at 850°C (1562°F) for 30 min
3
900
z
=
$
&
8
[
800
i
=
Ac;
a
700
Ac,
600
e
o
5
yp ae
a
e 400
e
Fe
Ms
300
200
100
56
HRC
44 HRC
0
2.
1
IT
Temps
Acy = 700°C
Mgo = 215°C
SOURCE:
5
en secondes
10 20
100200
500 10°
,
oi
"i ae
Sam.
tt
Docs
50
Ac3 = 785°C
=
1)
Ie
Sree
IT
2)
6
Temps en secondes
10) 20)
“50 | oe
eee
M, = 275°C
fo}
Mgo = 155°C
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
500
,
i
ICE.
Sez
10?
|
Be
ney
OE
OH
214
Atlas of Time-Temperature Diagrams
7 100 CDV 5 Steel
6 Steel
100 CV
Composition: 0.86% C - 0.35% Mn - 0.34% Si - 0.012% S -
Composition: 0.91% C - 0.32% Mn - 0.37% Si - 0.006% S -
;
0.005% P - 0.58% Ni - 1.62% Cr - <0.01% Mo - 0.05% Cu -
0.016% P - 5.20% Cr - 1.07% Mo - 0.09% Cu - 0.420% V Grain
0.174% V Grain size: 12 Austenitized at 900°C (1652°F) for 30
size: 5-7 Austenitized at 975°C (1790°F) for 30 min
min
«
3
z
3
Ac,
fa)
92 HRB
700
28,5 HRC
900
26 HRC
34
37
43
600
47
=
°
= 500
BH
E 400
43
3
5
=
Fe
47
52,5
300
56
Ms
58,5
200
100
Of
;
IT
1
2
5
10 20
50 100200
500 10
|
ee
Temps en secondes
imn 2mn
ismny
|
10°
108
SE
|
uly hie
Wace
Acy = 800°C
Acg = 845°C
45 WC
20-04 Steel
45 WC
ea st eed
Temps en secondes
24h
dik) 2h) 4h Bh)
SE
IT
|
|
laa
65
et
a
al
|
r
oe
super
Mg = 205°C
20-04 Steel
Composition: 0.48% C - 0.27% Mn - 0.67% Si - 0.005% S -
Composition: 0.45% C - 0.34% Mn - 0.20% Si - 0.007% S -
0.013% Vie= 2.34%
0.360% V - 2.20% W Grain size: 10 Austenitized at 950°C
0.010% P - 0.14% Ni - 1.20% Cr - 0.02% Mo - 0.21% Cu W Grain size: 9 Austenitized at 950°
0.019% P - 0.44% Ni - 1.25% Cr - <0.10% Mo - 0.14% Cu -
(1742°F) for 30 min
(1742°F) for 30 min
900
25
Se
33
c
800
Ac,
92 HRB
25 HRC
700
30
600
9
9
5
= 500
Ey400
é
2
e
Ms
300
50
200
100
60,5
0
1
IT
Z
5
Temps en secondes
SOURCE:
10
20
50
100200
|
1mn 2mn
500
10°
15mn
10°
|
1h
|
1
10°
|
2h 4h
|
Bh
|
IT
2
5
Temps en secondes
24h
10
20
50
100200
|
500
103
|
tmn 2mn
15mn
10°
10°
|
|
|
|
|
th
2h 4h
Bh
24h
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
———_—_—_——
NN
NNN
eee
Atlas of Time-Temperature Diagrams
Z18
40 WCDS 35-12 Steel
Z 80 WCV
18-04-01 Steel
Composition: 0.81% C - 0.17% Mn - 0.23% Si - 0.019% S -
Composition: 0.40% C - 0.34% Mn - 0.26% Si - 0.010% S -
0.032% P - 0.12% Ni - 2.85% Cr - 0.16% Mo - 0.14% Cu -
0.018% P - 0.08% Ni - 4.25% Cr - 0.09% Mo - 1.080% V -
(1832°F) for 30 min
min
0.260% V - 3.39% W Grain size: 9-11 Austenitized at 1000°C
17.60% W - 0.05% Co Austenitized at 1275°C (2330°F) for 3
=
900
eg
=
BGs
Fs
900
3
Ac,
ac
F
a
800
800
29 HRC
98 HRB
700
21 HRC
700
39
23
600
600
2
2
s 500
s 500
3 400
e
: 400
e
Ms
300
XS
a
Ms
200
200
Mso
Myo
100
100
t
1
2
5
10 20
|
Temps en secondes
IT
100200
50
mn
|
2mn
|
th
1S5mn
|
2h
|
4h
|
8h
5
2
1
sfamps fen’ secondes
105
10°
500 10°
65
4
61,5
50 100200 500 10°
10 20
i
imn
IT
|
2mn
24h
35 NC 15 Steel
Composition: 0.38% C - 0.44% Mn - 0.22% Si - 0.003% S 0.018% P - 3.40% Ni - 1.50% Cr - 0.15% Mo - 0.13% Cu -
0.015% V Grain size: 6-7 Austenitized at 925°C (1700°F) for 30
Ac
Rockwell
Dureté
700
600
te
S
500
o
5
©
a€ 400
5
=
45 HRC
300
Si
Ms
200
100
53
0
eee
5
10
Temps en secondes
IT
20
50
|
mn
100200
|
2mn
500
10°
1Smn
|
|
|
|
10°
|
th
2h
10°
4h
Bh
24h
Paris, France, 1974
SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID,
s
sss
ss
1Smn
10°
ir
1h
2h
a
4
4h
Bh
108
24h
Atlas of Time-Temperature Diagrams
216
35 NCDV
10 Steel
Composition: 0.34% C - 0.52% Mn - 0.37% Si - 2.65% Ni 1.80% Cr - 0.53% Mo - 0.15% V - 0.20% Cu Grain size: 10-11
Austenitized at 900°C (1652°F) for 30 min
600
uo Soo
a
Temperoture
100
0
oo o
{=}
8
(sy 7 ey f=
Do
eewmereas
S08= 8
S$ oss"
8S
s 9s 5
2
SF I
Sem
mm 2 oS RS
<3
IT
Temps
en
secondes
SOURCE: G. Delbart, A. Constant, Courbes de Transformation des aciers de fabrication francaise, vol I, IRSID, Saint-GermainEn-Laye, 1953
Z 200 C 12 Steel
Z 160 CDV
Composition: 1.78% C - 0.27% Mn - 0.25% Si - 0.010% S -
Composition: 1.56% C - 0.37% Mn - 0.20% Si - 0.001% S -
0.025% P - 0.35% Ni - 11.70% Cr - 0.61% Mo - 0.090% V -
0.020% P - 0.26% Ni - 12.46% Cr - 0.54% Mo - 0.10% Cu -
0.63% W Grain size: 11 Austenitized at 950°C (1742°F) for 30
min
0.65% V - 0.28% W Grain size: 11 Austenitized at 1000°C
(1832°F) for 30 min
=
12 Steel
900
fe
8
3
g
2
2
ee
32
700
20 HRC
8
aa
|
EE
Teasesd a
aes E
22 HRC
|
T
eG FG
32
+ 33
600
9
2
&
gs 500
§
g
E
: 4oo
|
+—|
2
Acy = 815°C
5
secondes
7
10 20
wae has
i
Ima 2mn
500
10°
|
AS mn | SAH
M, = 255°C
a
a!
Alilcl+F
—|__|
E
Ate+M
1
neh
$C
ict
|
|
|
*
0
hi
|
esibyAS
35
|-+
Me“
63
en
35
jmat
i esveins gree
it
aaa
ale
M,,
emps
32
A}c
aS
ag:
=
“SIL
lie
i
emps
2
en
Acy = 815°C
5
10 20
secondes
“
50
100200
|
|
Ima 2mn
M, =185°C
SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
500
10°
Has
10°
i
Msg = 140°C
10°
- ah AA
Mgo =
95°C
Atlas of Time-Temperature Diagrams
s 85 NCA
omposition:
217
AGH ee Steel
0.
C - 0.27%
Z 130 WCV
Mn - 0.24% Si - 0.023% S$ -
Cc
0.024% P - 4.03% Cr - 8.00% Mo - 1.380% V - 1.43% W -
0.19%
Be
Co Grain size: 9 Austenitized at 1200°C (2192°F) for 10
12-04-04 Steel
ition: 1.43% C - 0.17%
Mn
0.023% P - 0.18% Ni - ae
-
i -
Senta
Dee
11.00% W Grain size: 12 Austenitized at 1250°C (2282°F) for 8
min
3
27 HRC
30
35
:
:
E
F
2
63,5
1
1
IT
Temps
2
5
10 20
en secondes
50
100200
|
1mn
Ac, = 840°C
500
10°
|
2mn
10?
|
1h
15 mn
|
2h
10°
|
4h
|
8h
12-04-02-02
2
Sy
10/520)
empsfenkseconces
50
100200
500
Fe a
10°
pid
10*
10*
el an A AS au
|
24h
M, = 140°C
Z 80 WCDX
IT
Acy = 845°C
Steel
M, = 155°C
Z 85 WCV
Mso9 = 90°C
18-04-02 Steel
Composition: 0.82% C - 0.29% Mn ~ 0.25% Si - 0.010% S -
Composition: 0.79% C - 0.17% Mn - 0.18% Si - 0.026% S -
0.032% P - 0.20% Ni - 4.10% Cr - 1.60% Mo - 2.060% V -
0.035% P - 0.08% Ni - 4.00% Cr - 0.20% Mo - 2.110% V -
12.10% W Grain size: 9-10 Austenitized at 1275°C (2330°F) for
18.15% W - 0.17% Co Grain size: 11 Austenitized at 1275°C
10 min
(2330°F) for 10 min
900
3
Ac,
8
%
g
is
:
fa}
30 HRC
700
600
9°
S
oO
500
§
: 400
2
2
300
200
Ms
100
Mso
61
0
IT
1
Vas
Ac, = 825°C
2.
5
ar da
10 20
50
100200
500 10°
a
pe
15mn
M, = 135°C
rg
iM
4
th
2h 4h
s
Bh
IT
Mgo=
cope
ez?
24h
70°C
Da
See
Acy = 845°C
20
Santas
tmn 2mn
500
10°
,
har
|
ie
ibmn
th
2h 4h
Sh
24h
M, = 205°C
SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
Mso = 140°C
Atlas of Time-Temperature Diagrams
218
Z 30 WCKY
09-03 Steel
Z 80 WKCV
18-05-04-01
Steel
Composition: 0.28% C - 0.54% Mn - 0.96% Si - 0.003% S 0.025% P - 0.54% Ni - 2.80% Cr - 0.13% Mo - 0.240% V -
Composition: 0.80% C - 0.53% Mn - 0.28% Si - 3.80% Cr 1.050% V - 17.40% W - 4.62% Co Austenitized at 1280°C
8.77% W - 2.05% Co Grain size: 9 Austenitized at 1175°C
(2336°F) for 10 min
(2150°F) for 30 min
ae
900
2=
gs
ro
Ac;
800
me
800
———-
22:HRC
700
7
700
ete
.
Pole
pl a Sa BB
Z
LS a
2
6
Ube Peas
Asc
Ak c|+ Fi +d
Gigs
=
31
38
Wis cree
600
600
ry
< 500
¢ 500
s
= 400
fe Ms
ie
=F
i
|
300
At ¢+ F+ic-t- 1 aa eee
300
ast
200
200
|
Ms
ae
Mso
100
at
ales
et,
JL
aap
4
cll
M
ie
baat jst
64,5
0
Temps
10 20
5
2
1
IT
0
53
en secondes
Z 80 WKCV
100200
50
|
1mn
|
2mn
isma
18-10-04-02
Steel
|
wh
|
|
|
2h 4h
1
TT.
108
10°
500 10°
2
5
10
20
50
i
ce
500
10?
grea
+
Tempsieticondes,
he
ll
10°
mtd M3 i
i
ne
|
Sh
24h
Acy = 820°C
Mg = 140°C
Z 80 WKCV
18-10-04-02
Mso9 = 75°C
Steel
Composition: 0.80% C - 0.29% Mn - 0.28% Si - 0.026% S -
Composition: 0.89% C - 0.50% Mn - 0.18% Si - 3.90% Cr -
0.018% P - 4.40% Cr - 0.37% Mo - 1.600% V - 19.20% W 9.30% Co Grain size: 9-10 Austenitized at 1275°C (2330°F) for
1.030% V - 19.10% W - 9.66% Co Austenitized at 1280°C
(2336°F) for 10 min
10 min
r
2
Ac,
a
g00
}—+
Te
A+ |c
ESN gen ms ell Bl
(Atle 4cy
700
See
et a
\
EB
ra)
Atcltctt FHC
a
aS
“~ =
as
é
31 HRC
Sails
Pees. al
TSS
600
oT
a
°
5
arition
uae
San
‘
carbure
ares
A 400
t
§
.
§
+
2
5
300
i=
A+ict+ F+ Ci
200
z
Ms
=e
A +c +/M
at
|S"
Se
ae |
=
65
63
0
1
IT
2
eee
Acq = 830°C
SGURCE:
45)
10 =201"'50 | 40920 500
10?
1mn 2mn
Pd
M, = 150°C
ee
ad
he
ively
Zkae
Msg =
IT
1
2
bai
a
5
10 20
50
100200
se 2mn
80°C
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
500
103
10*
108
15mn
“A es i ”
an
Atlas of Time-Temperature Diagrams
2g
Z 150 WKVC 12-05-05-04 Steel
Composition: 1.46% C - 0.10% Mn - 0.27% Si - 0.033% $ 0.031% P - 3.72% Cr - 0.47% Mo - 0.09% Cu - 4.100% V 13.70% W - 5.00% Co Grain size: 10 Austenitized at 1250°C
Z 165 WKVC 12-10-05-04 Steel
Composition: 1.64% C - 0.21% Mn - 0.31% Si - 0.005% S$ 0.021% P - 4.50% Cr - 0.66% Mo - 5.050% V - 11.64% W 11.35% Co Grain size: 9-10 Austenitized at 1240°C (2264°F)
(2282°F) for 8 min
for 10 min
33
Z
8
37 HRC
3 HRC
42
39
41
=
&
e
62
65
5
2
1
10
20
100200
50
Temps en secondes
IT
500
|
|
|
|
|
|
|
2mn
15 mn
Th
2h
4h
8h
24h
Acy = 845°C
M, = 130°C
5
7)
1
10°
10*
10°
|
Imn
Ms0 = 60°C
100200
20
50
|
|
=
Imn
2mn
10
Temps en secondes
IT
Acq = 860°C
500
108
10*
10?
15 mn
|
|
|
|
|
1h
2h
4h
Bh
24h
M, = 165°C
55 NCDV 7 Steel
Z 80 WDCV 6 Steel
Composition: 0.55% C - 0.68% Mn - 0.30% Si - 0.004% S 0.014% P - 1.65% Ni - 1.00% Cr - 0.35% Mo - 0.11% Cu 0.220% V - 0.08% W Grain size: 12 Austenitized at 850°C
(1562°F) for 30 min
Composition: 0.76% C - 0.25% Mn - 0.35% Si - 0.031% S 0.025% P - 4.54% Cr - 5.75% Mo - 2.050% V - 6.60% W 0.86% Co Grain size: 9-10 Austenitized at 1225°C (2240°F) for
10 min
3
$
3
oc
Eade
=
800
Ss ee ees
|eae
=
eee
a
Ac,
a
3
3
S
&
|
Ne,
{|
®
2
[-bor44
|
700
- 22,5
CV
ates
a
Ne
1
600
20,5 HRC
HRC
27
+—+
i
a
Al+c
°
2
:
= 500
¢
a 400
3
(=
e
48
300
|}
}—___++—___—_—__
4}
1
244
== ==
(Al+c ote:
Se
=
200
Ms
Attc+M
Mio
Se
100
3
64
61,5
0
qi
IT
1
2
5
aes
Acy = 715°C
Msg = 200°C
SOURCE:
10
20
100200
50
e
ou
15mn
Acg = 810°C
1th
2h
4h
fe
ig
i:
10°
500
8h
IT
24h
M, = 260°C
a
Acy = 825°C
2
5
is
10
20
50
ee
Imn
2mn
10°
,
va
1Smn
th
2h
500
M, = 200°C
4h
ie
Bh
24h
Mso = 120°C
France, 1974
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris,
ee
———
85
OOOO
ee
Atlas of Time-Temperature Diagrams
220
Steel
06-05-04-04
Z 130 WDCV
Steel
06-05-05-04-02
Z 85 WDKCV
Composition: 1.29% C - 0.26% Mn - 0.43% Si - 0.006% S -
Composition: 0.84% C - 0.22% Mn - 0.23% Si - 0.014% S -
0.025% P - 4.42% Cr - 4.10% Mo - 4.000% sf- 5.54% W 0.37% Co Grain size: 8 Austenitized at 1230°C (2246°F)
0.025% P - 4.36% Cr - 4.95% Mo - 1.830% V - 6.48% W 4.85% Co Grain size: 7-8 Austenitized at 1230°C (2246°F) for
10 min
Pe
28 HRC
e
fs
1
Th
ee
Acy = 850°C
2
5
Sea
10
20
50
100 200
mA PS
* i 4h
isima
|
24h
a
igus
|
M, = 150°C
5
2
1
10*
10°
10°
500
a
en
emps
secondes
'
20
Peet 200
=
1mm 2mn
10
Acy = 850°C
Z 110 DKCWV
09-08-04-02-01
|
Steel
0.023% P - 3.91% Cr - 9.50% Mo - 1.210% V - 1.47% W -
8.35% Co Grain size: 7-7 Austenitized at 1200°C (2192°F) for
10 min
900
800
700
600
cs
<5 500
2
5
&
400
300
200
Ms
100
0
fe
IT
Temps
2
Acy = 845°C
SOURCE:
5
en secondes
10 20
50
100200
|
ima
Mam
|
2mn
500
10°
|
1Smn
10°
|
ih
10°
|
|
|
|
2h
4h
Bh
24h
125°C
Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974
it
10°
10°
15mn
M, = 180°C
Composition: 1.11% C - 0.24% Mn - 0.27% Si - 0.007% S -
8
€
25
500
1h
|
|
2h 4h
Bh
24h
Benelux Steels
CCT Diagrams
Atlas of Time-Temperature Diagrams
223
Benelux Steels - Example Diagram
The
CCT
diagrams
developed
by Center
National
de
Recherches
Metallurgiques
in
Liege, Belgium, have been constructed in a
slightly different manner than those shown
previously. The x-axis is not a simple plot of
time and, therefore, cooling curves are not
superimposed over the diagrams. Instead, the
x-axis plots the time required
to 500°C
(1472
to 932°F),
to cool from
which
800
is related
the cooling rate. Because of this manner
graphical presentation, the transformation
of
is
given
along
the
usual
superimposed
because
plot
vertical
lines,
cooling
of this construction,
room
temperature
rather
than
curves.
Also,
it is possible
hardness
Hardness, 30 kg load) as a function
"half-cooling" time with a single curve.
to
(Vickers
of the
to
Time while austenite
Time to temperature
Austenitizing temperature
Durée de chauff.
*
Durée d‘austénit.
15 min.
Température d'austénit.
890°C
Grain austénit.
Ac 3: 842°C
(786°C)
10
pales
“Austenite grain size
Ac 1: 708°C
Units for HV test
30 min.
“,
|
Ferrite + cementite
“ (or, more generally, carbide)
Température
°C
kg/mm2
Dureté
(30kg
)Vickers
-
Durée
du refroidissement
-
entre
800 et 500°C - min.
Cooling time between 800 and 500°C - minutes
Vickers hardness (30 kg load)
224
Atlas of Time-Temperature Diagrams
032 (SAE 1035)
Composition: 0.36% C - 0.60% Mn - 0.26% Si - 0.032% Cs
0.012% P Grain size: 10 Austenitized at 890°C (1634°F) for 15
min
800
Durée de chauff.
30min.
Ourée d'austénit
15 min
890°C
10
Temperature
d'austénit.
Grain austénit
Ac3: 842°C
Ac 1: 708°C
700]
(786°C)
|
T
|
MI
1]
|
“
600
£
$500
g Ac = 708°C
aoe
§ Aca = 842°C
600.6
wal | La
vol EEC
CETTE
!
his:
ig
PHT
ied
107
E
i
pe
mela
OTR
2
Durée
rear)
=
du retroidissement
;
|
=
entre
400
=
radineee
.
¢€ od!
800 et 500°C
tet
4-4
2
6
200
0 10
- min.
034 (SAE 1045)
Composition: 0.45% C - 0.59% Mn - 0.28% Si - 0.03% S 0.015% P - 0.06% Ni - 0.05% Cr - 0.14% Cu Grain size: 5-6
Austenitized at 825°C (1517°F) for 15 min
Ourée de chauft
i
Durée d'austénit
Temperature d'austénit.
Ee
Grain austénit
-
Ac 3: 798°C (757°C)
Ac 1: 725°C
600]
a
Ik
Ao
F+ce
$0
be
°
ie wh
300
7
+
sa
107
2
ml
1
‘
aaa
Bala
en
‘
uy
e ) Aey = (725°C
a
at
:
=
‘Ee
E
600
=
400
Jal
g
Acg = 798°C
o
ie
i
2
entre
U)
Sia}
I
soot
du retroidissement
be
I
PresetTT
2
|
miei
Sip
eat
:
|
Durée
el
[
200®
++44+—
|
Litt
ee 0
|
ABOU
Mi" inxs :
TOU}
ea
a
:
all
Lt
CUES
eg IIe
tt
i
= Senet
pie
+4444
200
|
|
See
Hi
nail
Sail
Een
SES
TR
oer
|e Me
|
;
%
aL
|
J
Lay
|
=)
4
800 et 500°C
«
iii}
@ to
Heath
‘
2
«4
10?
- min
038
Composition: 0.771% C - 0.784% Mn - 0.16% Si - 0.021% S 0.013% P Austenitized at 950°C (1742°F)
600
Durée de chauft
7min
Ourée d'austénit
Omin
Conan
ee
Ac3: 741°C
Ac 1; 714°C
||
]
t
patie
er eta
|
|
j
Acy = 714°C
:
2
g
= Acg = 741°C
2
Durée du refroidissement
entre
4
@
« 10!
600 et 500°C - min.
SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformation des Aciers Fabriques dans le Benelux,
Centre National de Recherches Metallurgiques, Brussels, Belgium, 1967
225
Atlas of Time-Temperature Diagrams
041 (SAE 1330)
Composition: 0.26% C - 1.48% Mn - 0.28% Si - 0.015% S$ -
0.015% P - 0.08% Ni - 0.02% Cr - 0.01% Mo - 0.14% Cu Grain
size: 10 Austenitized at 850°C (1544°F) for 15 min
Durée dechauf?——sSmin
600]
Durée d’austénit.
Simin
Température d’austénit. 840°C
Grain austénit
10
Ac3:
700}
827°C
=
ul
eS
IUIES
=
(787°C)
Ac 1: 708°C
ott
=
oe
500)
=
’
zt
Al
—
dt
=
le
SS eee
|
eo
°
|"
© 500
|
ale
|
whe
Fee
Rae
NIE
/mm2
kg
-
pes5
Acq = 708°C
=!
i
Acg = 827°C
Oe
Dureté
(30kg
)Vickers
*
0 10°
2
Ourée
rT
du
Cacia!
refroidissement
2
entre
oy
800 et 500°C
eet!
2
4
- min
045
Composition: 0.36% C - 1.59% Mn - 0.26% Si - 0.03% S
- 0.02% P Grain size: 7-8 Austenitized at 850°C (1562°F) for
15 min
Durée de chauft.
600}
35 min
Durée d'austénit.
850°C
7-8
Ac3: 799°C
Ac 1: 706°C
700}
15min.
Temperature d’austénit.
Grain austénit:
te)
Se
4
(746°C)
I
Spemmacnn
T
600|
2
rf
€
\|
rs)
ce
=o
1
nin
¢5 500
s
{
:Erol
°2
Acy = 706°C
8
:E
Ul
Acg = 799°C
600>%
300
eae
7
5
a
ahold
+44
400
200
st
100
200
= I
107?
Le
2
©
6 10°
2
4
6
|2
01
Durée du refroidissement
=
entre
a
re
ei0!
2
aie)
Wa; 10'
;
800 et 500°C - min.
551
Composition: 0.09% C - 0.45% Mn - 0.40% Si - 0.01% S
- 0.02% P - 0.18% Ni - 12.30% Cr Grain size: 9-10 Austenitized
at 980°C (1796°F) for 30 min
800]
Durée de chauft
35 min
Durée d'austénit
30min
Temperature d’austénit,
Grain austénit
980°C
9-10
Ac3:
865°C (831°C)
700]
Ac 1. 800°C
600)
te
See
3
fr
A
]
]
as
|
{11
|
ae
[ees
|ae
sha
=
#500} |
5
ra
i
Ls
T
He
abe
3
=
AE
=
mia
ees
le
Bie
See.
“is
eee
a
|
eal
}
AIRE
Se a os
a
{| |
is
Hi
kg/mm?
-
|
2
Acy = 800°C
800
Acg = 865°C
2& 400|__|
toni=
600
300
Dureté
(30kg
)Vickers
|e
-|
|400
200
eevee
200
100
107
dice
7
Neen)
2
4
dk
6
6 10!
Ourée du refroidissement
SOURCE:
entre
2
a
800 et 500°C
6 0*
2
i
@
8 10°
- min
ation des Aciers Fabriques dans le Benelux,
M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transform
Centre Nationa ] de Recherches Metallurgiques, Brussels, Belgium,
1967
a
EEE
ane
Atlas of Time-Temperature Diagrams
226
287 (AISI
D3 Tool Steel)
Composition: 2.09% C - 0.52% Mn - 0.33% Si - 12.76% Cr
Grain size: 10-11 Austenitized at 970°C (1778°F) for 30 min
800}
Durée de chauff,
35min
Durée d'austénit.
Température d'austénit,
Grain austénit
30min
970°C
10-11
Ac3: 860°C (842°C)
Ac 1: 689°C
700}
[
a
SES
es
ae}
rH
a
Bue
Setest
600}
Me
[3
Are
2)
:
L|
os
ys
2
Th
4—|
M2
_hs,
gale
eralALE
HET
Le
e
iba
cP Ec
i | [el
[ eile
sur
aslanaise
Mirela
aiiiill aaa
aiatean
a
2
S
aes
&
ila
4
200
oe
2
Of
ig 1
ir)
ne
—
Hat
i
i.
ot
Htty
=
tee
4
|
im
4
LI
o
Acq
= 689°C
$£ Acg = 860°C
Hoo2
E
int
-
bee
|
4
iF
{
100
TEES
Lene
blll
le
‘
2
Durée
‘
ae
800 et 500°C
- min
;
:
«10!
¢
du refroidissement
entre
abe
H
:
H
zi
res 1
4
2
107
elt
100
6 10
6
‘
2
10?
Composition: 0.145% C - 0.27% Mn - 0.02% Si - 0.005% S 0.012% P - 9.12% Ni Grain size: 10-11 Austenitized at 800°C
(1472°F) for 30 min
Durée de chauff.
800]
30min
Temperature
800°C
d’austénit.
Grain austenit
Ac3: 713°C
Ac 1: 572°C
700}
35min
Durée d'austénit
(674°C)
oO
2
=F
eee
Ea
ae
4
Bol
hen
|
a
allt
{|
Sel
aa
ele
di
+
att
ae
:
TE
&
fot y
at
2
:
aN
dE
ea
Re
200]
ele
-
=
i
nil
"|
eae
te
Le
Spee
ak
3
a
eae
LL
Ie
_|
ailing ated
Tre -
OW
Fane
@8
Acy
= 572°C
iit
Acg = 713°C
F
11600 -«
|
a
|
LH
Jed-taqy
2
a‘
|
M
ie
10"
leona
| + 1411400
en
100 Spa
2
-
ee pe
oe
E
E
|
|
wal
Lb]
SE
Te
;
Salas
be
LL
x
ee
by
] ]|
stl
-!
eee
pe
a
600] __|
apes
10-11
|
200
aaa
un.
2
Durée
OMS
du
refroidissement
2
entre
4
800 et 500°C
6
«© 10?
2
|
Ce
Hite?
- min
Composition: 0.315% C - 0.14% Mn - 0.01% Si - 0.006% § 0.01% P - 9.12% Ni Grain size: 10-11 Austenitized at 820°C
(1508°F) for 30 min
800}
Durée de chautt
35 min
Durée d'austénit,
30min.
Temperature d’austénit.
820°C
Grain austénit
10-11
Ac3: 651°C
700}
Ac 1: 602°C
(630°C)
:
$20
3
5 400
2
++
aS
ees
eel
i
EE
ed
600
i
E
aL
Se
aad aa
|
SI
ed ee
aeioiaree
ik
Ll
=
Se
=
fee me
HIST
PEE
I
eee,
-4—} +
AN
~
IC
HE
E
o
;
fe}
| x3 Acy == 602°C
i
=
nS
-
=
ea
300
|
es
Sartre
s
lle
saris
co]
§bal Acg = 651°C
6002
|
ws
z
a
ae
4
3
Ne
200
ea
4
+44 200
100
10°
2
Durée
du retroidissement
entre
800 et 500°C
4
ie
eto2
-
SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformation des Aciers Fabriques dans le Benelux,
1967
Centre National de Recherches Metallurgiques, Brussels, Belgium,
Atlas of Time-Temperature Diagrams
227
ee
SS
EERE
EE
Se
506
Composition: 0.14% C - 0.27% Mn - 0.01% Si - 0.005% S 0.09% P - 9.12% Ni - 4.07% Co Grain size: 9 Austenitized at
840°C (1544°F) for 30 min
Durée de chaut?
“35 min
Durée d'austénit
30min.
Température d’austénit. 840°C
Grain austénit
9
800}
Ac3: 741°C
Ac 1: 582°C
700}
“|
(727°C)
600
E
o
:
s
2© 500
2
2
‘
8
: 400
§
6
>
Acy = 582°C
Acg = 741°C
2
300
e
5
fe)
200)
100
Ps
10"!
2
lea
ee
2
4
6
=
@ 10
Durée du retroidissement
2
4)
£6. (a t0F
2
entre 800 et 500°C - min.
Composition: 0.325% C - 0.138% Mn - 0.15% Si - 0.005% S 0.09% P - 9.05% Ni - 4.07% Co Grain size: 10-11 Austenitized
at 790°C (1454°F) for 30 min
Durée de chauff.
Durée d'austénit.
Temperature d’austénit.
Grain austénit
800}
Ac 3: 722°C
Ac 1: 607°C
700}
35 min
15min
790°C
10-11
(703°C)
~
600)
3
E
3
3)
'
ic
.
28
ba
;
¢
>
Acy = 607°C
Acg = 722°C
4
300
$
ao
200
100
10”
iy
Durée
Ys
8,10)
du refroidissement
entre
2
cya
750 et 500°C
se) 102
2
- min.
Composition: 0.22% C - 1.25% Mn - 0.25% Si - 0.04% S
- 0.038% P - 0.33% Cr Grain size: 8 Austenitized
(1652°F) for 30 min
at 900°C
Durée de chauff.
35 min,
Ourée d‘austénit
30 min.
Température d‘austénit. 900°C
Grain austénit
8
800]
Ac3:
Act:
700}
847°C
713°C
(778°C)
600
*
£
;» $00
a2
2
;
8
‘
= 400
3
>
:
HM
300
Acy = 713°C
Acg = 847°C
re}
200,
100
10-7
2
6
¢
6 107
2
4
ooo)
Ourée du refroidissement
SOURCE:
2
‘4
«
6 10!
entre 800 et 500°C - min
Diagrammes de Transformation des Aciers Fabriques dans le Benelux,
M. Economopoul os, N. Lambert, L. Habraken,
hes Metallurgiques, Brussels, Belgium, 1967
Centre National de Recherc
Atlas of Time-Temperature Diagrams
228
s
n
091 (SAE 34/35)
Composition: 0.285% C - 0.62% Mn - 0.30% Si-2.55% Ni 0.71% Cr Grain size: 10 Austenitized at 820°C (1508°F) for 30
min
Durée de chauft.
Durée d'austénit.
600
35min.
admin.
SEIS!
isi
enh ties
Ac 3: 773°C
im
rear a
SS
ea
i
700] Ac 1: 693°C
+} {|
_t
Meant
L
L
1
SE
EW
600
‘e
£
|
10
[|
+
i
Acq = 693°C
a
(§400
a
5
|
1600 =
300
LL
Acg = THERE
§
400
200
U
200
100
10°"
2
um
eurent
L
2
Durée
«
6
joe
i
@ 10!
du refroidissement
entre
es
PU
Ce
800 et 500°C
ed
2
dnomtemrento>
- min
144
Composition: 0.12% C - 0.52% Mn - 0.22% Si - 0.014% S 0.015% P-4.15% Ni - 0.86% Cr Grain size: 10 Austenitized at
850°C (1562°F) for 15 min
Durée de chauft.
Durée d’austénit.
800}
40 min
Simin,
PS
er
a
SE
basi
te
ee
Set
eee eee cs wrt
Ac 3: 787°C (764°C)
700) Ac 1: 674°C
Le
|
|
#00
e
fall
i
& 400
&)
‘
F+c
E
> Acy = 674°C
:
8
&
:
o
Wall
Lt 4.
ni
g3 soo
1
|
abl
4
H
|
ii
3
A
:
Acg = 787°C
600.¢
|
:
M
a
—
if
200)
400
4h
200
100 ad
107
HS
2
Rn
PE By
tie
SI
ars
6
@
ew!
Ourée du refroidissement
2
entre
4
0
6
2
s
6
0 10°
600 et 500°C - min,
092
Composition: 0.34% C - 0.49% Mn - 0.30% Si-4.30% Ni
- 1.16% Cr Grain size: 8 Austenitized at 900°C (1652°F) 1h +
850°C (1562°F) for 30 min
Durée de chauff,
Ourée d'austénit
800]
7Tmin
pre
:
Panapheet auaciialaey
wel BEEN
min
aa
el] EN
ii Be
CCIE
Mile
|
Cre
haa
1-4
Bo
Ie eal
rT
1
200
|_|
Acy = 647°C
: «Acs = 770°C
8
600 |,
2
400
é
{| }200
100
1
2
<6)
(eyt0!
2
©
6
0 0?
Ourée du refroidissement
SOURCE:
a
Tyg
4+—+44
300
ie
[| |
|
|
600
entre
2
Cnr
emrer ion
Il
800 et 500°C - min
M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformation des Aciers Fabriques dans le Benelux
Centre National de Recherches Metallurgiques, Brussels, Belgium, 1967
a
aa
eS
:
eee
Atlas of Time-Temperature Diagrams
229
455
Composition: 0.14% C - 0.68% Mn - 0.67% Si - 0.012% § 0.024%
P - 2.95% Ni - 17.98% Cr - 0.06% Mo
- 0.04% Al -
0.10% Co - 0.10% Cu Grain size: 5-6 Austenitized at 935°C
(1715°F) for 30 min
600}
{Durée de chautt
Durée d'austénit
40 min.
Grain austénit
5-6
30 min
Température d'austénit.
700]
te
935°C
Ac3: 807°C
Ac 1: 689°C
100 */. martensite
||]
ee
—L
L
Pas d’austénite résiduette
=
ae
fi
CO
2
facie
=
3
-
ry
2
t
Acy = 689°C
00 ®
:
ies
3
600
300
Meals
Acg = 807°C
5
IE
400
200
la}
200
LI.
1
2
‘
TT
2
a
wera
10"
Ourée du refroidissement
2
entre
s
6
6 10?
2
4
@
«@ 10
800 et 500°C - min.
085 (SAE 4125)
Composition: 0.26% C - 0.73% Mn - 0.243% Si - 0.016% S 0.018% P - 0.175% Ni - 1.065% Cr - 0.255% Mo Austenitized at
875°C (1605°F) for 30 min
Durée de chauft,
ad
I
Grain austénit
Ac2:
Act:
700]
7 min.
rat
me
ruie
Hae
867°C (798°C)
727°C
| Hl:
poll
lest
600
b+
An
ae)
j
Ae
i
‘|
=|
+
EEE
oa
t-m
Pehanthie
10°?
2
4
2
=
fi ia
‘je
Hee
«
=
S
I
fo
2
entre
a
2
i}
mall
§ Acg = 867°C
H 600
400
2 HH iy
f
I
Jon)
Acy = 72720
8
NTHHH
rT
T
&
SE
|
Durée du refroidissement
a
SL
aN]
Hy
:
aay il
(6. 0) 107!
in HU
} PI
ttt
a
Ke
5
HT
Ht
4
Bhs eesti easteed
ead
300
aia
ry
St
[fe
rHH
IGE.
4
4 i
=
|
Sees
e
4
HEE EHH eH
ras
hile at
1
| p
ip eae
Tih
Wists ok
{14200
Hf
il
ns
?
Guna
a, Oy
600 et 500°C - min.
081 (SAE 1435)
Composition: 0.36% C - 0.72% Mn - 0.28% Si - 0.018% S -
0.077% P - 0.006% Ni - 0.97% Cr - 0.23% Mo - 0.10% Cu
Austenitized at 850°C (1562°F) for 30 min
Durée de chauff
Durée d’austénit
600]
Température d’austénit.
vo] 1 Se OM
7 min.
30 min.
|
850°C
Grain austénit.
an
he
SVPIZTEVB
HEE
Ee
|
ES SSN
tH
1 a)SO
Te
tee
tt
|
Tet
I abe
AU
le
Bales
ape
”
|
HS
“| F+c Aaqelar
fj
oe
CoH
+oe
=
co
ia
{[I[e
= 400
HHH
x0
ees
200)
:
_
Bi a
100)
LIEN
2
4
@
0 Ot
2
pene
AUT
=
eS
eal
il
dls
opt
entre
tH)
Qui
§06Acg = 800°C
600
es
5
SEMI
aule
i ‘Sy Ra
2
62 ©Acy = 730°C
ae
—
cna
:
eee
Durée du retroidissement
7
TET
Boe
lt
it
He
ra
Ty
steel
TT TTT
i
10-2
Lon
~
‘
Hi
Eee O00!
i:
2
+++ 4200
||
6
ET
0
600 et 500°C - min.
Transformation des Aciers Fabriques dans le Benelux,
SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de
Belgium, 1967
Centre National de Recherches Metallurgiques, Brussels,
Atlas of Time-Temperature Diagrams
230
a
082 (SAE 4140)
Composition: 0.41% C - 0.82% Mn - 0.29% Si - 0.022% S -
0.035% P - 0.165% Ni - 1.005% Cr - 0.18% Mo Austenitized at
850°C (1562°F) for 30 min
Durée d‘austénit
30min
Température d'austénit.
850°C
Real ae et
THT)
leila
TTTT
7min
=
Durée dechauff,
600]
|
th.
Grain austénit
Ac 3: 801°C (769°C)
Ac 1: 730°C
2
SOUL
Ge
{|
+
E
5
Ac, = 730°C
2
| 14 Je00#
5
$
:
e
3
<Acg = 801°C
600.
“oot
200
10"
2
4
«
«10°
2
4
facie
Durée du retroidissement
i
entre
Fm mLEOn Ly
2
s
6
@ to?
800 et 500°C - min
280
Composition: 0.55% C - 0.58% Mn - 0.43% Si - 0.021% S -
0.013% P - 0.20% Ni - 0.79% Cr - 0.42% Mo - 0.19% Cu -
0.025% Al Grain size: 10-11 Austenitized at 870°C (1598°F) for
20 min
Durée dechautt.
35min.
Ourée d‘austénit.
Température d’austénit.
Grain austénit.
20min.
670°C
10-11
600)
Ac3: 782°C
(764°C)
700
600)
¢
20
2
i
&
:
3
§ 00
$
Ace = 727°C
Acg = 782°C
200
100
10"
Durée du refroidissement
entre
800 et 500°C - min.
503
Composition: 0.625% C - 0.30% Mn - 0.20% Si - 0.015% $ 0.015% P-1.60% Cr - 0.30% Mo Austenitized at 850°C
(1562°F) for 1h
800
Durée de chauff.
Tmin
Durée d'austénit.
60min.
Temperature d’austénit.
850°C
LT
+
ha
Ac 3: 792°C
Act: 741°C
700)
ETA
a
7
Grain austénit.
Ie
et
al
ae
ae
i
|
AS
oo aoe
> Acy = 741°C
:
:
$ Acg = 792°C
10°
2
‘
oot
we
2
a
EN
Gelke
10!
2
|
‘
z6
il
« 10?
2
;
©
8 10
Durée du refroidissement entre 800 et 500°C - min
SOURCE:
M. Economopoulos, N. Lambert, L. Habraken, Diagrammes
de Transformation des Aci
3
j
dans le Benelux,
ciers Fabriques
Centre National de Recherches Metallurgiques, Brussels, Belgium, 1967
Atlas of Time-Temperature Diagrams
231
290 (AISI A2 Tool Steel)
Composition: 0.95% C - 0.50% Mn - 0.24% Si - 0.011% § -
0.018% P - 0.26% Ni - 4.90% Cr-1.03% Mo - 0.22% Cu
- 0.02%
Al Grain size: 10-11 Austenitized at 935°C (1715°F) for 20 min
Ourée de chauif,
35 min.
Durée d‘austénit.
20min,
j; Temperature d'austénit. 935°C
Grain austénit.
10-11
Ac3: 806°C (798°C)
700)
Act: 670°C
800}
600)
4
IL
oa
¢ 500
J
s
M
ae
+
ay
=:
300)
i
i
Tic.
ibsOl il
200)
f
=
+
2
ae
cm
2
ie
aa
ori
ao
§ Acg = 806°C
J+
600
ear
—
|=
|
+111
t.00
east
ee
aa
ee
0! Tanto?
Ourée du refroidissement
+++
Acy = 670°C
&
pis
a=
a0
etpape!
|
: tots sO Gipeenieeiea ivan I
Sects
i:
us
1
aaleiate
tt
Sanit
100
Ie
t
+t
14+ ++-—lo
elt
fb
ST
1B
cts
ee
2
<i)
200
Ee
ve 10?
‘Pusan
atari
entre 800 et 500°C - min.
183 (SAE 6150)
Composition: 0.53% C - 0.62% Mn - 0.25% Si - 0.01% S 0.015% P - 1.23% Cr - 0.27% V Grain size: 11-12 Austenitized
at 850°C (1562°F) for 15 min
Durée de chauft.
35 min
Durée d’austénit.
1S min.
Température d’austénit. 850°C
Grain austénit.
W-12
600}
Ac3:
700}
795°C
Aci: 734°C
(773°C)
oo
soo
|
Pa
i2
5
es
o
y
iec
2
:3 Acg = 795°C
{
$
hei]a=
300
Acy = 734°C
600
:
63
400
200
20
100
10?
2
‘au
ne)
16 167
2
Ane
est
Durée du retroidissement
2
oe
OO
2
6
«¢
«10?
entre 800et 500°C - min.
311 (AISI 01 Tool Steel)
Composition:
0.90%
C - 1.07% Mn
- 0.30%
Si - 0.49%
Cr -
0.63% W Grain size: 11 Austenitized at 820°C (1508°F) for 30
min
600}
700}
Ourée de cheuft.
Durée d'austénit.
Température d’austénit,
Grain austénit
Ac3: 775°C
Ac 1: 723°C
30
min
620°C
1
Jt
lee!
if
EEE
op
eal
si
hal
(760°C)
=
*
600
=
a
©
rf
500
o
zs
Acy = 723°C
8
be
Acg = 775°C
>
*
*
a
200
5
io}
oak
100
'
ral
2
©
6 10
Durée du retfroidissement
entre
2
im
800 et 500°C
He
euentoe
2
a!
uusmrenio>
- min
tion des Aciers Fabriques dans le Benelux,
SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transforma
1967
Belgium,
Centre National de Recherches Metallurgiques, Brussels,
ture Diagrams
Atlas of Time-Tempera
232
o
ee
e
Oe
273
Composition: 0.33% C - 0.38% Mn - 0.30% Si - 1.06% Cr
- 1.01% W
for 30 min
600]
Grain size: 11-12 Austenitized
Ourée de chauff,
Durée d'austénit.
35min,
30min
Température d’austénit,
Grain austénit.
950°C
W-12
Ac3: 928°C
Ac 1; 749°C
700)
(847°C)
at 950°C
2
(1742°F)
el La
is
600}
£
100
2
3
Acy = 749°C
3
Acg = 928°C
8
Bae
ry
300
FA
200
100
10°
2
PIC
2
«
@
0 10!
Ourée du refroldissement
entre
2
«6
0 10?
2
«
«10?
600 et 500°C - min.
22
Composition: 0.64% C - 0.39% Mn - 0.67% Si - 1.20% Cr
- 1.68% W Austenitized at 850°C (1562°F) for 30 min
wo| Secsgeatien
Som
Température d'austénit. 850°C
Grain austénit.
Ac 3: 820°C
700}
TT
[|
TTT] at
ie
| |
(801°C)
Ac 1: 760°C
—: ap
20d
ate
Tele
t
= Acy = 760°C
A es
$0
i
mail rial maa
ny
a GH 0]ea isieal
0
We
,
petal
1”
2
Pe
2
Ourée
oe
8
1
du refroidissement
entre
es ves
uemento?
800 et 500°C
3
zl
ea
r
be
Acg
= 820°C
i,
:
oynea10?
- min.
509
Composition: 0.21% C - 1.46% Mn - 0.38% Si - 0.019% S$ -
0.016% P - 0.45% Mo Grain size: 11 Austenitized at 880°C
(1616°F) for 15 min
600]
700}
Durée de chauft.
Durée d'austénit.
35 min
15 min
Température d’austénit.
880°C
Grain austénit.
n
Ac3: 851°C
Ac 1: 715°C
(831°C)
600
:
i
= Acy = 715°C
300
3
2
Acg = 851°C
100
10 =
2
4
eet
2
Durée
4
6
6 10)\ enn 2
du refroidissement
entre
4
800 et 500°C
©
«8 10?
2
- min
SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformation des Aciers Fabriques dans le Benelux
‘
Centre National de Recherches Metallurgiques, Brussels, Belgium, 1967
Seen
a
wm
SEE
Atlas of Time-Temperature Diagrams
233
007
Composition: 0.201% C - 1.55% Mn - 0.26% Si - 0.019% S 0.025% P - 0.39% Cr - 0.005% Al - 0.11% Nb Grain size: 8
Austenitized at 925°C (1697°F) for 15 min
800|
Durée de chauff.
Simin.
Durée d'austénit.
Température d'austénit.
Grain austénit.
30min.
925°C
8
Ac3: 914°C
Act: 708°C
700}
|
(836°C)
600
re
&
$500
2
ff
g
= 400
rs
2
'
2
3
Acy = 708°C
Acg = 914°C
600.
ry
5
300
6
400
200
100
107
2
Pane
a
Walon
2
Durée
ek
ae
2
du refroidissement
entre
Sees
ee
ee ee
4
@
@ 10!
t
6
@
« 107
800 et 500°C - min.
275
Composition: 0.46% C - 0.39% Mn-1.40% Si - 0.30% Ni
- 1.41% Cr - 0.10% V - 0.0017% B Austenitized at 900°C
(1652°F) for 30 min
Ourée de chauft.
Durée d'austénit.
35min
30min
Temperature d’austénit.
Grain austénit
Ac3: 906°C (836°C)
900°C
Ac 1: 768°C
kg/mm?
-
Acy = 768°C
Acg = 906°C
5
Température
°C
)(Dureté
Vickers
30kg
Heese
‘
«0
10)
Ourée du retroiaissement
2
‘
+
+10
id
entre 800 et 500°C - min.
005
Composition: 0.224% C - 1.498% Mn - 0.226% Si - 0.02% S -
0.022% P - 0.037% Ni - 0.33% Cr - 0.195% Mo - 0.054% Al
Grain size: 9 Austenitized at 860°C (1580°F) for 30 min
800|
Durée de chauff.
Ourée d’austénit.
700
Ac3: 819°C
Ac 1: 702°C
35 min.
3 min.
Température d'austénit.660°C
Grain austénit
9
Acy = 702°C
Acg = 819°C
Température
°C 5S38
2s
kg/mm2
Dureté
(30kg)
Vickers
~ So=)
200
s
«2 107
2
(eae
cb 4
2
ayene
Ourée du refroidissement
w.590"
2
entre 800 et 500°C
ye
Os
2
‘
- min
Diagrammes de Transformation des Aciers Fabriques dans le Benelux,
N. Lambert, L. Habraken,
SOURCE: M. Economopoulos,
Centre National de Recherches Metallurgiques, Brussels, Belgium, 1967
Atlas of Time-Temperature Diagrams
nn
234
297
Composition: 0.70% C - 1.91% Mn - 0.35% Si - 0.009% S - _
0.009% P - 0.98% Cr - 1.40% Mo Grain size: 11-12 Austenitized
at 850°C (1562°F) for 30 min
800}
Durée de chauft.
35min.
Température d'austénit,
650°C
Grain austénit.
Ac3; 791°C
(777°C)
"12
Durée d'austénit.
700)
Ac:
30min.
mV
Ne
ph
I
he RE ea
Py
#00
be
o
| ANT
Oe
SS
Pee
Uh
SS SS
ee
een
sa]
100)
eae
1
1"
{Hed
SN FS
er
me
{44
UT
Fy
|}
7
poy Ve He
PN ISTO
ee
oe I RUESEY
HM
fhe i
fe
ee
ene
ee
Jitit
4
«@
4-4-5
epee
0 10
as ENes
2
Ve
~
IE
£a
:
‘
g
800 ~C
fj
Bp
1d
Acy = 719°C
Acg = 791°C
Lego ©
|
2
|_| {| }400
Bug
4H
Bae
2
She
—j—t—=t94
aN
Hy
ye
Durée du retroidissement
q |
++
|
|
el
ff}
A
ae
Seea
eae
the
BEE
(el
I
a
iS
Se
HH
DESL
iT
=
Ha Uk a
COAL
2
Ga
ted
<p
Se
Sesh Ae
200
=3) Cake
SS
—t—}—}-+
F+C
lI
PE
+
eat
je
300
4
+
}—_{ }
© 400
aor }+-——
Con
=F
=
aS
HE
=
Ht +
q
S
719°C
ic
:
“Hy
E
200
Le
abe:
4
6
6 10?
I
2
cn
ee
On
entre 800 et 500°C - min
312 (AISI 02 Tool Steel)
Composition: 0.85% C - 1.98% Mn - 0.40% Si - 0.46% Cr -
0.14% V Grain size: 11 Austenitized at 790°C (1454°F) for 30
min
600
Durée de chauff,
Ourée d'austénit,
Température d'austénit.
35min
30min
790°C
Grain austénit.
Ac3; 763°C
(764°C)
"
700] Ac 1; 719°C
3
E
oO
ig
600
9
‘
+5 500
3.
£i
Acy = 719°C
Acg = 783°C
8
Dureté
)(30kg
Vickers
200
2
40
enue)
10"
Durée du refroidissement
150 (SAE
2
4
@
«© 10?
entre 750 et 500°C - min.
8620)
Composition: 0.20% C - 0.80% Mn - 0.27% Si - 0.017% S -
0.018% P - 0.58% Ni - 0.49% Cr - 0.18% Mo Grain size: 10
Austenitized at 890°C (1634°F) for 15 min
800]
700]
Durée de chauft.
Durée d‘austénit.
Température d’austénit.
Grain austénit.
35min
15min
890°C
7
a
Te
if
Ac3: 831°C (797°C)
Ac 1: 698°C
-
al
itt
id
:
ae
2
F+c
in
i |
a |
~
€
E
=
0
il
:
2
po
ee
Z|
600)
7
Le
rol:
ielsicie
2
3@ 400
03000
iP
7
Ss
SRS
300
te
,
1
||
100
e
s
>
=
TT]
e+
——}
Ac3 = 831°C
5
ttt
SALE
—
—--
Acy = 698°C
600.:
fet
j=
|
Til
e
Pini
if
2
200
107?
L
BEe
F {||
4
*
=
2oe
{400
*
Sa
‘ius
tt
200
Lit
2
ea
haa!
El
2
ceuennent
?
£78
Faye
z
4
6
a
Durée du retroldissement entre 800 et 500°C - min.
SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformation des Aciers Fabriques dans le Benelux,
, Brussels, Belgium, 1967
Centre National de Recherches Metallurgiques
Atlas of Time-Temperature Diagrams
Zo
454
Composition: 0.67% C - 1.09% Mn - 0.31% Si - 0.016% § -
0.027% P - 0.75% Ni - 1.70% Cr - 0.36% Mo - 0.04% Cu Grain
size: 10 Austenitized at 935°C (1715°F) for 20 min
gee
Durée dechautf.
40min.
Grain austénit.
10
Ac3: 789°C (769°C)
Ac 1: 727°C
700)
1]
| ||
ia
=i
I
Pe
| %
$500
ia
i
| ~
Aci = T27LC
| 5
Heoo=
Acg = 789°C
1
Bt
bea
Bae:
a
|!
<
Wi
200
200
100
ag
107
2
‘
s
seen
2
Durée
‘
6
lI
6 10
du refroidissement
2
entre
4
és
800 et 500°C
- min
107
2
4
6
TD)
6 10
458
Composition: 1.485% C - 0.80% Mn - 0.46% Si - 0.028% S 0.028%
P - 0.40% Ni - 1.24%
Cr - 0.55% Mo
Grain size: 10
Austenitized at 830°C (1526°F) for 1h
600)
Durée de chauft.
Tmin.
Ourde d'austénit.
60min
Température d’austénit.
830°C
10
Grain austénit.
Ac3: 777°C (760°C)
Ac 1: 736°C
700]
eo
i
2 Acq = 736°C
io
i
S
& 400
§
;
:
”
Acg = 777°C
200
100
1'
2
Ourée du rziroldissement
entre
800 et 500°C - min.
113 (SAE 4340)
Composition: 0.43% C - 0.49% Mn - 0.33% Si - 0.008% S 0.02% P - 1.51% Ni - 1.10% Cr - 0.33% Mo Grain size: 9-10
Austenitized at 830°C (1526°F) for 15 min
wo]Birks Sastanh
Si
Temperature d’austénit.
IT]
830°C
Miter ley cays ee
700]
leant aletal
Ac 1: 721°C
Ty]
colt
ttt
tt
=I
AEN
Tile
alas
LH
Pasi
LE
an|
|
4
“
este
a
.
2
1)
ali)
rien
d
ML
i
ie
LTE
4
i=
rig
n
4
E
TEER Allies
fel tt
anna
=
200
107
nee
Oe
wool |bgt
of
LAU
Panes
Oe
JG
|% ens
AA
=3
'
ao
HHT
HU
ee
4
ra
a
=a
2
2
4
©
0 1?
1800
Acg = 776°C
§
+4444
|
|
e
Boi
4
«© 0 10!
Durée du retroidissement
pa —+-
=
2
400
Se
HAL
ipso
Peerym|
ale
Il‘
Acy ee
= 721°C
2
lk
200
4
6
0 0
entre 800 et 500°C - min
le Benelux,
Diagrammes de Transformation des Aciers Fabriques dans
SOURCE: M. Economopoulos, N. Lambert, L. Habraken,
1967
Centre Notional de Recherches Metallurgiques, Brussels, Belgium,
OS
EEE
Atlas of Time-Temperature Diagrams
236
ee
453
Composition: 0.345% C - 0.42% Mn - 0.43% Si - 0.015% S 0.015% P - 3.43% Ni - 1.36% Cr - 0.23% Mo - 0.041% Al 0.19% Cu Grain size: 10 Austenitized at 910°C (1670°F) for 30
min
ee coat kore ieee
Température
d'austénit.
Grain austénit
10
Ac 3: 783°C (760°C)
Ac 1: 678°C
700}
SPER
°
t+
%
cot
900
2 400
ft
|
slim li
ais
=
Bai
zie
-+-+|—
|
LL
7
Seog
PC
i
al COU
910°C
teas
Ea
i
safe
TSIEN
CS
4
|
Pre
a
-
SATE
+
So SS
°
Salta
i
=
4
Se
HH
evra
%
H]
=
'
H
tt
Lethal!
300}
200
g
ae)
++} {800-6
|
loa
| |400
ee
1
:
-—
;
M
ers
=
783°C
200
BoE
=F
2
10°!
Acg
5
a5
100
Acy = 678°C
<
soot
Durée
ae)
du
refroidissement
entre
800 et 500°C
‘
—
in+ 107
4
2
Leto
2
ipeaioe
- min
295
Composition: 0.54% C - 0.53% Mn - 0.36% Si - 0.005% S -
0.011% P - 3.14% Ni - 1.02% Cr - 0.34% Mo Grain size 12
Austenitized at 850°C (1562°F) for 30 min
600}
Durée de chauff
Durée d’austénit.
35 min.
30 min
Temperature d’austénit,
Grain austénit.
850°C
Ac 3: 764°C (749°C)
Ac 1: 677°C
700]
600}
i:
500
2 Acy= 677°C
;
wo
5 400
§
Acg = 764°C
600.
300
5
400
200
200
100)
1
2
4
«
e 10!
2
4
¢
6 10
Durée du refroidissement
2
entre
4
©
0 10?
2
4
© «10°
800 et 500°C - min.
504
Composition: 0.25% C - 0.469% Mn - 0.235% Si - 0.023% S 0.007% P - 3.65% Ni - 1.65% Cr - 0.395% Mo - 0.008% Nog -
0.013% Al Austenitized at 875°C (1605°F) for 30 min
600]
Température d’austénit.
Grain austénit.
700}
Ac3: 806°C
Ac 1: 656°C
an ioeammanAne
Pannriiil
35min
Durée de chauff.
Durée d‘austénit.
30min
ine
875°C
he
(764°C)
ih
eI
liligienal line
|
fs
Fe
Se lie et ee ce eel
[
JUL,
mle
IL
i
ATES
CECCHICrH
CEE
HE
TET tt) 2
ea
.5}
SSS
ae.
CEES
Vela
HH
}
=
PET
.e
TE
LT
100)
10°!
+i
2
4
eoot
aie
Gg
Elsie
ales
ni
@ 400)
wok
|
eS) al
al
BCE
:
i
ae
£
4
¢
ia
Bis
:
Br a
6 10!
entre
2
%
§
bel
LU
aes
+
8 10
3 Acy = 656°C
Acg = 806°C
“HHH MH £00 &
+f
jet] |.
Durée du refroidissement
ret}
600
il
ans
1
2
;
Jeet
—
ti}
HET
A
7
200
aoe
800 et 500°C - min
SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformatio n des Aciers Fabriques dans le Benelux,
Centre National de Recherches Metallurgiques, Brussels, Belgium, 1967
Atlas of Time-Temperature Diagrams
|
237
114
Composition: 0.36% C - 0.50% Mn - 0.31% Si - 0.014% S -
0.02% P - 4.04% Ni - 1.99% Cr - 0.54% Mo - 0.28% Cu Grain
size: 9 Austenitized at 825°C (1517°F) for 15 min
800
Durée de chauff,
35min
an .
Durée d'austénit.
Tempereture d'austénit.
1Smin.
IS &
a
eee encome)
700)
Tale
heed Na
4
|
Ac 1: 658°C
eerie
600]
Z
aban
$0
y
H
|
mT
=
LT
nl
|
Me
SS
IL
Q
=e
I
rir
|
=]
HUT
ra
|
+
T
| al
:
a
|
S
3
Acy = 658°C
§
Acg = 801°C
a
FJ
600.
300
=
K
‘
r
200
B
&
:
10”
2
<erement
ae
Ne
ee
Durée du refroldissement
‘4
2
entre
4
=4LHy
Me
iti
6
ie
400
a
|
PE
m);
6
2
s
200
@¢ «00?
800 et 500°C - min.
Sz
Composition: 0.37% C - 0.58% Mn - 0.41% Si - 0.007% S -
0.021% P - 0.53% Ni - 16.20% Cr - 1.10% Mo Grain size: 8-9
Austenitized at 1000°C (1832°F) for 30 min
800
Durée de chauff.
40 min
Durée d'austénit.
30min.
Temperature d'austénit.
Grain austénit.
1000°C
8-9
Ac3: 887°C
Ac 1: 807°C
700]
(858°C)
us
(Anish
|_| |
je
alle
Hill
'g500
ae
"
ti
§ 400
=}
41
Cl
3
i
| :
a
+
|
=e
=
|
=
|_|
$
al
300
Acy = 807°C
BOO
Ie
|
Acg = 887°C
L600=
:
400
200|
as
100|
It -
10°
-[4200
aia
L
2
SSSwEee
ae)
(ener
2
Ourée
esis
10!
du refroidissement
entre
1
z
oe
800 et 500°C
0) 107
Je
?
Gu
ie ie
- min
206
Composition: 0.325% C - 0.54% Mn - 0.22% Si - 1.103% Cr 0.63% Mo - 0.17% V Austenitized at 850°C (1562°F) for 30 min
Durée de chautt.
Durée d‘austénit.
35 min.
30 min.
eee
Température d’austénit. 650°C
Grain austénit.
Ac 3: 858°C (797°)
Ac 1: 736°C
4
:
-2
5
:
Acy
—
=
736°
736°C
3 Acg = 858°C
600.6
3
400
200
¢
« 10!
Durée du retroidissement
2
Grewia
seito®
2
entre 800 et 500°C - min.
Diagrammes de Transformation des Aciers Fabriques dans le Benelux,
SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Belgium,
1967
Brussels,
Centre National de Recherches Metallurgiques,
Atlas of Time-Temperature Diagrams
238
nya
451
Composition: 0.20% C - 0.70% Mn - 0.57% Si - 0.009% S -
0.016% P - 0.23% Ni - 1.18% Cr - 1.15% Mo - 0.27% V Grain
size: 10-11 Austenitized at 960°C (1760°F) for 15 min
Ourée de chauff,
Durée d‘austénit.
Température d’austénit,
35min,
15min.
960°C
Grain austénit.
10-11
Ac3: 907°C
(872°C)
°
|
JME
{+t} 4 4 44
4-
vi
__j—++
+
Ac 1: 749°C
F+C
i
Selet
Sie
NE
-
a
ry
s
€
=!
£
:
alia
i
panes
H
+ Acy = 749°C
ss
|
|
IE
ee
teetests
“L
|
+—+
AS
§
--¢—+-
HHT}
B
2
Garemenit
2
Durée
a
we
du retroidissement
entre
Lit
«
800 et 500°C
- min.
«10!
“
Acg = 907°C
600
;
+
[
6
107
coo 8
400
++
{200
4
aa
oat
368
Composition: 0.28% C - 0.24% Mn - 0.29% Si - 0.005% S 0.024% P - 0.18% Ni - 2.68% Cr - 2.84% Mo - 0.50% V Grain
size: 9-10 Austenitized at 1020°C (1868°F) for 30 min
Durée de chauff,
Durée d'austénit
40min
30min
Temperature d’austénit.
1020°C
Grain austénit,
Ac3: 949°C
(885°C)
9-10
Ac 1; 807°C
Se
£
$
3 Acy = 807°C
i
8
§ Acg = 949°C
Ourée
du refroidissement
entre
800 et 500°C
- min
294 (AISI D2 Tool Steel)
Composition: 1.62% C - 0.40% Mn - 0.48% Si - 0.01% § 0.024% P - 12.44% Cr - 0.80% Mo - 0.83% V Grain size: 9-10
Austenitized at 1030°C (1886°F) for 30 min
600}
700}
Durée de chauff.
Durée d'austénit.
45 min.
30min,
Température d’austénit.
1030°C
Grain austénit.
Ac 3: 850°C (829°C)
Aci: 807°C
9-10
eed
if
$7
> Acq = 807°C
$
600®
oe
§
Acg = 850°C
600.
7
3
400
200
iron
10°"
|
2
4
d
eet
LI
2
‘
¢
200
¢ 10!
Durée du retroldissement
2
Fi
ew
entre 800 et 500°C - min.
SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformation des Aciers Fabriques dans le Benelux,
1967
Centre National de Recherches Metallurgiques, Brussels, Belgium,
Atlas of Time-Temperature Diagrams
239
271 (AISI S1 Tool Steel)
Composition: 0.415% C - 0.34% Mn - 0.52% Si - 1.40% Cr 0.31% V - 2.28% W Austenitized at 900°C (1652°F) for 30 min
Durée de chaff.
Binin.
=
Ourée d ‘austénit.
Température d'austénit.
30min.
900°C
700}
Ac 1: 750°C
Grain austénit.
|
44
Acd: 861°C (834°C)
anil 4
aut
sal
alcq
F soo LE?
bod
nil
i
bet
Lt
o l_ |
|
aaa
rth
TTT
2
+
Hill
HHT
CTEanil
}
107
"
|
;
amen
:
ri
cy =
750°C
:a§ Ace 3 = 861°C
CET
ua
tml
TTT
PEC
H
RUBEEII
300
_
TTT
Ho
anull
nil
we.
§
100)
11
i
: tl
TT
Sagoo
ne
Com
pel
TET
Se)
;
s
anil
LT
;
Hee
eee
ne
in
2
es
@
0 10!
Durée du refroldissement
2
s
6
0 0
entre 800 et 500°C - min.
367 (H 13)
Composition: 0.37% C - 0.34% Mn - 0.94% Si - 0.015% S 0.02% P - 4.80% Cr - 1.34% Mo - 1.19% V Grain size: 10
Austenitized at 1020°C (1868°F) for 15 min
aaa ors
700}
.emperature d'austénit.
1020°C
Grain austénit
Ac3: 923°C
(879°C)
Ac: 643°C
10
oo
:
fen
+ Acy = 843°C
H
ce
8
§ Acg = 923°C
200
100
1o'
2
4
eke tt
2
Durée
4
ST
du refroidissement
entre
ae Te
«
800 et 500°C
- min,
« 10?
2
4
6
6 10°
006
Composition: 0.18% C - 1.36% Mn - 0.21% Si - 0.025% S 0.014% P ~- 0.91% Ni - 0.26% Cr - 0.37% Mo - 0.057% V 0.048% Al Grain size: 9 Austenitized at 900°C (1652°F) for 30
min
pl
eon
Température
700]
ae
d'austénit.
Grain
austenit
Ac3:
826°C
A
l|
|
900°C
9
Be
Ac 1. 686°C
4 eI
ie)
Nae ae
ee sy
L
ia] aap ee
F+cC
le
se
Ap
aie
Vid
aaa
‘ae
iN
a
|
Hill
Eee
2
oe
ia
:
lalalime
ae
q
4}
:
SS
aecamel
a
TH
a HO1 Bi
100
ear
Sa
oe
=
HHItSHiHt++tHHt
iF
ee
slo:
ik
ea
Eats
aie
Ourée du refroidissement
f =e
ef
ekaspe
1}
.
3
400
lesralelLd
-
a
2
£
EE
b
§ Acg = 826°C
aie
AS
STEN
ian
+ Acy = 686°C
&~
Satine
‘
|} 1 24} }
ce
£
ee
Peles
oa,
iW
alrelal
300
zoo}
r
«© 0 0!
poppy
2
200
pt
.
6
6
entre 800 et 500°C - min.
Fabriques dans le Benelux,
opoul os, N. Lambert, L. Habraken, Diagrammes de Transformation des Aciers
SOURCE: ; M. Economop
hes Metallurgiques, Brussels, Belgium, 1967
rc
e National de Reche
Centr
e
e
Atlas of Time-Temperature Diagrams
240
a
502
Ni Composition: 0.29% C - 0.52% Mn - 0.32% Si - 1.34%
Austenitized at
0.77% Cr - 0.25% Mo - 0.19% V Grain size: 10
900°C (1652°F) for 1 h + 800°C (1472°F) for 30 min
800
Durée de chauff,
Durée d'austénit.
Tmin
§P min + 30min
Temperature
900°C
d’austénit,
Cc
Grain austénit
Ac 3: 853°C
Ac 1: 709°C
700]
‘e
600)
£
2
roe
IH
:
ue
oat
+
WH
sei
eee
300
Bee
Ht
"8
2
s
6
01
2
[ota
ee
Durée du refroidissement
entre
=I
3
oe
a
107
§ Acg
= 853°C
t+}
at
200
Acy = 709°C
2
:
aes
FCA
2
4
800 et 500°C - min.
501
Composition: 0.22% C - 0.76% Mn - 0.32% Si - 0.023% S 0.012% P - 2.657% Ni - 1.276% Cr - 0.51% Mo - 0.203% V -
0.002% Al Austenitized at 875°C (1605°F) for 30 min
wol Cats
Som
Température d’austénit.
~ | Grain austénit.
Ac 3: 630°C
875°C
700]
ISTE
|
Ac 1: 689°C
ii
fame
| |||
‘| |F
| tae
600)
|_| [
H
|
g 200
LI
;
Ut
=e 400
=
aaa
caus:
Jal
Be
A
.
:
|
200
SSM,
SS
SElghy
td
100
|
107
2
4
«
=
er Het Wetec
cd
an
6 107
eal
el
2
See
oO
§5 Acg =mee 830°C
|
%
2
ale ale acm
ete
ceus
2
entre
s
=
+44
Ourée du retroidissement
E
3 Acy = 689°C
[
saci anTRTTsereMiusest
=e
~
bai
os
ee
©
06 10
eeent
2
800 et 500°C - min.
452
Composition: 1.16% C - 0.30% Mn - 0.57% Si - 0.009% § 0.006% P - 0.71% Ni - 1.79% Cr - 0.27% Mo - 1.30% W Grain
size: 10 Austenitized at 880°C (1616°F) for 15 min
800}
700)
:5
600
#
500
$
Durée de chauft
35 min
Durée d'austénit
Temperature d’austénit.
Grain austénit
15min
880°C
10
Ac3: 780°C
Ac 1: 736°C
(769°C)
H
el.
IEE
=| i4
-
ee
a
kates]
ar ain
F soo
in
AS ot
e
ss
17
Bae
200
Ie
ale
10°!
‘
=>
os
8
:
8 Acg = 780°C
i
SEH
iJ
LMT
2
'
H
H
a
:¢ Acy = 736°C
4
+i :
300
E
<4
LY,
$
L
é
Trt
|
Pt UE
cna
2
Durée
|
4
=
«
«10!
du refroidissement
entre
2
#
6 10?
800 et 500°C — min.
SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformation des Aciers Fabriques dans le Benelux,
1967
Centre National de Recherches Metallurgiques, Brussels, Belgium,
Atlas of Time-Temperature Diagrams
241
354
Composition: 0.545% C - 0.46% Mn - 0.26% Si-4.12% Ni 1.16% Cr - 0.48% Mo - 0.80% W Grain size: 8 Austenitized at
900°C (1652°F) for 1 h + 850°C (1562°F) for 30 min
Température d’austénit
Cc
Grain austénit.
Ac3: 782°C
Ac 1: 660°C
700}
ene
8
si
%
#500
j3
~
Acy = 660°C
$
Acg
ES
fo}GC
=
782
Acy
= 794°C
wory
& 400
1600
300
:
11400 a
200)
14200
100
1
2
4
¢
6 10
2
Durée
4
«
6 10?
du retroidissement
2
entre
JE
¢ 6 10°
‘
800 et 500°C
2
4
«
6 104
- min.
361 (AISI H 21 Tool Steel)
Composition: 0.31% C - 0.32% Mn - 0.41% Si - 0.014% S -
0.013% P - 0.31% Ni - 2.36% Cr - 0.22% Mo - 0.32% V - 8.59%
W - 0.16% Cu - 0.013% Al Grain size: 9-10 Austenitized at
1130°C (2066°F)
600}
Durée de chauff.
Durée d‘austénit
6 min.
Omin
Température d'austénit.
1130°C
Grain austénit.
Ac 3: 910°C
700]
Z|
all
9-10
o
7
e
|
(854°C)
son
t+
Baail
o
raleoo
nS
HT
Sen
imnnniin
10
si
eh
‘
‘
aieaaatatalet
|
=
Li
¢
a
aul
2
8
:
a
THe |
Peai
TT
aaa
ae
ca-ent
:
i Acg = 910°C
ae
SENT
2
|
i=}.
1
Base te 4
sol CAT)
i
wath
im
i
M+
200
4
Wa
i
300
Uh
Fec
Ac 1: 794 at
ae
‘ar
le
te
Durée du refroidissement
2
entre
s
800 et 500°C
6
«
- min.
411 (AISI M2 Tool Steel)
Composition: 0.95% C - 0.24% Mn - 0.28% Si - 0.018% S -
0.006% P - 4.64% Cr - 4.80% Mo - 2.45% V - 7.12% W Grain
size: 9-10 Austenitized at 1230°C (2246°F)
000}
Durée de chauff.
Durée d'austénit.
Smin.
Omin
Grain austénit
-10
w
Température d’austénit, 1230°C
Ac3: 910°C
700)
Ac1:624°C
Ht
ant
a
609
ttt
0
HH i
os
ial
be
ine
HH
300
+H
- ele
Malle
il
BY
Chest
ne
(879°C)
Da
|
Lo
|
ai
IL
iG
:
h
iv
oF
|
;
:
:
[cs
val
}
Acy = 824°C
8
-
:§
Acg = 910°C
3
M+
a
;
r
ie
100
0”
L|
wT
{4444
2
4
eet
2
4
@
@ 10)
Durée du retroldissement
entre
2
Ce
OTR
900 et 600°C - min.
, Diagrammes de Transformation des Aciers Fabriques dans le Benelux,
SOURCE: M. Economopoulos, N. Lambert, L. Habraken
Belgium, 1967
Brussels,
iques,
de Recherches Metallurg
Centre National
ee
TT
Atlas of Time-Temperature Diagrams
242
365 (H 11 Tool Steel)
Composition: 0.40% C - 0.48% Mn-1.01% Si - 0.01% S - 0.014%
P - 0.36% Ni - 5.13% Cr - 1.72% Mo - 0.50% V - 0.25%W -
0.13% Cu - 0.015% Al - 0.11% Co Grain size: 11 Austenitized at
1010°C (1850°F) for 20 min
Durée de chauft.
Durée d’austénit.
800
Se
'
Tatalilne
40 min
20 min
eat Set
Pee
ee
Pema
|
a :
ial |
eu ale ol
ea
|
|
tt
i
Wier
yt
Dene
600)
eae
JESS
LLL
Mes
Let
bs
°
I
s
SMe
§ 500)
Ly
300
POCA
I~
200
aie 1
=
10"
2
A
envent
2
Durée
a
Say
eht0"
du refroidissement
=
entre
Bal
=
00
Litt
(elle
CNS
Acy = 814°C
§ Acg = 878°C
600>
B
.
=
2
aie
Teenie,
800 et 500°C
z
an
=
we
ae
+
f-
I
apes
£
Oak
$—-
liste
100
a
A
:
- min.
405 (T 15 Tool Steel)
Composition: 1.42% C - 0.43% Mn - 0.38% Si - 0.025% S 0.005% P - 4.42% Cr - 0.70% Mo - 4.55% V - 12.99% W 4.97% Co Grain size: 8 Austenitized at 1250°C (2282°F)
Durée de chauff.
Smin
TTT
Tamolatce uti, 20°
dl RS TS
800
Durée d'austénit.
Omin
pat
|
CO
pas Ee
+
Oy
eee
rT I
|
|
[set
Nett
i
ce
E
$
¢
i
8
Acy = 851°C
§ Acg = 910°C
10°!
2
cumen
cates
2
Ourée
4
6
it
0 10!
du refroidissement
entre
2
4
6
Lit
© 10?
eels
2
a
en
enion
900 et 600°C - min.
412
Composition: 1.19% C - 0.31% Mn - 0.29% Si - 0.021% S$ 0.01% P - 4.54% Cr - 5.10% Mo - 3.29% V - 7.92% W
- 12.27% Co Grain size: 11 Austenitized at 1200°C (2192°F)
Durée de chauff.
Smin
d'austénit.
Omin
Temperature d’austénit.
1200°C
Ourée
800]
Grain austénit.
Ac3: 912°C
700}
Tal
iy
tt
(888°C)
ah
fp
a
re
Ac 1: 856°C
=
e
=
=
600
i.
‘e 500
P=
3
2
$
lf
or
e00 ®
5
3
600 o-
300
Acq
= 856°C
1
Acg = 912°C
:
400 y
200
200
100)
10°
Ne
2
1} tiiit
4
oot
ie
2
4
Wad
6
Ll
© 10!
Durée du retroidissement
entre
2
bail
©
900 et 600°C
6
© 107
le
7
‘mors
- min
SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformation des Aciers Fabriques dans le Benelux,
Centre National de Recherches Metallurgiques, Brussels, Belgium, 1967
Molybdenum Steels
CCT Diagrams
Atlas of Time-Temperature Diagrams
245
Chromium
Steel Series
Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.40% Mo -
0% Cr Grain size: 5-6 Austenitized at 1010°C (1850°F)
Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.40% Mo 0.16% Cr Grain size: 5-6 Austenitized at 1000°C (1832°F)
.
XN
“ oe 4 Chain
ee
ere
57
1330
Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.40% Mo 0.30% Cr Grain size: 5-6 Austenitized at 1000°C (1832°F)
Composition: Fe - 0.50% C - 0.9% Mn - 1.20% Si - 0.40% Mo 0.48% Cr Grain size: 4-5 Austenitized at 1015°C (1859°F)
1
10
100
1000
10,000
100,000
COOLING TIME FROM Ta, SECONDS
PF = polygonal ferrite
P = pearlite
CRmin CRmax = min and max cooling rates for obtaining good dual-phase structures in coiled strip
PF, PF75 P, = min times for PF-start, 75% PF, and P-start
Dual-Phase Steel,”;
:
ition of an As-Rolled
imi the Compositi
to Optimize
i
"Usi CCT Diagrams
is, "Using
- A.P. Coldren, G.T. Eldis,
1980, pp 41-48
March
3,
No.
32,
Vol
Society,
Materials
&
Metals
Anta Daieahot Metals), a publication of the Minerals,
ON
JOM
Atlas of Time-Temperature Diagrams
246
Steel Series
Molybdenum
1200
1100
2000
Ta = 1025 C (1875)
Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr 0% Mo Austenitized at 1025°C (1877°F)
ted Ac3 = 990C
300
“
;
:
4
.
5
ee
OG
\2
1800
1600
:
=
;
Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr -
0.15% Mo Austenitized at 995°C (1823°F)
Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr -
0.30% Mo Grain size: 6 Austenitized at 1010°C (1850°F)
Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr 0.38% Mo Grain size: 4-5 Austenitized at 1015°C (1859°F)
Ta = 1020 C (1870 F)
000
Rez = 985
1805] 180
900
-
Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr -
x
Ny
: 300
a:
0.50% Mo Grain size 6 Austenitized at 1020°C (1868°F)
700 Facy
=725¢
oe
F
1400
so
Snel
;
PFs
1600
NL ORatn
‘
i
PF 75
SF
gt 1200
Ps
1000
1
10
100
1000
10,000
100,000
COOLING TIME FROM Ta, SECONDS
PF = polygonal ferrite
P = pearlite
CRmin CRmax = min and max cooling rates for obtaining good dual-phase structures in coiled strip
PF, PF75 P, = min times for PF-start, 75% PF, and P-start
SOURCE: A.P. Coldren, G.T. Eldis, "Using CCT Diagrams to Optimize the Composition of an As-Rolled Dual-Phase Steel,” JOM
(formerly Journal of Metals), a publication of the Minerals, Metals & Materials Society, Vol 32, No. 3, March 1980, pp 41-48
—————
rr
a.
sienna
ee
Atlas of Time-Temperature Diagrams
247
Silicon Steel Series
Ty = 970 C (1780 F)
Composition: Fe - 0.07% C - 0.93% Mn - 0.99% Si - 0.27% Mo
- 0.32% Cr Grain size: 7-8 Austenitized at 970°C (1778°F)
:
:
Composition: Fe - 0.07% C - 0.93% Mn - 1.50% Si - 0.27% Mo
- 0.32% Cr Grain size: 4-5 Austenitized at 1020°C (1868°F)
Composition: Fe - 0.07% C - 0.93% Mn - 2.00% Si - 0.27% Mo
- 0.32% Cr Grain size: 5-6 Austenitized at 1095°C (2003°F)
COOLING TIME FROM Ty, SECONDS
PF = polygonal ferrite
P = pearlite
CRmin CRmax = min and max cooling rates for obtaining good dual-phase structures in coiled strip
PF, PF75 P, = min times for PF-start, 75% PF, and P-start
saa
+) Tai
f
Heat
iti
=
d Dual-Phase Steel,"’ JOM
A-P. Coldren, G.T. Eldis, Using CCT Diagrams to Optimize the Composition of an As-Rolle
isouenel ctMetals), a publication of the Minerals, Metals & Materials Society, Vol 32, No. 3, March 1980, pp 41-48
ee
ee
mee
248
Atlas of Time-Temperature Diagrams
0.10% C - 0.7% Mn - 0.3% Si Steels (Mo Additions)
Composition: Fe - 0.09% e - pe Mn - 0.29% Si - 0.28% Mo
Austenitized at Acg + 30°C (54°F) for 12 min
Composition: Fe - 0.10% C - 0.74% Mn - 0.29% Si Austenitized
at Acg + 30°C (54°F) for 12 min
1000
|
800
i
uy«
600
Sere
SS SS SS
SS
Soe
==
te
=
a
|
}——
S500)
a
t
\
4
|
iy
|
1
(aso) | |
!
Seconds
(126125118117
114
;
ay
|
=
é
s
w
S
tsii
$
Fe
-
&
F
>%
4my
=
ws
a
400
200
(106
i
aie
109,000
32
Boab
1,000
.
<a
1
4
Minutes
ee
|
110)
ie
«m
600
s+
10,000
1,000
100
f
= ee
135)
Up
!
—
al
fe
S
a
!
Iealre
|
|
10
{1
!
t
1
|| pee.
1000
}
—+ |
100
2408
=
i
|New
200
bis
Se
:|
fla
SSN NN
|
1600
50
Sy)
yy
200
=
Iw
.
N=
1800
|__| Acs= 890¢
Sas
SESS
a
Es
&i 400
0
\
SSS
PS
a
ee
-
ett
REN_|.
Loe
Acy = 70 pss
==
700
Ct
|
|
AUSTENITIZED AT 920 ¢ 7s 12 Gunes
900
a
10
1
10
Minutes
=A
30
Hours
n
100
—
SS
1
10
4
1,000
30
Hours
Composition: Fe - 0.10% C - 0.71% Mn - 0.29% Si - 0.54% Mo
Austenitized at Acg + 30°C (54°F) for 12 min
1000
i]
5 915 ¢
[acy =
C
TEMPERATURE,
TEMPERATURE,
F
100,000
Seconds
it
10
;
Minutes
T
7
100
1,000
RCI
a re
1
4
TIME
SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
a
a
a
Atlas of Time-Temperature Diagrams
249
0.10% C - 0.7% Mn - 0.3% Si - B Steels (Mo Additions)
Composition: 0.096% C - 0.66% Mn - 0.32% Si - 0.0048% B
Austenitized at Acg + 30°C (54°F) for 12 min
1000
eR
AT 915 C ee 12 MTS
900
}
|
1
| |
|
|
800
700
2
= 710 C
Lt
600
%
500
Il
i
Fe 400
peat
Ey
300
=
a
Bo
Ac,
||
C
Ge
AUSTENITIZED AT 960 C FOR 12 MINUTES
1600
1400
2
1 tiz00
w
i
1
Ie
iL
‘
152
.
10
See
131116)
(111
w
ra
a
a
ri
ii)
101
10000
10
400
4
103
e00
i
32
100,000
100
Minutes
600
+|
| ;
ls
1,000
1
TIME
162M
Ae
we
=
{11
|
S
800
tT
100
=
5
5
allah
NY
.
ES
| $1000
| \\
|.
2
w
‘3
|
Noe
1
885
(
30
—
io
0
=
N10,
=
) wl
a
|—+
200
1800
H
SS
SES
QKG2SExe
w
=
5
=
|
Ac)
|
sua
Composition: 0.097% C - 0.70% Mn - 0.36% Si - 0.26% Mo 0.0050% B Austenitized at Acg + 30°C (54°F) for 12 min
i
1
10
1,000
AP
ay
100
ae
1,000
1
30
Mines
TIME
10
Hours
10,000
1
ue
4
100,000
10
uy
30
Hours
Composition: 0.093% C - 0.70% Mn - 0.36% Si - 0.51% Mo -
0.0054% B Austenitized at Acg + 30°C (54°F) for 12 min
1000
AUSTENITIZED AT 960 C FOR 12 MINUTES
|
1
vai
|
900
;
t
{t
leben}
i
=o
Se
‘
el
|
|
\
|
800
700
°
Ac=
200¢
Sipe
N=
LEA
|
Net
500
SEA
& 400
este]
SHAS
|
Neely
1 |
1
|
t
1
10
243
226)(227
|
‘
\
(213,
207
|
131
1
10
Minutes
TIME
ao
=
200
116
100
we
1
z&
400
|
+
225)
'
—-
Holla}
u|
a
600
|
eer
100
1,000
10,000
100,000
ein
ol ee
secant
SOURCE:
SSRs
1]
|
|
1200)
1\ 4
{jt
309))
9 |
1000
|
0
}
~
—— —
200
100
-
| | |f2400
pean
;
===
leant seta
1 AA
300
£1800
| -1600
PEEOEA
1 |
i
|
|
1
=> : 105,
|
\
&
oe
3
wW
i+
|
1
Ac3 = 930 C'
32
1,000
4
10
30
Hours
Alloys, Climax Molybdenum Company, Greenwich CT
Witold W. Cias, Austenite Transformation Kinetics of Ferrous
ee
ee
eC
Atlas of Time-Temperature Diagrams
250
0.37% C - 0.5% Mn
- 0.30% Si Steels (Mo Additions)
Composition: BOGE - 0.50% Mn - 0.32% Si - 0.077% Mo
Composition: 0.37% C - 0.49% Mn - 0.32% Si - 0.0033% Mo
Austenitized at 843°C (1550°F) for 20 min
2088
AUSTENITIZED
Austenitized at 843°C (1550°F) for 20 min
1800
|
|
STS TERITIRED AT 849 C FOR 20 ae
1000
AT 843 C FOR 20 MINUTES
|
a
1600
800
©
u
o
~
w
=
=
rm
2
é
we“
=
&
500
:
3
=
a
S
3
400
ras
e
be
1400
700
Minutes
100
1,000
Ue
Been
5
:
800
2
wu
600
400
100
200
100,000
a
10
Minutes
1,000
100
10
1
ae
1
10
a
=H
Hours
TIME
Hours
Lele
1000
300
100,000
10
*
200
0
ee
1200
600
Composition: 0.36% C - 0.50% Mn - 0.31% Si - 0.19% Mo
Austenitized at 843°C (1550°F) for 20 min
1000
AUSTENITIZED AT 843 C FOR 20 MINUTES
|
1800
F
TEMPERATURE,
C
TEMPERATURE,
100,000
Seconds
10
Minutes
UIE
SOURCE:
100
1
RR I
1,000
4
se] re re
10
30
Hours
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company,
aoe
Greenwich CT
32
wz
Atlas of Time-Temperature Diagrams
251
0.40% C - 0.8% Mn - 0.3% Si Steels (Mo Additions)
Composition: 0.40% C - 0.83% Mn - 0.34% Si - 0.01% Mo
Austenitized at Acg + 30°C (54°F) for 20 min
Austenitized at Acg + 30°C (54°F) for 20 min
1000
1000
AUSTENITIZED AT 790 C FOR “anid
800
|
| |1
1
900
I
ee
tell
|
|
if
=
NK
600
t
25U
400
CTEMPERATURE,
1800
biel
|
;
700
500
-|
50/
130
AT
300
200
|
al
7
|
|
|
|
;
Nig
+
~
ae
|
1200
*
| }1000
|
=
ry
=
=
S
500
800
=
aw
=&
400
{\|
||if
292)
|
|
a
|
|
|
1800
|
||
|
| }1600
|
Acy = 780 ¢
uw
=
600
F
i}
600
2H)
ry
409
200
+
200
100
32
0
qoSe ap Nak
e
EC
fF
a
|
238)
(206)(203)(203)
100
(194)
(186
1,000
172
ANA
=
TRCRERE
Be
hele x
fe
1
1
ry\A
D
aes
At (iN rt
EES,
|
|
1200
=
-
SSS
eds
€
!
|lio00
7
|
L\I_
oN5 | ||
10
10,000
1
4
1
10
289)
10
1,000
(252)(249X246)(222
100
Seconds
10
Minutes
TIME
600
ap
176
10,000
1
200
172
100,000
-
100
1,000
—————
Hours
hele
et
187
1,000
1
30
800
i
f+
599
|
Lb
\
im
|es
|
100,000
100
Minutes
+
168
a
a a
a)
a
4
10
30
Hours
Composition: 0.40% C - 0.82% Mn - 0.35% Si - 0.53% Mo
he
oO
Austenitized
at Acg + 30°C (54°F)
for 20 min:
1000
-
-
AUSTENITIZED AT 820 C)FOR 20 MINUTES
1
900
|}
i
|
||| ee
ieee:
!
||
|
|
11
|
800
700
;
Da
a
&=
-
/
400
4
300
Wit
;
}—+—+4
200
\
25
50
A
+~—75:
\
fa
i
+t
620))
*
&
800
a
:
|
600
|
1
400
1
|
351)
(279X287X258)
(258)
(250
200
|
196)
|
a7g
1,000
10,000
100,000
a
10
100
1,000
(eee
eS
N
Minutes
TIME
+|
.
100
ee
ES
i
|
|99
1200
;f1000
|
\t
i\
90°
Seconds
Nee eae. | pe
a
}
10
=
=e
|
a
|
0
—=
eA
=
|eee
~
| | | 2600
Re
TES
\
100
eae
1800
|
lac, = 790 ¢
=
PRE==
°
2
|
| |
|
|
1
4
10
32
30
Hours
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
Composition: 0.40% C - 0.80% Mn - 0.33% Si - 0.79% Mo
Austenitized at 810°C (1490°F) for 20 min
1000
1800
a!
900
1600
Ac3 = 780 C
800
a
700
>
bal
600
_-—>__- +-
Uae
Oe
Ve
aS
Tg
1400
Acy = 695 C
ices
ari
1200
1000
ss,
500
TOSSA
400
CTEMPERATURE, 7
Ths
|
{
f
tit
N\A I
i
t=
(=
==
|
800
ie
VN
1
300
RR
o>
ere
A
yi
_|
_
TEMPERATURE,
F
600
X71
50
200
\
400
90°
e
200
613
325)
(304)(333)(319)
(289)
262
183)
186
32
1
10
100
SSCS
1,000
1
TIME
10
Minutes
10,000
100,000
100
ee
1
4
1,000
10
30
Hours
Ph ase Transformation Kinetics and Hardenability of Medium-Carbon Alloy Steels, Climax
SOURCE: Witold W. Cias,
n wich
Molybdenum Company, Gree
CT
1400
Acy = 700 c
237
"
N
S
YW
H
l
|
1 810 ¢ ie 20 MINUTES
700
ih
I
|
800
1400
Ac) = 680 C
|
L
TIME
Acy = 760 .¢
———
ERED
900
1600
2
eel
coal
ii|
|
10
Seconds
i
\
\
:
Composition: 0.38% C - 0.82% Mn - 0.32% Si - 0.26% Mo
ee
ee
32
wl
=
&
3
a=
=
Atlas of Time-Temperature Diagrams
202
0.39% C - 0.8% Mn - 1.5% Si Steels (Mo Additions)
Composition: 0.39% C - 0.80% Mn - 1.48% Si - 0.26% Mo
Composition: 0.40% C - 0.81% Mn - 1.48% Si - 0.02% Mo
Austenitized at Acg + 30°C (54°F) for 20 min
1000
AUSTENITIZED
AT
870
||
C FOR
20 Ba
i
Austenitized at Acg + 30°C (54°F) for 20 min
Hak
F
TEMPERATURE,
C
TEMPERATURE,
TEMPERATURE,
F
C
TEMPERATURE,
100,000
100,000
1,000
Minutes
it
4
10
1,000
Seconds
30
Minutes
1
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum
Company,
TIME
4
10
30
TIME
Composition: 0.38% C - 0.80% Mn - 1.47% Si - 0.52% Mo
Austenitized at Acg + 30°C (54°F) for 20 min
1000
AUSTENITIZED AT 900 C als 20 MINUTES
i
H
Ie
900
LAS so
=
ee
800
iN
ee
700
oa
.
we
s
Ee
600
5G
400
eo
-
LN
t
a
}
4} 1
\ {
)
0
pp
yaa
ie
ON
737
+
200
I\
|
i
90
i
t
=
A
;
|
\
aya
|
|
el
i ||
|
'
-+
}1000
yw
=&
g00
=
rm
:
|
\
]
\i
a
ce
1 | | fa200
o
ae
iy
|
£1400
Ac, = 737. ¢
Al | DXeqr cba gesehe
a
ran
| I
|
ee
A \
| |] 1800
|
Ac, = 868 C
ean
n
LY hee
GoerS58
Eee
300
=
——
|
ertA
ae
i
}
j
SSeS
'
&
:
‘ie
i
}
He tet ete
ae
mt
C08
anny
400
Jie
100
2
0
!
| Fy
1
10
.
+
(613) | |
}
413)
100
|
=
|
10
200
212
10,000
100,000
100
Minutes
TIME
:
(235)
1,000
1
Seconct
SOURCE:
(287X 294X 287% 254)
32
1,000
1
4
oe
30
10
Greenwich
Composition: 0.37% C - 0.80% Mn - 1.47% Si - 0.79% Mo
Austenitized at 915°C (1680°F) for 20 min
1000
1800
aa
=
{4
Ac = 883 ¢
—
800
700
e
Ww5
a
{J
a
=
600
w
c+} Aey = 726 cf 1400
cS
at Al
Wiese
a
ma
oe
SSUanees
ie
NAL
&
=a
—\--+4
{KA
t
400
10.
{25
==
|
:
50
7S
200
a
1000
——-74"
=
&>
|
2
800
=
5
\
J
eee
\
ee
30
100
12000
Sse
=I! Atlee
== APTA
bi
{ia
300
=] =
rT]
oh)
9
620
0
1600
>
1
525)
10
(322)
348
100
Seconds
1,
Aine
336
294
262
1,000
10
Minutes
235,
215,
100,000
100
1
poe
32
10,000
1,000
4
10
30
Hours
SOURCE:
Witold W. Cias, Phase Transformation Kinetics and Hardenability of Medium-Carbon Alloy Steels, Climax
Molybdenum
Company,
Greenwich CT
OOOO.
CT
Atlas of Time-Temperature Diagrams
253
0.10% C - 1.4% Mn - 0.3% Si - B Steels (Mo Additions)
Composition: 0.088% C - 1.45% Mn - 0.35% Si - 0.0055% B
Austenitized at Acg + 30°C (54°F) for 12 min
1000
900
Composition: 0.10% C - 1.46% Mn - 0.34% Si - 0.26% Mo 0.0051% B Austenitized at Acg + 30°C (54°F) for 12 min
1000
AUSTENITIZED AT 880 c FOR 12 MINUTES
|
y
|
Acy = 850
H
“tit
T
a
+
"
+
ie
;
i
eh
ai
|
|
1
10
800
60
ne
400
+
197206}
(256
201}
198,
i
Minutes
|
1
122
100,000
10,000
1,000
100
10
1
TIME
200
168
179,
1,000
100
heii:
10
4
30
Hours
Composition: 0.11% C - 1.43% Mn - 0.35% Si - 0.52% Mo
0.0062% B Austenitized at Acg + 30°C (54°F) for 12 min
1000
|
AUSTENITIZED AT 930 C ro 12 MINUTES
||
|
900
ia
1800
|
i
{
les = 900 c
i
|
‘
+
800
' +1600
|
f
|{
700
1400
lem
Coe
H
Acy * 690 C
\
1200
600
500
- 253
400
CTEMPERATURE,
aaa
sE
LIE
3
AF
alae
9
|
1
300
ETERS | |f1000
SHE
Seat
i
a
eo eS
Iya
Led
+
+
1
ANS
Ni
264
319)
221224
222)(225)
(215
216)
Seconds
10
1
Minutes
TIME
SOURCE:
T
|
200
(14g)
32
100,000
100
1
400
i
10,000
1,000
:
{
|
i
100
600
H
|
10
F
TEMPERATURE,
;
!
EES
it
=I
800
\
IN Lt
1,000
10
4
30
Hours
Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
Witold W. Cias, Austenite Transformation
ee
@
&
=Ww
f 44
|
299,
=
1000
}
\y
|
!
1200
a5
Noe
en
+
30
10
1400
S
napa
=f
=
i
100
0
~,
4-
eee
So
1,000
4
|
EN
100,000
Minutes
Z
ha
PLS
“497
—
200
==
SO
seen"
Ze
300%
400
200)
TIME
They = 860 C |1699
t
BESS
2y
CTEMPERATURE,
32
al
|
500
200
i
Bi
ce)
al
870 ¢
600
F
TEMPERATURE,
Heh
1
700 Jacy »
C
TEMPERATURE,
i
nel
800
1800
|
AUSTENITIZED AT 890 C FOR 12 MINUTES |
|
ies| ea
|
T
EES
32
s
a
&2
¥
254
Atlas of Time-Temperature Diagrams
0.40% C - 1.3% Mn
- 0.3% Si - B Steels (Mo Additions)
Composition: 0.40% C - 1.32% Mn - 0.33% Si - 0.004% Mo 0.004% B Austenitized at 843°C (1550°F) for 20 min
1000
era
a
AUSTENITIZED AT 843 C FOR 20 MINUTES
1800
CTEMPERATURE,
Composition: 0.40% C - 1.33% Mn - 0.35% Si - 0.08% Mo 0.003% B Austenitized at 843°C (1550°F) for 20 min
AUSTENITIZED AT 843 C FOR 20 MINUTES
TEMPERATURE,
F
TEMPERATURE,
F
CTEMPERATURE,
Seconds
TIME
Composition: 0.40% C - 1.33% Mn - 0.36% Si - 0.18% Mo -
0.003% B Austenitized at 843°C (1550°F) for 20 min
1000
AUSTENITIZED
AT
843
C Lie 20 ears
TEMPERATURE,
C
SOURCE:
TEMPERATURE,
F
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum
SS
se
Company, ’ Greenwich CT
eeeeeeSsSsSsSsS—
Atlas of Time-Temperature Diagrams
255
0.39% C - 1.4% Mn - 0.3% Si Steels (Mo Additions)
Composition: 0.39% C - 1.46% Mn - 0.36% Si - 0.03% Mo
Composition: 0.40% C - 1.47% Mn - 0.37% Si - 0.26% Mo
Austenitized at Acg + 30°C (54°F) for 20 min
1000
Austenitized at Acg + 30°C (54°F) for 20 min
~
AUSTENITIZED
900
AT
|
830
€ FOR
1000
20 MINUTES
!
+4 !
900
800
800
700
700
600
600
500
500
js
Oo
w
=
S
«
>
w
=w
z
400
400
CTEMPERATURE,
F
TEMPERATURE,
TEMPERATURE,
F
100,000
1,000
Minutes
10
TIME
Minutes
30
if IME
Composition: 0.39% C - 1.45% Mn - 0.37% Si - 0.49% Mo
Austenitized at Acg + 30°C (54°F) for 20 min
1000
AUSTENITIZED
AT 835
1800
C FOR 20 MINUTES
1600
1400
1200
1000
w ° tS)
F
TEMPERATURE,
C
TEMPERATURE,
x
iooec°
as
AWN
100,000
Seconds
1,000
Minutes
10
30
TIME
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
Composition: 0.38% C - 1.45% Mn - 0.36% Si - 0.76% Mo
Austenitized at 825°C (1515°F) for 20 min
1000
1800
900
1600
800
1400
700
1200
600
1000
500
\
800
400
TEMPERATURE,
C
TEMPERATURE,
F
600
300
400
200
579)
(348
)(360
X493
242
360
32
10
1,000
reer
Seconds
100,000
oo
eee
1,000
100
10
Minutes
TIME
oor
1
4
10
30
Hours
on Alloy Steels, Climax
SOURCE: Witold W. Cias, Phase Transformation Kinetics and Hardenability of Medium-Carb
CT
wich
Green
ny,
Compa
denum
Molyb
a
——
Atlas of Time-Temperature Diagrams
256
0.10% C - 0.7% Mn - 0.3% Si - 0.3% Ni - B Steels (Mo Additions)
Composition: 0.11% C - 0.75% Mn - 0.31% Si - 0.84% Ni -
Composition: 0.10% C - 0.71% Mn - 0.28% Si - 0.33% Ni 0.0040% B Austenitized at Acg + 30°C (54°F) for 12 min
0.24% Mo - 0.0047% B Austenitized at Acg + 30°C (54°F) for
12 min
1000
AUSTENITIZED AT 900 C FOR 12 MINUTES
|
|
il
ae
oe
1800
poe
+ 1600
a
800
AUSTENITIZED AT 920 C FOR a
|
|
|_|
{
-
Sos
1400
=3.
i ea200)
2
‘iodo
3
=
=
24 600
Fl
é
2
800
Z
500
z
hoe
2
é
600
oy
Woe
e
|.
LIDS
/
300
om oh
ar
a
|
ue
400
200
+
200
00
ee
==
N
=F
5
Vi
(ioe)
See
2
See
SU
=
é ==
ee
—
Seconds
100,000
eS
i
10
100
9
1
ip
1
4
lo
w
ip
alle
|
|
209
188)(193
600
|
mac?
|
|
—T att
+t
189)
(175
156
118
|
200
106
100
1,000
10,000
100,000
oF
10
100
1,000
on
1
30
Minutes
TIME
Hours
1
4
10
30
Hours
Composition: 0.11% C - 0.73% Mn - 0.31% Si - 0.35% Ni -
0.53% Mo - 0.0053% B Austenitized at Acg + 30°C (54°F) for
12 min
1000
AUSTENITIZED: AT
930
oie
|
|
12 MINUTES
| | i
on)
|rf
jAcy 2 z908 c
4
800
700
°
ul
«
-E
S
rr]
S
;
‘Ac.
1800
1
|
|
| }1600
|
+4
;
il705 ¢
‘Te
1
o
SS
My
_
500
pi
—-3
1__
|
@ 400
Ty
tl
p——_—___4
200
4
—__
3
1 \
14
~~. =
=
\
\
+
1
317
1
10
215)(213}
100
Second
baat
212
209)
10
Minutes
wi
=
201
;
| llgf
600
+
q
400
7
(203
1,000
1
00
ee
tt
|
t
228
*
&
=
aeric
|
|
jo!
eo
|
:
1200
Fl1000
i
i
100
0
as
C2 ee
yall
SS Sa
ees
300
=
—
1400
750
/
600
t
10,000
1
10
o
=
200
100,000
4
=,
118
q
100
1,000
Oe
32
30
TIME
Hours
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
Seen,
a
a
*
_frooo
i
Seconds
eae
Minutes
1200
|
ey
|
1
=e
i
10
1,000
TIME
281
es
ceo
|
i
a400
=
=
Gel
| a
“102.
ip
el
\\+
ie 4
||
(002)
32
T1600
ZA
|
Soh
sees
Acz
= 890 C.
JESU
|
|
|__|
1
i
'
—
700
.
Fy
=
Het
eal
=
:
32
3
=
Atlas of Time-Temperature Diagrams
257
0.10% C - 0.7% Mn - 0.3% Si - 1.4% Ni - B Steels (Mo Additions)
Composition: 0.097% C - 0.69% Mn - 0.31% Si - 1.45% Ni 0.0048% B Austenitized at Acg + 30°C (54°F) for 12 min
Composition: 0.10% C - 0.72% Mn - 0.33% Si - 1.43% Ni 0.26% Mo - 0.0053% B Austenitized at Acg + 30°C (54°F) for
12 min
1000
AUSTENITIZED
AT 845 C FOR
(
12 MINUTES
1
AUSTENITIZEDAT 875 C FOR 12, MI
TEMPERATURE,
F
F
TEMPERATURE,
CTEMPERATURE,
CTEMPERATURE,
Seconds
TIME
Minutes
1
4
lo
30
te
Minutes
UVES
1
4
10
30
Composition: 0.099% C - 0.67% Mn - 0.32% Si - 1.46% Ni 0.51% Mo - 0.0058% B Austenitized at Acz + 30°C (54°F) for
12 min
1000
AUSTENITIZED AT 900 C FOR 12 MINUTES
|
||
——
TEMPERATURE,
F
CTEMPERATURE,
Seconds
Minutes
by
4
10
30
TIME
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
i
Atlas of Time-Temperature Diagrams
258
0.10% C - 0.7% Mn - 0.3% Si - 3,0% Ni - B Steels (Mo Additions)
Composition: 0.11% C - 0.72% Mn - 0.31% Si - 3.03% Ni 0.0052% B Austenitized at Acg + 30°C (54°F) for 12 min
Composition: 0.11% C - 0.73% Mn - 0.32% Si - 5.06% ~ 0.24% Mo - 0.0050% B Austenitized at Acg + 30°C (54°F) for
12 min
UTES |
AUSTENITIZED AT 865 C FORFOR 12 MINUTES!
Z AT 860é C FOR 12 MINUTES
AUSTENITIZED
|
|
ee a { Es |
4|
-|
|
A
F
TEMPERATURE,
CTEMPERATURE,
Minutes
1
4
10
TEMPERATURE,
F
CTEMPERATURE,
36
Minutes
TIME
1
4
10
30
TIME
Composition: 0.11% C - 0.74% Mn - 0.34% Si - 3.03% Ni 0.55% Mo - 0.0057% B Austenitized at Acg + 30°C (54°F) for
12 min
1000
AUSTENITIZED AT 895 C FOR 12 MINUTES
j
{tI
900
wu o °
F
TEMPERATURE,
C
TEMPERATURE,
1
10
100
_———
1
Sercis
TIME
SOURCE:
Minutes
:
10
10,000
100,000
100
1,000
tT
eS
1
aero ,
30
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
SSS?
Atlas of Time-Temperature Diagrams
259
0.20% C - 0.6% Mn - 0.3% Si - 3.0% Ni Steels (Mo Additions)
Composition: 0.21% C - 0.58% Mn - 0.28% Si - 2.95% Ni -
Composition: 0.20% C - 0.58% Mn - 0.31% Si - 2.90% Ni -
0.004% Mo Austenitized at Acg + 30°C (54°F) for 20 min
1000
‘ie
0.25% Mo Austenitized at Acg + 30°C (54°F) for 20 min
1000
AT 770 C POR 20 MINUTES
AUSTENITIZED AT 775 C POR 20 MINUTES
900
800
6
a
a
3S
Fa
3
2
wu
Fd
iw
@3
a
2
=
wi
1800
el
| |
||
ae
1600
|
i
|
rent
700
——=
500
iA
400
pes
tL
/
PS
‘Py
i
==
Z
&
(
pet
Sa
=
Gas
AC 400
Ac)
=
660
Cc
w
g00
pha=
300
—4-—X At I
“set
|
Pesca
600
200
fees
400
322
433
0
1,000
100
10
|Se
1
Minutes
eet
4
a
al
10
ee
1
10
seo
242235240)
227)(210'
Minutes
100,000
1,000
ean
1
200
185
201
100
1,000
10,000
or
—
100
10
1
20
4
10
30
eae
TIME
aS
198
Composition: 0.21% C - 0.56% Mn - 0.27% Si - 2.95% Ni -
0.51% Mo Austenitized at Acg + 30°C (54°F) for 20 min
1000
AUSTENITIZED
AT
795
C POR
20 MINUTES
TEMPERATURE,
F
CTEMPERATURE,
1
SOURCE:
10
eta
100
ie
1,000
ee
10
Ries
iz
gees
eS
Ws
100
TIME
eR
10,000
100,000
100
1,000
ee
st
4
10
30
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
——————_—EE_—
32
Atlas of Time-Temperature Diagrams
260
0.36% C - 0.8% Mn - 0.3% Si - 0.7% Ni Steels (Mo Additions)
Composition: 0.37% C - 0.79% Mn - 0.31% Si agies Ni .
Composition: 0.36% C - 0.80% Mn - 0.30% Si - 0.75% Ni ae
AUSTENITIZED AT 800 C FOR 20 MII
a
1800
|
|
H
|
|
for 20 min
0.24% Mo Austenitized at Acg + 30°C (54°F)
0.02% Mo Austenitized at Acg + 30°C (54°F) for 20 min
AUSTENITIZED AT 800 C FOR 20 MINUTES
l
[1
1600
1400
1200
me
e
3
2
1000
5
:
é
3
300
=
F
&
600
400
200
toons
errr
1
Hnnutes:
aS
4
Fires
=male
30
10 a ae
1
Minutes
100,000
1,000
100
10
1
Secomes
ooou
100
10
1
te 10
30
Composition: 0.36% C - 0.78% Mn - 0.31% Si - 0.73% Ni 0.49% Mo Austenitized at Acg + 30°C (54°F) for 20 min
TEMPERATURE,
F
C
TEMPERATURE,
100,000
Secon:
1
10
100
Minutes
1,000
1
4
10
30
TIME
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum
Company, Greenwich CT
Composition: 0.36% C - 0.75% Mn - 0.29% Si - 0.72% Ni 0.82% Mo Austenitized at 840°C (1545°F) for 20 min
1000
1800
900
|_|
1600
A)
=
Acy
i)
os
i
600
VT t TT
1
300
||
200
Sep eh
ee
Se
~
ile
75-\y-
alee
Le
=
Jt
600
400
L
:
585
1
§eo
&
é
a
/
‘oni a
100
1000
Va /
-
|
!
1200
[|
~
Walt
ete
lacy = 700 ¢
c
ee
/ is
Afi
A AS =
400
0
Cc
BEN.
4
500
Z&
810
1400
°
we
>S
S
a
=
m
554
10
294)(309)(297K274
100
Seconds
1
Sari
264,
1,000
10
Minutes
227
207
10,000
100
1
208
100,000
32
1,000
4
10
30
Hours
SOURCE: Witold W. Cias, Phase Transformation Kinetics and Hardenability of Medium-Carbon Alloy Steels, Climax
Molybdenum Company, Greenwich CT
eS
Atlas of Time-Temperature Diagrams
261
0.37% C - 0.8% Mn - 0.3% Si - 1.4% Ni Steels (Mo Additions)
Composition: 0.37% C - 0.85% Mn - 0.36% Si - 1.44% Ni 0.02% Mo Austenitized at Acg + 30°C (54°F) for 20 min
Composition: 0.37% C - 0.85% Mn - 0.37% Si - 1.44% Ni 0.24% Mo Austenitized at Acg + 30°C (54°F) for 20 min
1000
AUSTENITIZED
AT 800 C tw 20 MINUTES
|
eS
i
AUSTENITIZED
AT
i
800
C FOR
20 MINUTES
|
|
it
1600
\
|
1200
1000
C
TEMPERATURE,
F
TEMPERATURE,
TEMPERATURE,
F
C
TEMPERATURE,
600
400
200
100,000
Seconds
1
10
100
32
100,000
1,000
1,000
Minutes
4
10
30
TIME
Minutes
TIME
10
30
Hours
Composition: 0.37% C - 0.84% Mn - 0.36% Si - 1.40% Ni -
0.47% Mo Austenitized at Acg + 30°C (54°F) for 20 min
1000
AUSTENITIZED AT 795 C ie 20 er
900
|
|
co
i
i
"|
He
700
S
w
1800
|
!
|| 1
|
a
400
Ay
{
i
Saree
54h
=
WT
2\4
|} 1600
|Ac) = 670 Cl
|
alae
re
i
| Fro00
>
SD
=te
-
i
|
7)
Site
Se
=
s—
=
MGS
)
ee
1
Saris
.
i
\
Peee 1400
>
}
a
&
!
“+
i
g
F
ive
|
\
ni
{
t
600
=
||
1
tal
14
-
|
=
&
600
(feeb
200
++
| ie=
|
4
100
/
H
|
1 |
|
!
554)
(299)(
322327
\296
ae
|
400
=3
|
a!
| 642
a
a
|
200
242
219
H
10
100
pero
1,000
1
10,000
10
100,000
32
100
1,000
———
Minutes
TIME
SOURCE:
\ |
ata
so
1
4
eye
10
30
CT
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich
Composition: 0.36% C - 0.82% Mn - 0.35% Si - 1.41% Ni 0.74% Mo Austenitized at 825°C (1515°F) for 20 min
1800
are
1600
|
ae
|
800
eae
wi
S
=o
a
&2
o
= 685 ©.
E
600
+
500
Seance
f <tr.==
400
i
ie
ps
j—}
100
+
g00
a Eas
== eIDJe
&
Fe
&
Fs2
600
400
Ne
=
572)
(405)(421)(366)(322
m00
ite
!
9
613
0
a
y
eri Se
ee
Siena
a
SSN
eee
=
200
ts
1000
=
aot
NS
4
:
12CONae3
HT
i
si
(ess)
260
238
32
Minutes
1,000
100
10
1
TIME
100,000
10,000
1,000
100
10
1
Seconds
SOURCE:
1400
—— Ac)
700
is
‘
lAc3 = 795 C
ail
1
4
10
30
ae
Hardenability of Medium-Carbon Alloy Steels, Climax
Witold W. Cias, Phase Transformation Kinetics and
Molybdenum Company,
Greenwich CT
Atlas of Time-Temperature Diagrams
262
- 0.3% Si - 2.6% Ni Steels (Mo Additions)
0.36% C - 0.8% Mn
PC 0.36% C a 0.84% Mn = 0.38% Sii - 2.6
2.60%MSNi Composition:
ae
:
:
Composition: 0.36% C - 0.86% Mn - 0.37% Si - 2.62% Ni -
0.24% Mo Austenitized at Acg + 30°C (54°F) for 20 min
0.02% Mo Austenitized at Acg + 30°C (54°F) for 20 min
pal
AUSTENITIZED AT 760 C FOR 20 imie
|
evi
7
|
800
3
400
s
1S
meee
"11600
IL
3 = 730 c| 71400
=F
Se ee
mel
:
ty
AWA!
t=
“S
1
MAN
152
4
BON
at
100
-9
!
10
Seconds)
592
E
,f1000
ets
i
Nore
Uf
800!
\l_.}
600
++
400
i |
1
A 1 \t I
|
|
'
|
r
| |
Sait
|
=
|
|
247)
(242)(235)(245)(225
+
|
1
aN
ROTA
25 s0-K7 Jl
200
T
i (ee
i
I
a
|
-
100
a
1
———At
222
205,
Minutes
1
4
TIME
-
:RA
g
E
4
a
a
s
=
#
rs
200
100,000
10,000
aaa
1,000
100
eee
10
g
&
a
197
i
1,000
‘
%
oO
“a
1200
C
645
*
\
Ww
\ \\
Acy
ee
Nene
\\ \\
i
0
|
Pin
ort
——
=
J 600
500
im
| | lata
oO
=
pele,
[|
700
&
|
|
oe
10
32
;
=
30
Minutes
ee
100,000
1,000
(tee
;
1
4
PUTSHS
10
30
Hours
Composition: 0.36% C - 0.83% Mn - 0.36% Si - 2.60% Ni -
0.49% Mo Austenitized at Acg + 30°C (54°F) for 20 min
AUSTENITIZED AT 780
C FOR
20 MINUTES
||
SS
aS
eS
F
TEMPERATURE,
C
TEMPERATURE,
100,000
Seconds
1
10
100
Minutes
1
1,000
4
10
30
TIME
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
Composition: 0.35% C - 0.80% Mn - 0.36% Si - 2.58% Ni -
0.78% Mo Austenitized at 810°C (1490°F) for 20 min
1000
1800
900
estate!
Jol
1600
800
Aca = 780 ¢
1400
700
e
w
ne
Q
<
+j— 4
NI
600
i.
400
te
akan
—>
A
i /
300
y
i
eke
———><
200
a eeeae
oe
=
+--+ a
S=
100
Tt
1
1000
be=
a
EA Alia
w
«
erie,
alee
800
ae
a
&
=
600
/
7
S
400
13?
599
0
—
“*
=
ro
/a
|
25—)
1z00
—
500
a
=&
Acy = 655 c|
572
10
560
A498)
100
Seconds
1
mae
566514
342
1,000
10
Minutes
297
283
100,000
100
1
ay
32
10,000
1,000
4
10
30
Hours
SOURCE: Witold W. Cias, Phase Transformation Kinetics and Hardenability of Medium-Carbon Alloy Steels, Climax
Molybdenum Company, Greenwich CT
Ne
aa
a
263
Atlas of Time-Temperature Diagrams
0.39% C - 0.8% Mn - 0.3% Si - 3.5% Ni Steels (Mo Additions)
Composition: 0.39% C - 0.71% Mn - 0.39% Si - 3.53% Ni -
Composition: 0.39% C - 0.69% Mn - 0.29% Si - 3.56% Ni -
0.02% Mo Austenitized at Acg + 30°C (54°F) for 20 min
1000
1
AUSTENITIZED
900
800
AT
760
C FOR
|
I
20
MINUTES
0.24% Mo Austenitized at Acg + 30°C (54°F) for 20 min
' AUSTENITIZED AT 760 C FOR 20 MINUTES
i
|
afaif
}
|
700
600
500
400
CTEMPERATURE,
F
TEMPERATURE,
TEMPERATURE,
F
CTEMPERATURE,
100,000
1,000
Minutes
Minutes
30
Composition: 0.38% C - 0.68% Mn - 0.29% Si - 3.48% Ni
0.48% Mo Austenitized at Acg + 30°C (54°F) for 20 min
cola
1000
| AUSTENITIZED
900
H
ia
800 | -
eee
AT
775
C FOR
1800
20 MINUTES
[eeiete
eal
|
vedi
hcg © Hb C
=
i
al
1600
ld
1400
is
|
11
!
Ac, = 610 C
1200
1000
a
woo
reese
_-1--}-
C
TEMPERATURE,
a
LV tb
I
se
iV
|
SaaS
i
TINS
SSN
Ne
703
Seconds
634]
642
FTEMPERATURE,
see '5
600
Se =
90
10
800
-_—
7\4|
\
636)
100
6514
1,000
634
400
hs
Fe
556
200
372
10,000
338
100,000
32
10
Minutes
Climax Molybdenum Company, Greenwich CT
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys,
SOURCE:
EEE
Atlas of Time-Temperature Diagrams
264
0.40% C - 0.8% Mn - 0.3% Si - 4.5% Ni Steels (Mo Additions)
Composition: 0.41% C - 0.76% Mn - 0.35% Si - 4.45% Ni -
Composition: 0.40% © — OU a3 eer neo nie
oyMoe
or 20 min
0.25% Mo Austenitize
0.01% Mo Austenitized at Acg + 30°C (54°F) for 20 min
| AUSTENITIZED AT 740 C POR 20 MINUTES |
900
|
800
i°
>s
S
2
Ss
Fe
+
708
Acy
Ga
| Acy = 600 ¢.
© 710 ©
500
:
alt
|
|
\
VAAN\
|
Ci
100
cave
4]
7s S
es
10
100
Seconds
TIME
ia
524
tS
—-K-
iat
=
as
ea
(a a
1000
===
~|
=&
ca
ace
Gs
s
1000
=
&
=
%
Pe
=
800
a
a
800
é
600
| 600
\
400
400
cy299
7
1
\
+4
=
(ie
105)
1
1410S
1400
I
1200
——
JV Gao
—+— taEn
+! nt
a
1600
1400
Soren
{Ne
NS
i
ita5
300
0
at
+}
|
|
Sng
VAAL
200
|
1800
|
ED AT 755 it Ta
1600
|
:
|
1800
a
\ ee
a
{4
400
tf f
See
|
;
7
1000
-
1000
| |
335)(325)
(311284
84
1,000
I~
28
28n
10,000
Kaas an
Minutes
4
100,000
ee
nee
‘
eet
200
200
32
5
100,000
——
oor
1
10
100
1,000
——————
Minutes
1
4
10
30
Hours
Seconds
:
30
TIME
Composition: 0.40% C - 0.74% Mn - 0.36% Si - 4.40% Ni -
0.47% Mo Austenitized at Acg + 30°C (54°F) for 20 min
1000
|
I
|
Te00
id
AUSTENITIZED AT 755 C POR 20 MINUTES
1600
1400
1200
1000
FTEMPERATURE
,
C
TEMPERATURE,
10
Seconds
4
i
OT
1
10
Minutes
100
100,000
1,000
1
TIME
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
DE
a
32
z
&
j
é2
ive
F
Atlas of Time-Temperature Diagrams
265
0.40% C - 0.3% Mn - 0.2% Si - 4% Co Steels (Mo Additions)
Composition: 0.40% C - 0.34% Mn - 0.17% Si - 0.01% Mo 3.76% Co Austenitized at Acg + 30°C (54°F) for 20 min
Composition: 0.39% C - 0.32% Mn - 0.18% Si - 0.48% Mo 3.72% Co Austenitized at Acg + 30°C (54°F) for 20 min
1000
ae
Bi
CTEMPERATURE,
TEMPERATURE,
C
F
TEMPERATURE,
{[
TIME
10
TEMPERATURE,
F
30
Minutes
TIME
Composition: 0.40% C - 0.33% Mn - 0.16% Si - 0.95% Mo -
3.90% Co Austenitized at Acg + 30°C (54°F) for 20 min
1000
900)
—
—
800)
ap = 836 C
<
y
DBXENS
700)
5
LIN
r
—
—
TT
Se tae -nic
OT
See)
C
TEMPERATURE,
ae
F
TEMPERATURE,
Seconds
TIME
SOURCE:
Greenwich CT
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company,
a
Atlas of Time-Temperature Diagrams
266
0.10% C - 0.7% Mn - 0.3% Si - 0.3% Cr - B Steels (Mo Additions)
Composition: 0.10% C - 0.68% Mn - 0.32% Si - 0.29% Cr -
Composition:
0.11% C - 0.70% Mn - 0.35% Si - 0.28% Cr 0.25% Mo - 0.0045% B Austenitized at Acg + 30°C (54°F) for
0.0038% B Austenitized at Acg + 30°C (54°F) for 12 min
12 min
1000
AUSTENITIZED AT 890 C FOR 12 MINUTES |
: Hi
z
e
|cal gl pert aate
etal
iesa
alltel
-
1800
1
ie
900
1200
5S
=
z
}i000
i
800
©
J
600
&
é
3
500
a
a
300
400
200
eel
(ss)
(ss)
1
are
10
100
Sieage
a a a
TN
=1405
ie
Ne-90
a
1400
1200
99
| }1000
o> Aa
|
it
oH
800
}—+
600
H
ae
4
|
TH
281
of
10:
et
eet
aA
14
ZI
4
Y
0
an
216
191)(192){189%177
137,
1
200
497
i
10
100
Seconas
1,000
1
30
|
64
|
1,000
—_—
1
4
Minutes
bos
63 = 860 | 11600
=
Bou
100,000
Seconds
||
100
:
fecete ee
mesI.
oe
en
% 400
600
|
(pened
|
|
Rear:
700
*
a
eo ay
RF om ca bata
ep
Boe
1400
rmy
AUSTENITIZED Ay B90:
10
Minutes
re
Hours
32
10,000
100,000
ly
100
1,000
ee can image ag
1
4
10
30
Hours
Composition: 0.11% C - 0.70% Mn - 0.35% Si - 0.28% Cr -
0.50% Mo - 0.0057% B Austenitized at Acg + 30°C (54°F) for
12 min
1,000
:
AUSTENTNI ZED) AT. 910
C FOR
12 ntl
H
900
800
700
°
wy
600
S
500
s2
wa
&=
Ac)
=
=
4
{
ic
eee
eo
1
i
300
\
+
1
i
=
1400
=
99
=.
ett
=)
1600
=10 3
elle
att
|
1200
H|f1000
He
—-
—+—
a
or
400
acy = 880 cl
\
ae
i
XT
PASS
+
|
\
4
1800
i
Haut
800
+
i i i
Tt
|
Yan
jel
H
200
+
100
lati
|
|
YF
600
fF
400
*
2
&z
&
x
=
is
i]
317,
0
1
10
251
212)(207K213)
212
<
198
121
100
1,000
10,000
oe
1
10
100
—
Seconds
TIME
Minutes
1
4
200
108
100,000
1,000
lo
32
30
Hours
SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
EL
SSS
FE
&
é=
e
Atlas of Time-Temperature Diagrams
267
0.10% C - 0.7% Mn - 0.3% Si - 0.7% Cr - B Steels (Mo Additions)
Composition: 0.10% C - 0.70% Mn - 0.29% Si - 0.76% Cr 0.0036% B Austenitized at Acg + 30°C (54°F) for 12 min
Composition: 0.11% C - 0.72% Mn - 0.32% Si - 0.75% Cr 0.22% Mo - 0.0052% B Austenitized at Acgz + 30°C (54°F) for
12 min
1000
10
1800
AUSTENITIZED is 910 C FOR 12 MINUTES
o
1800
AUSTENITIZED
AT 920 C FOR 12 MINUTES
|
\
900
1600
|
|
\
lacy = 890 C
=
\
Acy = 925
1400
2;
1200
1000
é
800
3
3
Z
J
=
i
3
3S
2
3
#
=
CEN
500
axa
400
600
300
411
400
200
14
200
ace
32
C)
\t
f
TIME
100,000
aaa
1,000
on
rT
4
lo
30
iG
Minutes
=
+l
~\y
es
T
10
800
Fe
|
?
| F 600
="
: 400
|
.
236
URS
z
-—&
!
So
Te
nas
1000
|
210)(206)K205)1199,
100
1,000
a
1
10
SEEE
&
Fi
|
| oa
i]
99 | |bizoo
|
INS BIUelini
ANS 1
1
ey
1
=
ma
rage
302
Seconds
SS
1400
90
f
=
600
&
50,
2
Nash
700
e
1600
10.
800
175,
106
L
1
Hl
ot
200
104
L
10,000
100,000
100
1,000
(pa
1
4
10
30
Hours
Composition: 0.10% C - 0.71% Mn - 0.32% Si - 0.7% Cr -
0.51% Mo - 0.0060% B Austenitized at Ac3 + 30°C (54°F) for
12 min
1000
-
.
AUSTENITIZED AT 925 ¢ FOR 12 MINUTES
900
Lt
i}
n
joss
all
\
H
Poy
AP
{
ies a
|
800
Ac) = 730
Z
2
y
+
600
1
E
500
e&
400
2s]
|
|
300
\
200
;
al
=
SSS
EES]
e
ee)
;
iace
ies
d
]
|
;j
'
|
:
re
OT 7
be
i
:
alpen, epee
== 4
~
aie
||| 1
v|ed
7
|
+
.
1
10
Sai
TIME
SOURCE:
306
|
|
219)
(228K230)(224
222
:
1
|
207
s
&
| 00
=o
1
4
éw
600
_.}
-+
400
|
l
ANF
200
112,
100
1,000
10,000
100,000
oo
1
10
100
1,000
—————
Minutes
=
1000
1
Jl
Fa
wl
ie
:
a+
(256
20D.
1
y
1a
r
|
Ie
Se
<4
|
!
1600
| +1400
op |
1
|
~ |
r eS
|
at
| 1800
| \1%
WIZ i
i
0
|
;
|
\
|
100
|
i = 895 cl
(Mees.
Acll ,
+
|
1
ee
ei
mm
OX-T oes
z
=
AER
PEce
:
|
ty
hae
si
it
ANS)
¢J
i
|
E
.
tf
a
10
32
30
Hours
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
———
32
é
&
Atlas of Time-Temperature Diagrams
268
0.10% C - 0.7% Mn - 0.3% Si - 1.4% Cr - B Steels (Mo Additions)
Cr6 Composition: 0.11% C - 0.75% Mn - 0.33% Si - 1.46%
5
0.25% Mo - 0.0059% B Austenitized at Acg + 30°C (54°F) for
Composition: 0.10% C - 0.72% Mn - 0.29% Si - 1.43% Cr -
0.0059% B Austenitized at Acg + 30°C (54°F) for 12 min
12 min
800
es
wy
=
2
@
=a
3
wi
em
©
W
600
500
=
800
In
=2
w
7400
z
=
<
600
300
200
400
200
200
100
0
32
0
Minutes
1
4
S-
a
S
|
AREAS
&
‘aitgus!
|
- ee
Te
11505
50
i |
{\\
_
_
Z
1
i]
10
276)
800
i
| \_ | + 600
|
Ber
i|
ry
|
100
(247
110
10,000
100
10
Minutes
TIME
1
400
200
As}
7
232
1,000
1
Seconds
Hours
x
4\
(253{251)(253)
4
H
114
i
i
10
100,000
1,000
32
30
Hours
Composition: 0.11% C - 0.75% Mn - 0.32% Si - 1.44% Cr -
0.56% Mo - 0.0066% B Austenitized at Acg + 30°C (54°F) for
12 min
1000
AUSTENITIZED AT 910 C ee 12 na
900
800
H
L—
H
ey
3
f
600
Tis
@
S 500
-
ez
Se
= 400
all
ges Bey
300
+
o
-——
99
1
Sir iil oaeatiee
R
!
!
=:
2S
imL
'
7
|
J
10
WEN
|
|
Buel
<<
en
eee
aan
Nitin
|
soothe
SoS
100
(285,
285
1,000
1
|
|
el
+
10
1200,
py
1000
sa
©
800
&
&
#
600
|
—+
|
ZS
|
400
eS
266,
Ba
121
100,000
100
1
1600
1400
—
10,000
f
Minutes
1800
—
ee en
296281)281)
|
‘Acy = 880 C
—
:
314
TIME
'
|
|| A
!
SENS
Ss
EON
{|
bA
351
|
tea
4
ee
:
SEE
SOURCE:
|
ai
ei
SS
—
'
0
es
JEG
,
}
200
100
|
|
| \
\-—t
+
2
|
eee
n eS .
eee
acy = 730°C
700
e
t
;
4
32
1,000
10
30
Hours
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
Composition: 0.10% C - 0.72% Mn - 0.33% Si - 1.43% Cr 1.03% Mo - 0.0064% B Austenitized at 955°C (1750°F) for 12
min
1000
Be
1200
ee
1100
4
1000
2
°o
2= se
w
900
CE es,
600
=
:
800 5
j
y
% 400
Pr)
»
2
tha=
600
500
200
cs
400
A
300
1
10
100
Seconds
1,000
1
TIME
10,000
10
100,000
100
y
1,000
Minutes
;
w
19
ig
Hours
SOURCE:
Witold W. Cias, Phase Transformation Kinetics and Hardenability of Low-Carb on Boron-Treated Steels, Metallurgical
Transactions, vol 4, February 1973, ASM
International, Materials Park OH
2>
WwW
\
| F100
.
TT
348,
7
itA
=
i=l
1400
aie
1200
Ree,;
1
i \
|
ps
1,000
lo :
30
100
10
1
TIME
Ee=
ST.
4
100
Seconds
|
;|
4
f
=
1600
= 860 cl
> =
=
=
:
awi
i= 400
E
300
100,000
acy = 730 ¢
500
he,
cae ae
fa
600
ul
(4
=
ifi000
i
i
]
700
ro
7
|i
||
8 00
1400
700
|
zoe
' +1600
mee
1800
AUSTENITIZED AT 890 C rom 12 le
ae)
1800
Oe
&
2
a
=
fea
Atlas of Time-Temperature Diagrams
269
0.35% C - 0.8% Mn - 0.3% Si - 0.3% Cr Steels (Mo Additions)
compen ee 0.36% C - 0.83% Mn =,0.38% Si - 0.34% Cr 0.01% Mo Austenitized at Acg + 30°C (54°F) for 20 min
AUSTENITIZED
Composition: 0.35% C - 0.83% Mn - 0.39% Si - 0.35% Cr 0.24% Mo Austenitized at Acg + 30°C (54°F) for 20 min
AT 805 C FOR 20 MINUTES
He
|
AT 850 C FOR 20 MINUTES
AUSTENITIZED
900
1800
i
IL
\
1600
800
700
°
w
5
ire
©
Es
Es
3
=
2
a
/) s
600
te
S 500
5
rs)
o@
a
Fe
Fi 400
4
;
1
|1 |
100,000
Sreonds
1
ante
10
+
1
4
10
NEN
600
Tt
r
299
602544251)
(232,
poe
\
179,
10
1
200
164,
100,000
1,000
100
aa
Minutes
ante
177,
10,000
1,000
100
(
Seconcs
30
y
7
10
1,000
100
co
Minutes
1
HEAL
i
Ha
560,
0
1400
1200
1000
99
JOLY
Abe Cc
eae
75)
100
=
=e.
=
0X}
3
200
jac)
C
}
i
LAY
|
oy,
Bo
820
Ss
| Ure
+
——4{—-—=bs
=
=
St
A
/
—
=
=
‘
lAc3
a
J!
He
Hours
Hours
Composition: 0.35% C - 0.80% Mn - 0.38% Si - 0.35% Cr -
0.51% Mo Austenitized at Acg + 30°C (54°F) for 20 min
TEMPERATURE,
F
C
TEMPERATURE,
Seconds
1
10
100
Minutes
1,000
1
4
10
30
TIME
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum
Company,
Greenwich CT
Composition: 0.34% C - 0.80% Mn - 0.38% Si - 0.34% Cr -
0.78% Mo Austenitized at 825°C (1515°F) for 20 min
1000
1800
900
1600
B00
=
jAc3 = 795 C
Ss
700
°
‘
wl
1400
ae
a
=+—
ee
a
«600
Acy = 685 ¢
Sse
-
OS
7
=A
a
S
500
fe
=3
a
esa
=a6| ani
AEE
c oy
zB Ny
400
f
L
50-——
i
{
1
©
ir
2
800
]_
=
=
ra
400
|
99
Ae
566
0
1000
ae
7a
I
i
200
100
ive
=
2
i
LON
sails
+25
i
300
ee
mae
—-t\-4-+1]
1200)
493)
10
(319)(312)(325)
100
Secoes
243
1,000
1
TIME
(283
10
Minutes
210,
180,
10,000
100,000
32
100
1,000
Oo
1
4
10
30
Hours
ty of Medium-Carbon
SOURCE: Witold W. Cias, Phase Transformation Kinetics and Hardenabili
CT
Molybdenum Company, Greenwich
i
Alloy Steels, Climax
32
2-&
r=)
3
Atlas of Time-Temperature Diagrams
270
0.40% C - 0.8% Mn - 0.3% Si - 0.3% Cr Steels (Mo Additions)
1000
0.25% Mo Austenitized at 825°C (1515°F) for 20 min
900
Teen
}—
—-
—--
-
r
-
1000
ip
1600
800
2690
1200
2wl
==
1000
:
goo
a=
‘
1800
=
-—
—
-
=
om
ii
°
«
&
&
=2
Ww
rd
=
wl
600
w
2
a
400
*
SSS
-—
ht
—_}
OCs
a-
=
ES
aes
RE
a0
200
100
32
0
+1}
ie
Ac
=
795
C
705
c
wry
1200
SSS
wiee
&
<-&
800
re
WI
\
;
2
b=
600
keot
Ee
”
1000
ail
Yeas
i
\,
Te
7
sea
i
{
+
{HbSee4o
200
-——
=
es
++
1
400
Ch
=
ON
600
1600
=
700
*
—
+}
}-+——
4
f+
—}—
+—
—
900
ot]
o
- 0.pila Si - 0.34% Cr -
Composition: 0.40% C - 0.Say
Composition: 0.41% C - 0.86% Mn - 0.36% Si - 0.33% Cr -
0.01% Mo Austenitized at 790°C (1455°F) for 20 min
400
9
rT
y
606,
100,000
1
10
100
Minutes
1,000
1
4
TIME
lo
1
10
<i
294
270K274K268A245,
100
—
eerie
216,
1,000
1
30
ah
188
10,000
10
100,000
100
1,000
oo
Minutes
1
4
TIME
Hours
200
182
10
30
Hours
Composition: 0.41% C - 0.84% Mn - 0.35% Si - 0.35% Cr -
Composition: 0.41% C - 0.84% Mn - 0.34% Si - 0.35% Cr -
0.49% Mo Austenitized at 805°C (1480°F) for 20 min
0.77% Mo Austenitized at 810°C (1490°F) for 20 min
1000
1000
900
900
800
800
1800
1600
Ait
+
700
700
©
4
uw = 600
w
s
=
w
32
=
=
500
iy
=
S
moe
1400
ies
&
&
iN
w
s
600
4
i
S500
\
=
w
$
G
=
=
Ac)
:
\|
1200
w
—
Newel)
l
=
1000
Ss
2&
800
&
w
E
t=
400
=
<
SS
300
300
600
200
200
400
100
100
KF 200
8,
: 1
10
100
1,000
10,000
100,000
[Pa
a
EP
SE
10
1
sai
TIME
Minutes
1
4
Ror
10
“ico
une
© mt
solioas”
(ae
Seconds
1,000
100
oa
2
30
TIME
Minutes
too
cea
1
4
10
Hours
SOURCE: Witold W. Cias, Phase Transformation Kinetics and Hardenability of Medium-Carbon Alloy Steels, Climax
Molybdenum Company, Greenwich CT
eee
00
ROG
sentaa
30
32
=
Atlas of Time-Temperature Diagrams
Zr
0.37% C - 0.8% Mn - 0.3% Si - 0.7% Cr Steels (Mo Additions)
Composition: 0.37% C - 0.85% Mn - 0.37% Si - 0.74% Cr -
Composition: 0.37% C - 0.85% Mn - 0.39% Si - 0.73% Cr -
0.02% Mo Austenitized at Acg + 30°C (54°F) for 20 min
0.26% Mo Austenitized at Acg + 30°C (54°F) for 20 min
1000
1000
AUSTENITIZED
AT
820
mnt
1800
C FOR 20 MINUTES
900
AUSTENITIZED AT 810 C FOR 20 MINUTES
i
j
|
TM)
Iota
wu ° °
CTEMPERATURE,
F
TEMPERATURE,
TEMPERATURE,
F
C
TEMPERATURE,
100,000
1,000
——$————
Minutes
Minutes
TIME
1
4
10y
30
TIME
Composition: 0.37% C - 0.84% Mn - 0.37% Si - 0.74% Cr 0.50% Mo Austenitized at Acg + 30°C (54°F) for 20 min
1000
AUSTENITIZED
AT 805
C FOR
1
20 MINUTES
F
TEMPERATURE,
C
TEMPERATURE,
100,000
Seconds
1,000
Minutes
1
4
lo
30
TIME
SOURCE:
Greenwich CT
Witold W. Cias, Austenitic Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company,
Composition: 0.37% C - 0.82% Mn - 0.36% Si - 0.73% Cr 0.76% Mo Austenitized at 795°C (1465°F) for 20 min
006
1800
1600
TEMPERATURE,
F
C
TEMPERATURE,
Seconds
1
10
Minutes
100
id
1,000
4
10
30
TIME
SOURCE:
Hardenability of Medium-Carbon
Witold W. Cias, Phase Transformation Kinetics and
nwich CT
Molybdenum Company, Gree
Alloy Steels, Climax
Atlas of Time-Temperature Diagrams
272
SAE 4140
Composition: 0.39% C - 0.82% Mn - 0.26% Si - 1.00% Cr -
0.21% Mo Austenitized at Acg + 30°C (54°F) for 20 min
TEMPERATURE,
F
C
TEMPERATURE,
100,000
Seconds
1
10
T
100
Minutes
1,000
1
4
10
30
TIME
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum
Company,
Greenwich CT
SAE 4150
Composition: 0.53% C - 0.83% Mn - 0.34% Si - 0.92% Cr -
0.21% Mo Austenitized at 845°C (1555°F)
1000
AUSTENITIZED {iit c For 20 Mine |
900
4
Be
|
800
{4
L
700
Ji
600
|
ia
|
1800
tt
!|
| | | }1600
|
a, = 768 ¢
Acy
ses
|
T
;
=
aie
TNSS
|
300 }—
|| -1000
i Ea]UK (NAN
sl
te
506 Seale
100
HNL
STN
90
|
H
SIAN.
@apauanne
|
|
lie
U
Ss
1
10
766 (685 (685)(677X458)
100
Seconds
1,000
af
TIME
10
Minutes
ee
2
=
3
e
=
|i; 7 600
400
Lethe
oimH
(316)!
265)
:
|
i
0
800
+
| i
mL
|
,
=
tere ets
T
| 793
!
|
>
/ Neca ;
a
ite eT]
200
| |
1200
ST
w
$
1400
= 719 C
=e
“LE LEE
Net
|
\
t+. 4
t
>
aes
|
a
Hj
H‘
<
(aus
zee
32
10,000
100,000
‘
1,000
100
Nia
4
ea
10
a
30
SOURCE: Witold W. Wias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
—————_—_—_——————
ee
ere
woes
Atlas of Time-Temperature Diagrams
273
ee
0.36%
C - 0.8% Mn - 0.3% Si - 1.5% Cr Steels (Mo Additions)
Composition: 0.36% C - 0.82% Mn - 0.37% Si - 1.54% Cr 0.01% Mo Austenitized at Acg + 30°C (54°F) for 20 min
1000
:
-
:
AUSTENITIZED AT 810 C FOR 20 MINUTES
900
{
{
\
eh
|
1
eae
|
| jul
|
800
i
|
js
i
=
cy,
=
©
720
|
y
a
400
CTEMPERATURE,
1
Sao
200
some
1a
=
a tat)
—
4
s
|
7
a
tT \cet
+
+
10
600
e
800
ne
=
500
|
iy
(345)(373X254)(238)
100
228,
1,000
1
eee
euw
peer
1}
554)
700
&
|
e
$
#
(es
(202
4
}
Ae
i
187
10,000
10
A
fe
IL
/
\ |||
T]
=
Nox cTaANe
|
t
a
=
200
200
100
ees
4
10
teste
(yee
i
aly
SI
a
j
lial
592,
my
579)
10
(421)(390)(413)
100
1
30
(348,
400
289
1,000
ero
Seconds
i
Minutes
TIME
|
KY
213
1
10,000
10
100
1
200
191
100,000
1,000
4
10
30
Hours
Composition: 0.36% C - 0.85% Mn - 0.37% Si - 1.52% Cr eae
Co)
te}
0.50% Mo Austenitized
at Acg + 30°C
(54°F)
for 20 mincy
1000
-
AUSTENITIZED AT 825 C fe 20 ol
|
900
4
}
|
|
4
4
|
i
‘co
800
5
1890
|
Veta
4
:
2S
a&
500
400
.
i
Ie |
APY
deaa=
eae
50>
200
=
2
P|
a
L—
oa
100
He
4
=
lacy
= 795 ¢|
lac)
= 735 c| |1400
~
aS
ee
BE
f f2
H
aA
fj
300 }
+++ 1 fro
25
}
i
;
2
/
| F1000
©é
606
i
|
rf 400
585, 633)4 59)1442)(390,
348,
10
{
200
198,
IT}
10,000
100,000
100
Minutes
TIME
228
L
1,000
1
w
|
}
100
Seconds
S
ie
ia
:
10
*we
2
{
we
1
;fizoo
800
t=
iz
i
SOURCE:
| | | 1600
+
}
te
0
i
\
700
Ss
=
W600
=
=
i
4
i]
22
1,000=
1
4
10
30
Hours
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
Composition: 0.35% C - 0.82% Mn - 0.36% Si - 1.51% Cr -
0.84% Mo Austenitized at 830°C (1525°F) for 20 min
1000
1800
900
|
700
i
ala
ij
1600
Ac3 = 800 ¢|
800
=I
=
4
Sa
—t
ios
=
———
==
is
ay
i
JAcy = 725 ¢
=
Sue
AN
Me
12001
WwW
\
|
800
r
Bey
=
=
579
508X508)(508\468
370
221
32
100
oF
Secenes
l
Minutes
TIME
=
200
390,
i __|
10
F
400
al
599
tt}
>
=
aw
600
we
Soe
=
pj
1000
\
|
=
a
=
f
C
TEMPERATURE,
ua)
oe
1,000
10
ay
if
10,000
100,000
100
1,000
4
10
30
Hours
ty of Medium-Carbon
SOURCE: Witold W. Cias, Phase Transformation Kinetics and Hardenabili
Molybdenum Company, Greenwich CT
fi
600
tt
9
Hours
2ul
&
Jb.
9
1
Pie
1000
4)
}
75
1,000
1
Minutes
400
Jett
1
ee
100,000
100
TIME
200)
1400
.
400
600
Hd
1600
<3 = 780
w
=
i
|
800
1000
s
1800
|f
|
[//
Ht
)
572
Seconds
1200
3 |
ay
ii 7A
75-4——
i
fez
AUSTENTTIZED AT 810 C FOR 20 MINUTES
900
1400
C
=
Si
600
1000
|
; | | F21600
lAcy = 780 c|
=
500
300
i
eet
|
700
0.26% Mo Austenitized at Acg + 30°C (54°F) for 20 min
1800
1
|
Composition: 0.36% C - 0.86% Mn - 0.38% Si - 1.54% Cr -
Alloy Steels, Climax
32
co
:
5
i
Atlas of Time-Temperature Diagrams
274
0.80% C - 0.7% Mn - 0.5% Si - 6.0% Cr Steels (Mo Additions)
Composition: 0.81% C - 0.73% Mn - 0.45% Si - 6.10% Cr -
Composition: 0.81% C - 0.76% Mn - 0.50% Si - 6.04% Cr 0.035% Mo Austenitized at 970°C (1780°F) for 20 min
1.05% Mo Austenitized at 970°C (1780°F) for 20 min
g
TEMPERATURE,
F
C
TEMPERATURE,
z
C
TEMPERATURE,
10
10
Seconds
1
10
Minutes
Seconds
1
SOURCE:
1
4
10
Minutes
TIME
TIME
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum
100
r
1,000
4
10
30
Hours
Company,
Greenwich CT
1.0% C - 0.7% Mn - 0.5% Si - 6.0% Cr Steels (Mo Additions)
Composition: 1.03% C - 0.76% Mn - 0.50% Si - 6.03% Cr -
0.038% Mo Austenitized at 970°C (1780°F) for 20 min
Composition: 1.02% C - 0.73% Mn - 0.46% Si - 6.08% Cr -
1.03% Mo Austenitized at 970°C (1780°F) for 20 min
1000
w°°
FTEMPERATURE,
C
TEMPERATURE,
TEMPERATURE,
C
100,000
1,006
SOURCE:
Witold W. Cias, "Martensitic Air-Hardenable High-Chromium-Mol ybdenum Abrasion-Resistant Cast Steels,”
AFS
Transactions, vol 83, 1975, American Foundrymen’s Society, Des Plaines IL
:
Atlas of Time-Temperature Diagrams
Se
ee
275
1.35% C - 0.7% Mn - 0.5% Si - 6.0% Cr Steels (Mo Additions)
Composition:
M
0.041%
Mo A 1.36%Des C - 0.77%
77% sels
0.50% Sij - 5.99% Cr 4 :
o Austenitized at 970°C (1780°F) for 20 min
1
T, + 970°C
AUSTENITIZED AT 970 C FOR 20 mInuTES
|
900
a
Boy | ees
&
=|
SSeS
oe
REC.ec
ae
Ste
“Xe
A
{
|
400
eel
300
Lab
14
200
eet
100
|
900
1400
800
|
1}
A| |
||
10
Seconds
595)(639)(715){
100
a
1
TIME
-
-&
2
|
800
&
&
|
400
1,000
299
255
0,000
=
100
i10
1
x
102,008
1,000
4
1
a
0
30
1600
T
\
one
«101of
|
aor
=
ete
300
i
\
|
i
1
a
000
2
goo
1
|
De.
i
ah
|
R24
710
10
seconds
600
i]
4
t
520
NUN
678)
729)
ewvcree—
1
759)
830
=
708
4
2
Zz
329
ay
262
100,000 ¥
10,000
hkeee
eee
100
1,000
1,000
100
10
M
inutes
1
TO)
4
10
SS
30
Hours
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
EE
SS
&
=
=
(AVATAR)
Fafa! |
|
1200
E
|
i.
Peas <
|
—
& 400}
1400
48
|
%S
jours
SOURCE:
|
|
1000
ae
“
Ac, = 718.¢
ee
B00
&
J=
=
AUSTENITIZED AT 970 C I 20 MINUTES = 1800
]
:
= 793
1200
AO
BOG
|
541418
inutes
ae
|e
TO"23-75:90-%
688
DEE
-
bo
NL
0
1
1000
/
|
i
1800
1600
pes
Acy = 720¢
700
S
Z; ©6600
ae
Composition: 1.35% C - 0.73% Mn - 0.45% Si - 6.00% C
0.98%
Mo Austeniti
° (1780°F)
7) for 20 min
:
ar
ustenitized at 970°C
Atlas of Time-Temperature Diagrams
276
0.85% C - 0.7% Mn - 0.5% Si - 12.0% Cr Steels (Mo Additions)
Composition: 0.85% C - 0.75% Mn - 0.45% Si - 12.0% Cr -
Composition: 0.84% C - 0.72% Mn - 0.44% Si - 12.10% Cr -
0.068% Mo Austenitized at 970°C (1780°F) for 20 min
1.05% Mo Austenitized at 970°C (1780°F) for 20 min
=
-
= AUSTENITIZED AT 970 C FOR 20 MINUTES}
|!
:
SST TES
EASES
<a
1800
saa)
1600
Op = 813 ¢
200 [ee
©
700
a
w
ao
yy -600
=
&
2
é
=
S
=
=
=
Fa
a
sI0s
=
oe
w
o
&
PD ica arty eg ae
25
aaa espe
0
eG)
1
10
Seconds
I)
!
Minutes
1
4
10
1400
Sate
(
ot!
i
||
200
} +
100
_
ies
a1
107
=
N=
slag
761
i
ye
=e
ae Be
50
766)
10
1
A
Y756 \ 716
Minutes
THAME
2
600
5099
200
278
233
100,000
100
1
800
Hil
10,000
10
&
w
=
Fa
;
666
1,000
1200
1000
400
orn
9
(767)784
100
30
Hours
a
rt
ee
/
Seconds
WME
peep
is
iar ot
ety
400
1
ii
ho
-
500
0
100
AUSTENITIZED AT 970 ¢ FOR 20 minutes J1800
,
at
100
¢
1,000
4
10
30
Hours
Composition: 0.85% C - 0.71% Mn - 0.43% Si - 12.10% Cr -
3.07% Mo Austenitized at 970°C 1780°F) for 20 min
Noel fp
90 BS.
SUS
SSE Sirs
AUSTENITIZED AT 970 C FOR 20 MINUTES.
.
|
|
Ese
I
Minutes
ee
1800
1600
F
TEMPERATURE,
C
TEMPERATURE,
SOURCE:
.
|
1
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich
’
0
eee
CT
32
a
o
Atlas of Time-Temperature Diagrams
277
1.35% C - 0.7% Mn - 0.5% Si - 12.0% Cr Steels (Mo Additions)
Composition: 1.38% C - 0.74% Mn - 0.46% Si - 11.80% Cr -
Composition: 1.36% C - 0.72% Mn - 0.44% Si - 12.0% Cr -
0.078% Mo Austenitized at 970°C (1780°F) for 20 min
1.00% Mo Austenitized at 970°C (1780°F) for 20 min
1000
-
*
re)
2
Z
¥
”
=
<
:
5
=
F
w
= 50
3
fe
3
=
Py 600
: 500
400
1200
600
1ooe
@00 fee
Boo
es
300
306
69‘
200
500 (oeSe ee
406
NOON
206
100
°
1
10
SOSES
TIME
100
SE
1
1.000
10,000
EE
106
Se
10
Minutes
1
f
100.000
1,000
ee
10
32
6
eee ers ees
i
10
10
a
Seconds
ine
1
30
ees.
TI
10
10.000
106 CoC
eee
106
1,000
pe
Minutes
1
MOE
ee
4
10
32
x
Hours
Composition: 1.36% C - 0.70% Mn - 0.43% Si - 11.9% Cr -
3.06% Mo Austenitized at 970°C (1780°F) for 20 min
1000
w°°
C
TEMPERATURE,
SOURCE:
TEMPERATURE.
F
Witold W. Cias, "Martensitic Air-Hardenable High-Chromium-Molybdenum Abrasion-Resistant Cast Steels,” AFS
Pransactions, vol 83, 1975, American Foundrymen’s Society, Des Plaines IL
Sennen
nna
&
&
—
ae
2=
:
SI
Atlas of Time-Temperature Diagrams
278
0.40% C - 1.4% Mn - 1.5% Si Steels (Mo Additions)
Composition: 0.41% C - Ny ee - 1.51% Si - 0.27% Mo
Austenitized at Acg + 30°C (54 F) for 20 min
Composition: 0.41% C - 1.42% Mn - 1.52% Si - 0.02% Mo
Austenitized at Acg + 30°C (54°F) for 20 min
AUSTENITIZED AT 860 C FOR 20 MINUTES
||
|
\
aoee
i
i
\
il!
Atel
AUSTENITIZED ay 885 C FOR 20 an
!
i
t+
1800
|
1600
i
ti
Ac, = 830 c |1600
i
1 |
:
i
i
T
me
nde
1800
|
1 |
|
dle
i
800
i
=
SI=E=S Fae
PE
==
waesee =e
700
°
wy“
2
y
600
E
g$ wot LNGCIN\VANAWN
nN
w
@
\
Ah --
400
\! \
|3
300
10
Ge, ot
90
=
100
en
Cf
ialeeee
ee
200
\\ \
NES
Aap
649
u
4
iat
345272
270)|
243
266X256
1,000
100
TIME
a
te
is
a
800
as=
600
4oc
400
200
200
1,000
4
1
32
100,000
1
100
Minutes
1000
32
10,000
10
uh
Seconds
1200
=
600
i
10
1
°
ry
&
236
|
0
&
2i
se
i} 800 2
5
t—
|
i tiz00
.
;f1000
\
te
ty
\
1400
=
pte
lal
|
H
MIN
He
{
Aci = 708 ¢
hem
a
= t=
EN= t=
1400
100,000
.
2
30
10
10
xt
Seconds
Minutes
TIME
1,000
100
—_—_—_—oOo—_—X
1
4
hae
10
30
Hours
Composition: 0.40% C - 1.40% Mn - 1.51% Si - 0.53% Mo
Austenitized at Acg + 30°C (54°F) for 20 min
1000
F
TEMPERATURE,
CTEMPERATURE,
Minutes
1
TIME
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum
Company, Greenwich CT
Composition: 0.40% C - 1.38% Mn - 1.50% Si - 0.80% Mo
Austenitized at 890°C (1635°F) for 20 min
1000
1800
900
IL
—
[acy = 860 ¢ |1600
800
e
700
Ac,
+
f
2 600
=
S
500
re
&i
=
708
C
aioe
:
oe
=
1200
1000
S|
400
EAI
l
owe
300
=
200
50
47
5 te eet
90t\-— —-
100
1
A
ae
Pale aS
ale mat
AL-
IE
ae
800!
“ie
&
627
(493
/
627 K519}
100
S econ ds
401
339
1,000
1
ae
200
287
260
10,000
10
Minutes
(=
400
Y
si
1
=
we
——Q’
673
©
2
SSS
oP ees Fee
0
aeIE
AE el
“*
ry
100,000
100
1
32
1,000
4
10
30
Hours
SOURCE:
Climax
Witold W. Cias, Phase Transformation Kinetics and Hardenability of Medium-Carbon Alloy Steels,
Molybdenum Company,
Greenwich CT
ey
*
zPr
5=
=
a
tos
Atlas of Time-Temperature Diagrams
2/7
0.39% C - 0.8% Mn - 1.5% Si - 0.7% Cr Steels (Mo Additions)
Composition: 0.40% C - 0.84% Mn - 1.50% Si - 0.74% Cr 0.02% Mo Austenitized at Acg + 30°C (54 F) for 20 min
Composition: 0.40% C - 0.84% Mn - 1.50% Si - 0.74% Cr 0.26% Mo Austenitized at Acg + 30°C (54°F) for 20 min
1000
1000
eye
(eo)
Oo
.
-
ene
1800
AUSTENITIZED AT 860 C FOR 20 MINUTES
4
T
AUSTENITIZED
'AT 870 C FOR 20 MINUTES
|
H
es
900
ry
ie
7600
1800
|
Acy = 838 ¢
1600
Ac, = 733.¢
1400
800
1400
1200
*
°
=
1000
&
z
wi
&
=
re
&:
ro
00
S
Fr
-
4
700
2
an;
S
10
100
300
400
200
200
100
32
0
rs
j}iz00
==4>4=
+50
oe Bs |
—
=
—
T
606) 421)(
409
409) 354.
1,000
10
i}
ime
i
++
+t
vata
100
eS
1
pecans
1,000
'
i
|
657
10
1
A
oo Te
=
==
=}
Oh =
a
\
=
256
'
235
=
i
i
10,000
400
lL
al
ce
&
600
(232
Zo0
100,000
1,000
100
Hours
TIME
Composition: 0.39% C - 0.84% Mn - 1.49% Si - 0.73% Cr 0.52% Mo Austenitized at Acg + 30°C (54°F) for 20 min
1000
AUSTENITiZED
AT
885
C FOR
20 Let
SS
Z|
tA
a B °o So
TEMPERATURE,
F
C
TEMPERATURE,
Minutes
TIME
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
Composition: 0.38% C - 0.82% Mn - 1.48% Si - 0.72% Cr -
0.77% Mo Austenitized at 915°C (1680°F) for 20 min
OD
1000
Acy = 883 C
T
=I
4
©
w
=e
~~
a6
Ss
800
|}
aa
a
ae D
(
600
=
500
S
mw
400
w
F
+
|_|
ees! + f LoPT
“5
=
fase
ca;
coal
=e fo
a
=| Ip
400
POG
IL
634
642)(
5
600
yaa)
} |
100
=
Ee
=
fe
aoe
200
w
Y
TV Sae
f
ZA)
bas
TOOO!
800)
a
es
ANGLE
$1400
1200
a=
2=ma
300
¢
{ Vd
s
e
1600
fem
Ac, = 742
a)
488) (468)
429X
405
225
272
351
32
0
100,000
10,000
1,000
100
10
1
tee
Minutes
TIME
1,000
100
10
1
scant
1
16
i
30
Hour
and Hardenability of Medium-Carbon Alloy Steels, Climax
SOURCE: Witold W. Cias, Phase Transformation Kinetics
CT
h
Greenwic
,
Molybdenum Company
nl
&
é
ale
yee
CS
400
re
TIME
ar
| }1000
a
i|
914-
1
SES
(
500
600
100,000
ae
CK Lot
32
Atlas of Time-Temperature Diagrams
280
0.37% C - 1.5% Mn - 0.3% Si - 0.8% Cr Steels (Mo Additions)
Composition:
0.38% C - 1.50% Mn - 0.40%
Si - 0.77%
Composition: 0.37% C - 1.49% Mn - 0.41% Si - 0.77% Cr
.
Cr -
0.25% Mo Austenitized at Acg + 30°C (54°F) for 20 min
0.02%
for 20 Smin
i
02% Mo Austenitized at Acg + 30°C (54°F)
900
|
\
|
|
|
Ac, = 796 C
|
ee
ee
sesanne
|
| | 1200
*s
°F
3
:
sg
s
iS
.
5
rT|
}
iw
g
gao
=w
e -
w
600
ee
b Ssh
iN
==
f
soa
AN
tj
x
J\N
y
a
aS
200
47
ze
+
emf
Taal
i]
600
400
st
$42)
(405)(360)(
287X
254)
221
1
1
100,000
10,000
1,000
100
10
10
100
TIME
32
100,000
1,000
1
30
10
4
1
Minutes
ee
>
200
238,
t
seconds
:
+4
i 1}
likes
| 634,
0
=
Sree
ete
| fro0o
ali
300
100
| | }1600
i
.
Eciiel
1ean)
fii
ero
=
PR
aE:
wa
Vi|
3
; 50
AUSTENITIZED AT 835 C FOR “ as
ea i aes
|
|
le
3
|
|
SI
f
|
°
2Simro
|
1
1
i
800
s=
1000
1800
|
AUSTENITIZED ie 825 © FOR 20 Aa
eae
10
Minutes
TIM E
Hours
30
Hours
Composition: 0.36% C - 1.47% Mn - 0.41% Si - 0.76% Cr aye
fo)
fo}
°
0.50% Mo Austenitized at Acg + 30°C (54°F) for 20 min
ae
AUSTENITIZED AT 825 C TOR 20 Sie
1
IL
a
1800
|
1
1
|
am
i
800
700
|
w
600
%
500
et
i
a
2
*
a
|
aN
|
—~
igomalacal 7Ni
aa NC aT
|
300
‘vo
200
+4 75
ii
Tot
SENS
Seeks
49)
1
|
10
5
21900
| fizoo
- 1
f
elt
a
800
s
:
=
&
cs
600
tat
|
=
w
©
400
al
608)
99
|
(585)(572)(392)(s42)
100
SEBED
C
ge
Rivage
=
=
=
3
2
Nota
Ee
Cie ted
=
d—-4-
100
= 709
i }1000
i y
|
SE
{i ALA]
eae
eae
eine
9
ae
Pee
if
bk
Ae
0
Ac)
ASE
'
Ne
iN
1600
Ac, = 796 C
——
cc
=s
i
|
(459)| |
”
1,000
1
10
348
sj
10,000
100,000
100
Minutes
200
260
32
1,000
1
4
10
30
TIME
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
Composition: 0.36% C - 1.46% Mn - 0.42% Si - 0.75% Cr 0.78% Mo Austenitized at 830°C (1525°F) for 20 min
1000
1800
900
aheeal
me
S
wy
2
eet
600
Ly
é 500
Lae
lgiseeat
al
||
mea
1000
&
50
CUS
90
Nee
een
ae
an
en Cdl
NEN
==
100
aw
<1--F+- =
/
Agia
it
&s
5
SH
ewe:
-
2s
Set
po mecon [as
Cvptena|
ae fe
“I =
|
600
f
=
00
o7.
620
0
rete
L200
st
1 asa
200
703 c
:
1600
o—4
400
abo
= 801 C
Ac
I -N
700
=
&F
Ac
al
592)(554)(572)(572)
(566)
(464
354
294
200
32
10
100
Seconds
1,000
1
aren
10,000
10
Minutes
100,000
100
1
1,000
4
10
30
Hours
bon Alloy Steels, Climax
SOURCE: Witold W. Cias, Phase Transformation Kinetics and Hardenability of Medium-Car
Molybdenum Company, Greenwich CT
ae
eS
ee
ee
Atlas of Time-Temperature Diagrams
281
0.12% C - 0.85% Mn - 0.3% Si - 1.4% Ni - 0.7% Cr Steels (Mo Additions)
Saree:
:
r
0.12% C - 0.87% Mn - 0.35% Si - 1.44% Ni -
Composition: 0.12% C - 0.87% Mn - 0.34% Si - 1.43% Ni -
Austenitized at Acg + 30°C (54°F) for 12 min
0.77% Cr - 0.19% Mo Austenitized at Acg + 30°C (54°F) for 12
min
AUSTENITIZED AT 840 C FOR 12 MI’
TEMPERATURE,
C
F
TEMPERATURE,
TEMPERATURE,
F
TEMPERATURE,
C
Seconds
ae
2
Minutes
4
10
30
ee
Minutes
1
4
10
30
Composition: 0.12% C - 0.85% Mn - 0.33% Si - 1.41% Ni 0.76% Cr - 0.45% Mo Austenitized at Acg + 30°C (54°F) for 12
min
woes
AUSTENITIZED
500
AT
850 C
FOR 12 MINUTES
| i j
|
fice
pitrel
Apeauarae
| |
tale
800
:
|
i
mas
!
i
1800
1 |
Ld
H
[acy = 820,
!
$1600
| .
°
23
=
700 Jac) 2 670 ¢
500
&
=
400
a
Ses
|
a :
600
=
a
1400
|
L
=
:
se
a
=
fash50’ eN
7
ie
ine
Net
l=
a
c+
IC
NN{
4
=
=
i
==
4
==
Sa
n f= F
t
s2se3S=s=F4
whee
300
—
eee
|
(pas
-+—-
ae
7
| 4
1_{\_+
fo
t
+1
| |Wee
357,
281)(266J258
)(264)
(251,
225
100
1,000
oo
Seconds
B00
is
érr
S
600
'
100
10
&
er
200
1
*
2w
j
aaa
99
F
1200
10008
1
10
Minutes
202
|
10,000
i
|
100
4
yy
192
100,000
ooo
1,000
a
i
400
ji
10
30
TIME
SOURCE:
SO
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
Atlas of Time-Temperature Diagrams
282
0.11% C - 0.85% Mn - 0.4% Si - 1.4%Ni - 0.7% Cr - B Steels (Mo Additions)
Composition: 0.11% C - 0.87% Mn - 0.37% Si - 1.45% Ni -
Composition: 0.11% C - 0.86% Mn - 0.36% Si - 1.44% Ni -
0.77% Cr - 0.005% B Austenitized at Acg + 30°C (54°F) for 12
0.76% Cr - 0.21% Mo - 0.005% B Austenitized at Acg + 30°C
min
(54°F) for 12 min
1000
1000
1800
AUSTENITIZED AT 890 C FOR 12 MINUTES
Ht
1600
800
700
1200
s
J
1000
e
ze
wi
a
o
=
=
a
we
uw
2
we
=w
S
aniei
[Ac,
= 680 C
7
—N
+
1
Pprace
ye
50
600
300
Bot
| 19
400
200
—
200
100
32
6
a=
SE
TaN,
aai
=
ea
rn
De
—y—
|
AN
+)
Pa
1
10
100
Minutes
4
10
=
aie
800
a
1
|
1A}
J. 1
!
600
400
|+t
|
Tt
3122684266260)
,
10
;
1,000
1
TIME
| F100
—
7
1
z
;
1
373
eee:
ae
se ro
Se
9
100,000
——
Rae
|
{
(a
500
1600
1400
.
60
=400
=
ie
g00
Fr
be
e
Ww
Repeat BEOTE
|
1400
o
|
el
iat
fat
1800
|
|
AUSTENITIZED AT 890 C “ies 12 err |
900
100
Secors
(260
249,
1,000
1
10,000
10
30
Minutes
240,
t
i
100
1
200
4220)
100,000
-
1,000
4
10
30
TIME
Hours
Composition: 0.11% C - 0.85% Mn - 0.38% Si - 1.42% Ni -
0.76% Cr - 0.005% B - 0.54% Mo Austenitized at Acg + 30°C
(54°F) for 12 min
1000
AUSTENITIZED AT 900 C FOR 12 MINUTES
900
—t
t
}
1800
|
=
800
Acy
= 870 C
---
1600
++
1400
700
jac) =
$80 ¢
4
°
| fizoo
*
| ti000
=
my 600
4
=
Sa
re
F
3
i
500
-s
i
400
1° \ET
300
—
oe=a
1253
|
ig
|
1
99
i
+i
u
H
rm \
\
a i
———
IP
ee
-
800
&
a
=¥
+—~1-|
Lo
|
{iF
200
600
|
+
400
i
100
+
|
390
0)
Tt
336
10
)(292}302)289)(283
100
Seconds
1,000
iz
200
262
242
10,000
10
Minutes
TIME
S
276
100,000
160
1
32
n
1,000
4
a
chs
Hours
SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
SS
ee
ne
32
‘,
=
&
rra
Ss
Atlas of Time-Temperature Diagrams
283
0.30% C - 0.7% Mn - 0.4% Si - Ni - Cr - Mo Steels
Composition: 0.30% C - 0.69% Mn - 0.38% Si - 1.79% Ni -
Composition: 0.30% C - 0.69% Mn - 0.40% Si - 0.20% Ni -
0.78% Cr - 0.24% Mo Austenitized at 870°C (1600°F) for 20
0.99% Cr - 0.43% Mo Austenitized at 870°C (1600°F) for 20
min
min
1000
0.3C-1,8NI-0.8C~-0,2Mo (4330)
Ta = 870C
900 |ta=20 MINUTES
1800
wil
CTEMPERATURE,
F
TEMPERATURE,
aea
CTEMPERATURE,
TIME
TEMPERATURE,
F
Vis em
el
TIME
Composition: 0.31% C - 0.69% Mn - 0.38% Si - 0.20% Ni 0.79% Cr - 0.57% Mo Austenitized at 870°C (1600°F) for 20
min
SI
Neate
acimeesse
TEMPERATURE,
F
CTEMPERATURE,
SECONDS
1
10
MINUTES
100
1,000
—_—eoOoOoO
1
4
10
30
TIME
SOURCE:
:
bon
Witold W. Cias, "Phase Transformational Behavior and Mechanical Properties of Medium-Car
;
Transactions, vol 78, 1970, American Foundrymen’s Society, Des Plaines IL
AFS
Wito
Steels,”
Case
Se
Cr-Si-Mo-V
a
Ni-Cr-Mo
and Ni-
,
2
Atlas of Time-Temperature Diagrams
284
0.40% C - 0.7% Mn - 0.4% Si - 0.8% Ni - 0.7% Cr Steels (Mo Additions)
Composition: 0.40% C - 0.73% Mn - 0.40% Si = 0.78% Ni 0.75% Cr - 0.27% Mo Austenitized at Acg + 30°C (54°F) for 20
min
Composition: 0.40% C - 0.74% Mn - 0.40% Si - 0.78% Ni 0.75% Cr - 0.03% Mo Austenitized at Acg + 30°C (54°F) for 20
min
1000
AUSTENITIZED AT 810 C FOR 20 MINUTES
900
w So So
C
TEMPERATURE,
TEMPERATURE,
F
riety
an
TEMPERATURE,
F
C
TEMPERATURE,
ane
Minutes
1
4
10
30
Composition: 0.40% C - 0.72% Mn - 0.40% Si - 0.78% Ni -
0.75% Cr - 0.50% Mo Austenitized at Acg + 30°C (54°F) for 20
min
1000
900
800
700
oO
uy
a
25
600
S
500
w
a
#%
uw
3
a
=
=
w
a
400
w&
300
200
100
Seconds
1
10
Minutes
100
1,000
1
TIME
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum
Company,
Greenwich CT
Atlas of Time-Temperature Diagrams
285
0.38% C - 0.8% Mn - 0.3% Si - 1.4% Ni - 0.7% Cr Steels (Mo Additions)
Composition: 0.38% C - 0.85% Mn - 0.33% Si - 1.46% Ni -
Composition: 0.38% C - 0.85% Mn - 0.35% Si - 1.45% Ni -
0.74% Cr - 0.01% Mo Austenitized at Acg + 30°C (54°F) for 20
0.73% Cr - 0.24% Mo Austenitized at Acg + 30°C (54°F) for 20
min
min
1000
Bes SENTRIZED) AT 820 C POR 20 MINUTES
ae
|
|
|
1000
1800
||
iain
lee
mi
eet
|
AUSTENITIZED AT 830 C FOR
|
900
| | | b1600
|
|
800
1400
me
1200
Z
1000
3
800
700
be)
*
5
lea
E
2
3 400
3
600
300
400
200
200
100
32
0
100,000
Minutes
1
Se
SBD
1,000
et 10
1
30
at
10
100,000
10,000
1,000
100
10
1
+
eae
20 MINUTES
:
en
Minutes
1,000
100
1
-
10
30
Composition: 0.38% C - 0.84% Mn - 0.34% Si - 1.46% Ni -
0.73% Cr - 0.48% Mo Austenitized at Acg + 30°C (54°F) for 20
min
1000
AUSTENITIZED
AT
820
C FOR
20 MINUTES
1800
900
°
WJ
z
3
wi
i
| }1600
800
lkcy
= 1790 ¢|
c)
= 690
600
-
NT
iN
500
|
) |
1eee iNER
400
/
Ay
1
eset
50-4
200
90:
:
iz
15ag==
100
=4
==
Rous
IP
=|
627
617)(595)(585)K575
10
100
—
pecores
~
600
i{}_+
400
|
9
1
=
BOONESFe
Se
Tes L
ie
*
#
&
a
soe
Se
0
| | | f1z00o
| }1000
LV
ee
--
+
=
i
1400
C)
H
7
eae
t—
i
——
\
300
A455
——
409
10
200
336
.
1,000
1
299
10,000
100,000
32
100
1,000
—_
Minutes
TIME
SOURCE:
|
700
&
Ww
|
|
aL
4
10
30
Hours
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
Composition: 0.38% C - 0.82% Mn - 0.34% Si - 1.46% Ni -
0.75% Cr - 0.78% Mo Austenitized at 830°C (1525°F) for 20
min
en
1000
900
Wy
i
1600
800
Ac
800
¢
1|
uj
lacy = 700 C
Ab
700
~
1400
NI
600
1200
|_|
{|
BSE
c
1000
2
Z 500
rm
Fa
wi 4co
{I
sae
<=
==
dias
a
300
h
——
+
=
go-\b—-—t -t
VY
NT
calle
a=
200
595,
603
inca
800
ale
600
Gow
—h4
ee==
LE
a
WI
=
at San
ED5a eet
ms tos
=
re
ee a =
jac
#wu
&
FA
=
ha
s
400
44
a)
at
100
x
582)(631
(579)
557
446
355
281,
32
t)
Minutes
TIME
1,000
100
10
1
Secon?
100,000
10,000
1,000
100
10
1
1
4
10
30
Hours
and Hardenability of Medium-Carbon
SOURCE: Witold W. Cias, Phase Transformation Kinetics
CT
Molybdenum Company, Greenwich
es
Alloy Steels, Climax
ce
Atlas of Time-Temperature Diagrams
286
0.40% C - 0.7% Mn - 0.4% Si - 2.5% Ni - 0.7% Cr Steels (Mo Additions)
Composition:
- 0.38% Si - 2.57% Ni -
0.40% C - 0.74% Mn
Composition:
0.40% C - 0.73% Mn - 0.38% Si Ree ieee -
0.75% Cr - 0.03% Mo Austenitized at Acg + 30°C (54°F) for 20
0.75% Cr - 0.24% Mo Austenitized at Acg + 30°C (54°F) for 20
min
min
1900
AUSTENITIZED AT 790 C FOR 20 MINUTES
1800
900
|
800
T
11
T1600
{
———
700
°
2
600
ES
500
&
400
:
Ac
=
674
1400
c
Pa
Toba
notes
ee
eet
1200
=
1000
-
=
‘
800
ANG
300
\
200
}—+—
ay
=
MI
JO
642
1
JUL
Seconds
&
627511
498)(415)(
a
=
3s
:5
=
:
:rd
&
400
271
aks
232
216
200
1,000
10,000
100,000
ear
a
A ae
Minutes
Ta
z
Ss
\
=
100
10
ee i
=
2
:
600
LI
a
6
3
IL
a ls lS i
100
&
2
| H
|
es
0
AUSTENITIZED AT 790 C FOR 20 MINUTES
fae
ME
32
1,000
Seconds
See
1
10
f
‘
ee
iehates)
Hours
Pare
100
_e
1
1,000
SS
4
10
30
Hours
Composition: 0.39% C - 0.73% Mn - 0.35% Si - 2.51% Ni 0.75% Cr - 0.49% Mo Austenitized at Acg + 30°C (54°F) for 20
min
LESS
AUSTENITIZED
AT 790
C POR
20 MINUTES
w So oS
F
TEMPERATURE,
C
TEMPERATURE,
Seconds
10
Minutes
100
ni
1,000
4
TIME
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
SSS
a
a).
SSS
Atlas of Time-Temperature Diagrams
287
0.40% C - 0.8% Mn - 0.3% Si - 3.5% Ni - 0.8% Cr Steels (Mo Additions)
Composition: 0.41% C - 0.76% Mn - 0.32% Si - 3.59% Ni 0.77% Cr - 0.03% Mo Austenitized at Acg + 30°C (54°F) for 20
Composition: 0.41% C - 0.76% Mn - 0.32% Si - 3.59% Ni 0.77% Cr - 0.25% Mo Austenitized at Acg + 30°C (54°F) for 20
min
min
1000
AUSTENITIZED AT 775 C FOR, 20 MINUTES
|
|
||
1800
1000
GUY
z
&
HOS
a=
=
800
|
°
Ge
Be peoecne
600 eae
NESE
>
=
|
5
S
500
4
eee
300
iL
400
200
SF 200
100
a
=
Ss
|
_
}
4
10
1200
1}
1000
\|
|
g00
|
x
a
j-
| |
.|
||hsSas
ea
;
S-L444S—+—-—
pt
|}
m3,
651)
(640)
Sa
mies)
aes
are
poll
(633)(634)(646)
600
7 Ne2
Se Wf
Ge = --y
=o oa,
pe
(636
400
se
640
496,
32
1
10
100
1
10
3
iintes
TIME
Hours
10,000
100,000
oreo
Seconds
30
1,000
100
oo
1
4
1,000
10
30
Hours
Composition: 0.40% C - 0.74% Mn - 0.31% Si - 3.56% Ni -
0.77% Cr - 0.50% Mo Austenitized at Acg + 30°C (54°F) for 20
min
1000
-Sresrrizep AT 765 © POR 20 MINUTES
900
4
1800
|
+
4
|
|
1600
800
Aeg = 737 C
700
;
s
w
1400
at
Ac, = 636 ©
600
&
1000
&
é
&
o=
i!
w
>
=
S
a
@=
1200
500
4
|
400
I
300
goo
N
| |
|
200
pe
ee
20,
Spe
100
>
600
1
10 =
SS
SS
=
4)8
6 75)
=
ae
aS
2
a
=
(627)(654
cg
)\636 ) (A
==
ADS
=
l
XZ,
—
7
eee ieee
a
630
ey)
400
0
503
200
0
32
1
10
100
Secs
1
1,000
10
MEAS
10,000
100,000
100
1,000
——_————_———_
1
4
“10
30
TIME
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum
Company,
&
w
=
&
o
a
T
|
|
BSN
1,000
2
Minutes
1400
(0)
100,000
TIME
aaeons
{
| |
32
1600
|
|
|
{
i
H
H
1
|
ww
$400
1800
1
|
1_f
&
w
ima
]
'
|
|
pee
deg = 742 ¢
700
{
1200
>
|
|
800
1400
°
3
AUSTENITIZED AT 770 C POR 20 MINUTES
900
Greenwich
CT
=a
Atlas of Time-Temperature Diagrams
288
- 0.3% Si - 4.5%, Ni - 0.7% Cr Steels (Mo Additions)
0.40% C - 0.7% Mn
Composition: 0.41% C - 0.74% Mn - 0.40% Si - 4.56% Ni 0.75% Cr - 0.03% Mo Austenitized at Acg + 30°C (54°F) for 20
Composition: 0.41% C - 0.73% pt Ae a
min
min
900
1
800
ee
-+
|
|
AUSTENITIZED AT 780 C FOR 20 MINUTES
1000
|
|
SIRE
|
1000
1800
&
500
3
fs
400
2
1200
=
=.
cS
pape
1000
|
|
1
y
ion
Lt
100
t)
1
WeNe 1
al
SS
is The =
=
EAUES
701
677
)(649 K634 X64 XK665)
+ 30
Seconds
1
tee
(638
1,000
559
700
os)
Wj 600
«
2
z
2
a4
=
500
=
2
400
600
300
400
200
200.
100
32
0
‘|
=
«
z
a
2
F
21
100,000
10,000
10
1
4
TIME
1
1,000
4
100
Minutes
|
A,
=
100
10
-
(54°F) for 20
Hs
Set
==
&
rm
5
©
coor
300
200
AT TS C POR 20 aaa
|
oy a -
Acg +
800
1400
700
Acq = 630°C
ay
Ge 600
<4
=
AUSTENITIZED
900 | 1
1600
| tf
lh
Acy = 748 C
at
0.75% Cr - 0.26% Mo Austenitized
10
10
100
1,000
10,000
ee
SSNS
1
10
le
30
TIME
oe
100,000
ae
1
ygpoe
4
10
30
Hours
Composition: 0.40% C - 0.73% Mn - 0.41% Si - 4.53% Ni -
0.75% Cr - 0.50% Mo Austenitized at Acg + 30°C (54°F) for 20
AUSTENITIZED AT 755 C FOR 20 MINUTES
HT
FTEMPERATURE
,
C
TEMPERATURE,
1
10
100
1,000
10
10,000
100
100,000
1,000
Minutes
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
na
Se
eee
Atlas of Time-Temperature Diagrams
289
0.40% Cr - 1.4% Mn - 1.5% Si - 0.7% Cr Steels (Mo Additions)
Composition: 0.41% C - 1.44% Mn - 1.50% Si - 0.75% Cr -
Composition: 0.40% C - 1.43% Mn - 1.51% Si - 0.76% Cr 0.26% Mo Austenitized at Acg + 30°C (54°F) for 20 min
0.01% Mo Austenitized at Acg + 30°C (54°F) for 20 min
1000
AUSTENITIZED
? AT 845 C FoR 20 MMuTES
| |
|
960
AGSTESTTIZED
AT 250 C POR 20 MIMETES
uw ° rs)
C
TEMPERATURE,
TEMPERATURE,
F
1
10
100
Second
aa
1,000
1
be
IM
10,000
10
100,000
100
Fa
Mieates
1
TEMPERATURE,
F
©
TEMPERATURE,
32
1,000
4
10
30
=
Hours
de
£
Composition: 0.39% C - 1.41% Mn - 1.49% Si - 0.74% Cr -
0.51% Mo Austenitized at Acg + 30°C (54°F) for 20 min
fF
TEMPERATURE,
C
TEMPERATURE,
IoC
TIME
SOURCE:
Witold W. Cias, Austenite Transformation
Kinetics of Ferrous Alloys, Climax Molybdenum
Company,
Greenwich CT
Composition: 0.39% C - 1.39% Mn - 1.48% Si - 0.73% Cr -
0.77% Mo Austenitized at 855°C (1570°F) for 20 min
TEMPERATURE,
F
C
TEMPERATURE,
1
10
100
1,000
1
10,000
i0
Mirates
100
1
100,000
1,000
4
TIME
SOURCE:
n
rmation Kinetics and Hardenability of Medium-Carbo
Witold W. Cias, Phase Transfo
CT
Molybdenum
Company,
Greenwich
ee
Alloy Steels, Climax
Atlas of Time-Temperature Diagrams
290
Ni-Cr-Si-Mo-V
Steel Series
Composition: 0.33% C - 0.86% Mn - 1.62% Si - 1.80% Ni 0.81% Cr - 0.40% Mo - 0.067% V Austenitized at 870°C
Composition: 0.32% C - 0.86% Mn - 1.44% Si - 0.51% Ni 1.01% Cr - 0.49% Mo - 0.071% V Austenitized at 875°C
1000 (5 "35¢-1,651-1.6NI-0 ,8Gr-0,4Mo-V (300M)
900
ile
ae
A
lade
900 } 1 = 20 MINUTES
(1600°F) for 20 min
|
ie
SSS
al
PT TTT lac3=8a0c!
TP
SBATREN TSN
SEN
(1607°F) for 20 min
1800
Lee
SSS
SGUDSGSINEDS ENE
Gaba
©¥ qe EST UNVi EL NIB
NES CNP
.
i
“ey
:
°
aa
g
=
3
S
500
:
3 400
3
[BENIN
2009
5
ae)
800 3
300
400
200
200
100
0
100,000
i
1
1
1
fot
TIME
100
i
ie
Composition: 0.35% C - 0.86% Mn - 1.58% Si - 0.23% Ni 1.50% Cr - 0.58% Mo - 0.071% V Austenitized
(1625°F) for 20 min
0.35C-1.5S1-0.2Ni-1.2Cr-0 .6Mo-V
geo
we 20 uinuTEs
=
900C
\
t
IN SEN
N
=—— TSS
.
roe et See
|
Lt
Je oe TN
°
|
=
aS
3 500
400
300
ae
Pa
— MIMOSs
oe an
Ay
waa
==>
11
ia
eee
iain
(
|
'
\
at 885°C
1
1800
Ac3=856C! |1600
;
1400
=
o
3
1200
2
Fs
5
1000
ae
=
2
2
4
AO
wi 600
Cece
a= 20M
SSS
Ret
BOUn>
(1652°F) for 20 min
xe
1,000
ys
1.21% Cr - 0.58% Mo - 0.037% V Austenitized at 900°C
800 §
3
f=
10
MINUTES
30
Composition: 0.35% C - 0.86% Mn - 1.55% Si - 0.21% Ni -
Fr]
Le
&
a
600
400
TIME
TIME
SOURCE: Witold W. Cias, "Phase Transformational Behavior and Mechanical Properties of MediumCarbon Ni-Cr-Mo
’s Sociaty,
Cr-Si-Mo-V Case Steels,” AFS Transactions, vol 78, 1970, American Foundrymen
Des Plaines IL
ee
u
rrr
.
200
——————
x
2
2 600
px
,
‘&
3
(7)
rg
1600
800
1400
ae TERS
\
yl
|+
ae
and Ni-
eee
Atlas of Time-Temperature Diagrams
291
0.40% C - 1.4% Mn - 1.4% Si - 1.4% Ni - 0.8% Cr Steels (Mo Additions)
Composition: 0.41% C - 1.42% Mn - 1.42% Si - 1.37% Ni 0.78% Cr - 0.03% Mo Austenitized at Acg + 39°C (54°F) for 20
Composition: 0.41% C - 1.41% Mn - 1.41% Si - 1.36% Ni 0.78% Cr - 0.26% Mo Austenitized at Acg + 30°C (54°F) for 20
min
min
1000
cera
900
800
a AT
830 ce ria 20 MINUTES
‘
Nae
i
Bist
1000
AUSTENITIZED
AT
are
|
|
840
C FOR
20
MINUTES
|
1800
||
1600
1400
700
S
ia
600
5
5
Fd
500
=
400
a
*a
°
1200
e
“*
5>
S
%
Fa
3S
1000
2&
S
800
~
~
a
er
-
w
300
600
pas
200
aa
400
100
aie
0
Minutes
1
4
TIME
10
30
Minutes
Hours
1
4
100,000
1,000
10
30
TIME
Composition: 0.40% C - 1.39% Mn - 1.37% Si - 1.34% Ni -
0.76% Cr - 0.52% Mo Austenitized at Acg + 30°C (54°F) for 20
min
AUSTENITIZED AT 835 C FOR 20 MINUTES
|
|
TEMPERATURE,
F
CTEMPERATURE,
Minutes
sk
4
10
30
TIME
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
Composition: 0.40% C - 1.37% Mn - 1.38% Si - 1.31% Ni -
0.75% Cr - 0.73% Mo Austenitized at 835°C (1535°F) for 20
min
1800
Ba
900
|
1
1600
Acs = 803 C
800
ig
1400
Ac, = 695 ©.
700
°
w
1200
600
i
Ee 500
2
>
Nee
y
1000
5
800
:
Fe
eS
400
vt
7
300
i
200
See IS
oT
100
600
/
EME
Ce
ie
SSS==>
|
a aA
152)
SS
Dc
715)
uw
YW
fe =
7
«
Fa
w&
|
Seis
=p
400
=
boots
(690X690\698}681)
(673,
566)
200
332
2
ty)
Minutes
TIME
1,000
100
10
1
es
100,000
10,000
1,000
100
10
1
1
4
10
30
Hours
ity of Medium-Carbon Alloy Steels, Climax
SOURCE: Witold W. Cias, Phase Transformation Kinetics and Hardenabil
CT
Greenwich
Company,
um
Molybden
O°
LEI
IEEE
S
$
=
i
=
Atlas of Time-Temperature Diagrams
292
0.40% C - 0.3% Mn - 0.2% Si - 8.0% Ni - 4.0% Co Steels (Mo Additions)
Composition: 0.39% C - 0.30% Mn - 0.20% Si - 8.0% Ni - 3.89%
Ong
:
Co Austenitized at Acg + 30°C (54°F) for 20 min
1000
AUSTENITIZED AT 760 C FOR 20 MINUTES
500) |eee
800
}
Ole We
lI ace
L
[easel
ie eet eer
ra
\
|
ra
1
i
e ee ee
iin
ie
e oeel
|
{
Composition: 0.39% C - 0.29% Mn - 0.22% Si - 7.78% Ni ope
fo)
ro}
0.44% Mo - 3.87% Co Austenitized at Acg + 30°C (54°F) for 20
min
1800
| vee ;tia
1600
IL
ene:
5)
| }1400
Li
©:
a
25
1200
Fa
uw
°
“F
i| fi000
&5
F
g
-
Fs
800
Fd
2
a
Fd
a
@
=
=
a
=
ws
i
g
600
400
t
0
i
;
6a
|
10
613)(53e514X450(309)
100
(270)
1,000
i
|
200
(240,
10,000
100,000
ane
1,000
eo
a
Seconds
249)
aa
Minutes
1
4
TIME
10
32
;
,
100,000
ee
100
1,000
ll
SS
Seconds
1
10
30
Minutes
TIME
Hours
1
4
10
30
Hours
Composition: 0.39% C - 0.28% Mn - 0.20% Si - 8.04% Ni -
1.00% Mo - 3.90% Co Austenitized at Acg + 30°C (54°F) for 20
min
1000
AUSTENITIZED AT 815 C FOR 20 MINUTES
|
900 fe a
a
|
j
|
1!
Eee
a)
|
t
el
i
|
t
i
800
'
|
—
Leia
i
!
aes
ee
Pol '
=
+
o
=
las
'
600
{
|
Ee
€ 500
7
|
:
Ni
wi
ia
#400
{—
300
+++}
r° 75 ¢
| iia
ial
i
--f
oo
90:
++
1
4
SSMS
z|
=
———
SES
ees)
100
TIME
10
Minutes
uo
|
;
wy
| i ti000
&S
i
22
w
800
Fr
600
Ce
ae
=
-—+—-7
400
(613
iital
ie
437,
1,000
1
Acy = 617 cf 1200
ce
634) (606) 620606606)
10
Seconds
1400
He
12
ReR
ae
665,
0
=
ne
-
tal
Et
ie
1
+
oS
200
100
|
ame
NG
Woasins
1
ea
1800
tail
2, = : 815 ¢ |2600
I
700
co
f
|
10,000
l
100
200
|
Gas
32
100,000
7
1,000
eroro—o—,TCoo
4
i
10
30
SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT
Oe
Atlas of Time-Temperature Diagrams
293
0.08% C - 1.0% Ni - 12.0% Cr - 2.0% Mo - 0.3% V Steel
Composition: 0.08% C - 1.0% Ni - 12.0% Cr - 2.0% Mo - 0.3%
V Cooled from 1300°C (2370°F)
V Austenitized at 1050°C (1920°F)
1060
a
Completion
of
PEATE
—V TINT
a
Waar
aI
pessotus cn =
zm
==
905
C eed
1800
F)
<I
Y
an
1000
5E
ov
a
ico
800
te
700
°
¢ 600
1000
¢i
2z
800
r]
r]
&
ra
600
&&
E
r 300
£
oO
ry
E
5
10,000
1
4
10
%
“
_
STISYA NETS
PenneniN
SCCHICO 1620’
D
GNIS
,
SN OESIN
M4
uN
‘a
Ny
=
CMDS
fs
fs
5
% 500
S
£ 400
400
200
200
100
100,000
°
100
1,000
ed
Time
|
1600
1200
:
Minutes
Composition: 0.08% C - 1.0% Ni - 12.0% Cr - 2.0% Mo - 0.3%
5
Z
=
7:5
30
Hours
Time
Howr
SOURCE: E.J. Vineberg, et al, "Weldability of Duplex Structure 12Cr-(Mo,W) Steels,” Welding in Energy-Related Projects,
Pergamon Press Canada, Ltd., 1984
18Ni200
Maraging
Steel
Composition: 0.012% C - <0.03% Mn - <0.05% Si - 17.6% Ni 3.1% Mo - 0.10% Al - 8.3% Co - 0.08% Ti Austenitized at
843°C (1550°F) for 20 min
°F
,
TEMPERATURE
°C
TEMPERATURE,
fi
TIME
SOURCE:
Witold W. Cias, "Phase Transformational Kinetics of Four 18% Nickel Maraging Steels on Continuous Cooling,”
Climax Molybdenum
Company
Ltd., as published in Metallurgia and Metal Forming, December
1971
Atlas of Time-Temperature Diagrams
294
18Ni250 Maraging Steel
Composition: 0.02% C - 0.09% Mn - 0.09% Si - 17.8% Ni -
0.0021% B - 0.12% Al - 7.9% Co - 0.42% Ti Austenitized at
843°C (1550°F) for 20 min
1000
AUSTENITIZED AT 843 C Lins 20 INU
ie
'
m
| ot||
I
LI
LH
——Vt
| TT II
|
w°°
°F
TEMPERATURE,
°C
TEMPERATURE,
==
eT boeebe6s
Minutes
1
4
10
30
TIME
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum
18Ni300
Maraging Steel
Company,
Greenwich CT
18Ni350 Maraging Steel
Composition: 0.02% C - 0.07% Mn - 0.07% Si - 18.4%
Ni -
4.9% Mo - 0.003% B - 0.09% Al - 8.8% Co - 0.66% Ti
Austenitized at 843°C (1550°F) for 20 min
Composition: 0.008% C - 0.03% Mn - 0.03% Si - 17.4% Ni -
3.7% Mo - 0.17% Al - 12.4% Co - 1.62% Ti Austenitized at
843°C (1550°F) for 20 min
1000
1000
900
soo
709
2
sy GM
S
500
FE
499
|—-
300
}-
200
a
100
ean
5
=
10
100
SECONDS
S
+
2
s
3
3
&
=
=
:
200
10,000
10
MINUTES
VU
Ol | ©
1,000
:
&
a
an
r
ee
: 1
oa
&
100,000
100
1
1,000
4
10
HOURS
30
;
TIME
r
7
ao
SOURCE: Witold W. Cias, "Phase Transformational Kinetics of Four 18% Nickel Maraging Steels on Continuous Cooling,”
Climax Molybdenum
Company Ltd., as published in Metallurgia and Metal Forming, December 1971
ay
295
Atlas of Time-Temperature Diagrams
Carbon-Free
Fe - 15.0%Co
- 10.0% Mo Alloys
Composition: 0.004% C - 0.42% Mn - 0.12% Si - 9.95% Mo -
Composition: 0.004% C - 0.41% Mn - 0.15% Si - 9.95% Ni -
15.20% Co Austenitized at 960°C (1760°F) for 20 min
9.99% Mo - 15.30% Co Austenitized at 830°C (1526°F) for 20
min
F
TEMPERATURE,
CTEMPERATURE,
TEMPERATURE,
F
CTEMPERATURE,
100,000
1,000
Minutes
if
4
10
Minutes
30
TIME
TIME
Composition: 0.003% C - 4.78% Mn - 0.21% Si - 10.04% Mo 15.33% Co Austenitized at 840°C (1544°F) for 20 min
1000
y
AUSTENITIZED AT 840 C FOR 20 MINUTES
,
,
!
Tent
900 | .-
sain
es
!
|
—
ate
NBN
w°°
F
TEMPERATURE,
CTEMPERATURE,
Minutes
TIME
SOURCE:
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum
ee
Company,
Eee
Greenwich CT
296
Atlas of Time-Temperature Diagrams
Carbon-Free
Fe - 15.0% Co - 20.0% Mo Alloys
Composition: 0.003% C - 0.47% Mn - 0.13% Si - 20.02% Mo 15.00% Co Austenitized at 955°C (1751°F) for 20 min
Composition: 0.004% C - 0.43% Mn - 0.13% Si - 9.95% Ni 20.02% Mo - 15.13% Co Austenitized at 845°C (1553°F) for 20
min
20
SST
C FOR
“a 845
Eg
fe
——
~
1000
RS
STOnE © FOR 20 MINU
20
MI
cits
1600
1600
vane
1400
:
12000
+
1000
5
800
Fe
ke
a
:
See
:
Pe
3
=
:
ee
:
600
hae
400
a
S
o
200
5
oe
32
106,000
x
1,000
10
2
1
pees
30
Minutes
TIME
4
1
10
30
ae
Composition 0.006% C - 4.93% Mn - 0.23% Si - 20.17% Mo 15.33% Co Austenitized at 875°C (1607°F) for 20 min
1000
AUSTENITIZED AT 875 C FOR 20 MINUTES
|
{4
em a
ae
ae
TEMPERATURE,
C
TEMPERATURE,
F
100,000
1,000
TIME
SOURCE:
Minutes
1
4
a
30
Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company,
Greenwich oe
’
1c
Vanadium Steels
CCT Diagrams
Atlas of Time-Temperature Diagrams
299
——
ee
Mn-V
Structural
Steels (As Rolled)
Composition: 0.04% C - 1.90% Mn - 0.11% Si - 0.021% S 0.019% P - 0.09% V - 0.02% Al - 0.009% N
“=
900
rae
|
+
Ke
00
bl
iF
Jb
>
s
ao
+
+
Ht
Jel
Temperature
~C
Temperature
°F
all
Ly
ll
ml
HH
411{
eee
SES
0.5
i
De
eas
SiAS:
ISS) Es es
10
Titi
10?
Time, secs
Deformed and recrystallized at 925°C (1700°F)
SOURCE: "Hardenability of Thermomechanically Worked Low Carbon, Mn-Mo-Nb and Mn-Mo-V Steels,” Climax Molybdenum
as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Mn-V
Structural Steels (As Rolled)
Composition: 0.06% C - 1.95% Mn - 0.29% Si - 0.003% S 0.010% P - 0.010% Mo - 0.25% V - 0.037% Al - 0.008% N
Austenitized at 110°C (2012°F) for 6 min
800
A
ie
Saas
A+F
AH
Ms
i
|
4
F+B
B
Yd
>
|
N
s
r
F+B
*
Temperature
°F
Temperature
°C
iamieaaiaiih
|
1
He
0.5
aia
LH
2
SOAS
4+
10
10?
Time, secs
SOURCE:
B.S.C.
Laboratories, Rotherham,
England, as published in Atlas of Continuous
June 1985
Vanadium Steels, Vanitec, England,
Cooling Transformation Diagrams for
ee.
Atlas of Time-Temperature Diagrams
300
Mn-V
Steels (As Rolled)
Structural
Composition: 0.07% C - 1.94% Mn - 0.30% Si - 0.003% S 0.009% P - 0.010% Mo - 0.14% V - 0.038% Al - 0.007% N
Austenitized at 1100°C (2012°F) for 6 min
a
r
900
Ms
Temperature
°F
Temperature
'C
300
200
ai
0.5
1
2
345
10
10?
10?
10%
Time, secs
SOURCE: B.S.C. Laboratories, Rotherham, England, as published in Atlas of Continuous Cooling Transformation Diagrams for
Vanadium Steels, Vanitec, England, June 1985
Mn-V
Structural Steels (As Rolled)
Composition: 0.09% C - 1.48% Mn - 0.25% Si - 0.060% S -
0.014% P - 0.010% Cr - 0.010% Ni - 0.010% Mo - 0.04% V 0.010% Cu - 0.047% Al Austenitized at 950°C (1742°F)
900
800
700
—4—--+-L 1H
eat
me
eonaah
600
S
2
E
500
:
& 400
5
&
300
=
Ac
:
Sap
4
SS
F
a
AS eaiberie
ae
A
1
eat
LITE
1600
1500
— 1400
eee
1300
— 1200
ee
|
si
B
|
!
rr
|
nevi
|
1100
1000
+
900
Lt
ral
a
‘&
oF &
|
700
600
500
ae
|
L
200
100
-
tit} r
§
&
400
300
Ht
200
C.C.T E100
10¢
SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratires, as published in Atlas o f Continuous Cooling
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
Mn-V
301
Structural Steels (As Rolled)
Composition: 0.11% C - 1.23 % Mn - 0.31% Si - 0.018% S -
0.031% P - 0.08% V - 0.005% N Austenitized at 900°C
(1625°F) for 5 min
1r
T
T
1500
5
P
il
SE
ovine
es
1400
TAIL
1300
=
1100
oie (EE
\
=
=
x
Ly
PE
MHL
4
MTT
a
'C
Temperature
Temperature
°F
i
b
“TT
LL
teeter
I
0.5
CCT
1
PETE
ES)
10
10?
103
10+
Time, secs
Mn-V
Structural
Steels (As Rolled)
Composition: 0.11% C - 1.23% Mn - 0.31% Si - 0.018% S 0.031% P - 0.08% V - 0.005% N Austenitized at 110°C
(2012°CF) for 5 min
:
900
eeSSE Ny
om
Ea
SRIOHIEI
Saas tien lan RenSe
ees
IAL
el Sh
B
ae
IL
z
fp
ae
4
Ms
‘
rT
r
1
Ie
\
2
|e
1
ie
Temperature
°F
Temperature
°C
300
}
200
|
an
4
LH
|
+++
1
HY
HL
ile
=‘.
ULE
CCTs
ss
0.5
1
_L
2
3455
i
St
102
10
103
104
Time, secs
ntor GmbH, Dortmund, Germany, as published in Atlas of Continuous Cooling
Estel Huttenverkaufsko
SOURCE: 2 Hoesch
n Diagrams
for Vanadium Steels, Vanitec, England, June
1985
a
Transformatio
Atlas of Time-Temperature Diagrams
302
Structural Steels (As Rolled)
Mn-V
Composition: 0.11% C - 1.40% Mn - 0.55% Si - 0.063% V
Austenitized at 790°C (1450°F)
Ac3
al
|
700
_—
-_—
i
sa
ee
1500
t
800
——+——
1600
aiil
ele
ttt
—|
ep
Senora
2
1400
1300
eS
Acl
1200
+
600
»
500
HH
pep
4
aS
.)
1100
1000
|
7
T
900
Z3
800
e 400
700
a
600
‘“
Rl
200
=
100
+
iz
Pete
400
lll
yiMA
300
200
a
C.C.T.
OS!
2
325
10?
io
&§
=
so0
ei
i ilk
g
3Z
103
100
104
SOURCE: Y.J. Park, G.T. Eldis, "Metallurgy of Continuous Annealed Sheet Steel,” TMS-AIME, as published in Atlas of
Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Mn-V
Structural Steels (As Rolled)
Composition:
0.14% C - 1.52% Mn - 0.48% Si - 0.004% S -
0.011% P - 0.071% V Grain size: ASTM 8 Austenitized at
920°C (1688°F) for 10 min
1600
1500
1200
1100
Temperature
°C
Temperature
°F
Time, secs
SOURCE:
Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
Mn-V
303
Structural Steels (As Rolled)
Composition: 0.14% C - 1.53% Mn - 0.36% Si - 0.008% § -
0.009% P - 0.06% Cr - 0.03% Ni - 0.01% Mo - 0.04% V - 0.02%
Cu - 0.057% Al Austenitized at 930°C (1760°F)
Ac3 |
ep
800
700)
Ser
t
A cl
SS
Th
Ee
ee
Zl
Saari
SBnnie
Hy
a
ll
ee a
\
ran ai, St
ae eee
600
1
HT
=
Ht
sina
ay
1600
st
fa)
1400
anni
SSS
SSH
H—
1300
LUE
1200
aa
1100
Tees
EE
oO
2 500
E
Ms
pe
& 400
H
E
a
M
300
I
|
eile
bal
mul
\
iil
js
1
}
zz
345
70
&
400
=
200
published
in Atlas
|
fi
fe
oe!
|
il
I
2
Poti
+
100
0.5
coe?
+
Ss
——T 1 | |
1000
|
Baill
\
sae
200
iY
HH
feca.F
1
10?
10
Time, secs
SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories,
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Mn-V
Structural
as
of Continuous
Cooling
Steels (As Roiled)
Composition: 0.15% C - 0.90% Mn - 0.40% Si - 0.05% V 0.014% N Grain size: ASTM 11
900
Ac3
ee
Temperature
°C
TI
Pett
He
=
tt
ee
Het
Ht
1600
°F
Temperature
SOURCE: I. Lindberg, "Vanadium Steels,” Vanitec Seminar, Krakow, Poland, 1980, as published in Atlas of Continuous Cooling
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
304
88
i
Mn-V
Structural
Steels (As Rolled)
Composition: 0.15% C - 1.30% Mn - 0.27% Si - 0.009% S 0.010% P - 0.15% Cr - 0.15% Ni - 0.04% Mo - 0.13% V5 0.19%
Cu - 0.02% Al - 0.010% N Austenitized at 900°C (1652°F)
900
Y
esOa i a
Si
T
1600
|
ol
ir
Oo
——
1500
a
$=
1400
|
HA
1300
1,
|
1200
I
t
600
P
OU
e
2
1100
=
+}
mns
ijF
1000
500
v
a
hes
S
I<e
Ms
‘=
|
7
MI=F
HH
4444+}
ENN
ott
200
os
LH
100
ie
0.5
l
als
2y
345
10
900
800
Cale
Z
Caos
300
iim
\
=
LI
10?
es
A‘
(Gan
iy
70
J |
- 44!
‘v
§
~
§
&
600
sie
|
ttt
1
400
200
a
[3
leah
C.C.T.
103
100
10*
Time, secs
SOURCE:
F. Capelli, M. Canava, "Welding of HSLA (Microalloyed) Structural Steels," ASM International, Materials Park, OH
1976
Mn-V
Structural Steels (As Rolled)
Composition: 0.16% C - 1.42% Mn - 0.44% Si - 0.021% S 0.032% P - 0.025% V - 0.003% Ti - 0.002% Nb - 0.042% Al
Austenitized at 1350°C (2462°F)
900
Temperature
°C
]
Tl]
TTTTTT. secu
Temperature
°F
SOURCE: Rautaruukki Oy, as published in Atlas of Continuous Cooling Transformat
ion Diagrams for Vanadium Steels, ’ Vanitec ,
England, June 1985
Atlas of Time-Temperature Diagrams
305
—_—_—_—_———_—________
Mn-V
Structural Steels (As Rolled)
Composition: 0.19% C - 1.44% Mn - 0.37% Si - 0.007% § -
0.011% P - 0.10% Cr - 0.08% Ni - 0.01% Mo - 0.17% V - 0.20%
Cu - 0.03% Al - 0.010% N Austenitized at 900°C (1652°F)
a
[eres
THIET
Ac3
1600
iE
Temperature
°C
Ses
300
500
200
400
300
=
Ss
= 200
100
CET.
O'S)
SOURCE:
l
2
3' 455
F. Capelli, M. Cavana, "Welding of HSLA
10
10?
103
is 100
104
(Microalloyed) Structural Steels,” ASM International, Materials Park, OH
1976
Mn-V
Structural Steels (As Rolled)
Composition: 0.20% C - 1.45% Mn - 0.30% Si - 0.005% S -
0.012% P - 0.11% Cr - 0.10% Ni - 0.02% Mo - 0.08% V - 0.14%
Cu - 0.01% Al - 6.010% N Austenitized at 900°C (1652°F)
900
ease ee
TW]
TT
1600
°F
Temperature
Temperature
°C
Time, secs
SOURCE: F. Capelli, M. Canava, "Welding of HSLA (Microalloyed) Steels," ASM International, Materials Park, OH 1976
306
Atlas of Time-Temperature Diagrams
Mn-V
Structural
Steels (As Rolled)
Composition: 0.20% C - 1.46% Mn - 0.34% Si - 0.008% S -
0.013% P - 0.12% Cr - 0.10% Ni - 0.02% Mo - 0.14% Ve 0.19%
Cu - 0.03% Al - 0.012% N Austenitized at 900°C (1652 F)
900
1600
——TE
eri
1500
800
1100
Temperature
°F
Temperature
C
SOURCE:
F. Capelli, M. Cavana, "Welding of HSLA (Microalloyed) Structural Steels," ASM
International, Materials Park, OH
1976
Mn-V
Structural Steels (As Rolled)
Composition: 0.06% C - 1.97% Mn - 0.37% Si - 0.020% S 0.006% P - 0.45% V - 0.029% Al - 0.009% N Austenitized at
1100°C (2012°F)
900
j
Temperature
°C
TT
Temperature
°F
SOURCE: BSC Laboratories, Rotherham, England as published in Atlas of Continuous Cooling Transformation Diagrams for
Vanadium Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
Mn-V
307
Structural Steels (As Rolled)
Composition: 0.06% C - 2.00% Mn - 0.37% Si - 0.005% $ 0.006% P - 0 - 0.45% V - 0.029% Al - 0.009% N Grain size:
ASTM 6-7 Austenitized at 1150°C (2102°F) for 15 min
0)
SS
1
A
800
700
Hed
2»
i
le
600
7
ei
Shae
if]
y
500
Ms
€
i
Neer ral i
fl
¥
4
e 400
Pa
pitttt
|
at
+—+} tf
Ser
es
Soot
4
B
300
i
acer
+
: F+iMA
ais
Feet TTS
be
la
+F
=
S
3
HHH]
:
T
1
Temperature
°F
|
+
j—|_l_
te}
10?
—.
titty
103
Time, secs
SOURCE:
R.C. Cochrane, W.B. Morrison, Met. Tech, 1981, 8 (12), as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
Mn-V
Structural Steels (As Rolled)
Composition: 0.07% C - 1.99% Mn - 0.25% Si - 0.004% S 0.013% P - 0.48% V - 0.038% Al - 0.008% N Austenitized at
1000°C (1832°F) for 5 min
900
Acs |
T
p——4+——b
Tah
1600
4+
1500
1400
1300
1100
Temperature
°F
Temperature
°C
0.5
1
Ph)
10
10?
Time, secs
SOURCE:
Atlas of Continuous Cooling
Hoesch Estel Huttenverkaufskontor GmbH, Dortmund, Germany, as published in
Transformation
Diagrams for Vanadium
Steels, Vanitec, England, June 1985
ee
Atlas of Time-Temperature Diagrams
308
i
Mn-V Structural Steels (As Rolled)
S Composition: 0.07% C - 1.90% Mn - 0.24% Si - 0.006%
0.010% P - 0.08% Mo - 0.43% V - 0.06% Al - 0.009% N
Austenitized at 1150°C (2102°F)
800
fF
700.
fF
ine’
—
=
900
Ile
1500
Ht
}titity
Tk
H—
1400
{i}
13
1300
—
1200
Tit—-
1100
600
u
y
=s
ic
& 400
:
-
MiB
M
E
t
300
200
100
5
!
Ms
=
&
3
3
TT
A+B
|
/
+—-
+
Ff
Lt
aie
Me
0.5
i
24S
10?
10
SOURCE: A.M. Sage, "Effect of Rolling Schedules on Structure and Properties of 0.45% Vanadium Weldable Steels for X70
Pipelines,” Metals Technology, March 1981, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium
Steels, Vanitec, England, June 1985
Mn-V-N
Structural Steels (As Rolled)
Composition: 0.07% C - 2.79% Mn - 0.18% V - 0.046% Al -
0.005% N Grain size: ASTM 10-6 Austenitized at 1000°C
(1832°F) for 15 min
900
aaa
800
HH
—
1500
+
Temperature
°C
Temperature
°F
SOURCE: M. Darbin, P.R. Krahe,
Conference
and Properties of Low Carbon Steels, " TMS-AIME,
;
; "Processing
:
in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, Englan d, June 1985
1973, as published
i
Atlas of Time-Temperature Diagrams
309
Mn-V-N
Structural Steels (As Rolled)
Composition: 0.16% C - 1.40% Mn - 0.04% Si - 0.012% S 0.004% P - 0.11 V - 0.04% Al - 0.018% N Grain size: ASTM
10.6 Austenitized at 900°C (1652°F) for 10 min
|
a
2
--_—
l
g
Ac3
Temperature
°C
Temperature
°F
SOURCE: "Microalloying 75,” as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels,
Vanitec, England, June 1985
Mn-V-N
Structural Steels (As Rolled)
Composition: 0.17% C - 1.75% Mn - 0.20% Si - 0-0.10% V 0.02% Al - 0.038% N Austenitized above 900°C (1652°F)
ee ee SURG
ALE
900,
aeea
i
SEE
1600
1500
mere
eee
a= =I
yt
‘
‘
ee
il
a
|
eel
ar i
Ms
i
—-
So
TT oH rae)
ie ail
b
T
iL
Z
|
anh oes eee
ERaUETE
aS
pase
==
eel
Co
rT
174
il
;
a ar
he
1400
1300
1200
1100
hit—
[
=
7
-—
Temperature
°F
Temperature
‘C
+
mil
——
+1
Hil
THI
4 ji}
EVIE
=
t
|Base
l
2S
3455
|
| C.C.T.
— —|Base +|0.10% Vanbdi
0.5
[TT eatin Sat
SS
10
1
102
Ne
103
10*
Time, secs
of Continuous Cooling Transformation
SOURCE: E.E. Blum et al, Fiz. Metal; Metalloved, 22 (6), 1966 as published in Atlas
Vanitec, England, June 1985
Diagrams for Vanadium Steels,
310
etapa
ee
2
ee
os oe Oe
Atlas of Time-Temperature Diagrams
eee
Structural Steels (As Rolled)
Mn-V-N
S Composition: 0.17% C - 1.48% Mn - 0.30% Si - 0.021%
0.034% P - 0.035% Cr - 0.075% Ni - 0.02% Mo - 0.15% V 0.04% Cu - 0.028% Al - 0.018% Austenitized at 1320°C
(2408°F)
900
al
800
oH
]
moan
it
A
700
=
Th
|
600
A+F
t
AFF
\
A+FHB
|
©)
Til
ae
3
a
AttAt
z 400
> 08
are
Ilp+F4C
:
200
&
11 itt
=
He
tele
E
~
| |B
{Itt
:
=
5
|
300
3
in
1
=
M
rc
1
+
alsa
Qe
3 ALS
id
10?
10
‘Time, secs
SOURCE: B.S.C. Laboratories, Rotherham, England, as published in Atlas of Continuous Cooling Transformation
Vanadium Steels, Vanitec, England, June 1985
Mn-V-N
Diagrams for
Structural Steels (As Rolled)
Composition: 0.19% C - 1.55% Mn - 0.32% Si - 0.005% S -
0.013% P - 0.57% Ni - 0.13% V - 0.01% Al - 0.017% N
Austenitized at 900°C (1652°F) for 5 min
900
G00
]
Ac3
Se
AE
eh
Toe ——
i;
Post
|
sa
a.
hh
]
ee
_
——
=e ened
we tan cei
—
I
U
2 500
aan
3
Fa
a
é
as.
(
=
hs
‘x
Ms
400
F
- <a
rT
/
200
aii
100
|
ap
BAS
Ht
‘
|
ie
tt”
TH
Tr
1
|
ret
T
i
DAP
10
102
L_ 1400
oo
etmiaen—
Fett)
L- 1200
i
1100
A
en
5
tH
=
g
=
\
|
1
I 1500
|
|
sifiecay
THT
Os
4H
Be
\
|
:
halle 1
i
300
[
enn
Nd
: es
r- 1600
a IE
SS RaO —
bal
caneel
|
|
—_
=
600
TT]
||-
&
+
tt
Pe
||
aeaaanan
|
|
T
T |
latest
Ts
103
Time, secs
SOURCE: Hoesch Estel Huttenverkaufskontor GmbH, Dortmund, Germany, as published in Atlas of Continuous Cooling
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
SIT
Ni-V Structural Steels (As Rolled)
Composition: 0.15% C - 0.71% Mn - 0.28% Si - 0.005% § 0.007% P - 0.25% Cr - 1.07% Ni - 0.05% Mo - 0.08% V - 0.15%
Cu Austenitized at 900°C (1652°F)
900
=
01
I
Ac3
_
||
SS
&
al
—-——|
+
1600
_——
ne
1500
800 aai
1400
Acl Is
n=
600
=
|
+
OH!
++
1
yy
1
iS)
fs
|
— 1000
+
aie
+4
ft
|
-
+4
|
&
IL
meee
|
M
200
a
feta
Sl
Sie
300
tit
epee
a
0
|
300
won
200
C.C.T, |
ao
ie
102
&
500
+
\
Hidatsa
la
PaaS
| |
I
iat
|
100
t g0
§oO
eel &
WE
LL
set
900
ri
1
=
aR
E 400
1300
I 1200
+4 1100
10
100
10¢
Time, secs
SOURCE: Blondeau et al, "High Strength Steels for Pipeline Fittings,” 1981, as published in Atlas of Continuous Cooling
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Mn-V-Ti
Structural Steels (As Rolled)
Composition: 0.05% C - 1.17% Mn - 0.26% Si - 0.015% § 0.016% P - 0.04% V - 0.01% Ti Austenitized at 1350°C
(2462°F)
coaen
VLE 5.16 |
|
800
Pa
‘6
|
eal
p
aoe
|
ig i child
|
Fa
ace
600
- 1600
l=
mT |
‘sir
LE - 1300
1200
ain
Hee
|
er
cH ++
=
2
500
1
{ts
AoO
L- 1000
x
90
8
fi
1
2 400
§
&
1100
Hn
™
soo |o£un
tet
700 E
eS
600
300
PN
200
mal
400
rt
|
300
200
+
100
aha!
Qo
|
mB aay
wld
ie
a}
102
103
10*
Time, secs
:
Bere
aw, M. Sato,
ility,” Nippon Steels, 1976, as
i such as Weldability,
"Vanadii um for the Improvement of Properties
, June 1985
Vanadium Steels, Vanitec, England
dec ofContinuous Cooling Transformation Diagrams for
Atlas of Time-Temperature Diagrams
312
Structural
Mn-V-Ti
Steels (As Rolled)
Composition: 0.06% C - 1.27% Mn - 0.30% Si - 0.080% S -
0.009% P - 0.01% Cr - 0.01% Ni - 0.01% Mo - 0.04% V - 0.01%
6.8 Austenitized at 950°C
Cu - 0.045% Al Grain size: ASTM
(1742°F)
ir
900,
=
Ac3
ecTTT
on
|
|
]
a
HUT
ft th
1600
yq]
1500
1400
1300
1100
Hi
°F
Temperature
Temperature
C
4 G5 Wy 7
10*
SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories, as published in Atlas of Continuous Cooling
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Mn-V-Ti
Structural Steels (As Rolled)
Composition: 0.10% C - 1.51% Mn - 0.44% Si - 0.008% S$ 0.033% P - 0.05% V - 0.013% Ti - 0.002% Nb - 0.033% Al
Austenitized at 1350°C (2462°F)
]
soo
|
as!
haat
]
|
‘wal
4H
=a
|| |]
|
TTT
]
tl
1
]
||
|| |
aa
|
oo
a4
|
{
aa1]
i]
tel
|
|
ALSie
ES
=
oo
Temperature
°C
°F
Temperature
100
ritinecett
L
0.5
5
LU
l
Pees Bit Wn
10
|
|
\|
rT
|+ {ul
| LSS
10
103
+
Liil'—
200
a C.C.T. + 100
10*
Time, secs
SOURCE: Rautaruukki Oy, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels ' Vanitec,
England, June 1985
—
Se
eee
eee
Atlas of Time-Temperature Diagrams
313
eee
Mn-Nb-V
Structural Steels (As Rolled)
Composition: 0.05% C - 1.82% Mn - 0.39% Si - 0.012% § 0.018% P - 0.06% V - 0.055% Nb - 0.011% Al - 0.011% N
Austenitized at 950°C (1742°F)
Seis
3
|
g
J s
—
=a
=
=
|
i
Temperature
°C
3
°F
Temperature
g
=
£
am
{
fe. o A 7 8
o
So
>
4
o
oO
SOURCE: J. Just, J. Motz, Giessereiforschung, 1976, 28 (4), as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
Mn-Nb-V
Structural Steels (As Rolled)
Composition: 0.06% C - 1.21% Mn - 0.25% Si - 0.001% S -
0.015% P - 0.31% Ni - 0.07% V - 0.043% Nb - 0.30% Cu -
0.041% Al - 0.003% N Grain size: ASTM 7 Austenitized (a) at
1050°C (1932°F) (b) 930°C (1706°F)
j
900
sap
nee
ae
Tt
|
see PaTRTAC AT ee
700
|
u
3
2
E
E
eu
500
|
ae
sem
PeaaBalsoo 7 |Ls
KRes
~
ee
|
Ld
TT
ttt
mol
+
2
=
400
LI
LIF
L100
00
ea
1500
—
inl
—
samara!
P
|
Rae
ae
900
i
LE
Hi
nil
OQ
|
0.5
2
3.4 5)
2
e
E ge
a300
ale:
200
C.C.T.
a0
“
ere
00
q
>
>
z
500
}
|\ aaacaneSst
3B}
ae
S
eS
a
|
UTE
Oe
|
zg
1200
1100
[|
a
1400
1300
{1 TIT
| LU
TI
E
~
oa )
cents
+
600
vv
il
=
102
103
10
1o¢
Cooling Transformation
SOURCE: Kawasaki Steel Corporation Research Laboratories, Japan, as published in Atlas of Continuous
1985
Diagrams for Vanadium Steels, Vanitec, England, June
Atlas of Time-Temperature Diagrams
314
Mn-Nb-V
Structural Steels (As Rolled)
Composition: 0.07% C - 1.35% Mn - 0.29% Si - 0.004% S -
0.005% P - 0.08% V - 0.025% Nb - 0.036% Al - 0.006% N
Austenitized at 1100°C (2012°F) for 10 min
a
900
ay
a
=
TT
A
1500
il
1400
1
os
1300
700
1100
600
1000
900
ae
°F
Temperature
°C
Temperature
300
s2i¢5
IE
c=
ats
Le+
er=
isss
eis
Bist
2) 2) me
LJ:
E
t
t a
——
4|-—
10?
103
10*
Time, secs
SOURCE: B.S.C. Laboratories, Rotherham, England, as published in Atlas of Continuous Cooling Transformation Diagrams for
Vanadium Steels, Vanitec, England, June 1985
Mn-Nb-V
Structural Steels (As Rolled)
Composition: 0.08% C - 1.52% Mn - 0.37% Si - 0.007% S -
0.023% P - 0.21% Cr - 0.10% Ni - 0.10% V - 0.05% Nb - 0.34%
Cu - 0.02% Al - 0.008% N Austenitized at 1100°C (2012°F) for
3 min
Sh
SsSe
oad
pe
-
annH es = SN
oper
700
a
sear
ee
ee eeea
Wiles
— Fe Fert
-—
es les
a
—=— eT
a
|
al
|
\
Le
aaa
Alt
ea
ier
|
a
—
IL
t
i | tT
600
{I}—
i100
tL
500
#x
5
|
=
-
|
300
4
200
L
1000
we
900
¢E
300
i
2 400
1300
TIE 1200
tt
U
5»
1500
eh tao 1400
|
1
700
600
3
&
§
500
100
;
is no reduction
|
— — strained 25%
dt |000°C Followed by|45?/lat 850P
eed id
uu
dali oe Aneta hanh
0s
1
De
3455
10
aml
eal
400
300
200
Ger:
100
102
Time, secs
SOURCE:
T. Hashimoto, et al., "Thermomechanical Processing of Microalloyed Austenite,” TMS-AIME,
Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
1982, as published in
fi
Atlas of Time-Temperature Diagrams
Mn-Nb-V
315
Structural Steels (As Rolled)
Composition: 0.06% C - 1.69% Mn - 0.25% Si - 0.001% § 0.015% P - 0.31% Ni - 0.08% V - 0.043% Nb - 0.30% Cu -
0.040% Al - 0.003% N Grain size: ASTM
7.7 Austenitized at
1050°C (1932°F)
Temperature
°C
Temperature
°F
SOURCE: Kawasaki Steel Corporation Research Laboratories, Japan, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
Mn-Nb-V
Structural Steels (As Rolled)
Composition: 0.06% C - 2.33% Mn - 0.38% Si - 0.008% § -
0.025% P - 0.40% Cr - 0.01% Ni - 0.01% Mo - 0.08% V -
0.048% Nb - 0.01% Cu - 0.035% Al Austenitized at 900°C
(1652°F)
ss Pat Tn
Ac3
CL
LTC
0
Temperature
°F
°C
Temperature
SOURCE:
of Continuous Cooling
Sumitomo Metal Industries Ltd., Central Research Laboratories, as published in Atlas
et
stion Diagrams for Vanadium
Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
316
Structural Steels (As Rolled)
Mn-Nb-V
Composition: 0.10% C - 1.53% Mn - 0.35% Si - 0.010% S
0.013% P - 0.01% Mo - 0.07% V - 0.05% Nb - 0.045% Al 0.007% N Austenitized at 1000°C (1832°F) for 2 min
1600
1500
1400
1300
1200
900
800
700
600
LY
1000)
Y
2 500
S
2 400
5
&
300
900,
800
3
5
700
600
500
&&
200
400
ane
100
200
100
SOURCE: Hoesch Estel Huttenverkaufskontor GmbH, Dortmund, Germany, as published in Atlas of Continuous Cooling
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Mn-Nb-V
Structural Steels (As Rolled)
Composition: 0.10% C - 1.48% Mn - 0.36% Si - 0.008% S 0.014% P - 0.019% V - 0.003% Ti - 0.023% Nb - 0.046% Al
Austenitized at 1350°C (2462°F)
900
]
|
300
| -
Sit
Sete
fai
|
700
=
lial
soe
5
7
[
+4444
=
|
|
=e
|
|
300
++
i
1200
t—-
1000
1300
Ht
anil
eae
it
1100
+—}
alii ies aie
I
|
TT
|
r~
|
|
|_|
PIA
te
g0
a
§
a
[T/L 700 &§
+4
|
200
t-
15ee
i)
xs
5
ie
|
400
1400
B
aie
#
t—
HHT
P
|
‘|
4)
as
|
tt
F
1600
rr
|
sons
600
t
t-
600
500
7
vg
300
100
tad
+
a
eee
Leer 7
|
200
C.C.T
100
=
0.5
|
2
3455
10
102
103
104
Time, secs
SOURCE: Rautaruukki Oy, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec,
England, June 1985
Atlas of Time-Temperature Diagrams
317
Mn-Nb-V
Structural Steels (As Rolled)
Composition: 0.11% C - 1.60% Mn - 0.30% Si - 0.002% § 0.017% P - 0.09% V - 0.005% Ti* - 0.032% Nb - 0.021% Ai
Austenitized at 950°C (1742°F) for 5 min
* wt% TiN
1600
1500
~ 1300
1200
1100
Temperature
°C
Temperature
°F
SOURCE: Nippon Kokan K.K. Technicai Research Centre, Kawasaki, Japan, as published in Atlas of Continuous Cooling
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Mn-V-Nb-Ti
Structural Steels (As Rolled)
Composition: 0.10% C - 1.50% Mn - 0.37% Si - 0.007% S -
0.011% P - 0.022% V - 0.023% Ti - 0.023% Nb - 0.044% Al
Austenitized at 1350°C (2462°F)
900
T
if
Temperature
°F
Temperature
°C
0.5
|
2
3
4
5)
10
102
103
10+
Time, secs
SOURCE:
Vanitec,
Rautaruukki Oy, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels,
England, June 1985
Atlas of Time-Temperature Diagrams
318
——e
I
Mn-Mo-V
Structural Steels (As Rolled)
Composition: 0.04% C - 1.19% Mn - 0.30% Si - 0.001% S -
0.002% P - 0.02% Cr - 0.02% Ni - 0.33% Mo - 0.09% V - 0.01%
Nb - 0.057% Al Austenitized at 960°C (1760°F)
900
°F
Temperature
Temperature
''C
SOURCE: P. Wellner, A. Mukherjee, H. Mayer, "Micro-Alloyed Steel for Casting,” Sulzer Technical Review, 2, 1976, as published
in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Mn-Mo-V
Structural Steels (As Rolled)
Composition: 0.04% C - 1.90% Mn - 0.11% Si - 0.021% § -
900
0.019% P - 0.19% Mo - 0.09% V - 0.02% Al - 0.009% N
MT
|
800
1
700
|
I 1600
LI/- 1500
=
ap
LIL
L- 1400
LLL 1300
iF
LIL 1200
+H 1100
Fi
v
z
=
;
ea
: |
LU
500
i)
2 400
e
300
nitameieet
mH
A
T
200
a
+++
al
Lt
T
c
5
{.
[| L 1000
u4
|
=
ie L oogo 8§&
+t
a
i
400
{||
rh
700
600
500
300
T
100
[ae sea
Ki
ee
ee
i
+
LIL
0)
Ul
102
200
a
C:C.1;
100
Time, secs
Double deformed condition
SOURCE: "Hardenability of Thermomechanically Worked Low Carbon, Mn-Mo-Nb and Mn-Mo-Nb-V
Steels,” Climax
Molybdenum Report L-176-82, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels,
Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
319
ep
Mn-Mo-V
SaaS
SSS
Structural Steels (As Rolled)
Composition: 0.04% C - 1.90% Mn - 0.11% Si - 0.021% S -
0.019% P - 0.19% Mo - 0.09% V - 0.02% Al - 0.009% N
Austenitized at 925°C (1700°F)
900
———
800
+
700
600
4
we
5
S
LC
500
z
s
|
2
®
&
Sa
2
E
ah
200
&
Ei
100
OS)
St
2
Mn-Mo-V
Structural Steels (As Rolled)
Composition: 0.04% C - 1.90% Mn - 0.11% Si - 0.021% S 0.019% P - 0.34% Mo - 0.09% V - 0.02% Al - 0.009% N
Austenitized at 925°C (1700°F)
900
|
800
li
TT
im
rT
700
TH
ttt
— 1600
1500
ibe.
1i—
1300
UC 1200
600
=
-
-
1100
3
I
S
800
&E ses
Hl
ieyal
300
Ǥ
600
&
He
200
100
3
700
rH
ae
We
+H
|
jj
LE
yD acy
i
Li
+
hoalniatat
1a
10?
400
300
T
103
200
C.C.T
100
10¢
Deformed and recrystallized at 925°C (1700°F)
“1
o
i
=
-Mo-Nb-V Steels,”pSClimax
: "Hardenability of Thermomechanically Worked Low Carbon, Mn-Mo-Nb and Mn Mo Nb
Cooling Transformation Diagrams for Vanadium Steels,
a epee Raper L-176-82, as published in Atlas of Continuous
Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
320
Mn-Mo-V
Structural Steels (As Rolled)
Composition: 0.06% C - 1.96% Mn - 0.32% Si - 0.003% S 0.006% P - 0.18% Mo - 0.22% V - 0.020% Al - 0.005% N
Austenitized at 1000°C (1832°F)
900
TT
HH
|
800
700
1600
+
1400
A
Se
1300
ALF
600
y
2
2
|
a
|
L- 1200
-
[
500
Trill
A+B
| At A+B
iaoe
Lit]
oe
Ff
1000
Se
IL
HHH
|
HH
Sant
i
a Be
|
ae!
|
Des
eh
8
=Ǥ
z
=
&
a
300
=f
200
C.C.T.
0.5
we
900
80.
132700
||
600
LH
He
||
100
1100
—
Titi
L
200
+4t+—
|
T
|
300
1500
LEE
\
Ul
100
ees
4 a5
10
10?
103
10*
Time, secs
SOURCE:P BSC Laboratories, Rotherham, England, as published in Atlas of Continuous Cooling Transformation Diagrams for
Vanadium Steels, Vanitec, England, June 1985
Mn-Mo-V
Structural Steels (As Rolled)
Composition: 0.06% C - 1.70% Mn - 0.50% Mo - 0.10% V -
0.020% N Austenitized at 940°C (1724°F) for 5 min
900
aA
ng IeSA eea eth | eel | Sa HIea+-FH
Be Ht
(22
aa
- | HTi i6001500
Cc.
ae
700 Pas
SS
1400
oo
ii SS
il 1300
1
600
2
2
500
:
|
Eso
Com
&
300
i
100
|
aH
ali LE |
1
|
Ht
co
[Fe
i
LUT
mill
|
|
a
|
| 1200
1100
el
il
H
900
p
3
| 800 i
PE
LT UIE &
=
700
;
RB
300
[CAN
200
Hl
|
Ll
0.5
1
Die
SASS
10
10?
103
10*
Time, secs
SOURCE: Kawasaki Steel Corporation Research Laboratories, Japan, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
Mn-Mo-V
32]
Structural Steels (As Rolled)
Composition: 0.06% C - 1.46% Mn - 0.14% Si - 0.003% s 0.018% P - 0.20% Cr - 0.02% Ni - 0.25% Mo - 0.03% V - 0.01%
Cu - 0.035% Al Austenitized at 930°C (1706°F)
900
Po
oT
ee
TTT
ie
iaaiial
UPR
T
LL
T
eee
tH
1
T
T
tH
UL
sia
2
be
2
a
e
&
E
£
Mn-Mo-V
Structural Steels (As Rolled)
Composition: 0.07% C - 1.52% Mn - 0.47% Si - 0.008% S -
0.004% P - 0.01% Cr - 0.01% Ni - 0.27% Mo - 0.05% V - 0.01%
Cu - 0.064% Al Austenitized at 920°C (1688°F)
SS
ee
eee
Goer
eo
ihle 1600
b
Y
Py
2
e5
5
10?
Time, secs.
SOURCE:
in Atlas of Continuous Cooling
Sumitomo Metal Industries Ltd., Central Research Laboratories, as published
Pravetorviation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
ee
Structural Steels (As Rolled)
Mn-Mo-V
Composition: 0.07% C - 1.57% Mn - 0.49% Si - 0.008% S -
0.004% P - 0.01% Cr - 0.01% Ni - 0.27% Mo - 0.05% VW -
920°C
0.0005% B - 0.01% Cu - 0.066% Al Austenitized at
(1688°F)
900
4 file eid ee
LI
nil
i
800
|
in
Ac3+900°
“Pe
cl
= mee
700
LI}
+H
600
Tar
g 500
3
g
e
400
1
a
I
Hy
L
300
-
200
}—
} tit}
900
300
700
600
500
=
§
(=§
a
4
—t
100
1600
1500
1400
1300
1200
1100
00
300
et
200
C.G.T:
100
TUE
10¢
105
108
Time, secs
SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories, as published in Atlas of Continuous Cooling
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Mn-Mo-V
Structural Steels (As Rolled)
Composition: 0.12% C - 0.83% Mn - 0.30% Si - 0.005% S -
0.004% P - 0.53% Cr - 1.11% Ni - 0.49% Mo - 0.03% V - 0.30%
Cu - 0.031% Al Austenitized at 950°C (1742°F) for 20 min
900
300
ae
700
|
ae
600
oy
1400
= sera
—=
it
t+
e
g
|
Pale
-}—+—}—
1600
SER
TT
ML
Zee
1300
&
1200
1100
s
/
500
Moe
:
EEae
B
tat
T
900
.
moe
0
600
s
M
:
200
rT
100
500
ai
th
iig
+
200
t
i
0.5
1
2°
37455
10
10?
z
C.C.T.
103
100
10+
SOURCE: T. Kunitake, et al., "Toward Improved Ductility and Toughness,” Climax Molybdenum, 1971 as published in Atlas of
Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
a
ES
SE
eS
eee
Atlas of Time-Temperature Diagrams
323
Mn-Mo-V
Structural Steels (As Rolled)
Composition: 0.15% C - 1.39% Mn - 0.40% Si - 0.013% S 0.016% P - 0.27% Mo - 0.05% V - 0.018% Al - 0.004% N
Austenitized at 930°C (1706°F) for 10 min
900
ay
TT
b
7
T
1
r
1600
1500
1400
1300
fe
+
F
Cee
rs
7
>
_—
song
4
apeall
{4
ff
al
re
B
7
1100
ip
3
Temperature’
C
Temperature
°F
b
an
iE
0.5
|
Qe
S45
10
102
103
10*
Time, secs
Mn-Mo-V
Structural
Steels (As Rolled)
Composition: 0.17% C - 1.54% Mn - 0.44% Si - 0.006% S -
0.012% P - 0.01% Cr - 0.02% Ni - 0.47% Mo - 0.14% V 0.002% Nb - 0.01% Cu - 0.010% Al - 0.006% N Austenitized (a)
at 930°C (1706°F) for 75 min (b) at 1350°C (2462°F) for 10s
Sees ee
i
Acl
ee
a
ee ee
A
eon ates
Sed es
1
so
4)
ised ere ohcB eo
4
m4
Ms
a
tee
|
erect
S
ees ceteed
P
of
aot
ij BUI
i
ae
Temperature
°F
Temperature
°C
t=
Z
—>
LI
ee
TT
ata
nl
Jccr:
Belper
OS
tt
BB Bees
i
102
103
10
Time, secs
SOURCE:
Kawasaki
Steel Corporation Research Laboratories, Japan, as published in Atlas of Continuous
Vanitec, England, June 1985
Diagrams for Vanadium Steels,
ee
Cooling Transformation
Atlas of Time-Temperature Diagrams
324
i
Structural Steels (As Rolled)
Mn-Mo-V
Composition: 0.06% C - 0.82% Mn - 0.26% Si - 0.001% S -
0.015% P - 0.25% Mo - 0.08% V - 0.04% Nb - 0.040% Al 0.003% N Austenitized at 930°C (1706°F) for 10 min
900
6301C]|
eal
05
600
.
2
500
=)
ir
z
2 400
=
300
| ian
ot
200
100
TTT 1600
FLITE
—
AAS
I
FE
—
|
a5
1
|
t
Mies 2
t
2 3a5
|
iL
900
§&
800
TTTTL 700
z
E
L600
maa
+
1500
1400
jen
1200
1100
1000
i
UH
TTT
Hl
10?
+4
|
i
Bek
{
hl
eee
WE
|
400
300
ieee
sas(am No
ll
C.C.T rc 100
103
10¢
Time, secs
Mn-Mo-Nb-V
Structural Steels (As Rolled)
Composition: 0.06% C - 1.21% Mn - 0.25% Si - 0.001% § -
0.014% P - 0.25% Mo - 0.08% V - 0.044% Nb - 0.036% Al 0.003% N Grain size: ASTM 7.1 Austenitized (a) at 1050°C
(1922°F) for 3s, (b) at 930°C (1706°F) for 10 min
7
Ac3=30
1500
1400
1300
1200
1100
1000
800
700
600
oS
2
500
=
900
&
2 400
50
100
2
800.
700
&
300
1600
|
:
e
oe
500
400
300
200
100
SOURCE: Kawasaki Steel Corporation Research Laboratories, Japan, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium
Steels, Vanitec, England, June 1985
_ Atlas of Time-Temperature Diagrams
325
Mn-Mo-Nb-V
Structural
Steels (As Rolled)
Composition: 0.07% C - 1.49% Mn - 0.26% Si - 0.001% § 0.015% P - 0.25% Mo - 0.08% V - 0.042% Nb - 0.036% Al -
0.003% N Grain size: ASTM 7-8 Austenitized (a) at 1050°C
(1911°F) for 3 s (b) at 930°C (1706°F) for 10 min
yoo
900
Ac3=19301C
°F
Temperature
C
Temperature
SOURCE: Kawasaki Steel Corporation Research Laboratories, Japan, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
Mn-Mo-Nb-V
Structural
Steels (As Rolled)
Composition: 0.09% C - 1.03% Mn - 0.28% Si - 0.015% S -
0.010% P - 0.01% Cr - 0.01% Ni - 0.31% Mo - 0.10% V - 0.09%
Nb - 0.021% Al Austenitized at 960°C (1760°F)
bs
aT
900
ic
800
A
700
jareinininiil
|
le
600
||
q
LeBD
F
;
alielateatt
orn
:
|
|
it
2 500
S
S
iB
M
aa
B 400
f=
300
zl
200
ah
4+—
f+
Leet
aa
al
+
1400
1200
1100
|
1000
t
900
|}
EE
mil
4
+
|
-
00
L
700
+444
4itt
4
i
0.5
|
§
&
400
200
ip
ie
C.C.T. |—
DeAts
3§
300
al
|
a
§
ra
600
tig
|
100
a
ia
+
==
}itt
Jeet
1500
I
P
=i
|
|
1600
‘ante ckae
|
O
I
LI}
100
WB 15SUS
BUN
10
102
103
104
Sulzer Technical Review, 1976, No. 2, as published in Atlas of
SOURCE: P. Wellner, et al., "Mirco-Alloyed Steel for Casting,”
June 1985
Steels, Vanitec, England,
Continuous Cooling Transformation Diagrams for Vanadium
Atlas of Time-Temperature Diagrams
326
ee
Structural Steels (As Rolled)
Mn-Mo-Nb-V
Composition: 0.12% C - 1.72% Mn - 0.28% Si - 0.005% S -
0.016% P - 0.20% Mo - 0.06% V - 0.038% Nb - 0.068% Al ox
0.0001% N Grain size: ASTM 8 Austenitized at 910°C (1670°F)
800
700
sera ml
|
!
|
|
5
7
|
|
fish
|
aie
E
2
400
,
tii
{
TH
300
1200
1100
asada titit —
i
|
wy
1300
—
A+P
aul
oh
1400
|
==+=—+
AOA
600
1500
|
|
\
1600
LL
Wu
Uh
We
|
{
TTT
TT|
TTT
Gs
900,
|
1000
4
900
§
|
800
Pt
yee
||
AE
lt
++Ht+tt+
700
§
600
2
500
ice
200
{
++
+
400
iB
300
1
|
200
rl
100
100
i
|
ee
|e
102
10
103
104
105
Time, secs
SOURCE: T. Wada, et al, "High Strength Steels for Pipeline Fittings,” 1981, as published in Atlas of Continuous Cooling
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Mn-Mo-Nb-V
Structural Steels (As Rolled)
Composition: 0.14% C - 1.44% Mn - 0;.23% Si - 0.007% § 0.011% P - 0.065% Cr - 0.23% Ni - 0.035% Mo - 0.10% V 0.03% Nb - 0.48% Cu - 0.028% Al - 0.013% N Austenitized at
1320°C (2408°F)
900
TTT
BE
—
Temperature
°C
Temperature
°F
104
Time, secs
SOURCE: B.S.C. Laboratories, Rotherham, England, as published in Atlas of Continuous Cooling Transformation Diagrams for
Vanadium Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
327
Quenched
and Tempered
Structural
Steels
Composition: 0.09% C - 0.94% Mn - 0.28% Si - 0.008% S -
0.010% P - 0.10% Cr - 2.54% Ni - 0.64% Mo - 0.04% V - 0.07%
Cu - 0.029% Al Austenitized at 930°C (1706°F)
1600
1500
1400
1300
1200
1100
1000
Temperature
'C
°F
Temperature
SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories, as published in Atlas of Continuous Cooling
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Quenched
and Tempered
Structural Steels
Composition: 0.09% C - 0.59% Mn - 0.57% Si - 0.010% S 0.015% P - 2.00% Cr - 0.56% Mo - 0.37% V - 0.18% Ti - 0.005
% B - 0.41% W Austenitized at 1030°C (1886°F) for 10 min
OY
(Reaasise
Acl
800
;
3
iE
=
1
700
=
Se
ia
if
r
600
»
i)
Fito
5
=)
5
stitch == ees
cal
&
=
Velvia
{Se
es
||
4 al {iit
+
ie
4
[_
°F
Temperature
AHM
(ooo
300
i
200
H
te
AB
{+
in
pa
+—+4+--44 ru]
é. 400
|
VAP
ttt
ieee
Ms
=
f—
[|
tt
500
1
A
ian
A
[S}
tie
Ab F
=i
if
|
1p
|_
atin
100
ie
TT
C.C.T.
I
0.5
I
Lit
he
BAW
10
102
103
0*
Time, secs
SOURCE:
Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium
Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
328
SS
a
and Tempered Structural Steels
Quenched
Composition: 0.09% C - 1.01% Mn - 0.32% Si - 0.009% S -
0.011% P - 0.52% Cr - 1.49% Ni - 0.52% Mo - 0.05% V 0.002% B - 0.25% Cu - 0.055% Al Austenitized at 930°C
(1706°F)
900)
TT
Ac3
‘aaa
inate
Li
|
mente
eaeseieeratbea
rom
a
mH
|
700
-
|
sl
ie
— 1600
ale
i ipee + =| | | |He
00
Se
— 1400
se
Fs
600
:eet!
‘2
&
IM
|
e
300
i.
200
os
&
‘
if
oS
2
2
BAS
it
10?
103
104
Time, secs
Quenched
and Tempered
Structural Steels
Composition: 0.09% C - 0.82% Mn - 0.29% Si - 0.013% S 0.019% P - 0.12% Cr - 1.85% Ni - 0.53% Mo - 0.04% V - 0.01%
Cu - 0.031% Al Austenitized at 930°C (1706°F)
900
800
AG
ily
e——
FF
OT
ib
—_ —_ +
7i
— +
TT
‘aN
1
ih
T
Lae
ae oo ete
fen tanen wd oha
i
HT]
Il
TL
1500
4
=
5
&
LS
&
E
E
Time, secs
SOURCE: Sumitomo Metal Indu stries Ltd., Central Research Laboratories, as published in Atlas of Continuous Cooling
Transformation Diagrams for Va nadium Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
329
Quenched
and Tempered
Structural Steels
Composition: 0.10% C - 2.00% Mn - 1.09% Si - 0.005% S 0.012% P - 1.80% Cr - 0.65% Mo - 0.15% V Austenitized at
950°C (1742°F) for 10 min
90
Ac3
4910°C
TTT
fle 1600
|
Lt
Acl |
700
S
i merinestan
acid ite
I
‘arpala
|
600
1200
=
1100
Aa
2 500
E&
1c
{|
S)
2
i
\
TT
HL
400
ne
2
i}
=
ite
300
°F
Temperature
rr
r
200
100
|
|
OS.
[ea
4
A
+t
il
ff
4
Ht
ut
LU
SLS
4
eee
4
IE
|
se
;
44) 14
SS
ele
102
+
C.C.T.
LL
Nv
|
103
10¢
Time, secs
Quenched
and Tempered
Structural Steels
Composition: 0.10% C - 0.76% Mn - 0.22% Si - 0.007% S 0.012% P - 0.68% Cr - 0.85% Ni - 0.48% Mo - 0.07% V -
0.001% B - 0.21% Cu Austenitized at 950°C (1742°F) for 15
min
a 2 le Se
He
+
Temperature
°C
Temperature
°F
as published in Atlas of Continuous Cooling Transformation
SOURCE: Central Iron and Steel Research Institute, Beijing, China,
1985
June
,
England
Vanitec,
Diagrams for Vanadium Steels,
Atlas of Time-Temperature Diagrams
330
and Tempered Structural Steels
Quenched
Composition: 0.11% C - 0.52% Mn - 0.26% Si - 0.012% S -
0.007% P - 0.56% Cr - 4.92% Ni - 0.53% Mo - 0.08% V - 0.10%
Cu - 0.04% Al Austenitized at 880°C (1616°F) for 10 min
H—
ul
800
Ba
700
|-Act
Se
oe
ee
Se
LE
JUL
iit
taetstatitmmaene
4
\
l=
i
600
+— 1300
ee
—
|
|
5]
lian
ef
(ea
TH7t—
ae
1100
1000
Y)
2F
4
900
a
r
7
TTT
2
2
5
F
2
Seen
5
|
|
ke
SOURCE:
=
TT
TT
=P
1600
1500
or
Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
Quenched and Tempered Structural Steels
Composition: 0.11% C - 0.85% Mn - 0.31% Si - 0.009% S$ 0.007% P - 0.51% Cr - 1.30% Ni - 0.48% Mo - 0.03% V 0.002% B - 0.27% Cu - 0.077% Al Austenitized at 930°C
(1706°F)
900
Coe
300 f
ee
all ieS
ee cd
ei calall! ieee LI
as
SD
|
Temperature
°C
THI
ai
1600
ih | ae
°F
Temperature
SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories, as published in Atlas of Continuous Cooling
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
331
er
Quenched
and Tempered
Structural Steels
Composition: 0.11% C - 0.56% Mn - 0.28% Si - 0.005% S -
0.017% P - 1.08% Cr - 0.04% Ni - 0.31% Mo - 0.22% V - 0.03%
Cu - 0.01% Al Austenitized at 980°C (1796°F)
900 [ Ac34904°C
SRROII
1
|
|
300
Lxet
al
peo ain
oe
700
el ee
JTL 1600
[
—-s4-—+
|
Litt
1500
Vamnealmealaiaetaitalice
1400
Hi
titii—
1300
|_|
/
+}
600
/L 1200
Tt
is
Ms
ye
1100
1000.
900
g
R
. 2
700 =&
&
300
6m
500
200
400
300
100
200
100
0.5
1
Quenched
and Tempered
Structural Steels
Composition: 0.12% C - 0.75% Mn - 0.06% Si - 0.008% S 0.007% P - 0.57% Cr - 2.62% Ni - 0.48% Mo - 0.05% V 0.002% B - 0.25% Cu - 0.062% Al Austenitized at 900°C
(1652°F)
900
Ye
z
E
&
T
|
Lats
|
£
z
&5
in Atlas of Continuous Cooling
SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories, as published
as
Diagrams for Vanadium Steels, Vanitec, England, June 1985
i
Atlas of Time-Temperature Diagrams
ioy'4
Quenched
and Tempered
Structural Steels
Composition: 0.12% C - 0.73% Mn - 0.37% Si - 0.003% S-
0.008% P - 5.75% Cr - 0.55% Mo - 0.24% V - 0.16% Ti 0.011% B - 0.26% W Austenitized at 970°C (1778°F) for 10
min
ee
age
ne eeee a
4
=e
1500
°F
Temperature
Temperature
°C
Quenched
and Tempered
Structural Steels
Composition: 0.12% C - 0.55% Mn - 0.68% Si - 0.010% S 0.012% P - 2.05% Cr - 0.55% Mo - 0.32% V - 0.08% Ti 0.006% B - 0.32% W Austenitized at 1030°C (1886°F) for 10
min
Temperature
"C
°F
Temperature
SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
Quenched
333
and Tempered
Structural Steels
Composition: 0.18% C - 0.71% Mn - 0.56% Si - 5.43% Cr -
0.47% Mo - 0.20% V - 0.16% Ti - 0.010% B - 0.19% W
Austenitized at 1000°C (1832°F) for 10 min
Temperature
°C
Temperature
°F
SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
Quenched
and Tempered
Structural Steels
Composition: 0.13% C - 1.16% Mn - 0.31% Si - 0.017% S -
0.018% P - 0.23% Cr - 0.01% Ni - 0.27% Mo - 0.05% V - 0.01%
Cu - 0.010% Al Austenitized at 920°C (1688°F)
900
700
s
oS
°F
Temperature
Temperature
C
Time, secs
SOURCE:
in Atlas of Continuous Cooling
Sumitomo Metal Industries Ltd., Central Research Laboratories, as published
1985
Transformation Diagrams for Vanadium Steels, Vanitec, England, June
Atlas of Time-Temperature Diagrams
334
Quenched and Tempered Structural Steels
Composition: 0.13% C - 0.60% Mn - 0.29% Si - 0.016% S 0.010% P - 0.98% Cr - 0.01% Ni - 0.31% Mo - 0.20% V - 0.02%
Cu - 0.010% Al Austenitized at 965°C (1769°F)
LLLun
L al
CTMh
” coseT eae
700
|
600
'
4
|
800
LH
fil
LLU
i i
ill
aee8
1500
oee
1300
irre
| 1100
1000
ae}
aaa,
{4
3=
oo
°F
Temperature
Temperature
°C
HL |LUI 3
TUTHIN | deewp
200
CHINE TTT
0.5
1
ae
45)
10
10?
103
10*
Time, secs
SOURCE:
Sumitomo Metal Industries Ltd., Central Research Laboratories, as published in Atlas of Continuous Cooling
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Quenched
and Tempered
Structural Steels
Composition: 0.14% C - 0.53% Mn - 0.54% Si - 0.006% §S 0.022% P - 1.43% Cr - 0.54% Mo - 0.03% V - 0.006% Ti*
Austenitized at 930°C (1706°F) for 10 min
* wt% TiN
800
f
fase et
4
Ltt
oS HASAN
pea
aL
600
9ft
om
5
5
g
F
5 400
e
é
=
300
200
100
0.5
Time, secs
SOURCE: Nippon Kokan KK, Technical Research Centre, Kawasaki, Japan, as published in Atlas of Continuous Cooling
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
Quenched
335
and Tempered
Structural Steels
Composition: 0.15% C - 0.57% Mn - 0.28% Si - 0.019% S -
0.013% P - 0.63% Cr - 0.91% Ni - 0.61% Mo - 0.30% V -
0.032% Al Austenitized (a) at 950°C (1742°F) (b) at 990°C
(1814°F)
900
1600
1500
1400
700
1300
1200
1100
1000
600
S
g #0
soo 8
é2 400
800
ips
600
500
700
5
&a
5
300
200
100
100
0.5
|
2,
USAT
10
102
10»
10+
Time, secs
SOURCE: M.G. Gemill, "Steel Strengthening Mechanisms,” 1969, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
Quenched
and Tempered
Structural Steels
Composition: 0.14% C - 0.50% Mn - 0.30% Si - 0.005% S -
0.008% P - 0.38% Cr - 0.03% Ni - 0.55% Mo - 0.27% V - 0.01%
Cu - 0.010% Al Austenitized at 930°C (1706°F)
sl
|
TT
°F
Temperature
Temperature
°C
Time, secs
SOURCE:
in Atlas of Continuous Cooling
Sumitomo Metal Industries Ltd., Central Research Laboratories, as published
Transformation Diagrams for Vanadium
Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
336
and Tempered Structural Steels
Quenched
Composition: 0.15% C - 3.06% Mn - 0.59% Si - 0.005% S 0.020% P - 0.14% Cr - 0.04% Ni - 0.46% Mo - 0.09% V - 0.09%
Cu - 0.70% W Austenitized at 900°C (1652°F) for 10 min
7
TI
900)
Ac3
aero!
==
=a
=)
Temperature
"C
rr
Ms
ERS
sae
aaa
=I
Sle
LL
200
via
0.5
ie
2© Ss
°
Temperature
al
alll
ttt ift|
1
2
3/43
10%
10?
10
10*
Time, secs
Quenched
and Tempered
Structural
Steels
Composition: 0.15% C - 0.77% Mn - 0.20% Si - 0.011% S -
0.010% P - 1.27% Cr - 4.25% Ni - 0.45% Mo - 0.10% V - 0.23%
Nb Austenitized at 900°C (1652°F) for 10 min
800
= immiiiil
fetes HUT
=
|
o
Temperature
°C
(REC co Sse aah 1
as
200
iP
s
*ee
|
°F
Temperature
Se
100
0.5
|
ll
10
10?
| | iil |
103
|
10+
C.C.T.
+ 100
105
Time, secs
SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
esiseeeneeeee
Atlas of Time-Temperature Diagrams
337
Quenched
and Tempered
Structural Steels
Composition: 0.14-0.20% C - 0.60-1.00% Mn - 0.17-0.37% Si -
<0.070% S - <0.070% P - <0.25% Cr - <0.25% Ni - 0.05-0.09%
V - <0.25% Cu
900
Ses
fas
800
Ey
cere
=
me
S16
SS SS) 22) soo
SSS
A
Acl
ee
700
SBE
i
1400
Hit1300
1200
I 1100
|
a1
Y
t-
g
500
aioe
=
=
&
5
1600
LL 1500
ae
6
TTL
L
400
Ee
300
200
1000
ee
Hil 900
g
800
ss
uw
|
700
|
600
500
|
3
al
400
300
200
ico
100
C.C.T.
OSs
m
3AS
jo
10?
104
103
SOURCE: Vitkovice Steel Works, Czechoslovakia, as published in Atlas of Continuous Cooling Transformation Diagrams for
Vanadium Steels, Vanitec, England, June 1985
Quenched and Tempered Structural Steels
Composition: 0.22% C - 1.45% Mn - 0.30% Si - 0.006% S$ 0.020% P - 0.98% Cr - 0.01% Ni - 0.45% Mo - 0.03% V - 0.01%
Cu - 0.044% Al Austenitized at 900°C (1652°F) for 20 min
900
“L 1600
iP
Eee
Sen iesDOE ee
sa
ts
600
—
1100
ET OOO
+ 900
1 800
700
y, 500
q
2 400
E
ements
I 1400
- 1300
I 1200
300
600
Ke
200
400
-
100
200
a
MES
8
5
5
0.5
Time, secs
SOURCE:
of Continuous Cooling
Sumitomo Metal Industries Ltd., Central Research Laboratories, as published in Atlas
Transformation Diagrams for Vanadium
Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
338
Quenched
and Tempered
Structural Steels
Composition: 0.23% C - 0.53% Mn - 0.30% Si - 0.018% P -
1.55% Cr - 0.30% Ni - 0.29% Mo - 0.21% V - 0.11% Cu
Austenitized at 940°C (1724°F) for 10 min
900
800
ia
Ac3
eae
|Act
ee
oo
nr
se
600
or
1600
ff}
HHL
Te
|
|
|
a
A
ae
tt
nal Pall
500
-
=
ra
i
+
+
:
y
s
~~
Temperature
’C
S
AL
=
Quenched
\\ 4+
1500
LL 1400
1300
1200
i 1100
1000
|
irene
900
= : Ss8
\|
@
a
and Tempered
°F
Temperature
Structural Steels
Composition: 0.23% C - 0.22% Mn - 0.22% Si - 0.004% S -
0.015% P - 1.70% Cr - 3.60% Ni - 0.53% Mo - 0.12% V
Austenitized at 900°C (1652°F) for 10 min
Temperature
°C
Ch
itaaeticae sae
artic 9 SeRR
RaBeijing,
OE
SOURCE: Central Iron and Steel Research
Institute,
°F
Temperature
China, as published in Atlas of of Conti
Continuous Cooling Transformation
i
Atlas of Time-Temperature Diagrams
339
Quenched and Tempered Structural Steels
Composition: 0.26% C - 0.75% Mn - 0.26% Si - 0.014% S -
0.010% P - 0.45% Cr - 0.81% Ni - 0.61% Mo - 0.05% V
900
3
ae
WL
800
——
H+
ann
1600
ritt— 1500
t- 1400
700
TH
titty
|
{111 1300
F
600 +
reel
ERI
L- 1200
F
|
ie
oO
Kt
gz 500
H+
+
=
&
a5
11114
HE
GREEEI
=
oO
mmSeaG
Ht
H4
900
2
&
700 &
na a
300
200
1000
tt
St
TH
1 t+
500
+
400
|
300
100
200
CGT
0.5
10
102
103
100
10
105
Time, secs
SOURCE: S. Mohammed, C.D. Lundin, "The Effect of Welding Conditions on Transformation and Properties of the Weld HAZ of
Low Alloy Steels for Use in Light Water Reactors,” 63rd AWS Conference, Kansas City, April 1982, as published in Atlas of
Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Quenched and Tempered Structural Steels
Composition: 0.26% C - 1.67% Mn - 0.30% Si - 0.015% S 0.023% P - 0.05% Cr - 0.03% Ni - 0.11% Mo - 0.06% V - 0.01%
Cu - 0.013% Al Austenitized at 920°C (1688°F) for 20 min
900
T
IT]
1600
1 500
800
1400
700
1300
600
1100
1200
y
1000
e
=|
500
z
400
F
i=
900
i
cm
200
2S
Co
————
"
ill
lll
t
|
mae
100
LS lhe
0.5
1
231-45)
10
cor.f
| fas
LJ
10?
ee
:
700
+&
2
§
=
400
300
a
p=
103
10*
Time, secs
SOURCE:
in Atlas of Continuous Cooling
Sumitomo Metal Industries Ltd., Central Research Laboratories, as published
Transformation
Diagrams for Vanadium
Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
340
Quenched and Tempered Steels
Mn-V
Composition: 0.34% C - 1.31% Mn - 0.24% Si - 0.10% Vix
0.018% Al - 0.016% N Austenitized at 925°C (1700°F) for 5
min
900
am
ml
oh
ee
eae
+H
—-+-+4
s
Acl
I|t
af
|
I
|
{
=a
—+—
li
LN
ae
dg
wae
anil
Pa
eter be
ia
°F
Temperature
Hilt
1
S
u eet
225 aes ==
au
Mt
TT
0.5
es
ae
=
.
LY
Wah
aa
=i
‘
[]
i
=
Ss
8
lH
a
:
L
LU
!
°C
Temperature
1500
=a
rH ==
1600
sel
Sa
=
tee
ee
Sas
S4
Ssoo
10
8
2) 2 a
_—|
—
==
3S rd
Time, secs
SOURCE: D.L. Sponseller, J.A. Straatman, "Mechanical Working and Steel Processing XIX,” ISS-AIME, 1982, as published in
Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Mn-V
Quenched
and Tempered Steels
Composition: 0.35% C - 1.62% Mn - 0.47% Si - 0.008% § -
0.001% P - 0.10% Cr - 0.10% Ni - 0.01% Mo - 0.11% V - 0.14%
Cu - 0.02% Al Austenitized at 890°C (1634°F) for 10 min
aa
900)
Stan
a
|seusieesienn
Srl
‘2g
2
500
&
2 400
E
CTT
demmieeeston
clbeeed eeneh ened omed
a
00
-s—s
Act|
octet Sass
600
Y
mT
3 anal
rn
+
TPL
|
Rea
[rh
dd
L600
{
——4+
— + HT
==
Ht 1500
aan
pg
=
4
+- 1000
\
ae
\
3
1400
1300
1200
1100
P
if
a1
qT
|
ih
900
100
3
=
ees
700
600
500
400
300
200
100
200
:
é
Time, secs
SOURCE:
Acciaierie E. Ferriere Lombarde Falck, Milan, Italy, as published in Atlas of Continuous
Diagrams for Vanadium Steels, Vanitec, England, June 1985
Cooling
f
ti
ooling T Transform
ation
Atlas of Time-Temperature Diagrams
Mn-V
Quenched
34]
and Tempered
Steels
Composition: 0.38% C - 1.63% Mn - 0.30% Si - 0.016% S 0.018% P - 0.02% Cr - 0.01% Ni - 0.12% Mo - 0.07% V - 0.01%
Cu - 0.021% Al Austenitized at 920°C (1688°F)
Ss
oo
Temperature
°C
Temperature
°F
10*
SOURCE: Sumitomo Metal Industries ltd., Central Research Laboratories, as published in Atlas of Continuous Cooling
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Mn-V
Quenched
and Tempered
Steels
Composition: 0.45% C - 1.34% Mn - 1.45% Si - 0.013% S 0.022% P - 0.10% V Austenitized at 900°C (1652°F) for 10 min
900
800
700
°F
Temperature
Temperature’
C
300
200
Time, secs
SOURCE:
us
Institute, Beijing, China, as published in Atlas of Continuo
Research
Centra 1 Iron and Steel
is, Vanitec,
England, June 1985
Diagrams for Vanadium Stee
Cooling Transformation
Atlas of Time-Temperature Diagrams
342
Cr-V Quenched
and Tempered
Steels
Engineering
Composition: 0.43% C - 0.67% Mn - 0.28% Si - 0.10% V - 0.32% Cr
°F
Temperature
Temperature
°C
SOURCE: A.F. Crawley, M.T. Shehata, "Metallurgy of Continuous Annealed Sheet Steel," TMS-AIME, 1982, as published in
Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Cr-V-Ti
Quenched
and Tempered
Engineering
Steels
Composition: 0.38% C - 0.78% Mn - 0.29% Si - 0.030% S - 0.005% P - 0.99% Cr
- 0.14% Ni - 0.08% Mo - 0.06% V - 0.021% Ti - 0.20% Cu - 0.022% Al - 0.01% N
Austenitized at 875°C (1607°F) for 30 min
900
|
goo
700
[4S
Ss
ie
SS
Acl
a
ee 3
ES
600
v
g 500
|
&
E
]
1]
SS
9S pe
em es
epee
Pe
Page
ee
eS
44
|
nA
+5
rn
ace
Ms
alee hee hs dest
F r
|
att
ee
1400
1300
1200
1100
1000.
900 ‘
3
800
ae
ea
[Bl]
1600
1
i:
700
ee
§
&
300
|
M
1
200
a
coal
{|
500
400
|
5
|
300
200
100
C.C.T,
i
Ww
28 34s
102
102
100
ie
SOURCE: Institutet for Metallforskning, Sweden, as published in Atlas of Continuous Cooling Transformation Diagrams for
Vanadium Steels, Vanitec, England, June 1985
_ Atlas of Time-Temperature Diagrams
Cr-V-Ti
343
quenched
and Tempered
Engineering Steels
Composition: 0.39% C - 0.76% Mn - 0.28% Si - 0.033% S - 0.007% P - 0.99% Cr
- 0.14% Ni - 0.03% Mo - 0.12% V - 0.047% Ti - 0.21% Cu - 0.01% N
Austenitized at 875°C (1607°F) for 10 min
900
at
ot
700
Ac3
pe
Acl
ete
ee
ee eee
|
+
+
600
—
se
att
tet
i
.
ade al
HH
HH
lls
Talstshion
ey
pies
ae
{LLL
1
400
B
Temperature
'C
te
—-
= eeLE
aes
500
T
Ul
WT
|
eee
T
Ms
Temperature
°F
+i iit
300
aa!
M
Eee
200
|
0.5
1
293
GGT,
455
10
10?
10?
10*
Time, secs
Cr-V-Ti
Quenched
and Tempered
Engineering
Steels
Composition: 0.40% C - 0.75% Mn - 0.27% Si - 0.034% S - 0.007% P - 0.96% Cr
- 0.13% Ni - 0.07% Mo - 0.06% V - 0.035% Ti - 0.20% Cu - 0.01% N
Austenitized at 875°C (1607°F) for 30 min
900
800
700
600
°F
Temperature
Temperature
°C
Time, secs
of Continuous Cooling Transformation Diagrams for
SOURCE: Institutet for Metallforskning, Sweden, as published in Atlas
1985
June
nd,
Engla
c,
Vanite
,
Vanadium Steels
Atlas of Time-Temperature Diagrams
344
Mn-Mo-V Quenched and Tempered Engineering Steels
Composition: 0.30% C - 1.91% Mn - 0.34% Si - 0.009% S - 0.016% P - 0.67% Mo
- 0.07% V Austenitized at 900°C (1652°F) for 15 min
900
\
800
ft
|
+
Acl
700
kate! man | Pees
|
| ie
600
eee | rt
Li
+
]
piiet—_—
1600
4+
te
tr1500
1400
l
(ewe
SSS.
[|
a
cifseet|[|||IF2°
aan
ies
LL
waa
- 1000
ill
|
(ENE ane
PU
il
Fz 400
q
i
Sqm
lie
il
io)
ye
zl
]
i
[| I |——t eae
C.
Ac3
[Ltt
-—-—+-
re
900
Z
800
a
Hi
E
600
500
400
300
300
200
100
200
100
Time, secs
Mn-Mo-V
Quenched
and Tempered
Engineering Steels
Composition: 0.35% C - 1.51% Mn - 0.28% Si - 0.007% S - 0.015% P - 1.29% Mo
- 0.21% V - 0.10% Cu Austenitized at 900°C (1652°F) for 10 min
900
800
>
+
Ac3
et
ee CUM CCTM
ami
TCT
CTT
io
:
300
|
)
a
|
U
ere
pu
Chai
I
I
[| Til iGauiti F4+P
Coe
Coe
E
|
IN Ser
i
Coo
ICC
ll
|
|
|
900
g
=
&
=
300
|
ll
IL | Jeenp «
Time, secs
SOURCE:
Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium
Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
Mn-Mo-V
345
Quenched
and Tempered
Engineering
Steels
Composition: 0.33% C - 2.16% Mn - 0.32% Si - 2.02% Ni - 0.64% Mo - 0.14% V
Austenitized at 900°C (1652°F) for 10 min
900
ill
800
Beare =r
700
Sea
1600
eee
1500
il
:
5
600
Ci
ea
aoe
}
RY
500
TT
SCS
1400
ine
=
1300
1100
:
300
1S
i
200
100
Sabi
llH
Lt
|
l
19
102
Sm
Ee
0
300
2
800
#
600
nonil
500
lll
400
Ea
200
100
103
10¢
105
Time, secs
SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
Cr-Mo-V
Quenched
and Tempered
Engineering Steels
Composition:0.32-0.40% C - 4.75-5.50% Cr - 1.10-1.75% Mo - 0.80-1.20% V
Austenitized (a) at 1030°C (1886°F) for 15 min (b) at 1100°C (2014°F) for 15
min
900
1600
1500
800
1400
700
1300
1200
600
+H
o
2
1100
tTHE
500
z
Z 400
1000
900
g
L800
5
700
5
Sranniil
*
K = carbide
600
300
500
200
400
300
200
100
CET.
O15
107
108
104
105
100
10°
Time, secs
SOURCE:
K.E. Thelning, "Steel and Its Heat Treatment,” Bofors Handbook, 1978, as published in Atlas of Continuous Cooling
Transformation
Diagrams for Vanadium
Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
346
Cr-Mo-V Quenched and Tempered Engineering Steels
Composition:0.40% C - 0.60% Mn - 1.00% Si - 0.003% S - 0.010% P - 5.00% Cr -
1.30% Mo - 0.40% V Austenitized at 1000°C (1832°F) for 10 min
900
v
”
y
500
v
q
z 400
5
z
z
:
BE
<
i
300
200
100
Cr-Mo-V
Quenched
and Tempered
Engineering
Steels
Composition: 0.40% C - 0.60% Mn - 1.00% Si - 0.003% S - 0.010% P - 5.00% Cr
- 1.30% Mo - 0.40% V Austenitized at 980°C (1796°F) for 10 min
900
mmaal
L
PETE
800
imalatali
Teanahaniital
tt
oH
j
ett
-
ttt
1600
eT
tis
700
600
=e
t»
500
=
é
3
S
B 400
is
i
2
300
200
100
l
10
10?
103
Time, secs
SOURCE:
Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
eee
Atlas of Time-Temperature Diagrams
Cr-Mo-V
347
Quenched
and Tempered
Engineering
Steels
Composition:9.43% C - 0.90% Mn - 0.32% Si - 0.30% Cr - 0.10% V - 0.03% Nb 0.015% Al - 0.015% N Austenitized at 1100°C (2012°F) for 10 min
900
;
)
=
raat
:
=
tes 1600
eat
Ac3_|
|
800 ete
c
oS
ee
[=
700
| aah
‘cheek ‘bs cones eames Spies aa
ieee Ba
et
i
eisai
+]
-
Oo
g so
5
& 400
|
M
iat
|Austenitised jedi |
— —
/Austenitised
t—
1000
:
s
Es
5
4
>
TT
5
Tetatanal
JE
BAS
cm
|
1100°C|
=!
|
1200
H— 1100
4
at
—
0.5
toe
=
aie
L
Sieaears Holl
Po --t
>
1
100
1400
Lt
300
200
ee
--
1
Hitt
i=
Ee
a4
a
Wath
a
B
==
5
c=
iy
}—
Ms
“
Sine
di
i
iio
SS
i
600
|
10
SS
Seue
102
103
SOURCE: A. von den Steinen, S. Engineer, TEW Berichte, 4 (1), 1978, as published in Atlas of Continuous Cooling
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Cr-Ni-Mo-V
Quenched
and Tempered
Engineering
Steels
Composition: 0.24% C - 0.74% Mn - 0.25% Si - 0.016% S - 0.012% P - 0.37% Cr
- 0.67% Ni - 0.52% Mo - 0.03 V Austenitized at 860°C (1580°F) for 20 min
900
T
800
T
10
SSS
600
|
|
SESH
|
aa
Ty
=
SS
=
=
Palais
=
|
1300
1100
500
400
Temperature
°F
Temperature
“C
300
200
0.5
cn
rece
ae
denability
|
2
;
-Moof Thermomechanically
Worked Low Carbon, Mn-Mo-Nb
1s," Climax Molybdenum ;
and Mn -MoMo-V Steels,
eatiseof Cone ipiious Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
348
Cr-Ni-Mo-V
Quenched and Tempered Engineering Steels
Composition: 0.26% C - 0.76% Mn - 0.32% Si - 0.012% S - 0.014% P - 1.08% Cr
- 0.72% Ni - 1.25% Mo - 0.31% V Austenitized at 955°C (1751°F) for 20 min
900
a
1600
r
800
1500
1400
700
1300
600
1190
1200
S
y
S
500
5
e
400
1000
ee
900
800.
g
700
=
2
§
600
300
500
400
200
300
100
200
100
|
10
102
103
10*
108
Time, secs
Cr-Ni-Mo-V
Quenched
and Tempered
Engineering
Steels
Composition: 0.27% C - 1.36% Mn - 0.50% Si - 0.006% S - 0.016% P - 0.58% Cr
- 0.68% Ni - 0.34% Mo - 0.08% V Austenitized at 900°C (1632°F) for 20 min
900
1600
800
1500
700
1300
1400
et
1200
600
oO
e
E
1100
1000
500
&
a 400
Le
300
900
°5
<
s
s
cad
&
500
200
400
300
100
200
100
10
0?
163
104
105
Time, secs
SOURCE:
"Hardenability of Thermomechanically Worked Low Carbon, Mn-Mo-Nb and Mn-Mo-V Steels,” Climax Molybdenum,
as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
lace
eel
clo ed
Atlas of Time-Temperature Diagrams
349
ee
Cr-Ni-Mo-V
Quenched
and Tempered
Engineering Steels
Composition: 0.32% C - 0.40% Mn - 0.40% Si - 1.43% Cr - 3.30% Ni - 0.33% Mo
- 0.19% V Austenitized at 850°C (1562°F) for 10 min
900
|
800
| ee |
700
a fr
=
i
ee een
Lac
Acl
|
eae
1600
he 1500
(bet ne ada
ie
1400
yeeros
ae
gehesdan = 1300
1200
600
eee
{+}
+4
1100
1000
500
+
900
A
b=
800
HH
600
400
700
Temperature
“C
=,
300
A-+M
200
Temperature
°F
500
400
|
ly
rate
100
300
200
LLU
10
CGhiit
Li
10?
103
10+
100
105
Time, secs
SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
Cr-Ni-Mo-V
Quenched
and Tempered
Engineering
Steels
Composition: 0.33% C - 0.89% Mn - 0.24% Si - 0.009% S - 0.008% P - 1.13% Cr
- 0.15% Ni - 1.19% Mo - 0.22% V Austenitized at 995°C (1751°F) for 20 min
900
Ac3
+——-
1600
Lf
444+
1500
800
Acl
1400
Saaaalalimateat
alehl
700
1300
600
1100
1200
1000
500
ral
400
poet
°F
Temperature
Temperature
C
300
200
-
100
|
Li
i
CCt:
Litt
10
102
103
104
105
Time. secs
Commercial heat; 42 inch diameter forging. Austenitized at
955°C (1751°F) for 35 h, air cooled, and tempered by heating
at 665°C (1229°F) for 35 h and air cooling
SOURCE:
"Hardenability of Thermomechanically Worked Low Carbon, Mn-Mo-Nb
and Mn-Mo-V Steels,” Climax Molybdenum,
Steels, Vanitec, England, June 1985
as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium
ee
Atlas of Time-Temperature Diagrams
350
Cr-Ni-Mo-V
Quenched and Tempered Engineering Steels
Composition: 0.33% C - 0.39% Mn - 0.16% Si - 0.005% S - 0.004% P - 1.09% Cr
- 3.60% Ni - 0.72% Mo - 0.12% V - 0.002% Ti - 0.013% Nb - 0.09% Cu - 0.009%
Al Austenitized at 870°C (1598°F) for 20 min
900
m7
as
800
THT
{T +41
J
T]
|
| 1600
Bri ee
t
1500
lL
SsS
os
°F
Temperature
Temperature
C
200
100
|
1
10
10?
103
10*
10°
Time, secs
Commercial heat; samples trepanned from pipe forging
SOURCE: "Hardenability of Thermomechanically Worked Low Carbon, Mn-Mo-Nb and Mn-Mo-V Steels,” Climax Molybdenum,
as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Cr-Ni-Mo-V
Quenched
and Tempered
Engineering Steels
Composition: 0.34% C - 0.26% Mn - 0.13% Si - 0.007% S - 0.010% P - 0.61% Cr
- 5.10% Ni - 0.53% Mo - 0.09% V Austenitized at 840°C (1544°F) for 10 min
_
lib
ae
275
]
L001 a
1]
en
]
SR
[TTL 1600
Fo
1500
8
700
600
500
400
Temperature
C
°F
Temperature
300
|
10
10?
103
10*
108
Time, secs
SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
Cr-Ni-Mo-V
35]
Quenched
and Tempered
Engineering Steels
Composition: 0.34% C - 0.62% Mn - 0.27% Si - 0.010% S$ - 0.006% P - 1.22% Cr
- 2.80% Ni - 0.50% Mo - 0.09% V Austenitized at 860°C (1580°F) for 15 min
900
800
700
600
—
i]
Ack
nee
1600
==s=t+
4
il ea
aan
==
a
Sz
Ly
L
CUE
1500
1
oe
Be tt 1300
E 1200
- 1100
1S)
»
1000
$00
5
5
& 400
&
HT
min
900
800
700
300
ve
200
400
100
300
200
Temperature
°F
500
C.C.T.
103
10*
100
108
Time, secs
Cr-Ni-Mo-V
Quenched
and Tempered
Engineering
Steels
Composition: 0.37% C - 0.83% Mn - 0.35% Si - 0.006% S - 0.017% P - 0.87% Cr
- 1.70% Ni - 1.18% Mo - 0.18% V Austenitized at 860°C (1580°F) for 10 min
900
he
1600
800
700
>
s
°F
Temperature
Temperature
°C
103
Time. secs
Continuous Cooling Transformation
SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of
d, June 1985
Diagrams for Vanadium Steels, Vanitec, Englan
Atlas of Time-Temperature Diagrams
Joe
Cr-Ni-Mo-V
Quenched
and Tempered Engineering Steels
Composition: 0.38% C - 0.46% Mn -0.26% Si - 0.008% S - 0.019% P - 2.94% Cr -
0.45% Ni - 0.45% Mo - 0.12% V - 0.05% Cu - 0.010% Al Austenitized at 900°C
(1652°F)
900
800
ne
jes
pester
t
|
tt tp
cle 5 TE
ee
a
HN
a
=
700
ee
i
1400
tt} ii—
See FHF
+++
1100
H-
1000
aie
L- 1200
SAIBIBLUES yeasts
oO
=e 400
2
&
(ie
aa
~
200
_
M
bB
iz
5
100
ze
|
10
Hf
10
Sea
600
oe
—+
|
500
|
Le
400
r-
\
300
200
GiGi:
LL
102
wh
300
|
Vth FP
nea
5
UB
300
1300
SS
oe
K
+
600
L- 1600
i 1500
plait
|
i
[
_
104
100
105
Time, secs
SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories, as published in Atlas of Continuous Cooling
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Cr-Ni-Mo-V
Quenched
and Tempered
Engineering
Steels
Composition: 0.39% C - 0.75% Mn - 0.26% Si - 0.033% S - 0.008% P - 0.94% Cr
- 0.19% Ni - 0.03% Mo - 0.003% V - 0.007% Ti - 0.21% Cu - 0.01% N
Austenitized at 875°C (1607°F) for 30 min
900
|
S00
em
7000
Fae
[
Sed eee
a
if
alr apna
Seat on om
==
s
vA
°C
ture
s
Tempera
°F
Temperature
0.5
1
SAS:
10
10?
103
10*
Time, secs
SOURCE: Institutet for Metallforskning, Sweden, as published in Atlas of Continuous Cooling Transformation Diagrams for
Vanadium Steels, Vanitec, England, June 1985
eee
Atlas of Time-Temperature Diagrams
Cr-Ni-Mo-V
353
Quenched
and Tempered
Engineering Steels
Composition: 0.39% C - 0.77% Mn - 0.39% Si - 0.032% S - 0.006% P - 0.96% Cr
- 0.14% Ni - 0.08% Mo - 0.05% V - 0.21% Cu - 0.01% N Austenitized at 875°C
(1607°F) for 30 min
900
800
700
600
Temperature
°C
Temperature
°F
SOURCE: Institutet for Metallforskning, Sweden, as published in Atlas of Continuous Cooling Transformation Diagrams for
Vanadium Steels, Vanitec, England, June 1985
Cr-Ni-Mo-V Quenched and Tempered Engineering Steels
Composition: 0.40% C - 0.83% Mn - 0.33% Si - 0.007% S - 0.011% P - 1.00% Cr
- 1.75% Ni - 0.46% Mo - 0.12% V - 0.07% Cu - 0.010% Al Austenitized at 900°C
(1652°F)
900
a
800
Soe peste
700
1
600
v
oe
jase fsa
|
|
perp vet Se
SoS esse
eae E
=
|
>
ke
|
1300
1200
1100
1000 a.
900g
t |
ae
E400
:
1600
see
=
-Ms—t—
300
a
H
M| |
i
.
|
|
14
100
sa
500
400
300
200
|
‘ |
200
i
CGI:
100
at
1
10
10?
103
104
105
Time, secs
in Atlas of Continuous Cooling
SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories, as published
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
eee
EE
Atlas of Time-Temperature Diagrams
354
Quenched
Cr-Ni-Mo-V
and Tempered
Raging shinee cy i
Composition: 0.49% C - 0.78% Mn - 0.26% Si - 0.012% S- oe : ion ao
m
- 0.50% Ni - 0.96% Mo - 0.09% V Austenitized at 880°C (1616°F) for 20
900
ill
1600
1500
aid TEE a TECH
+=EEH HAH =T EPA TE
AE
800
<
600
Lit
|
|
is
Hn
1200
ela
Roe
|
1100
oO
i
FS
Salil
5
z 400
B
maaan
rn
2
Py
900
§
goo
=
oO
i ne 3
a
|
1000
&
F
Ms
300
mt
|
al
axel
Sas
Hill
acai
100
Hl | 600
x
be
=
in
Hi
200
—
|
1
10
102
GG:
103
10*
100
105
Time, secs
SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
Cr-ivi-Mo-V
Quenched
and Tempered
Engineering
Steels
Composition: 0.56% C - 0.67% Mn ~ 0.31% Si - 0.023% S - 0.012% P - 0.76% Cr
- 1.53% Ni - 0.24% Mo - 0.14% V - 0.06% Cu - 0.010% Al Austenitized at 850°C
(1562°F)
900
800
700
600
Temperature
°C
°F
Temperature
SOURCE: Sumitomo Metal Industries; Ltd., Central ; Research Laboratories, as published in Atlas of Continuous Cooling
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
Prestressed
355
Concrete
Wires
Composition: 0.67% C - 1.39% Mn - 0.75% Si - 0.009% S -
0.015% P - 0.03% Cr - 0.32% Ni - 0.19% V - 0.40% Cu -
0.002% Al - 0.010% Austenitized (a) at 1050°C (1922°F) in 3
min held for 3 min (b) at 1050°C (1922°F) in 3 min held for 3
min with 50% deformation at 850°C (1562°F)
9
b
x
E
&
f
Prestressed
Concrete
Wires
Composition: 0.69% C - 1.41% Mn - 0.70% Si - 0.009% S 0.030% P - 0.05% Cr - 0.03% Ni - 0.19% V - 0.03% Cu 0.005% Al - 0.007% N Austenitized (a) at 1050°C (1922°F) in 3
min held for 3 min (b) at 1050°C (1922°F) in 3 min held for 3
min with 50% deformation at 850°C (1562°F)
t-
1600
te 1500
ull
1400
nm
I—
|
1300
1200
1100
1000
ee
°
L—
900
§
S
800
£
B
I 700
E
ee
HL
|
E
500
400
300
HIE 200
C.C.T. |- 100
Time, secs
as published in Atlas of Continuous Cooling Transformation
SOURCE: Stahlwerke Peine-Salzgitter AG, Salzgitter, Germany,
teels, Vanitec, England, June 1985
Diagrams for Vanadium S
Atlas of Time-Temperature Diagrams
356
.
Rail Steels
- 0.015% S Si
0.40%
Mn
1.14%
C
0.65%
n:
Compositio
% N Austenitized (a) at
0.024% P - 1.15% Cr - 0.15% V - 0.005
950°C (1742°F) for 15 min (b) at 1300°C (2372 F) for 1 min
900
7
ISS
TTT
iz
IL 1600
[
800
an
700
| 1500
| 1400
|
1
pense
Sate
Temperature
°F
Temperature
°C
SOURCE:
H. Schmedders et al., Thyssen Tech, Ber., (1), as published in Atlas of Continuous Cooling Transformation Diagrams
for Vanadium
Steels, Vanitec, England, June 1985
Rail Steels
Composition: 0.73% C - 0.77% Mn - 0.27% Si - 0.010% § -
0.012% P - 1.58% Cr - 0.01% Ni - 0.46% Mo - 0.05% Vv -
0.05% Cu - 0.010% Al Austenitized at 885°C (1625°F) for
20 min
Temperature
°C
°F
Temperature
300
200
SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories, as published in Atlas of Continuous Cooling
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Aflas of Time-Temperature Diagrams
gO7
Rail Steels
Composition: 0.78% C - 1.61% Mn - 0.48% Si - 0.028% § -
0.014% P - 0.16% V - 0.18% Cu - 0.018% Al - 0.018% N
Austenitized at 920°C (1688°F) for 8 min
900
800
-
RS
+
eA
Ac3
|
-
ais
ae
ng a
1600
I 1500
1400
1{tH
A
ml
700
F
——
+
=
4 4
_——
|
4
600
a
a
cele
ne
x 500
#
g
i
mnie
ep
+7
{
‘
|
B
SO) reevn cere teas
rl
aint al adctah
M
200
a
10
titty
sa
tail
HH
1100
|p
|
B
300
-— 1300
I} i] | 1200
|
L at
1000
Tit
L
mil |
10
mee
I
+
mee
900
80
28
&2
=
a
500
Lie
400
tL
300
reales
A Ge
100
SOURCE: H.J. Wiester, et al., Stahl und Eisen, 79 (16), 1959, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
Spring Steels
Composition: 0.27% C - 0.77% Mn - 1.39% Si - 1.64% Cr -
0.20% Ni - 0.56% Mo - 0.07% V Austenitized at 900°C
(1652°F) for 20 min
900
rT
-
Lo
WN
eet
800
=
700
600
500
400
Temperature
“F
Temperature
"C
300
200
100
1
10
02
103
0¢
10!
Time, secs
A commercial heat and casting
SOURCE:
"Hardenability of Thermomechanically Worked Low Carbon, Mn-Mo-Nb
as published in Atlas of Continuous
a
Cooling Transformation Diagrams for Vanadium
E————E——E————————
and Mn-Mo-V Steels,” Climax MOlybdenum,
Steels, Vanitec, England, June 1985
cae
Atlas of Time-Temperature Diagrams
358
'
Spring Steels
- 0.78% Cr Composition: 0.30% C - 0.69% Mn - 1.40% Si
900°C
at
tized
Austeni
V
0.04%
Mo
1.71% Ni - 0.31%
(1652°F) for 20 min
900
800
700
600
500
es
£
:& 400
E
z
é
2
300
200
100
Tanta
JIUUBEE
l
10
102
103
10*
10°
Time, secs
A commercial casting
Spring Steels
Composition: 0.32% C - 0.86% Mn - 1.54% Si - 0.014% S 0.024% P - 1.01% Cr - 0.51% Ni - 0.49% Mo - 0.07% V 0.037% Al - 0.022% N Austenitized at 875°C (1607°F) for 20
min
900
ees
Ac3
800
AA
700
iS
2
+
aa
et ieat earl:
a
AR
eerie
Lh
ll LSI
gl
600
ECL
:
TL TL
1
se
ee
}
Ss/Ele
LLL
nan
1600
al
1500
IF 1400
Hh 1300
1200
1100
t+
1000
500
eB
S
e 400
‘o
9005
~
&
300
600
500
200
400
300
=
B
700
5
100
1
10
10?
103
10¢
105
Time, secs
A laboratory induction air melted heat cast into twin keel-b
marge
molds having 1-1/4x2x6 in legs and a 4x4 x6 in riser. Casti
ngs
annealed at 925°C (1697°F) for 3 h, furn ace cooled to 540°C
(1004°F) and then air cooled
SOURCE:
ly Worked 3 Low Carbon, Mn -Mo-Nb and Mn-Mo"Hardenability of Thermomechanical
;
”"
Clim
Steels,” Climax Molybdenum,
as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels,n-Mo-V
Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
359
Spring Steels
Composition: 0.33% C - 0.86% Mn - 1.62% Si - 0.014% S -
0.024% P - 0.81% Cr - 1.80% Ni - 0.40% Mo - 0.07% V -
0.040% Al - 0.020% N Austenitized at 870°C (1598°F) for 20
min
900
800
EH
L
TT
ae!
a
[|
oe
a
az)
[4
°C
Temperature
@ = = io
66
6o
—
100
10
Temperature
“F
\|
\ flea
=ee
—
a
1
Cone}
&8
10?
nel
103
10*
105
Time, secs
A laboratory induction air melted heat cast into twin keel-block
molds having 1-1/4x2x6 in legs and a 4x4x6 in riser. Castings
annealed at 925°C (1697°F) for 3 h, furnace cooled to 540°C
(1004°F) and then air cooled
Spring Steels
Composition: 0.35% C - 0.86% Mn - 1.55% Si - 0.014% S -
0.023% P - 1.21% Cr - 0.21% Ni - 0.58% Mo - 0.06% V -
0.037% Al - 0.021% N Austenitized at 900°C (1652°F) for 20
min
900
[
9
1600
1500
1400
1300
1200
1100
1000
2
900
&
go
«&a&
an
Si
600
g
Py
ez
&
400
700
300
600
ca
200
400
Re
it
Ǥ
BE
200
100
Time, secs
A laboratory induction air melted heat cast into twin keel-block
molds having 1-1/4x2x6 in legs and a 4x4x6 in riser. Castings
annealed at 925°C (1697°F) for 3 h, furnace cooled to 540°C
(1004°F) and then air cooled
Steels,”; Climax Molybdenum,
=
Moand Mn -Mo-V
Worked Low Carbon, Mn-Mo-Nb
Steels, Vanitec, England, June 1985
Vanadium
for
Diagrams
on
Transformati
Cooling
ites iaAtins of Continous
ond
ee
i
bility
i
of Thermomechanically
Atlas of Time-Temperature Diagrams
360
Spring Steels
Composition: 0.35% C - 0.86% Mn - 1.55% Si - 0.014% S 0.024% P - 1.50% Cr - 0.23% Ni - 0.58% Mo - 0.07% V 0.039% Al - 0.022% N Austenitized at 870°C (1598°F) for 20
min
900
800
>
Aca
e
cee
=
ai
|
— 1600
[| 1500
L- 1400
- 1300
4
SEUaoe
—
|
=P SSIaNie
=
ae
arse HH+——
Ls
!
JE
ins
| ee
700
]
Serie
vib
eax aie we He
AST
|
600
_
+—
Pt
oO
gale
5
=
me
Ht
|
1000
TL 900
ye ees
700
L
600
500
ZB 400
5
i
300
CITA
I
aie
icecae |
Cer
eS
1
e
10
SE
Ea
10?
Fe3
5
n
200
eo
1
4
a
100
&
va
400
300
|
4
200
1200
1100
ee
C 100
ee
103
10¢
105
Time, secs
A laboratory induction air melted heat cast into twin keel-block
molds having 1-1/4x2x6 in legs and a 4x4x6 in riser. Castings
annealed at 925°C (1697°F) for 3 h, furnace cooled to 540°C
(1004°F) and then air cooled
SOURCE:
"Hardenability of Thermomechanically
Worked Low Carbon, Mn-Mo-Nb
and Mn-Mo-V
Steels,” Climax Molybdenum,
as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Spring Steels
Composition: 0.55% C - 0.50% Mn - 0.87% Si - 0.035% S 0.02% P - 0.10% Cr - 0.10% Ni - 0.55% Mo - 0.22% V
Austenitized at 890°C (1634°F) for 20 min
900
EE
800
ei
_—
aap
ae
—
—
iE itt
+
od
_-Coor
ETH
500
aaah ay
+
|
1
Pee
——
st
hi
1600
_—
a
1500
1400
1300
1200
1100
|
nu
|
q
a
COT
|
Ms
300
ea
|
600
2
_
7
tH
LIM
9
‘ te
er
is
————
eo
4
ree
&
800
5
ts!
|
SA
Le!
600
500
200
7
pM
[
+
|
!
|
il
400
lil 2
300
ee C.C.T. + 100
SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atl
i
i
:
as of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
361
Spring Steels
Composition: 0.64% C - 0.73% Mn - 0.82% Si - 0.011% S 0.014% P - 1.26% Cr - 0.05% Ni - 0.16% V - 0.03% Cu -
0.006% Al - 0.012% N Austenitized at 1050°C (1922°F)
7
ie
|
]|
Cc.
Se
900
800
ea
eal
ie
—
eo
|
ae
SPH
L- 1600
1500
i400
600
°F
Temperature
°C
Temperature
0.5
!
Ee
ES)
10
id?
10
10+
Time, secs
SOURCE: Stahlwerke Peine-Salzgitter AG, Salzgitter, Germany, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
High-Temperature Creep-Resistant Steels
Composition: 0.11% C - 0.53% Mn - 0.35% Si - 0.010% S 0.015% P - 2.28% Cr - 0.04% Ni - 1.00% Mo - 0.20% V - 0.03%
Cu - 0.010% Al Austenitized at 1000°C (1832°F)
9
| aaton'd
a
700
a
Acl
aS
3c
Eagle
SS55
—
ae
500
Temperature
°F
Temperature
°C
300
Jae
SOURCE:
ies, as published in Atlas of Continuous Cooling
Sumitomo Metal Industries Ltd., Central Research Laborator
England, June 1985
Transformation Diagrams for Vanadium Steels, Vanitec,
EEE
Ean
Atlas of Time-Temperature Diagrams
362
High-Temperature
Creep-Resistant Steels
Composition: 0.12% C - 0.47% Mn - 0.31% Si - 0.010% S -
0.014% P - 2.16% Cr - 0.16% Ni - 0.88% Mo - 0.17% V - 0.05%
Cu - 0.010% Austenitized at 930°C (1706°F)
900
800
S
es
°F
Temperature
°C
Temperature
Time, secs
High-Temperature
Creep-Resistant Steels
Composition: 0.12% C - 0.65% Mn - 0.26% Si - 0.015% S 0.007% P - 1.16% Cr - 0.01% Ni - 1.02% Mo - 0.26% V - 0.02%
Cu - 0.010% Al Austenitized at 980°C (1796°F)
CO
SS]SSS
ae Se aa
Ss
ta ee le
as
Ea a
ed
Ac3
j f-
800
We
sc 2
ees
:
el
He
et
1600
1500
VS
L
Temperature
°C
Temperature
°F
Time, secs
SOURCE:
in
Sumitomo Metal Industries Ltd., Central Research Laboratories, as published
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
ee
in
Atl
i
;
Atlas of Continuous Cooling
Atlas of Time-Temperature Diagrams
i
363
i
High-Temperature
Creep-Resistant
Steels
Composition: 0.18% C - 0.53% Mn - 0.26% Si - 0.007% S 0.012% P - 1.00% Cr - 0.96% Mo - 0.19% V Austenitized at
950°C (1742°F) for 10 min
900 P=
ae
= SE +PTHR
1
t
800 [axer
tt
ft}
b—-—4-—
—}—-+
700
Ie
4
ee
ESF
|
oo
1600
at oe
A-FI-P
re noe
=p
7, 1300
Temperature
°C
Temperature
°F
SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation
Diagrams for Vanadium Steels, Vanitec, England, June 1985
High-Temperature
Creep-Resistant
Steels
Composition: 0.20% C - 0.45% Mn - 1.03% V - 0.-002% N
Austenitized (a) at 904°C (1660°F) for 15 min (b) at 1008°C
(1848°F) for 15 min
900
800
Temperature
°F
Temperature
°C
300
200
SOURCE:
of Continuous Cooling
A.C. McGee, M.S. Thesis, University of California, Berkley, June 1982, as published in Atlas
feats esination Diagrams for Vanadium
Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
364
High-Temperature Creep-Resistant Steels
Composition: 0.21% C - 0.48% Mn - 0.97% Si - 2.92% Ni -
1.09% V - 0.01% Al Austenitized (a) at 904°C (1660°F) for 15
min (b) at 008°C (1848°F) for 15 min
900
II
1
]
TEL 1600
800
700
600
y
2
em
os
|
500
3
he
E
z
e
&
300
200
100
L
0.5
High-Temperature
Creep-Resistant
Steels
Composition: 0.24% C - 0.45% Mn - 2.92% Ni - 1.09% V -
0.55% Al, Austenitized (a) at 904°C (1660°F) for 15 min (b) at
1008°C (1848°F) for 15 min
TTT
900
F
500
A
e 400
5
eae
|
i
600
oO
|
i
4
800
i
mM
1
4
i
aii
i
300
Ose
z
&
mi
200
ia
S
3
— |Austenitibeli
ane Ate
DDATC
1ODB°C
2 ads
a0
1)
University of California, Berkeley,
SOURCE: A.C. McGee, M.S. Thesis,
California, June 1982, as published in Atlas of Continuous
Cooling Transformation Diagrams for Vanadium Steels, Vanitec, Engla nd, June 1985
Atlas of Time-Temperature Diagrams
365
Tool and Die Steels
Composition: 0.37% C - 0.51% Mn - 1.00% Si - 5.10% Cr -
1.26% Mo - 0.97% V Austenitized (a) at 1080°C (1976°F) (b)
1030°C (1886°F)
acu
Acl
ee
aa
Ac3 =P 67°C
race
tae
|
T
teen
eee
le al
1600
1500
cecitelBe
1400
1300
1200
1100
1000
°C
Temperature
°F
Temperature
Time, secs
SOURCE: H. Nilsson, O. Sandberg, W. Roberts, "The Influence of Austenisation Temperature and Cooling Rate after
Austenisation on the Mechanical Properties of the Hot Work Tool Steels H11 and H13,” Swedish Institute for Metals Research,
IM-1675, 1982, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England,
June
1985
Tool and Die Steels
Composition: 0.75% C - 0.31% Mn - 0.22% Si - 0.019% §S 0.025% P - 4.25% Cr - 0.20% Ni - 1.45% V - 17.54% W
Austenitized at 1270°C (2318°F)
i
900
800
1600
1500
1400
1300
700
1200
1100
600
1000
500
900
800
400
700
Temperature
C
F
Temperature
600
300
500
200
100
103
Time, secs
SOURCE:
Hutnik (in Polish),
No. 8-9, 1981, as published in Atlas of Continuous
June 1985
Steels, Vanitec, England,
Cooling Transformation
Diagrams for Vanadium
Atlas of Time-Temperature Diagrams
366
Tool and Die Steels
Composition: 0.92% C - 0.31% Mn - 0.35% Si - 0.019% S -
0.025% P - 4.10% Cr - 4.90% Mo - 1.88% V - 6.20% W
Austenitized at 1240°C (2264°F)
| 1600
|
a
SE
—
<==
600)
IA H-|K)
2 500
1500
ERIE)
1400
1300
Te HIM
OBEEE
cer
|
1200
L_ ‘oe
=
L- 1000 w
|
Dag
|
O
Said ae pres =I
ss Sela
alate ere
ee
ee
ee
700
Seta
Ses
iL
je ar el ye
=
Ot
mane
1
|
i? Rae
na
900 &
Tr
~
L- 300 §
nitea
iJ
S
a5 400
&
5
|
LL
=I
os
B
Til
500
|
|
OE SeSe
al
OSE
2
ee
200
CEE
iF 100
|
7
nee ES
EN
102
400
L_ 300
“=
100
&
600
te
|
200
ae
ieee
103
104
105
Time, secs
SOURCE: Hutnik (in Polish), No. 8-9, 1981, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium
Steels, Vanitec, England, June 1985
Tool and Die Steels
Composition: 1.06% C - 4.48% Cr - 0.44% Mo - 2.32% V 10.32% W - 3.92% Co Austenitized at 1210°C (2210°F)
900
a
800
—
aa
||
700
ASI
=
mm
Y
Ie
A+IK
1
:
|
|
1
i
cates
at
4
|
1
— 1100
TWH
||
+ 1000 u
5 i.
S
é 400
rt
&
900
=
800
=
700 5
3
i
a
600
500
400
300
200
300
200
=I
§
t
as
100
C.C.T. | 100
O5
i
108
D
Time, secs
SOURCE: Hutnik (in Polish), No. 1, 1984, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium
Steels, Vanitec, England, June 1985
Atlas of Time-Temperature Diagrams
367
Tool and Die Steels
Composition: 1.13% C - 0.51% Mn - 0.50% Si - 0.022% § 0.025% P - 4.02% Cr - 8.80% Mo - 1.24% V - 1.80% W - 7.90%
Co Austenitized at 1170°C (2138°F)
Taal
anes gap
aan
Sig espera
me
|
+
Ti
+—|
il
LAK
1
°C
Temperature
Temperature
°F
Time, secs
SOURCE: Hutnik (in Polish), No. 1, 1984, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium
Steels, Vanitec, England, June 1985
Tool and Die Steels
Composition: 2.50% C - 2.00% Cr - 0.60% Ni - 5.20% Mo -
7.20% V Austenitized at 1040°C (1900°F)
900
800 Sas
Ac3
700 ee pat
T
T
|
I
a
ee ee
eee ee
Sa
I 1600
_- 1500
a ee
- 1400
eet
ae
‘SE
me
Temperature
°F
Temperature
°C
Time, secs
SOURCE:
XIX,” ISS-AIME,
J. Dodd, R.B. Gundlach, P.A. Morton, "Mechanical Working and Steel Processing
Vanitec, England, June 1985
in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels,
1982, as published
Atlas of Time-Temperature Diagrams
368
I
——$—————
Stainless Steels
Composition: 0.20% C - 12.00% Cr - 1.00% Mo - 0.30% Vv
Grain size: ASTM 4-5 Austenitized at 1050°C (1920°F)
900
L
aes
|
+ T/T} 1600
Toe
Ss
Temperature
°F
°C
Temperature
SOURCE: N.G. Persson, "Alloys for the Eighties," Climax Molybdenum, as published in Atlas of Continuous
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Cooling
Stainless Steels
Composition: 0.20% C - 0.48% Mn - 0.36% Si - 0.012% S 0.016% P - 12.80% Cr - 0.13% Ni - 0.03% Mo - 0.05% V 0.01% Cu - 0.036% Al Austenitized at 1030°C (1886°F)
900
ii |
Acl
woo at
——
eke
Se
Piel
om
tH
600
Fi
ni
Sea
- 1600
se SLE
LLL
1400
1300
1200
+ 1100
- 1000
|
a
]
E 500
i
&z 400
4
5
&
=
I
:
300
TTR
iH
7
4
900
700 §
600
500
mn
§
F
ioe
=
200
ese
+t i
&
400
300
100
ei
jae
ttt
200
Cera
10
tk
0.5
SOURCE:
1
10
102
103
10¢
Sumitomo Metal Industries Ltd., Central : Research Laboratories, as published in Atlas of Continuous
Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985
Cooli
eer
Atlas of Time-Temperature Diagrams
ee
369
Stainless Steels
Composition: 0.20% C - 0.51% Mn - 0.33% Si - 0.006% § 0.022% P - 11.80% Cr - 0.49% Ni - 1.00% Mo - 0.31% V -
0.03% Cu - 0.010% Al Austenitized at 1030°C (1886°F)
°C
Temperature
Temperature
°F
Time, secs
SOURCE:
Cooling
Sumitomo Metal Industries ltd., Cerntral Research Laboratories, as published in Atlas of Continuous
Transformation
Diagrams for Vanadium
Steels, Vanitec, England, June 1985
ee.
ot
Aid,
i
reer
“A
hep
7.
Pe
~~.
Seen
® 400
-
;
JT.
vote
:
British Engineering Steels
CCT Diagrams
Atlas of Time-Temperature Diagrams
373
ee
ee
ee
e
Continuous Cooling Transformation Diagrams
The established guide to transformation behavior
is
the
isothermal
transformation
diagram.
however,
processes,
treatment
heat
Few
involve the isothermal holds used to construct
these diagrams. Instead, most of the structures
are produced in continuous cooling operations.
If the rates of cooling are slow, the structures
correspond more closely to those indicated in
the upper regions of the isothermal diagram.
Faster rates of cooling will modify consider-
ably the starting temperature and progress of
transformation. It follows that some kind of
continuous cooling transformation diagram is
needed. Although it is possible to superimpose
actual
cooling
curves
on
a
to
materials
heat
treated
under
plant conditions and indicate the structures
which can be produced at the centers of bars
of the stated diameters.
The CCT
rates.
Air
cooling
has
been
used
as the main
criterion for developing the diagrams, with
supplementary bar diameter scales provided
for oil and water quenching. Although air and
water are relatively standard fluids, oils can
vary widely in their physical characteristics
and, hence, their quenching ability. "Oil" has
been
taken
as
the
standard
medium-fast
quenching oil. Brine quenching has not been
considered for the steels in these diagrams.
diagram
These diagrams illustrate typical patterns of
transformation response of the various steels
when cooled in air, oil or water.
Cooling curves are not shown
because the
diagrams
are
presented
in terms
of bar
diameters.
Different
cooling
curves
would
apply at the center and surface of a bar, and
correspondingly
at
intermediate
positions.
These
CCT
diagrams
pertain
only to the
center of a bar, but the structures at other
positions can be inferred. For example, the
structure produced upon cooling at some mid-
radial position in a large diameter bar will
correspond to that produced at the center of a
bar of smaller, so-called
similar structures being
cooling rates.
equivalent diameter,
produced at similar
CET
in constructing
difficulty
major
A
ormtransf
of
etation
interpr
the
is
diagrams
and bainite are
ation behavior. Martensite
each affected by changes in composition of
the parent austenite which may have resulted
from any prior ferrite formation or carbide
Underat high temperatures.
precipitation
(due to sudden
recalescence
and_
cooling
liberation of latent heat) can, im some Cases,
a
result in a reaction being completed at
it
which
at
that
than
higher
temperature
SOURCE:
The hardenability of the steel can be assessed
at a glance from the CCT diagram. Low
hardenability
steels show
early transformation, mainly in the upper lefthand side of
the diagram, to ferrite and pearlite or bainite.
High hardenability steels exhibit curves in the
lower righthand side of the diagram, austenite
changing predominantly to martensite over a
wide range of bar diameters and quenching
time-temperature-
a modified
transformation
diagram,
transhas been adopted, with
diagram
formation
individual bar diameters represented on the
abscissa instead of transformation times. The
diagrams
following
are
thus_
directly
applicable
began.
The
effects
of such
complicated
behavior are included in the computation of
these diagrams, which show the approximate
proportions of the major phases obtained by
continuous cooling.
Using the CCT
diagram
The structures which can be expected in ascooled bars, whether air cooled or oil or water
quenched, are indicated in each CCT diagram.
For example, in the diagram for a 0.38% C
steel (SAE 1035-1040) Fig. 1, transformation at
temperatures above 660°C will produce ferrite
and pearlite, whereas between this temperature and the M, temperature, bainite will
start to be formed. Below the M, temperature,
the structure will be fully martensitic.
It is also apparent that with increasing bar
diameter, the resulting structures change from
martensite
through
bainite
to ferrite and
pearlite. More specifically in Fig. 1, in the
case of air cooling, martensite is formed in
bars
smaller
than
0.18
mm,
bainite
at
diameters up to about 2 mm, whilst increasing
amounts of ferrite and pearlite are formed,
with
progressively
less
bainite,
at
diameters
above 2 mm. Similarly, microstructures arising
from oil and water quenching can be deduced.
Behavior on cooling
Referring
again to Fig. 1, the cooling of a 10
mm bar in air will be considered. The 10 mm
position is located on the scale for air cooled
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
nee
TEEEIEEIIIIIIIIEEsEISII INSEE
Atlas of Time-Temperature Diagrams
374
900
AIR
(OO
it
at
oh
and
fas
600
ee
ON
ee
4q++eh
nna
b
TEMPERATURE
IRANSFORMATION
¢
tt HU
0.1
0.2
5
0.5
10
10
i
2
20
5
20
“
Se
SO
20
100
50
BAR
Fig. 1 CCT diagram
showing transformation
150
DIAMETER
50
100
SSS
150
200
500
ee
200
300
2000 AIR
COOL
UE Net
300
200
1000
WATER
QUENCH
mm
for 0.38% C steel (SAE 1035-1040)
behavior under different cooling rates
bars and the vertical line through this point is
followed
down
from’
the
austenitizing
temperature. Transformation starts at 700°C
with the formation of ferrite, continuing to
nearly 50%
transformation
at 640°C
when
pearlite begins to form. At 580°C, a trace of
bainite is indicated before transformation is
complete. If oil quenching of a 10 mm bar is
now considered, the 10 mm position should be
located on the oil quenched
bar diameter
scale. Again, following the vertical line down,
it is seen that in this case bainite is the first
phase to form from austenite at 580°C. At
330°C, after about 40% transformation, the
remaining austenite transforms to martensite
until the reaction is completed at 150°C.
Similarly,
diameter
when
water quenched, a 10 mm
bar will transform
to martensite
starting at 360°C and finishing at 150°C.
Examination
of the lefthand side of the
diagram shows that martensite will form on
air cooling with bars up to 0.18 mm diameter,
on oil quenching up to 8 mm diameter and on
water quenching up to 13 mm diameter.
Equivalent
diameters
The "equivalent diameter" refers to that size
of round bar in which the axial temperature
falls through a specified range in the same
time as the temperature at the slowest cooling
position in an irregularly
shaped
body. A
method for calculating equivalent diameters is
summarized
in British
Standard
5046:1974
enabling the CCT
diagram
to be used to
predict
the
heat
treatment
behavior
of
complex
shapes.
Ruling sections
CCT data for direct hardening steels will
normally be used to indicate the structure of
the steel prior to tempering. The heat treatment details for these materials are specified
in BS 970 and related standards where the
required
tensile
and
impact
toughness
properties are given together with the limiting
ruling sections.
The CCT diagram for a 1-1/2 MnMo steel
(605M36) is shown in Fig. 2 with the limiting
ruling
sections
from
BS
970
superimposed.
In
Atlas of Time-Temperature Diagrams
375
addition, the specified
minimum
levels of
ruling sections from BS 970 superimposed. In
addition, the specified
minimum
levels of
tensile strength are indicated. It will be seen
that bars of 19 mm diameter would be fully
hardened by oil quenching. Therefore, after
tempering a satisfactory tensile strength could
be assured. Slightly larger bars (e.g., 30 mm
diameter) containing a proportion of bainite
could be tempered to a lower strength level.
However,
with
the larger
limiting
ruling
sections, where the proportion of bainite has
increased, tempering to even lower strength
found, however, that variations in composition
within a specification range can sometimes
lead to considerable differences in structure
and properties. Moreover, there are critical
ranges of bar diameter where slightly slower
or faster cooling rates produce a rapid change
in the predominating microstructure. In Fig. 1
for example, a very small decrease in bar
diameter
could change
the structure
from
bainite commencing
to form at 580°C, to
martensite starting at 360°C. In the critical
regions
where
the
slope
of the _ bainite
boundary
is ‘steep,
“a ‘steel’
bar
Scanwene
undergoing transformation to a succession of
structures over a wide range of temperature.
It can be seen from Fig. 1 that for this
particular steel, the most pronounced changes
occur when the bar diameters lie within the
approximate ranges:
levels may be necessary to secure satisfactory
impact resistance. Thus, Fig. 2 indicates the
as-quenched structures to be expected at the
various limiting ruling sections. An assessment
of the mechanical
properties
likely to be
achieved in practice can be made by reference
to the appropriate specification.
0.2 to 0.7 mm for air cooling
9 to 25 mm for oil quenching
14 to 24 mm for water quenching
Sensitivity of the
diagrams to changes
in composition
The CCT diagrams usually refer to a nominal
composition within a given specification. It is
An examination of the effects of composition
variables
for steels
shows
that
all these
diameters are increased by about 60% if the
carbon content is increased by 0.05% within
900)
X00
4
Ee
e
——
— Austenite
|
|
700
600
500
400
TEMPERATURE
PRANSEORAINTION
¢
20
50
aad
100
1
200
500
1
1000
=
OIL
QUENCH
WATER
BAR
Fig.
2
6)
CCT
diagram
showing
DIAMETER
for
QUENCH
mm
1-1/2
microstructures
2000
—
MnMo
alloy
to be expected
steel
(SAE
after oil-
605M3
quenching at the various ruling sections. Also indicated are
tensile strength levels after hardening and tempering
Atlas of Time-Temperature Diagrams
376
SSSR
———i_v—=X_w“_—_—
the
specification.
A
change
in
manganese
content of the same amount would
about one quarter of this effect.
Limitations
produce
of the diagram
Continuous cooling transformation is affected
by the treatment the steel has received before
austenitizing. The austenitizing
temperature
and soaking time each affect the grain size of
the austenite, hence modifying the subsequent
transformation characteristics on cooling. The
austenitizing
composition
temperature
also
affects
the
of the
austenite
if the steel
contains strong carbide-forming elements and
consequently
undissolved
carbides
may
be
present. Care should be taken, therefore, when
adapting
the
diagrams
for
austenitizing
conditions different from those indicated. For
this reason,
the diagrams
are not readily
adapted to surface hardening by induction or
flame heating since rapid heating and short
thermal cycle times have a drastic effect on
the condition of the austenite.
The diagrams
are not suitable for use in
welding situations where heat affected zones
RR]
can reach temperatures of the order of 1300 to
1350°C
for very
short
times.
After
such
treatment the shape of the diagram would be
expected to be modified drastically at the
faster cooling rates which are relevant to this
situation. However, the actual modification of
the transformations depends on heat input,
preheat/postheat, etc. Hence, the use of the
CCT diagrams in welding situations is limited
to the approximate
positioning
of the M,
temperature of the weld heat affected zone
for preheat calculations.
Another
major
factor
which
cannot
be
illustrated in the diagram, is the effect of
agitation in the quenching medium, whether it
be air, oil or water. Agitation is obviously
dependent on such practical features as bath
size and component
size and shape. These
effects can only be examined experimentally.
If, however,
actual
cooling curves
can
be
obtained
for
a particular
combination
of
Operating conditions they can be converted
into the corresponding bar diameters using the
methods described in the Adkins text.
Atlas of Time-Temperature Diagrams
377
0.05C (SAE 1005-1006)
+
Composition: 0.05% C - 0.25% Mn Austenitized at 950°C
(1742°F)
* Equivalent U.S. grade designation
wi
{
|
STARIT |
oh
1000
COOLING
L
= 500
RATE
A
20
10
C PER
MIN
r
= x
0.06C (SAE 1005-1006)
Composition: 0.06% C - 0.30% Mn Austenitized at 950°C
(1742°F)
I
|
|
HNVAi ih Hn
ro5
2
tile
myj=)x
\
800
Ee
ener
<=,
44
~S
Gra
°C
aC3
ot eA
|
RGBQR
|
—=
NTNU
ll
VA
i ae
:4
i
ara
riz
IVI
=
3
|
LS
i
LALEL
ol
a
|
a>
5
HTH
re
zi
=
t+
Set
Se {+— ee
eee
COOLING RATE AT 850 C
0
a
mm 0.1
BAR
DIAMETER}——
[rena are}
0.2
0.5
———5
1
1
10
a
ae
SOURCE:
(en)
ov
20
C PER
jaar
2
——
5
ok
20
2
10
iba
50
50
—
a
20
i
50
100
180
200
300
3
‘a
|
100
=
200
a
ee
a
Sue
easly
MIN
200
4
S00,
500
500
1000
SS
2000 mm
AIR:
mm OIL
an WATER
Steels, ASM,
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering
1980
Atlas of Time-Temperature Diagrams
378
0.06C (SAE
"
1008)
Composition: 0.06% C - 0.50% Mn Austenitized at 950°C
(1742°F)
a
=i ee
es
Bee
SS
10%
samc
50%
a
ae
a
Se
ee SS 5
ee
SSS
eae
—
Dae a
a
SE
BO eS
eg ED A
fear
ra
el
azolin
yee nmin a
Pro
ciel aca ae ae
a
aaa eee eae
Ey Ses Pe
el
°C
2
eS NS
500 oa eee
7
pa
ova
90%
A
|——_—_
a
ie a eR
ET
Sis Sa
ae
=a
Teel
=a
sie
100 SS fsa
eer |
(as eee ee
sa
1-1/4 Mn
(SAE
1518-1524)
Composition: 0.19% C - 1.20% Mn - 0.20% Si - 0.020% P -
0.020% S Grain size: 8-9 Austenitized at 870°C (1598°F)
BNE
BRRDIWHREEES
100150
100)
130
20
200
300
500)
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
1-1/2 Mn
379
(SAE
1518-1524)
Composition: 0.19% C - 1.50% Mn - 0.20% Si - 0.020% P -
0.020% S Grain size: 9 Austenitized at 870°C (1598°F)
v|
10%
50%
90%
1000
COOLING
S00
RATE
200,
100
A
100
—
1-1/4 Mn
(SAE
100
1S0
150)
200
ea
200
-
300
300
:
S00
—
500
:
mm
OIL
mm
WATER
1525-1527)
Composition: 0.28% C - 1.20% Mn - 0.20% Si - 0.020% P -
0.020% S Grain size: 7-8 Austenitized at 870°C (1598°F)
100
'
BAR
DIAMETER
|;
10
5
20
4
10
2
50
:
a0
10
100
+
5
50
20
150
20
pe
PER
50
100
—
150 200
n
100
5
——
4
300
ae
an
x
200
x 00
10
n
MIN
200
1
500
4
4
500
500
1
—l
mm
OIL
ST
WATER
!
AIR
ASM, 1980
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels,
Atlas of Time-Temperature Diagrams
380
.
;
1-1/2 Mn (SAE 1526-1527)
0.020% .
Composition: 0.28% C - 1.50% Mn - 0.20% Si F)
(1580
0.020% $ Grain size: 8 Austenitized at 860°C
900
800} Ae,
700
600
°C
500
400
300
200
100
VOX)
S00
=o
COOLING
4
S
4
ali}
4
RATE
AT
i
§
10
20)
i
ie
L
ait
10
1
700 €
J
C PER
MIN
sv
10
200)
SOK)
1000
1
1
1
4
at
iM)
Ot
0
mm
0.1
0.2
OS
=it
Baca:
|
Mh
0
N
20
S01)
44
*)
IS)
ee
30
00
ee
Sein
2000 mm
1
AIR
CARER
1-3/4 Mn (SAE 1330)
Composition: 0.30% C - 1.80% Mn - 0.15% Si - 0.020% P 0.020% S Grain size: 7 Austenitized at 860°C (1580°F)
900
800
FAc,
700 Aq,
=
600
V ZEA
—— 7 F
oe
SS
ae
M
200
100
0
|
ees
400
300
ae
;
aaa
EG
Eas
ae,
ae |
—
aw
Sa
Sa
at
es
a
1 90%
iz E
Z|
Zz
500
1 10%
= 50%
eee
7a
a
Ap
7
A
=
ay
al
[
fal
[7
ee
a
es eee
eee
ee | en
SS] LY ESET Se
al
ave GE EE
a
TRA
ERG] BS LE
aie
ee
co ee
Y
:
a
ieee
EE]
1000 S00
20010
pees fipeeee| ee COOLING IRATE SAT 700/C
Babee
Se
eee
Been
920
i
C PER MIN
ee
10
=0
50
11
=
100
100-180 200
ee
ee
150
200
00
4H
100-200
500
200
EE
mm OIL
eee
Se
500
:
' H
8
1000-2000
arene
neler
mm WATER
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
381
1-1/4 Mn (SAE 1536)
Composition: 0.36% C - 1.20% Mn - 0.20% Si - 0.020% P 0.020% S Grain size: 8-9 Austenitized at 860°C (1580°F)
mm
0.1
1000
500
200
COOLING
RATE
AT 700 C
2
5)
1
1
10
oe
BAR
DIAMETER 5S
EH
20
a
:
Ee
30
100
2
ADT
Ss
1-1/2 Mn
50
(SAE
50
ee
100
200
{
i
150 200
300
ae
|
x
2mil)
EE
500
1000
1
2000 mm
1
_AIR
2m OL
mm WATER
S00
5
1536-1541)
Composition: 0.36% C - 1.50% Mn - 0.20% Si - 0.020% P 0.020% S Grain size: 7-8 Austenitized at 850°C (1562°F)
NTT
DSDOEOSUTOSOOEa
BBeUoesoo
SOMOS
NAN
THIN
TESUNQQUTL
DANII
0.5
0.2
mm 0 1
Jee
4
nl
BAR
5
DIAMETER
2
5
io
500
RATE
AT
5
10
n
=|
2»
1S
i
1
COOLING
50
=
5
=
n
100
Se
100
50
ai
ie
2
150200
3000
.
200
[ikea
500
500
aoa
1000
2000mm
ja
1
aie
tern
WATER
n uous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
SOURCE: M. Atkins, Atlas of Conti
a
Atlas of Time-Temperature Diagrams
382
1541, 1335-1340)
(SAE
1-3/4 Mn
0.25% Si - 0.025% P Composition: 0.38% C - 1.80% Mn -
0.020% § Grain size: 7 Austenitized at 860°C (1580°F)
90%
1000,
3)
Wh
100
Us
SO
Sees
eli)
ae th10.
© PER MIN
20
50
100
COOLING RATE AT 7m ©
az
mm 0.1
BAK
DIAMETER}
0.2
0.5
n
a
$
1
2
10
te
i
At)
ah
n
150)
100
:
i
1sQ)
eee
4
20)
Sipe
30
n
n
1X)
=
”
1
S
1
1)
.
10
1
anes
1
5MK)
AK)
20
200
r
XK)
!
1000
1
mm
cM)
ee
500
2000 mm
(Ne
OIL
mm WATER
1-3/4 Mn (SAE 1547, 1345)
Composition: 0.46% C - 1.80% Mn - 0.25% Si - 0.020% P 0.015% S Grain size: 6-7 Austenitized at 850°C (1562°F)
900
4 10%
50%
90%
Vara,
mm 0.1
BAR
DIAMETER
0.2
0.5
S00
200
RATE
AT 650 C
5
10
2
5
we
20
i
SOURCE:
!
1000
COOLING
SO
20
0
100
200
500
——L
—
ee
SS
ey
1)
ear
100
150
EE
150)
200
200
ie
i
th
WW
500)
SX)
AIR
mm
OIL
mm
WATER
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM,
1980
hFeseFeseseseF
————
FSMMmmmmms
——
SSSSS
_—$—
Atlas of Time-Temperature Diagrams
1 Mn
383
+ S (SAE
1212-12114)
Composition: 9.10% C - 1.10% Mn - 0.20% Si - 0.020% P 0.250% S Austenitized at 900°C (1652°F)
AT
|
—rcreeryn
100
|
Ss
10)
SOX).
COOLING
2m)
=100
4
RATE
AT xm) ©
5
4
10
=
50
Ales
2%”
32
10
‘
ne
200
1
50)
J
nN
N
GIPER:
0
——
20
1
s0
1)
100
—_—___
1 Mn
+ S (SAE
100
1
20)
300
180
4
30
SO
1
180
rf
4
5)
i
200)
a
4
re
4
500)
—
1000
=e
mm
OIL
mm
WATER
2000 mm
1 AIR
pa
1140-1146)
Composition: 0.42% C - 1.15% Mn - 0.20% Si - 0.020% P -
0.160% S Austenitized at 850°C (1562°F)
900)
ae
=
a
Acy
700
z
ai,
| ieee
ore
eee
ers
of
EA | erp IDEN
) ee Ee eee
eee
pone
Fe s
oe
=n) a
A
—
acall .6 f- le o
[
St
°
e
| eS
st
=
eae
a
START
ai
10%
oS
|
50%
E
90%
P.
I
500
=
i
4
600
z
i
ii
4
peas
——
=e
=
-
|
i)
eel
[
.
If
ae
400
ip
{
M,
+
300
a
if
a
200
ie
|
100
10),
SOO
COOLING
RATE
AT
5
10
\
i
i
I
24)
100
1
IE
SO
—_"
|
4
0
10
5
—1—
—L.
C PER
MIN
10)
200
4
71) C
=
4
0
2
pn
BAR
DIAMETER
0S
ao
Pi
s
et
2
a
>
=0
10
10
\
fe
20
ee
eT
SO
aint)
2»
1OO
1K)
50
He
eh
150
180)
n
at
2)
2)
|
:(K)
300
i
5 (4)
500-1000
ene
oii
2000 mm
BESATR
aaven Ollie
mm
WATER
ASM, 1980
Cooling Transformation Diagrams for Engineering Steels,
SOURCE: M. Atkins, Atlas of Continuous
———
——————————
Atlas of Time-Temperature Diagrams
384
1-1/2 Mn + S (SAE
1139)
Composition: 0.44% C - 1.50% Mn - 0.20% Si - 0.020% P -
0.250% S Austenitized at 850°C (1562°F)
10%
50%
90%
a
cS)
rare al
ESE
Ra
Ree
ees
———
aaa
ee
cea ae
4
mm 0.1
0.2
05
1
1
BAR
DIAMETER|>
1
1
i
pd
5
it
4
eA
0
20.
SO.
1
1
it
~
20
10
10
LOE
§
0
Os DOS
100
50
100.
=ll
sl
100
150
200
300
2
20)
300
200,
(0
500
1000
2000 mm
1
{>
1
AIR
mm OIL
S00
SI(K)
TRE
WIATIER.
1-3/4 Si Mn
Composition: 0.40% C - 0.85% Mn - 1.75% Si - 0.030% P 0.030% S Grain size: 8-10 Austenitized at 910°C (1670°F)
900
ul
Ac
800
{
=
re
>|
a
Ae
is
|
il
700
-+—-+
[
ae
1
=
=
| eae
lasts
hae olnoe Pea,
Es
aaeaee
a
gare
AEDES
ee
Nines
600+
°C
50%
i
90%
as
=
|
=
=
At
i
si
4
rere
“ed
T
|
Mf
I
t
3007
r
ic
=
[
il
i
|
i
1
i
i
100
i
-
+
1000
:
mm 0.1
BAR
DIAMETER
§
0.2
5
0.5
eS
10
at
Has
5
4
i
S|ere
iI
ee
HA
C PER MIN
|
10
4
20
20
2
|
ii
eee
s
4
2
=
0)
4
i
100
100
=:
100)
an
9
mei
5
a]
5
130290300590
go
!
50
20
i
sO
=
L
10
1
:
*
a
ae
Ee,
COOLING RATE AT 800C
ol
+
|
zi
i
200
SOURCE:
10%
=
=
i
!
STA
—
—.
2
i
=f
|
=
re
poree ae
|
ets
so.
ee
=s
$00
“il
1
5
2000,
ha
eaiteae
mm WATER
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
385
2 Si Mn
Composition: 0.54% C - 0.85% Mn - 1.90% Si - 0.030% P 0.030% S - 0.10% Cr - 0.02% Mo - 0.16% Ni Grain size: 7-8
Austenitized at 910°C (1670°F)
90)
|
T
eo
800 Ac,
=
ere
x
—
700
L
a
a
-
500
c
aS
Araei
=a|
300k M.
es
=
Y
mm
=
i
eee ee
tee
0.2
1000
BAR
DIAMETERE
\
1
=
2
1
at
20
I
500
200
AT
Q
10
~=—-100
50
20
g00°C
20
1
SO
1
1
ae,
2
ee
50
=
=f
T
|
RATE
se!
7
My
10
COOLING
H
I
|
ee
OS
4
ae
:
Ht
See
0.1
L
=
Sep nen aa omen asa
_—
| Sa ae
Een Se Se
GRSRESE EAL) EY RC EE,
———
a
ie
Eee BRET SET zee ETSY BERT
EES RES GlEG
(TE
(EN
J
A
a
tt
Se
loot
+—4
i:
4
Et
4
aan
=
:
=
400
90%
i.
es ie e eeH
=ae8
Bev
50%
ee
ZNZA
Lhe
a
10%
SE
SSF
Sail
{
S
+
————
fas
~
7
a
p——
=
600
ai
ae
|
Ac
yh)
leas
Eete
100°
150
10
C PER
MIN
100
200
ale
5
500
300
$00
1
5
Hy
1000
eal
SAM
200
2
Wee
2000 mm
2
ellt
mm
WATER
2 Si Mn
Composition: 0.59% C - 0.85% Mn - 1.90% Si - 0.030% P -
0.030% S Grain size: 7 Austenitized at 910°C (1670°F)
50
b)
n
5
50
10
20
4
fl
100
20
—__1_________4.
C PER
MIN
100
200
150 200300
5
5000
50
ie
ee
190150 29030050
SOURCE:
M. Atkins,
ales
es
500
re
2000 mm
t_AIR
ai
ny WATER
Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
a
nnn
Atlas of Time-Temperature Diagrams
386
2 Si Mn
.
Composition: 0.62% C - 0.85% Mn - 1.90% Si - 0.030% P 0.030% S Grain size: 7-9 Austenitized at 910°C 1670°F
BAR
miaMereee
10
10
0
20
50
50
100
90150 39030500
150 200300
ae
Rea
1/2 Ni
0.55% C - 0.65% Mn - 0.20% Si - 0.025% P - 0.025% S - 0.65%
Ni Grain size: fine Austenitized at 830°C (1526°F)
900
800
700
600
°C
500
400
300
200
100
1000
SK)
200
COOLING RATE AT =30
0
10
aa!
20
50
=
i
100
{ff
200
Sam
100
1a
150
1s
2
Soe
5,
500
1000
fd
3
es
ry
2000 mm
ATR.
OL
WARER
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
eee
Atlas of Time-Temperature Diagrams
387
1 Ni
Composition: 0.36% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 0.85% Ni Grain size: 7-8 Austenitized at 850°C
(1562°F)
90K)
1000
COOLING
500
200
RATE
AT 750 C
mm
OIL
1 Ni
Composition: 0.43% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 0.85% Ni Grain size: 7-8 Austenitized at 850°C
(1562°F)
900
800
700
10%
50%
90%
600
3 @
500
as
ee
fy
400
SRS
St
LY
siriay
Sears |a oy
300
100
=——4
—ee
(ea)
wale
-
a=
=|
|
1000S
§
—
_30
Ei
SOURCE:
M. Atkins, Atlas of Continuous
LORETO
OOLING RATE AT 750 C
a6)
ELOD
20
el
__100
150
50
100
200
500
1
4
=i
nl
500
fin
200
_300
19010 290390590
1000
2000 mm
1
AIR
O1L
WATER
Cooling Transformation Diagrams for Engineering Steels, ASM,
1980
Atlas of Time-Temperature Diagrams
388
1-1/2 Ni
Composition: 0.16% C - 0.60% Mn - 0.25% Si - 0.020% P 0.015% S - 0.20% Cr - 0.05% Mo - 1.50% Ni Grain size: 8
Austenitized at 840°C (1544°F)
900
800
Hy
T
——
700
—
10
EI
SES
(peer
=
Se
7
u
i=
400
[ama
|
—
300
%
50%
=a
aa
=H
600
°C
fe
START
ey
+ FINISH |
=
F
a
200
a
a
oO
100
7
t
0
ae
COOLING
ere
RATE
AT 750 C
Hy
2000 mm
AIR
BAR
DIAMETER:
2
2
10
2
20
a
SO
190
el
150
200
300
OE
590
mm
WATER
3 Ni
Composition: 0.30% C - 0.51% Mn - 0.32% Si - 0.011% P 0.007% S - 0.07% Cr - 3.03% Ni - 0.032% Al - <0.01% Ti Grain
size: 7-8 Austenitized at 850°C (1562°F)
900
800
700
600
°C
500
400
300
200
100
———
CS3
0
mm
SS
eee
erat
a
ee
0.1
0.2
ja,
BAR
ae
i 0.5
eed)
|
=
=
[pena]
2i
0)
zn
zu
>
me |pees COLINGIRATESAT700C
10
DIAMETERL
1000-500
or) ee
icine |ener
Ss
a
=
M)
=
10
aa
50
EIS EE
bee
Dead
100
a
“0
500
1000
i
ae
as Oi,
mm WATER
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
eT
ré— OOO
DDI
389
Atlas of Time-Temperature Diagrams
3-1/2 Ni
Composition: 0.10%C - 0.53% Mn - 0.26% Si - 0.007% P 0.005% S - 0.05% Cr - 3.65% Ni - 0.045% Al - 0.07% Cu Grain
size: 8 Austenitized at 840°C (1544°F)
mS
mm
0.1
BAR
DIAMETER/.
0. a
i
ee
aie
ee
5)
i
7
eee oH
30
5)
Me
eee
100
0)
SO
1
100
i
[ete
i
150 200
100
150
200
EREMUN
200)
=
A() 5 .
3)
SO)
500
1000)
=1
1
2000 mm
1_AIR
mmOUl
PAR
WIAER
3-1/2 Ni
Composition: 0.33% C - 0.74% Mn - 0.23% Si - 0.031% P 0.027% S - 0.07% Cr - 0.11% Mo - 3.47% Ni Grain size: 8
Austenitized at 840°C (1544°F)
900
800
700
400
300
200
Steels, ASM, 1980
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering
a
————————
Atlas of Time-Temperature Diagrams
390
3-1/2 Ni
Composition: 0.40% C - 0.62% Mn - 0.26% Si - 0.007% P 0.005% S - 0.23% Cr - 0.10% Mo - 3.45% Ni Grain size: 8-9
Austenitized at 860°C (1580°F)
m2,
POS
Sane
ee
aaa
ees
SE
aa
iE
ae
el
SSS
Lae
ee]
=”
2 ae
mm0.1
0.2
BAR
DIAMETER
0s
10
1
2
5
20
10
4
20
50
==
et
’
50
100150200300
150 200300
10
200
500
1000
2000 mm
SS
eee
500
500
Sem CaNTL
mam WATER
5 Ni
Composition: 0.10% C - 0.40% Mn - 0.20% Si - 0.020% P -
0.020% S - 4.8% Ni Grain size: 8-9 Austenitized at 800°C
(1472°F)
900
800
700
600
rc
500
400
300
ate
ieee BET
REGO
eel
erent
apne
ISRO BE
200
100
1000
cay
0
mm
BAR
DIAMETER)
Bea
COOLING
FS
500
RATE
20
I
AT 600 C
aa
0.1
=
200
maolL
300
50)
mm WATER
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
39]
9 Ni
Composition: 0.09% C - 0.45% Mn - 0.25% Si - 0.010% P 0.012% S - 0.10% Cr - 0.04% Mo - 9.00% Ni - 0.030% Al Grain
size: 9 Austenitized at 790°C (1454°F)
=H] 10%
PH 50%
1 90
a
[ee
aS a
%
ay
aa rd
em |
ae
20)
es
100
.o
||
1000
1)
WX)
180)
i
150
200
AX)
2)
MW)
S00,
any
OIL
SOO
mm
WATER
2000 mm
AIR
1/2 Cr (SAE 5015, 4118)
Composition: 0.15% C - 0.40% Mn - 0.20% Si - 0.020% P 0.020% S - 0.40% Cr Grain size: 7-8 Austenitized at 900°C
(1652°F)
900
800
i+
=
ba
a6
s
an
ie
c
aa aa
oe
ee
=
EE
eee
ae
50%
Sel
90%
a a
SEae ors
a
=
600
10%
See
oe SS
ae Be ee
eas SSS
as SS)
<a
Paria
=i
ag
=
Sa
4
ae
I=
i—
es
1
oa
|
——
1000
=
=
500
200
Se!
=CI
[|
«= 100t—«
beet
50
2»
10
5
2
set)
© PER MIN
att
'
1
nat
Le
a.
a
H
[I
s
2
faee Seree ane See
0
5
ee aie
20
50
1
Sani
50
4
ee
100
See
100200
so
!
i
een
100 150 200
300
tS
ee
150
20
ee
300
ee
ies
500
1000-2000 mm
500
SS
mm
1_AIR
OL
mMIWATER
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
392
3/4 Cr (SAE 5117-5120, 4118)
Composition: 0.20% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S$ - 0.80% Cr Grain size: 7-8 Austenitized at 900°C
(1652°F)
10%
50%
‘90%
IN
500
200
~=—-100
100
150.
at
s
;
200
=.300
500
4__1__4
____i____mm
WATER
1 Cr
Composition: 0.20% C - 0.75% Mn - 0.30% Si - 0.020% P 0.020% S - 0.95% Cr Grain size: 7-9 Austenitized at 900°C
(1652°F)
500
200
100
5
»
df
COOLING RATE AT 800 C
PER MIN
Exel
mm0.1
0.2
05
es
e
10
20
41—_____1_
BAR
DIAMETER
SOURCE:
|x‘
20
0
a
2
A
.
50
10)
——
‘50
50“a
-
~——-200
500
1000-2000 mm
AIR
100150200
1
100
—t
ie
OE
1S0 2000
500
—1—_1____1______1____mm
OIL
WATER
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
393
1 Cr (SAE 5130-5132)
Composition: 0.30% C - 0.70% Mn - 0.20% Si - 0.020% P 0.020% S - 1.05% Cr Grain size: 9-10 Austenitized at 860°C
(1580°F)
500
BAR
DIAMETER
200
50
100
4
180-200
300
tt
500
mm
SO)
100,
150)
2)
300
4
a
EE
OIL
500
4
mm
WATER
1/2 Cr
Composition: 0.38% C - 0.70% Mn - 0.25% Si - 0.020% P 0.020% S - 0.50% Cr Grain size: 8 Austenitized at 830°C
(1526°F)
ee
as
Sasi
{ere
[eae |
——
=a
Sa
Seer l
fae B
———
|__|
T
MI
ia
a
aaa
ei
aaa
aS
Eas
Py
a
ee)
== Bea
1000
ae
COOLING
[ae Sa |
eee ese)
ae
ie) eae
ET
BAR
5
-
DIAMETER
SOURCE:
:
0.5
10
10
1
Ban
5
ee
20
20
—
500
10
ee,
sO
50
ed
200
20
RATE AT 750
a!
ees
20
50
(ie
100
<=ee\t
100
ee
100-150
—
10
PER MIN
150
hn
eee
200
a
200
4
300
300
=
ees
200
air
500
fe
500
2000 mm
STE
OIL.
——_1
mm
n
mm
500
1000
WATER
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
394
1 Cr (SAE 5140)
Composition: 0.39% C - 0.70% Mn - 0.20% Si - 0.020% P 0.020% S - 1.05% Cr Grain size: 7-9 Austenitized at 870°C
(1598°F)
{=
D ———
Sa
100-180-200
1K)
he
S000
MW)
3)
500
mm
OIL
mm
WATER
Si)
1/2 Cr (SAE 5046)
Composition: 0.46% C - 0.70% Mn - 0.25% Si - 0.020% P 0.020% S - 0.50% Cr Grain size: 8 Austenitized at 830°C
(1526°F)
900
:
=
i
BB
|
=
600
ie}
a=
°C
3
500
Sl
=
400
=
fa
=
300
M,
:
200
Beara
100
tal
jf
BSSey
a
OE
a
pawn
sy
1000500
COOLING
0
mm0.!
ee
0.2
0.5
1
RATE
eae
2
200-100
AT
ee
5
so
750 C
C PER
Sy Re]
10
|
L-
20
ar
50
100
5
2
17
MIN
H
ee
200
500
1000
eg
= 2000 mm
AIR
BAR
DIAMETER
SOURCE:
2)
300
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
395
1 Cr (SAE 5145-5150)
Composition: 0.50% C - 0.75% Mn - 0.35% Si - 0.025% P 0.020% S - 1.20% Cr Grain size: 6-8 Austenitized at 850°C
(1562°F)
900
800
Acy
nie
700
600
°C
sof
[-—-——_}—]
400k
=
ee
gael Gewese aT
J
aa aera
Saar
=
aa
0
200
100
——
or ee
BS
RE
PEE
ae
Ray
(ET
aes
SG
So PST
eT
a ye
a
}-—_ ++
v4 ov a
gee ES ee |
mm
0.1
0.2
COOLING
RATE
AT 750C
0.5
BAR
DIAMETER|
100
1so
1/2 Cr (SAE 5060, 5155-5160)
Composition: 0.59% C - 0.60% Mn - 0.25% Si - 0.025% P 0.025% S - 0.65% Cr - 0.20% Ni Grain size: 8 Austenitized at
830°C (1526°F)
900
BAR
s
DIAMETER
100
ee
SOURCE: M. Atkins,
I
150-200
300
——
100
ee
150
ey
200300
—_1———_mm
WATER
Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
396
3/4 Cr
Composition: 0.60% C - 0.85% Mn - 0.25% Si - 0.025% P 0.025% S - 0.75% Cr Grain size: 7-9 Austenitized at 845°C
(1555°F)
BAR
DIAMETER
|s
10
0
10
0
50
50
———
1.
100
n
100
150 200
300
i
fe
150-200-300
500
.
500
mm
OIL
4
a
mm
WATER
—
LL
—
13 Cr (SAE 51405-51409)
Composition: 0.07% C - 0.50% Mn - 0.40% Si - 0.020% P 0.010% S - 13.0% Cr - 0.20% Ni Grain size: 9-10 Austenitized
at 980°C (1796°F)
cae
Ee
<2
e
aN
rae
aa
a
Ree)
ES
Baar
Paes
(EES
EEE
ee
RES
aa
ee
rims ae
aol Bees BSSEE SS
eared
Baza
Sears)
ES
Baa
Vises: [asrenai
i EE
BS
aa
ee
fe a ae
ee
he
ea
aes
5
10
n
20
1
100
et
100
50
ar
1SQ
at
200
0K)
L
ae
1)
MH)
MK)
aE
1s0
SS
SOURCE:
M. Atkins, Atlas of Continuous
Cooling Transformation
100
=i
200
500-1000
i
4
= 2000 mm
—_1___1_ AIR
sa)
:
oa
mm
gu
WATER
Diagrams for Engineering Steels, ASM,
1980
Atlas of Time-Temperature Diagrams
13 Cr (SAE
397
51410)
0.12% C - 0.50% Mn - 0.40% Si - 0.020% P - 0.010% S - 12.5%
Cr - 0.20% Ni Grain size 8 Austenitized at 980°C (1796°F)
20)
———
0)
4
100,
100
sal
tf
Hs0
1
100
150)
200300
SK)
4
tlm
200
300
a oe
OIL
500
—_j|_______mm
WATER
13 Cr (SAE 51420)
Composition: 0.17% C - 0.40% Mn - 0.38% Si - 0.020% P 0.020% S - 12.5% Cr - 0.20% Ni Grain size: 8 Austenitized at
960°C (1760°F)
=
10%
ZEA
ie
oe
| 90%
=
VEGA
San
Sy
lA
1000
2)
180
a)
300
MM)
S00
mm
OIL
mm
WATER
2000 mm
AIR
Diagrams for Engineering Steels, ASM, 1980
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation n
ee
Neen
nnnnnn,
TEE
EEE nnn
Atlas of Time-Temperature Diagrams
398
13 Cr (SAE
51420)
Composition: 0.24% C - 0.27% Mn - 0.37% Si - 0.021% P -
0.010% S - 13.8% Cr - 0.06% Mo - 0.32% Ni Grain size: 7
Austenitized at 960°C (1760°F)
:
o
|
TO".
5° 4
C00: —t—4
e243
=
a
:
SI
a
ies]
@
a
E
=]
A
1000
at
COOLING
S00
RATE
:
|
24)
ie
et
AT x) C
|
CI
L
0.2
0.5
1
2
thea
10
10
20
all)
re
13 Cr (SAE
5
10
L
=f
hs
10)
180)
50)
30
1
4
20
2)
50
100
200
500
1000
——
ie
4
1
1
300
S00
SS
Sm
Se
100
150 200
3M)
500
ooo
= 2000 mm
1_ ATR
Ole
mm
WATER
51420)
Composition: 0.32% C - 0.30% Mn - 0.30% Si - 0.020% P 0.010% S - 13.0% Cr - 0.06% Mo - 0.20% Ni Grain size: 10
Austenitized at 960°C (1760°F)
10%
50%
90%
1000,
50),
100,
SOURCE:
150
200
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
399
1/4 Mo (SAE 4012)
Composition: 0.17% C - 0.60% Mn - 0.25% Si - 0.020% P 0.020% S - 0.30% Mo Grain size: fine Austenitized at 925°C
(1697°F)
mm0.1
9.2
eibcelae
DIAMETERE
0.5
1
n
10
at
10
2
5
4
= alt)
ag
10
4
20
1
501M)
——————
50
eS
0
100-150
200,300
5000
Seley
:
St)
(
190
13¢
)
2X)
_ =X
30)
ye
S00
a
5)
1000200) mm
wa
eI
rane
mm
2
WATER
1/4 Mo (SAE 4023-4024)
Composition: 0.24% C - 0.90% Mn - 0.30% Si - 0.020% P 0.020% S - 0.23% Mo Grain size: fine Austenitized at 900°C
(1652°F)
900
Acy
800
10%
Ac,
50%
700
190%
«on
é
A}
ae
Fae
"7
400+
-
=
M
i
ia25 Ee
=
Ea
Bee
200
100
1000
COOLING
500
RATE
A
50
50
SOURCE:
190
190150200300
F
500
Sen OIL
150200300
500
smm WATER
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
400
1/4 Mo
Composition: 0.32% C - 0.80% Mn - 0.30% Si - 0.025% P 0.020% S - 0.26% Mo Grain size: fine Austenitized at 830°C
(1526°F)
BAR
DIAMETER-
bi
eu
ay
*
an
»
x
OL
1/4 Mo (SAE 4037-4042)
Composition: 0.40% C - 0.80% Mo - 0.30% Si - 0.025% P 0.020% S - 0.26% Mo Grain size: fine Austenitized at 810°C
(1490°F)
ARI
10%
50%
‘90%
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
——___—
Xv)
erreeE=E_E
Atlas of Time-Temperature Diagrams
401
1/4 Mo (SAE 4047)
Composition: 0.48% C - 0.80% Mn - 0.25% Si - 0.025% P 0.020% S - 0.26% Mo Grain size: fine Austenitized at 810°C
(1490°F)
500
COOLING
RATE
0
200
AT 700 C
|
mm 0.1
0.2
BAR
DIAMETER
0.5
1
=
10
2
_—
10
20
50
10
20
=
4
50
ak
100
50
100
180
50
150
200
2
100)
1
x
500
ra
3100
200
200
——_
300
1000.
2000 mm
AIR
Oe
mM
WATER
1/2 Mo (SAE 4419-4422)
Composition: 0.22% C - 0.60% Mn - 0.25% Si - 0.020% P 0.020% S - 0.50% Mo Grain size: fine Austenitized at 850°C
(1562°F)
\
teas
fede
ete
atts
20
ze
PER
10
1
MIN
S
1
200
500
0
mm
SOURCE:
ti.
to
BAR
DIAMETER
0.5
0.2
0.1
10
Ke
14
»
205
10
5
2
|
-4
BO
5
0
2m
LO
50.
20
n
i
a
100.
ue
3
ai
1000
ee
2000 mm
LATE.
500
SIO
000200 0S
0s)>
OMe 5 ES rn WATER
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
402
1/2 Mo
Composition: 0.38% C - 0.80% Mn - 0.30% Si - 0.025% P 0.021% S - 0.53% Mo Grain size: fine Austenitized at 820°C
(1508°F)
900
=
[
H
800 Acy
=
a
ART |
Sa
a
=a
© |
fH
500
aa
lI
400
par)
Baan
al
|
900
CL] 10%
=|
50%
z=
rr]
90%
bt
a
600
:
=
fea
ay
fait
CP en ae
5274 aaa
en
ae
[ex
&
aa
Miia
=
mee
|
=
aa
Eazy
> Mss
Beyer
I
=
iE
—
Led
200}
Ba
:
ae
;
a
100
1000
500
=200-—S
«100
50
ae
ee
COOLING RATE AT 700 C
0
0.2
0.5
10
10
I
2
5
20
20
50
50
10
20
100
100
20
«10
5
2
1 H
C PER MIN
a
50
ao
100
5
ee
200
Ri
3
150200300
150
200
300
Re
500
eae
1000
2000mm
AIR
ier
_ 500
mm
WATER
1-1/2 Mn (SAE 1513-1518)
Composition: 0.15% C - 1.40% Mn - 0.25% Si - 0.020% P 0.020% S Grain size: 8 Austenitized at 950°C (1742°F)
10%
===}
50%
+}
90%
ais
aaa
=a
Hem
——e
tf 4
ear use
(24
Sin
‘-
fica
-——
Ee
ae
Lee
ene ES
ee
aes
EES
t-—
PSS
t—+4
=
ae
ia
=
a
ae)
=a i
ied eer eed
vi aes ae
Ee a
an
Samay Pe)
|
Eleee oe
Sen
ees cee
2
Saas Ses
ae
Reraeay
=a_
ee)
a
=
Saas
fo ae
ae ia ae
ee] Eas Pe
H
H
2000 mm
AIR
150 0 200
2
180
200
=
SOURCE:
300
200
500
—
500
mm
—___1_____mm
OIL
WATER
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
sm
Atlas of Time-Temperature Diagrams
403
1-1/2 Mn Mo
Composition: 0.27% C - 1.55% Mn - 0.20% Si - 0.025% P 0.025% S - 0.28% Mo Grain size 7-9 Austenitized at 845°C
(1555°F)
ITI
INT
S00
COOLING
mm
0.1
0.2
0s
1
DIAMETERL
BAR
§
2
700 C
B}
10
20
20
10
C PER
MIN
100
200
S0
10)
504)
EA
a0
20
2000 mm
AIR
1)
50)
1-1/2 Mn
a
AT
Jt
2
Ww
[ 10
J
a
200
RATE
1)
1)
150
ah
150
200
“mm
XK)
2K)
300,
OIL
500
S00
mm
WATER
Mo
Composition: 0.30% C - 1.55% Mn - 0.20% Si - 0.025% P -
0.025% S - 0.28% Mo Grain size: 7 Austenitized at 845°C
(1555°F)
900
10%
90%
200
COOLING RATE AT 700
BE
i
é
20
10
C PER MIN
2000 mm
—1—AIR
BAR
|.
DIAMETER}-
SOURCE:
M. Atkins,
10
ad
0
20
Mx0
ail
a
100
100
150
s
150
2)
2M)
x‘ON
x (1)
St
_ 500
st
0)
mrOll
AM
WATER
Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
404
1-1/2 Mn
Mo
Composition: 0.32% C - 1.50% Mn - 0.18% Si ; 0.020% Fs
0.020% S - 0.27% Mo Grain size: 7-8 Austenitized at 845°C
(1555°F)
aes ee]
=a
=a
2 ee
Gea
TE
P54
pee baa
50%
et
SF
pe
ees
ey
a
a1
aaa
=a
=
=a
ee
es
ee
|
PEO Raa
Be eae]
—}
—
[|
SS
ann ee ae
ER
as
moess Gs
aoe! eae erase SS ae
[}_——}-
+
—
——
=
—
===
225
=
=
———
ts
~
[acanes
a[earner
Sars
ipa
Ieee
aa
eae ae
1000
==
500
200
COOLING RATE AT 700 C
fara
2000 mm
AIR
BAR
DIAMETER
ues
ie
EE
1-1/2 Mn
:
eae
es
500 mm OIL
5mm WATER
Mo
Composition: 0.35% C - 1.55% Mn - 0.20% Si - 0.025% P 0.025% S - 0.28% Mo Grain size: 7-8 Austenitized at 845°C
(1555°F)
900
10%
90%
BAR
DIAMETERE S
100
a)
05200
100
SOURCE:
M. Atkins, Atlas of Continuous
150)
200
Cooling Transformation Diagrams for Engineering Steels, ASM,
1980
Atlas of Time-Temperature Diagrams
405
1-1/2 Mn
Mo
Composition: 0.37% C - 1.50% Mn - 0.18% Si - 0.020% P 0.020% S - 0.27% Mo Grain size: 8 Austenitized at 845°C
(1555°F)
900
10%
50%
g
90%
100-150-200
at
20
ne
—
1-1/2 Mn
50
100
eae
150)
200
rey.
300,
4
S00
ie
Mo
Composition: 0.38% C - 1.50% Mn - 0.25% Si - 0.020% P 0.020% S - 0.45% Mo Grain size: 8 Austenitized at 845°C
(1555°F)
900
g
°C
8
HUT
8
Mt
nn
UIT
SUT
20
10
20
ee
2
150200
1K)
10)
50
ee
150
200
a]
10
C PER
MIN
100)
200
J
500
=
=:1000:
2000 mm
i__l
AIR
i00)
(01)
50)
ar
OTE
()
SK
5)
mm
WATER
Ry
for Engineering Steels, ASM, 1980
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams
De
————
a
COCOCOCOCSO*~“‘“CSOC*wS”O
ee
Atlas of Time-Temperature Diagrams
406
1-1/4 Mn Cr
Composition: 0.22% C - 1.10% Mn - 0.21% Si - 0.015% P 0.020% S - 0.60% Cr - 0.02% Mo - 0.18% Ni - 0.08% V - 0.30%
Cu Grain size: fine Austenitized at 880°C (1616°F)
900
10%
50%
90%
400+
200
1000
COOLING
S00
RATE
A
5
au
10
100
)
ay heen
50
200
Use
180
300
ns
20)
4
a
300,
4
500,
500
400
i
mm
OIL
mm
WATER
1-1/4 Mn Cr
Composition: 0.16% C - 1.15% Mn - 0.25% Si - 0.020% P 0.020% S - 0.95% Cr Grain size: fine Austenitized at 870°C
(1598°F)
mM
TR
aiot
HUN
SOURCE:
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
—_————_
OO
OONOEw
Atlas of Time-Temperature Diagrams
407
1-1/4 Mn Cr
Composition: 0.20% C - 1.25% Mn - 0.25% Si - 0.025% P 0.015% S - 1.15% Cr - 0.02% Mo - 0.15% Ni Grain size: fine
Austenitized at 870°C (1598°F)
900
Ase
ah
800
=
Ac,
wi)
zip
{
+
ba”
|
|
|
Sasa
|
5
a
50%
8
uy
STS
LINN
N
eeA ae
=
Bias) Se ee 9 Gee (eySSeS)
eee
YO
pt
— AHFt
es HTETTPNY
a
re
Gs Sean alee
al eee as a
ems]
aia
Pr bg) eG ima See eee Roe a
=
=a
eae SEES Sa en
Laas
_——————
ee
ne
=
ha
Se
ae
—+—
SS ee Ve ee DS eel
20
eee
mm
0.1
0.2
0.5
BAR
DIAMETER
all
|
!
nee
|} ++
a
ae
es
0
aed
|
|
100
1000
COOLING
ee)
1
el
:
i
i
Te
500
200
100
RATE AT 750°C
50
5
50
10
20
;
A
20
10%
el
=
\)
E
(ea
|
os
|
SS
22
100
180
200
aii
5
100
200
$00
SE
= OIL
300
f
i
20
10
C PER MIN
A
eee
50
TC
|
+
3
1
:
=a a
590
mm
1000
2000 mm
AIR
WATER
1-1/2 Si Cr
Composition: 0.55% C - 0.75% Mn - 1.50% Si - 0.020% P 0.020% S - 0.70% Cr Grain size: fine Austenitized at 845°C
(1555°F)
900
700
600
°C
500
400
300
200
100
a
eee 200
Se
COOLING RATE AT 750C
0
Ph be
BAR
DIAMETER
SOURCE:
M. Atkins,
wale
1
2
sit nl
5
20
10
50
100
150
a
100
150
50
100
200
300
ah
a
200
mie
390
200
jee
500
i
500
1000
500
2000 mm
eR
a
OL
mm WATER
Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
408
3-1/2 Si Cr
Composition: 0.45% C - 0.60% Mn - 3.40% Si - 0.015% P 0.010% S - 8.50% Cr Grain size: fine Austenitized at 1050°C
(1922°F)
\
at
\\\ NIALL
ALI
10%
50%
LLC
ULE
Lee
CDEC
eng
EEE
EC
o
.
COGLING
ai
RATE
AT 800 C
.
oEey
2000 mm
ee
BAR
DIAMETER
2
19
20
;
Ds
SE
2
Ea
eet eee ee
RAT
mm OIL
aes
mm WATER
1-1/2 Ni Mn
Composition: 0.16% C - 1.40% Mn - 0.25% Si - 0.020% P 0.015% S - 0.20% Cr - 0.05% Mo - 1.50% Ni Grain size: 7-9
Austenitized at 840°C (1544°F)
900
w
800
wv
aa es
z
"Ss
=e
700
it ft
6g=
s
10%
SEBRRUL
90%
4
MET
c]
3
f= PR * >
HM:HIN
0
mm 0.1
BAR
DIAMETER
SOURCE:
0.2
5
0.5
10
10
|
n
1000
ji
Ss
—————
200
10
rn
0
20
SK)
50
50
ae
a
1)
50
ee
100
Se
am
20
ee
es
150-200
—_—_—-
180
200,300
100
200
eee)
200
4-1
500
1000
= 2000 mm
—_1_j_i_
50)
5)
mm
4———,___,__",__mm
AIR
OIL
WATER
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
409
1-3/4 Ni Mo (SAE 4615-4620)
Composition: 0.17% C - 0.55% Mn - 0.20% Si - 0.020% P 0.020% S - 0.20% Cr - 0.25% Mo - 1.80% Ni Grain size: 8
Austenitized at 840°C (1544°F)
1000
COOLING
0
mmo!
0.2
a
|
;
S00
RATE
200
A T 750. C
5
kh
=
so
10200
500
1
BAR
DIAMETER
Osage
100,
150)
1000-2000 mm
1
SAR
mm OIL
200
PAInRWWATIER
1-3/4 Ni Mo
Composition: 0.24% C - 0.55% Mn - 0.20% Si - 0.020% P 0.020% S - 0.20% Cr - 0.25% Mo - 1.80% Ni Grain size: 7-8
Austenitized at 830°C (1526°F)
900
800 Ac,
=
H
700}
Pf
10%
aas8 50%
pT] 90%
=a
x
ic 500
Panty]
A
eae
bass
Hy
300
eB
200
100
SOURCE:
M. Atkins,
1000 00
COOLING RATE AT 700C
20
~©«10
© PER MIN
Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
410
i
———————
1-3/4 Ni Mo
Composition: 0.40% C - 0.48% Mn - 0.15% Si - 0.016% P -
0.040% S - 0.15% Cr - 0.25% Mo - 1.75% Ni Grain size: 6-7
Austenitized at 845°C (1555°F)
1
1
1000
S00
COOLING
RATE
AT 700C
S
10
iL
2
1
=
x0
20)
5
50
et
20
1
100
>
2)
IN)
~
C PER
MIN
100
4
200
4
50
4
100
50
10
L
ll
2
:
x
300
(")
xX)
:
(XK)
4
:
S00
4
1000-2000 mm
1
ATR
een
ONTL
mm
WATER
3-1/2 Ni Mo (SAE 4815-4820)
Composition: 0.18% C - 0.47% Mn - 0.27% Si - 0.009% P 0.010% S - 0.18% Cr - 0.23% Mo - 3.33% Ni Grain size: 8-9
Austenitized at 780°C (1436°F)
= ee
i? ——
7
[B
l=
L—
soe ee
war
wa
+7
Ea
maa
=a ——o
Ben aaa
ee
4
ae
aaa ane
ot ae
Berl aaa
PINE Sea
ees
eS,
ean hee
lisvge) es ae
fe
i eee
0.2
BARTER
DIAME
=
nk
earn)
1
10
—_—_1_
COOLING
oA hee AE
10
M
1000
ee el
(Raita
»A
yi)
a)
RATE
sO
ties
sO
200
a
AT 7) C
sgl
0=
L
100
ee
100
ree
180 3.0)
ee
1S
ee
:ve
ire
300
50)
SNe
4K)
SO)
=
et
ie
mm
OIL
mm
WATER
3
ei
"AIR
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
411
5 Ni Mo
Composition: 0.10% C - 0.40% Mn - 0.20% Si - 0.020% P 0.020% S - 0.20% Mo - 5.00% Ni Grain size: 9-10 Austenitized
at 800°C (1472°F)
¢
| FF]
e
——
=
———————
500
=
Ge
ee
ee
a
Fee
ee
Caer
es
ee
ee Al Sa
ee
400M. 2
as
Far
50%
90%
INV
=
=
i
SS SS
Se er]
——
ae
2s
eet
ETS
es] ea
aS
eee
at
En
mas
eS
eS
eee
a
ee
ee
300
Gap
iia
a
AN
a
Lae
200
Pee
Ee
ae
—e
===
i+
ee
a
ee ee
RT
RE
Sars
Ras
1s0, 2)
1)
150
300
2K)
S00
mm
OIL
mm
WATER
3/4 Ni Cr
Composition: 0.15% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 0.63% Cr - 0.05% Mo - 0.85% Ni Grain size: 6
Austenitized at 925°C (1697°F)
900
Ac,
800
ART
0
Re
——
]
SSes=
p54
SSS
ae oan Seer aaa eee 50%
PY
oe
———
600
er
=
ree
al
ae
=
=al
ae)
soot
[-—
=
==
==]
NS ae
400;
=-
Fees
=
==
300¢
a
Bae
|
FJ
ees
fiat
=
Es
4
| MM
—
=
a
HCI
5
|
et
50
SOURCE: M. Atkins,
50
100
4
10)
150
200
eSGaltaledtd
180
200
300
she
390
500
TEA
mm
OIL
5)
mm
WATER
Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
412
1 Ni Cr
Composition: 0.16% C - 0.80% Mn - 0.20% Si - 0.020% P -
0.020% S - 0.85% Cr - 0.05% Mo - 1.15% Ni Grain size: 6-7
Austenitized at 925°C (1697°F)
900
200
1¢
COOLING
S00
RATE
200-100
20
AT 750 C
150-20)
1
150
:
200
10
C PER
MIN
50
100
200
$00
1000
4
le
4
4
1
3)
S00
300
S00
mm
OIL
mm
WATER
2000 mm
=— AIR
1-1/4 Ni Cr
Composition: 0.35% C - 0.75% Mn - 0.23% Si - 0.020% P 0.020% S - 0.65% Cr - 1.30% Ni Grain size: 7-9 Austenitized at
850°C (1562°F)
900
°€
200
EEEa
7
mm
OIL
mm
WATER
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
nn
Atlas of Time-Temperature Diagrams
413
1-1/4 Ni Cr
Composition: 0.40% C - 0.75% Mn - 0.23% Si - 0.020% P 0.020% S - 0.65% Cr - 1.30% Ni Grain size: 7-8 Austenitized at
850°C (1562°F)
900
800
Spe
Ac,
I
eel
Ss
600
SC
500
s
|
AE
BEHLCSEEBERESEOEI
BAR
DIAMETER
SO
De
mc Oll
miWATER
1-1/2 Ni Cr
Composition: 0.15% C - 0.75% Mn - 0.25% Si - 0.020% P 0.020% S - 0.95% Cr - 1.45% Ni Grain size: 8 Austenitized at
870°C (1598°F)
900
Ac,
800
Ac,
—
700
°C
ART |
10%
==
50%
=
90%
i
Finis}
=
500
ot
M.
20)
fa
———
————
_——
oe eee
eee ee
ae
a,
(Sa
EE
200
ose
BAR
|
Se
aa
Saas
Ss
——
et
a
DIAMETER
|
|
P|
dt
|s
10
|
aes
1000 §500
100
2200
SS
anaes
——o0LiNG RATE AT 750 C
~—-50
2%
~©10
5
—EPER MIN
cc
rt
———EES
5]
20
1,
sit
20
SOURCE:
=
[
=
ee
50
>
50
100
n
100
150 200
“TESST
150
200
>
«300500
sees
300
[|
a
a
ah
4 :
pr
1000
mm
2000
OIL
500),
ASM,
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels,
1980
Atlas of Time-Temperature Diagrams
414
1-1/2 Ni Cr
Composition: 0.14% C - 0.50% Mn - 0.25% Si - 0.020% P -
at
0.020% S$ - 1.55% Cr - 1.55% Ni Grain size: 8 Austenitized
870°C (1598°F)
900
10%
50%
90%
A
aN
mm 0.1
0.2
0.5
|
100
S00
COCLING
RATE
AT
750 C
oS
10
20
2
50
10)
i
100-180 200-300
ee ee
eh
200
1
500
z
500
t
mm
1000
2000 mm
OIL
2 Ni Cr
Composition: 0.16% C - 0.50% Mn - 0.31% Si - 0.013% P 0.014% S - 1.95% Cr - 0.03% Mo - 2.02% Ni - 0.030% Al Grain
size: 8 Austenitized at 870°C (1598°F)
MIIll
SI
nt
I)
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
415
3-1/4 Ni Cr
Composition: 0.12% C - 0.50% Mn - 0.20% Si - 0.020% P 0.020% S - 0.90% Cr - 3.25% Ni Grain size: 8-9 Austenitized at
830°C (1526°F)
=
_——+
10%
50%
ay
es
|
|
—
omer
=
i
— |
ee]
sual
ae)
st
ase
—
ae
ieee
oes
ee
ieee
San
are a]
90%
I
Fel
LATHE
TEA
—l
HI
|
3 Ni Cr
Composition: 0.32% C - 0.57% Mn - 0.20% Si - 0.020% P 0.020% S - 1.15% Cr - 3.00% Ni Grain size: 8-9 Austenitized at
840°C (1544°F)
VWELEE
EGOOEEeoae
BEA
CHOBE
mm
SOURCE: M. Atkins,
WATER
ing Steels, ASM, 1980
Atlas of Continuous Cooling Transformation Diagrams for Engineer
Atlas of Time-Temperature Diagrams
416
4 Ni Cr
Composition: 0.15% C - 0.40% Mn - 0.15% Si - 0.020% P -
0.020% S - 1.15% Cr - 4.10% Ni Grain size: 8 Austenitized at
810°C (1490°F)
LJ x)
rs t
mm
WATER
4 Ni Cr
Composition: 0.30% C - 0.50% Mn - 0.20% Si - 0.020% P 0.020% S - 1.25% Cr - 4.10% Ni Grain size: 8 Austenitized at
820°C (1508°F)
900
|
|
800
Acy
set
|
|
a
1
+—t
I=
}
700 AG!
A
|
le
600
°C
pee
Lite
aaa
ica
=a
sa
Sa an ee Pee
SS
==
bo
!
foaee|
500
300k.
|
!
|!
aa
=a
eee
-—P staan
2 ee
a
a
———
1
10%
= el
H
eee
———
eee
OD
=
=
SS SS SS SS SS a
SS
Se
SES
=>
|
rn] 50%
a
a
as De Ee ee Pa
ee el Pe
a
ee ee a
ES
Geen Mee Ge
EES Bg 2 ee Le
aS
Lae) a eee ee
a —eo
HH
eo
Se
H
Ge
meen
ETT
RC
EE
Da
Se
ee
ey
©
ed
(See
t
ee eee he
Sala
ee
ES
Be
Gy
(oe PED
re
eee
as
1000
}
|}
fie | es a
mm 0.1
0.2
0.5
500
200
100
COOLING RATE AT 750C
a
ee a
ee
1
2
5
10
20
50
20
10
5
!
1000
2000 mm
CORER|MIN
ee Ea
ed
50
100
200
7
2
H
H
500
AIR
BAR
DIAMETER
SOURCE:
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
_ Atlas of Time-Temperature Diagrams
417
18 Cr Ni (SAE
51431)
Composition: 0.14% C - 0.68% Mn - 0.67% Si - 0.024% P 0.012% S - 17.98% Cr - 0.06% Mo - 2.95% Ni - 0.04% Al -
0.10% Co - 0.10% Cu Grain size: 5-6 Austenitized at 935°C
(1715°F)
900
600
£¢
500
400
300
10%
200
50%
90%
100
1000
S00
200
100
COOLING RATE AT 60) C
——S
‘
n
C PER MIN
0
mm0.1
02
0.5
it
BAR
DIAMETER
fs
10
H
10
1
ee
i
2
5
10
20
50
i
4
It
=
1
aT]
2h4}
1
\
30
Mw
‘
1
100150
100
N
————
180)
200300
1
100200
i
500
tt
1000-2000 mm
4
AIR
500
!
MK)
300)
Ss)
1
1
!
mm
OIL
mm
WATER
1/2 Cr Mo
Composition: 0.14% C - 0.55% Mn - 0.25% Si - 0.020% P 0.020% S - 0.60% Cr - 0.55% Mo Grain size: 7 Austenitized at
920°C (1688°F)
i
PZ
NII
ALLE
LN
SOURCE:
mm
OIL
mm
WATER
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
418
1/2 Cr Mo
Composition: 0.20% C - 0.75% Mn - 0.25% Si - 0.020% P 0.020% S - 0.40% Cr - 0.45% Mo Grain size: 7 Austenitized at
900°C (1652°F)
ame
=
=
eral
S
2
=
A
:
=
==
1000
500
200-100
50
COOLING RATE AT 800 C
ISS sae
100-150
fi
L
100
—
200-300
150)
200
+
4
300
500
1_____mm
WATER
3/4 Cr Mo
Composition: 0.12% C - 0.45% Mn - 0.30% Si - 0.015% P 0.015% S - 0.85% Cr - 0.60% Mo - 0.16% Ni Grain size: 7
Austenitized at 960°C (1760°F)
laltea
=
=F 90%
INTSAT
:
a
=
Y
:
[eae
20
C PER
MIN
2000 mm
AIR
BAR
DIAMETER
100
1s0
200300
300
——1_1.___1____mm
SOURCE:
WATER
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
419
3/4 Cr Mo
Composition: 0.27% C - 0.60% Mn - 0.13% Si - 0.030% P 0.022% S - 0.74% Cr - 0.55% Mo - 0.19% Ni Grain size: 6-7
Austenitized at 875°C (1605°F)
900
100)
COOLING
|
po
2
eet
S00
200
RATE
AT 800 ©
5
10
ee
SO
20
MIN
200
50
100
4
=
1s0)
200
4
1S0
1
1
200)
Le
300
4
300
1
§
10
C PER
20
1
100
SS
50
—!!
100
1
50
4
100
a
5)
se
IES
mm
OIL
mm
WATER
3/4 Cr Mo (SAE 4161)
Composition: 0.60% C - 0.85% Mn - 0.25% Si - 0.020% P 0.020% S - 0.80% Cr - 0.30% Mo Grain size: 10 Austenitized at
850°C (1562°F)
N
NN
hit
tote
Ui)
innananee
3
COOLING
RATE
AT 750 C
mm
150
200
=e est
SOURCE:
i___mm
OIL
WATER
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM,
1980
Atlas of Time-Temperature Diagrams
420
1 Cr Mo
Composition: 0.18% C - 0.75% Mn - 0.25% Si - 0.020% P 8-9 Austenitized
0.020% S - 1.00% Cr - 0.20% Mo Grain size:
at 860°C (1580°F)
1 Cr Mo
Composition: 0.26% C - 0.70% Mn - 0.25% Si - 0.020% P 0.020% S - 1.05% Cr - 0.22% Mo Grain size: 7-9 Austenitized
at 850°C (1562°F)
100
SOURCE:
150)
200
200
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
42]
1 Cr Mo (SAE
4130)
Composition: 0.30% C - 0.50% Mn - 0.25% S - 0.020% P 0.020% S - 1.00% Cr - 0.20% Mo Grain size: 8 Austenitized at
850°C (1562°F)
mm 0.1
BAR
DIAMETER
0.2
0.5
|
1000
500
COOLING
RATE
AT “50 C
$
10
2
2)
100
ay
5
100
1a
TS0
50
4
100
|
200
300
=
180, 200300
!
200
500
300
2000 mm
mm OIL
300
:
1000
—L
mm
WATER
1 Cr Mo (SAE 4135)
Composition: 0.34% C - 0.65% Mn - 0.25% Si - 0.020% P 0.020% S - 1.05% Cr - 0.25% Mo Grain size: 9 Austenitized at
850°C (1562°F)
|
TATE,
LTT
20
ait
“C PER
100)
4
100
a
150)
200
1
1S0)
3.00
eae
200
300
10
MIN
4
500
1___mm
500
4
mm
OIL
WATER
Steels, ASM, 1980
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering
Atlas of Time-Temperature Diagrams
422
ee EEE EEEEEEEEEEEEEEE EE
nn
Neen
1 Cr Mo (SAE 4135-4137)
Composition: 0.36% C - 0.80% Mn - 0.25% Si - 0.020% P -
0.020% S - 1.00% Cr - 0.20% Mo Grain size: 8-9 Austenitized
at 850°C (1562°F)
WE
100
1000
S00,
20)
i
|
100
=
:
| ag
|_|
[|
0
mm0.1
0.2
0.5
1
2
5
10
=.
so.
1)S(200
500
1000
1
1
a
BAR
180
2000 mm
1L_AIR
200300
DIAMETER
mm
OIL
2)
1 Cr Mo (SAE 4140-4142)
Composition: 0.40% C - 0.85% Mn - 0.20% Si - 0.020% P 0.020% S - 1.05% Cr - 0.30% Mo Grain size: 8-9 Austenitized
at 870°C (1598°F)
3
:
DIAMETER
SS
s
Ma
150 200
5
+1
__1_____,__,___inm
WATER
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
ee
eee
ee
EEE
Atlas of Time-Temperature Diagrams
423
1 Cr Mo (SAE 4145-4147)
Composition: 0.46% C - 0.85% Mn - 0.25% Si - 0.020% P 0.020% S - 1.00% Cr - 0.20% Mo Grain size: 8-9 Austenitized
at 850°C (1562°F)
900
700
600
°C
Ss
500
ae
==s
4
400
a
eS
so
fi
=,
:
eo
a
a
i
3 SS
haa
eee
200
i
—4
a
100
=:
a
a
[J
1 Cr Mo (SAE 4147-4150)
Composition: 0.50% C - 0.85% Mn - 0.25% Si - 0.020% P 0.020% S - 1.00% C - 0.22% Mo Grain size: 8-9 Austenitized at
850°C (1562°F)
900
\ Y\ VAMWe
\LN
PN NK
\i
7 Hu
Ze ——
‘Ao
N
°C
|
LIT
il
mn Hl INMT
lil
za
——————_—1___1___.
COOLING
SOURCE:
M. Atkins,
4
|
| B=
=a
—_—_$—_——$———
200
I}
=
RATE
3
3
AT 700 C
1
10
C PER
MIN
wa
iS
Al
I
fananlGPGGseehaNecneeGewOREN
Cee
Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
3
ro
a A
424
Atlas of Time-Temperature Diagrams
1-1/4 Cr Mo (SAE
4137)
Composition: 0.37% C - 0.85% Mn - 0.25% Si - 0.020% P0.020% S - 1.15% Cr - 0.20% Mo Grain size: 7-8 Austenitized
at 860°C (1580°F)
900
Me
©
=
ES
es
400
) aa]
300k
FL
Baz
=
a
zoo
ae
Sry
ae
Sir
wees
1000
}
|__|_|
=
0
aS
2
mm0.1
0.2
eee
Qs.
BAR
200
eee
ft
~=—«100
50
20
Gi
‘
i
ee
a
hl
5
ea
100-200
1
Se
500
100,
es
Na
50)
WSO)
2K)
ee
300
2000 mm
eee AllER
OL
500
ee
eee
1000
ed
200300
sl
iit
S0)
= Jie
:
2
ia
ee
so.
150
1
10
C PER MIN
ae
2
>
DIAMETER
00
—G60LING RATE AT 750 C
—_!_—_-mm
WATER
11/4 Cr Mo (SAE 4140-4142)
Composition: 0.42% C - 0.85% Mn - 0.25% Si - 0.020% P 0.020% S - 1.15% Cr - 0.20% Mo Grain size: 6 Austenitized at
860°C (1580°F)
900
800}.
700
Ac,
10%
eT
HSS
600
Baw
SS eae
eras
ona SEN BONS RSs
ea
a
=
_—
ef eaeeet
a fe oa
a
ee Sea
SS
aS eS
eee [cee eee
Ss ae Ss ae es Dee
eS
eee
eee
as Sa
Se
|}...
eS
SS
eee
ae
|
iB
fi
ee
ee
Be
rd
Bea
IZ
ee
ee (es
==
ia
SSS
ee
ran Ga
Bee LS) A Ge
eS Lares ee
0
=
==
=
500
100
90%
wane
°Cc
500
50%
eS
ee
eaearap
eed
asi Seni bee BISS
[ee
=
eee
a
ee
1000 500 =.200:«100-~S
COOLING RATE AT 750°C
ee aa ee
SS
ee
50
2
10
‘C PER MIN
ee
a
en
5
a
H
ee)
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
425
1-1/4 Cr Mo
Composition: 0.15% C - 0.60% Mn - 0.30% Si - 0.030% P 0.030% S - 1.25% Cr - 0.50% Mo Grain size: 6-7 Austenitized
at 920°C (1688°F)
300
5
is)
=
eee
}—_f —__]
2
ea
ee
==
=
CU
IE
EE
SEE
allpreeem preeceere my
ey
eas
ae |
Sas 4
hh
Ceara pee
mm
0.1
0.2
0.5
i]
2
5)
10
20
50
100
200
500
1000
2000 mm
AIR
BAR
100
DIAMETER
150)
200
mm OIL
mm
WATER
1-1/4 Cr Mo
Composition: 0.35% C - 0.55% Mn - 0.27% Si - 0.031% P 0.022% S - 1.23% Cr - 0.51% Mo - 0.14% Ni Grain size: 7-8
Austenitized at 860°C (1580°F)
900
800k
Ac,
700
600
°C
500
=
400
8
a=
|
Me _——
||
=a
ih
a TS ree
ea aS
ea eS
ape
Seal
Remar a
EEA)
3
I:
ES
RN
oo
SOURCE:
=
1000 50200siadwsiSC“‘<‘éikOttOS
pf ___{
COOLING RATE AT 800 C
en
See sees | ee
et Se
C PER MIN
ee a
a Ee
#H
>
ee
H
Steels, ASM, 1980
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering
Atlas of Time-Temperature Diagrams
426
2-1/4 Cr Mo
PComposition: 0.14% C - 0.46% Mn - 0.23% Si = 0.010%
7
size:
Grain
Ni
0.21%
Mo
1.05%
Cr
0.010% S - 2.28%
Austenitized at 900°C (1652°F)
Nt
100
150 200
3 Cr Mo
Composition: 0.20% C - 0.50% Mn - 0.25% Si - 0.020% P 0.020% S - 3.10% Cr - 0.52% Mo Grain size: 7-8 Austenitized
at 920°C (1688°F)
900
ar
Xe,
10%
a
50%
Poece emeet =|
C3
90%
aon
C= so
ee
as =
700
—
600
ae)
im
°C
500
Saas eee
be ier Sl
aa
Saas
———
= |
iesan|osec tanfes=—
|_| it
|} | at
ame
SO a
SSR
iy 2 teSek
Boies
| ea
Se
ES
Re
rs
Ee Bal
a
Ss
Mo
300
ae Pd
AO
EE
easel
GED
SSS
a
aa
a]
ae Sas!)
aie
pt
peuees—a)
a oe ee
==:
BSP
| A
200
Pp
ae
=e
100
=
See =a
Ss
aad
Par a
=
eee
COOLING
RATE
AT 800 C
S)
10
0
mm 0.1
Oo
0.5
!
2
20
50
100
200
500
1000
2000 mm
AIR
BAR
DIAMETER
SOURCE:
100150
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM,
1980
Atlas of Time-Temperature Diagrams
427
3 Cr Mo
Composition: 0.28% C - 0.50% Mn - 0.25% Si - 0.020% P 0.020% S - 3.10% Cr - 0.52% Mo Grain size: 7-9 Austenitized
at 920°C (1688°F)
900
ae
a
Ac,
a
ae Si
Sai
Se
!
eh
el
FEES
t
ic
mewn
T
iE
700
°C
|
is
a
TE
BE
Eis
iE
ie
=.
:
I
fe
=
10%
ee
5
Al
2
ae ae
0%
AF
hE
A I ET]
SS
ae eee
=
a
f
=e
|
if
|
|
|
H
=
t+—
fess
—— Sas aa
a 4
a
=
Ss
a
eat
ee
as rag es ee ee
a
a ee |
aera
400} M4,
9
(nd
ee a =e a ie meee MN Ga Gore Ge ROS I
ta
Ss
Sa Se es
SS
Saas
=,
==
BESS
eo a
es
as
—a
300
300
=
ees
200
100,
lc
=a
=]
1000
-—__+—-__.__]
hae a
500200
s:«100
COOLING RATE AT 800 C
a
ee
eel
50
100
1
150
50
2
SS
200
ceil
erie
100
150 200
5
2
ag
es
C PER MIN
300
‘
300
10
H
500
oii
500
OLL:
——_1______mm
WATER
3 Cr Mo
Composition: 0.32% C - 0.55% Mn - 0.25% Si - 0.020% P 0.020% S - 3.05% Cr - 0.40% Mo - 0.30% Ni Grain size: 8-9
Austenitized at 900°C (1652°F)
£4
Me
10%
50%
ut
TN
90%
AHA
4 z za es
0.2
SOURCE:
EE
M. Atkins,
0.5
=
COOLING RATE AT 750 C
ES
SS ee
ee
!
Zz
AI
10
20
‘C PER MIN
ee
bt)
100
200
ee a
500
1000
FNOTRReonoeneeeiae
nec
0
=. 2000 mm
Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
ee
a
Atlas of Time-Temperature Diagrams
428
;
3-1/4 Cr Mo
Pex
Composition: 0.17% C - 0.60% Mn - 0.14% Si - 0.020%
ed
0.020% S - 3.25% Cr - 0.55% Mo Grain size: 7-8 Austenitiz
at 900°C (1652°F)
=
Be:
eS a
<=
&
ea
Feeney
10%
50%
eal
eee
Ey
a
a
ears](8
-]
12]
a
<a
(nee
=a
-—7
90%
|
—
or cea
=a
=
a
Saami
=
me
|
|
a
=
:
a
17
H
pe]
~__ COOLING RATE AT 750 C
2000 mm
1_ AIR
3-1/4 Cr Mo
Composition: 0.26% C - 0.60% Mn - 0.14% Si - 0.020% P 0.020% S - 3.25% Cr - 0.55% Mo Grain size: 7-8 Austenitized
at 900°C (1652°F)
900
=a
| eS
Ac,
ee
Ac,
70
:
|
z
eas
=
“|
eS
=
Be. |Peres eae ea Ce
yl
300
a
7
<-
aa
SS
=
a]
ae
aan
ae
eet
Sn
eee
{+
—___|
a)
4
4
ee 90%
See
a
eet
ed
BEES BES Bed Bes
:
et
Tl
Za
ae
Sew
ee ee
aa
as a
I Td
—
a
|
100
H
Sea
ae,
Pe
5 _
100
sae
SOURCE:
eat
easeraa=
200
0
10%
SoS
ie
]
esi
°C
AR
Esa
Pa
5
2
200
500
1000
a
Sy
50
100
180
300
500
200
10
H
H
oo
mm OIL
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
429
5 Cr Mo (SAE 51501)
Composition: 0.14% C - 0.45% Mn - 0.26% Si - 0.016% P 0.025% S - 4.66% Cr - 0.56% Mo - 0.13% Ni Grain size: 8-9
Austenitized at 920°C (1688°F)
{
ane
SEE
|
A
STARI
i
|
oe,
10%
= |=
:
=
Seas
!
IIR
ANTE
fil
AMT
20
Ne
50
rel
100
4
200
500
1000 =.2000 mm
ee
ee
ATE
BAR
DIAMETER
mm OIL
50K
SS
=
a
mm
WATER
5 Cr Mo
Composition: 0.28% C - 0.50% Mn - 0.25% Si - 0.020% P 0.020% S - 5.00% Cr - 0.55% Mo Grain size: 6 Austenitized at
920°C (1688°F)
900
Ac,
START.
800
49
:
=H
ee
Bea
700
DS
Saas
600
a
500
SHS
°C
10%
50%
90%
SOURCE:
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
ee
——
Et
ee
Atlas of Time-Temperature Diagrams
430
ND
9 Cr Mo
Composition: 0.12% C - 0.70% Mn - 0.30% Si - 0.025% P =
Austenitized at
0.020% S - 9.0% Cr - 1.00% Mo Grain size: 7-8
1000°C (1832°F)
ll
Hh
.2
=
BAR
|<
DIAMETER)
1
el
ote
10
2
1
20
eieay [
5
50
n
10
ee eet
20
4
100
150
200
So Se ees
180
200
1
50
a
100,
300
500
rl
200
Lee
500
Sel
1000
1
mm
OIL
mm
WATER
2000 mm
1 AIR
1 Cr V (SAE 6150)
Composition: 0.50% C - 0.75% Mn - 0.25% Si - 0.025% P -
0.025% S - 0.95% Cr - 0.05% Mo - 0.15% Ni - 0.20% V Grain
size: 7 Austenitized at 875°C (1605°F)
90
¢
800 Avy =
i
i
|
Ac
7
iE
if
iL
=e
|
IE
ees
ee
ee
io
SS
BAR
DIAMETER
Sea)
[Seen
ern]
|=
mm0.1
aa
9.2
|;s
eS
1000
S00,”
200
20
RATE
AT 750 C
C PER
MIN
5
10
10)
200
$y 0
——_1
2
eA
220
ee
50
100
1
——l_
ia
ee
sO.
ai
Uisteewers
eunes
150
eid
Pare
200-300
s¢
acy!
500
a
|
CI
Sy
ae eae
20
101803200300
50
|
10S
ree
rl
I
|
COOLING
eae
0.5
ae tL
10
10
“li
:
=
ree == cence |
BE
a
a
a=
=
oo
Ses
bi
Ss
FAS 10% 50% 90% = —
=
ae
aa eae
7
—Z/AFINISH
i
=|
Gey
Ee
L
=
R
E
[
t
Pe
a
"
:
!
\=
|
;
600
le
x
r
OO
|
ae
|
2
Sete
mm OIL
mm
WATER
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
431
1-1/2 Mn Ni Mo
Composition: 0.19% C - 1.60% Mn - 0.20% Si - 0.020% P 0.020% S - 0.25% Mo - 0.55% Ni Grain size: 9 Austenitized at
870°C (1598°F)
10%
50%
90%
BAR
100
DIAMETER
100
150 200
—
$s0)
200
i
x
-
$00
z
30)
mm
OIL
mm
WATER
2 Si Cr Mo
Composition: 0.60% C - 0.85% Mn - 1.90% Si - 0.025% P 0.025% S - 0.30% Cr - 0.25% Mo Grain size: fine Austenitized
at 910°C (1670°F)
900
200
50
SOURCE: M. Atkins,
20
—___i—
‘C PER MIN
Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
—————————
i
i
a
Atlas of Time-Temperature Diagrams
432
1/2 Ni Cr Mo (SAE 8115, 8615-8617)
Composition: 0.15% C - 0.80% Mn - 0.20% Si - 0.020% P 8-9
0.020% S - 0.50% Cr - 0.20% Mo - 0.55% Ni Grain size:
Austenitized at 830°C (1526°F)
900
NA
xi
.
ait
NIN
a|
iya
¥
S
WNWLEDN|
8
50
—
mm
BAR
0.1
DIAMETER}
0.2
4
3
0.5
4
—
10
1
!
4
10
—_-__
2
=
20
:
5
1
10
1
20
4
50
100
L
20
L
100
—
50
1
i
150 200
20
4
C PER
MIN
100
1
200
ir
300
4
_1____.
180)
4!
200
300)
L
500
-
SOO
1
iu
500
1
1000
1
mm
OIL
mm
WATER
2000 mm
| _ ATR
22
1/2 Ni Cr Mo (SAE 8622-8627, 8720, 8822)
Composition: 0.24% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 0.50% Cr - 0.20% Mo - 0.55% Ni Grain size: 8-9
Austenitized at 830°C (1526°F)
10
20
50
=e
100
200
=} at
mm
OIL
mm
WATER
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
433
Atlas of Time-Temperature Diagrams
1/2 Ni Cr Mo (SAE
8625-8630)
Composition: 0.30% C - 0.80% Mn - 0.25% Si - 0.020% P 0.020% S - 0.50% Cr - 0.20% Mo - 0.55% Ni Grain size: 6-7
Austenitized at 850°C (1562°F)
900
800 [*
|
|
1
==
Ay =
Lh
os
°C
|
400
S
a
a [———eee a +oF10%
ed
ee a
50%
al
an Ge =e ae
Ee
pe
ett
190%
P
eG (are
a GE
se
ae)
a eae
(Secees ee Ie Ges eee
2
eA
EY a a
EIT
A OE I
GA AS
pase
Fal eer
eA
ae
area
Saas he Aes
aes
aoa
a
aL
[2
|
haar
Ss Seen Wyay en
SS
a
a ee
Sesewl ee FSP
ae
ee
es ey A ee ee
SSSs
Se aS
}—_}—_
/t
4
| __ Bf
—t
pee
iByes
A
Ae
Se ee ee
ee
a
SS ae Ry Se
ee
06
SS
a
aes ee es
ee
Se
ee
ee
ae Res
RES ee
a
a
ee
A
merce Baraers pera So pa
TT
Se ST es espe,
Reae Caen meen Keen Ke
‘on
SS
===
as
aa
|
0
z
SS
ii aa
+-—
an
(el SR
mm 0.!
0.2
SS Ss
_
es
ee
als Saal=
eee
Sls
ae ee
ase
ca |
H
i
=
iE
ea
1000
500
200
100
COOLING
RATE
AT 750C
50
=
20
C PER
10
5
2
i
MIN
H
4
ae
0.5
1
10
2:
5
20
10
20
50
20
50
100
50
100
150
150.
200
100
300
200
300
200
500
1000
2000 mm
AIR
500
mm
OIL
mm
WATER
500
1/2 Ni Cr Mo (SAE 8640-8642, 8740)
Composition: 0.41% C - 0.85% Mn - 0.25% Si - 0.020% P 0.020% S - 0.50% Cr - 0.25% Mo - 0.55% Ni Grain size: 8-9
Austenitized at 850°C (1562°F)
900
‘
ee
2
ee
20
ee
a
5
om
ee
SO
50
a
ee
100
-
150
200
300
2”)
SOURCE:
mm
OIL
mm
WATER
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
nn
Atlas of Time-Temperature Diagrams
434
1/2 Ni Cr Mo
(SAE
8645-8650)
Composition: 0.48% C - 0.75% Mn - 0.34% Si - 0.020% P -
0.010% S - 0.58% Cr - 0.20% Mo - 0.60% Ni Grain size: 8-9
Austenitized at 850°C (1562°F)
900
600
Le
500
400
300}
200
100
20
i
———
© PER MIN
:
,
022
mm0.1
BAR
DIAMETER
0s‘
10
at
jew
2
1
5
0
50
ye
20
10
LS
50
L
20
i501) D
100-150 200300
1
100
L
150 200
os
eee
1/2 Ni Cr Mo (SAE
eee |
1
aot
500
300
500
ae
4
4
5001000,
2000
—mm
mm
OIL
mm
WATER
:
8660)
Composition: 0.60% C - 0.85% Mn - 0.25% Si - 0.025% P 0.025% S - 0.50% Cr - 0.20% Mo - 0.55% Ni Grain size: 8-9
Austenitized at 845°C (1555°F)
900
800
700
600
Qe:
500
400
300
200
100
20
10
1
at
“PER MIN
5
0
mm01
0.2
0s
\
2
—
BAR
fs
10
DIAMETER}——_-
20
10
20
——
=
—
5
10
20
sO
100,200
500
1000-2000 mm
Sl:
a
1
r
as) Cee
=
aM
50
50
a
a
100-150 200-00
—-
tk
al
ATR
500
100
150 200
300
500
—t__
mm
OIL
—_1—
41
~
1
L
mm
WATER
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
435
3/4 Ni Cr Mo
Composition: 0.40% C - 0.65% Mn - 0.25% Si - 0.020% P 0.025% S - 0.75% Cr - 0.25% Mo - 0.85% Ni Grain size: 9-10
Austenitized at 850°C (1562°F)
a
—
10m)
500
200
100
50
20
t
ae
eel
Glen
ea
ia ce
mm
0.1
BAR
0.2
4
0S
1
5
DIAMETER
COOLING
10
2
4
5
1
20
4
10
i
1
20
RATE
AT 6350 C
10
—L.
so
4
20
I.
1
sO
150
.
+
3
1
H
C PER
MIN
l
I
100
4
200
1
500
4
50
150
100
10
===}
200
He
am)
300
2
|
H
a
1000
1
2000 mm
AER
300
—
300
$00
—--
mm
OIL
mm
WATER
*
1 Ni Cr Mo
Composition: 0.36% C - 0.65% Mn - 0.25% Si - 0.020% P 0.020% S - 1.05% Cr - 0.22% Mo - 1.05% Ni Grain size: 7
Austenitized at 850°C (1562°F)
900
ipedeeliellecteal
iY
FS
QS
t+
Ate}
NO
a
300F
200+
0
20
_
C PER MIN
ol
mm 0.1
BAR
PiAMEAeS
0.2
0.5
ar
5
a
10
10
0
fs
20
a4
2
ST
L
50
=
50
4
10
20
100
1
150
1
1
100
50
1
=—«180—
100
n
200
200
00
1
300
a2
S00
300
500
———
~
5001000
-£
4
mm
OIL
mm
WATER
2000 mm
4I—AIR
Diagrams for Engineering Steels, ASM, 1980
SOURCE: M. Atkins, Atl as of Continuous Cooling Transformation
Atlas of Time-Temperature Diagrams
436
11/2 Ni Cr Mo
Composition: 0.16% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 1.05% Cr - 0.15% Mo - 1.40% Ni Grain size: 8-9
Austenitized at 840°C (1544°F)
i=
:
‘800 Ac, =
=
Ac
700;
—
ar
Ba es
==
a:
a
ae
=a
600
anes
a
ac ae ae
ae ae
=a
Go ae Pe ae
= <—|
ee
ae
a
a
ae
eet
a
ay a
a
°C
500
aoe
Se
SSS Sea brk=
en ee es
a Gs
ae
ee
Sat
Cae
Bes
ee
ar
el
Pe
Seer Er
ee
=
4100
en el
bee
te
t
1000
ieee
Eeaes ee!
aes
a
=
iL
i
SS
=a
Saas
aa
;
a)
es
ae
ee Se
Saeaae
ae
ee =
ee
ee
ea
tox L 90% et |
-—
1
* Ss
=
=
=
t+—_A}—_
fe
LwA
t+
Fey SS Ey Lat“, aca:
ae
ee
400+
ee
Ss
.
COOLING RATE AT 700 C
a
a
20
50
100
200
=©500
10
C PER MIN
ae
a
|
2
5)
ed
mm
ee
WATER
11/2 Ni Cr Mo
Composition: 0.16% C - 0.50% Mn - 0.25% Si - 0.020% P 0.020% S - 1.65% Cr - 0.20% Mo - 1.55% Ni Grain size: 8
Austenitized at 860°C (1580°F)
900
800f Acy
Bs
:
Ac,
&
pr
—_ =
esa ES
P=a104
*
500
ad
Sees s
ee
_ ERE ES coll NE
SSS
ae
=e
SS
>
ae
=
SS
ee
RSSRmasa
Ea ane.J
aie pe ——_—_—_
DOAS=
SAEED ES al RS!
eae
eee
ET ee
eee
oe
eee
|
Oy
a
ew
ee
Te
ees
a
EC
L
_—
306
ee
—
4
a
ee
=
Mw
CLE ESOS Bl
aaa
FS
ORS
5
PETS
EA
ES
7
Hy
ne
= eee
aa
—
=
Ci
ae
US
A
|eee ee
Iara See Lee
ae
a
|}
|__|
0
Sa
mm 0.1
0.2
FS
0.5
1000: 500200 100
“COOLING RATE AT 700
ES
i
ee
2
a
=)
a
a
10
me
150
el ees Dee
—
200
50
i
300
+—__1_—_1__1
150-200
—
SOURCE:
ee
20
100
100
Te zs
H
50st
© PER MIN
300
100
200
ee
ee
S00
Se
$00
—t_mm
500
—mm
Se
1000
2000
i
ae ap
OIL
WATER
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
437
1-1/2 Ni Cr Mo
Composition: 0.36% C - 0.70% Mn - 0.25% Si - 0.020% P 0.020% S - 1.50% Cr - 0.25% Mo - 1.50% Ni Grain size: 7-8
Austenitized at 850°C (1562°F)
900
jaa
800
Acy
700
Ac,
=
-|
|
I
ren
si
pe
x
—-
|
Co
T
vii
|
300+
Sa
|
A
80%
CLASP 90%
el
5
ip
ee
eS
ee
es
ee
ee)
Se
ee
ar
ae’
4,
-
2S
Let
a
ee
Berry
es
Sl ar
=
=
ae
p—_-
-
7) ey Gaal amet
mm0.1
0.2
LT
a
a
a
eT
ees)
ee
Se
Saw
Se
ee
=Se
es |
2
Pee
ce
AT
ps
‘ee
a
ae
ee,
a
Se
es
RATE
—!
ee
ae
ee
ee |
| |
SS
ct
COOLING
=
aa
Fe
|
ht
aE
Bess Fe
re
ee
p—f—___f
ff
=
eS
ean
eae es
Sa
Se
ee
ee)
f
ara
SS
es Beas SS
ee
RS
=
=
es
aes
[a
200+
H
=
eee
es |
ee
|
a
700 C
ee
ee ee
ee
1
-
a ee
C PER
DIAMETER
|s
10
10
n
4
MIN
1
2
:
ere
2
20
ai)
@
|
|
ee:
10
20
50
100200
500
1000-2000 mm
ae
BAR
ee
ee
SS
L—
PREY Re
os
10%
4
|
Sa
3
=
[
|
|
]
"ae
==
ee
=
mani
eS]
a
500
|
=
-
=
asad
Ses
SE
|
3 &
1
an
50
50)
n
4
100
100
he
«150 200-200
1s0
pS
—t_____i—_1—_____-mm
2M)
3M
1
1_AIR
500
500
OIL
mm
WATER
1-1/2 Ni Cr Mo
Composition: 0.40% C - 0.60% Mn - 0.25% Si - 0.020% P 0.020% S - 1.20% Cr - 0.15% Mo - 1.50% Ni Grain size: 7-8
Austenitized at 850°C (1562°F)
900
COOLING RATE AT 700°C
eee
Ss]
BAR
DIAMETER}
1980
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM,
Atlas of Time-Temperature Diagrams
438
1-1/2 Ni Cr Mo
Composition: 0.40% C - 0.60% Mn - 0.25% Si - 0.020% P -
0.020% S - 1.20% Cr - 0.30% Mo - 1.50% Ni Grain size: 7-8
Austenitized at 850°C (1562°F)
Hh
UT
PTO
TTT
mm0.1
0.2
05
I
2
5
10)
20
50
10)—200
=
1
BAR
300
DIAMETER
500
it
1000-2000 mm
4
500
1
1_ AIR
mm OIL
mm
WATER
1-3/4 Ni Cr Mo
Composition: 0.16% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 1.05% Cr - 0.15% Mo - 1.80% Ni Grain size: 8
Austenitized at 830°C (1526°F)
900
800FAc,
[START
oan Ac,
_—
eae
SOEa eyES 5S
me
bead
ee
lS
ea
eae
°C
Fa
500
OO
A
eee
et
ian ec alEh
306
Se)
a
ie)
Gets
av
100
ees
ae es =
a
3
i
ey eee,
=
= =a
}—
0
(EE TS
-—}-—_}-_-—|
}—}|
Se
mm 0.1
+
J
1000
|
|
500
200
100
50
—C60LING RATE AT 7G
i
ee
DIAMETER
|;
20
© PER MIN
i
tg)
20
50
ee
BAR
aaailel
SS
ere
a
Ee eo
aa
TS Fs Re
a
Ss ee es ee
200+
=
im
a0
ie)
|
Z|
im
oe]
mae
Saas
ee
100
200
500)
1000
at
100
150
AIR
200-300
1m a
19:0 2
———
2000 mm
500
ams_es,
—__1______1_____mm
OL
WATER
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
439
1-3/4 Ni Cr Mo
Composition: 0.41% C - 0.70% Mn - 0.25% Si - 0.020% P 0.020% S - 0.80% Cr - 0.25% Mo - 1.80% Ni Grain size: 7
Austenitized at 850°C (1562°F)
ul
bs bo
y
ANE
LA
QOGUEMOROCEA
Goooeooose
2 Ni Cr Mo
Composition: 0.17% C - 0.60% Mn - 0.20% Si - 0.020% P 0.020% S - 1.55% Cr - 0.20% Mo - 2.00% Ni Grain size: 8-9
Austenitized at 830°C (1526°F)
900
g00k
Ac,
;
ie
700
wee
:
~|
= a
es
aaa
600
Ss
Ss
ag =
i
“4S
papa
aaaeseraliz|
ket
Coe
|
Spam
a
aaa
(ipa [emer]
=a
ae
oS =a
==
==:
[I
A
=
200
T 700C
mm
0.1
0.2
0.5
1
2
5
10
aii)
50
100
200
500
1000
= 2000 mm
AG
BAR
DIAMETER
mm
SOURCE:
WATER
ASM, 1980
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels,
Atlas of Time-Temperature Diagrams
440
2 Ni Cr Mo
Composition: 0.30% C - 0.48% Mn - 0.25% Si - 0.020% P 0.020% S - 2.00% Cr - 0.40% Mo - 2.00% Ni Grain size: 8-9
Austenitized at 850°C (1562°F)
AINA
mm0.1
0.2
0.5
es
BAR
js
DIAMETER
10
ai
10
——
0
a
1
2
ee
a
20
ey
5
10
20
so
4
it
fis
1
50
1
150 200
300
4
——s
1
100 «150-200-300
ke
i
1
500
—
1
50
er
1200
500
n
500
a
1000-2000 mm
1
n
=
1
mm
OIL
mm
WATER
AIR
2-1/2 Ni Cr Mo
Composition: 0.31% C - 0.60% Mn - 0.25% Si - 0.020% P 0.020% S - 0.65% Cr - 0.55% Mo - 2.55% Ni Grain size 7-8
Austenitized at 830°C (1526°F)
K
———
a=
Bae
es
100
=
—
eee
eet
es eel
aa!
pf a
____
(=|
en hee Cel
mm
0.1
BAR
DIAMETER
5
1
os
Siac
10
==
|
sitar
Eee
i
20
he20
00-200
one-year
COOLING RATE AT 700 C
0
0.2
:
1000
ae
Be
5
pea
$0
50
-
ee
10
100
ee
=i
100
150
ai
200
tS
a
© PER MIN
Res
$0
Sah
200
eee
1s0)
50
een
20
a
—
100
ee
100
PE
el
1
st
300
500
SARA
300
S
S00
Sa
1
a
)
|
ae
2
oe one
Soe
mm
WATER
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
EE
r
rv—v—
r
Atlas of Time-Temperature Diagrams
2-1/2 Ni Cr Mo
Composition: 0.40% C - 0.60% Mn - 0.25% Si - 0.020% P 0.020% S - 0.65% Cr - 0.55% Mo - 2.55% Ni Grain size: 7-8
Austenitized at 830°C (1526°F)
900
< Sy
3 Ni Cr Mo
Composition: 0.31% C - 0.55% Mn - 0.25% Si - 0.020% P 0.020% S - 1.05% Cr - 0.28% Mo - 3.00% Ni Grain size 7-9
Austenitized at 830°C (1526°F)
900
800
Ac,
700 Ac,
600
5
ah
|
c
tT
=
paon Bee ae el
(aa pee
ee
aaa
ee
|
400
300
10%
a
7
s ————
aan
ce
eS
ee eS
Gene
Se)
Re
A
pe
ae
50%
ee
ia
} 4
th
200b
(-—}
anew
4} —_}-—__
See
bees
=
=
ee
Sa ae
SS
Oe
aes
a
ee Se
I)
a
ee
0
aa
eel
eee
I Se
ee
ee
|
ee
1000
500
200
COOLING
RATE
AT 700 C
~=—-100
50
SS
as
150
ae
SO
ne
200
300
SS!
150
20
C PER
20
200
i
SOURCE:
90%
SG
300
10
ee
100
500
cil
500
2
a
{al
io
a
een
200
rn
“|
MIN
a
500
R000
eee!
mm
be
2000 mm
1I—AIR
OIL
IE
ASM, 1980
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels,
Atlas of Time-Temperature Diagrams
442
3 Ni Cr Mo
Composition: 0.12% C - 0.53% Mn - 0.28% Si - 0.020% P -
0.010% S - 0.58% Cr - 0.20% Mo - 3.20% Ni Grain size: 12-13
Austenitized at 860°C (1580°F)
800
700
°C
200
BAR
DIAMETER
‘
130 200
200 300
eee ese
300
2.
500
a
1______mm
WATER
3-1/2 Ni Cr Mo (SAE 9310)
Composition: 0.13% C - 0.50% Mn - 0.20% Si - 0.020% P 0.020% S - 0.85% Cr - 0.18% Mn - 3.40% Ni Grain size: 8-9
Austenitized at 820°C (1508°F)
HM
10%
\ iii
IN
AGNI
NIN
1000
500
COOLING
RATE
a
mm 0.1
0.2
0.5
|
200
2
5
n
50
C PER
100
100
ee
20
a
50
=
100
an
10
a
J 90%
ATL
AT 700 C
Be
50%
eS
50
oe
150 200
150
:
MIN
Sees
100
tt
300
aeee
Ee
200
=300
a
es
200
FS
500
1000
ls
2000 mm
_aAiR
500
500
Ldn
mm
WATER
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
nc
EE UEETTEESE EENEInSEISE Rn
Atlas of Time-Temperature Diagrams
443
4 Ni Cr Mo
Composition: 0.15% C - 0.40% Mn - 0.25% Si - 0.020% P 0.018% S - 1.15% Cr - 0.20% Mo - 4.10% Ni Grain size: 8
Austenitized at 820°C (1508°F)
= 10%
= 50%
90%
1000
= 500
COOLING
200
RATE
=100
50
20
AT 500°C
10
5
‘C PER
?
!
o
E
MIN
4 Ni Cr Mo
Composition: 0.30% C - 0.60% Mn - 0.25% Si - 0.020% P 0.020% S - 1.25% Cr - 0.30% Mo - 4.10% Ni Grain size: 7
Austenitized at 820°C (1508°F)
900
|
800
a
a+
=
of
eee
&
Ac,
=e
“ 500
T
a
E
=—
+
=
ees) Se
200
ee
eas
|
ee
| es ee
ee Cag
en
ES
ad
7 En
ee Pee
4
ee
Ss
oes [ae
(eae
(pores
ee [eo
=a
ee
en
SS
a
=
[
I
=
a
.
SSS
aa
pss
—_——
.
ai!
aaa
=
SI
|
‘a
ai{roreres|i
ee
en
a
A LL. BAT EYED BET
LET
ee
re
e
e
er
Ed
RS EN Pa
Te
BS BS
a
(ae
PEEOS MESZAS P EDEN RATING NETRA BSSONY BS
Sr
eal
ree
a
ee
eee
eee
al
ee
eel FIT:
ey ——
t
a
100
aD
SESS
GETTY CARO
aaa ee
=
; |__|
es ee
ee
SOURCE:
«=—«100s‘50
200
1000 500
COOLING RATE AT 600°C
a
a
10%
ks ED 50%
a
a
5
10
20
C PER MIN
ee ee
2
ee
I
H
for Engineering Steels, ASM, 1980
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams
aa
Ena
Atlas of Time-Temperature Diagrams
444
4 Ni Cr Mo
Composition: 0.34% C - 0.50% Mn - 0.20% Si - 0.020% P 0.020% S - 1.80% Cr - 0.35% Mo - 4.00% Ni Grain size: 9
Austenitized at 850°C (1562°F)
WaT
WT
—
1ali
asi
Pp
SLM
150
200
mm
WATER
1/2 Cr Mo V
Composition: 0.12% C - 0.55% Mn - 0.25% Si - 0.020% P 0.020% S - 0.40% Cr - 0.60% Mo - 0.15% Ni - 0.25% V Grain
size 5-6 Austenitized at 920°C (1688°F)
900
Acy
800
Ac,
700
ot
=
Fe
-—4-_
400
M, eee
——$—_
— —f
a
Raa
Sa
a
So ta)Geezea
ew,
a
Se
Sea
ea
==
e=Sr
200 (a ieee
=
el
an
eae
Se ees
a)
aaa ee oe)
0
mm 0.1
BAR
DIAMETER
,
4
© eet ati!
$00
1______mm
WATER
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
a
Atlas of Time-Temperature Diagrams
445
1 Cr Mo V
Composition: 0.22% C - 0.60% Mn - 0.30% Si - 0.020% P 0.020% S - 1.15% Cr - 0.60% Mo - 0.13% Ni - 0.22% V Grain
size: 6-7 Austenitized at 960°C (1760°F)
500
200
20
50
:
1o0
:
150)
200
4+—___1
200
200
|__|
300
______t
500
1000
2000 mm
____j_ ___l___l_ air
S00
300
sm)
—_t_____mm
OIL
1.
1
WATER
mm
1-1/4 Cr Mo V
Composition: 0.37% C - 0.62% Mn - 0.29% Si - 0.032% P 0.026% S - 1.19% Cr - 0.59% Mo - 0.13% Ni - 0.22% V Grain
size: 7-9 Austenitized at 950°C (1742°F)
ZZ
Soa
|
~~
|
20
=
100
SOURCE:
PER
10
ee
MIN
S02)
ASM, 1980
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels,
LS
aa
Atlas of Time-Temperature Diagrams
446
2-1/2 Cr Mo V
Composition: 0.30% C - 0.60% Mn - 0.25% Si - 0.010% P -
0.015% S - 2.50% Cr - 0.20% Mo - 0.30% Ni - 0.18% V Grain
size: 9-10 Austenitized at 900°C (1652°F)
900
800
ISTART]
p=
J
aA
10%
50%
600
°C
Ew 6
ure
500
[ee
400
at |
—
ina
a
300
|
|
90%
en
=
200
100
=e
50
eee
=e
St
50
100
100
1
180
200
3M)
500
se
ss aed Ve
1S0'>
(200;
J
300
mm
OIL
500
po hmmm
6WATER
3-1/4 Cr Mo V
Composition: 0.39% C - 0.60% Mn - 0.15% Si - 0.020% P -
0.020% S - 3.25% Cr - 0.95% Mo - 0.20% V Grain size: 9-10
Austenitized at 950°C (1742°F)
900
Acy
800
Ac,
700
=
START
600
aS
°C
a
Ae
aaa
ee
joer
ee
es Ee
ee
a
Se
be eS
Pet gyGasset Roam Yes Cae Re
aaa ae
ee
eee
SS
ee
Ee
ee
|
|__|__| — “COOLING RATE AT aC
mm0.1
Ss
Se
0.2
ae
Os
eee
ee
eS
a
=—«100—
10
ee
a
ee
50
ee
ee
SL
ee
100150
ISO
PE
20
ee
ee
So
200-300
200
|]
eet eee ee
LOS
a
I
ee
100200
Ea
a
|B
a
Ph
BAR
DIAMETER
i
ee
eae
C PER MIN
20
:
a 2 SSS moe
cera a
ee
OS Fa wey cal
ee
J en
eee
eS
ee
ae
5
=@
St
ee
ge
ee Re
ee
ee
SSS
Ss I
ee ee
a
eee
[=aaner
el oe as
aecaer aed
1000
S00
200
0
PA
HZ 50%)
mis
ee ee Be
ee ee Be
ee a
ee
See
SS SS ES
2S
SE
BS
Be
Ree
SS
oe
10% TF
[|
i
=== =F
. mal
=
ie
ee eee 3
=
|
at
aaa
|
all
+
ed
500
1000
2000 mm
tI
500
mm
OIL
mm
WATER
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
——_—_—————————————————
OEE
EE
Atlas of Time-Temperature Diagrams
1 Cr Al Mo
Composition: 0.33% C - 0.65% Mn - 0.30% Si - 0.020% P 0.020% S - 1.15% Cr - 0.20% Mo - 1.00% Al Grain size: fine
Austenitized at 900°C (1652°F)
900
800 FAc
700
600
°C
™
FoR
ee
Baas ined Seni) era Se
2 ea ee |
eee
iy
we
com
300
200
100
Plt (ie te Roa
COOLING
nant (AS | 2
RATE
AT 800 C
Wife one
BAR
DIAMETER
‘C PER
A
MIN
eS
eS
150. 200
mm OIL
mm
WATER
1-1/2 Cr Al Mo
Composition: 0.31% C - 0.55% Mn - 0.30% Si - 0.020% P 0.020% S - 1.60% Cr - 0.20% Mo - 1.10% Al Grain size: fine
Austenitized at 900°C (1652°F)
90)
800
Fic,
700
600
°C
a
400
300k
aes
PES
eee
Pa
M,
Ff
=
200
ih
a
eS
ae ae
gee
-—}ae ate
a Ee es FS,
ars Ear Rn
= ie
=
|
=
=a
=a
ed
x Ke
500
a
200
COOLING RATE AT 800 C
100
50
5
20
10
C PER MIN —
5
2
W
H
Steels, ASM, 1980
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering
Atlas of Time-Temperature Diagrams
448
1-1/2 Cr Al Mo
Composition: 0.39% C - 0.55% Mn - 0.30% Si - 0.020% P0.020% S - 1.60% Cr - 0.20% Mo - 1.10% Al Grain size: fine
Austenitized at 900°C (1652°F)
1-1/2 Cr Al Mo
Composition: 0.42% C - 0.65% Mn - 0.30% Si - 0.020% P 0.020% S - 1.65% Cr - 0.33% Mo - 1.00% Al Grain size: fine
Austenitized at 900°C (1652°F)
20
C PER
10
MIN
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
449
1-1/2 Mn Ni Cr Mo
Composition: 0.27% C - 1.35% Mn - 0.24% Si - 0.025% P 0.025% S - 0.45% Cr - 0.20% Mo - 0.75% Ni Grain size: 7
Austenitized at 850°C (1562°F)
rn
50
100
150
—__
100
1-1/2 Mn
200
300
300
st
—__.___
~
,
150
mm
OIL
200,
Ni Cr Mo
Composition: 0.33% C - 1.35% Mn - 0.24% Si - 0.025% P 0.025% S - 0.45% Cr - 0.20% Mo - 0.75% Ni Grain size: 7
Austenitized at 850°C (1562°F)
A
MIA
ee are
, ",
Eas)
[=]
a EY ey,
SSE
ae
aa
(a
aaa
=
mm 0.1
BAR
DIAMETER
0.2
SS
p=
eae
0.5
oie se epee
5
—
10
10
1
ee
2
§
20
10
50
==
att)
i
0
10
C PER
MIN
100
200
ee
aes
Se
5
50)
100
20
100
50
(eerie
180
&
a
150
200
4
2”
300
Seer
300
ne
1
sno
500
S00
1000
=i
=
mm
OIL
mm
WATER:
2000 mm
1_AIR
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Atlas of Time-Temperature Diagrams
450
1-1/2 Mn
Ni Cr Mo
Composition: 0.37% C - 1.35% Mn - 0.24% Si - 0.025% P -
0.025% S - 0.45% Cr - 0.20% Mo - 0.75% Ni Grain size: 7
Austenitized at 850°C (1562°F)
1000
S00
200
COOLING
RATE
AT 700-C
100
sO)
150
20)
=!
1-1/2 Mn
200
30
—__|—_
=
3K)
:
300
SUK)
mm
OIL
mm
WATER
Ni Cr Mo
Composition: 0.38% C - 1.40% Mn - 0.25% Si - 0.030% P 0.030% S - 0.50% Cr - 0.20% Mo - 0.75% Ni Grain size: 7-8
Austenitized at 850°C (1562°F)
a
150
150
200
ete
200
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
nS
a
en
ee
ee
Atlas of Time-Temperature Diagrams
451
1-1/2 Mn Ni Cr Mo
Composition: 0.43% C - 1.35% Mn - 0.24% Si - 0.025% P 0.025% S - 0.45% Cr - 0.20% Mo - 0.75% Ni Grain size: 6-7
Austenitized at 850°C (1562°F)
NE
10%
y
[|
————
Ps
UN
oe
90%
20
COOLING RATE AT 700 C
Sas
SS SS
oe aes
C PER MI
a
mm
WATER
12 Cr Mo V (SAE 51420 mod)
Composition: 0.20% C - 0.70% Mn - 0.25% Si - 0.030% P 0.030% S - 12.00% Cr - 1.00% Mo - 0.65% Ni - 0.30% V Grain
size: 7-9 Austenitized at 1000°C (1832°F)
900
PAs
°€
BAR
5
DIAMETER
0
»”
—
——
10
20
50
100
150 200-300
5)
$A
mm
SO
100
150)
2)
300
50)
OIL
mm
WATER
SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980
Other Steels
I-T Diagrams
Atlas of Time-Temperature Diagrams
455
8640 & 8740
Composition: 0.42% C - 0.89% Mn - 0.30% Si - 0.018% P 0.015% S - 0.58% Ni - 0.52% Cr - 0.24% Mo Grain size: 8-9
Austenitized at 900°C (1650°F)
700
600
500
Temperature
CHardness
Rockwell
Time, seconds
SOURCE:
Battelle Memorial Institute for Inco
AMS 6416 (300-M)
Composition: 0.43% C - 0.83% Mn - 1.55% Si - 0.021% P -
0.009% S - 1.84% Ni - 0.91% Cr - 0.40% Mo - 0.12% V Grain
size: 5-7 Austenitized at 850°C (1575°F)
Temperature
CHardness
Rockwell
Time, seconds
SOURCE:
Bethlehem Steel Corp.
Atlas of Time-Temperature Diagrams
456
AMS
6418
Composition: 0.22% C - 1.30% Mn - 1.36% Si - 1.88% Ni -
0.22% Cr - 0.38% Mo Austenitized at 870°C (1600°F)
C
F
800
1400
700
1200
600
1000
500
2
=
5
= 400
S
800
3
c
300
=:
600
z=
3
=
200 | 400
* Aerospace Materials Specification
100 |— 200
Te
0
OP
Bw
10?
10°
104
10°
10°
Time, seconds
SOURCE:
Crucible Steel Company
AMS
6428 and 6434
Composition: 0.32% C - 0.72% Mn - 0.19% Si - 0.012% P 0.021% S - 1.70% Ni - 0.82% Cr - 0.31% Mo - 0.12% Cu -
0.17% V Grain size: 7-8 Austenitized at 900°C (1650°F)
1400
700
1200
1000
£
3
aSo—}
E 400
A+FHC
800
JESSIE
ee
a
32
¥ao
F+C
ss
Mo
ea
ate
mie
=
ee
300 |.800
rat|
=
=
3
«
ee
at
hea
200 + 400
1 Min
o5
1
2
#5
10
1 Hour
10?
10?
Time, seconds
SOURCE:
Battelle Memorial Institute for Inco
ae)
es
1 Day
104
105
1 Week
108
Atlas of Time-Temperature Diagrams
457
L6 Tool Steel
Composition: 0.72% C - 0.35% Mn - 0.23% Si - 0.018% P 0.010% S - 1.75% Ni - 0.94% Cr Grain size: 9 Austenitized at
830°C (1525°F)
1400
1200
1000
Ss
ao
Temperature
Time, seconds
SOURCE:
Carpenter Technology Corp.
L6 Tool Steel
Composition: 0.75% C - 0.70% Mn - 0.25% Si - 1.35% Ni 0.75% Cr - 0.30% Mo - 0.15% V Austenitized at 845°C
(1550°F)
700
Temperature
CHardness
Rockwell
Ly
eer
Ce
oT
10?
10°
Time, seconds
SOURCE:
Crucible Steel Company
104
105
10°
Atlas of Time-Temperature Diagrams
458
Al10 Tool Steel
Cc omposition: 1.36% C - 1.84% Mn - 1.14% Si - 1.81% Ni 0.15% Cr - 1.41% Mo - 0.38% Graphite Austenitized at 795°C
(1460°F)
1400
1200
1000
400
Temperature
CHardness
Rockwell
Time, seconds
SOURCE:
Timken Roller Bearing Company
2315
Composition: 0.19% C - 0.57% Mn - 0.22% Si - 0.015% P 0.023% S - 3.60% Ni - 0.09% Cr - 0.05% Mo Grain size: 5-6
Austenitized at 900°C (1650°F)
700
3
C
Rockwell
Hardness
SOURCE:
Inco
Atlas of Time-Temperature Diagrams
459
2340
Composition: 0.40% C - 0.89% Mn - 0.31% Si - 0.021% P 0.011% S - 3.34% Ni - 0.11% Cr Grain size: 8 Austenitized at
815°C (1500°F)
°F
Temperature
Grain Size=8
Martensite
Range
sit
Austenitized
se
Se
ST ikon @
1Oom2s ll SPtiO>
ae
<5 tO
Be 8 40>
Time - (Seconds)
SOURCE: A.R.Troiano, "The Transformation and Retention of Austenite in SAE 5140, 2340, and T1340 Steels of Comparable
Hardenability,” Transactions of the ASM, Vol 41, 1949, pp 1093-1112
9% Nickel
Low
Carbon
Steel
Composition: 0.10% C - 0.77% Mn - 0.28% Si - 8.56% Ni 0.05% Cr - 0.02% Mo Grain size: 9-10 Austenitized at 800°C
(1475°F)
AUSTENITIZED 30MIN AT 1475°F
AS QUENCHED HARDNESS 41.0 RC.
GRAIN SIZE 9-10
ANALYSIS
Si —0.28%
Ni —856%
<2°F
TEMPERATURE
RAPID BAINITE
REACTION
REGION
OF INCOMPLETE
REACTION
TIME IN SECONDS
SOURCE:
C.W. Marschall, R.F. Hehemann, A.R. Troiano, "The Characteristics of 9% Nickel Low Carbon Steel,” Transactions of
the ASM, Vol 55, 1962, pp 135-148
460
Atlas of Time-Temperature Diagrams
3120
Steel
Composition: 0.21% C - 0.61% Mn - 0.24% Si - 0.017% P -
0.016% S - 1.35% Ni - 0.67% Cr - 0.02% Mo - 0.04% Cu Grain
size: 80% 7-8, 20% 4-5 Austenitized at 900°C (1650°F)
700
600
a So—)
2
Temperature
300
Rockwell
CHardness
200
* Calcula
Time, seconds
SOURCE:
Battelle Memorial
Institute for Inco
3190 Steel
Composition: 0.91% C - 0.65% Mn - 0.23% Si - 0.013% P -
0.026% S - 1.35% Ni - 0.60% Cr - 0.03% Cu Grain size: 5-7
Austenitized at 900°C (1650°F)
800
700
600
500
§
E 400
:
3
=
=
300
3
3
«
200
100
0
SOURCE:
Battelle Memorial Institute for Inco
Atlas of Time-Temperature Diagrams
461
3240 Steel
Composition: 0.48% C - 0.52% Mn - 0.29% Si - 0.025% P 0.021% S - 1.76% Ni - 1.19% Cr - 0.05% Mo - 0.06% Cu Grain
size: 6-7 Auatenitized at 900°C (1650°F)
c
F
1400
is
700
hey
oor
i
=
Bom
eee
Se
a
OI
”
SSMiIEIINE
=|
33
1000
500
A+F+C
ae
ee
4
S
=
E 400
800
%
xo 2
@
47 =
goo | £00
3
$
=
[—4
200 |- 400
100 | 299
58
0
QS
SOURCE:
1
2 = 5)
10
10?
10°
10¢
10°
10°
Battelle Memorial Institute for Inco
3330 Steel
Composition: 0.29% C - 0.21% Mn - 0.06% Si - 0.026% P 0.017% S - 3.25% Ni - 1.45% Cr Grain size: 7 Austenitized at
845°C (1550°F)
1200
1000
s
ao
400
Temperature
CHardness
Rockwell
200 | 400
150, 1942, pp 283-288
SOURCE: B.M. Loring, "The S-Curve of a Chromium-Nickel Steels,” Transactions of the AIME, Vol
Atlas of Time-Temperature Diagrams
462
Krupp 0.15C Steel
Composition: 0.15% C - 0.45% Mn - 0.20% Si - 0.013% P 0.020% S - 4.03% Ni - 1.54% Cr - 0.03% Mo Grain size: 7-9
Austenitized at 900°C (1650°F)
F- 30 Mins,
Auslenitized 1650
————
t Bela
I6OO
Cc
ih
|
Fe
Grain Size 7-9
800
—
— —|—
1400
|
eae
ee
1200
¥
700
A+F
A27 A+F+C
42
3832237
5
|\4 eyo
5
ig
looof &
ey
fF ath
a
&
600
>~
ial 12
500
Os
4\
800
400
36
th
600
CMM
Re 43-44
Quenched Hardness
200
400
Zoe
2)
a ee
Mra
oO
200
(nero
uC
Sao
oe
=
‘Qiao
|Gs
se
aes
6 &
Oo
nO
—
100
ator
Time -Seconds
SOURCE:
A.R. Troiano, J.E. DeMoss, "Transformations in Krupp-Type
Carburizing Steels,” Transactions of the ASM, Vol 39,
1947, pp 788-800
Krupp 0.90C Steel
Composition: 0.89% C - 0.39% Mn - 0.19% Si - 4.00% Ni -
1.58% Cr Grain size: 7-8 Austenitized at 800°C (1475°F)
ee
eee
ee
ee
ee
y
|
-|900
1600
_—1_
Analysis
cSMn 089
039
Si O19
Austenitized 1475F -30Mins-——}
:
Grain Size 7-8
Creal OS:
Ni
400
800
1400
A\' = Austenite Plus Undssolved Carbides
700
A
(200
S|
62
6
63. 62
60
62
62
&
58
40 33.3! be Slee
|es0
58
32
e!45
5
800
5I 4
4
ae
al
Ss
31
4
500
36 [34 =
40
+400
600
63
46300
As Quenched Hardness Rc 62-63.
400
= 200
Martensite
loriensile RiRonge
gf
¢
My Slightly Below
\inus 11OFee
ee
200
|
10
2
E
:
¢
6 So] Sz
al er
lagal cal
oo
: oe 2s
Time -Seconds
104 2.5
aaval
102
g
|
it
a
ia
Sous
—j———
Yael
%
i
10° 2.
5
100
io®
SOURCE: A.R. Troiano, J.E. DeMoss, "Transformations in Krupp-Type Carburizing Steels,” Transactions of the ASM, Vol 39,
1947, pp 788-800
Atlas of Time-Temperature Diagrams
463
4330 Steel
Composition: 0.33% C - 0.69% Mn - 0.41% Si - 0.043% P 0.028% S - 1.41% Ni - 0.72% Cr - 0.28% Mo Grain size: 7-8
Austenitized at 905°C (1660°F)
700
600
1000
2
500
32
z-
37 :
=
a2
43 5
:
45
300
3
200
100
10°
SOURCE: C.T. Eddy et al., "Time-Temperature Transformation Curves for Use in the Heat-Treatment
Transactions of the AIME, Vol 162, 1945, pp 250-267
of Cast Steel,”
4330 Mod. (Si + V) Steel
Composition: 0.34% C - 0.98% Mn - 1.37% Si - 0.015% P 0.005% S - 1.82% Ni - 0.95% Cr - 0.42% Mo - 0.14% V Grain
size: 4 Austenitized at 900°C (1650°F)
700
600
400
Temperature
300
Rockwell
CHardness
200
|— 400
100
Time, seconds
SOURCE:
Frankford Arsenal, Report R-1627, April 1962
Atlas of Time-Temperature Diagrams
464
4630 Steel
Composition: 0.32% C - 0.74% Mn - 0.31% Si - 0.015% P -
0.014% S - 1.70% Ni - 0.12% Cr - 0.23% Mo Grain size: 8
Austenitized at 845°C (1550°F)
600
onSoSo
> =}—)
Temperature
300 |CHardness
Rockwell
200
“Calculated Temperat
+
Time, seconds
SOURCE:
R.M. Parke, A.J. Herzig, "Hardenability of Molybdenum S.A.E. Steels,” Metals and Alloys, Vol 11, 1940, pp 6-13
4695 Steel
Composition: 0.95% C - 0.58% Mn - 0.24% Si - 1.79% Ni 0.25% Mo Grain size: 50% 5-6, 50% 2-3 Austenitized at 925°C
(1700°F)
1400
700
600
500
400
Temperature
300
600
CHardness
Rockwell
200
400
100
200
Time, seconds
SOURCE:
A.R. Troiano for Inco
465
Atlas of Time-Temperature Diagrams
SAE EX-1 Steel
Composition: 0.17% C - 0.49% Mn - 0.29% Si - 0.010% P 0.015% S - 5.07% Ni - 0.18% Cr - 0.24% Mo - 0.10% Cu Grain
size: 5-6 Austenitized at 925°C (1700°F)
OE
Til7 ELH : ue
700
i
Ac,
i
omen ae oes =Cle
=
=
1000
cm
_
Are
800
400
Temperature
600
CHardness
Rockwell
* Calculated Temperature
200
05
SOURCE:
1
2
5
10
10?
10°
104
10°
Inco
SAE EX-2 Steel
Composition: 0.69% C - 0.42% Mn - 0.80% Ni - 0.20% Cr 0.13% Mo Grain size: 8 Austenitized at 830°C (1525°F)
700
araaseaaee
600
/
AoKts
a —Jo
\
3
800
Temperature
300
XN
AHL
7
600
200
4
Time, seconds
SOURCE:
Inco
10°
466
Atlas of Time-Temperature Diagrams
8695 Steel
Composition: 0.95% C - 0.82% Mn - 0.23% Si - 0.56% Ni 0.52% Cr - 0.19% Mo Grain size: 10% 3-4, 90% 6-7
Austenitized at 925°C (1700°F)
1400
700
1200
600
1000
400
Temperature
300
200 |- 400
Time, seconds
SOURCE:
A.R. Troiano for Inco
9310 Steel
Composition: 0.11% C - 0.70% Mn - 3.19% Ni - 1.26% Cr -
0.11% Mo Grain size: 7 Austenitized at 845°C (1550°F)
Temperature, F (c)
Hardness, Re
L-T Diagram
Time,s | 2
SOURCE:
Metal Progress, Vol 114, mid-June
5 10
10°
1978, p 149
10?
10*
10°
10°
Atlas of Time-Temperature Diagrams
467
9315 Steel
Composition: 0.17% C - 0.59% Mn - 0.30% Si - 3.18% Ni 1.12% Cr - 0.13% Mo Grain size: 7-8 Austenitized at 925°C
(1700°F)
Cc
F
800
1400
700
1200
600
1000
500
A+F+C
2
2
os
s
= 400
800
Ends
7
i
s
=
300
=
g
600
z
2
200 | 400
100 | 299
0
Time, seconds
SOURCE:
R.F. Hehemann, A.R. Troiano for Inco
9395 Steel
Composition: 0.95% C - 0.60% Mn - 0.22% Si - 3.27% Ni 1.23% Cr - 0.13% Mo Grain size: 10% 5-6, 90% 7-8
Austenitized at 925°C (1700°F)
C
F
800 |1400
700 |1200
600
1000
500 |-
2
800
a
E 400 ;-
g
2
=
3
:
o
soo |. 600
=
=
200 | 400
100 |— 200
0 L
Time, seconds
SOURCE:
A.R. Troiano for Inco
i
——
Atlas of Time-Temperature Diagrams
468
ee
6F4 Tool Steel
Composition: 0.22% C - 0.50% Mn - 0.30% Si - 0.016% P 0.026% S - 2.80% Ni - 2.95% Mo Grain size: 5 Austenitized at
1035°C (1900°F)
c
F
A
800
alee
Miscnlia
a SaSaln: a
1400
JL A,
A
|
tI
700
1200
600
A
1000
+—+-
500
s
NE
s
5
E 400
-
800
= SI
to tget
600
300
t
4
y
/
ain.
50% | / |
SSS
Lo
=
F+C
=a)
| eet ee
(ee
i
ai)
7,8
=
Ns
a
3
=
** Estimated Temperatura
$
[4
200
ae
* Classification in Metals Handbook,
Am. Soc. Metals, 8th ed., Vol. |, 1961, p. 638
100
el
1 Hour
1 Day
Q
1 Week]
45
|
10°
104
105
10°
Time, seconds
SOURCE:
Heppenstall Company
6F5 Tool Steel
Composition: 0.55% C - 0.90% Mn - 1.00% Si - 2.75% Ni 0.40% Cr - 0.45% Mo - 0.13% V Austenitized at 870°C
(1600°F)
700
600
500
2
=
=
—
5 400
8
c
eg
=
o
300
=
=
Ss
=
200 | 400
“lr
|
“Classification in Metals Handbook,
Am. Soc. Metals, 8th ed., Vol. |, 1961, p. 638
=
100 | 200
60
OH
1
2
8
0
10?
10°
Time, seconds
SOURCE:
_—_—
Latrobe Steel Company
—...khkhv_—_C.RON
SVS
—s"'Terr—
a
104
105
10°
Atlas of Time-Temperature Diagrams
469
2-3/4 Nickel Forging Steel
Composition: 0.29% C - 0.77% Mn - 0.23% Si - 0.34% P 0.31% S - 2.72% Ni - 0.04% Cr - 0.05% Mo Grain size: 6-8
Austenitized at 845°C (1550°F)
F
1400 |}
700
1200
600
1000
500
Temperature
300
CHardness
Rockwell
200
400
200
Time, seconds
SOURCE:
Battelle Memorial Institute for Inco
2-1/2 Nickel Saw Steel
Composition: 0.76% C - 0.41% Mn - 0.20% Si - 0.012% P 0.023% S - 2.50% Ni - 0.13% Cr - 0.08% Mo - 0.12% Cu Grain
size: 9 Austenitized at 755°C (1382°F)
700
600
500
400
Temperature
10°
Time, seconds
SOURCE:
Heal and Mykura, Metal Treatment and Drop Forging, Vol 17, 1950
Atlas of Time-Temperature Diagrams
470
VCM
Nitriding Steel
Composition: 0.32% C - 0.76% Mn - 0.014% P - 0.018% S -
0.70% Ni - 1.06% Cr - 1.01% Mo Grain size: 7-8 Austenitized at
900°C (1650°F)
C
F
800
1400
Soe
=
700
1200
600
1000
=
500
2
3
5
800
al sacle
ze400
2
4}
‘
+--+ ad
4}
”
=
=
=
4
os
|__|
600
300
Bainite Reaction Ends
/
| 4_| | hy 4-4
telat
=
z
3
[-4
Bev
200 | 400
100 — 200
eae
ak
1 Min
0
05
1
2
5
10
10?
10°
104
105
10°
Time, seconds
SOURCE:
A.R. Troiano for Inco
2-1/2Ni-1/2Mo-V
Turbine
Rotor Steel
Composition: 0.34% C - 0.71% Mn - 0.22% Si - 0.039% P -
0.028% S - 2.52% Ni - 0.14% Cr - 0.42% Mo - 0.02% V Grain
size: 6-7 Austenitized at 900°C (1650°F)
c
F
1400
700
1200
600
1000
500
2
eS
Pe
a:
Z
a
=
300
=
°
600
S
Zz
:
200 | 400
100
200
0
Time, seconds
SOURCE:
Battelle Memorial Institute for Inco
Atlas of Time-Temperature Diagrams
471
5-1/4Ni-1/4Mo-V
Composition: 0.23% C - 0.52% Mn - 0.25% Si - 5.35% Ni -
0.20% Cr - 0.27% Mo - 0.08% V Grain size: 8 Austenitized at
900°C (1650°F) for 16 h; cooled at 40°C (100°F)/h;
reaustenitized at 785°C (1450°F) for 16h
700
600
naSo=
r=) So
Temperature
300
200
100
05
1
2
5
10
10?
10°
104
10°
10°
Time, seconds
SOURCE:
Yeo and Beasley, U.S. Patent 2,992,148, July 11, 1961
Ni-Cr-Mo-V-Cu-B
Composition: 0.15% C - 0.92% Mn - 0.26% Si - 0.014% P 0.020% S - 0.88% Ni - 0.50% Cr - 0.46% Mo - 0.32% Cu -
0.06% V - 0.003% B Grain size: 6-7 Austenitized at 915°C
(1675°F)
700
Temperature
Time, seconds
SOURCE:
Vessels,” Welding Journal,
W.D. Doty, "Properties and Characteristics of a Quenched and Tempered Steel for Pressure
Vol 34, 1955, pp 4258-4118
472
Atlas of Time-Temperature Diagrams
3-1/4Ni-Cr-Mo
Composition: 0.33% C - 0.57% Mn - 0.23% Si - 0.005% P 0.007% S - 3.26% Ni - 0.85% Cr - 0.09% Mo Grain size: 9
Austenitized at 835°C (1535°F)
700
onsc—
Temperature
200
100
SOURCE:
Inco
3Ni-Cr-Mo-V
Composition: 0.32% C - 0.51% Mn - 0.19% Si - 0.013% P -
0.009% S - 3.02% Ni - 1.37% Cr - 0.48% Mo - 0.18% V Grain
size: 9 Austenitized at 835°C (1535°F)
1400
700
1200
600
1000
500
§
is
59
800
aa
ES OE ST) A PS
58
E 400
&
2
=
300
5
=
600
©
:3
co
200 f- 400
100 | 200
0
59
ey
EO!
tp
10?
103
Time, seconds
SOURCE:
Inco
104
105
10°
Atlas of Time-Temperature Diagrams
473
4-1/4Ni-1-1/2Cr-1/10Mo
Composition: 0.35% C - 0.44% Mn - 0.14% Si - 0.016% P 0.008% S - 4.23% Ni - 1.43% Cr - 0.13% Mo Grain size: 9
Austenitized at 820°C (1510°F)
1400
700
1200
1000
Temperature
8
—
300 |.600
°
z
é
200 | 400
100 | 200
0
05
SOURCE:
Inco
4-1/4Ni-1-1/2Cr-1/3Mo
Composition: 0.33% C - 0.51% Mn - 0.17% Si - 0.013% P 0.009% S - 4.16% Ni - 1.44% Cr - 0.31% Mo Grain size: 9
Austenitized at 820°C (1510°F)
Ci
OF
800
1400
700
1200
57
600
35
1000
2
500
§
l5
-
80
800
300 |.809
a
200 |- 400
100 F 200
60
0
Time, seconds
SOURCE:
Inco
Atlas of Time-Temperature Diagrams
474
5% Nickel Steel, 0.50% C
5% Nickel Steel, 0.80% C
Composition: 0.51% C - 0.23% Mn - 0.17% Si - 0.006% P -
Composition: 0.79% C - 0.23% Mn - 0.22% Si - 0.007% P -
0.017% S - 5.26% Ni Austenitized at 1000°C (1830°F) for 15
0.015% S - 5.25% Ni Austenitized at 1000°C (1830°F) for 15
min
min
fray
ARSE
Ge
OS eae
‘
© 500;—\
@w
©
r
w
5
5
3 400
re)
ao
a
w
a
(2
& 300
is
Ms
2
200
100
10
10°
10°
10*
{0°
10° 10%
IOv
WOtetOe
Time, seconds
10%
10"
6° 1G"
Time, seconds
5% Nickel Steel, 1.2% C
7-1/2% Nickel Steel, 0.25% C
Composition: 1.26% C - 0.21% Mn - 0.23% Si - 0.009% P 0.019% S - 5.30% Ni Austenitized at 1000°C (1830°F) for 15
0.011% S - 7.61% Ni Austenitized at 1000°C (1830°F) for 15
Composition: 0.29% C - 0.15% Mn - 0.13% Si - 0.010% P min
-
mae,
E
©
E
3
=}
3
a]
e
XQ
Bainite
5
RK
as
1.26%C
5.30%Ni
10
102
103
10%
10°
10® 107
Time, seconds
iO
102
10°
10*
10°
10® 107
Time, seconds
SOURCE: J.P. Sheehan, C.A. Julien, A.R. Troiano, "The Transformation Characteristics of Ten Selected Nickel Steels,”
Transactions of the ASM, Vol 41, 1949, pp 1165-1184
Atlas of Time-Temperature Diagrams
475
7-1/2% Nickel Steel, 0.50% C
Composition: 0.48% C - 0.22% Mn - 0.16% Si - 0.006% P 0.16% S - 7.61% Ni Austenitized at 1000°C (1830°F) for 15 min
7-1/2% Nickel Steel, 0.80% C
Composition: 0.79% C - 0.21% Mn - 0.22% Si - 0.008% P 0.016% S - 7.53% Ni Austenitized at 1000°C (1830°F) for 15
min
ie)
‘v
O
2
E
2
5
2
5
3.
&
wo
oad
O.77%C
10.01% Ni
i
10>
10> 10?" 10°
Time, seconds
1I7%C
10.37% Ni
10°10?
iO,
102
40>
107"
10°
10°10
4
Time, seconds
7-1/2% Nickel
Steel, 1.2% C
10% Nickel
Steel, 0.50% C
Composition: 1.18% C - 0.22% Mn - 0.22% Si - 0.008% P 0.016% S - 7.64% Ni Austenitized at 1000°C (1830°F) for 15
Composition: 0.51% C - 0.21% Mn - 0.16% Si - 0.005% P 0.016% S - 10.11% Ni Austenitized at 1000°C (1830°F) for 15
min
min
©
e
2
p=]
&
o
5
_—
ia
.2)
©
®
a
e
°
fd
e
0.48%C
7.61% Ni
iO...
Time,
SOURCE:
seconds
10% 10°
10; tOr
O° 105
Time, seconds
J.P. Sheehan, C.A. Julien, A.R. Troiano, "The Transformation Characteristics of Ten Selected Nickel Steels,”
Transactions of the ASM, Vol 41, 1949, pp 1165-1184
Atlas of Time-Temperature Diagrams
476
10% Nickel, 0.80% C
Composition: 0.77% C - 0.20% Mn - 0.22% Si - 0.006% P 0.019% S - 10.01% Ni Austenitized at 1000°C (1830°F) for 15
10% Nickel Steel, 1.2% C
Composition: 1.17% C - 0.21% Mn - 0.22% Si - 0.009% P0.019% S - 10.30% Ni Austenitized at 1000°C (1830°F) for 15
min
min
Temperature
°C
Temperature°C
10
©«102
103
10%
105
108 107
10°
"1o*”
Time, seconds
10> "10*
10>
10° 10”
Time, seconds
SOURCE: J.P. Sheehan, C.A. Julien, A.R. Troiano, "The Transformation Characteristics of Ten Selected Nickel Steels,”
Transactions of the ASM, Vol 41, 1949, pp 1165-1184
850
800
Fe-1V-0.2C
Steel
750
Composition: 0.19% C - 0.92% V Austenitizing temperature not
reported
700
650
5
10
5SOO©
eS900
aS 850
<
Fe-1V-1AI-0.2C Steel
80
Composition: 0.21% C - 0.96% V - 0.97% Al Austenitizing
=
temperature
not reported
W 75
Ke
Fe-1V-1.5Ni-0.2C
Steel
Composition: 0.20% C - 1.46% Ni - 0.96% V Austenitizing
temperature not reported
10
SOURCE:
TIME,s
50
100
P.R.Wilyman, R.W.K. Honeycombe, "Relation Between Gamma-Alpha Transformation Kinetics and Mechanical
Properties of Vanadium Steels,” Metal Science, Vol 16, June 1982, pp 295-303
Atlas of Time-Temperature Diagrams
Fe-0.19C-1.81Mo
477
Steel
Fe-4Mo-0.4C
Composition: 0.19% C - <0.002% Mn - 0.004% Si - 0.006% P -
Steel
Composition: 0.43% C - 4.0% Mo Austenitized at 1150°C
0.002% S - 1.81% Mo Austenitizing temperature and grain size
(2100°F)
not reported
800
pes
=
=
uw
©)
=
Ferrite
+ Carbide
w 700
a
a
re
x
<
2
Pa
.
a
(10% Pearlite)
=
Austenite
ud
=
20 32
.
w
600
99
(10% Pearlite)
~N
FE-4M0-0.4C
2
510
10?
10?
10‘
LOG. TIME (minutes)
/
2
)
4
Log Reaction Time
5
(sec)
6
SOURCE:
W.T.
Reynolds,
Jr., F.Z. Li, C.K.
Shui, HI.
Aaronson, "The Incomplete Transformation Phenomenon in FeC-Mo Alloys,” Metallurgical Transactions, Vol 21A, ASM, June
1990, p 1433
Fe-4Mo-1.0C
Steel
SOURCE: F.G. Berry, R.W.K. Honeycombe, "The Isothermal
Decomposition of Austenite in Fe-Mo-C Alloys,” Metallurgical
Transactions, Vol 1, ASM, December 1970, pp 3279-3286
Fe-2.3Mo-0.22C Steel
Composition: 1.0% C - 4.0% Mo
(2100°F)
Austenitized at 1150°C
Composition: 0.22% C - 2.3% Mo
(2100°F)
Austenitized at 1150°C
900
Proeutectoid
Ferrite
Austenite
eee
:
:
;
_ 800
= 700
30 --Carbide Line
uw
=w
Ferrite + Carbide
- 700
Ww
a
fi
(15% Pearlite)
=
=
ra
a
= 600
=
is——___89
(10% Pearlite)
<
c-¢
_
q
a.
= 600
=
‘
2
47
=
uw
=
=
Bainite
500
2 510
FE-2MO- 0.2C
439-Mg (Calc)
FE-4MO-1C
107
10% ~— 10°
LOG. TIME (minutes)
2 510
107
10° ~~ «10°
LOG. TIME (minutes)
SOURCE: F.G. Berry, R.W.K. Honeycombe, "The Isothermal Decomposition of Austenite in Fe-Mo-C Alloys,” Metallurgical
Transactions, Vol 1, ASM, December 1970, pp 3279-3286
eee
EIEN EEE SEES
EEE
Atlas of Time-Temperature Diagrams
478
Fe-C-Mo
nl
nn
a
Steels
Compositions:
~0.15%C
A = 0.14% C - <0.003% Mn - 0.0009% Si - 0.002% P - 0.002%
S - <0.005% Ni - <0.004% Cr - 2.29% Mo - <0.002% Cu - <10
ppm N - 168 ppm O
D = 0.15% C - <0.002% Mn - 0.001% Si - 0.001% P - 0.006% S
2.55% Mo
G = 0.17% C - 0.002% Mn - 0.003% Si - 0.002% P - 0.004% S 0.030% Ni - 0.002% Cr - 2.94% Mo - 0.007% Co - 0.004% Cu 0.002% Al - 0.003% V - 0.004 N
= 0.15% C - 3.40% Mo
L = 0.15% C - 3.67% Mo
O = 0.14% C - 3.98% Mo
Compositions:
ia
B = 0.19% C - 2.30% Mo
E=0.19% C-2.56% Mo
H = 0.19% C - 2.98% Mo
M
= 0.17% C - 3.76% Mo
P = 0.20% C- 4.00% Mo
R = 0.18% C - 4.25% Mo
« 625
3
§ 600
& 575
§
550
675
Compositions:
C = 0.24% C - 2.31% Mo
F = 0.24% C - 2.56% Mo
I = 0.26% C - 2.94% Mo
K =0.25% C - 3.19% Mo
N=0 .24% C - 3.76% Mo
Q=0 .23% C - 4.00% Mo
S=0. 24% C - 4.28% Mo
ae
°
ge
Base
@
PSE
‘Toy
°
Austenitized at 1300°C (2370°F)
SOURCE:
G.J. Shiflet, H.I. Aaronson, "Growth
Time, sec.
and Overall Transformation
Kinetics Above the Bay Temperature
in Fe-C-Mo
Alloys, Metallurgical Transactions A, Vol 21A, ASM, June 1990, p 1413
Fe-7.6Ni-0.48C Steel
Composition: 0.48% C - <0.01% Mn - 0.011% Si - 0.003% P 0.004% S - 7.64% Ni - <0.01% Cr - <0.01% Al Austenitized at
1000°C (1830°F) for 15 min
Fe-0.61C
Steel
Composition: 0.61% C - 0.01% Mn - 0.014% Si - 0.003% P 0.005% S - <0.01% Ni - <0.01% Cr - <0.01% Al Austenitized
at 1000°C (1830°F) for 15 min
t— Aci
Fe-0.61C
600) Fe-76Ni-0.48C
Austenitized
Austenitized
at 1000°C
for 15min
at 1000°C for 1S min
7
+
500}
}
(°C)
Temperature
©&
(°C)
Temperature
Time (min)
Time (min)
SOURCE: M. Umemoto, T. Furuhara, I. Tamura, "Effects of Austenitizing Temperature on the Kinetics of Bainite Reaction at
Constant Austenite Grain Size in Fe-C and Fe-Ni-C Alloys,” Acta Metallurgia, Vol 34, No. 11, 1986, pp 2235-2245
—
SSS
___
Atlas of Time-Temperature Diagrams
479
Fe-0.13C-2.99Cr
Steel
Composition: 0.18% C - 0.002% Mn - 0.001% Si - 0.001% P 0.006% S - 2.99% Cr Grain size: 2-1 Austenitized at 1300°C
(2370°F) for 15 min
700
°C
600
Temperature
Log
time
SOURCE: H. Goldenstein, H.I. Aaronson, "Overall Reaction Kinetics and Morphology of Austenite Decomposition Between the
Upper Nose and the M, of a Hypoeutectoid Fe-C-Cr Alloy,” Metallurgical Transactions A, Vol 21A, June 1990, p 1465
Low
Carbon
2.4-4.15%
Composition: 0.16% C - <0.02% Ni - 2.40% Cr - <0.02% Mo -
Cr Steels
Composition: 0.17% C - <0.02% Ni - 3.16% Cr - <0.02% Mo <0.001% B Austenitized at 1000°C (1830°F) for 15 min
<0.001% B Austenitized at 1000°C (1830°F) for 15 min
850 a
800
750-
t /7
700
fe
[
Vas
pearlite
start
x2)
ik
a
=,
q
:
i-
alloy
650
alloy C2
C1
pearlite
finish
pearlite
finish
850 f
(c)
fam 3
F—A 804°C
800 =
;
750
===
alloy C4
_---~
700
pearlite
finish
ee
OY
ok
a
o oO(e) eae
TIME, s
Composition: 0.14% C - <0.02% Ni - 3.83% Cr - <0.02% Mo <0.001% B Austenitized at 1000°C (1830°F) for 15 min
Composition: 0.15% C - <0.02% Ni - 4.15% Cr - <0.02% Mo <0.001% B Austenitized at 100°C (1830°F) for 15 min
SOURCE: D.J. Swinden, J.H. Woodhead, "Kinetics of the Nucleation and Growth of Proeutectoid Ferrite in Some Iron-CarbonChromium Alloys,” Journal of The Iron and Steel Institute, Vol 209, November
1971, pp 883-899
480
Atlas of Time-Temperature Diagrams
a
eee
8
ee
Fe-10Cr
Steel
Composition: Fe - 0.003-0.007% C - 9.6% Cr Austenitized at
1050°C (1920°F) for 10 min
L
% equiaxed
e
equiaxed
a
e
O
-
<
equiaxed
a
Widmanstatten
Jo
ferrite
us
; and
a
equiaxed
Widmanstatten
a
ferrite
E
¢
=
wi
=
bainitic
fog -—-
ferrite
Ms
martensite
10
10
LOG. TIME . seconds.
10
LOG. TIME , seconds.
TTT diagram determined by isothermal dilatometry
SOURCE:
J.V. Bee, R.W.K. Honeycombe,
10
TTT diagram determined by optical metallography
"The Isothermal Decomposition of Austenite in a High Purity Iron-Chromium
Binary
Alloy,” Metallurgical Transactions A, Vol 9A, April 1978, 587-593
Fe-C-Cr
Steel
Composition: Fe - 0.19% C - 4.5% Cr
800
A
S
Composition: Fe - 0.22% C - 10.6% Cr
800
99%
at+¥+
carbide
700
ferrite / carbide
aA+¥8+
L
_ 700
5
=
<q 600
E 600
ty
a
rm
ra
WW 500
wi500)
/
| ferrite / carbide
carbide
w
austenite
=
;
austenite
fod
=
bainite
Ms
400
martensite
10
10
martensite
10
10
10
10
LOG. TIME , seconds.
SOURCE:
10
LOG.
10
10
10
TIME , seconds.
J.V. Bee, P.R. Howell, R.W.K. Honeycombe, "Isothermal Transformations in Iron-Chromium-Carbon Alloys,”
Metallurgical Transactions A, Vol 10A, September
&
ae
1979, pp 1207-1212
—_—_—_———s
en
ssn
_ Atlas of Time-Temperature Diagrams
481
Fe-Cr-C Steels
Composition: Fe - 0.1% C - 13.0% Cr Austenitized at 1000°C
(1830°F) for 1h
ill
00
ee Ac!
WV
ba.
Ac |ie
a
|
LL e-FT1|
°C
TEMPERATURE
°C
TEMPERATURE
TIME
Influence of cobalt on the TTT curves of 0.1% C - 13.0% Cr Steel
SOURCE:
pp 11-22
1959,
L. Habraken, D. Coutsouradis, "Cobalt in Steels. What Improvements May Be Expected,” Cobalt, No. 2, March
ee
ee
Atlas of Time-Temperature Diagrams
482
HSLA
Steel
Composition: 0.11% C - 1.51% Mn - 0.34% Si - 0.003% S 0.029% Nb Grain size: 9
SAE 1513 + Nb (Cb)
Compoosition: 0.12% C - 1.23% Mn - 0.23% Si - 0.03% Al (with
and without 0.036% Nb)
1000
UNALLOYED
Austenite
800
oO
°
=
600
2
2
3
$ 400
E
AUSTENITE
BAINITE
FERRITE
_
PEARLITE
oe
=
200
TEMPERATURE,
C
0
10°
10!
102
Time
103
104%
in sec
1
10
102
10>
104%
TIME, seconds
Effect of 0.036% Nb on transformation
SOURCE: W.M. Hof, M.K. Graf, H.-G. Hillenbrand, B. Hoh,
P.A. Peters, "New High-Strength Large-Diameter Pipe Steels,”
HSLA Steels: Metallurgy and Applications, ASM, 1986, pp 467
SOURCE: F. de Kazinsky, A. Axnas,
Properties of Niobium-Treated
Mild
Annaler, Vol 147, No. 408, 1963
P. Pachleitner, "Some
Steels,” Jernkantorets
Croloy 1-1/4
Croloy 2-1/4
Composition: 0.10% C - 0.38% Mn - 0.62% Si - 0.013% P -
Composition: 0.10% C - 0.42% Mn - 0.25% Si - 0.018% P 0.013% S - 0.27% Ni - 2.16% Cr - 0.96% Mo Grain size: 5-6
Austenitized at 1015°C (1860°F) for 45 min
0.012% S - 0.17% Ni - 1.15% Cr - 0.48% Mo - 0.10% Cu Grain
size: 4-6 Austenitized at 1015°C (1860°F) for 40 min
Cera
Ar, 1510 F__
Ac, 1480 F—
1500
no}
is]
ae
1400
F
8
7 =
x<
wo
iS}
%1)
= WwW
Cc
2
oO
=
345
3328£>
me
~
_8s
8 jyts}5)
Temperature,
381
Vickers
hardness,
load
5Kg
(DPH)
1
SOURCE:
10
100
1000
Time, seconds
10,000
100,000
Intermediate Croloy Steels, Babcock & Wilcox
100
1000
Time, seconds
10,000
100,000
Atlas of Time-Temperature Diagrams
483
Croloy 3M
Croloy 5
Composition: 0.12% C - 0.40% Mn - 0.26% Si - 0.017% P -
Composition: 0.12% C - 0.46% Mn - 0.35% Si - 0.012% P 0.016% S - 0.20% Ni - 4.79% Cr - 0.54% Mo Grain size: 3-6
Austenitized at 1015°C (1860°F) for 40 min
0.016% S - 0.34% Ni - 2.95% Cr - 0.94% Mo Grain size: 4-6
Austenitized at 1015°C (1860°F) for 40 min
(Ac3 1620 F)
-
Ac, 1505 F
>
e
2
ca
fe
a
at
8
g
S
*
o
o
i
a
a
2
S
Ars 1445 F
~
a0
rd
oO
9s
oOo
Ms Located
at 865F
sien eoaas
Eee
>
10
100
1000
—«:10,000
100,000
Time, seconds
SOURCE:
Intermediate Croloy Steels, Babcock & Wilcox
Croloy 7
Croloy 9M
Composition: 0.12% C - 0.53% Mn - 0.55% Si - 0.015% P 0.036% S - 0.07% Ni - 7.50% Cr - 0.45% Mo Grain size: 4-5
Austenitized at 1015°C (1860°F) for 40 min
Composition: 0.12% C - 0.50% Mn - 0.45% Si - 0.013% P 0.017% S - 0.28% Ni - 8.40% Cr - 0.96% Mo Grain size: 4-5
Austenitized at 1015°C (1860°F) for 40 min
=
ae
a
Ac, 1515 F
A
Ar; 1430 F
=>
ac
5
52]
ne)
uw
8
ve
22
a
J
a
a
rd
iS
Efe
c
fs
oO
=
¥
i=
oO
UD
i
§
:2a
Partial Austenite ——Transformation
a
transformation
ends
@
i=
o
Ps
o
<
£
ra
2
g
2
g=
o
500
1 Day 1 Month
100
1000
10,000
100,000
1,000,000
Time, seconds
SOURCE:
co)
Intermediate Croloy Steels, Babcock & Wilcox
100
1000
10,000
Time, seconds
100,000
1,000,000
Atlas of Time-Temperature Diagrams
484
2-1/4Cr-1Mo
Steel
Composition: 0.10% C - 0.42% Mn - 0.25% Si - 0.018% P 0.013% S - 0.27% Ni - 2.16% Cr - 0.96% Mo Grain size: 5-6
Austenitized at 1015°C (1860°F) for 45 min
1600
Ac3 1600 F
Acy 1480 F
1400
—— Ar3 1510F
Ary 1330 F___.
AUSTENITE
+
ee
FERRITE +
CARBIDE
1200
1000
TEMPERATURE,
F
800
600
100
SOURCE: J.L. Schanck, "Isothermal Transformation Diagram for Chromium-Molybdenum
Treatment,” Industrial Heating, 1969
Alloy Steels Facilitate Their Heat
0.2% Carbon Steel
Composition: 0.2% C - 0.6% Mn - 1.0% Ni - 1.0% Cr - 0.4% Mo
Austenitized at 900°C (1650°F)
HARDNESS, HV10
e
239
e
e
e
e
e
335
324
330
289
252
e
178
e180
®
178
e
180
°
191
e
187
200 HVI0
Boece
1300
FINISH
ISOTHERMAL
TRANSFORMATION
TEMPERATURE,
C
0.5
1
ISOTHERMAL
SOURCE:
TRANSFORMATION
ISOTHERMAL
F
TEMPERATURE,
2
4
8
TRANSFORMATION
16
TIME, hr
32
Douglas V. Doane, "Softening High Hardenability Steels for Machining and Cold Forming,” Journal of Heat Treating,
Vol 6, No., 2, 1988, pp 97-109
a
Atlas of Time-Temperature Diagrams
485
——————
en
PS 32 Steel
PS 55 Steel
Composition: 0.22% C - 0.79% Mn - 0.32% Si - 0.87% Ni 0.52% Cr - 0.47% Mo Dashed lines show start and finish of
Composition: 0.16% C - 0.81% Mn - 0.19% Si - 1.80% Ni 0.48% Cr - 0.66% Mo Dashed lines show start and finish of
transformation after a 925°C (1700°F) austenitize. The solid
transformation after a 925°C (1700°F) austenitize. The solid
lines indicate completion of transformation after austeniti
zation
lines indicate completion of transformation after austenitization
at 720°C (1330°F)
at 720°C (1330°F)
680
700
660
680
wh
660
ui-
=
640
s
4205
S
=
2206
a
a
a
2
1000
SS
SS ee ee
1
10
TIME AT
TEMPERATURE
SOURCE:
F
10,000
ee
Ee
1
2
4
TEMPERATURE,
F
580
100,000 Seconds
100
0.5
1150
- 600
FINISH
100
640
wi 620
Fd
azes
600
w
E
\, &+a0/C
CTEMPERATURE,
620
oO
8
100
1000
1000 Minutes
ne 2
IME A
16 Hours
TEMPERATURE
10,000
10
100,000
100
0.5
1
2
1000
4
8
16
1050
Seconds
Minutes
Hours
Douglas V. Doane, "Softening High Hardenability Steels for Machining and Cold Forming,” Journal of Heat Treating,
Vol 6, No., 2, 1988, pp 97-109
3% Mo Low Carbon Tool Steels
Composition: 0.22% C - 0.50% Mn - 0.30% Si - 0.016% P -
Composition: 0.24% C - 0.63% Mn - 0.30% Si - 0.016% P -
0.026% S - 2.80% Ni - 2.95% Mo Austenitized at 1035°C
0.027% S - 2.95% Mo Austenitized
at 1035°C
(1900°F) for2h
(1900°F) for 2h
1600
1400}-A,
C
22
°F
urefo)fe)
lJ
Mn
00
Steel
Si
Ni
Mo
30 280 295
Austenitized - |QOO°F -2Hrs.
1200
bee
tenitized -
v
Grain Size- ASTM
*4
$1000
S
Grain Size - ASTM *5
a
5800
@ [o)fe}
Temperati
Ms
H
[oD](eo)(e}
MIONZOSONIN
[EZ
Seconds
209 5) ON ZO SONI 25
Minutes
510820
Hours
Sallie. PSotD-2050'
Seconds
9150100240
1
Time
SmlORZOSON
Minutes
Time
EC
NES
10 20
50 100240
Hours
Composition: 0.10% C - 0.50% Mn - 0.26% Si - 0.017% P 0.025% S - 2.95% Mo Austenitized at 1010°C (1850°F) for 2 h
IgOO,
TT]
1600}
1400)
uu.
21200
£1000;
3J
=
800
Austenitized - 1850
°F - 2Hrs.
Grain Size-ASTM * 5
5 10 2080
Seconds
SOURCE:
|
Minutes.
10 2030
Time
R.B. Corbett, J.A. Succop, A. Feduska, "Alpha-Molybdenum
1954, pp 1599-1618
Steel
C
Mn
Si
Mo
1050 —26=209
Hot-Work
10 20
Hours
50100240
Die Steels,” Transactions of the ASM, Vol 46,
Atlas of Time-Temperature Diagrams
486
Non-Superhardening
Steel
Composition: 0.43% C - 1.58% Mn - 0.42% Si - 0.022% P -
0.042% S - 0.24% Ni - 0.27% Cr - 0.12% Mo - 0.18% Co -
0.033% Sn - 0.005% Al Austenitized at 860°C (1580°F) for 10
min
Superhardening
TEMPERATURE,
°C
Steel
Composition: 0.42% C - 1.75% Mn - 0.36% Si - 0.031% P -
0.029% S - 0.24% Ni - 0.28% Cr - 0.12% Mo - 0.17% Co 0.020% Sn - 0.11% Al Austenitized at 860°C (1580°F) for 10
Y+O+Fe3C
min
1
10
‘ior
10°
10°
TIME, Ss
SOURCE: K. Sachs, B. Ralph, J. Slater, "Transformation Kinetics of Superhardening Steel,” Heat Treatment ’79, proceedings of
an international conference organized by the Heat Treatment Committee of The Metals Society, in association with the Heat
Treating Division of the American Society for Metals, Birmingham, England, 22-24 May 1979, 141-146
D-6ac High Strength Steel
Composition: 0.45% C - 0.80% Mn - 0.25% Si - 0.55% Ni 1.15% Cr - 1.0% Mo - 0.05% V Austenitized at 900°C (1650°F)
lO min
I min
5 min
| day
| hr
1400
1200
Austenite
|
4 1000
Temperature
600
oat
50% transformed
+
400
lO
10?
lo?
104
Time, sec
SOURCE: Atlas of Isothermal Transformation and Cooling Transformation Diagrams, ASM, 1977
105
Atlas of Time-Temperature Diagrams
487
Deep Hardening
Steels
Composition: 0.65% C - 0.79% Mn - 0.35% Si - 1.27% Ni -
Composition: 0.60% C - 0.37% Mn - 0.24% Si - 3.22% Ni -
+/- 5°F, Mg ~100°F
+/- 5°F, My -70°F
1.00% Cr - 0.29% aMo Austenitized at 870°C (1600°F) M, 445
2.14% Cr - 0.07% Mo Austenitized at 870°C (1600°F) M, 395
760
650
°F
Temperature
°C
Temperature
°F
Temperature
°C
Temperature
RE
/
0.01
|
0.1
Time - Hours
|
0.1
Time - Hours
0.0)
10 24
10
5ee
ea
ae
7
Ea
ee
1
a
24
Composition: 0.35% C - 0.69% Mn - 0.24% Si - 3.25% Ni 1.32% Cr - 0.48% Mo - 0.27% V Austenitized at 900°C
(1650°F) M, ~600°F, Mg -450°F
°C
Temperature
°F
Temperature
0.01
SOURCE:
678-876
0.1
I
Time — Hours
10
24
Transactions of the ASM, Vol 41, 1949, pp
Gerrit DeVries, "An End-Quenched Bar for Deep Hardening Steels,”
a
EE
a
————E
a
1
Atlas of Time-Temperature Diagrams
488
Ni-Cr-Mo
Steel
Composition: 0.32% C - 0.58% Mn - 0.30% Si - 0.032% P -
0.020% S - 2.35% Ni- 0.75% Cr - 0.52% Mo - 0.11% V
Austenitized at 845°C (1550°F) for 1h
Austenitized 1550°F -1Hr.
Grain
—>
————
Size
7-8
+ —
———
Analysis
si)
C 0.32
AtF+C
Mn
0.58
Si 0.30
Ni 2.35
°F
Temperature
1
Gr 10.75
Mo
600
As-Quenched
|
10
102
Hardness
0.52
Rc 58-59
103
104
10°
10&
Time - Seconds
SOURCE:
Edward A. Loria, "Isothermal Transformation of Austenite in a Nickel-Chromium-Molybdenum
Steel,” Transactions of
the ASM, Vol 44, 1952, 870-876
Alloy Steels
Composition: 0.59% C - 0.96% Mn - 0.28% Si - 0.032% P -
Composition: 0.86% C - 0.66% Mn - 0.38% Si - 0.040% P -
0.022% S - 1.06% Cr - 0.54% Mo - 0.12% V Austenitized at
0.024% S - 2.47% Ni - 1.21% Cr - 0.50% Mo Austenitized at
900°C (1650°F) for
845°C (1550°F) for 1h
1h
1600
Austenitized
Austenitized ISSOFGroin Size 7-8
I650F -1 Hr
AX: Austenite Plus
08
Anolysis
¢ 059
1200
Undissolved Corbides
~ °°
uw
2
2
2 1000
,e) ,e)fe)
v
a
[S
8
fe
°F.
Temperature
800
600
|
10
10#
105
Time - Seconds
SOURCE:
10%
10°
10s
te |
10
10?
108
Time - Seconds
10*
10
1o*
Edward A. Loria, "Isothermal Transformation of Austenite in Two Alloy Steels,” Transactions of the ASM, Vol 41,
1949, pp 1248-1260
—————_——————————————————————————————————————————————————————————
Le
Atlas of Time-Temperature Diagrams
489
Alloy Steels
Composition: 0.60% C - 0.60% Mn - 0.30% Si - 0.035% P -
0.024%
S - 2.75%
Composition: 0.42% C - 0.67% Mn - 0.31% Si - 0.030% P 0.022% S - 2.71% Ni - 1.00% Cr - 0.48% Mo Austenitized at
Ni - 1.25% Cr - 0.50%
Mo - 0.12%V
Austenitized at 845°C (1550°F)
Austenitized (550°F
Grain Size 7-8
845°C (1550°F)
Austenitized 1550°F
Grain Size 6-7
-1 Hr.
ive
oe
°
-1 Hr.
d
Analysis
»
Cc 0.42
&
Mn 0.67
2 1000}—Si 0.3!
Ss
Ni 2.71
E
Cr
iS
Temperature
°F
10
102
103
10%
105
10°
1.00
Mo 0.48
|
10
107
Time - Seconds
SOURCE:
103
104
105
10
Time - Seconds
Edward A. Loria, "Kinetics of the Austenite Transformation in Certain Alloy Steels,” Transactions of the ASM, Vol 43,
1951, pp 718-733
65Nb Steel
Composition: 0.66% C - 0.15% Mn - 0.18% Si - 4.02% Cr 2.04% Mo - 1.02% V - 0.26% Nb - 2.99% W Austenitized
1160°C (2120°F)
at
SAE 1075
Composition: 0.75% C - 0.57% Mn - 0.17% Si - 0.013% P 0.015% S - 0.012% Ni - 0.014% Cr Austenitized at 800°C
(1475°F)
1%o pearlite
=
Sa
Bes
l a
99% pecriite
wesI
SRT
ai
99% bainite
600
W%ebainite
%
3 500
Fd
2
5
&
i
0
05
10
Time.
4
10
5
s.
SOURCE: Cui Kun, Hu Zhenhua, Zhao Juhua, "Microstructure,
Mechanical Properties and Heat Treatment of New Matrix Steel
65Cr4W3Mo2VNb with High Strength and Toughness,” Journal
of Heat Treating, Vol 1, No. 4, ASM, 1980, pp 37-46
SOURCE:
Hardness,
A. Omsen,
"Relationships
Between
Structure,
and Toughness of Untempered and Tempered 0.7C
Bainites,”
Journal
of The
Iron
and
Steel Institute,
Vol
209,
February 1971, pp 131-137
ee
EEEEEEEEESSESSESEEEEE
Atlas of Time-Temperature Diagrams
490
Eutectoid
Composition: 0.76% C - 0.61% Mn - 0.25% Si - 0.02% P 0.02% S - 0.017% Cr - 0.006% Mo - 0.003-0.01% Al
Austenitized at 1010°C (1850°F) for 30 min
Steels
Composition: 0.75% C - 0.61% Mn - 0.27% Si - 0.02% P - _
0.02% S - 0.004% Cr - 0.10% Mo - 0.003-0.01% Al Austenitized
at 1010°C (1850°F) for 30 min
re)
oOo
Ce
w
Ww
ec
et
:
«
=
e
=
ras
<q
q
ax
=
a
ro
rs
TIME,
SECONDS
TIME,
SECONDS
Composition: 0.76% C - 0.82% Mn - 0.25% Si - 0.02% P 0.02% S - 0.60% Cr - 0.16% Mo - 0.003-0.01% Al Austenitized
Composition: 0.76% C - 0.6% Mn - 0.27% Si - 0.02% P - 0.02%
S - 0.58% Cr - 0.30% Mo - 0.003-0.01% Al Austenitized at
at 1010°C (1850°F) for 30 min
1010°C (1850°F)
2
P
ww
we
5
s
bE
<
ba
+
a
é_q
«
uw
-
-
a
=
=
TIME, SECONDS
TIME, SECONOS
SOURCE: Y.J. Park, F.B. Fletcher, "Effects of Manganese, Chromium, and Molybdenum on the Isothermal Transformation of
Austenite in Eutectoid Steels,” Journal of Heat Treating, Vol 4, No. 3, ASM, 1986, 247-252
OO
Atlas of Time-Temperature Diagrams
49]
ST
3.5% Chromium
Magnet Steel
Composition: 0.93% C - 0.50% Mn - 0.26% Si - 0.01% P 0.02% S - 0.16% Ni - 3.65% Cr Austenitized at 830°C (1525°F)
for 10 min
1400
800
ae
’
Analysis
© 0:93
Cr 3.65
°F
Temperature
600
Mn 0.50
Ms52435°R
——
Ni
Si
—
©
0.16
0.26
400
Austenitized I525°F - |OMin.
Prior Condition - Normalized 1600 °F
|
Seconds
Minutes
Time
SOURCE: W.L. Hodapp, E.A. Loria, "Effect of Cooling Rate from Mg Temperature to Room Temperature on Magnetic Properties
of 3.5% Chromium Magnet Steel,” Transactions of the ASM, Vol 52, ASM, 1960, 404-421
SAE
51100 Steel
Composition: 0.97% C - 0.39% Mn - 0.25% Si - 0.020% P 0.013% S - 1.04% Cr Grain size: 7 Austenitized at 980°C
(1800°F) for 1h
1000
900
800
700
600
wn
°°
°F
TEMPERATURE—
400
200
100
1
10
key
10>
104
10°
10
TIME — SECONDS
SOURCE:
F. Borik, R.D. Chapman,
"The Effect of Microstructure on the Fatigue Strength of a High Carbon
of the ASM, Vol 53, ASM, 1961, 447-463
Steel,” Transactions
Atlas of Time-Temperature Diagrams
492
1.0% C High-Chromium
Composition: 1.04% C - 0.18% Mn - 0.35% Si - <0.01% P -
Composition: 1.02% C - 0.33% Mn - 0.35% Si - 0.020% P -
<0.01% S - 4.0% Cr Grain size: >1 Austenitized at 1200°C
(2190°F)
0.012% S - 2.9% Cr Grain size: >1 Austenitized at 1200°C
(2190°F)
°C.
800
°F
]
a=
“Ae,
°c
800
5
:
é
=
Steels
°F
va
ENE
1400
la
+
1400
Easy
700
pecs
~¥-FesC
Y-Fe,C
|
700
——|--——-——+
1200
—j}——
ats
600
600
1 1290
|-
op
=
oes ay
NEAL
a
>
1000
aq
Ww
=
=
= 500
© 500
a
=
my
S
a
i
WJ
A
400
1 10:59
bE
a
ae
cas
=
g
800
os
B
|
+
[cXene)
Ara
400
=
600
300
300
|
-—-|
|__|}
|
(see
200
400
200
an
100
a=
Ar"=95°C.
=
600
——
°
ae
=
z
a¢
=
“Fs2
zg
I
4
3 i
é
¢)
4
3}
400
&
=
|
TIME —-SECONDS
TIME —-SECONDS
Composition: 1.05% C - 0.31% Mn - 0.35% Si - 0.017% P -
Composition: 1.02% C - 0.33% Mn - 0.35% Si - 0.016% P -
0.012% S - 5.7% Cr Grain size: >1 Austenitized at 1200°C
(2190°F)
0.011% S - 8.8% Cr Grain size: >1 Austenitized at 1200°C
ec
(2190°F)
°F
800
ai
eG)
ABE
°F
800
=
1400
1400
700
700
1200
1200
600
600
WwW
uy
=
1000
= 500
a
wi S00
!
>
=
A
a:
400
1000
a
=Jz
a
5
Ee
800
800
400
Sy --
End
300
=
—
>
=
Y-a
of rapid
(or Y>Q+C)
200
-
ae
ae
400
10
200
400
§°
[el Es ees
5,
600
300
==
AE
100
600
>
reaction
10
4
100
10
$
10
6
10
TIME
- SECONDS
7
10
10°
8
TIME -SECONDS
SOURCE: Taylor Lyman, Alexander R. Troiano, "Isothermal Transformation of Austenite in One Per Cent Carbon, HighChromium Steels,” Transactions of the AIME, Vol 162, 1945, 196-222
se
eeeeeeeeSSSSSSSSS—S———SsSsSSsSsS—S—S—S—SsSsSsSss
Atlas of Time-Temperature Diagrams
493
Hypereutectoid
Carbon Steels
900
850
800
Composition: 1.20% C - 0.91% Mn - 0.23% Si <0.003% P - 0.002% S Grain size: 1
Temperoture
°C
—
Pearlite
1000
900
800
Composition: 1.48% C - 0.90% Mn - 0.24% Si 0.002% P - 0.0039% S Grain size: 1
Temperature
°C
— a je)je)
Pearlite
10°
10!
er
Reaction
Composition: 1.72% C - 0.90% Mn - 0.25% Si <0.003% P - <0.003% S Grain size: 1
10°
Time
10
10°
10*
10°
— Seconds
re)
1386
5
5
a
&
@
=
700
_—
—_—s—
Vile
10°
Sl
10!
10%
10°
Reaction
Time — Seconds
SOURCE: R.W. Heckel, H.W. Paxton, "On The Morphology of Proeutectoid Cementite,” Transactions of the ASM, Vol 53, ASM,
1961, pp 539-554
Atlas of Time-Temperature Diagrams
494
403/410 Stainless Steels
Composition: 0.06% C - 12.8% Cr Austenitized at 980°C
Composition: 0.10% C - 12.4% Cr Austenitized at 980°C
(1800°F) for 1h
(1800°F) for 1h
Temperature
°F
°F
Temperature
(a) 0.06 C-12.8 Cr
1
|
2
4 8 15
Seconds
3060 2
|
4 8 15 30602
|
Minutes
4 8 i5 3060
|
Hours
1 2
|
4 8 15
Seconds
30602
Time
4 8 15 3060
Minutes
2
4
8 15 30 60
|
Hours
Time
Composition: 0.12% C - 12.38% Cr Austenitized at 980°C
(1800°F) for 1h
1600
1400
@ 1200
2
2 1000
2
aE
2
800
ei
200
As-Quenched
'
46.5
41151601
4
2
Ba
oO nl e2
| Seconds
Rc
fee
15 | 60
8
S02
| Minutes
|
ee
15 160
87°30
Hours
|
Time
SOURCE: R.L. Rickett, W.F. White, C.S. Walton, J.C. Butler, "Isothermal Transformation, Hardening, and Tempering of 12%
Chromium Steel,” Transactions of the ASM, Vol 44, ASM, 1952, 138-175
a
————
Ss.
j»j§»@VEV
Atlas of Time-Temperature Diagrams
495
403 Stainless Steel
Composition: 0.15% C - 1.00% max Mn - 0.50% max Si - 0.04%
max P - 0.03% max S - 11.50-13.00% Cr Austenitized at 980°C
(1800°F)
a
Austenite
tt
plus 15% Ferrite
- mes
(
icicle =
igsSR GRSACenicoasc
: ate a
fi
eee
s CET a eemererrre TTT TTT
200
ta2
3
456
60
$20
30
4560
m2
34568610
18 20 31 4560
w2
345660
15 20 W 45 60
TIME
SOURCE: Data Sheet, Crucible Steel Co. of America, October 1948 as published in Atlas of Isothermal Transformation and
Cooling Transformation Diagrams, ASM, 1977
416 Stainless
Steel
Composition: 0.12% C - 0.79% Mn - 0.74% Si - 0.017% P 0.190% S - 0.25% Ni - 12.82% Cr - 0.05% Mo - 0.037% N -
0.08% Zr Grain size: 7-9 Austenitized at 980°C (1800°F)
1600
wt
cs
us
a
AUSTENITE
1400
(3-5%
t
ma
~
FERRITE)
155
S
az
170
rd
Ww
a 1200
=
pal
SE FREE MACHINING
200
0.087zr
oe
0.1
1000
\
SOURCE:
7)
we
35a
10°
TIME-SECONDS
1977
Atlas of Isothermal Transformation and Cooling Transformation Diagrams, ASM,
10%
Atlas of Time-Temperature Diagrams
496
440A
Stainless
Steel
Composition: 0.62% C - 0.30% Mn - 0.17% Si - 16.59% Cr
Austenitized at 870°C (1600°F)
1550
1500
>1450
S oO(=)
1350
TT
CCAIR
TI eee
ere
CONT
CCI
ere
PHT
CHtHSCCEE
CIEE
COT AA
1300
deg.F.
Temperature,
1250
200.
6) -15:* 30! 60-2.
eee
4
Is 30
tiatiee
60
8
renee
I5
30
440B Stainless Steel
Composition: 0.93% C - 0.49% Mn - 0.43% Si - 18.40% Cr -
0.55% Mo Austenitized at 870°C aus
1550
1500
eee
eee aaa
= 1400 SIRHUStHISTSTS- sain fGGnia
360 BIRILAMIIESLGILfi
a S©
Temperature
IS
ue
30
60
5
stiches
3
60
2
4
I5 30
cue
SOURCE: Peter Payson, "The Annealing of Steel,” Iron Age, Vol 152, 1943 as published in Atlas of Isothermal Teanarorniation
and Cooling Transformation Diagrams, ASM, 1977
Atlas of Time-Temperature Diagrams
497
0.1% C - 13.0% Cr Steels
Composition: 0.11% C - 0.49% Mn - 0.10% Si - 0.016% P 0.013% S - 0.48% Ni - 12.80% Cr Austenitized at 1000°C
(1830°F) for 1h
psreiietion mOOETA 05
at Heo Tau Th
a
mol TUTE TTA | UTE ioe
SU Nate cating
Composition: 0.12% C - 0.49% Mn - 0.09% Si - 0.024% P 0.012% S - 0.46% Ni - 12.50% Cr - 0.45% Co Austenitized at
1000°C (1830°F) for 1h
900
Steel
2. : Q5%Co
3 eee TTL TT ire tre
me PCH
Poe SSE
$ 400 Pe
3 300
1
102
Seconds
10
1
10
Minutes
1
10
10
100
1000
10
109
a
ae
ues
i
752
|
Se
& 200
i_
tT
oi
Era lkae
HT|LT Nese
;
EaTUT
= 100 eens
UA
0 LC
1
10
seconds
10000
100
902
1
10
Minutes
100
1
1000
10
572 2
ees
392 é
Tet ees
7
105
10000
100
Hours
——
Time
——
——e
Time
———e
Composition: 0.13% C - 0.50% Mn - 0.45% Si - 0.034% P 0.010% S - 0.52% Ni - 13.2% Cr - 0.99% Co Austenitized at
Composition: 0.13% C - 0.52% Mn - 0.22% Si - 0.023% P 0.008% S - 0.48% Ni - 12.8% Cr - 1.87% Co Austenitized at
1000°C (1830°F) for 1h
1000°C (1830°F) for 1h
Steel 3
goo|_|
1%Co
Steel 4:
2%60
res2
200at CIRCE
TT 1472
roots HEHE Pett 1292
500
TTT
TTY
100CoC
0 LUTE TET TY
Temperature
in
°C
iecveaer
ck
cas
Minutes
——
Time
——e
cial Behan
se &
as
in
Temperature
°C
32
a
L
10
Seconds
]
Minutes
——
90
Time ——e
Alloyed
SOURCE: P. Nicolaides, D. Coutsouradis, L. Habraken, "Influence of Cobalt on the Transformation of a Chromium
702-705
1959,
August
215,
Vol
AIME,
of
Society
Metallurgical
the
of
Austenite,” Transactions
Se
ee
nnn
ene
eee
ene
EEE EEEEEEEEEEEESIEREEEEEEEE
498
Atlas of Time-Temperature Diagrams
0.1% C - 13.0% Cr Steels
Composition: 0.138% C - 0.49% Mn - 0.15% Si - 0.012% P 0.010% S - 0.51% Ni - 12.4% Cr - 4.9% Co Austenitized at
Composition: 0.10% C - 0.48% Mn - 0.55% Si - 0.024% P 0.011% S - 0.51% Ni - 13.3% Cr - 8.0% Co Austenitized at
1000°C (1830°F) for 1h
1000°C (1830°F) for 1h
wool[see §2 shG0 | [rtontnaton 172i |y55
“Ce
eae
A et [IIr292
400SatimatinMll Salica (Gail
aes
:
(AE ince TA
pe
Bi
Ne
= 400
3 300 Ht
AH
4-4
752 =
matt
Sroot (UIT
|UM
1
TUT
TT TT TN gs
10
zecees
Minutes
10
eA
ees
FSICCHE TT
752
tt
2S
SESS:
Seo Be
a ea
J
10
1
:
Dilly
ASM
ee WG
Se
; LTT
ences nmi Ape
BE aT
; COMIC
CnC
70
100.
Ci
1000
40000
Seconds
Teor
1
10
—
Time ——e
Minutes
Hours
——
eB
CC 32
100
1000
+a aemiG
Heurs
Time ——&
Composition: 0.13% C - 0.42% Mn - 0.33% Si - 0.025% P 0.012% S - 0.49% Ni - 13.5% Cr - 11.9% Co Austenitized at
1000°C (1830°F) for 1h
COC 4]eats
:
aa
ja ao Set
at
tC TIECCTH
re
-—t-— a)
==
[aia
=a
NN
§ os
°C
erature
in
me
Temp
e&
0 eee
10
Seconds
1
(aT
1
Minutes
——
a ee
10
32
f
sta, Te
900
1000
fe
10000
Time ——e
SOURCE: P. Nicolaides, D. Coutsouradis, L. Habraken, "Influence of Cobalt on the Transformation of a Chromium Alloyed
Austenite,” Transactions of the Metallurgical Society of AIME, Vol 215, August
—_—_———
=
1959, 702-705
SS
10000
ate scaal
Atlas of Time-Temperature Diagrams
430 Stainless
499
Steel
442 Stainless
Composition: 0.09% C - 0.40% Mn - 0.33%
Si - 0.34%
Ni 3
f
;
Steel
0.17%
C :
=O:0.56% Mn -- 0.46%
0.
Si - 0.35% Nii - 20.96% Cr - 0.04%
17.20%
- 0.06%foxMotec
- 0.010% Al - 0.03% N Austenitized at
TOORSC Cr
(GDINPP)
Mo o - 0.013%
0.013% Al - 0.12%
enili
12% NA ustenitized
at 1260°C
eo (2300°F)
for
2
5 min
2000 Leas
| 600
As |e
i al
Glee
Bia
n
=s ;
le bear lotic
e
400 | ht 40a
ka
=
fel
ihe
ea
C | A F+40%ArC
V,
Siva
gees
<q
1800
or oto® Teas
=
|11
-
Pp
2
a
& 120
© 1000
a
|
Baud
2
2a
=
l——T_|
Vs F+(50%A4C
areoe
‘v 1200
sept
Lt
1
1000
& 800
600
eS
Seconds
400
Minutes
Hours
Time
eo
4
SO ISSO
GO
FT
Seconds
TCO
2074s
GinlS
30) GO 24
CO
ES
167152350160
OT
Minutes
CC
SGCY_Y
Hours
Time
446 Stainless Steel
Composition: 0.24% C - 0.46% Mn - 0.42% Si - 0.26% Ni -
24.85% Cr - 0.02% Mo - 0.010% Al - 0.17% N Austenitized at
1260°C (2300°F) for 5 min
ww
°
ao
5
Pearlite-+93Rb
12}
ry
Pp S]
5
|
2 1400
mS
E
wv
=
Raaa
SE
al
fes|
A2)
pe
800
1
2
4
8
15
Seconds
3060 2
4
86 15
Minutes
30
60
2
4
8
15
3060
Hours
Time
SOURCE:
17 to 25%
A.E. Nehrenberg, Peter Lillys, "High Temperature Transformations in Ferritic Stainless Steels Containing
Chromium,” Transactions of the ASM, Vol 46, ASM, 1954, 1176-1213
nn
Atlas of Time-Temperature Diagrams
500
M2 Tool Steel
Composition: 0.81% C - 0.24% Mn - 0.26% Si - 0.016% P 0.007% S - 4.10% Cr - 4.69% Mo - 1.64% V - 5.95% W
ie
s©
Metallograpric
|| _
©
Determmnations,||
Q
% Martensite:
§
Time, Hours
SOURCE: Paul Gordon, Morris Cohen, Robert S. Rose, "The Kinetics of Austenite Decomposition in High Speed Steel,”
Transactions of the ASM, Vol 31, ASM, March 1943, 161-217
M2 Mod
Tool Steel
Composition: 0.83% C - 0.32% Mn - 0.25% Si - 3.89% Cr 4.30% Mo - 1.30% V - 5.79% W Austenitized at 1220°C
(2225°F)
Soced Tee]
S70de:5-4-4-1 High
1400 |Austenitizing
Temp. :2225F |
Critical (Ac) -- :1520%
1200 |Prion Condition: Anneated HAS Pe
TTT
Hl
eo
2 TOC
‘ ine& geo TCI
colt?
a
: PEE rTECEECEC HEEL a
S
opie
STHLLAIRTRRU AGRE <ORLBIE S90
spin of eee
atte
att
tt710
| 20% ||
inDainIMnIit itnneon
teHT 64Fe|
oceans
Solan
=Bien
Ses
~
2
46 0020 #6) 2
460
2
7imeé-~ minutes
SOURCE:
4560 2
460 ©
68
P. Payson, J.L. Klein, "The Hardening of Tool Steels," Transactions of the ASM, Vol. 31, ASM, 1943, 218-256
_ Atlas of Time-Temperature Diagrams
2
e
OS
e
I
e
M10
Tool Steel
Composition: 0.85% C - 4.00% Cr - 8.00% Mo - 1.90% V
Austenitized at 1220°C (2225°F)
wep
LETT SSH
| ec
HTT TTT Pre
TS al
TUTTI
TT
@
naa
Fiance
: PARAM CTHTHett AEH EE
TEMPERATURE
F
mirsnsimimararaitsietmesQiQiUHiO/AEE
ty
T IME
SOURCE: Data Sheet, Crucible Steel Co. of America, December 1947 as published in Atlas of Isothermal Transformation and
Cooling Transformation Diagrams, ASM, 1977
T1 Tool Steel
Composition: 0.72% C - 0.27% Mn - 0.39% Si - 4.09% Cr -
1.25% V - 18.59% W Austenitized at 1285°C (2350°F)
1400
7200
Grade: 18-4-1 High Speed
Austenitizing Temp.: 2350F
Critical (AC;) --- : 1845 F
Prior Condition: Annealed
||
7000
xX
s 800
2$e)
Ks
8 600
8
400
200
9
Lit9g'%b
124610 20 602
Seconds
461 2045602
Time-Minutes
=
4610
2 4560
Hours
SOURCE: P. Payson, J.L. Klein, "The Hardening of Tool Steels,” Transactions of the ASM, Vol 31, ASM, March 1943, pp
218-256
501
Atlas of Time-Temperature Diagrams
502
T2 Tool Steel
Composition: 0.85% C - 4.00% Cr - 0.75% Mo - 2.10% V -
18.50% W
Austenitized at 1285°C (2350°F)
TTT
CATE HAIL StMOBRPRIOTBL coal
fie
CECT
al
aa Ts
CIAO
ay
PCIE
ey
SPICES Eee
be
3 PCIE
aa
CIAO
H
AIA
ee
ce
ies
Co
BS
COTTA i
|
F
inn
Hi?" AISAAERAAIAE ee
pie
Cribs TTT
TeePERE
U1PRE
PE
A
1
EEES
TEMPERATURE
Ir
Bide
aaeeesee
200
TIME
SOURCE: Data Sheet, Crucible Steel Co. of America, December
Cooling Transformation Diagrams, ASM, 1977
1947 as published in Atlas of Isothermal Transformation
and
T4 Tool Steels
Composition: 0.72% C - 0.23% Mn - 0.43% Si - 4.04% Cr 4.72% Co - 1.24% V - 18.38% W Austenitized at 1285°C
(2350°F)
1400
SCRE
iaal
RE
TTT
BREA STOSHaHALLs mest tarball
1200 [-Srede: 18-4-1+5Co High Speed
pe ee
1000
fanee SEL
|
SAE ae
MTOGamiaUOIRInroa
}- Prior Gondihen Anncoed |
MGeERARnintaae
Ca
eee
Si 043
ell
800
EOE FSR
EC
Uae
ECan a eeaal
prone Be ATCC
S 600 Bl we ae
Le
cae
eee enamine
0%
HATE ures
400 tpagiNniNg O1 MartonsilUT
wolfe
ECCT
eae
eval
Became
2
1g
Seconds
SOURCE:
20
Tet t
49560 2 46
etree
10
20 4560
7ime~ Minutes
1
!
2
ee
60%
COI
| {| [40%
ae
How
P. Payson, J.L. Klein, "The Hardening of Tool Steels,” Transactions of the ASM, Vol 31, ASM, March
1943,
218-256
Atlas of Time-Temperature Diagrams
503
T7 Tool Steel
Composition: 0.73% C - 4.00% Cr - 2.00% V - 14.00% w
Austenitized at 1285°C (2359°F)
iE
Tot
NEHESHaHathStSn
MTU. ARE
atTTT
ArH
Aut
sIAITISTOATAARUAIACHRRAIATIIIE ARE
F
TEMPERATURE
ELEN Ua MMTLAR
PTT
bal
SIMIEZd
Seat
wa?
345680
BRO
30 4860 bet
Pee TTL
345680
62
30 450
we
TIME
348660
Bf
30 4 OO
SOURCE: Data Sheet, Crucible Steel Co. of America, February 1948 as published in Atlas of Isothermal Transformation and
Cooling Transformation Diagrams, ASM, 1977
T8 Tool Steel
Composition: 0.80% C - 4.00% Cr - 0.75% Mo - 5.00% Co -
2.00% V - 14.00% W Austenitized at 1285°C (2350°F)
PLETE TT TTT err |
SUT RRHGIMITiiees
AORERT REYES
PT
TT
eT
PCr
CPCI CECCEEEC HIE CECE CIC
See
ST eiala
GE Sa aE Eee ele
erae
aE
a HUE gtaeeSLETTG en
pes
EGET
BORAGE EGE HINT ttt
TEMPERATURE
F
SEELEY
IEE
Asie
tea nears
a SLGHHaLPP ALCL
RTPRERTSTLALD AEE
Hp sesonne tate tres]
a
||| [rors || |ae
hatla
aichoerant
TIME
SOURCE:
Data Sheet, Crucible Steel Co. of America, September 1946 as published in Atlas of Isothermal Transformation
Cooling Transformation Diagrams, ASM, 1977
and
Atlas of Time-Temperature Diagrams
504
H11
Tool Steel
Composition: 0.40% C - 1.05% Si - 5.00% Cr - 1.35% Mo -
0.35% V Austenitized at 1010°C (1850°F)
LI
SAE
EE
a a
cet
OFMARTENSITE] ||PE
ud BEGINNING
b
#3486800
68
BH) B®
SOURCE: Data Sheet, Crucible Steel Co. of America, December 1947 as published in Atlas of Isothermal Transformation and
Cooling Transformation Diagrams, ASM, 1977
H12
Tool Steel
Composition: 0.32% C - 0.35% Mn - 0.95% Si - 4.86% Cr -
1.45% Mo - 1.29% W Austenitized at 1010°C (1850°F)
Grace: Cr-Mo-W Hot Work
|
Austerntizing Temperature: 1850 F
Critical (Ac,)
~Wo Ei
Prior Condition: Annealed
Temperature,
F
1
SOURCE:
218-256
2
46 10 20 460
2 46 0 2
Seconds
Time~Minutes
P. Payson, J.L. Klein, "The Hardening of Tool Steels,” Transactions of the ASM, Vol 31, ASM, March, 1943, pp
Atlas of Time-Temperature Diagrams
H13 Tool Steel
Composition: 0.40%
C - 1.05%
Si -- 5.00%
Cr - 1.35% Mo 4
‘
5.
1.10% V Austenitized at 1010°C (1850°F)
eae
ea
SOUR Cn as
SOURCE:
of Isothermal Nat Transformation
ee
eatin
and
i
fe
Data Sheet, Crucible Steel Co. of America, February 1949 as published in Atlas of Isoth
EE
505
506
Atlas of Time-Temperature Diagrams
H14 Tool Steel
Composition: 0.40% C - 1.15% Si - 5.25% Cr - 4.25% W
Austenitized at 1040°C (1950°F)
}400
CUE
TT
aT
ETE
TTTT AN
Hie IUGR a SERGI
Le
LJ
100
5
BS
TUTTE
E SHER ELL AP TTT LAT
| [|eecinmins ormanrensive 111 | LLTT TIT UE |
oot Cre
a ETT
TT TTT TT
d
Bataan
(| Wwe?
345660
680 BW
6
we?
3486810
620
30 4860
wf
346660
620 30 4 @
TIME
SOURCE: Data Sheet, Crucible Steel Co. of America, April 1948 as published in Atlas of Isothermal Transformation and Cooling
Transformation Diagrams, ASM, 1977
H16 Tool Steel
Composition: 0.54% C - 0.62% Mn - 0.93% Si - 7.83% Cr 6.90% W Austenitized at 900°C (1650°F)
BELTS
R mA
eae ANAS
HECIEIGU
SEC
a0Ie
WH
a AIAIUAIBIBALELLSKBUROLSY UNNI
:
ee
TT
OETA
SE
B: sb SALTISaEL
TEC PNTANSITIAT
ie COCCI
Tr TP
5 1300
1200
8
I5
0
Be onde
60
2
4
5
Vie.
30
60
2
4
8
I
8
Hours
SOURCE: Peter Payson, "The Annealing of Steel,” Iron Age, Vol 152, 1943 as published in Atlas of Isothermal Transformation
and Cooling Transformation Diagrams, ASM, 1977
Atlas of Time-Temperature Diagrams
Bn
ee
507
H21 Tool Steel
Composition: 0.28% C - 3.25% Cr - 0.25% V - 9.00% W
Austenitized at 1150°C (2100°F)
F
TEMPERATURE
ies
ae
es
wer
hoe
SSim
(1e SE
||
=r
Pe
Se
ee
9
)a
eee
ae him
a
iS
ai
Bim
iB
6
te?
3466
8O
Bt
©
OO
twe2®@
ae
ee
ae
a
aCe
ee
ee
a
ee
ee
ES
ER
nS
A
Ee
ce
Et
SiS
ik
a
ea
"Sa
RY
BE
+]
Fe
a
fe
|
3498680 ©
TIME
SOURCE: Data Sheet, Crucible Steel Co. of America, March
Transformation Diagrams, ASM, 1977
1948 as published in Atlas of Isothermal Transformation and Cooling
D2 Tool Steel
Composition: 1.50% C - 11.50% Cr - 0.80% Mo - 0.20% V
Austenitized at 980°C (1800°F)
TEMPERATURE
F
'
hae
Se
ee een
eres
348660
620
310 06
met
346660
6f0
30 43 00
TIME
of Isothermal Transformation and
SOURCE: Data Sheet, Crucible Steel Co. of America, February 1949 as published in Atlas
Cooling Transformation Diagrams, ASM, 1977
Atlas of Time-Temperature Diagrams
508
D4 Tool Steel
Composition: 2.25% C - 11.50% Cr - 0.80% Mo - 0.20% V
Austenitized at 980°C (1800°F)
HHITSTRGTSEBLIEEE
UTE
He
4
HHT Tt
PUTT aLeese cma ae
=
SHIRE
UeIeR Ribas
EE Ae
eee SOUTER
so ETT
© seo TUTTE
TTT
c re FTI
TT TTY
Goo TUT TTTTTT eer |
pee SS
bsSe
TN LT
| [ecchonne cruamersre| |] LUT UTTEE rr tT
i eee
1100
=
ail
—
+
—
be2@
3466
860
BH
1
60
Wee
[ee
SOURCE: Data Sheet, Crucible Steel Co. of America, December 1947 as published in Atlas of Isothermal Transformation
Cooling Transformation Diagrams, ASM, 1977
A2 Tool Steel
Composition: 0.97% C - 0.48% Mn - 0.40% Si - 4.58% Cr -
1.04% Mo - 0.25% V Austenitized at 1010°C (1850°F)
7400 \— Grade: 5% Cr Air
A
Hardening
Hl C---|
Austenitizing Temp.:1850 %F
l NI
1200 }- Gritical (AC) -»- - 1460 °F
Prior Conaition: Annealed
||
Ni
; |
Le
|
CIEIEPITTE:
S.
1000
Te
9s 0
2
&
3 600
iS
400
HT a Hatta
ek
Taba
|
lial lla
a Ht
00 95
Ffas 9Patt tea
i}
2
46
10 20 4560 2
Seconds
SOURCE:
218-256
aa
Time- Minutes
ea
4 6 10
20
4560
Hours
P. Payson, J.L. Klein, "The Hardening of Tool Steels,” Transactions of the ASM, Vol 31, ASM, March 1943, pp
and
Atlas of Time-Temperature Diagrams
509
O1 Tool Steel
Composition: 0.85% C - 1.18% Mn - 0.26% Si - 0.50% Cr 0.44% W Austenitized at 795°C (1450°F)
1400
1200
Grede: Ci!
ited
|
eerie eee
GREGLALL |
Termp.:
1000 |1499 °F
0,
Critical (Ac;)
Temp:
:
1370 °F
Prior.
Condition:
\
Annesled
N
600
Temperature,
&
oh)%
1
2
46
170 2
458
2
Seconds
SOURCE:
46
10 20
4560
Time-Minutes
2
46
10
P. Payson, J.L. Klein, "The Hardening of Tool Steels,” Transactions of the ASM, Vol 31, ASM, March 1943, 218-256
O2 Tool Steel
Composition: 0.87% C - 1.78% Mn - 0.29% Si - 0.027% P 0.010% S - 0.15% Ni - 0.20% Cr - 0.03% Mo Austenitized at
795°C (1450°F)
oG
mae
600
TURE
TEMPERA
TIME -SECONOS
SOURCE:
20 4560
Hours
Carpenter Technology Corp.
510
Atlas of Time-Temperature Diagrams
S1 Tool Steel
Composition: 0.50% C - 1.25% Cr - 0.20% V - 2.75% W
Austenitized at 955°C (1750°F)
TUTTE
aaa nus
ben
Se
TeRe
aay
elec rin a
* 100
99
HH
a
700
D600
W550
4o0|_|9k
sole eta
200l_loy
'
het?
Ta
ACC
sort _||
Ce
TTT tele |
Id sok dommers tLe oba ||
EETdeed
A
i
op
CARS
84866060
68
48 00 weet
Hirai aC
ABME LLert
Joo
|]
TIME
SOURCE:
Data Sheet, Crucible Steel Co. of America, December
1947 as published in Atlas of Isothermal Transformation
Cooling Transformation Diagrams, ASM, 1977
S2 Tool Steel
Composition: 0.50% C - 0.35% Mn - 1.0% Si - 0.018% P 0.013% S - 0.19% Ni - 0.11% Cr - 0.50% Mo Grain size: 8
Austenitized at 845°C (1550°F)
aeAustenitizing Temp. 1550°F Ba
TEMPERATURE
OAY
1
TIME -SECONDS
SOURCE:
Carpenter Technology Corp.
and
Atlas of Time-Temperature Diagrams
a
oll
S5 Tool Steel
Composition: 0.60% C - 0.75% Mn - 1.90% Si - 0.25% Cr 0.30% Mo Austenitized at 909°C (1650°F)
PULTE TTT
5B 8 mUGEE
(400
Et tft a
ia 0B anit
HARE SEIU SUSU
ae
NT
_$CUTdeeTEE
Neb TTT
HVA? SEAT ALAULALEVAR STENT
HIRE ai ah Set Pia
F
TEMPERATURE
4936860
60
©
46 6
mat?
348660
B80 1 OO
SOURCE: Data Sheet, Crucible Steel Co. of America, February 1949 as published in Atlas of Isothermal Transformation and
Cooling Transformation Diagrams, ASM, 1977
P2 Tool Steel
Composition: 0.07% (max) C - 0.55% Ni - 1.35% Cr - 0.20% Mo
Austenitized at 845°C (1550°F)
L
i
F
c
a
u
SOURCE:
PEELE EESTI HPI
TE CEE
ETT el an TTS
HapetLe aoe SSL
@anrs
ttt | | ||
inimiaMiIMIAMIRIRAAMIMII SOREL
eee BIEEE ITEMPLIST aeSee
ifSUOMI ATLAVGHORUELELU SIRE
ST
decal eked lheLL
SPETTTTETTT
TTT
WEE
Sere
reise ear
TET EPEAT
a
Tun:
Data Sheet, Crucible Steel Co. of America, February 1948 as published in Atlas of Isothermal Transformation and
Cooling Transformation Diagrams, ASM, 1977
Atlas of Time-Temperature Diagrams
512
P2 (Carburized
Case) Tool Steel
Composition: 0.07% (max) C* - 0.55% Ni - 1.35% Cr - 0. 20%
Mo Austenitized at 845°C (1550°F)
* before carburizing
ST TT TT TO HHH RAR
SRIGnG
LE Se
HA
TTT
eT
e TOPPER
LL
A
eT
St LITTERS
er rE
eT
E CC
LUN TNT
@ otTTS
TT TT
MTT
TTT
TT
CTT
TAU SET
eee
as PE Rigi ee
|| eet|
Beier:
Meenas
t
és CECT
ah Ce
tt
Hig dbrenoe au Uouerrre ee 0i le rear ei oi
TIME
“SOURCE: Data Sheet, Crucible Steel Co. of America, February 1948 as published in Atlas of Isothermal Transformation
Cooling Transformation Diagrams, ASM, 1977
and
P4 Tool Steel
Composition: 0.14% C - 0.41% Mn - 0.21% Si - 0.19% Ni -
5.12% Cr - 0.51% Mo Austenitized at 900°C (1650°F)
PTT
TTT Tee
Sa || |
RECESS Siti ts
Hl
CET TIPRSS So PPS
sant
IME EERE EEE
Les
a
ee
EE
IAIARIE Hata
FTEMPERATURE
CE
+
tea2
are ee
na INIRIIE
SECONOS
3
456
60
B80
BW 496
tee
3456610
BHO 30
6
Me
TIME
Le
348368680
9320 31 4 60
SOURCE: "L.F. Bowne, Jr., "The Use of Direct Transformation Data in Determining Preheat and Postheat Requirements for Arc
Welding Deep Hardening Steels and Weld Deposits,” Welding Jounral, Vol 25, April 1946, pp 2348-241s as published in Atlas of
Isothermal Transformation
and Cooling Transformation Diagrams, ASM, 1977
Atlas of Time-Temperature Diagrams
513
————
a
P20 Tool Steel
Composition: 0.30% C - 0.75% Mn - 0.50% Si - 0.80% Cr 0.25% Mo Austenitized at 845°C (1550°F)
i ec
HEL
AT
i)
TEMPERATURE
F
SOURCE: Data Sheet, Crucible Steel Co. of America, February 1949 as published in Atlas of Isothermal Transformation and
Cooling Transformation Diagrams, ASM, 1977
L1 Tool Steel
Composition: 1.01% C - 0.50% Mn - 0.30% Si - 1.21% Cr
Austenitized at 815°C (1500°F)
+
ttt
|
Grade: C-Cr Too!
Austenitizing Temp.: 500%
Critical (AC;)
-+-
= 1385 °F
Prior Conortion: Annealed
Temperature,
Beginnun
1
SOURCE:
2
Bea
46 10 20 4560
Seconds
2
bed
coir
med od)
46 10 20 460 2 46 10
Time-Minutes
Hours
20 460
P. Payson, J.L. Kelin, "The Hardening of Tool Steels,” Transactions of the ASM, Vol 31, ASM, March
1943, 218-256
Atlas of Time-Temperature Diagrams
514
L2 Tool Steel
Composition: 0.45% C - 0.70% Mn - 1.00% Cr - 0.20% V
Austenitized at 900°C (1650°F)
400
1200
ae
ap SUCCINIC
c HHA fl AT
TT
© solTITTLE
TC
ooo
gHi AVDA
HELE
cee
SPYRE ETT
go BENNING
oFmann
veal RTT
Ned CA
BUA SUERESUSUSULAUEHERIAS ACCT
~
Ise
sea pL
i
ere TT
|
ebiee “EEE
$68
TIME
SOURCE: Data Sheet, Crucible Steel Co. of America, December 1947 as published in Atlas of Isothermal Transformation
Cooling Transformation Diagrams, ASM, 1977
and
F2 Tool Steel
Composition: 1.32% C - 0.28% Mn - 0.50% Si - 0.22% Cr -
3.51% W Austenitized at 845°C (1550°F)
LT Le eet
22% LE
|
all,
| CA
Ag Grade: Tungsten Fast Finishing
Rea
se psc
au
Temperature
:1550 °F Ea
?
ae
:
y
RissEN Vea Seale Deen aden: : Annealed eee eat
re TCUEREE TRH
:
See
§
ASCH MS CUCM UUM
MEIGS
AR
CRUE 111
COSINE
1
2
46
1
Seconds
SOURCE:
&4
eit
2
460
246
10 2
Time- Minutes
460 2 46
0 2
Hours
4560
P. Payson, J.L. Klein, "The Hardening of Tool Steels,” Transactions of the ASM, Vol 31, ASM, March
1943, 218-256
Atlas of Time-Temperature Diagrams
W1 Tool Steel
Composition: 0.95% C - 0.25% Mn - 0.20% Si Grain size: 8-3/4
or finer Austenitized at 790°C (1450°F)
Bamtile
TET Sts
ge ee
a
BEDE!
ae TTT Se Tila
Brat
PTET ET
R
Hee HEHEHE
IC SUMTARILE i Saianiit THREE
PHL PME TH a eel
TS Stain Ba SHEEN AA
aa RAS2
eo
TIME
SOURCE: Data Sheet, Crucible Steel Co. of America, December 1947 as published in Atlas of Isothermal Transformation and
Cooling Transformation Diagrams, ASM, 1977
W1 Tool Steel
Composition: 1.14% C - 0.22% Mn - 0.16% Si Austenitized at
790°C (1450°F)
Pett
a ace PSEC
Grade: Extra Too!
Austenitizing Ternp.: 1450°F
Gritical (AC;))
~~
:I3GO%
Prior Condition: Annealed
D8
i
Temperature,
°F
ja
fe
/
|
iree
Se
1B
- a ge=Fe
S&SSDs
t
1
SOURCE:
2
100%
4610 2
Seconds
Ge
1.
&
a
See
Wy.
aes3
SSS
Sie
Et
ee
460 2 46 10 2 460
Time- Minutes
2
pe
D5
Ree
1943, 218-256
P. Payson, J.L. Klein, "The Hardening of Tool Steels,” Transactions of the ASM, Vol 31, ASM, March
Atlas of Time-Temperature Diagrams
516
W2 Tool Steel
Composition: 0.95% C - 0.20% V Grain size: 9-1/2 Austenitized
at 795°C (1450°F)
RUE
afanasaseraieceeeoeeGTOM
obit rE eesaiate
fi PH Giana
a
8
Oo
Taine naita
Ha
A Hi
HATE
MILainieetninees
isos DS
Ni
PEEL
200
Tod me
es| PU Dee
TT
ete1
6 20
ry
TIME
W4 Tool Steel
Composition: 1.05-1.15% C - 0.30% Mn - 0.50% Si - 0.25% Cr
Grain size: 8-3/4 or finer Austenitized at 795°C (1450°F)
ae
sistaSALah
SY
rs
SOURCE:
NY
Data Sheet, Crucible Steel Co. of America, December 1947 as published in Atlas of Isothermal Transformation and
Cooling Transformation Diagrams, ASM, 1977
Atlas of Time-Temperature Diagrams
517
a
Fe-Ni-Cr
ee
eee
eee
Steels
Composition: 0.10% C - 0.40% Mn - 0.30% Si - <0.005% P -
<0.015% S - 4.00% Ni - 17.0% Cr - 0.005% N
No.! Alloy
First detectable amount
(%)
Temperature
10?
Time (tt!)
(min)
Composition: 0.11%C - 0.38% Mn - 0.33% Si - <0.005% P <0.015% S - 7.25% Ni - 15.6% Cr - 0.005% N
No.2 Alloy
(°C)
Temperature
/
10
10?
Time (ttl) (min)
SOURCE:
Yunoshin Imai, Masao Izumiyama,
"Relationship Between the Solid Phase Equilibrium and the Isothermal Martensite
Tohoku University,
Transformation in Fe-Ni-Cr and Fe-Ni-Mn Alloys,” The Research Institute for Iron, Steel and Other Metals,
Sendai, 1960, pp 170-176
eS
Atlas of Time-Temperature Diagrams
518
Fe-Ni-Mn
Steels
Composition: 0.016% C - 3.62% Mn - 0.04% Si - 23.2% Ni -
0.001% N - 0.015% O Austenitized at 1150°C (2100°F) for 5
min
-80
-100
ALLOY A
(23.2 Ni, 3.62 Mn)
=20
-140
-160
(°C)
TEMPERATURE
-1go-
FIRST DETECTABLE
AMOUNT OF MARTENSITE
(ABOUT 0.2%)
10
sO
100
500
TIME (SECONDS)
1000
5000
SOURCE: C.H. Shih, B.L. Averbach, Morris Cohen, "Some Characteristics of the Isothermal Martensitic Transformation,”
Transactions of the AIME, Vol 203, January 1955, pp 183-187
Composition: 0.05% C - 3.73% Mn - 22.94% Ni - 0.015% N
Austenitized at 940°C (1725°F) for 2h
C
DEGREES
5
10
ISOTHERMAL
SOURCE:
HOLDING
SO
100
TIME (t+!) MIN.
500
1000
R.E. Cech, J.H. Hollomon, "Rate of Formation of Isothermal Martensite in Fe-Ni-Mn Alloy,” Transactions of AIME,
Vol 197, May 1953, 685-689
a
Atlas of Time-Temperature Diagrams
519
Ni-Al-Ti-Cb Steel
Composition: 0.010% C - 0.08% Mn - 0.08% Si - 24.9% Ni 0.26% Al - 1.58% Ti - 0.15% Cb (Nb) Austenitized at 815°C
(1500°F) for 1h
ANNEALED
FOR IHOUR
AT I5S00°F
SOURCE: R.B.G. Yeo, "Isothermal Martensite Transformation in Iron-Base Alloys of Low Carbon Content,” Transactions of the
AIME, Vol 224, December 1962, pp 1222-1227
Alnico Steels
Composition: 0.025% C - 14.90% Ni - 34.75% Co - 3.55% Cu 7.00% Al - 0% Ti
Composition: 0.017% C - 14.92% Ni - 34.25% Co - 3.20% Cu 7.00% Al - 2.10 Ti
Composition: 0.005% C - 14.92% Ni - 34.50% Co - 2.88% Cu 7.07% Al - 3.85% Ti
Composition: 0.014% C - 14.76% Ni - 34.50% Co - 3.05% Cu 7.10% Al - 6.25% Ti
TEMPERATURE,
°C
Note: the dotted line shows the onset of the alpha-gamma
precipitation in Alnico VIII containing 5% Ti; the solid lines are
for alpha-gamma initiation of precipitation in the experimental
alloys
TIME,
minutes
SOURCE: G. Vallier, C. Bronner, R. Peffen, "Study of the Effect of Titanium on Alnico Alloys Containing 34% Cobalt,” Cobalt,
No. 34, March 1967, pp 10-17
Neen ie ee Sa
eee
a
EE
Atlas of Time-Temperature Diagrams
520
a
Ticonal
Lr
Steels
1200
Ticonal 600
Composition: 13.6% Ni - 24.0% Co - 3.0% Cu - 7.85% Al
| | ]1
'
sie
Austenitized at 1300°C (2370°F) for 30 min
j
Wate
ey ee
Vig are
n20
Te
Mn
/
:
Ticonal 800
oy
Composition: 13.75% Ni - 23.7% Co - 2.9% Cu - 8.0% Al - 1.8%
ui
:
Nb Austenitized
at 1300°C (2370°F) for 30 min
a
Ticonal 1500
r
2
rs
=
ara aie Nt eal
ea
|
are mia
og)
||
eer
~O+
——
++
oy
a
HH
|
——+
}
AN i
|
|
ioa
ue
|
:
7 ai |)
800, and the heavy solid line is for Ticonal 1500
T
itiaaat |
a
Mas
920
\
aclaa
eee ace es pena
para
mera
eset
Ti Austenitized at 1250°C (2280°F) for 30 min
Note: Dotted line is for Ticonal 600, thin solid line is for Ticonal
|
i
anemia
Lae
~
‘
=S
Lagi
ee ‘
o\
1000
=
Composition: 14.3% Ni - 34.1% Co - 3.6% Cu - 7.55% Al - 5.3%
l/l
/
i
i
|
1080
an
c
|i
HT
at
om
:
is
114
iC
5
anal
1 ener
le
ee
2
sete
2)
Dn
WHOS
TIME,
minutes
WM
WO
20
30
00
Ticonal 600 Si-Mod.
Composition: 13.45% Ni - 24.7% Co - 3.0% Cu - 7.95% Al 0.8% Nb + (dashed line) 0% Si; (light line) 0.2% Si; (heavy
line) 0.4% Si
1200
120
1080
AS
1040
TEMPERATURE,
$20
1
2
Ge Sipe 7e 10.
0
TIME,
WON
WM WO
ao 30
KO
1000
minutes
SOURCE: E. Planchard, C. Bronner, J. Sauze, "Contribution to the Study of the Kinetics of the Alpha-Gamma
in Alnico Alloys,” Cobalt, No. 28, September 1965, pp 132-141
————_“—_..006«€w@€€
Transformation
1000
Additional Steels
l-T and CCT Diagrams
Atlas of Time-Temperature Diagrams
523
Low-Carbon
Low-Alloy
High-Strength
Steels
Composition: 0.12% C - 0.83% Mn - 0.30% Si - 0.004% P -
0.005% S - 0.30% Cu - 1.11% Ni - 0.53% Cr - 0.49% Mo 0.03% V - 0.031% sol. Al Austenitized at 1200°C (2192°F) for 5
min
oo
900+
Austenitized a 1200°C
Ac
- =
826°C
oe
oe Rees
a
rs
900;
poe
Austenitized
800}
©
T
SS
at 1200°C
“0 0.7F°=F
=
“_XoSi=)
ei
°0.1F
600
SRR
280°C/m
CR
in 85°C/mi
n\
/min
\\
Vv
\
va
uroSoO
Ferrite
Gree
15°C
—S
ur
Temperature
(°C
(‘C)
Temperature
Martensite
\ i
————
4
1) @Lse,
2007.
®
—
een
1
2
+
n
8
26 S100
@
®@
©
2
4 6810?
Cooling time from
2
Ac3
|
B® SS ®
B
4 68105
(sec)
4
2
+
Be
|
200;
6 8108
100
1
2
CL ei
4
6810?
2
Time (sec
4
68103
2
Composition: 0.22% C - 0.83% Mn - 0.24% Si - 0.007% P -
0.011% S - 0.30% Cu - 1.06% Ni - 0.54% Cr - 0.51% Mo 0.029% sol. Al Austenitized at 1200°C (2192°F) for 5 min
sal
A
ans
ig
tenitized
itized
a at 1200°C
Ac3 805°C
ACT
Ee
~~ 100
7
o
‘e600
|
ie
bi.
= 500-
15°C/min
Bainite ’
i
v
=
Ms
’
6400s
2 55h ——
ze 300
Martensite
4
A>
=a
=
4
as
2007 ,
=<
ql
2
qucecked N55,
100.
1
:
2
46810
Austenitized
Oo
~ 600
:
©.
ww
4
6810
NS
2
282
=
2
x
y
4
68108
w
faa
2
4 6 810
at 1200°C
Austenite
ie
50B_
S
© 500¢
p °00B
9608
ovo
A
iS 400}
OM
Martensite
1)
1
SS
2
4
ee
6 810
2S
2
4
4
.
6 8102
2
Time (sec)
Se
4
6 810°
ee
2
4
J
6 8104
SOURCE: Yasuya Ohmori, Hiroo Ohtani, Tatsuro Kunitake, "The Bainite in Low Carbon Low Alloy High Strength Steels,”
Transactions ISIJ, Vol 11, 1971, pp 250-259
go
mse,
ee
4
6 810!
524
Atlas of Time-Temperature Diagrams
Low Carbon
Low Alloy High Strength Steels
Composition: 0.22% C - 0.85% Mn - 0.24% Si - 0.008% P 0.012% S - 0.30% Cu - 1.05% Ni - 0.54% Cr - 0.51% Mo 0.02% V - 0.024% sol. Al Austenitized at 1200°C (2192°F) for 5
min
T
|ie ie
!
900}
Austenitized at 1200°C
800
——e
>
Ac3 820°C
ee
S Oe.
|
Austenite x
=
:
|
|
;
3300°C/min
° 600+
a
© 500}
4
A5°C/min
5 400;--=---\--
|
300 -=-—acamem
4
=
ee
200Ee. 7 ox
|
quenched 8) ;
100 1
ee
2
4
Austenitized
ee oe
6810
2
4
—Lt
6810?
2
4
+
~
68103
2
4
6 810!
at 1200°C
©2F
©0.2F
Austenite
e1B
:
©0.2B
e5B
e10B
Ferrite
elF
o4B
(°C)
Temperature
1
2
4
€ 810
2
4
6 810?
2
4
6 8103
2
4
6 8104
SOURCE: Yasuya Ohmori, Hiroo Ohtani, Tatsuro Kunitake, "The Bainite in Low Carbon Low Alloy High Strength Steels,”
:
Transactions ISIJ, Vol 11, 1971, pp 250-259
——_———
SSS
Atlas of Time-Temperature Diagrams
525
2.6Ni-0.4Mo Steel
Composition: 0.30% C - 0.52% Mn - 0.18% Si - <0.02% P -
0.021% S - 2.64% Ni - <0.05% Cr - 0.37% Mo - <0.015% Al
Grain size: 5 Austenitized at 870°C (1600°F) for 45 min
Temperature
-=--clsothermal Stort
o——+ Cooling
Start
100
——*
Cooling
Stop
Cooling
Start
(Predicted)
10°
10'
10?
10°
10%
10°
10°
Time - Seconds
3.6Ni-0.5Mo Steel
Composition: 0.30% C - 0.41% Mn - 0.28% Si - <0.02% P -
0.014% S - 3.64% Ni - <0.05% Cr - 0.47% Mo - 0.058% Al
Grain size: 6 Austenitized at 870°C (1600°F) for 45 min
Temperature
Cooling
Start
(Predicted)
Cooling Rates
°F/ HR,
10°
SOURCE:
10!
10?
10%
Time - Seconds
104
10°
10®
Steels," Transactions of the ASM, Vol 50,
W.C. Hagel, M.N. Ruoff, "Transformation Structures in Hypoeutectoid Alloy
1958, pp 184-207
ns
Atlas of Time-Temperature Diagrams
526
1Cr-1Mo-0.2V
Steel
Composition: 0.26% C - 0.72% Mn - 0.72% Mn - 0.29% Si <0.02% P - 0.025% S - 0.11% Ni - 1.01% Cr - 1.04% Mo 0.23% V - <0.015% Al Grain size: 6 Austenitized at 955°C
(1750°F) for 45 min
a
aed
g
ane
q
g
A
3
-
=E
Bos
S
<O= -o Isothermal Start
o—w<- Cooling Start
a—-
Cooling
Stop
seeeeeeeeCooling
Start
roan
(Predicted)
10°
10!
10?
10°
10°
10°
10*
Time - Seconds
2Ni-1.3Cr-0.5Mo
Steel
Composition: 0.33% C - 0.52% Mn - 0.11% Si - <0.02% P -
0.014% S - 2.02% Ni - 1.34% Cr - 0.47% Mo - 0.09% V 0.040% Al Grain size: 6 Austenitized at 870°C (1600°F) for 45
a
5
io)
®a
E
a
=
<- --0-lsothermal Start
-—~< Cooling Start
9—2-Cooling
Stop
Cooling
Start
(Predicted)
10°
10!
102
108
104%
10°
10%
Time -Seconds
SOURCE:
W.C. Hagel, M.N. Ruoff, "Transformation Structures in Hypoeutectoid Alloy Steels,” Transactions of the ASM, Vol 50,
1958, pp 184-207
2
a
TT
SS
Atlas of Time-Temperature Diagrams
527
3Ni-2Cr-0.7Mo
Steel
Composition: 0.26% C - 0.41% Mn - 0.22% Si - <0.02% P 0.024% S - 2.91 Ni - 1.98% Cr - 0.69% Mo - <0.015% Al Grain
size: 5 Austenitized at 870°C (1600°F) for 45 min
Temperature
rere Isothermal Start
~o—<
Cooling
Start
Cooling
Start
(Predicted) ;
10°
10!
102
103
10%
10°
10°
Time - Seconds
SOURCE:
W.C. Hagel, M.N. Ruoff, "Transformation Structures in Hypoeutectoid Alloy Steels,” Transactions of the ASM, Vol 50,
1958, pp 184-207
aaa
ee
EEEEEaEeeen
Atlas of Time-Temperature Diagrams
528
3-1/2NiCrMoV
Turbine
Disk Steel
Composition: 0.3% C - 0.3% Mn - 3.64% Ni - 1.63% Cr - 0.49%
Mo - 0.08% V Austenitized at 840°C (1545°F)
----Ferrite less than 1%
All samples heated to 843°C and then
held 24 hrs before Isothermal hold
C
TEMPERATURE,
107
10°
10°
TIME, seconds
IT
Soilewss
i
Se
RAED
eae
eae
.
|oD
*!
00 3
800
ee SERRE
o
-
rm or
18 8 8
Austenitizing Temperature 843°C
N
\
2222°C/hr
722°C/hr
ASTM 9.5
\
;
\
\222°C/hr
56°C/hr
\
\
22°C/hr
6° C/hr
>)
B
Ee
:
s
<
ti
a 400
“
WwW
>
M,
=
300
s
a
;
A
B,
200
100
CCT
M,
10°
:
10°
10°
4
10°
10°
TIME, seconds
SOURCE: R.L. Bodnar, K.A. Taylor, K.S. Albano, S.A. Heim, "Improving the Toughness of 3-1/2NiCrMoV Steam Turbine Disk
Forgings,” Transactions of the ASME, Vol 111, January 1989, pp 61-70
aL
Atlas of Time-Temperature Diagrams
529
AISI S7 Tool Steel
Composition: 0.50% C - 0.71% Mn - 0.30% Si - 3.20% Cr 1.32% Mo Austenitized at 940°C (1725°F)
©. Mn Si _Cr_ _Mo
--50 71.30 3.20 1.32
I6e00L_
Austenitized
at I725F
Rb
92
99
101
105
te
iW
«
a
=
z
w
oa
=
a
tt
Py
=
a
lw
=
Re
49
54
10
20 hr
10°sec
IT
1800
1700
1600
1500
1400
1300
1200
w
© 1100
uJ
& 1000
—
<
a
300
a.
s 800
WwW
F 700
\
600
500
\
400
300
7
100
||
63
62
| | \|
«GIS
S65
$251548 45 47
10
CCT
SOURCE:
Bethlehem Steel Corporation
TIME, seconds
Hardness
HRC
Atlas of Time-Temperature Diagrams
530
Duracut
Chipper Knife Steel
Composition: 0.51% C - 0.34% Mn - 0.40% Si - 0.32% Ni - 4.8%
Cr - 1.99% Mo Grain size: 9.5 Austenitized at 1010°C (1850°F)
HV
222
232
250
290
1400
1300)
1000)
Samples
Austenitized at IBSOF
ASTM
ie
5
9.5
Ma = .40Si
34
TEMPERATURE
F,
10
10
104
IT
10°
10°
TIME
, seconds
Ps
ASTM
Grain Size No.9
Critical Temperatures on Heating (F)
Paste!
Vpoh
dh!
Z SOF/hr
F o fe)ie)
8
TEMPERATURE,
(0)
10
CCT
SOURCE:
100
103
104
108
TIME, seconds
Bethlehem Steel Corporation
Sse
a
10
Atlas of Time-Temperature Diagrams
OO
1010 Steel
Composition: 0.12% C - 0.50% Mn - 0.16% Si - 0.004% P 0.010% S - 0.0005% N Grain size: 9.9 Austenitized at 925°C
(1700°F) for 15 min
=
F
Temperature,
ae toe | baal |
7.6
A-austenite
M;
F-ferrite
P-pearlite
M, 852 F (calculated)
Ac, 1,342 F
Not determined
7.0
94 90
6.4 6.0.
Austenitized, 1,700 F - 15 min
Neo cooling
Grain size, ASTM No. 9.9
B-bainite
Ac3 1,578 F
0.12 C, 0.50 Mn, 0.004 P, 0.010 S, 0.16 Si, 0.0005 N
0.1
l
10
100
1,000
10,000
100,000
Time, Sec
1010 Mo Steel
Composition: 0.11% C - 0.50% Mn - 0.22% Si - 0.002% P -
0.007% S - 0.56% Mo - 0.003% Al - 0.002% N Grain size: 9.8
Austenitized at 925°C (1700°F) for 15 min
s
S
a
as e
A\
eWE
E S
M
N
Sh
Temperature,
F
228 |226 216 214 199 192 1B9
A-austenite
M, 740 F
Austenitized, 1,700 F - 15 min
F-ferrite
Ms 935 F
Grain size, ASTM No. 9.8
L53e
9.2
1S5
8.5
117 112 NY110
8.0 7.2 Net
\
Ac, 1,358 F
P-pearlite
Ac3 1,636 F
B-bainite
0.11 C, 0.50 Mn, 0.002 P, 0.007 S, 0.22 Si, 0.56 Mo, 0.002 N, 0.003 Al
0.1
1
10
100
104
6.0
\
\
1,000
10,000
100,000
Time, Sec
SOURCE: Jones & Laughlin Steel Corporation, C.F. zurLippe, John D. Grozier, "Continuous
as published in Metal Progress, February 1969
Cooling Transformation
Diagrams,"
532
Atlas of Time-Temperature Diagrams
1010
Mo-B
Steel
Composition: 0.10% C - 0.52% Mn - 0.21% Si - 0.002% P -
0.005% S - 0.0068% B - 0.050% Al - 0.0007% N Grain size: 10.4
Austenitized at 925°C (1700°F) for 15 min
ees
as
eae
Paes
ex
Pee
Temperature,
F
344) 307 282 225
215
199 203
|
192
185 113/111 \
A-austenite
My 730 F
Austenitized, 1,700 F - 15 min
F-ferrite
Ms 924 F
Grain size, ASTM No. 10.4
P-pearlite
Ac, 1,346 F
B-bainite
Ac; 1,638 F
0.10 C, 0.52 Mn, 0.002 P, 0.005 S, 0.21 Si, 0.55 Mo, 0.0007 N, 0.0063 B, 0.050 Al
Bold-faced numbers-are ASTM grain sizes: others are dph hardnesses
01
l
10
100
Time, Sec
1,000
10,000
SOURCE: Jones & Laughlin Steel Corporation, C.F. zurLippe, John D. Grozier, "Continuous
as published in Metal Progress, February 1969
Cooling Transformation
1036 Steel
Composition: 0.37% C - 1.45% Mn - 0.25% Si Grain size: 7
Austenitized at 845°C (1550°F)
1500
1400
1300
1036
0.37 C, 1.45 Mn, 0.25 Si
Austenitized, 1550 F
Grain size No. 7
Aca=1470 F Aci -1350 F
;
;
|
1200
Cooling curves
1100
Z
4
from 1550 F
q
ae
as
cn
|
:
ig
S
A+F+
at indicated
distances from
quenched end
= 900
5
™
800
700
kes ae
cap)
A+F+
NUN
i
A- austenite
400 [M=martensite
2
5
10
— pearlite
SOURCE:
—
900 |—bainite
600
N
20
50
Cooling Time, Sec
Bethlehem Steel Corporation as published in Metal Progress
100
109
6.93/68 ‘. 64
200
500
100,000
Diagrams,”
Atlas of Time-Temperature Diagrams
10B36
Steel
Composition: 0.36% C - 1.45% Mn - 0.25% Si Grain size: 7-1/2
Austenitized at 845°C (1550°F)
10B36
0.36 C, 1.45 Mn, 0.25 Si
Austenitized, 1550 F
Grain size No. 71/2
Acs=1470 F Aci =1355 F
Nie
iS
&s
x
ZZ
from 1550 F
\|at indicated
distances fro
IX
\
“4
F
Temperature,
A- austenite
400 [M—martensite
2
4)
1/16
1/8 3/16
10
20
50
Cooling Time, Sec
1/4
100
200
SOURCE: Bethlehem Steel Corporation as published in Metal Progress
ee
500
EEEEEEEESEEEEEEEEEEEEEEEESEEEEEEEE
Atlas of Time-Temperature Diagrams
534
SAE
1038 Steel
Composition: 0.38% C - 0.70% Mn - 0.25% Si - 0.015% P 0.030% S - 0.063% Al - 0.003% N Grain size: 8 Austenitized at
870°C (1600°F)
486 415 340
Austenitized, 1,600 F
Grain size, ASTM No. 8
Composition: 0.38% C - 0.70% Mn - 0.25% Si - 0.015% P 0.030% S - 0.063% Al - 0.003% N Grain size: 5 Austenitized at
1095°C (2000°F)
Temperature,
F
— JaSoOo
SNe
A—austenite
F — ferrite
P—pearlite
Ac: = 1,308 F
B—bainite
Acs = 1,398 F
0.38 C, 0.70 Mn, 0.015 P, 0.030 S, 0.25 Si, 0.063 Al, 0.003 N
Solid cooling curves are for bars of indicated diameters (in.).
Italic numbers are dph hardnesses, bold face numbers ASTM grain size.
1
10
100
8.0
Austenitized, 2,000 F
Grain size, ASTM No. 5
1,000
Time, Sec
SOURCE:
8.5
Jones & Laughlin Steel Corporation as published in Metal Progress
eee
10,000
Atlas of Time-Temperature Diagrams
SAE
1040 Steel
Composition: 0.39% C - 0.72% Mn - 0.23% Si - 0.010% P 0.018% S Grain size: 7-8
1,600
AIS!
1040
0.39 C, 0.72 Mn, 0.23 Si,
0.018 S, 0.010 P
Ac,=1,342 F
Ac.= 1,446 F
,
1,400
Grain size, ASTM No. 7-8
F-ferrite
P-pearlite
1,200
uw 1,000 Ay
3
e
=
CTemperature,
800
600
‘a
16.300
7,300 4,100 2,300
*\ |
$50
M
Hardness
200
1,200
Oph
Rockwell
a
634
“57
@
373-287-284
«242
=6C 38C 28C 28 C2)
Cooling Time, Sec.
SAE
1541 Steel
Composition: 0.89% C - 1.56% Mn - 0.21% Si - 0.010% P 0.024% S Grain size: 8
0.39 C, 1.56 Mn, 0.21 Si,
10P
0.024 S, 0.010
Ac,=1,321 F
Ac,=1,450 F
Grain size, ASTM No. 8
F ferrite
P-pearlite
B-bainite
M-martensite
te
C
Temperature,
F
Temperature,
2.980 1,720
Hardness
Oph
Rockwell
SOURCE:
900 550°
250
2.5 F/min
e
646
C 58
259
C 24
Bethlehem Steel Corporation as published in Metal Progress
264
C25}
232210
B98
B94
220
B 96
Atlas of Time-Temperature Diagrams
536
SAE
15B41
Steel
Composition: 0.42% C - 1.61% Mn - 0.29% Si - 0.006% P 0.019% S - 0.004% B Grain size: 7-8
1,600
AIS!
15B41
0.42 C, 1.61 Mn, 0.29 Si,
0.006 P, 0.019 S, 0.004 B
’
hi
—_
—
—— —
AC =F
Aci= 1433 F
Grain size, ASTM No. 7-8
F-ferrite
P-pearlite
B-bainite
EX
398 Fle - M_martensite
ee
Lan
i. Toe Peri
|
Temperature,
C
Temperature,
F
al
600
1
400
Hardness
Oph
Rockwell
200
689
C60
1
695
C60
698
CeO
10
649
|C58
308
C31
275 °| 258
VCr24)
CV26.
10’
262
C24
220
B99
10’
220
«6B 6
10°
10°
Cooling Time, Sec.
SOURCE:
Bethlehem Steel Corporation as published in Metal Progress
VAN-80
HSLA
Steel
Composition: 0.18% C - 1.28% Mn - 0.40% Si - 0.004% P -
0.012% S - 0.09% V - 0.07% Al - 0.018% N Grain size: 10.6
Austenitized at 900°C (1650°F)
os
SESE
fee
eles
ee
|
SY en
SOND
wl
a
ae
es
Temperature,
F
600
400
A-austenite
F ferrite
P—pearlite
B-bainite
200
Ms=770 F
Ac \=1,333 F
Ac371,610 F
Austenitized, 1,650 F for 10 min
Grain size, ASTM No. 10.6
0.18 C, 1.28 Mn, 0.004 P, 0.012 S, 0.40 Si, 0.09 V, 0.07 Al, 0.018 N
Italic numbers are Rockwell hardnesses, bold face numbers ASTM grain size (ferrite).
1
SOURCE:
10
100
Time, Sec
Jones & Laughlin Steel Corporation as published in Metal Progress
1,000
10,000
Atlas of Time-Temperature Diagrams
537
SAE 3140 Steel
Composition: 0.41% C - 0.86% Mn - 0.26% Si - 1.28% Ni 0.71% Cr Grain size: 7 Austenitized at 845°C (1550°F)
(using interrupted Jominy Method)
ai
—
is
——
]
0.41 C, 0.86 Mn, 0.26 Si,
1.28 Ni, 0.71 Cr
1400
1/16
1/8
3/16
3/8
1/2
Austenitized at 1550 eal
Grain size No, 7
Acs = 1430 F
As
Acy = 1350F
+
KS
ie
Cooling curves from 1550 F
at indicated distances
x- from quenched end
:
1000
4
“se
\h
Y
2
=
E
|
|
800
\p
+A
4
A
Nw NK AAS
:
ee
\
eee
A—austenite
ete
.
S
1
N
10% s
16
5
=< i
:
SIS
|
2
=
F+P+B+M+A
M—martensite
1
75%
‘
M+A
F —ferrite
a
(|
ai
NG
200
\eo
A 50%
I,
<
50%.
aig8|
20
50
100
\\
\75%
SX
500
200
1000
Cooling Time, Sec
SAE
4024 Steel
Composition: 0.24% C - 0.88% Mn - 0.33% Si - 0.23% Mo Grain
size: 8 Austenitized at 925°C (1700°F)
(using interrupted Jominy Method)
0.24 C, 0.88 Mn, 0.33 Si, 0.23 Mo
Austenitized at 1700 F
Grain Size No. 8
Ac; = 1520 F
Ac, = 1380 F
1600
1/16 In. 1/8 3/16 1/4
1400
—_}—
1200
Cooling curves from 1700 F
at indicated distances
4 from quenched end
Ss SsSs
Temperature,
F
ooSsSs
600
400
A —austenite
F —ferrite
P —pearlite
B—bainite
M—martensite
Ye 17234 If11/223
1
5
SOURCE:
10
5
20
Cooling Time, Sec
Bethlehem Steel Corporation as published in Metal Progress
100
200
500
=)
1000
Atlas of Time-Temperature Diagrams
538
SAE 4047 Steel
Composition: 0.51% C - 0.81% Mn - 0.25% Si - 0.26% Mo Grain
size: 8 Austenitized at 845°C (1550°F)
(using interrupted Jominy Method)
1600
0.51 C, 0.81 Mn, 0.25 Si, 0.26 Mo
Austenitized at 1550 F
Grain size No. 8
Ac;= 1450 F
1400
Ac; = 1370 F
iw a EF
bs Biwe
\k
Temperature,
F
ooSsi
600
400
A —austenite
F —ferrite
P—pearlite
B—bainite
M—martensite
2
SOURCE:
50
Cooling Time, Sec
Bethlehem Steel Corporation as published in Metal Progress
et
=
539
Atlas of Time-Temperature Diagrams
SAE
4130 Steel
Composition: 0.31% C - 0.47% Mn - 0.34% Si - 0.021% P 0.019% S - 0.26% Ni - 0.92% Cr - 0.17% Mo
(using interrupted Jominy Method)
=
ncros at 300 Diameters
Martensite
RS$ bs
a
G2 as aaa
1300
a
a peres paeae
1400
|
St
Pease! ———|—
1500
1200
\
1100
ce¢
| Martensite and Ferrite \\
1000
é
900
Cf
gst
try
ee
eex
600
JOT 789, YIVENY, -UZ KUILUOP UO SUONJERS AMIGOS JOf SIAIND BusjOo7
So GINJCSIOWS
70.
oma)
Set
Ct
ar
500
Se
SI
SY
400
Sine
300
e.8
rR
200
SN
100
Partial Continuous-Cooling Transformation
Diagram for SAE , X-4/30
Sans
21%
134, 8 0OW, POO? 1 Or 092, Ni026, Mo O17
S 08
COS
S _—~Be
=iS
Seconas
,
J. +1
i
teh
10)
15
20
SOURCE: Curtiss-Wright Corporation as published in Metal Progress
50
718
100
200
500
9
Atlas of Time-Temperature Diagrams
540
SAE 4140 Steel
Composition: 0.37% C - 0.77% Mn - 0.98% Cr - 0.21% Mo
Grain size: 7-8 Austenitized at 845°C (1550°F)
| BAN 179;C
Austenite@
(Unstable)
«aS
at
|
|
:
We
a
J
as,
BHN229_____|, BUN 731__
tion
900
iS
|\—— S
Ls
yy
Rae SHIN 285
5
_
~
y | 0-29
ee
)
201BE sees eeea 7 eer
5}
O),
087%
400
O77
O98
22
|
Austenitizing Temp.
50° F
—+————
Austenite Grain Size:
|
“tes
b BAN ce
nae Thies:
‘ | GHdi
4
|
99% martensite
ot 425%
Time, Seconds
SOURCE: U.S. Steel Corporation as published in Metal Progress
1000
er Saree se
]
|
10000
es
|
|
7apy
10Q000
300
5 0gys
Atlas of Time-Temperature Diagrams
SAE
54]
4140
Composition: 0.44% C - 1.04% Mn - 0.29% Si - 1.13% Cr -
0.15% Mo Grain size: 9 Austenitized at 845°C (1550°F)
(using interrupted Jominy Method)
1600
0.44 C, 1.04 Mn, 0.29 Si,
1.13 Cr, 0.15 Mo
1400
1/8\n. 3/16
1200
1/4 3/8 1/2
3/4
Austenitized at 1550 F
Grain size No. 9
Ac)=1460 F
Ac, = 1380 F
1
=
+ Cooling curves from 1550 F
at indicated distances
from quenched end
1000
5
~ 800
600
A —austenite
F —ferrite
P—pearlite
B—bainite
M—martensite
400
200
Cooling Time, Sec
SAE
43BV14
Composition: 0.12% C - 0.57% Mn - 0.29% Si - 1.86% Ni 0.47% Cr - 0.18% Mo - 0.07% V - 0.0014% B Grain size: 9
Austenitized at 925°C (1700°F)
(using interrupted Jominy Method)
1600
WEES
SS
0.12 C, 0.57 Mn, 0.29 Si, 1.86 Ni,
0.47 Cr, 0.18 Mo, 0.07 V, 0.0014 B
|
83/16 1/8 [3/82
\h
1400
|
Austenitized at 1700 F
Grain size No. 9
jee
Aci 1520 F
LN
1370 F
Cooling curves from 1700 F
at indicated distances
from quenched end
1200
Fe, ; 1000
Temperatur
800
60
Sk
A—austenite
Sge3
98%
400 }__— F—ferrite
N
B—bainite
M—martensite
‘
SSA
SO
NS
20
1/16
1
SOURCE:
2
.
by
10
20
50
Cooling Time, Sec
Bethlehem Steel Corporation as published in Metal Progress
.
SS WSS
1/8 3/16~91%3/8 1/2
*3/4 ig}
100
500
1/4
200
11/2
1000
Atlas of Time-Temperature Diagrams
542
SAE 4315 Steel
Composition: 0.16% C - 0.70% Mn - 0.42% Si - 0.008% P 0.029% S - 1.84% Ni - 0.78% Cr - 0.35% Mo
(using interrupted Jominy Method)
1200
|
¢
|
z :
0 | he
Pie
as
cig
|
ta
:
iN
age
MAA
. bas NY N\A \\ /
ETAL
Martensité, Fern,
\
Jemperature,
F Q)S
500
200
me
asd
100
Mi
;
5 OES —
184
MO 055
ae
a
| re
Du Blickwede
(Curtiss-Wright Corp,
Propetler bean
|
PABTIAL GONTINUOUS-COOLING TRANSFORMATION DIAGRAM
/
SOURCE:
5
10
20
40
6080100
Time, Seconas
Curtiss-Wright Corporation as published in Metal Progress
200
Test
Jominy
Bar
End-Quench
Stations
Respective
for
Cooling
Curves
on
Atlas of Time-Temperature Diagrams
543
SAE 4330 Steel
Composition: 0.26% C - 0.60% Mn - 0.39% Si - 0.008% P 0.007% S - 1.77% Ni - 0.70% Cr - 0.32% Mo
(using interrupted Jominy Method)
1500
ANE
1400
{\
1200
/\
NMC ake ee
‘
|
IAEA
\
\
\
Martensrte and Ferrite
al
ea WD ee SR
Temperature,
Ea 7114
C 026
Mn Q60
N172,
Moose
200 |} 8 0.39
poo
Go
ia
——
||e
—
7
as£
20
TRANSFORMATION
40
7ime, Seconds
Curtiss-Wright Corporation as published in Metal Progress
0
$0
8ie)
a
CONTINUOUS-COOLING
/0
“ma
-
——
PARTIAL
os
S
Ro44 |i
s§ Qo07
100
SOURCE:
wreiva)
f
7
SAE 4330
60 80 100
DIAGRAM
200
Atlas of Time-Temperature Diagrams
544
SAE
4340 Steel
Composition: 0.41% C - 0.87% Mn - 0.28% Si - 1.83% Ni -
0.72% Cr - 0.20% Mo Grain size: 7 Austenitized at 845°C
(1550°F)
(using interrupted Jominy Method)
1600
0.41 C, 0.87 Mn, 0.28 Si,
1,83 Ni, 0.72 Cr, 0.20 Mo
Austenitized at 1550 F
Grain size No. 7
|
Acy=1390 F
Ac; = 1330 F
1400
1200
Cooling curves from 1550 F
at indicated distances
from quenched end
1000
COA
INES
FTemperature,
oSsSs
600
SATIN,
\ aN
Nea
Y:
“Bama
SS
SS
100
200
Les
200
20
50
\ \\
500
1000
Cooling Time, Sec
SAE 4340+Si Steel
Composition: 0.43% C - 0.83% Mn - 1.55% Si - 1.84% Ni 0.91% Cr - 0.40% Mn - 0.12% V - 0.083% Al Grain size: 8
Austenitized at 845°C (1550°F)
(using interrupted Jominy Method)
0.43 C, 0.83 Mn, 1.55 Si, 1.84 Ni,
=
Se
IN
4
0.91 Cr, 0.40 Mo, 0.12 V, 0.083 Al
SS
Austenitized at 1550 F
zee
Grain size No. 8
Ac;=1480 F
Ac, = 1400 F
.
3/8
1/2
3/4
1
11/2
23
1200
Cooling curves from 1550 F
at indicated distances
1000
ca
\\
va quenched end
‘ BOTAN
.x
en
Temperature,
F
coSs=
EEN “S REGS
A i
‘J
—austenite
400
1%
XN]
Ny
M+A
Potente ;
-F+B+A
aN
B—bainite :
ake
N
M—martensite
[4]
A
<i
\
a
NK
3
558
20
50
Cooling Time, Sec
SOURCE:
Bethlehem Steel Corporation as published in Metal Progress
3/16 1/4
3/8
/
100
200
1/2
/
3/41 11/2
/
500
1000
Atlas of Time-Temperature Diagrams
SAE
545
4640 Steel
Composition: 0.42% C - 0.71% Mn - 0.28% Si - 1.77% Ni 0.24% Mo Grain size: 9 Austenitized at 845°C (1550°F)
(using interrupted Jominy Method)
1600
-~
17
C, 0.71 Mn, 0.28 Si,
Ni, 0.24 Mo
Austenitized at 1550 F
Grain size No. 9
Acs
=1400 F
Aci
=1320 F
1400
1200
Cooling curves from 1550 F
at indicated distances
from quenched end
3
FTemperature,
coSsSo
600
400
A—austenite
F—ferrite
P—pearlite
B—bainite
M—martensite
Cooling Time, Sec
SAE 4815 Steel
Composition: 0.14% C - 0.45% Mn - 0.22% Si - 3.42% Ni -
0.21% Mo Grain size: 9 Austenitized at 925°C (1700°F)
(using interrupted Jominy Method)
0.14 C, 0.45 Mn, 0.22 Si,
3.42 Ni, 0.21 Mo
Austenitized at 1700 F
Grain size No. 9
Ac, = 1470 F
Ac, = 1350 F
1400
oe
|
‘EASES
ONE
\
NY
Cooling curves from 1700 F
at indicated distances
from quenched end
000
Temperature,
F
800
600
A—austenite
400
F—ferrite
B—bainite
M—martensite
20
50
Cooling Time, Sec
SOURCE:
Bethlehem Steel Corporation as published in Metal Progress
100
200
500
1000
546
Atlas of Time-Temperature Diagrams
SAE 5140 Steel
Composition: 0.42% C - 0.87% Mn - 0.25% Si - 0.89% Cr Grain
size: 8 Austenitized at 845°C (1550°F)
(using interrupted Jominy Method)
1600
0.42 C, 0.87 Mn, 0.25 Si, 0.89 Cr
1400
Austenitized at 1550 F
Grain size No. 8
|
Ac, = 1480 F
Ac, = 1380 F
1200
=.
W
0%
ye
Transformed
f
rm
Cooling curves from 1550 F
at indicated distances
from quenched end
\
1000
Temperature,
F
coSsi)
600
M+A
A—austenite
F—ferrite
400
P—pearlite
B—bainite
M—martensite
Cooling Time, Sec
SAE 5160 Steel
Composition: 0.63% C - 0.86% Mn - 0.23% Si - 0.83% Cr Grain
size: 7-1/2 Austenitized at 845°C (1550°F)
(using interrupted Jominy Method)
1600
0.63 C, 0.86 Mn, 0.23 Si, 0.83 Cr
Austenitized, 1550 F
Grain size No. 7 1/2
1/8 3/16
1/4
3/8
Ac, = 1440 F
Ac, = 1390 F
1/2
Transformed
1/16 In
Ss
1200
Cooling curves from 1550 F
at indicated distances
from quenched end
1000
2
iS5
800
|
600
M+A
~
Transformed
A—austenite
F—ferrite
P—pearlite
B—bainite
M—martensite
400
50% \99N
N3p 8 \y
afte 1213/4 111/2
SS
1/16
1
2
5
10
20
50
Cooling Time, Sec
SOURCE:
Bethlehem Steel Corporation as published in Metal Progress
100
200
500
1000
Atlas of Time-Temperature Diagrams
SAE
547
52100 Steel
Composition: 1.06% C - 0.33% Mn - 0.32% Si - 1.44% Cr Grain
size: 9 Austenitized at 845°C (1550°F)
(using interrupted Jominy Method) ~
1600
1.06 C, 0.33 Mn, 0.32 i;1.44 Cr
1400
Wein.
A
1/8 3/16
1/8]
3/8
1/238
Austenitized at 1550 F
Grain size No. 9
SS
| 111/223
Ac, = 1440 F
Ac, = 1390 F
1200
Cooling curves from 1550 F
XK} at indicated distances
from quenched end
iy)
i
i
1000
=
!
=
$
J
t
=
I
~ 800
:
\\
F+A
A
600 E
\
A
A—austenite
400
F—ferrite
\
P—pearlite
\
B—bainite
martensite
M—martensit
nC
I2NNIAAN3
3/8 3/4 11/2
7”
200
1
2
5
10
20
5
Cooling Time, Sec
100
200
SOURCE: Bethlehem Steel Corporation as published in Metal Progress
ee
500
1000
Atlas of Time-Temperature Diagrams
548
SAE
6115 Steel
Composition: 0.16% C - 0.85% Mn - 0.34% Si - 0.009% P 0.019% S - 0.92% Cr - 0.15% V Grain size: 6
(using interrupted Jominy Method)
1500
ON
LUA LL
A
ez
AVA \\I
——
TRON LAL be
HCN ANI
- AA
VA LTT A
ON AS NN
3
:
\AAARAA ik a7
HCA ‘esate,
ae
a \\WAN ‘ {
/000
ol NI
ST
HCA
S
ture,
°F
S
ee bi ; <
varitteven.
Ban C WV
e
TINEA K NN
en
et
N
7empera
600
2
a
meal
\,2085
ANN
SSaaanit
a. |
NUNN AKA eae
NING,
,
Sen eae
RNNO
)
500
Ro 350pee “RB. 260fae
200
NNW
NA
AL
2
Partial Gontinuous- coglinglaa
Diagram for &. Ae
C Ol
S$ 0019
/00
Mn O85
P 0.009
V Ols
’ O34
i 092
INS8
See
a
:
=. Sue
‘
SSS
SASS
,
Shepherd Fracture Grain &12e:6
CA. Liedholm,
/ Time, Seconds
4
&G
A.l. Rush, WC. Coons
8 10
SOURCE:
Curtiss-Wright Corporation as published in Metal Progress
—_—————
ee
_____.:.:.0C0CC
End-Quench
Test
Bar
Jominy
for
Stations
Respective
Curves
Cooling
on
500
1000
SSS
Atlas of Time-Temperature Diagrams
549
SAE 6135 Steel
Composition: 0.67% Mn - 0.45% Si - 0.98% Cr - 0.23% V Grain
size: 8-1/2
(using interrupted Jominy Method)
1500
1200
ae
Marte. site plus
<4
\
Ferriteme
\
\|
i
aoe
\\ Martensite—
‘plus Ferrite
and Pear ité__
Ternperature,
°F
| 1%"
ag rtensite plus ——
\
Ferrite, Bainite
and Pearlite—————|
Ge
400
Martensite
———}-
300
Le
200
=
Transformation Diagram for 6135 Stee}
(O62 mn, 045&1,O98 CN 023 V)
+
During Continuous Cooling
Grain Size 8%, Micros 500 Dia
CA Liedhoim
100
/
SOURCE:
ie
10
20
50
Time, SECOnOSs
Curtiss-Wright Corporation as published in Metal Progress
100
Cooling
Jormny
Stations
Respective
for
Curves
Test
End-Quench
Bar
on
200
550
Atlas of Time-Temperature Diagrams
SAE
8620 Steel
Composition: 0.17% C - 0.82% Mn - 0.31% Si - 0.52% Ni 0.50% Cr - 0.20% Mo Grain size: 9 Austenitized at 925°C
(1700°F)
(using interrupted Jominy Method)
a
—__
N
}
ee
1/16In,1/8 3/16 1/4
3/8
0.17 C, 0.82 Mn, 0.31 Si,
0.52 Ni, 0.50 Cr, 0.20 Mo
11/2823
|
Austenitized at 1700 F
Grain size No. 9
Ac, = 1520 F
Ac, = 1370 F
1400
1200
1000
‘
|
Cooling curves from 1700 F
at indicated distances
from quenched end
F
Temperature
coSsSs
600
4
id
1
SOURCE:
A—austenite
F—ferrite
B—bainite
M—martensite
2
5
10
Bethlehem Steel Corporation as published in Metal Progress
eS
Atlas of Time-Temperature Diagrams
551
SAE
8620 Steel
Composition: 0.21% C - 0.71% Mn - 0.30% Si - 0.002% P 0.006% S - 0.63% Ni - 0.49% Cr - 0.17% Mo - 0.014% Cu -
0.014% Al Grain size: 10.6 Austenitized at 925°C (1700°F) for
15 min
\
ee \
\
\
X15
we pos
\
445
580 |302 297
274
231 230
Mr=568 F
M,=808 F
Ac)=1,363 F
Ac3=1,560 F
197 178
Austenitized, 1,700 F for 15 min
Grain size, ASTM No. 10.6
Composition: 0.21% C - 0.71% Mn - 0.30% Si - 0.002% P -
0.006% S - 0.63% Ni - 0.49% Cr - 0.17% Mo - 0.014% Cu 0.014% Al Grain size: 4.8 Austenitized 1065°C (1950°F) for 15
min
F
Temperature,
eS SA
~
X 7
| Hoa
Sek
600
400
ee
ee
474
A-austenite
200
452
v
eee
\
\
371_34)
Zit
242
I
TAR
Mp=542 F
F-ferrite
Ms2/98 F
P—pearlite
Ac 1=1,363 F
Austenitized, 1,950 F for 15 min
B-bainite
M-martensite
Ac3=1,560 F
Grain size, ASTM No. 4.8
0.21 C, 0.71 Mn, 0.002P, 0.006 S, 0.30 Si,0.63 Ni, 0.49 Cr, 0.17 Mo, 0.014 Cu, 0.014 Al
Italic numbers are dph hardnesses, bold face numbers ASTM grain size (ferrite).
l
10
100
Time, Sec
SOURCE: Jones & Laughlin Steel Corporation as published in Metal Progress
eee
1,000
10,000
Atlas of Time-Temperature Diagrams
562
SAE
8630 Steel
Composition: 0.31% C - 0.94% Mn - 0.26% Si - 0.009% P 0.023%
S - 0.59% Ni - 0.53% Cr - 0.21% Mo
(using interrupted Jominy Method)
1500
1400
1300
sah
nt
we
\ Martansitle
i
ui
|
4
A \I ANG
)
Ty” Reaas
we |
ae
ot ca.
pee eae f
“ae
1200
Hah Nae
1100
Martensite and Ferrite
7000
900
S
re
§
=
NK
BS
3
s
g
S 800
S=
R 700
'S
S
%
S
i
g
>
600
§
S
S
500
11: ap)
VYg* 8&
14
400
L &
8
x
ce)
a
300
&
8
S
200 |— Transformation Diagram for
far
NE8630 (AM& 6355)
700
pees
aS
During Continuous Cooling
C031
MNOS
Ni O59
Mo Oe)
S$ 0023
P 0009
8 026
&
Cr 053
CAL——
A. Bush
DJS Blickwede
ae eee
SOURCE:
Curtiss-Wright Corporation as published in Metal Progress
Atlas of Time-Temperature Diagrams
553
SAE 8640 Steel
Composition: 0.37% C - 0.87% Mn - 0.25% Si - 0.56% Ni 0.44% Cr - 0.18% Mo Grain size: 7 Austenitied at 845°C
(1550°F)
(using interrupted Jominy Method)
1600
0.37 C, 0.87 Mn, 0.25 Si,
0.56 Ni, 0.44 Cr, 0.18 Mo
1400
Austenitized at 1550 F
Grain size No. 7
Ac, = 1460 F
Ac, = 1370 F
1200
Cooling curves from 1550 F
at indicated distances
from quenched end
= SsSs
\
Qn
K
F
Temperature,
coSsSo
600
‘
~yTranstormed
95%
A—austenite
F—ferrite
400
P—pearlite
B—bainite
M—martensite
1
2
5
10
100
200
500
1000
SAE 86B40 Steel
Composition: 0.44% C - 0.88% Mn - 0.34% Si - 0.49% Ni 0.65% Cr - 0.14% Mo, B Grain size: 7-1/2 Austenitized at
845°C (1550°F)
(using interrupted Jominy Method)
0.44 C, 0.88 Mn, 0.34 Si,
0.49 Ni, 0.65 Cr, 0.14 Mo, B
1400
BS
N
Austenitized at 1550 F
Grain size No. 7 1/2
Ac, = 1550 F
Ac, = 1350 F
1200
Cooling curves from 1550 F
at indicated distances
from quenched end
3
F
Temperature,
ooc=}Ss
600
A—austenite
400
F—ferrite
B—bainite
M—martensite
SOURCE:
Bethlehem Steel Corporation as published in Metal Progress
Atlas of Time-Temperature Diagrams
554
SAE
9260 Steel
Composition: 0.57% C - 0.91% Mn - 1.95% Si Grain size: 7
Austenitized at 870°C (1600°F)
(using interrupted Jominy Method)
1600
aa
0.57 C, 0.91 Mn, 1.95 Si
1400 1/16In. 1/8 |3/16
1/4
3/8
Y2—
3/4
1/2
=
3
ig
FLA
1%|
25%
5
1200 -
:
FPEA
:
8,
99%
5
aoe
;
4
from quenched end
A
Ve
Temperature,
F
600
A
ZZ
:
~
\
3
A—austenite
400 }———— Ferrite
:
P—nearlte
B—bainite
M—martensite
Cooling curves from 1600 F
at indicated distances
\
sy
@
d
1000
Austenitized at 1600 F
Grain size No. 7
Ac, = 1480 F
Ac, = 1420 F
ESTES.
M-A
LN
5%
—s
1/8
Transformed
AS
25% \ 99%
AS
W16
.
_e
3/16
1/4
SS
3/8 1/2° 3/4 11/2
200
i
2
5
10
20
50
100
200
500
1000
Cooling Time, Sec
SOURCE:
Bethlehem Steel Corporation as published in Metal Progress
SAE
9840 Steel
Composition: 0.43% C - 0.84% Mn - 0.25% Si - 1.00% Ni 0.81% Cr - 0.23% Mo Grain size: 7 Austenitized at 845°C
(1550°F)
5
CaS
\
ve
1600
io
Minutes
C-T Diagram
* ALS... 9840
C-0.43 Mn-0.84 Si-0.25
Ni-1.00 Cr-0.81 Mo-0.23
A, 1360°F
Ay |1430°F
Austenitized at |I550°F
Grain Size 7
bee
Cooling
Curves
at Indicated
Temperature
°F
Distances
From Quenched
End
\
M+
8B +Fp+A
\
A- Austenite
M- Martensite
Fp- Paraferrite
B - Bainite
a
(fo
“I
ae
ey
GreyGy (hile)
T
-
816
i6|
100
200
ealMMe
ZO
SON
Cooling Time
From
50
6
a
1550°F - Seconds
SOURCE: D.J. Blickwede, R.C. Hess, "On the Cooling Transformations in Some 0.40% Carbon Constructional Alloy Steels,”
Transactions of the ASM, Vol 49, 1957, pp 427-448
Atlas of Time-Temperature Diagrams
555
AISI 01 Tool Steel
Composition: 0.87% C - 1.21% Mn - 0.28% Si - 0.52% Cr 0.58% W Grain size: 9-1/2 Austenitized at 855°C (1475°F)
(using interrupted Jominy Method)
0.87 C, 1.21 Mn, 0.28 Si,
0.52 Cr, 0.58 W
1400 }—
——
Austenitized at 1475 mal
Grain size No. 9 1/2
Ac, = 1450 F
Ao, = 1390 F
1200
_, Cooling curves from 1475F
at indicated distances
from quenched end
1000
F
Temperature,
coSoSs
ransformed
600
A—austenite
F—ferrite
400 H/-_ _ P— perlite
B—bainite
M—martensite
1/16
—~1/8
200
1
2
AISI
5
10
20
50
Cooling Time, Sec
100
200
500
1000
S5 Tool Steel
Composition: 0.62% C - 0.72% Mn - 1.72% Si - 0.46% Mo Grain
size: 9 Austenitized at 855°C (1575°F)
(using interrupted Jominy Method)
1600
0.62 C, 0.72 Mn, 1.72 Si, 0.46 Mo
Austenitized at 1575 F
Grain size No. 9
Ac, = 1520 F
Ac, = 1460 F
ee
1/16 In.
1200
Cooling curves from 1575 F
indicate distances
from quenched end
4
1000 }
—s
b 25%
5
sformed
|
~ 800
600
400
200
A—austenite
F—ferrite
P—pearlite
B—bainite
M—martensite
ta
2
NS
1/4 3/8 1/2 3/4 1 11/2
|
5
10
20
50
Cooling Time, Sec
SOURCE: Bethlehem Steel Corporation as published in Metal Progress
100
200
500
1000
Atlas of Time-Temperature Diagrams
556
Fe - 3.8Mn
- 0.7Si Steel
Composition: 0.038% C - 3.83% Mn - 0.72% Si - 0.005% P -
0.019% S - 0.04% Ni - 0.02% Cr - <0.005% Mo - 0.04% Cu -
0.080% Al - <0.005% Nb - <0.005% Ti Austenitized at 900°C
(1650°F) for 15 min
TIME
Fe - 2.9Mn
TO
COOL
10
FROM
900°C,
s
- 0.7Si Steel
Composition: 0.037% C - 2.90% Mn - 0.73% Si - 0.009% P -
0.016% S - 0.02% Ni - 0.04% Cr - <0.005% Mo - 0.03% Cu 0.033% Al - <0.005% Nb - <0.005% Ti Austenitized at 900°C
(1650°F) for 15 min
900
800
700
g
g
400
8
8
TEMPERATURE
°C
,
nae.
01
1
10
107
TIME TO COOL FROM 900°C,
re
10°
s
10°
SOURCE: A. Brownrigg, "Structure and Properties of Low-Carbon Bainitic Fe-Mn-Si Alloys,” Metals Science, Vol 9, 1975, pp
313-318
Atlas of Time-Temperature Diagrams
557
Mn-Mo-Si-Cr
Steels
Composition: 0.061% C - 1.0% Mn - 1.0% Si Grain size: 9.5
Austenitized at 955°C (1750°F) for 10 min
Ferrite e
ee
\
~
~
Se
a
Oo
tigen,
Oe
——
—_—s
—
———
50%
15%
es
S
_
90
Bo
90
sie
a
NN
Peorlite
‘
10
(°F)
TEMPERATURE
TIME
(sec.)
Composition: 0.08% C - 1.17% Mn - 0.70% Si - 0.62% Mo Grain
size: 10.5 Austenitized at 955°C (1750°F) for 10 min
100 fe}
ad,
(°F)
TEMPERATURE
/
X/\\\
Bainite + Martensite
yy \
50 °o
!
x
Se
TIME
(sec.)
ve
10,000
SOURCE: S.S. Hansen, "Optimization of Structure and Properties of As-Hot-Rolled Dual-Phase Steels,” Mechanical Working &
Steel Processing XIX, proceedings of the 23rd Mechanical Working & Steel Processing Conference, Pittsburgh, 28-29 October,
1981, AIME, 1982, pp 1-22
Atlas of Time-Temperature Diagrams
tale}
Mn-Mo-Si-Cr
Steels
Composition: 0.061% C - 1.13% Mn - 0.77% Si - 0.28% Cr 0.30% Mo Grain size: 10 Austenitized at 955°C (1750°F) 10
min
T
Ta
M
LA
ERAITE
FERQT
S00
NER
a
=
acy
o
. mea on
BN
c
a
©
’
=
cc
.c
z
Pe=
a
000,
—
=
™ x
fi
Ge
CH
aS
ae SOS —
Se
—
ae
args
=
\\c°92
90
1M, (coc)
50%
75%
92
4
92
Pag
A
ial ean
BAIN ~E + WAR-ENSE
=—
_
Hi
|
_
4
\
i
‘
eat
ean tfc
seh
tt
10
190
TIME
=
3
1,000
10,900
.a0c)
SOURCE: S.S. Hansen, "Optimization of Structure and Properties of As-Hot-Rolled Dual-Phase Steels,” Mechanical Working &
Steel Processing XIX, proceedings of the 23rd Mechanical Working & Steel Processing Conference, Pittsburgh, 28-29 October,
1981, AIME, 1982, pp 1-22
Hot-Rolled
Dual Phase Steel
Composition: 0.06% C - 1.19% Mn - 0.87% Si - 0.38% Mo 0.064% Al Austenitized at 960°C (1760°F) for 20 min
AUSTENITIZED
Austenite
Polygonal
20 MIN.
Ferrite
1800
Pearlite
Bainitic
Martensite
960 C (1760 F)
—————————
Ferrite
Martensite
Enriched
of. Avg.
C Content
1600
from CarbonAustenite
a
\\{_—~
Ba
mi
ry
Ss
eS
1400
ee
aw
Window
ws
Coiling
js
o
eS
5
i
[4
[o4
=
99 4 800 =
=
.
600
400
200
32
1
10
100
1,000
10,000
100,000
Seconds
TIME
SOURCE:
TO COOL
FROM 960 C (1760 F)
Structure and Properties of Dual Phase Steels, R.A. Knot, T.W. Morris, eds., AIME, 1979
sss
SSS
Atlas of Time-Temperature Diagrams
559
C-Mn
Steels
Composition: 0.12% C - 1.33% Mn - 0.28% Si - 0.011% P -
Composition: 0.11% C - 1.58% Mn - 0.28% Si - 0.013% P 0.009% S Austenitized at 1200°C (2192°F) for 10 min
0.009% S Austenitized at 1200°C (2192°F) for 10 min
——
dilatometry
--- metallography
200
—--— calculated
1
10
100
1000
1
10
100
1000
Composition: 0.11% C - 1.73% Mn - 0.29% Si - 0.009% P -
Composition: 0.11% C - 1.99% Mn - 0.29% Si - 0.012% P -
0.010% S Austenitized at 1200°C (2192°F) for 10 min
0.009% S Austenitized at 1200°C (2192°F) for 10 min
900
c
=)
Ss
S
164)
8
°TEMPERATURE,
8
Fs
10
100
TIME, $s
1000
TIME, s
PF
polygonal ferrite
B
bainite
M;
transformation start temperature of martensite
Eg
AF
pearlite
acicular ferrite
[ee
Mznd
pseudopearlite
Mg
transformation start temperature of martensite second
phase
SOURCE:
Continuous
martensite second phase
Jye-Long Lee, Shyi-Chin Wang, Gwo-Hwa Cheng, "Transformation Processes and Products for C-Mn Steels during
Cooling,” Materials Science and Technology, Vol 5, July 1989, pp 674-681
Iron-Manganese-Nickel
Steel
Composition: 0.11% C - 3.00% Mn - 0.16% Si - 1.70% Ni -
0.25% Mo
Temperature
°C
10
100
1000
10,000
Log Time -Seconds
Alloys,”
SOURCE: Irvin R. Kramer, Stewart L. Toleman, Walter T. Haswell, "Iron-Manganese and Iron-Manganese-Nickel
1260-1294
pp
1950,
42,
Vol
ASM,
the
of
Transactions
Atlas of Time-Temperature Diagrams
560
HSLA
ASTM A710
Composition: 0.05% C - 0.50% Mn - 0.28% Si - 0.88% Ni 0 .71% Cr - 0.20% Mo - 1.12% Cu - 0.035% Nb
Steels
ASTM A710 Mod.
Composition: 0.06% C - 1.45% Mn - 0.35% Si - 0.97% Ni 0.72% Cr - 0.42% Mo - 1.25% Cu - 0.040% Nb
1000
1000
°C
+c
TEMPERATURE,
TEMPERATURE,
100
DPH:
10°
250
225
211
203
10°
193
178
10°
TIME,
169
168
10°
166
165
400
164
VHN®«
343
2
276
270
dios 255
250
241
224
10°
TIME,
Seconds
HSLA 80/10
Composition: 0.05% - 1.00% Mn - 0.34% Si - 1.77% Ni - 0.72%
Cr - 0.50% Mo - 1.25% Cu - 0.040% Nb
Seconds
HSLA 100
Composition: 0.06% C - 0.83% Mn - 0.37% Si - 3.48% Ni 0.58% Cr - 0.59% Mo - 1.66% Cu - 0.28% Nb
1000
1000
900
s00P
700
k
"Cc
600
soo
400
TEMPERATURE,
TEMPERATURE,
°C
360
355
349
TIME,
Seconds
0.24C-Mn-Mo-V
Composition: 0.24% C - 1.67% Mn - 0.39% Si - 0.14% Ni 01.17% Cr - 0.22% Mo - 0.11% V
TIME,
Seconds
0.35C-Mn-Mo-V
Composition: 0.35% C - 1.40% Mn - 0.76% Si - 0.06% Ni -
0.07% Cr - 0.19% Mo - 0.14% V
1100
1100
1000
C)
(DEGREES
TEMPERATURE
(DEGREES
TEMPERATURE
C)
TIME
(SECONDS)
TIME
(SECONDS)
SOURCE: S.W. Thompson, G. Krauss, "Structure and Properties of Continuously Cooled Bainitic Ferrite-Austenite-Martensite
Microstructures,” 3lst Mechanical Working and Steel Processing Conference Proceedings, ISS of AIME, 1990, pp 467-481
Atlas of Time-Temperature Diagrams
Cu-Ni-Mo-Cb
561
Steel
12.0% Cr - 1.0% Mo-V
Steel
Composition: 0.14% C - 0.98% Mn - 0.35% Si - 0.009% P -
Composition: 0.20% C - 0.47% Mn - 0.24% Si - 0.026% P -
0.012% S - 1.21% Ni - 0.32% Cr - 0.40% Mo - 0.63% Cu 0.032% Al - 0.014% N - 0.02% Cb
0.009% S - 0.39% Ni - 11.59% Cr - 0.98% Mo - 0.002% Al 0.28% V - 0.0323% N
1000
——————————
austenitizing temperature 920 OC
300
rood
fe
900
holding time 8 sin; grain size ASTM 9
Ac3 = 870 °C
Aci b = 820 °C
800
_
Acy = 725 °C
o00
3
3 700
ge 600
p 600
2
5 500
2
e
g
Ss
A
400
Soe
a
.
t
Coa
F+C
austenitizing temperature 1050 °C
holding time
8 min
grain size ASTM 4-5
500
‘)
§ se
300
300
200
200
100
100
1 seconds
101
102
103
104
105
1 seconds
cooling time between 800 and 500 °C
101
102
103
104
105
cooling time between 800 and 500 °C
eee
10
F
Ss
100
5
1
5
reduced wall thickness S (1-5) [mm], air cooling
10
100
reduced wall thickness S (1 - 3) [mm], air cooling
SOURCE: Gerhard P. Kalwa, Klaus Haarmann, Klaus J. Janssen, "Experience with Ferritic and Martensitic Steel Tubes and
Piping in Nuclear and Non-Nuclear Applications,” proceedings of Topical Conference on Ferritic Alloys for Use in Nuclear Energy
Technologies, J.W. Davis, D.J. Michel, eds., AIME, 1984, pp 235-244
1-1/4Cr-1/2Mo
Composition: 0.15% C - 0.65% Mn - 0.58% Si - 0.009% P 0.005% S - 1.40% Cr - 0.59% Mo - 0.027% sol. Al
Steel Plate
Composition: 0.16% C - 0.58% Mn - 0.53% Si - 0.009% P 0.005% S - 1.41% Cr - 0.59% Mo - 0.062% sol. Al - 0.0003% B
Ac3
893
“°C
Ferrite
(°C)
Temperature
(°C)
Temperature
Cooling
SOURCE:
Seiichi Watanabe,
time
from 950°C
(sec)
Cooling
Jun Furusawa, Mutsuo Nakanishi, Hiroo Ohtani, "The Development
Vol 1, No. 4, 1980, pp 61-67
Al-B Treated 1-1/4Cr-1/2Mo Steel Plate,” Journal of Heat Treating,
time
from 950°C
of Normalized
(sec)
and Tempered
Atlas of Time-Temperature Diagrams
562
Mn-Mo-V-N
Steel
Composition: 0.15% C - 1.49% Mn - 0.39% Si - 0.018% P 0.015% S - 0.50% Mo - 0.16% V - 0.14% N Austenitized at
950°C (1740°F) for 1h
1
100
Time
1000
sec
SOURCE: Zhang Xiu-mu, Ke Guo-qing, Xia Dien-pei, "Microstructure and Mechanical Properties of HSLA Mn-Mo-V-N
HSLA Steels: Metallurgy and Applications, J.M. Gray et al, eds., ASM, 1986
CrMoZr
Steel,”
Structural Steel
Composition: 0.17% C - 0.84% Mn - 0.54% Si - 0.019% P 0.011% S - 0.89% Cr - 0.40% Mo - 0.031% Al - 0.09% Zr
Austenitized at 950°C
1000
ee
(1740°F) for 30 min
ee
ESSN ST
CELINA
NIN TANETI TT
SINK
GRSRT AINALTT
See VTL TTI
COCA NCS AECL
CCHS
NLR LL
CCPICONINANKE ATCT
CTIA TSS
TTS et
S~
Se
|
800
| —;
Cute
600
TEMPERATURE
(°C)
TIME. (SEC)
SOURCE:
J. Degenkolbe, B. Musgen, "Experiences with Quenched and Tempered CrMoZr-Alloyed Structural Steels,” The
Metallurg Companies, Dusseldorf, 1970, pp 51-60
——
ee
—_
EERE
ey
Atlas of Time-Temperature Diagrams
2-1/4Cr-1Mo
563
Steel
Composition: 0.09% C - 0.44% Mn - 0.26% Si - 0.008% P 0.010% S - 2.25% Cr - 0.99% Mo Grain size: 5.5 Austenitized at
920°C (1690°F) for 10 min
F
TEMPERATURE,
TYPICAL CURVE FOR NORMALIZED
7/8-IN.-DIA BAR
101
102
103
TIME, SEC
104
105
SOURCE: T. Kunitake, "Continuous Cooling Transformation Structures in a Low Carbon 2-1/4Cr-1Mo Steel,” published in
Reactor Steel Studies, Cr-Mo Steels Research in Japan, ed. Kanji Ono, UCLA-34P177-9/USLA-ENG-7177, November 1971
2-1/4Cr-1Mo Steel
Composition: 0.11% C - 0.41% Mn - 0.43% Si - 0.012% P 0.012%
S - 0.25% Ni - 2.10% Cr - 1.02% Mo
FTemperature,
C
Temperature,
Minutes
Alloy Steels and Their Mechanical
SOURCE: L.J. Habraken, M. Economopoulos, "Bainitic Microstructures in Low-Carbon
1967, pp 69-106
Company,
Molybdenum
Climax
Steels,
in
y
Properties,” Transformation and Hardenabilit
Atlas of Time-Temperature Diagrams
564
1Cr-0.5Mo
Stuctural
Steel
Composition: 0.19% C - 0.60% Mn - 0.30% Si 0.023% P 0.021% S - 1.07% Cr - 0.48% Mo - 0.047% Al
F
Temperature,
CTemperature,
Minutes
1Cr-0.5Mo-B
Structural
Steel
Composition: 0.19% C - 0.62% Mn - 0.36% Si - 0.022% P 0.025% S - 1.03% Cr - 0.49% Mo - 0.006% B - 0.041 Al
800
ah
700
7 i
600
Lealco}Oo
—
> SoCc
FTemperature,
CTemperature,
300
200
100
Seconds 1
Minutes
Hours
SOURCE: L.J. Habraken, M. Economopoulos, "Bainitic Microstructures in Low-Carbon Alloy Steels and Their Mechanical
Properties,” Transformation and Hardenability in Steels, Climax Molybdenum Company,
1967, pp 69-106
565
Atlas of Time-Temperature Diagrams
2.7Ni-0.9Cr-0.25Mo-B
Structural
Steel
Composition: 0.19% C - 0.57% Mn - 0.35% Si - 0.018% P 0.009% S - 2.72% Ni - 0.87% Cr - 0.25% Mo - 0.10% V 0.0017% B
1600
|
|
a
1400
F
1200
f
oO
1000
gS
:
:
s
5 400
=
300
1
|
|
ea
Seconds 1
a
400
tee
a
10?
oe
10!
Hours
0.32%
Ultrahigh-Strength
C - 0.138% Mn
- 0.15%
104
eee
ee
1
ONi-4Co
7
10?
Oe
ee
2800 min |2
2
1
ee
10!
is
e
>
lbs
HN
a
Ny Nd
fe
a
600
al
Se
oie
g
I
\
M
aa
|
\
at
200
ee
B
w
10?
——————————————————
107!
1
Steel
Si - 0.090%
P - 0.005%
S - 9.05%
Ni - 4.07% Co
1600
800
4—_}
+ ______,
iL
att
|
1
1400
st
=}
4
4
4 1200
+
°o
§
Lo
Ne
|
Vi
8=
5
IL
Minutes
;
3
|}
400
317]
nae
rs]
=600
a&
200
10°
10°
10?
10?
Seconds 1
1000
|
5
7
;
il
300
zt
100
a
|
=
200
1
ay
10?
Hours
10=
SOURCE:
L.J. Habraken, M. Economopoulos,
"Bainitic Microstructures in Low-Carbon
Properties,” Transformation and Hardenability in Steels, Climax Molybdenum Company,
1
Alloy Steels and Their Mechanical
1967, pp 69-106
Atlas of Time-Temperature Diagrams
566
HY-80
Steel
Composition: 0.15% C - 0.32% Mn - 0.31% Si - 2.72% Ni 1.52% Cr - 0.41% Mo Austenitized at 890°C (1635°F)
AUSTENITIZING TEMPERATURE
890°C
°C
Temperature
461
1
10
Time,
SOURCE:
7)
100
83
1000
28
3°C/MIN
10000
seconds
B.L. Bramfitt, J.G. Speer, "A Perspective on the Morphology of Bainite,” Metallurgical Transactions A, Vol 21A, ASM,
April 1990, pp 817-829
Composition: 0.19% C - 0.30% Mn - 0.04% Si - 0.007% P 0.005%
S - 3.30% Ni - 1.78% Cr - 0.50% Mo - 0.004% Al
Austenitized at 838°C (1540°F)
cy 810°C (1490°F)
Ac, 690°C (1274°F)
1200
°F
Temperature
°C
Temperature
1
10
100
1000
10000
Time, seconds
SOURCE: B.L. Bramfitt, J.G. Speer, "The Microstructure of Continuously Cooled Bainite,” 31st Mechanical Working and Steel
Processing Proceedings, ISS of AIME, 1990, 443-453
—_—_——_
nw
TT
Atlas of Time-Temperature Diagrams
567
Low C MnNiMoB
Steel
Composition: 0.015% C - 1.99% Mn - 0.31% Si - 0.006% P 0.004% S - 1.00% Ni - <0.01%
Cr - 0.29% Mo - 0.017% Al -
0.002% B Austenitized at 920°C (1690°F)
°C
Temperature
1
°F
Temperature
10
100
1000
10000
Time, seconds
SOURCE: B.L. Bramfitt, J.G. Speer, "The Microstructure of Continuously Cooled Bainite,” 31st Mechanical Working and Steel
Processing Proceedings, ISS of AIME, 1990, pp 443-453
EE
e
ee
e
Atlas of Time-Temperature Diagrams
568
HY-180
Steel
Composition: 0.1% C - 0.1% Mn - 0.05% Si - 10.0% Ni - 8.0%
Co - 2.0% Cr - 1.0% Mo
i800
1400
1300
re
1200
ry
1100
3
1000
Piatt
ae
y + Carbide
8 wo
e
800
nae
Y + Carbide + a (Boinite)
Pa
M, - 630 F
Carbide + a (Martensite)
$0029
50
100
500
Time,
1000
2000
3000
seconds
Steel cooled from 980°C (1800°F)
Y + Carbide
FTempercture,
y + Carbide + a (Boinite)
Tima, seconds
Steel cooled from 1315°C (2400°F)
SOURCE:
T.B. Cos, A.H. Rosenstein, "Transformations, Microstructures, and Properties of Continuously Cooled
10Ni-2Cr-1Mo-8Co
Steel,” Report 3221 (AD 872858), Naval Ship Research and Development Laboratory, Annapolis MD, July
1970
a
eeeeFeeeeSSSSSSSSSsSSSSSSSSSeeSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSssseeeee
Atlas of Time-Temperature Diagrams
569
V-Mo-Ti
Steel
Composition: 0.18% C - 0.81% Mn - 0.26% Si - 0.40% Ni -
Composition: 0.20% C - 0.70% Mn - 0.29% Si - 0.10% Ni -
0.49% Cr - 0.17% Mo - 0.056% Al - 66 ppm N Austenitized at
850°C (1560°F) for 10 min
0.59% Cr - 0.09% Mo - 0.07% V - 0.021% Al - 0.34% Ti - 150
ppm N Austenitized at 850°C (1560°F) for 10 min
C
“18
Si
26
Mn
“81
Cr
49
Ni
40
Mo
‘7
Al
056
N
66 ppm
Si
2:9
Son = 3h pm
Mn
(Cr
eet ee oo
=27-40
°C
|TEMPERATURE
——=-
Ni
;
A
-021
-034
N
150 ppm
pm
°C
TEMPERATURE
/
(mm)
10
Diameter
(mm)
10
Hy (30kg toad)
420
H, (30kg toad)
396
“Cs'(750-300°C)
922
“Cs "(750-300°C)
922
Diameter
TIMEJs ——
SOURCE:
g Steel,” Journal of Heat Treating, Vol
Stephen Preston, "Influence of Vanadium on the Hardenability of a Carburizin
8, Springer-Verlag, 1990, pp 93-99
ee
Atlas of Time-Temperature Diagrams
570
Rail Steel
Composition: 0.77% C - 0.95% Mn - 0.22% Si - 0.014% P -
0.017% S - 0.10% Cr
1_ (2°34
8°67
8
R101
Ses NS
°C
Temperature
10
100
Time, Sec.
SOURCE:
B.L. Bramfitt, "Accelerated Cooling of Rail,” presented at the ISS-AIME
32nd Mechanical
Working and Steel
Conference, Cincinnati, October 1990, to be published in the proceedings
ONi Steel
Composition: 0.033% C - 0.57% Mn - 0.22% Si - 0.006% P 0.007% S - 8.63% Ni - 0.13% Cr - 0.02% Mo - 0.032% Al -
0.0083% Ng Austenitized at 900°C (1650°F)
SOURCE: Petr Pahuta, Zalenek Janik, Ludmila Hyspecka, Karel Mazanec, "Structure of 9Ni and 9NiMo Steels for Cryogenic
Applications,” Transactions ISIJ, Vol 26, 1986, pp 649-654
Atlas of Time-Temperature Diagrams
ONi-Mo
971
Steel
Composition: 0.095% C - 0.48% Mn - 0.27% Si - 0.008% P 0.008% S - 9.30% Ni - 0.17% Cr - 0.51% Mo - 0.045% Al 0.008% Ng Austenitized at 790°C (1455(°F)
600
400;
Tel
2G)
200;
ths4
SOURCE: Petr Pahuta, Zalenek Janik, Ludmila Hyspecka, Karel Mazanec, "Structure of 9Ni and 9NiMo Steels for Cryogenic
Applications,” Transactions ISIJ, Vol 26, ISIJ International, 1986, p 649
15Mo3
Steel
13CrMo
Composition: 0.16% C - 0.60% Mn - 0.26% Si - 0.015% P0.009% S - 0.31% Mo - 0.03% V - 0.004% Al - 0.009% N
4 4 Steel
Composition: 0.11% C - 0.56% Mn - 0.30% Si - 0.015% P 0.015% S - 0.07% Ni - 0.84% Cr - 0.48% Mo - 0.01% V -
0.002% Al - 0.011% N
1 ae
—Austenitigng
930°C 8 min
oe ARES
ne
CReMMCMucine
es
&
=
a
PERE
2 es
Peiges
10CrMo
a
aus:
a raldoaie ote
AH
eae
a aoa
ee OL
; Pe
Mes
res)
ebie Sale
MCA
\e\ heel at
To
sn
9 10 Steel
Composition: 0.10% C - 0.49% Mn - 0.24% Si - 0.013% P -
0.013% S - 2.43% Cr - 1.06% Mo - 0.01% V - 0.012% N
X12CrMo
7 Steel
Composition: 0.08% C - 0.58% Mn - 0.68% Si - 0.019% P -
0.007% S - 0.29% Ni - 6.31% Cr - 0.51% Mo - 0.04% V 0.003% Al - 0.015% N
Fea
HaaCgeMak WME. laneITaa
Se we ee
ThE
HARB
SOURCE:
g Part 1: Chromium-Molybdenum
R. Petri et al, "During Cooling Creep-Resistant Tube Steels After Austenitisin
Steels,” Arch. Eisenhuttenwes., Vol 51, No. 8, 1980, pp 355-360
Atlas of Time-Temperature Diagrams
572
X12CrMo
8Cr-2Mo Steel
Composition: 0.19% C- 0.46% Mn - 0.34% Si - 0.019% P -
9 1 Steel
Composition: 0.09% C - 0.30% Mn - 0.62% Si - 0.022% P 0.008% S - 0.14% Ni - 9.29% Cr - 1.01% Mo - 0.04% V -
0.013% S - 0.09% Ni - 7.83% Cr - 2.02% Mo - 0.01% V -
0.009% Al - 0.018% N
0.005% Al - 0.013% N
=]
~Austenitisng ..970°C 8min_|
100
| 7] —austenitising
71050
10min |
aeEee
ay
Sax
ope BSEVa
ees
2a
Witavse
=
Seo
vl
Fe
2
E300
=.
‘00
:
AVREtaee
s
Vere
Se
irte
aap ele
SOURCE: R. Petri et al, "During Cooling Creep-Resistant Tube Steels After Austenitising Part 1: Chromium-Molybdenum
Steels," Arch. Eisenhuttenwes., Vol 51, No. 8, 1980, pp 355-360
X20CrMoV121
Steel
12Cr-1Mo-1W-V-Nb Steel
Composition (approx.): 0.1% C - 0.5% Mn- 0.25% Si - 12.0% Cr
Composition: 0.20% C - 0.47% Mn - 0.24% Si - 0.026% P 0.009% S - 0.39% Ni - 11.49% Cr - 0.98% Mo - 0.28% V -
- 1.0% Mo - 0.28% V - 0.06% Nb - 1.0% W
0.002% Al - 0.0323% N Grain size: 4-5 Austenitized at 1050°C
1920(°F)
1000
Austenitising temperature 1050°C
Holdtime
Ac yb 2 820C
8min; ASTM
grainsize 4-5
A
800
(°C)
TEMPERATURE
o
£
© 600
iS
is
a
10
E
2 400
5
10?
5
10°
5
COOLING TIME FROM Ac, (sec)
10°
5
10°
200
10.
seconds
10?
10°
10
cooling time between
. bar(or bloom)
diameter,D
10
20
. Plate (or strip)
thickness, S
_
Pipe: reduced
wall thickness:
$(1-3)
10
2
4060 100
4
and 500°C
400
1000 aircooling
a)
100
AOD
4 6 10 20 40
100 200
20
40
10
800°C
ca:
SOURCE: J.W. Schinkel, P.L.F. Rademakers, B.R. Drenth,
C.P. Scheepens, "Heat Treatment, Aging Effects, and
Microstructure of 12 Pct Cr Steels,” Journal of Heat Treating,
Vol 3, No. 3, ASM, June 1984, pp 237-248
SOURCE: K. Yoshikawa, et al. "Development of
12Cr-1Mo-1W-V-Nb Steel for Elevated Temperature
Applications,” High Temperature Alloys, Their Exploitable
Potential, J.B. Marriott et al., eds, Elsevier Applied Science,
1987, pp 247-256
——_—_—_—<—_—_—_—_—_—_$_—$—$—$—_—$—_———_—_—_$_
$$$
Atlas of Time-Temperature Diagrams
18-0-1 Steel
Composition: 0.54% C - 0.44% Mn - 0.33% Si - 0.023% P 0.023% S - 4.02% Cr - 0.42% Mo - 1.24% V - 7.44% W
Austenitized at 1260°C
nl
8 AA
oS
TIN
Ae
Ht
eae
CONSORT ELI Hert
PTR
are
eee
°c
T,
Ap
Ts
6-5-2 Steel
Composition: 0.51% C - 0.40% Mn - 0.41% Si - 0.023% P 0.030% S - 3.94% Cr - 2.45% Mo - 1.24% V - 1.50% W
Austenitized at 1250°C (2280°F)
sr GS SS ER WG AY
Sk
~ =
$4 A
GE CS
wasnene
ett
anwsiva\mesm—at
ASIAN
Te
EatIau
at NIT A A A
ries SSH
” COA
at
at ith YA
A
ee td
fe
eo
ESSE a
oqteszore |_||
ACS Peer
|
SOON
(OESIes al
L] TU Seal acl ABS et
T,s
2-9-2 Steel
Composition: 0.52% C - 0.42% Mn - 0.47% Si - 0.028% P 0.030% S - 3.97% Cr - 3.15% Mo -1.15% V - 0.99% W
Austenitized at 1240°C (2265°F)
Die
PoE lOy eNO N Teepe
. IN
Sea aa ae Ge GAIA URGLIE
Yisc
LJ] [ ncsyeozore ||
a PTT Aergeoserel I
Te Tse CM ine ET DK TGE oto
NAPSot
CATA
aa |
ia
eal
CN
e!
erae
e
a
Siet
n
e
S
l
eat
: HN - ta
i
|
SOURCE: Jerzy Pacyna, Tadeusz Paluszkiewicz, Stanislaw Gorczyca, "Effect of Molybdenum on the Kinetics of Phase
Transformation of Undercooled Austenite in High-Speed Steels Under Continuous Cooling,” Steel Research, Vol 59, No. 1, 1988,
pp 34-41
Atlas of Time-Temperature Diagrams
574
1524MoV
Steel
Composition: 0.22% C - 1.54% Mn - 0.35% Si -0.014% P 0.036%
S - 0.11%
Mo - 0.11% V - 0.011%N
hy
ACNE
cc au
Pt RS Nisa VeHiECLUAS
__ AAR SS a
rane
mea Pare semi WA le}Meo bhr
tt
elegy GaSe
RSiele
8o
°C
Temperature,
SUS EISOuRS eee
10
100
°F
Temperature,
ees
103
104
SOURCE: K.J. Grassl et al, Thesis in Progress, Advanced Steel Processing and Products Research Center, Colorado School of
Mines, 1988
3.5NiCrMoV
Rotor Steel
Composition: 0.25% C - 0.40% Mn - <0.10% Si - 3.50% Ni 1.50% Cr - 0.50% Mo - 0.10% V Grain size: 10 Austenitized at
840°C (1545°F)
Austenitized at 840°C
ASTM Grain Size 10 (10,.m)
°C
Temperature,
Coollag Rete, °C/mis 430
Section Size, mm
100
Time, sec
R.L. Bodnar, K.A. Taylor, Structure/Property Relationships in Medium-Carbon
Bainitic Steels for Thick Sections, 31st
Mechanical Working and Steel Processing Conference Proceedings, ISS of AIME, 1990
—
——————————aaa__
Atlas of Time-Temperature Diagrams
975
a
Cr-Mo-V Rotor Steel
Composition: 0.32% C - 0.74% Mn - 0.25% Si - 0.037% P 0.036% S - 0.34% Ni - 1.04% Cr - 1.20% Mo - 0.24% V
|
820
1600
© Trons. Starts
Be‘
oT rans. Stops
Stop
:
Carbides
1400
> Ferrite
+
Peorlite
WL
2120.0
sd
=
2 1000
ov
Qa
S
2 800
600 |--~
400
\
“Structure
|-
208
80M
\
100B
1008
1008
t.F 5F
998 95B
SOF S5F 6OF_
30P 35P 40P
20B 10B
B: Boinite, F: Ferrite, M: Mortensite, P: Pearlite
200
0.01
0.1
|
Time,
10
o
100
hours
SOURCE: F.E. Werner, T.W. Eichelberger, E.K. Hann, "The Effect of Austenitizing, Tempering and Microstructure on the
Properties of a Cr-Mo-V Steel, Transactions of the ASM, Vol 52, 1960, pp 376-403
B.S. En 12 Steel
Composition: 0.43% C - 0.95% Mn - 0.21% Si - 0.018% P 0.024% S - 0.93% Ni - 0.15% Cr - 0.04% Mo Grain size: 6
Austenitized at 845°C (1550°F)
700
600
500
r = distance from axis
b = radius of bar
r/b = 0 (center)
r/b = 0.5 (MR - mid-radius)
r/b = 0.8 (sub surface)
eens
a
2
a
o
= 300
=
BAR DIAMETER, in.
SOURCE:
of The Iron and
W. Steven, G. Vol 174, Mayer, "Continuous-Cooling Transformation Diagrams of Steels,” Journal
Steel Institute, Vol 174, May 1953, pp 33-45
Atlas of Time-Temperature Diagrams
576
BS En 16 Steel
Composition:
0.33%
C - 1.48% Mn
- 0.18%
Si- 0.028%
P -
0.028% S - 0.26% Ni - 0.16% Cr - 0.27% Mo Grain size: 7
Austenitized at 845°C (1550°F)
“C,
TEMPERATURE,
r = distance from axis
b = radius of bar
b = 0 (center)
b = 0.5 (MR - mid-radius)
b = 0.8 (sub surface)
3
4
BAR DIAMETER, in.
BS En 17 Steel
Composition: 0.38% C - 1.49% Mn - 0.25% Si - 0.036% P 0.028% S - 0.24% Ni - 0.10% Cr - 0.41% Mo Grain size: 8
Austenitized at 845°C (1550°F)
600
500
_ 400
Y
us
ie4
i
—
Pp
Ww JOOFMs,
¥
ox,
us
—
4
BAR DIAMETER, in.
SOURCE: W. Steven, G. Vol 174, Mayer, "Continuous-Cooling Transformation Diagrams of Steels,” Journal of The Iron and
Steel Institute, Vol 174, May 1953, pp 33-45
Atlas of Time-Temperature Diagrams
BS
En
577
19 Steel
Composition:
0.44% C - 0.60% Mn - 0.22% Si - 0.023% P -
0.023% S - 0.24% Ni - 1.19% Cr - 0.37% Mo Grain size: 6
Austenitized at 850°C (1560°F)
Ww
Oo O
°C.
TEMPERATURE,
/o=O
Ce
|
5)
A
r = distance from axis
3
2
4
3
5
4
6
5
b=
radius of bar
r/b = 0 (center)
6
r/b =0.5 (MR - mid-radius)
r/b = 0.8 (sub surface)
2
l
ue
3
4
6
5
BAR DIAMETER, in
7
BS En 23 Steel
Composition: 0.32% C - 0.61% Mn - 0.28% Si - 0.018% P 0.013% S - 3.22% Ni - 0.63% Cr - 0.22% Mo Grain size: 7
Austenitized at 835°C (1535°F)
Ww
OO
Mis
°C,
TEMPERATURE,
mw
Wa)
Rae
A wn
TeO5
3
2
|
‘IO-8
2
3
BAR
SOURCE:
5
|
"/b=O
4
4
6
5
5
6
6
7
DIAMETER, in.
Journal of The Iron and
W. Steven, G. Vol 174, Mayer, "Continuous-Cooling Transformation Diagrams of Steels,”
Steel Institute, Vol 174, May 1953, pp 33-45
Atlas of Time-Temperature Diagrams
578
BS En 26 Steel
Composition: 0.38% C - 0.56% Mn - 0.15% Si - 0.011% P 0.005% S - 2.42% Ni - 0.74% Cr - 0.46% Mo Grain size: 8
Austenitized at 835°C (1535°F)
“C.
TEMPERATURE,
"
teOS
2
/
Moe
l
3
2
4
3
4
5
5
6
r/b = 0 (center)
6
6
distance from axis
radius of bar
1/b = 0.5 (MR - mid-radits)
7
r/b = 0.8 (sub surface)
BAR DIAMETER, in.
BS En 111 Steel
Composition: 0.35% C - 0.65% Mn - 0.13% Si - 0.035% P 0.032% S - 1.27% Ni - 0.55% Cr Grain size 7 Austenitized at
845°C (1550°F)
°C.
TEMPERATURE,
Te= O-S
|
2
3
4
3
hy O-8
BAR DIAMETER, in.
SOURCE: W. Steven, G. Vol 174, Mayer, "Continuous-Cooling Transformation Diagrams of Steels,” Journal of The Iron and
Steel Institute, Vol 174, May 1953, pp 33-45
_ Atlas of Time-Temperature Diagrams
579
BS En 160 Steel
Composition: 0.41% C - 0.48% Mn - 0.13% Si - 0.016% P 0.043% S - 1.75% Ni - 0.17% Cr - 0.22% Mo Grain size: 6-7
Austenitized at 845°C (1550°F)
700
600
O%o
10%
4
SOO
Wa
:
Q
2
50%
75°%o
ee
100%
r = distance from axis
b = radius of bar
j 400
°
&
=
=
r/b = 0 (center)
r/b = 0.5 (MR - mid-radius)
r/b = 0.8 (sub surface)
= 300
ze
200
=O
W005
h=0'8
3
4
BAR DIAMETER, in.
SOURCE: W. Steven, G. Vol 174, Mayer, "Continuous-Cooling Transformation Diagrams of Steels,” Journal of The Iron and
Steel Institute, Vol 174, May 1953, pp 33-45
42Cr Mo4 Steel
Composition: 0.41% C - 0.66% Mn - 0.25% Si -0.008% P -
0.024% S - 0.31% Ni - 1.03% Cr - 0.17% Mo - 0.28% Cu 0.01% V Austenitized at 850°C (1560°F) for 1h
a
Ae
|
alee
(<0)
blood o|
a |ibe
TTEMPERATURE
200
Different Heat Treated
SOURCE: L. Issler, A. Kumar, H. Weiss, "Application of Fracture Concepts to Steel 42 Cr Mo 4 in
Congress on Fracture, 1984, pp
Conditions,” Advances in Fracture Research, S.R. Valluri, et al., Eds., Vol 2, International
1497-1505
Atlas of Time-Temperature Diagrams
Natural Cooling CCTs
0.27C-1.17
Mn-0.31Si-0.48Cr-0.0013B
Steel
Composition: 0.27% C - 1.17% Mn - 0.31% Si - 0.48% Cr -
0.0013B
Temp
Temp
°C
°c
900
900 idee
800
800}
700 }
700
600
600
500 ale
500 MS
ie
300 —
a300 ts
RON
imiY
Ss
Ne
aki.
TINA ees |
Riise. .anckk
wae
CN
|
SNE
= Name “NBN
deck bh tA
Diameter mm
| 200 |
[ncaa
cd ea
100 Hardness HV s
es | | ae |e
Hats
(Het
Sasi
esos
1
10)
102
10 s
A A
| 50 75 100_|
100
BMP
MMma Ete
ioe Tee
Soi ees
1
10!
102
Time
Time
Oil quenching, 0.8 R
Water quenching, 0.8 R
Temp
Temp
900
WG
900
°c
SiR
nlisa
NSN SENSES SB27M12CB
NaaSI NST NAL
=| ia
ED ACNE
Ne
NG
ia
600 NLA
Tet ele rite
SIR od Bey
Nese
Nes
ee
ss
fea
MAYAN MA GUE valet
Me LETT _heamite TNT
cool
Diameter mm
200
Hardness HV
525
ee
0 Ee
pe
1
10!
e2
wei Lo
“as 365 =a |
a8 |
EP eevee
cee
102
103 s
Ses
1° s
200
ll
Ss SBN
aS el
aero
Hordness HV
oe
ee
ss en (ae SC
0 He
\
ee
att 425 321 27% | 215 |
10!
HHS
102
Time
Water quenching, center
103s
fine
Oil quenching, center
SOURCE: K-E Thelning, "New Aspects on the Appraisal of the Cooling Process During Hardening of Steel," proceedings of the
2nd International Congress on Heat Treatment of Materials of IFHT, 1st Conference on Metallurgical Coatings of AIV, Florence
20-24 September 1982, Associazione Italiana di Metallurgia, pp 17-26
eee
sss
Atlas of Time-Temperature Diagrams
581
Welding CCTs
Weld
Zone
CCTs
Grain refined HAZ
Weld metal
SOURCE:
H. Peetz, Doctoral dissertation, Technical University
of Braunschweig, 1979
1200
1100
1000
Grain coarsened HAZ
900
steel ANb4
oO 800
;
w
=
austenitised
1220°C, 50s
austenite grain size 160m
700
EF equiaxed ferrite
\B:
WF Widmanstatten
mes
600
2 pointe
pearlite
<
\
fj 500
a
5
ba 400
M
of
’
M martensite
is
Onxvs5
Rs
Bee
be
=
<
300
200}
100L
W
o dilatometry
e thermal analysis
* quant. metallography
--- estimated
2
pe
a
1
\
ra
a
-X
oe
a
10
(c)
102
TIME, s
103
104
10
TIME TO COOL FROM 1000°C, s
Composition: 0.094% C - 1.32% Mn - 0.3% Si Austenitized at
Composition: 0.18% C - 1.3% Mn - 0.27% Si Austenitized at
1250°C (2380°F) for 5 min
1220°C (2230°F)
SOURCE:
SOURCE:
P.L. Harrison, M.N. Watson, R.A. Farrar, Weld
Metallurgy and Fabrication, Vol 49, 1981
a
a
A. Brownrigg, R. Boelen, "The Effect of Nb on
Hardenability of C-Mn-Si-Al
Steels,” ITW Doc. IIW-1976-
MTC, 1976
ee
EEEEEEEEEEEERERSEEEE
582
Atlas of Time-Temperature Diagrams
C-Mn
Weld Metals
Composition: 0.06% C - 0.56% Mn - 0.41% Si - 0.023% P 0.008% S - 0.05% Ni - 0.01% Mo - 71 ppm N - 411 ppm O
Grain size: 5-8 Austenitized at 1400°C (2550°F)
Austenitised 10sec 1400°C
1200
Grain size: ASTM 5:8
1100
1000F
900
25%
b= transformation
800
>
£
700
2
600
5
500
4—
97-5%
transformation
[4
400)
300
Cooling
200F
rat
s00-s00°C.
‘
&
roof * gamers, GE Gel) fl fle!
©
Dilatometry
==
Estimated
0
c
IS
g
8
8
Oo}
|g
S
el el AL
}
1
10 Time. sec 102
10?
SOURCE: Peter Harrison, Roy Farrar, "Microstructural Development and Toughness of C-Mn and C-Mn-Ni Weld Metals, Part 1
- Microstructural Development,” Metal Construction, Vol 19, No. 7, July 1987, pp 392R-399R
eeeeeeesesesesesesesesesesesesasasonson
Atlas of Time-Temperature Diagrams
583
C-Mn Weld Metals
Composition: 0.07% C - 1.35% Mn - 0.52% Si - 0.022% P 0.005% S - 0.05% Ni - 0.01% Mo - 94 ppm N - 352 ppm O
Grain size: 5-8 Austenitized at 1400°C (2550°F)
Austenitised 10sec 1400°C
Grain size: ASTM 5:8
800
Analysis, wt % 0 07C 0:52Si 135Mn
Austenitised 10sec 1400°C (ASTM 58)
700
oO
a
8
2 600
25%
4—
oO
°
975%
=5
4
°
transformation
x transformation
E S00
=
a
iS
©a
300
Cooling
r
800 "SO ore
pau CmEt
(o}
&
E
90
*,
5
cr
a
os
*
xa
3
H3
70
=)
v
=
Martensite
Polygonal ferrite
°
x
e
50
Se
o-%0
of
xSass
xXx oe
;
_
ye)
8
>,
0%
:
¥
30
Lath ferrite J
3
SN
10
Ne
7
Acicular
Ferrite
opie)
:
n°
-S-—
| Xa
+7
~=
ferrite
Commute
TeSteex
1000
300
100
30
10
3
1
(03)
(1)
(3)
(10)
(30)
(100)
(300)
Cooling rate 800-500°C, °C/sec
(Cooling time 800-500°C,
sec)
SOURCE:
Peter Harrison, Roy Farrar, "Microstructural
Development and Toughness of C-Mn and C-Mn-Ni Weld
Metals, Part 1 - Microstructural Development,” Metal
Construction, Vol 19, No. 7, July 1987, pp 392R-399R
a
SOURCE:
Peter Harrison, Roy Farrar, "Microstructural
Development and Toughness of C-Mn and C-Mn-Ni Weld
Metals, Part 2 - Toughness, Metal Construction,” Metal
Construction, Vol 19, No. 8, August 1987, pp 447R-450R
584
Atlas of Time-Temperature Diagrams
C-Mn
Weld
Metals
Composition: 0.07% C - 2.12% Mn - 0.33% Si - 0.023% P -
0.008% S - 0.06% Ni - 0.01% Mo - 81 ppm N - 317 ppm O
Grain size: 5-7 Austenitized at 1400°C (2550°F)
Austenitised 10sec 1400°C
\\
Grain size: ASTM 5:7
Analysis, wt % 0:07C
0:33Si 2:12 Mn
: Austenitised 10 sec 1400°C (ASTM 5:7)
80)
ss
gs
32
°C
Temperature,
i =)(2)
8
°C
Temperature,
“es
Cooling rate
E
.
a
=
=i
-
ilatometr:
100}
@ Guentitetive
metailography
0 — — Estimated
0
1
EEL
S
5
.
& y
a
=
a
10 Time sec 0 2
u
5
Acicular
|
ferrite
Martensite at
u
10 3
10°
x
.
v
3
2
i
LS)
=
7)
2
3)
=
$
Lath ferrite
oe
3
(0)
07Conae
ond
sideplates
Ss)
=
=
, oman,
1000
300
100
30
10
3
(0:3)
CH)
(3)
(10)
(30)
(100)
Cooling rate 800- 500°C, °C/sec
(Cooling time 800-500°C, sec)
SOURCE: Peter Harrison, Roy Farrar, "Microstructural
Development and Toughness of C-Mn and C-Mn-Ni Weld
Metals, Part 1 - Microstructural Development,” Metal
Construction, Vol 19, No. 7, July 1987, pp 392R-399R
a
SOURCE: Peter Harrison, Roy Farrar, "Microstructural
Development and Toughness of C-Mn and C-Mn-Ni Weld
Metals, Part 2 - Toughness, Metal Construction,” Metal
Construction, Vol 19, No. 8, August 1987, pp 447R-450R
a
EES
SS
Atlas of Time-Temperature Diagrams
585
C-Mn-Ni Weld Metals
Composition: 0.05% C - 0.98% Mn - 0.33% Si - 0.017% P -
0.011% S - 0.06% Ni - 0.06% Mo - 45 ppm N - 446 ppm O
Grain size: 5-4 Austenitized at 1400°C (2550°F)
Austenitised 10sec 1400°C
v
Grain size: ASTM 5:4
'
to
:
VF SPe
25%
1—t—
transformation
8
transformation}
ATLL os.
om
s=
CAF
d
aa:
°C
Temperature,
200}
100
Cooling rate
800- 500°C
8
© Dilatometry
Dopo
0 = —€Estimated
0
a
1
sf
g
g
3 8818
SP)
HSS)
|
:
+
Cease
18
Ey §
le
PS I be
12
fellelle|
2
Sal
isa
10
3
10
4
of C-Mn and C-Mn-Ni Weld Metals, Part 1
SOURCE: Peter Harrison, Roy Farrar, "Microstructural Development and Toughness
392R-399R
pp
1987,
July
- Microstructural Development,” Metal Construction, Vol 19, No. 7,
Oe
EEE
eee
Atlas of Time-Temperature Diagrams
586
C-Mn-Ni Weld Metals
Composition: 0.04% C - 1.20% Mn - 0.41% Si - 0.024% P 0.014% S - 1.10% Ni - 0.07% Mo - 120 ppm N - 430 ppm O
Grain size: 5-5 Austenitized at 1400°C (2550°F)
Analysis, wt%0-04C 0 41S: 1:20Mn 1:10 Ni
Austenitised 10 sec 1400°C (ASTM S'S)
Austenitised 10sec 1400°C
Grain size:ASTM 5:5
800
600
25%
4__=transformation
97.5%
f—transformation|
500
Temperature,°C
400
°C
Temperature,
300
Cooling rate
800-500°C
“© Dilatometry
®@ Quantitative
A
90
Polygonal
metallography
ferrite
a7
i = Estimated
oe
te
Microstructure,
%
Lath ferrite
10
1000
300
100
30
10
3
(03)
(1)
(3)
(10)
(30)
(100)
1
(300)
Cooling rate 800- 500°C, °C/sec
(Cooling time 800- 500°C, sec )
SOURCE: Peter Harrison, Roy Farrar, "Microstructural
Development and Toughness of C-Mn and C-Mn-Ni Weld
Metals, Part 1 - Microstructural Development,” Metal
Construction, Vol 19, No. 7, July 1987, pp 392R-399
a
SOURCE: Peter Harrison, Roy Farrar, "Microstructural
Development and Toughness of C-Mn and C-Mn-Ni Weld
Metals, Part 2 - Toughness, Metal Construction,” Metal
Construction, Vol 19, No. 8, August 1987, pp 447R-450R
eeeeeSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSee
Atlas of Time-Temperature Diagrams
587
C-Mn-Ni Weld Metals
Composition: 0.05% C - 1.18% Mn - 0.38% Si - 0.022% P 0.010% S - 2.52% Ni - 0.08% Mo - 178 ppm N - 482 ppm O
Grain size: 5-O Austenitized at 1400°C (2550°F)
Austenitised 10sec 1400°C
Grain size: ASTM 5:0
Analysis, wt% O:-0SC
Austenitised
0:38Si
1:18Mn
2-52Ni
10 sec 1400°C (ASTM 5:0)
°C
Temperature,
°C
Temperature,
Cooling rate
800 -500°C
5 eis Martensite
© Dilatometry
@ Quantitative
metallography
= Estimated
@
Microstructure,
%
Lath ferrite
S
5
9
on
<
O Potygonal ferrite
Bes y::)
1000
(0:3)
300
(1)
100
(3)
+
om oe
-_—t.,
Oee Ferrite
ea sideplates
eo
30
(10)
10
(30)
3
(100)
1
(300)
Cooling rate 800-500°C, °C/sec
(Cooling time 800-S00°C, sec)
SOURCE: Peter Harrison, Roy Farrar, "Microstructural
Development and Toughness of C-Mn and C-Mn-Ni Weld
Metals, Part 1 - Microstructural Development,” Metal
Construction, Vol 19, No. 7, July 1987, pp 392R-399R
a
SOURCE: Peter Harrison, Roy Farrar, "Microstructural
Development and Toughness of C-Mn and C-Mn-Ni Weld
Metals, Part 2 - Toughness, Metal Construction,” Metal
Construction, Vol 19, No. 8, August 1987, pp 447R-450R
ceEEEE EEEEEEEEE SnESEESSEEE
Atlas of Time-Temperature Diagrams
588
C-Mn-Ni Weld Metals
Composition: 0.04% C - 1.29% Mn - 0.38% Si - 0.030% P 0.017% S - 3.58% Ni - 0.08% Mo - 141 ppm N - 432 ppm O
Grain size: 4-8 Austenitized at 1400°C (2550°F)
Austenitised 10sec 1400°C
Grain size: ASTM 4:8
1200
1100
1000
900
800
700
25%
}__4_ transformation
600
Y
500
Ais] aw
7
°C
Temperature,
200}
a
bt \_}
2
Cooling rate
800 -500°C
© Dilatometry
100f-e Quantitative
metallography
0 =Estimated
SOURCE: Peter Harrison, Roy Farrar, "Microstructural Development and Toughness of C-Mn and C-Mn-Ni Weld Metals, Part 1
- Microstructural Development,” Metal Construction, Vol 19, Vol 19, No. 7, July 1987, pp 392R-399R
a
eEEEEEESEEE SEEN
ee
Atlas of Time-Temperature Diagrams
589
Ti-Oxide
Bearing Steel
Composition: 0.079% C - 1.39% Mn - 0.20% Si - 0.0007% P 0.0007% S - 0.002% Al - 0.012% Ti - 0.0015% N - 0.0017% oO
Heating temperature 1400°C (2550°F)
iO
(C)
Temp.
ee
D
100
ian
WD Bw
08
24
56
9.9
30
375
125
54
30
10
re
5)
elOrmere
Sere
XID COED
®
41
Os
Time
wy
90
161 223
630
4tg75(S)
33
19
05
C/S
pa?
13
be Et04
ae?
(sec)
Composition: 0.092% C - 1.42% Mn - 0.20% Si - 0.0010% P -
0.0008% S - 0.020% Al - 0.0015% N - 0.0020% O Heating
temperature 1400°C (2550°F)
Ye
2a 500
oe
—
\
aes
ee
ee
87
‘ 400
UNO
ob
Nycuame
PEN 7 VES‘ AUN
2.8 \p\
:
B
a
IFPI\\
M
ae
ie
300
200
2)
G05)
100
1
2
5
59248) C224) C189)
C7) Ges)
16
68
104164
3140
65
104
188
44
29
97
46
29
10
2
183
BIO
Time
@
161
53
Gs)
Gap
Hv
324
610
dtgy7s(S)
093
049
Css
joe
&
(sec)
SOURCE: Koichi Yamamoto, et al, "A Newly Developed Ti-Oxide Bearing Steel Having High HAZ Toughness,” Residual and
Unspecified Elements in Steel, ASTM STP 1042, A.S. Melilli, E.G. Nisbett, Eds., ASTM, 1989, 266-284
a
a
Atlas of Time-Temperature Diagrams
590
Si-Mn
Steel
Composition: 0.09% C - 0.81% Mn - 0.11% Si - 0.017% P 0.013%
S - 0.11% Cu - 0.0050%
N - 0.014%
O (Carbon
equivalent calculation 0.230%) Austenitized at 1350°C
(2460°F)
Ac3:874°C
°C
Temperature,
Cooling time from Ac3, sec
Si-Mn-Ti-B
Steel
Composition: 0.11% C - 1.16% Mn - 0.29% Si - 0.013% P 0.011% S - 0.08% Mo - 0.10% Cu - 0.043% Ti - 0.0034% B 0.0057% N - 0.020% O (Carbon equivalent calculation 0.335%)
Austenitized at 1350°C (2460°F)
LN
o—<
ll
ron
SEs
ee
Aci: 708°C
°C
Temperature,
bh
200
SY
\
Ge Ge)
1
5
10
1S
zd Ris) FadRo%Hs0) (G4)
5S 104
5
103
Ss 104
Cooling time from Ac3, sec
SOURCE: Yoshinori Ito, Mutsuo Nakanishi, Yu-ichi Komizo, "Effects of Oxygen on Low Carbon Steel Weld Metal,” Metal
Construction, Vol 14, No. 9, September 1982, pp 472-478
Sennen
a
Atlas of Time-Temperature Diagrams
591
T1 Steel
Composition: 0.15% C - 1.00% Mn - 0.23% Si - 0.014% P 0.023%
S - 0.94% Ni - 0.53% Cr - 0.45% Mo - 0.34% Cu -
0.004% Ti - 0.0014% B - 0.05% V - 0.008% Sn Grain size: 7
Austenitized at 1090°C (2000°F)
5
°F
TEMPERATURE,
10
TIME
SECONDS
SOURCE: E.F. Nippes, W.F. Savage, R.J. Allio, "Studies of the Weld Heat-Affected Zone of T-1 Steel,” Welding Research
Supplement, Vol 36, December 1957, pp 531s-540s
SAE
1320 Steel
Composition: 0.24% C - 1.59% Mn - 0.23% Si - 0.024% P 0.019% S
COOLING
1
800
COOLING
RATE
23)
4
1
S
2
RATE
3
4
ames
(In-Situ transformation
——————
*
=—e==—=
Simulated
a
S
«cooling
temperatures
curves
transformation
2
cooling
temperatures
curves
:
IC
TEMPERATURE,
°C
TEMPERATURE,
HV 0:
% MARTENSITE
:
474
456
429
330
292
100
88
63
20
8
O
fe
1
2
5
10
TIME
TO COOL
20
FROM
es
HV 10:
ee
50
100
1000°C,
seconds
‘IN-SITU’
474
456
429
330
292
SIMULATED
478
466
460
371
268
% MARTENSITE : ‘IN-SITU’
SIMULATED
100
100
88
100
63
92
20
26
8
3
50
100
200
1000°C,
seconds
0
200
500
jhe
1
2
ee
5
10
TIME
20
TO COOL FROM
SOURCE: R.H. Phillip, "‘In Situ’ Determination of Transformation Temperatures in the Weld Heat-Affected Zone,” Welding
Research Supplement, Vol 62, January 1983, pp 12s-18s
S500
Atlas of Time-Temperature Diagrams
592
Influence of Heating Rate during Austenitization
SAE 4340 Steel
Composition: 0.42% C - 0.78% Mn - 1.79% Ni - 0.80% Cr 0.33% Mo Grain size: 7-8 Austenitized at 845°C (1550°F)
SAE 1050 Steel
Composition: 0.50% C - 0.91% Mn Grain size: 7-8 Austenitized
at 910°C (1670°F)
AIS! 4340 Steel
Induction-
Furnace-
Heated
Heated
eet ttt 4ie
he
-
600
AISI 1050 Steel
Induction: Heated
5
pea
eam
witemineon
a
Furnace- reated
S
°
480 5
te
o
260
pps
3]5
s
s
)
re)
=)
©
2
05 | 2
5 10 2050 I02
oO
®
g|o
3/3
SE)
cs
Ss\e5
w/o} =
—|r| —
alk
103
2
Pt
150
c|<
s{=
0|O
—(|m
()
a
w
PT}
er
a
vn
°
105
05 1 2
Time, Seconds
5 102050102
103
104%
105
Time, Seconds
SOURCE: Joseph P. Libsch, Wen-Pin Chuang, William J. Murphy, "The Effect of Alloying Elements on the Transformation
Characteristics of Induction-Heated Steels,” Transactions of the ASM, Vol 42, 1950, pp 121-149
——S——_
eee
OE
eee _—_——— ee eee
eer
oo oeSSS
SS
Atlas of Time-Temperature Diagrams
593
SAE 4142 Steel
Composition: 0.40% C - 0.70% Mn - 0.31% Si - 0.010% P 0.026% S - 0.16% Ni - 1.11% Cr - 0.16% Mo - 0.15% Cu
880
860
IT heating diagram
_ 840h
S
ws ea
Heating rate = 1020°C (1870°F)/s
c 800
Acy
w
S= 760
Seu
i
=}
5 PREP tHeEHitt
:
10?
10°
”
TIME ts)
IT cooling diagram
800
BY a HV
Experimental data (solid lines):
Heating rate = 130°C (265°F)/s
Austenitized at 950°C (1740°F) for 6 s
Cooling rate = 130°C (265°F)/s
600
a a
246 280
290
S
w 400
289 310
345 370
o
386
=
Conventional data (dashed lines):
Austenitized at 860°C (1580°F) 10 min
<
=
™ 200
NOTE: Hardness numbers are (left column) for the rapid
heating diagram, and (right column) for the conventional
diagram
0
°
:
a
CT heating diagram
Co
Ps
a.
=
ws
=
TIME ¢s)
Rapid Heat Treatment of Two Alloy
SOURCE: M. Melander, J. Nicolov, "Heating and Cooling Transformation Diagrams for the
32-38
1985,
June
1,
No.
4,
Vol
Treating,
Heat
of
Journal
Steels,
rr nnn
EEE
Atlas of Time-Temperature Diagrams
594
SAE
52100 Steel
Composition: 0.99% C - 0.37% Mn - 0.24% Si - 0.011% P 0.022%
S - 0.07% Ni - 1.50% Cr - 0.01% Mo - 0.11% Cu
CU
IT heating diagram
Heating rate: 970°C (1780°F)/s
°C)
TEMPERATURE
«
TIME ‘s)
IT cooling diagram
Experimental data (solid lines):
my HY
Heating rate = 100°C (212°F)/s
203 ae
Austenitized at 950°C (1740°F) for 6 s
Cooling rate = 130°C (265°F)/s
Conventional data (dashed lines)
Austenitized at 860°C (1580°F) for 10 min
254 4CO
rial 360
336 a
44
515
2
w
=
<
rs
&
509
615
700
NOTE: Hardness numbers are (left column) for the rapid
heating diagram, and (right column) for the conventional
diagram
St~
=a
RGR
&2see
CT heating diagram
«°C»
TEMPERATURE© —
oxperim.
H
VA
o—— Calculation
ad
cya
TIME ¢s)
SOURCE: M. Melander, J. Nicolov, "Heating and Cooling Transformation Diagrams for the Rapid Heat Treatment of Two Alloy
Steels, Journal of Heat Treating, Vol 4, No. 1, June 1985, pp 32-38
i
Atlas of Time-Temperature Diagrams
595
Influence of Applied Pressure on Transformation
0.44 C Steel
0.82 C Steel
Composition: 0.44% C - 0.50% Mn - 0.18% Si - 0.42% Ni 0.22% Cr Grain size: 1-3 Austenitized at 980°C (1800°F)
PERCENT
=
Ae,
° <I0
@ 10-30
450-60
Composition: 0.82% C - 0.50% Mn - 0.18% Si - 0.42% Ni 0.22% Cr Grain size: 1-3 Austenitized at 1095°C (2000°F)
TRANSFORMED
PERCENT
TRANSFORMED
4 60-90
GC >30
oO <10
@10-30
430-60
460-90
0 >90
orm
24 kbar
Ae,
30 kbo
FTEMPERATURE
,
FYEMPERATURE
,
IT
IT
SOURCE: T.G. Nilan, "Morphology and Kinetics of Austenite Decomposition at High Pressure,” Transactions of The
Metallurgical Society of AIME, Vol 239, June 1967, pp 898-909
:
0.44 C Steel
TTT diagrams of 0.4 C - 0.24 Mo Steel at one atmosphere an
at 24 kbar, and comparison with TTT curve of 0.4 C steel at 24
kbar
800
700
600
500
400
Temperature,
F
Temperature,
C
200 athe LA SS
1
10
+
400
102
Time, seconds
in Steels, Climax
SOURCE: T.G. Nilan, "Austenite Decomposition at High Pressure,” Transformation and Hardenability
Molybdenum Company, pp 57-67
n,n,
nn
a
Atlas of Time-Temperature Diagrams
596
Ni-Cr Steel
Composition: 0.30% C - 0.27% Mn - 0.019% P - 0.019% S -
3.50% Ni - 1.25% Cr Austenitized at 870°C (1600°F)
900
os uv
cara
Seiiieet ac '
panes E/N anes ©
es
SoRene
ool —+—J
Lt
oes
“A
ae ee
TEMPERATURE
FAHRENHEIT
DEGREES
-
TEMPERATURE
FAHRENHEIT
DEGREES
-
py
EW Gite
Via
ft|__|
aaa
aa eS
+
4
Baahs
CU
eS
awa
TPS
oye eye Ree
LOS Sn
ee
Ae
eee
Sa Rieti
a
aie
(SS Bnae
SSeS Bo
ae a a
Pa plea es Se Bane 2
Se Seas
2
SS eS Pea ibe ies eek
i ° nel ee
SS
ee ESE
°
°
°
o
Tim€
°
- SECOWOS
°
FROM
1,000
TIME
- SECONDS
FROM
925°F.
925°F
IT diagram at various stress levels
CCT diagram at various stress levels
SOURCE: L.S. Birks, "Characteristics of the Bainite Transformation in a Ni-Cr Steel,” Transactions of the AIME, JOM, (formerly
Journal of Metals) a publication of the Minerals, Metals & Materials Society, Vol 206, August 1956, p 989
SSS
sssssncnsssnsssnsesssssenscesnossueuneessase=:
Atlas of Time-Temperature Diagrams
597
Influence of Plastic Deformation on Transformation
SAE 4337 Steel
Composition: 0.36% C - 1.45% Ni - 1.1% Cr - 0.27% Mo Heated
Fe-0.2C-5Cr Steel
(1020°F) in 30 s, held for 20 s, deformed by 0-30% tensile
elgonation, heated to 600-700°C (1112-1292°F), held for times
the 4337 steel
Composition: 0.23% C - 5.1% Cr Austenitized at 1150°C
(2100°F) for 15 min, and then processed in the same manner as
to 1080°C (1976°F) in 2 min, held 30 min, quenched to 550°C
up to 3 h, quench
800
@
re)
res
re
ve)
°
s
600
<>
a
Ss
Fe —5Cr—02C
a8 a 40%
°
aa
°
deformation
SSS.
ree
uw
a
TEMPERATURE
°C
,
=
500
=
a 0%
0 10%
® 20%
4 30%
Effect of increasing tensile deformation at 550°C (1020°F) on
Effect of different degrees of deformation at 550°C (1120°F) on
the onset of transformation
Percentages are for applied tensile deformation
the onset of transformation
Percentages are for applied tensile deformation
Fe-0.2C-1V
Steel
Composition: 0.18% C - 1.09% V Austenitized at 1150°C
(2100°F) for 15 min
800
’
~ uloO
TEMPERATURE
S
Fe—1V—0:2C
a
K
x
oa
0%
transformed
undeformed
e
100%
transformed
undeformed
TIME,s
1 - The Ferrite
SOURCE: D.J. Walker, R.W.K. Honeycombe, "Effects of Deformation on the Decomposition of Austenite: Part
Reaction,” Metal Science, October 1978, p 445
a
Atlas of Time-Temperature Diagrams
598
Low
Alloy Steel
Composition: 0.57% C - 0.82% Mn - 0.30% Si - 0.016% P 0.019% S - 1.16% Ni - 1.07% Cr - 0.26% Mo Austenitized at
925°C (1700°F)
1200
NOT DEFORMED
DEFORMED 50% AT 1500°F
—
—
DEFORMED
50% AT EACH
600
10
peng
102
104
TIME - SECONDS
Beginning of isothermal transformation for undeformed
austenite and for austenite deformed 50% at 815°C (1500°F)
and at each transformation temperature
SOURCE: R.A. Grange, J.B. Mitchell, "Strengthening Low-Alloy Steels by Deforming Austenite, ASM
1, No. 1, February 1961, p 41
Metals Engineering Q, Vol
Carbon Steel
C-Mn Steel
Composition: 0.105% C - 0.0035% Si - 0.0015% P - 0.003% S 0.0005% O Austenitized at 950°C (1740°F) for 5 min, deformed
(0-0.21 strain), then cooled at various rates
Composition: 0.105% C - 1.53% Mn - 0.0035% Si - 0.0015% P 0.0017% S - 0.0001% O Austenitized at 950°C (1740°F) for 5
min, deformed (0-0.21 strain), then cooled at various rates
900
oe o o
~oo
%pearlite_a»
@ Oo
as
Yopearlite
lit 5G
10
0
°C
TEMPERATURE,
Ge
10
0
C-steel
O strain
-
0-01
TIME
TO TRANSFORMATION,
s
C-Mn steel
O strain =
01
"I
TIME
10
TO TRANSFORMATION,
100
s
SOURCE: R. Priestner, M.S. Biring, "Transformation of Low-Carbon Austenite after Small Plastic Strains,” Metal Science
Journal, Vol 7, 1973, pp 60-64
1000
Atlas of Time-Temperature Diagrams
599
Nb Steel
Composition: 0.10% C - 1.54% Mn - 0.0035% Si - 0.0015% P 0.0012% S - 0.04% Nb - 0.0003% O
900
Nese
6
RD
ore
ui
& 700
i
Ae
Oo?
60
= soot
a
:
¢
a “So
WwW
o—_
(ora
800
Paes
“4s
%pearlite
3
(ope Eee)
a
Ay
(Oa
fe or)ON Se
ees
10
ke)
Q
400
ty)
“E 200
E
Q
> 900
”
5
E
o~o
No
600
oers)
fe)25s
200.
300
a
ee @-
Xo
i=)
oo
> 200)
eiain
=
:
100
oO strain = 0
Oo
0-01
0-1
1
TIME
10
TO TRANSFORMATION,
100
1000
s
0-01
fe 0)!9 SEES
Nb-AHT steel
=n0-
17.5
TIME
TO
0-1
1
ee
aie
10
100
TRANSFORMATION,
s
ae
2°
1000
Austenitized at 950°C (1740°F), deformed (0-0.21 strain), then
Austenitized at 1150°C (2100°F) for 15 min, deformed (0-0.21
cooled at various rates
strain), then cooled at various rates
Strains,” Metal Science
SOURCE: R. Priestner, M.S. Biring, "Transformation of Low-Carbon Austenite after Small Plastic
Journal, Vol 7, 1973, pp 60-64
a
Atlas of Time-Temperature Diagrams
600
Low-Carbon
Bainitic Steel
Composition: 0.08% C - 1.57% Mn - 0.28% Si - 0. 011% P -
0.002% S - 0.07% V - 0.03% Nb - 0.018% Ti - 0.042% sol. Al
0.0038% N
Ac3 890°C
eas
Sees
Negri
2
Ss
-
Te
1000 °C
25%
00)
as
a
3
C1
NG
ee
850°C
Pearlite
500
50%
Bainite
©
©
= 400
i.)
Re
300
200
]
Hv 222
203
(a)
(b)
10
100
Time
1000
10000
(sec)
CCT diagram after hot deformation from 1100°C (2012°F), hot
deformation sequence to right of transformation curves
Composition: 0.02% C - 1.60% Mn - 0.16% Si - 0.043% Nb -
0.017% Ti - 0.0018% B - 0.0020% N
900
Ac3 900°C
800
pa
Ac1
750°C
00
1050 °C
>
=
»
1000 °C
25%
600
s
E500
Bainite
850°C
2
—
50%
400
300
200
]
10
100
Time
1000
10000
(sec)
CCT diagram after hot deformation from 1050°C (1922°F), hot
deformation sequence to right of transformation curves
SOURCE: H. Ohtani, S. Okaguchi, Y. Fujishiro, Y. Ohmori, "Morphology and Properties of Low-Carbon Bainite,” Metallurgical
Transactions A, Vol 21A, ASM, April 1990, pp 877-888
ee
ee
ee
ee
ee
ee
Atlas of Time-Temperature Diagrams
og!
0.1C-0.24Mn-B Steel
Composition: 0.10% C - 0.87% Mn - 0.33% Si - 0.24% Mo 0.002% B - 0.005% N - 0.048% Zr Austenitized at 982°C
(1800°F)
CTEMPERATURE,
A Polygonal Ferrite Start
X Polygonal Ferrite /Pearlite
Finish
O Bainite Start
O Ba
Descargar