ATLAS OF TIME- TEMPERATURE DIAGRAMS FOR IRONS AND STEELS INTERNATIONAL ® The Materials Information Society ASM International® is a Society whose mission is to gather, process and disseminate technical information. ASM fosters the understanding and application of engineered materials and their research, design, reliable manufacture, use and economic and social benefits. This is accomplished via a unique global information-sharing network of interaction among members in forums and meetings, education programs, and through publications and electronic media. Digitized by the Internet Archive In 2022 with funding from Kahle/Austin Foundation httos://archive.org/details/atlasoftimetempeO000unse Atlas of Time-Temperature Diagrams for lrons and Steels Edited by George F. Vander Voort Carpenter Technology Corporation Reading PA ASN. INMTERNLATIONAL ® ASM International© Copyright © 199] b Vy ASM International All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, with the prior written permission of the publisher. Nothing contained in this book is to be construed as a grant of any right of manufacture, sale, or use in connection with any method, process, apparatus, product, or composition, whether or not covered by letters patent or registered trademark, nor as @ defense against liability for the infringement of letters patent or registered trademark. Library of Congress Catalog Card Number: ISBN: 91-072218 0-87170-415-3 SAN: 204-7586 Production coordination by Veronica Flint, ASM International PRINTED IN THE UNITED STATES OF AMERICA About the Editor George F. Vander Voort is supervisor, Metal Physics Research, Carpenter Technology Corporation, Reading, Pennsylvania. Prior to joining Carpenter in 1983, he spent 16 years with Bethlehem Steel Corporation, first in the metallurgy division of their Bethlehem Plant, then with Homer Research Laboratories. He has had a long interest in heat treatment of ferrous and nonferrous alloys. Mr. Vander Voort received a BS degree in Metallurgical Engineering from Drexel University in 1967 and an MS in Metallurgy and Materials Science from Lehigh University in 1974. A member of ASM for more than 25 years, and active in the Lehigh Valley Chapter as well as nationally, he is presently chairman of ASM’s Technical Book Committee and a member of its Publication Council. He has taught many ASM MEI courses since 1977 and made eight of the ten video lectures for "Principles of Metallography." Also active in other societies, he is presently chairman of ASTM Committee E-4 on Metallography and is a past president of the International Metallographic Society and is a fellow of both ASTM and ASM International. Mr. Vander Voort is the holder of four US patents, and has over 60 publications his credit including Metallography. Principles and Practice, McGraw-Hill, 1984. to a rip MIIA . ~ “nil , iy : inna akeF 4 Bm~~ on =i el " a) ; " Hever y En) 4 Gey bly 8 ': Ae Pie ie =.hityad - vi Abié i[eas@ aie weil nt wot? sent model We-cosmi'tnst! reialigs 1.0 (840° F bigot fied 18 fa => wt bap:ae *7 - oheee i ov’ 7) st ms eis oe i Matat 7 = Te ;ae ass i bieyAg Mii, | — » 7 ae Wee eA { | 7) -encinn l wbaleut o. \ andpeae Ph sat Tham OHS ve? iv 7 ee (Ai mm Brow: iat navies! a aS aie be pine wn - ad 4 a \ smlpeipal Ra) 4G igual Biers ”. Mapar @& < yas EA Mii ie hy 7 - 7 G Egy coef y ’ Preface The 1930 publication of the epic paper by E.S. Davenport and E.C. Bain on the isothermal diagram concept had a profound influence on physical metallurgy, metallography and heat treatment. Prior to the development of this technique, heat treatment was truly an art clothed in secrecy and often unpredictable. Metallurgists debated, theories were proposed and demolished. Even the basic constituents in steel microstructures were not well understood and firmly established. Indeed, the arguments over pearlite vs sorbite and troostite raged on for nearly another decade. However, the simple concept of the isothermal diagram brought order into this picture and paved the way for the current understanding of phase transformations and industrial control of heat treating processes. Indeed, they even showed the way for new processes, such as martempering and austempering. Metallurgists began to develop isothermal transformation (IT) diagrams, also called timetemperature-transformation (TTT) diagrams or C-curves, for many steels. At the same time, the understanding of hardenability was being advanced through the use of experimental techniques, chiefly the Jominy end-quench test and several variants (for steels with either very low or very high hardenability), and by mathematical modeling of cooling conditions and the calculation of hardenability curves from chemical analysis and grain size information. These two developments were by nature interrelated because of their mutual influence on heat treatment. Hardenability techniques were primarily centered upon predicting the size of a bar of a known composition that would just "through harden" in a given quench medium. The "through harden" aspect related to the microstructure where this term means that the center of the bar contains a minimum of 50% martensite. In the early days of this work, the balance of the structure did not receive much attention. However, the ability to predict the Jominy curve and cross-sectional hardness patterns in heat treated bars was found to depend on knowing what else would form as the ability to produce martensite decreased. While isothermal transformation diagrams were instrumental in providing an understanding of how austenite transforms, and in identifying the constituents that can form in a given steel, they were not developed under conditions similar to quenching where the specimen temperature decreased at some rate, generally variable, and the structures were formed over a wide range of temperatures. Attempts were made to utilize IT diagrams for continuous cooling situations but the results were never satisfactory. For simple alloys, such correlations were reasonably useful but as the hardenability increased, particularly bainitic hardenability, they became less useful. This spawned the development of continuous cooling transformation (CCT) diagrams. Because the science of physical metallurgy was much better established by the time CCT diagrams became common, their development had much less of an impact on metallurgy than the 1930 introduction of the IT diagrams. However, this in no way detracts from the practical value of the CCT diagram. The first diagrams were made using metallographic observations of the microstructures produced at different test locations on Jominy bars that had been end quenched for different times before the entire bar was rapidly immersion quenched. Because the cooling rate varies as a function of the distance from the end-quenched face, a great deal of information could be obtained. A number of interrupted Jominy bars were heat treated with varying end-quench times. The cooling curves at each location on the Jominy bar had to be determined. Each bar was hardness tested and then polished along the side. Then, the metallographer determined the amounts of each constituent present at key locations along the bar. Tedious, yes, but useful. Metallurgists were quick to adopt use of the dilatometer for developing CCT diagrams. When a specimen is cooled at a specific constant rate, the phase transformation produces a change in length which can be measured by the dilatometer. A number of specimens would be run at a variety of cooling rates and the arrest points were plotted on the cooling curve for each specimen. The microstructure of each dilatometer pin was examined to be sure of the nature of the transformation. Then, the arrest points were connected together austenite. Other to map techniques out the regions over and other methods which of a given constituent plotting also evolved, from the example, the formed for British diagrams plot results as a function of different locations on bars of different diameter cooled at difference quench rates. Instead of following a cooling curve from the upper left corner of the diagram towards the x-axis, their data are read vertically. The Benelux CCT diagrams also are plotted differently with the x-axis showing the time to cool from 800 to 500°C: Irrespective of the way the continuous cooling data were plotted, CCT diagrams are very helpful for understanding or predicting heat treatment response, especially for those treatments that involve quenching baths. As with the IT diagrams, CCTs also have their limitations. Actually, the two diagrams are complementary, not competitive. IT diagrams are best suited for developing annealing, martempering or austempering practices, while CCT diagrams are best suited for developing quench hardening practices. Neither diagram, however, tells us anything about the effect of tempering. Dilatometrically derived CCT diagrams have been criticized because the device tries to suppress the recalescence effects associated with a phase transformation in its desire to maintain a constant cooling rate. In the United States, IT diagram development progressed rapidly, mainly as a result of the initial and continued interest in them by researchers at the United States Steel Corporation. The US Steel collection of diagrams was republished by ASM in 1977 but has been out of print for some time. Not all of the diagrams in the 1977 collection were made by US Steel, however, and some CCT diagrams were included. Other American companies became involved in the development of both IT and CCT diagrams. Notable is the work by the Climax Molybdenum Corporation who published a number of books, articles and pamphlets, but no overall atlas. Other countries have also produced excellent collections of IT and/or CCT diagrams developed by their researchers; for example, the German, French and Benelux countries all produced excellent diagrams for their steels and published compendiums. In 1980, ASM republished CCT diagrams developed by M. Atkins of British Steel Corporation. Besides these, many diagrams can be found scattered throughout the literature. Vanitec recently published a collection of diagrams from all over the world of steels containing vanadium. Besides IT and CCT diagrams, there are other time-temperature type diagrams that have never been collected together in one place. First, there are diagrams that show transformation after applied pressure or deformation or under natural cooling conditions. There are timetemperature-embrittlement (TTE) diagrams dealing with temper embrittlement. There are timetemperature-precipitation (TTP) diagrams that show the conditions, mainly isothermal, under which various nitrides, carbides or intermetallic phases precipitate in a wide variety of steels. There are time-temperature-sensitization (TTS) diagrams that show intergranular attack after sensitization treatments. This atlas brings together many of the published IT and CCT diagrams from US, British, German, French and Benelux collections as well as previously non-collected published diagrams. Also, besides the traditional IT and CCT diagrams, other ITs and CCTs that show the influence of pressure or deformation have been included. For the first time, TTE, TTP and TTS diagrams for irons and steels have been brought together in one collection. Naturally, there are a number of ways in which these diagrams could be arranged. We have chosen to group them by published collections, except for those diagrams that were found scattered throughout the open literature. Because the large collections often have a unique style for plotting (or obtaining) the data, grouping them by the collections maintains coherence and should help the reader in interpreting the curves. The editor would like to thank the many people who helped him gather diagrams from the many different publications. He also acknowledges the excellent support of the ASM staff, particularly Mrs. Veronica Flint who coordinated much of the acquisitions, all of the permissions to republish the diagrams, and the mechanics of publication of this book. Readers who are aware of other useful diagrams not included in this atlas are encouraged to send copies to the editor. George F. Vander Voort, Editor Carpenter Technology Corporation Reading PA, USA Contents DSTO LCClS eer mk Meee anes cae Bri sh EM Stee Geer meee tare. GCOMI ADS TCCIS@ Reve yee BPLeMCHZSCCOTS a POCO LUX SSCCEIS( a so kon Oe eee eg Ae ct mere eae te eee ett eee a eae sar es: eyonce Re nCerine SCG Sew: cies wos ses) olhoes wame-1emperature. Precipitation. Diagrams iame- Lemperature Embrittlement en Ft 6 ss ee LS glo ene 1637-3220 One aa © are ee) See eae ran ee eee 243 - 296 SWRI oS 297-509 ne ee ea SAS IRS nck 22 be2 42 ee 373 - 376 eee 453 - 520 5 cscs Hts ee ee 521 - 607 2; ¢ 40s. vom Cn 53°= 113 ee (1 andsCG bh Diagrams). ee Gee a: tw meauaonal-stéels eR a at a Pen 12 SPAMS) hte ers Gahan olvec cane ater setae AOS Bret a OotirOre SCCCIS CLT Diagrams. ee ee een es dugle ee ae he eee oo ae Ree hes Fey ati) Sihlews Boss aca ke CORO ese eee eet ne ernie oes, a. eos.3 1x)a Swe ea MAC IUR STCCIS: lie G hs a eietes Lererare s nna eo NTO IVOGEMUT ISTCCLS ee tee Beisishe iar Geno sae Apos.. 120s 6 i ee te ee 609 - 651 ee 653 - 700 EES, CORE ® Ate. Wetec cetiacs setae RL ae 701 - 766 hg . ’ qanea ae 4 Sarees Cr ia eeu Oéasee et » 0 es Aloe af Ast res toGivry te 46 +44 ee Ce Arye: @ °@E ibe Gece p esi f 0 oe @ ofe 2 Me. 66" ae ON FAP 4 eu oo eng) vo @@ Gs ime TF aly ee . ~ 796 ie aut | a , a a as . 7 .a Re Vad ayo = ss ——"o ~ _ > Oye pS — = 7 Ae ¢ > oa we ip & . Le A pas wri: fh We Vi Wh Ad ee BaP BDO > * _ +e © : a 4 a5 a See oe id _ = - ¢ Gus ena ' - fume ops - ea: ; - a ¢ = . —_ y= ye y iL) i | « ot a — Sl) @ fe Ss 7 ~— 4 ; 7 e ep : ot pad yi 4 ; ; i ; : wr rT 7 VOOReely.: @ = if eet n~g vate 1ea® = @.) - eget IOS p= wee Grane & poreny APPL ViGhss BS \sneenti8s, NA. As, ©.05 ie ; sp : id 6 cele n ‘e =e > Table of Contents US STEELS, 3 - 51 Type: Carburized Introduction, 3 - 12 Type: 1006/1008, Type: Carburized LOLS. 13 1021, 73 . Type: 2910, 1045/1050 22 Composition: Fe - 0.42% C - 0.68% Mn - 0.93% Cr 14 Type: 5160, + Cu, 14 22 Composition: Fe - 0.61% C - 0.94% Mn - 0.88% Cr Type: 52100, Composition: Fe - 0.48% C - 0.57% Mn - 0.20% Si - 0.46% Cu 22 Composition: Fe - 1.02% C - 0.36% Mn - 0.20% Ni - 1.41% Cr Composition: Fe - 0.49% C - 0.57% Mn - 0.97% Cu Composition: Fe - 0.49% C - 0.54% Mn - 0.20% Si - 1.49% Type: Fe-C-Cr, Cu Type: Fe-C-Cr-Mo, aby per 105050 15 1055 Mod. 15 Type: 410, Composition: Fe - 0.54% C - 0.46% Mn Type: 1060, Mod., 1080, Type: 4027, 16 1086/1095, © sy ee Type: W1 Type: 4037, 16 Type: Fe-C-Mo, 16 Type: 4047, 16 1320 (0.4% C), 17 Type: 4068, 17 Type: Fe-C-Mo, Composition: Fe - 0.4% C - 1.88% Mn Type: Carburized 1320 (0.6% C), Composition: Fe - 0.6% C - 1.88% Mn Type: Carburized 1320 (0.8% C), 17 Composition: Fe - 0.8% C - 1.88% Mn Type: Carburized 1320 (1.0% C), 18 Composition: Fe - 1.0% C - 1.88% Mn Type: Carburized 1320 (1.2% C), 18 Composition: Fe - 1.2% C - 1.88% Mn diyoe; 1335, 19 1340, 19 19 Composition: Fe - 0.56% C - 0.26% Mn - 1.97% Ni Type: 2340, 19 20 Weld Metal, 25 Composition: Fe-0.10% C - 1.63% Mn - 0.41% Mo Type: Fe-C-Mo, 26 Composition: Fe - 0.40% C - 0.42% Mn - 0.53% Mo Composition: Fe - 0.36% C - 0.17% Mn - 0.82% Mo Composition: Fe - 0.33% C - 0.41% Mn - 1.96% Mo 26 Mo Type: Fe-C-Ni-Mo, 27 Composition: Fe - 0.41% C - 0.60% Mn - 3.51% Ni - 0.21% Mo Mo Type: Fe-C-Si, Composition: Fe - 0.59% C - 0.25% Mn - 3.90% Ni Type. 2512, 20 Composition: Fe - 0.10% C - 0.52% Mn - 5.00% Ni Type: Carburized Type: Mn-Mo Composition: Fe - 0.39% C - 0.56% Mn - 3.53% Ni - 0.74% Composition: Fe - 0.37% C - 0.68% Mn - 3.41% Ni Type: Fe-Ni-C, 25 Composition: Fe - 0.97% C - 1.04% Mn - 0.32% Mo Composition: Fe - 0.22% C - 0.79% Mn - 0.50% Mo Composition: Fe - 0.40% C - 0.57% Mn - 3.49% Ni - 0.01% Composition: Fe - 0.43% C - 1.58% Mn (low Mn) Type: Fe-Ni-C, 25 Composition: Fe - 0.68% C - 0.87% Mn - 0.24% Mo Type: Fe-C-Ni, Composition: Fe - 0.35% C - 1.85% Mn Type: 24 Composition: Fe - 0.48% C - 0.94% Mn - 0.25% Mo Composition: Fe - 0.20% C - 1.88% Mn Type: Carburized 24 Composition: Fe - 0.42% C - 0.20% Mn - 0.21% Mo Composition: Fe - 1.13% C - 0.30% Mn mype.. 1320, 24 Composition: Fe-0.35% C - 0.80% Mn - 0.25% Mo Fe - 0.89% C= 0.29% Mn Tool Steel, 24 Composition: Fe - 0.26% C - 0.87% Mn - 0.26% Mo Composition: Fe - 0.79% _C - 0.76% Mn \Type: 23 Composition: Fe - 0.22% C - 0.54% Mn - 0.64% Ni - 12.46% Cr - 0.99% Mo - 0.29% V 15 Composition: Fe - 0.64% C - 1.13% Mn Type: 23 Ni - 12.18% Cr Type: Fe-C-Ni-Cr-Mo-V, 15 1060 Mod./1065 23 Composition: Fe - 0.11% C - 0.44% Mn - 0.37% Si - 0.16% Composition: Fe - 0.63% C - 0.87% Mn Type: 23 Composition: Fe - 0.33% C - 0.45% Mn - 1.97% Cr Composition: Fe - 0.11% C - 0.38% Mn - 0.44% Si - 5.46% Cr - 0.42% Mo Composition: Fe - 0.50% C - 0.91% Mn Type: 21 22 Type: 5140, Composition: Fe - 0.47% C - 0.57% Mn - 0.06% Cu Type: 2512 (1.2% C), Composition: Fe - 0.08% C - 0.49% Mn - 8.94% Ni 13 1045/1050, 21 Composition: Fe - 1.2% C - 0.52% Mn - 5.00% Ni _____Composition: Fe - 0.35% C = 0.37% Mn : ype: 2512 (1.0% C), Type: Carburized 13 1035 Mod., 21 Composition: Fe - 1.0% C - 0.52% Mn - 5.00% Ni Composition: Fe - 0.20% C - 0.81% Mn Type: 2512 (0.8% C), Type: Carburized "Composition: Fe - 0.17% C - 0.92% Mn Type: 20 Composition: Fe - 0.8% C - 0.52% Mn - 5.00% Ni Composition: Fe - 0.06% C - 0.43% Mn ype: 2512 (0.6% C), Composition: Fe - 0.6% C - 0.52% Mn - 5.00% Ni 2512 (0.4% C), 27 Composiion: Fe - 0.50% C - 0.23% Mn - 0.53% Si - 0.05% Cr Composition: Fe - 0.54% C - 0.23% Mn - 1.27% Si - 0.05% Cr 20 Composition: Fe - 0.4% C - 0.52% Mn - 5.00% Ni EE oe Type: Fe-C-Si-Cr, Type: 4317, 28 Cr { Composition: Fe - 0.53% C - 0.24% Mn - 2.32% Si - 0.32% Cr Composition: Fe - 0.51% C - 0.25% Mn - 3.80% Si - 0.32% Type: 9260, 28 Composition: Fe - 0.62% C - 0.82% Mn - 2.01% Si - 0.07% 29 29 30 Composition: Fe - 0.43% C - 0.74% Mn - 0.92% Cr - 0.16% Mo 36 . Mo Type: 4815 (1.0% C), 30 36 Composition: Fe - 0.97% C - 0.52% Mn - 3.36% Ni - 0.19% Composition: Fe - 0.53% C - 0.67% Mn - 0.93% Cr - 0.18% Mo Type: 8620, V Type: Fe-C-Cr-Mo-V, 30 Composition: Fe - 0.23% C - 0.82% Mn - 1.22% Cr - 0.53% Mo - 0.22% V Composition: Fe - 0.40% C - 0.78% Mn - 1.25% Cr - 0.53% Mo - 0.22% V Type: Fe-C-Cr-Mo-V, 31 Mo - 0.26% V Type: Fe-C-Mn-Ni-V, 31 Vv Type: Fe-C-Ni-Mo-V, Type: 8630, 37 Composition: Fe - 0.30% C - 0.80% Mn - 0.54% Ni - 0.55% Cr - 0.21% Mo 37 Composition: Fe - 0.59% C - 0.89% Mn - 0.53% Ni - 0.64% Cr - 0.22% Mo Type: 8745, Composition: Fe - 0.20% C - 1.44% Mn - 0.49% Ni - 0.16% 36 Composition: Fe - 0.18% C - 0.79% Mn - 0.52% Ni - 0.56% Cr - 0.19% Mo Type: 8660, Composition: Fe - 0.33% C - 0.84% Mn - 1.05% Cr - 1.07% 37 Composition: Fe - 0.44% C - 0.90% Mn - 0.45% Ni - 0.54% Cr - 0.22% Mo 31 Type: 9420, Composition: Fe - 0.26% C - 0.57% Mn - 2.20% Ni - 0.48% 37 Composition: Fe - 0.24% C - 0.94% Mn - 0.47% Si - 0.30% Ni - 0.34% Cr - 0.14% Mo Mo - 0.09% V Composition: Fe - 0.24% C - 0.69% Mn - 3.35% Ni - 0.50% Mo - 0.09% V Type: Fe-C-Mn-Ni-Cr-Mo-V, 32 Composition: Fe - 0.25% C - 0.88% Mn - 0.59% Ni - 0.73% Cr - 0.88% Mo - 0.23% V Type: 3140, 32 Composition: Fe - 0.38% C - 0.72% Min - 1.32% Ni - 0.49% 32 Cr 3310 (0.4% C), 33 Composition: Fe - 0.4% C - 0.45% Mn - 3.33% Ni - 1.52% Cr 3310 (0.6% C), 33 Composition: Fe - 0.6% C - 0.45% Mn - 3.33% Ni - 1.52% Cr 3310 (0.8% C), 33 Composition: Fe - 0.8% C - 0.45% Mn - 3.33% Ni - 1.52% Cr Type: Carburized 3310 (1.0% C), 34 Composition: Fe - 1.0% C - 0.45% Mn - 3.33% Ni - 1.52% Cr 34 _-Composition: Fe - 0.33% C - 0.53% Mn - 0.90% Cr - 0.18% Mo Type: 4137/4140, 34 Composition: Fe - 0.37% C - 0.77% Mn - 0.98% Cr - 0.21% Mo Type: 4150 Mod., 38 Composition: Fe - 0.57% C - 0.82% Mn - 1.16% Ni - 1.07% Cr - 0.26% Mo 38 Composition: Fe - 0.14% C - 0.26% Mn - 2.21% Ni - 1.05% Cr - 0.26% Mo Composition: Fe - 0.138% C - 0.16% Mn - 3.08% Ni - 1.76% Cr - 0.49% Mo Composition: Fe - 0.11% C - 0.45% Mn - 3.33% Ni - 1.52% Type: Carburized Type: 9860, Type: Fe-Ni-Cr-Mo, Cr Type: Carburized 38 Ni - 0.40% Cr - 0.11% Mo - 0.030% Zr Cr - 0.90% Mo - 0.11% V Type: Carburized Type: 9440, Composition: Fe - 0.38% C - 1.08% Mn - 0.70% Si - 0.34% Composition: Fe - 0.27% C - 0.84% Mn - 0.60% Ni - 0.73% 34 Composition: Fe - 0.55% C - 0.60% Mn - 1.03% Cr - 0.19% Mo - 0.36% Ni 36 Composition: Fe - 0.16% C - 0.52% Mn - 3.36% Ni - 0.19% Vv Type: 4130, Mo Type: 4815, Cr Type: 3310, 35 Composition: Fe - 0.36% C - 0.63% Mn - 1.84% Ni - 0.23% Composition: Fe - 0.62% C - 0.86% Mn - 2.13% Si - 0.33% Type: 6150, 35 Composition: Fe - 0.62% C - 0.54% Mn - 0.67% Si - 1.79% Ni - 0.60% Cr - 0.32% Mo Type: 4640, Cr Type: 6145, Cr.- 0.33% Mo Composition: Fe - 0.15% C - 0.63% Mn - 1.90% Ni - 0.24% Composition: Fe - 0.62% C - 0.95% Mn - 2.01% Si - 0.15% Type: 9262, Composition: Fe 4 0.42% C - 0.78% Mn - 1.79% Ni - 0.80% Type: 4615, Cr Type: 9261, Cr - 0:24% \Type: 4340, Type: 4360, Cr 35 Composition: Fe - 0.17% C - 0.57% Mn - 1.87% Ni - 0.45% Composition: Fe - 0.55% C - 0.78% Mn - 1.62% Si - 0.77% Type: Fe-Ni-Cr-Mo, 39 Composition: Fe - 0.55% C - 0.83% Mn - 1.15% Ni - 1.01% Cr - 0.48% Mo Composition: Fe - 0.51% C - 0.73% Mn - 2.74% Ni - 0.99% Cr - 0.45% Mo Type: Nitralloy, 135 Mod., 39 Composition: Fe - 0.41% C - 0.57% Mn - 1.57% Cr - 0.36% Mo - 1.26% Al Type: 1060/10B60, 39 Composition: Fe - 0.63% C - 0.87% Mn - none or 0.0018% B Type: 4317/43B17, 40 Composition: Fe - 0.17% C - 0.57% Mn - 1.87% Ni - 0.45% Cr - 0.24% Mo Composition: Fe - 0.14% C - 0.81% Mn - 1.81% Ni - 0.49% Cr - 0.27% Mo - 0.0030% B ee Type: 4615/46B15, 40 Type: 1021 Composition: Fe - 0.15% C - 0.63% Mn - 1.90% Ni - 0.24% Mo Composition: Fe - 0.16% C - 0.60% Mn - 1.92% Ni - 0.27% Mo - 0.0017% B Type: 5160/51B60, 40. Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni Composition: Fe - 0.18% C - 0.65% Mn - 1.09% Ni - 0.26% Mo Type: 40 Type: 1021 + 1 Ni / 1021 + 1 Ni + 0.75 Si, 45 Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni Composition: Fe - 0.18% C - 0.75% Mn - 0.71% Si - 1.07% Cr - 0.20% Mo - 0.0025% B Type: 8650/86B50, 41 Composition: Fe - 0.50% C - 0.77% Mn - 0.60% Ni - 0.51% Ni Cr - 0.22% Mo (0.21% Mo for 86B50 + 0.0016% B) Type: 41 le ( Composition: Fe - 0.18% C - 0.57% Mn - 0.31% Ni - 0.31% 41 1086/1095 + 0.25% V, 47 47 Cr Type: Fe-C-Mo, 47 Composition: Fe - 0.97% C - 1.04% Mn - 0.32% Mo 42 Type: Fe-C (Carbon), Composition: Fe - 0.46% C - 0.79% Mn - 0.91% Ni - 0.77% Cor-Ten Steel, 42 Composition: Fe - 0.12% C - 0.45% Mn - 0.41% Si - 0.12% P Type: Fe-C-Mn - 0.31% Ni - 0.62% Cr - 0.26% Cu ype: USS: Fi Steel, 43 Composition: Composition: Composition: Composition: Composition: Composition: Fe - 0.15% C - 0.92% Mn - 0.88% Ni - 0.50% Cr - 0.46% Mo - 0.06% V - 0.32% Cu - 0.0031% B Type: USS Strux, 43 Composition: Fe - 0.39% C - 0.89% Mn - 0.48% Si - 0.68% X 200, Composition: Composition: Composition: Composition: 43 Composition: Fe - 0.44% C - 0.79% Mn - 1.63% Si - 2.10% Cr - 0.54% Mo - 0.06% V + 1 Ni, C - 0.30% C - 0.45% C - 0.91% C - 1.13% C - 1.32% Fe - 0.59% Fe - 0.61% Fe - 0.57% Fe - 0.55% 48 Mn Mn Mn Mn Mn 49 C - 0.20% C - 0.19% C - 0.17% C - 0.17% Mn Mn - 0.94% Ni Mn - 1.94% Ni Mn - 3.88% Ni Type: Fe-C-Cr (Chrominum), 43 Composition: Fe - 0.20% C - 0.81% Mn Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni + 1 Ni / 1021 (Manganese), Fe - 0.59% Fe - 0.54% Fe - 0.50% Fe - 0.64% Fe - 0.65% Type: Fe-C-Ni (Nickel), Ni - 0.95% Cr - 0.50% Mo - 0.03% V - 0.002% B Airsteel 48 Composition: Fe - 0.54% C - 0.46% Mn Composition: Fe - 0.89% C - 0.30% Mn Composition: Fe - 1.18% C - 0.30% Mn Cr - 0.18% Mo - 0.0021% B + 1 Ni+B, 44 Type: Fe-C-Cr Composition: Composition: Composition: Composition: Composition: Fe - 0.19% C - 0.75% Mn - 1.04% Ni + ; + Ni / 1021 + 1 Ni+ Mn, 44 Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni Composition: Fe - 0.17% C - 1.65% Mn - 1.07% Ni Type: 1021 + 1 Ni / 1021 + 1 Ni + 0.5 Cr, Composition: Composition: Composition: Composition: 44 Composition: Fe - 0.21% C - 0.75% Mn - 1.08% Ni - 0.48% (Chromium), Fe - 0.35% Fe - 0.37% Fe - 0.42% Fe - 0.32% Type: Fe-C-Mo Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni 1021 + 1 Ni / 1021 +1Ni+1Cr, 49 Composition: Fe - 1.13% C - 0.30% Mn Composition: Fe - 1.17% C - 0.30% Mn - 0.26% Cr Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni Type: 46 Composition: Fe - 1.02% C - 0.36% Mn - 0.20% Ni - 1.41% Composition: Fe - 0.19% C - 0.77% Mn - 0.42% Ni - 040% Cr 46 Type: 52100, 42 Cr - 0.12% Mo - 0.0018% B Type: 1021 46 Composition: Fe - 0.87% C - 0.30% Mn - 0.27% V Composition: Fe - 0.45% C - 0.89% Mn - 0.59% Ni - 0.66% 0.0021% B “Dype: 4140, Type: Cr - 0.12% Mo - 0.0015% B Type: 1021 1030 Mod., Composition: Fe - 0.27% C - 1.12% Mn Composition: Fe - 0.22% C - 0.79% Mn - 0.50% Mo Cr - 0.13% Mo - 0.0009% B Type: 86B45, 42 1021/1021 _ Type: Fe-C-Mo, Composition: Fe - 0.43% C - 1.02% Mn - 0.31% Ni - 0.48% Type: Si, 46 Composition: Fe - 0.37% C - 0.77% Mn - 0.98% Cr - 0.21% Mo Cr - 0.15% Mo - 0.0009% B Type: USS + 1 Ni+2 Ni Type: Cr - 0.21% Mo - 0.0025% B Type: 80B20, 41 Type: USS 1021 + 1 Ni / 1021 Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni Composition: Fe - 0.19% C - 0.75% Mn - 2.09% Si - 1.06% Composition: Fe - 0.79% C - 0.77% Mn - 0.58% Ni - 0.50% Cr - 0.21% Mo Composition: Fe - 0.78% C - 0.86% Mn - 0.59% Ni - 0.49% Type: 98B45, 45 Mo Composition: Fe - 0.22% C - 0.76% Mn - 0.57% Ni - 0.51% Type: 94B17, 1021 + 1 Ni / 1021 + 1 Ni + 0.5 Mo, Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni Composition: Fe - 0.21% C - 0.70% Mn - 1.08% Ni - 0.49% ‘\_ Composition: Fe - 0.23% C - 0.72% Mn - 0.59% Ni - 0.52% ~€r -0.21% Mo Type: 81B40, 45 Cr /~ 0.0006%B Type: 8680/86B80, + 1 Ni+2Cr, Type: 1021 + 1 Ni / 1021 + 1 Ni + 0.25 Mo, 45 Composition: Fe - 0.61% C - 0.94% Mn - 0.88% Cr _Somposition: Fe - 0.64% C - 0.88% Mn - 0.83% Cr - ( Type: 8620/86B20, + 1 Ni / 1021 Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni’ Composition: Fe - 0.22% C - 0.77% Mn - 1.08% Ni - 1.91% C - 0.37% C - 0.37% C - 0.68% C - 0.45% 50 Mn Mn - 0.57% Cr Mn - 0.93% Cr Mn - 1.97% Cr (Molybdenum), Fe - 0.35% Fe - 0.42% Fe - 0.40% Fe - 0.36% 50 C - 0.37% Mn C - 0.20% Mn - 0.21% Mo C - 0.43% Mn - 0.52% Mo C - 0.17% Mn - 0.82% Mo Composition: Fe - 0.33% C - 0.41% Mn - 1.96% Mo Type: Fe-C-V 44 (Vanadium), 51 Composition: Fe - 0.88% C - 0.41% Mn Composition: Fe - 0.90% C - 0.47% Mn - 0.20% V Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni Composition: Fe - 0.21% C - 0.78% Mn - 1.09% Ni - 0.99% Cr eee EEE a rer _ el i Type: Fe-C-Co (Cobalt), En 51 Composition: Fe - 0.95% C - 0.45% Mn 99 13 (8717), Composition: 0.19% C - 1.37% Mn - 0.14% Si - 0.012% S 0.026% P - 0.56% Ni - 0.20% Cr - 0.31% Mo Composition: Fe - 0.95% C - 0.48% Mn - 0.95% Co En 23 (3435 + Mo), 100 Composition: 0.32% C - 0.61% Mn - 0.28% Si - 0.013% S - Composition: Fe - 0.98% C - 0.49% Mn - 1.98% Co 0.018% P - 3.22% Ni - 0.63% Cr - 0.22% Mo EN BRITISH STEELS, 100 En 25 (3430 + Mo), Mn - 0.20% Si - 0.012% S 0.62% C 0.31% Composition: 55 - 114 0.018% - 2.63% Ni - 0.64% Cr - 0.58% Mo En 30B (3335 + Mo), 100 Composition: 0.32% C - 0.47% Mn - 0.29% Si - 0.020% S - Introduction, 55 - 94 En 42 (1074/1075), 95 0.022% P - 4.13% Ni - 1.21% Cr - 0.30% Mo Composition: 0.75% C - 0.70% Mn - 0.33% Si - 0.016% S - En 44 (1095), 95 Composition: 0.96% C - 0.55% Mn - 0.32% Si - 0.012% 0.013% P - 0.08% Ni - 0.11% Cr - 0.01% re En 15 (1536), En 110 (4340), 2 0.017% P - 0.20% Ni - 0.17% Cr - 0.02% Mo 2 0.021% P - 1.44% Ni - 1.11% Cr - 0.18% Mo $- 14B (1527), C - 1.67% Mn - 0.26% Si - 0.030% Composition: 0.29% ig 96Cay Ge ocumMG an k Ree En 45 (9260), 0.017% P - 1.58% Ni - 0.95% En 26 (4340), 101 ce 0.019%P - 0.86% Ni - 0.59% Cr - 0.05% Mo Carburized En 351 (3120 at 0.9% C), 96 Composition: 0.17% C - 0.88% Mn - 0.22% Si - 0.016% S - 0.028% O - 0.90% Ni - 0.57% Cr - 0.03% Mo Composition: 0.48% C - 0.86% Mn - 0.25% Si - 0.021% S - En 31 (52100), En 352 (3120), 103 Composition: 0.20% C - 0.71% Mn - 0.15% Si - 0.018% S - 97 Composition: 1.08% C - 0.53% Mn - 0.25% Si - 0.015% S 0.022% P - 0.33% Ni - 1.46% Cr - 0.06% Mo 0.032%P - 1.13% Ni - 0.80% Cr - 0.05% Mo Carburized En 352 (3120 at 1% C), Composition: 0.24% C - 0.27% Mn - 0.37% Si - 0.010% S 0.021% P - 0.32% Ni - 13.3% Cr - 0.06% Mo 0.029% P - 1.19% Ni - 0.84% Cr - 0.09% Mo En 33, 104 En 56 (420 Stainless Steel), 16 (4032), 102 Composition: 0.92% C - 0.93% Mn - 0.30% Si - 0.019% S - 0.023% P - 0.18% Ni - 0.98% Cr - 0.04% Mo 103 Composition: 0.96% C - 0.74% Mn - 0.26% Si - 0.016% S - 97 Composition: 0.11% C - 0.36% Mn - 0.21% Si - 0.028% S - 97 0.010% P - 2.89% Ni - 0.28% Cr - 0.09% Mo Composition: 0.33% C - 1.48% Mn - 0.18% Si - 0.028% S - Carburized En 33, 104 0.028% P - 0.26% Ni - 0.16% Cr - 0.27% Mo Composition: 0.95% C - 0.40% Mn - 0.26% Si - 0.015% S 0.28% P - 2.95% Ni - 0.36% Cr - 0.08% Mo 17 (4037),. 97 Composition: 0.38% C - 1.49% Mn - 0.25% Si - 0.028% S - 0.056% P - 0.24% Ni - 0.14% Cr - 0.41% Mo En 36 (9310), 105 0.031% P - 3.47% Ni - 0.07% Cr - 0.11% Mo En 36) (9310); 105 0.025% P - 1.24% Ni - 0.63% Cr - 0.05% Mo Carburized En 36 (9310 at 0.7% C), 107 Composition: 0.11% C - 0.38% Mn - 0.13% Si - 0.016% S 0.023% P - 3.26% Ni - 0.87% Cr - 0.08% Mo En 21 (2330), 98 Composition: 0.33% C - 0.74% Mn - 0.23% Si - 0.027% S$ - Composition: 0.14% C - 0.46% Mn - 0.19% Si - 0.009% S$ 0.006% P - 3.55% Ni - 1.11% Cr - 0.12% Mo En CiirG35),. 98 Composition: 0.37% C - 0.89% Mn - 0.28% Si - 0.035% $ - Composition: 0.70% C - 0.35% Mn - 0.16% Si - 0.018% S$ 0.025%P - 3.24% Ni - 0.96% Cr - 0.06% Mo En 47 (6150), 98 Composition: 0.51% C - 0.72% Mn - 0.27% Si - 0.020% S - 0.021% P - 0.15% Ni - 0.94% Cr - 0.05% Mo - 0.20% V Carburized En 36 (9310 at 1% C), 106 0.015% P - 0.20% Ni - 1.01% Cr - 0.23% Mo En 39A (9310), Composition: 1.00% C - 0.30% Mn - 0.12% Si - 0.016% S 0.028% P - 3.27% Ni - 0.90% Cr - 0.07% Mo En 19 (4140), 98 Composition: 0.41% C - 0.67% Mn - 0.23% Si - 0.016% S En 101 Soren ae 0.25% C - 0.52% Mn - 0.15% Si - 0.024% S - 96 Composition: 0.59% C - 0.66% Mn - 0.34% Si - 0.012% S 0.020% P - 0.17% Ni - 0.65% Cr - 0.02% Mo 18 (51 50), En 0.48% Mo 0.010% P - 3.33% Ni - 1.14% Cr - 0.65% Mo - 0.16% V En 351 (3120), 102 96 En cra C- pee Mn - 0.31% Si - 0.022% S - Composition: 0.33% C - 0.62% Mn - 0.21% Si - 0.025% S ie 0.022% P - 0.89% Ni - 0.10% Cr - 0.05% ae En 11 (5060), En Ni), Mo 0.028% P - 1.03% Ni - 0.53% Cr - 0.22% Mo En 28, 0.038% P - 0.16% Ni - 0.10% Cr - 0.02% Mo 12 (1030 + 0.9% Cr - 0.26% P - 2.53% Ni - 0.72% Cr 40), 101 (8640/87 100 En 0.029% Composition: 0.40% C - 1.34% Mn - 0.21% Si - 0.027% S - S- Composition: 0.55% C - 0.87% Mn - 1.74% Si - 0.037% S - En . Scenes rey C- pede) Mn - oe Si - 0.010% S - 95 95 101 En 24 (4340), Composition: 0.33% C - 1.54% Mn - 0.23% Si - 0.024% S ‘ 0.021% P - 0.18% Ni - 0.15% Cr - 0.05% Mo En 100 Composition: 0.39% C - 0.62% Mn - 0.23% Si - 0.018% S - 20, 0.026%P - 4.15% Ni - 1.33% Cr - 0.07% Mo Composition: 0.27% C - 0.60% Mn - 0.13% Si - 0.022% S - 0.030% P - 0.19% Ni - 0.74% Cr - 0.55% Mo Carburized En 39A (9310 at 0.5% C), Carburized En 39A (9310 at 1% C), 107 Composition: 0.54% C - 0.34% Mn - 0.26% Si - 0.019% S$ 0.024% P - 3.92% Ni - 1.28% Cr - 0.07% Mo Composition: 0.41% C - 0.58% Mn - 0.28% Si - 0.036% S 0.028% P - 0.15% Ni - 1.39% Cr - 0.74% Mo En 40B, 107 Composition: 0.11% C - 0.38% Mn - 0.09% Si - 0.010% S - 99 99 108 Composition: 1.02% C - 0.47% Mn - 0.27% Si - 0.018% S - Composition: 0.26% C - 0.55% Mn - 0.21% Si - 0.022% S - 0.029% P - 4.15% Ni - 1.22% Cr - 0.05% Mn 0.010% P - 0.25% Ni - 3.34% Cr - 0.54% Mo ——— ————————————————————— ———————————————————————————— —————————————— a bail En 34, 108 Composition: 0.16% C - 0.53% Mn - 0.18% Si - 0.011% S - 0.022% P - 1.56% Ni - 0.26% Cr - 0.25% Mo Carburized En 34, 109 Composition: 0.99% C - 0.56% Mn - 0.29% Si - 0.015% §S - En 0.025% P - 1.61% Ni - 0.32% Cr - 0.29% Mo 39B (9315), 109 Composition: 0.15% C - 0.38% Mn - 0.20% Si - 0.018% S 0.027% P - 4.33% Ni - 1.16% Cr - 0.17% Mo Carburized En 39B (9315 at 0.6% C), 110 Composition: 0.56% C - 0.47% Mn - 0.18% Si - 0.028% S 0.020% P - 4.25% Ni - 1.16% Cr - 0.18% Mo Carburized En 39B (9315 at 0.9% C), 110 Composition: 0.93% C - 0.50% Mn - 0.30% Si - 0.017% S - 0.026% P - 4.25% Ni - 1.18% Cr - 0.16% Mo £ne55, 111 Composition: 0.20% C - 0.61% Mn - 0.23% Si - 0.011% S - 0.015% P - 2.00% Ni - 1.65% Cr - 0.19% Mo Carburized En 355, 111 Composition: 0.93% C - 0.71% Mn - 0.38% Si - 0.017% S - 0.029% P - 2.10% Ni - 1.70% Cr - 0.20% Mo Ei 3 555 412 Composition: 0.18% C - 0.93% Mn - 0.26% Si - 0.008% S 0.016% P - 1.34% Ni - 1.11% Cr - 0.11% Mo Cacburized En 353, 112 Composition: 1.00% C - 0.99% Mn - 0.28% Si - 0.012% S - En 0.023% P - 1.42% Ni - 1.12% Cr - 0.11% Mo 354 (4320), 113 Composition: 0.19% C - 0.90% Mn - 0.21% Si - 0.015% S 0.017% P - 1.87% Ni - 1.08% Cr - 0.18% Mo Carburized En 354 (4320 at 1% C), 113 Composition: 0.97% C - 1.00% Mn - 0.33% Si - 0.018% S 0.029% P - 1.93% Ni - 1.13% Cr - 0.23% Mo GERMAN STEELS, Example Page, 117 / 118 W 1 0.76% C - 0.29% Mn (SAE 1078), 119 Composition: 0.76% C - 0.29% Mn - 0.22% Si - 0.008% P 0.008% $ - 0.11% Cr - 0.17% Cu - 0.019% Mo - 0.07% Ni 0.02% V C 100 W 1 1.03% C - 0.22% Mn (AISI W1 Tool Steely, 120 Composition: 1.03% C - 0.22% Mn - 0.17% Si - 0.014% P - 0.012% S - 0.07% Cr - 0.14% Cu - 0.01% Mo - 0.10% Ni trace V 0.48% C - 1.98% Mn, 121 P Composition: 0.48% C - 1.98% Mn - 0.28% Si - 0.020% 0.011% S 0.98% C - 1.84% Mn, 0.006% S - 1.53% Cr - 0.20% Cu - <0.01% Mo - 0.31% Ni <0.01% V X 40 Cr 13 (AISI 420 Stainless Steel), 128 Composition: 0.44% C - 0.20% Mn - 0.30% Si - 0.025% P 0.010% S - 13.12% Cr - 0.09% Cu - <0.01% Mo - 0.31% Ni 0.02% V X 210 Cr (AISI D3 Tool Steel), 129 Composition: 2.08% C - 0.39% Mn - 0.28% Si - 0.017% P - 0.012% S - 11.48% Cr - 0.15% Cu - 0.02% Mo - 0.31% Ni 0.04% V 20 Mo 5, 130 Composition: 0.23% C - 0.65% Mn - 0.30% Si - 0.013% P 0.030% S - 0.051% Al - 0.12% Cr - 0.08% Cu ~ 0.50% Mo 0.05% Ni - 0.038% V 37 MnSi 5, 131 Composition: 0.38% C - 1.14% Mn - 1.05% Si - 0.035% P 0.019% S - 0.23% Cr - 0.02% V 16 MnCr 5 (SAE 5115), 132 Composition: 0.16% C - 1.12% Mn - 0.22% Si - 0.030% P 0.008% S - 0.015% Al - 0.99% Cr - 0.02% Mo - 0.12% Ni 0.01% V 50 CrV 4 (SAE 6145), 133 Composition: 0.47% C - 0.82% Mn - 0.35% Si - 0.035% P 0.015% S - 1.20% Cr - 0.14% Cu - 0.04% Ni - 0.11% V 50 CrV 4 (SAE 6150), 134 Composition: 0.55% C - 0.98% Mn - 0.22% Si - 0.017% P - Composition: 0.15% C - 0.67% Mn - 0.48% Si - 0.044% P - Composition: 0.44% C - 0.66% Mn - 0.22% Si - 0.022% P 0.029% S - 0.15% Cr - 0.02% V (70 Composition: 0.44% C - 0.80% Mn - 0.22% Si - 0.030% P 0.023% S - 1.04% Cr - 0.17% Cu - 0.04% Mo - 0.26% Ni <0.01% V LOGE TiO; AZ? Composition: 1.04% C - 0.33% Mn - 0.26% Si - 0.023% P - 0.013% S - 1.02% Cr - 0.07% Cu - 0.01% Ni - 0.11% V 0.15% C - 0.67% Mn - 1.20% Cr - 0.31% V (SAE 6115) —135 117 - 161 Ck 45 0.44% C - 0.66% Mn (SAE 1042), y 34 Cr 4 (SAE 5135), 125 ' Composition: 0.35% C - 0.656% Mn - 0.23% Si - 0.026% P 0.013% S - 1.11% Cr - 0.18% Cu - 0.05% Mo - 0.23% Ni <0.01% V 41 Cr 4 (SAE 5140), 126 122 Composition: 0.98% C - 1.84% Mn - 0.08% Si - 0.023% P - 0.011% S 0.73% C - 1.62% Si (71 Si 7), 123 Composition: 0.73% C - 0.73% Mn - 1.62% Si - 0.019% P - 0.012 $ - 0.10% Cr - 0.19% Cu - 0.12% Ni - 0.01% V 0.30% C - 3.03% Ni (SAE 2330), 124 Composition: 0.30% C - 0.51% Mn - 0.32% Si - 0.011% P 0.007% $ - 0.032% Al - 0.07% Cr - 3.03% Ni - <0.01% Ti 0.024% S - 1.20% Cr - 0.18% Cu - 0.25% Ni - 0.31% V 15 CrNi 6, 136 Composition: 0.13% C - 0.51% Mn - 0.31% Si - 0.023% P - 0.009% S - 0.010% Al - 1.50% Cr - 0.06% Mo - 1.55% Ni <0.01% V 18 CrNi 8, 136 Composition: 0.16% C - 0.50% Mn - 0.31% Si - 0.013% P 0.014% S - 0.03% Al - 1.95% Cr - 0.03% Mo - 2.02% Ni 0.01% V 14 NiCr 14, 137 Composition: 0.13% C - 0.46% Mn - 0.26% Si - 0.013% P 0.012% S - 0.012% Al - 0.78% Cr - 0.16% Cu - 0.04% Mo 3.69% Ni 25 CrMo 4 (SAE 4118), 138 Composition: 0.22% C - 0.64% Mn - 0.25% Si - 0.010% P 0.011% S - 0.97% Cr - 0.16% Cu - 0.23% Mo - 0.33% Ni <0.01% V 34 CrMo 4 (SAE 4130), 139 Composition: 0.30% C - 0.64% Mn - 0.22% Si - 0.011% P 0.012% S - 1.01% Cr - 0.19% Cu - 0.24% Mo - 0.11% Ni <0.01% V 140 42 CrMo 4 (SAE 4135/4140), Composition: 0.38% C - 0.64% Mn - 0.23% Si - 0.019% P 0.013% S - 0.99% Cr - 0.17% Cu - 0.16% Mo - 0.08% Ni <0.01% V ee a 9 3, X 30 WCrV 50 CrMo 4 (SAE 4150), 141 Composition: 0.50% C - 0.80% Mn - 0.32% Si - 0.017% P 0.022% S - 1.04% Cr - 0.17% Cu - 0.24% Mo - 0.11% Ni - 156 Composition: 0.28% C - 0.36% Mn - 0.11% Si - 0.008% P 0.004% $ - 2.57% Cr - 0.03% Mo - 0.04% Ni - 0.35% V 8.88% W <0.01% V X21 Crw ol Zen bo? Composition: 2.19% C - 0.32% Mn - 0.26% Si - 0.027% P 0.008% $ - 11.75% Cr - 0.12% Cu - 0.12% Mo - 0.08% Ni 0.08% V - 0.84% W 60 WCrV 7, 158 Composition: 0.55% C - 0.34% Mn - 0.94% Si - 0.015% P 0.012% S - 1.27% Cr - 0.05% Mo - 0.12% Ni - 0.18% V 2.10% W 45 CrVMowW 5 8, 159 Composition: 0.39% C - 0.45% Mn - 0.58% Si - 0.018% P 0.003% S - 1.45% Cr - 0.47% Mo - 0.13% Ni - 0.70% V 0.55% W 20 MoCr 4, 142 Composition: 0.22% C - 0.66% Mn - 0.30% Si - 0.018% P 0.011% S - 0.049% Al - <0.0005% B - 0.56% Cr - 0.18% Cu - 0.44% Mo - 0.020% N - 0.15% Ni Composition: 0.27% C - 0.67% Mn - 0.20% Si - 0.017% P - 0.022% S - 0.034% Al - 0.002% B - 0.50% Cr - 0.45% Mo 0.005% N - 0.11% Ni StE 70 (Cr-Mo-Zr), 143 Composition: 0.17% C - 0.84% Mn - 0.54% Si - 0.019% P 0.011% S - 0.031% Al - 0.019% As - 0.89% Cr - 0.07% Cu 0.40% Mo - 0.05% Ni - 0.008% Ng - 0.005% Og - 0.008% Sn - 0.01% V - 0.09% Zr StE 47 (Ni-V), 143 Composition: 0.21% C - 1.52% Mn - 0.40% Si - 0.022% P 0.023% S - 0.043% Al - 0.019% N - 0.07% Ni - 0.13% V StE 47 (Ni-Ti), 144 Composition: 0.17% C - 1.45% Mn - 0.55% Si - 0.016% P 0.017% S - 0.055% Al - 0.74% Ni - 0.18% Ti 105 WCr 6, 145 Composition: 1.03% C - 0.97% Mn - 0.28% Si - 0.016% P 0.018% S - 1.05% Cr - 0.25% Cu - 0.03% Mo - 0.13% Ni 1.15% W 0.20% C - 1.20% Mn - 0.97% Cu - 0.55% Ni, 146 Composition: 0.20% C - 1.20% Mn - 0.38% Si - 0.039% P 0.024% S - 0.06% Cr - 0.91% Cu - 0.55% Ni 28 NiCrMo 7 4, 147 Composition: 0.30% C - 0.46% Mn - 0.24% Si - 0.030% P 0.025% S - 1.44% Cr - 0.20% Cu - 0.37% Mo - 2.06% Ni <0.01% V X 45 NiCrMo 4, 148 Composition: 0.40% C - 0.35% Mn - 0.20% Si - 0.010% P 0.015% S - 1.27% Cr - 0.16% Cu - 0.24% Mo - 4.03% Ni 0.04% V 20 NiMoCr 6, 149 Composition: 0.20% C - 0.62% Mn - 0.15% Si - 0.015% P 0.020% S - 0.015% Al - <0.0005% B - 0.47% Cr - 0.48% Mo - 1.58% Ni 61 CrSiV 5, 150 Composition: 0.58% C - 0.81% Mn - 0.89% Si - 0.013% P 0.006% S - 1.27% Cr - 0.14% Cu - 0.02% Mo - 0.06% Ni 0.11% V X 38 CrMoV 5 1 (AISI H 1}! Tool Steel), 151 Composition: 0.39% C - 0.48% Mn - 0.94% Si - 0.013% P 0.005% S - 5.53% Cr - 0.20% Cu - 0.87% Mo - 0.04% Ni 0.48% V 45 CrMoV 67, 152 Composition: 0.43% C - 0.75% Mn - 0.27 % Si - 0.011% P 0.011% S - 1.31% Cr - 0.72% Mo - 0.11% Ni - 0.23% V StE 47 (Cu-Ni-V), 153 Composition: 0.12% C - 1.28% Mn - 0.40% Si - 0.015% P 0.016% S - 0.024% Al - 0.67% Cu - 0.62% Ni - 0.15% V StE 47 (Cu-Ni-Ti), 153 Composition: 0.12% C - 1.28% Mn - 0.40% Si - 0.015% P 0.016% S - 0.021% Al - 0.67% Cu - 0.62% Ni - 0.18% Ti 56 NiCrMoV 7, 154 Composition: 0.52% C - 0.70% Mn - 0.29% Si - 0.010% P 0.010% S - 1.09% Cr - 0.43% Mo - 1.72% Ni - 0.14% V X 30 WCrV 5 3, 155 Composition: 0.28% C - 0.39% Mn - 0.16% Si - 0.020% P 0.006% S$ - 2.35% Cr - 0.06% Mo - 0.06% Ni - 0.53% V 4.10% W B 18 (AISI T1 High Speed Steel), 160 Composition: 0.81% C - 0.33% Mn - 0.15% Si - 0.024% P 0.003% $ - 3.77% Cr - 0.44% Mo - 0.12% Ni - 1.07% V 18.25% W D, 160 Composition: 0.87% C - 0.32% Mn - 0.27% Si - 0.020% P 0.005% S - 3.99% Cr - 0.80% Mo - 0.11% Ni - 2.52% V 11.91% W D Mo 5, 161 Composition: 0.85% C - 0.31% Mn - 0.30% Si - 0.015% P 0.010% S - 4.15% Cr - 4.79% Mo - 0.18% Ni - 2.01% V 6.34% W E 18 Co 5 (AISI T4 High Speed Steel), 161 Composition: 0.80% C - 0.30% Mn - 0.23% Si - 0.019% P 0.005% S - 4.52% Co - 4.34% Cr - 0.78% Mo - 0.30% Ni 1.52% V - 17.89% W FRENCH XC STEELS, 32 Steel, 163 - 220 165 Composition: 0.35% C - 0.69% Mo - 0.31% Si - 0.018% S$ 0.011% P - 0.31% Ni - 0.12% Cr - 0.04% Mo - 0.14% Cu XC 38 Steel, 165 Composition: 0.36% C - 0.66% Mn - 0.27% Si - 0.016% S - 0.020% P - 0.02% Ni - 0.21% Cr - 0.02% Mo - 0.22% Cu 0.060% Al XC 42 Steel, 165 Composition: 0.45% C - 0.52% Mn - 0.27% Si - 0.025% S 0.015% P - 0.12% Ni - 0.05% Cr - 0.01% Mo - 0.13% Cu Composition: 0.44% C - 0.72% Mn - 0.26% Si - 0.028% S - 0.038% P - 0.09% Ni - 0.16% Cr - 0.02% Mo XC 55 Steel, 166 Composition: 0.53% C - 0.70% Mn - 0.35% Si - 0.010% S - 0.020% P - 0.24% Ni - 0.09% Cr - <0.10% Mo - 0.52% Cu <0.03% V Composition: 0.52% C - 0.60% Mn - 0.28% Si - 0.017% S - 0.020% P - 0.05% Ni - <0.04% Cr - <0.05% Mo XC 70 Steel, 166 Composition: 0.75% C - 0.75% Mn - 0.24% Si - 0.010% S - 0.012% P - 0.43% Ni - 0.06% Cr - <0.10% Mo - 0.56% Cu <0.03% V Composition: 0.72% C - 0.72% Mn - 0.34% Si - 0.026% S 0.031% P 35°S 7 Steely 167 Composition: 0.55% C - 0.61% Mn - 1.68% Si - 0.014% S - 0.012% P - 0.19% Ni - 0.05% Cr - 0.01% Mo - 0.20% Cu trace V - 0.05% Ti 35 M 5 Steel, 167 Composition: 0.33% C - 1.12% Mn - 0.30% Si - 0.027% S 0.018% P - 0.24% Ni - 0.11% Cr - 0.04% Mo - 0.19% Cu 0.010% Al Lae xiv 45 M 5 Steel, 168 35 NC 6 Steel, Composition: 0.47% C - 1.37% Mn - 0.36% Si - 0.025% S 0.015% P - 0.02% Ni - 0.15% Cr - 0.19% Cu 25M 6 Steel, 169 Composition: 0.24% C - 1.58% Mn - 0.20% Si - 0.014% S 0.016% P - 0.20% Ni - 0.24% Cr - 0.02% Mo - 0.12% Cu 0.018% Co 10 N 14 Steel, 169 0.010% P - 3.47% Ni - 0.10% Cr - 0.04% Mo - 0.15% Cu 0.007% Al Z10N 5 Steel, 169 Composition: 0.10% C - 0.46% Mn - 0.33% Si - 0.011% S - 0.025% P - 5.00% Ni - 0.23% Cr - 0.04% Mo - 0.14% Cu 9 \Steel, 170 Composition: 0.09% C - 0.51% Mn - 0.27% Si - 0.008% S 0.010% P - 9.00% Ni - 0.05% Cr - 0.03% Mo - 0.13% Cu 0.012% Al oz, steel, 170 Composition: 0.32% C - 0.76% Mn - 0.30% Si - 0.010% S 0.021% P - 0.26% Ni - 1.08% Cr - 0.02% Mo - 0.17% Cu 38 C 4 Steel, 171 Composition: 0.38% C - 0.74% Mn - 0.26% Si - 0.010% S 0.023% P - 0.26% Ni - 0.90% Cr - 0.04% Mo - 0.17% Cu a2 © 4-stecl,. 171 Composition: 0.44% C - 0.80% Mn - 0.31% Si - 0.013% S 0.030% P - 0.46% Ni - 0.96% Cr - 0.05% Mo - 0.18% Cu HOOsGGsStcel, 172 Composition: 1.00% C - 0.30% Mn - 0.27% Si - 0.030% S 0.013% P - 0.21% Ni - 1.71% Cr - 0.04% Mo - 0.14% Cu 0.010% V - 0.02% Ti PaO seni. Steele A-72 Composition: 0.42% C - 0.16% Mn - 0.44% Si - 0.049% S 0.042% P - 0.27% Ni - 13.40% Cr - 0.08% Cu 60;SC.7_ Steel, 173 Composition: 0.55% C - 0.88% Mn - 1.52% Si - 0.005% S 0.032% P - 0.07% Ni - 0.74% Cr - 0.01% Mo - 0.03% Cu Composition: 0.64% C - 0.74% Mn - 1.61% Si - 0.020% S$ 0.016% P - 0.07% Ni - 0.61% Cr - 0.10% Cu A0.C Ves Steel, 173 Composition: 0.38% C - 0.41% Mn - 0.21% Si - 0.010% S 0.013% P - 0.03% Ni - 1.29% Cr - <0.10% Mo - 0.05% Cu 0.120% V 50 CV 4 Steel, 174 Composition: 0.53% C - 0.81% Mn - 0.27% Si - 0.016% S - 0.024% P - 0.07% Ni - 1.09% Cr - 0.01% Mo - 0.11% Cu 0.100% V 90 MV 8 Steel, 174 Composition: 0.81% C - 2.10% Mn - 0.29% Si - 0.003% S - 0.016% P - 0.06% Ni - 0.02% Cr - 0.01% Mo - 0.04% Cu 0.17% V - 0.05% W 15 MDV 4-05 Steel, 175 Composition: 0.14% C - 1.20% Mn - 0.23% Si - 0.017% S 0.016% P - 0.15% Ni - 0.10% Cr - 0.48% Mo - 0.15% Cu 0.065% V 16 MC 5 Steel, 175 Composition: 0.18% C - 1.10% Mn - 0.27% Si - 0.025% S 0.023% P - 0.28% Ni - 1.02% Cr - 0.04% Mo - 0.18% Cu 90 M 5 Steel, 176 Composition: 0.93% C - 1.25% Mn - 0.20% Si - 0.007% S 0.020% P - 0.24% Ni - 0.60% Cr - 0.15% Cu 50 NC 2 Steel, 0.014% P - 0.93% Ni - 0.80% Cr - 0.06% Mo - 0.10% Cu 0.010% V 10° NC 6 Steel, 2177 Composition: 0.11% C - 0.50% Mn - 0.30% Si - 0.005% S 0.017% P - 1.59% Ni - 0.64% Cr - <0.10% Mo - 0.31% Cu <0.03% V Composition: 0.11% C - 0.44% Mn - 0.22% Si - 0.007% S - Z10.N 177 Composition: 0.41% C - 0.55% Mn - 0.24% Si - 0.007% S - 176 Composition: 0.50% C - 0.78% Mn - 0.40% Si - 0.027% S$ - 0.010% P - 0.48% Ni - 0.52% Cr - 0.03% Mo - 0.12% Cu ES 16 NC 6 Steel, 178 Composition: 0.15% C - 0.55% Mn - 0.30% Si - <0.010% S - 0.013% P - 1.38% Ni - 0.82% Cr - 0.09% Mo - 0.11% Cu 20 NC 6 Steel, 178 Composition: 0.19% C - 0.55% Mn - 0.30% Si - 0.010% S 0.018% P - 1.52% Ni - 0.81% Cr - <0.10% Mo - 0.20% Cu <0.030% V 14 NC 11 Steel, 179 Composition: 0.12% C - 0.51% Mn - 0.29% Si - 0.014% S - 0.013% P - 2.69% Ni - 0.70% Cr - 0.06% Mo - 0.18% Cu 35 NC 15 Steel, 179 Composition: 0.36% C - 0.53% Mn - 0.32% Si - 0.010% S - 0.013% P - 3.74% Ni - 1.86% Cr - 0.05% Mo - 0.13% Cu 0.002% Ti Composition: 0.38% C - 0.44% Mn - 0.22% Si - 0.003% S 0.018% P - 3.40% Ni - 1.50% Cr - 0.15% Mo - 0.13% Cu 0.015% V 30 NC 11 Steel, 180 Composition: 0.32% C - 0.30% Mn - 0.20% Si - 0.008% S 0.017% P - 2.95% Ni - 0.69% Cr - <0.10% Mo - 0.31% Cu <0.030% V - 0.06% W 50 CD 4 Steel, 180 Composition: 0.52% C - 0.60% Mn - 0.40% Si - 0.011% S 0.013% P - 0.17% Ni - 1.00% Cr - 0.22% Mo - 0.38% Cu <0.05% V 18 CD 4 Steel, 181 Composition: 0.17% C - 0.80% Mn - 0.23% Si - 0.025% S 0.020% P - 0.21% Ni - 1.06% Cr - 0.24% Mo - 0.18% Cu - 0.006% V - 0.032% Ti Composition: 0.15% C - 0.86% Mn - 0.28% Si - 0.010% S 0.014% P - 0.14% Ni - 0.84% Cr - 0.20% Mo 25 CD 4 Steel, 181 Composition: 0.25% C - 0.68% Mn - 0.21% Si - 0.090% S 0.018% P - 0.19% Ni - 1.10% Cr - 0.22% Mo - 0.16% Cu 35 CD 4 Steel, 182 Composition: 0.37% C - 0.79% Mn - 0.30% Si - 0.010% S 0.019% P - <0.17% Ni - 1.00% Cr - 0.18% Mo - 0.10% Cu Composition: 0.36% C - 0.77% Mn - 0.28% Si - 0.010% S 0.019% P - 0.16% Ni - 0.96% Cr - 0.28% Mo 100 CD 7 Steel, 182 Composition: 1.07% C - 0.32% Mn - 0.31% Si - 0.016% S - 0.012% P - 0.17% Ni - 2.05% Cr - 0.18% Mo - 0.13% Cu 30 CD 12 Steel, 183 Composition: 0.30% C - 0.63% Mn - 0.29% Si - 0.016% S 0.010% P - 0.17% Ni - 2.99% Cr - 0.43% Mo - 0.13% Cu Z 15 CD 5-05 Steel, 183 Composition: 0.11% C - 0.47% Mn - 0.24% Si - 0.015% S 0.016% P - 0.23% Ni - 4.48% Cr - 0.52% Mo - 0.15% Cu 45 SC 6 Steel, 184 Composition: 0.43% C - 0.95% Mn - 1.38% Si - <0.010% S 0.012% P - 0.03% Ni - 1.06% Cr - <0.10% Mo - <0.05% Cu - 0.035% V 45 SCD 6 Steel, 184 Composition: 0.45% C - 0.55% Mn - 1.31% Si - 0.005% S - 0.013% P - 0.21% Ni - 0.60% Cr - 0.22% Mo - 0.27% Cu <0.05% V - trace Ti Composition: 0.42% C - 0.70% Mn - 1.40% Si - 0.005% S 0.015% P - 0.24% Ni - 0.68% Cr - 0.19% Mo - 0.03% EEE aa ne 45 MS 6 Steel, Composition: 0.30% C - 0.56% Mn - 0.27% Si - 0.014% S 0.012% P - 1.75% Ni - 1.85% Cr - 0.49% Mo Composition: 0.32% C - 0.35% Mn - 0.27% Si - 0.022% S - Composition: 0.45% C - 1.50% Mn - 1.34% Si - <0.010% S 0.017% P - 0.03% Ni - 0.03% Cr - <0.01% Mo - 0.09% Cu 0.040% V 15 MDV 0.018% P - 2.10% Ni - 2.30% Cr - 0.64% Mo - 0.19% Cu 185 4-05 Steel, Composition: 0.14% C - 1.20% Mn - 0.23% Si - 0.017% S - 0.016% P - 0.15% Ni - 0.10% Cr - 0.48% Mo - 0.15% Cu 0.065% V 186 20 CDV 5-08 Steel, Composition: 0.15% C - 0.53% Mn - 0.26% Si - 0.013% S 0.020% P - 0.11% Ni - 1.04% Cr - 1.05% Mo - 0.15% Cu 0.250% V - 0.028% Al Composition: 0.14% C - 0.96% Mn - 0.15% Si - 0.011% S - 0.017% P - 1.40% Cr - 0.96% Mo - 0.270% V 10 CD 9-10 Steel, 194 30 CND 8 Steel, 185 186 12 Steel, 194 40 NCD 18 Steel, 195 30 NCD Composition: 0.30% C - 0.40% Mn - 0.30% Si - 0.016% S 0.015% P - 3.20% Ni - 0.86% Cr - 0.40% Mo - 0.17% Cu Composition: 0.42% C - 0.40% Mn - 0.32% Si - 0.005% $ 0.010% P - 4.34% Ni - 1.56% Cr - 0.44% Mo - 0.05% Cu 20 ND 195 16 Steel, Composition: 0.20% C - 0.63% Mn - 0.32% Si - 0.026% S - 0.017% P - 3.85% Ni - 0.25% Cr - 0.94% Mo - 0.17% Cu 40 CAD 6-12 Steel, 196 Composition: 0.15% C - 0.36% Mn - 0.44% Si - 0.020% § 0.022% P - 0.09% Ni - 2.24% Cr - 0.85% Mo - 0.23% Cu - Composition: 0.40% C - 0.56% Mn - 0.53% Si - 0.001% $ 0.012% P - 0.21% Ni - 1.65% Cr - 0.23% Mo - 0.15% Cu - 0.097% Al - 0.01% Ti 1.100% Al Comp caliion 2b C.210.5870, Mo - 0-407, Si -.0.01076,8-; COLA i018 Niet 65% Ce - 0.647% Mo. 0.07% Cus0.380% V Composition: 0.16% C - 0.49% Mn - 1.14% Si - 0.080% S 0.010% P - 0.25% Ni - 1.22% Cr - 1.05% Mo - 0.19% Cu 0.460% V - 0.030% Ti potieclsC - 18T SDN 0.41% LO Composition: 0.45% Mn - 0.66% Si - 0.001% S - 197 WC 40 Steel, 100Composition: 0.98% C - 0.30% Mn - 0.16% Si - 0.003% $ - 30 NCD 2 Steel, 188 Composition: 0.28% C - 0.70% Mn - 0.29% Si - 0.014% S - 0.280% V - 3.66% W 15 NCDV 11 Steel, 0.011% P - 4.90% Cr - 1.07% Mo - 0.09% Cu - 0.550% V 0.011% P - 0.43% Ni - 0.70% Cr - 0.20% Mo - 0.20% Cu 20 NCD 2 Steel, 188 Composition: 0.21% C - 0.88% Mn - 0.31% Si - 0.002% § - 0.015% P - 0.17% Ni - 0.63% Cr - 0.28% Mo - 0.11% Cu 197 Composition: 0.16% C - 0.51% Mn - 0.27% Si - 0.019% S - 0.010% P - 2.59% Ni - 0.67% Cr - 0.49% Mo - 0.20% Cu 0.080% V 0.017% P - 0.65% Ni - 0.57% Cr - 0.26% Mo - 0.15% Cu 40 NCD 3 Steel, 189 Composition: 0.40% C - 0.80% Mn - 0.33% Si - 0.019% S 0.018% P - 0.58% Ni - 0.56% Cr - 0.28% Mo - 0.10% Cu 55 NCDV 7-05 Steel, 198 Composition: 0.58% C - 0.62% Mn - 0.39% Si - 0.012% S 0.015% P - 1.68% Ni - 1.35% Cr - 0.40% Mo - 0.01% Cu 0.100% V 35 NCD 5 Steel, Z 38 CDWV 5 189 Composition: 0.33% C - 0.72% Mn - 0.24% Si - 0.010% $ 0.010% P - 1.22% Ni - 0.54% Cr - 0.17% Mo - 0.22% Cu 50 NCD 6 Steel, 190 Composition: 0.49% C - 0.57% Mn - 0.26% Si - 0.012% S 0.011% P - 1.62% Ni - 0.83% Cr - 0.24% Mo - 0.13% Cu 28 NCD 6 Steel, 190 Composition: 0.29% C - 0.78% Mn - 0.24% Si - 0.009% S$- 0.011% P - 1.62% Ni - 1.49% Cr - 0.44% Mo - 0.16% Cu 0.010% Ti 20 NCD 7 Steel, 191 Composition: 0.17% C - 0.63% Mn - 0.25% Si - 0.013% S 0.013% P - 2.02% Ni - 0.38% Cr - 0.138% Mo - 0.07% Cu - 0.010% Al 20 NCD 10 Steel, 191 Composition: 0.17% C - 1.23% Mn - 0.25% Si - 0.013% S 0.015% P - 2.45% Ni - 0.94% Cr - 0.40% Mo - 0.011% Ng - 0.042% Al 60 NCD 11 Steel, 192 Composition: 0.57% C - 0.65% Mn - 0.31% Si - 0.005% S - 0.010% P - 2.35% Ni - 0.75% Cr - 0.41% Mo - 0.13% Cu 32 CND 11 Steel, 192 Steel, 198 Composition: 0.37% C - 0.34% Mn - 0.95% Si - 0.008% S - 0.018% P - 0.17% Ni - 4.70% Cr - 1.40% Mo - 0.11% Cu - 0.500% V - 1.80% W XC 48 Steel, 199 Composition: 0.50% C - 0.67% Mn - 0.24% Si - 0.022% S - 0.031% P E 36 Steel, 199 Composition: 0.20% C - 1.37% Mn - 0.35% Si - 0.017% S 0.022% P - 0.007% N - 0.054% Al 35 M 6 Steel, 199 Composition: 0.34% C - 1.55% Mn - 0.18% Si - 0.028% S 0.026% P - 0.17% Ni - 0.08% Cr - 0.02% Mo 19 M Nb 6 Steel, 199 Composition: 0.19% C - 1.39% Mn - 0.26% Si - 0.019% S - 0.029% P - 0.043% Nb - 0.007% N - 0.046% Al 17 MV Az 6 Steel, 200 Composition: 0.17% C - 1.50% Mn - 0.34% Si - 0.018% S - 0.017% P - 0.110% V - 0.025% N - 0.082% Al 22 N 8 Steel, 200 Composition: 0.23% C - 0.56% Mn - 0.27% Si - 0.020% S 0.021% P - 2.06% Ni - 0.15% Cr - 0.01% Mo - 0.18% Cu Composition: 0.31% C - 0.67% Mn - 0.30% Si - 0.010% S 0.010% P - 0.94% Ni - 3.00% Cr - 0.51% Mo - 0.19% Cu 20 NCD 8 Steel, 200 Composition: 0.19% C - 0.67% Mn - 0.20% Si - 0.020% S - Composition: 0.16% C - 0.46% Mn - 0.20% Si - 0.013% S - 20 ND 8 Steel, 16 NCD 13 Steel, 193 0.008% P - 3.02% Ni - 1.02% Cr - 0.26% Mo - 0.12% Cu 35 NCD 16 Steel, 193 Composition: 0.36% C - 0.39% Mn - 0.30% Si - 0.005% S 0.010% P - 3.70% Ni - 1.65% Cr - 0.23% Mo - 0.12% Cu Composition: 0.34% C - 0.35% Mn - 0.26% Si - 0.006% S 0.008% P - 3.55% Ni - 1.54% Cr - 0.31% Mo - 0.008% No 0.019% P - 2.00% Ni - 0.39% Cr - 0.09% Mo - 0.05% Cu 200 Composition: 0.24% C - 0.52% Mn - 0.27% Si - 0.012% S - 0.015% P - 2.10% Ni - 0.05% Cr - 0.32% Mo - 0.10% Cu 10 CAD 8 Steel, 201 Composition: 0.11% C - 0.46% Mn - 0.21% Si - 0.060% S - 0.020% P - 2.18% Cr - 0.31% Mo - 0.485% Al 30 CAD 6-12 Steel, 201 Composition: 0.28% C - 0.49% Mn - 0.32% Si - 0.050% S 0.012% P - 0.13% Ni - 1.65% Cr - 0.22% Mo - 1.050% Al 14 NCD 4 Steel, 201 Composition: 0.18% C - 1.08% Mn - 0.14% Si - 0.020% S - 0.027% P - 1.13% Ni - 0.88% Cr - 0.40% Mo 18 NCD 6 Steel, 201 Composition: 0.18% C - 0.86% Mn - 0.27% Si - 0.009% S - 0.010% P - 1.53% Ni - 1.05% Cr - 0.16% Mo - 0.13% Cu 80 DCV 42-16 Steel, 202 Composition: 0.81% C - 0.26% Mn - 0.21% Si - 0.002% S 0.021% P - 4.28% Cr - 3.98% Mo - 1.080% V 40 NDCV 18-11 Steel, 202 Composition: 0.41% C - 0.30% Mn - 0.36% Si - 0.006% S - 0.017% P - 4.80% Ni - 0.54% Cr - 1.13% Mo - 0.520% V Z.40 WCYV 5.Steel,. 202 Composition: 0.38% C - 0.52% Mn - 0.37% Si - 0.022% S - 0.018% P - 0.08% Ni - 3.23% Cr - 0.44% Mo - 0.580% V 4.15% W Pao we V9 Steel.” 202 Composition: 0.27% C - 0.43% Mn - 0.26% Si - 0.018% S 0.008% P - 0.10% Ni - 2.45% Cr - 0.13% Mo - 0.360% V 8.70% W Z 20 CDNbYV 11 Steel, 203 Composition: 0.17% C - 0.39% Mn - 0.43% Si - 0.016% S$ 0.017% P - 0.60% Ni - 11.30% Cr - 0.75% Mo - 0.370% V - 0.410% Nb - 0.070% No Z 65 WDCV 06-05 Steel, 203 Composition: 0.56% C - 0.27% Mn - 0.23% Si - 0.17% Ni - 4.00% Cr - 5.00% Mo - 1.800% V - 7.00% W - 0.40% Co Z 60 WCV 18 Steel, 203 Composition: 0.60% C - 0.22% Mn - 0.19% Si - 0.20% Ni 4.65% Cr - 1.00% Mo - 1.350% V - 17.80% W - 0.72% Co xXG:38 Steel; 203 Composition: 0.36% C - 0.66% Mn - 0.27% Si - 0.016% S 0.020% P - 0.20% Ni - 0.21% Cr - 0.02% Mo - 0.22% Cu 0.060% Al XC 38 Steel, 204 Composition: 0.37% C - 0.69% Mn - 0.33% Si - 0.019% S 0.017% P - 0.06% Ni - 0.04% Cr - 0.05% Mo - 0.013% Ng Y, 90 Steel, 204 Composition: 0.93% C - 0.31% Mn - 0.11% Si - 0.010% S 0.012% P - 0.20% Ni - 0.12% Cr - <0.10% Mo - 0.62% Cu 0.03% V Y, 120 Steel, 204 Composition: 1.29% C - 0.20% Mn - 0.27% Si - 0.005% S 0.015% P - 0.09% Ni - 0.04% Cr - 0.01% Mo - 0.08% Cu 41 S'7 Steel, 205 Composition: 0.42% C - 0.62% Mn - 1.78% Si - 0.013% S - 0.043% P - 0.18% Ni - 0.05% Cr - 0.01% Mo - 0.22% Cu trace V - 0.03% Ti Z 120 M 12 Steel, 205 Composition: 1.28% C - 12.35% Mn - 0.35% Si - 0.009% S 0.031% P - 0.28% Ni - 0.01% Mo - 0.23% Cu 10 N 8 Steel, 205 Composition: 0.08% C - 0.29% Mn - 0.16% Si - 0.035% S 0.007% P - 2.06% Ni - 0.08% Cr - 0.02% Mo - 0.13% Cu 7 4 orCrs Steel; *205 Composition: 0.11% C - 0.49% Mn - 0.45% Si - 0.050% S - 0.012% P - 0.13% Ni - 12.00% Cr - 0.02% Mo - 0.07% Cu - 0.020% V - 0.06% W 18 C 3 Steel, 206 Composition: 0.20% C - 0.72% Mn - 0.30% Si - 0.010% §S 0.010% P - 0.27% Ni - 0.79% Cr - 0.02% Mo - 0.02% Cu 730 Crs steel 206 Composition: 0.29% C - 0.40% Mn - 0.85% Si - 0.050% S - 0.023% P - 0.18% Ni - 12.32% Cr - <0.10% Mo - 0.12% Cu <0.05% V 70 C1 Steel, 206 Composition: 0.72% C - 0.35% Mn - 0.20% Si - 0.050% S 0.011% P 0.06% Ni - 0.28% Cr - 0.049% Cu 95 C 3 Steel, 206 Composition: 0.88% C - 0.41% Mn - 0.24% Si - 0.010% S - 0.010% P - 0.10% Ni - 0.78% Cr - 0.05% Mo - 0.12% Cu 100+G=3.Steel, 4207 Composition: 0.97% C - 0.27% Mn - 0.26% Si - 0.006% S - 0.010% P - 0.05% Ni - 0.77% Cr - <0.01% Mo - 0.04% Cu 30 MS 6 Steel, 207 Composition: 0.29% C - 1.33% Mn - 1.30% Si - 0.016% S 0.008% P - 0.12% Ni - 0.10% Cu 30 SC 6 Steel, 207 Composition: 0.28% C - 0.92% Mn - 1.49% Si - 0.018% S 0.001% P - 0.12% Ni - 0.99% Cr - 0.10% Cu 12 NC 15 Steel, 207 Composition: 0.18% C - 0.35% Mn - 0.33% Si - 0.015% S 0.008% P - 3.42% Ni - 0.86% Cr - 0.08% Mo - 0.16% Cu 40 NC 18 Steel. 208 Composition: 0.42% C - 0.60% Mn - 0.41% Si - 0.012% S 0.013% P - 4.40% Ni - 1.25% Cr - 0.05% Mo - 0.14% Cu 0.02% Al 20 ND 8 Steel, 208 Composition: 0.21% C - 0.55% Mn - 0.29% Si - 0.010% S 0.008% P - 1.84% Ni - 0.07% Cr - 0.20% Mo - 0.09% Cu 12 ND 16 Steel, 208 Composition: 0.08% C - 0.35% Mn - 0.06% Si - 0.020% S - 0.010% P - 4.06% Ni - 0.07% Cr - 0.88% Mo - 0.15% Cu 30 C 5 Steel, 208 Composition: 0.30% C - 0.50% Mn - 0.25% Si - 0.016% S 0.012% P - 0.09% Ni - 1.28% Cr - 0.09% Cu - 0.050% V 30 CV 5 Steel, 209 Composition: 0.32% C - 0.40% Mn - 0.21% Si - 0.016% S 0.007% P - 0.11% Ni - 1.30% Cr - 0.10% Mo - 0.13% Cu 0.125% V 140 C 10 Steel, 209 Composition: 1.43% C - 0.22% Mn - 0.21% Si - 0.013% S 0.020% P - 0.11% Ni - 2.55% Cr - 0.08% Mo - 0.05% Cu 0.015% V 100 WC 10 Steel, 209 Composition: 1.15% C - 0.38% Mn - 0.38% Si - 0.008% S 0.018% P - 0.21% Ni - 0.74% Cr - 0.02% Mo - 0.12% Cu 1.20% W 30 SCD 6 Steel, 209 Composition: 0.28% C - 0.59% Mn - 1.25% Si - 0.048% S 0.055% P - <0.05% Ni - 0.92% Cr - 0.22% Mo - 0.03% Cu 45 SCD 6 Steel, 210 Composition: 0.50% C - 1.05% Mn - 1.48% Si - 0.044% S 0.048% P - <0.05% Ni - 1.20% Cr - 0.20% Mo - 0.04% Cu Z 40 CSD 10 Steel, 210 Composition: 0.30% C - 0.48% Mn - 2.20% Si - 0.012% S <0.005% P - 0.12% Ni - 10.50% Cr - 1.00% Mo - 0.07% Cu 0.012% V 18 NCD-4 Steel, 210 Composition: 0.17% C - 0.63% Mn - 0.28% Si - 0.011% S 0.022% P - 1.13% Ni - 0.49% Cr - 0.13% Mo - 0.10% Cu 120 NCD 5-02 Steel, 210 Composition: 1.18% C - 0.63% Mn - 0.28% Si - 0.011% S 0.022% P - 1.13% Ni - 0.49% Cr - 0.13% Mo - 0.10% Cu 30 NCD 8 Steel, 211 Composition: 0.32% C - 0.55% Mn - 0.27% Si - 1.90% Ni 1.80% Cr - 0.58% Mo EEE nn 30 NC 12 Steel, 211 Composition: 0.33% C - 0.51% Mn - 0.32% Si - 0.016% S 0.008% P - 3.38% Ni - 0.83% Cr - 0.03% Mo - 0.13% Cu 35 NC 11 Steel, 211 Composition: 0.37% C - 0.59% Mn - 0.26% Si - 0.025% S - 0.017% P - 2.54% Ni - 0.94% Cr - 0.12% Mo - 0.20% Cu 10 NC 12 Steel, 212 Composition: 0.10% C - 0.33% Mn - 0.26% Si - 0.005% S 0.010% P - 3.02% Ni - 0.68% Cr - 0.19% Mo - 0.14% Cu 14° NC 22 Steel, 212 Composition: 0.15% C - 0.32% Mn - 0.35% Si - 0.005% S - 0.016% P - 3.09% Ni - 0.84% Cr - 0.14% Mo - 0.12% Cu 32 \NGBD: 15 Steel,” 212 Composition: 0.31% C - 0.50% Mn - 0.28% Si - 0.005% S 0.010% P - 3.33% Ni - 1.20% Cr - 0.50% Mo - 0.15% Cu <0.03% V - 0.08% W 30 NCD 12 Steel, 213 Composition: 0.30% C - 0.40% Mn - 0.30% Si - 3.20% Ni 0.86% Cr - 0.40% Mo 35 NCD 16 Steel, 213 Composition: 0.36% C - 0.39% Mn - 0.30% Si - 0.005% S - 0.010% P - 3.70% Ni - 1.65% Cr - 0.23% Mo - 0.12% Cu 16 NC Z 130 WCV 12-04-04 Steel, 217 Composition: 1.43% C - 0.17% Mn - 0.29% Si - 0.045% S 0.023% P - 0.15% Ni - 4.18% Cr - 0.87% Mo - 4.350% V 11.00% W Z 80 WCDX 12-04-02-02 Steel, 217 Composition: 0.82% C - 0.29% Mn - 0.25% Si - 0.010% S 0.032% P - 0.20% Ni - 4.10% Cr - 1.60% Mo - 2.060% V 12.10% W Z 85 WCV 18-04-02 Steel, 217 Composition: 0.79% C - 0.17% Mn - 0.18% Si - 0.026% S 0.035% P - 0.08% Ni - 4.00% Cr - 0.20% Mo - 2.110% V 18.15% W - 0.17% Co Z 30 WCKV 09-03 Steel, 218 Composition: 0.28% C - 0.54% Mn - 0.96% Si - 0.003% S 0.025% P - 0.54% Ni - 2.80% Cr - 0.13% Mo - 0.240% V 8.77% W - 2.05% Co Z 80 WKCV 18-05-04-01 Steel, 218 Composition: 0.80% C - 0.53% Mn - 0.28% Si - 3.80% Cr - 1.050% V - 17.40% W - 4.62% Co | Z 80 WKCV 18-10-04-02 Steel, 218 Composition: 0.80% C - 0.29% Mn - 0.28% Si - 0.026% S 0.018% P - 4.40% Cr - 0.37% Mo - 1.600% V - 19.20% W 9.30% Co Composition: 0.89% C - 0.50% Mn - 0.18% Si - 3.90% Cr - 18 Steel, 213 Composition: 0.15% C - 0.48% Mn - 0.33% Si - 0.010% Si 0.012% P - 4.21% Ni - 1.00% Cr - 0.20% Mo - 0.21% Cu 100 CV 6 Steel, 214 Composition: 0.86% C - 0.35% Mn - 0.34% Si - 0.012% S 0.005% P - 0.58% Ni - 1.62% Cr - <0.01% Mo - 0.05% Cu 0.174% V Z 100 CDV 5 Steel, 214 Composition: 0.91% C - 0.32% Mn - 0.37% Si - 0.006% S 0.016% P - 5.20% Cr - 1.07% Mo - 0.09% Cu - 0.420% V 45 WC 20-04 Steel, 214 Composition: 0.48% C - 0.27% Mn - 0.67% Si - 0.005% S 0.010% P - 0.14% Ni - 1.20% Cr - 0.02% Mo - 0.21% Cu 0.013% V - 2.34% W Composition: 0.45% C - 0.34% Mn - 0.20% Si - 0.007% S 0.019% P - 0.44% Ni - 1.25% Cr - <0.10% Mo - 0.14% Cu 0.360% V - 2.20% W 40 WCDS 35-12 Steel, 215 Composition: 0.40% C - 0.34% Mn - 0.26% Si - 0.010% S 0.032% P - 0.12% Ni - 2.85% Cr - 0.16% Mo - 0.14% Cu 0.260% V - 3.39% W Z 80 WCV 18-04-01 Steel, 215 Composition: 0.81% C - 0.17% Mn - 0.23% Si - 0.019% S 0.018% P - 0.08% Ni - 4.25% Cr - 0.09% Mo - 1.080% V 17.60% W - 0.05% Co 35 NC 15 Steel, 215 Composition: 0.38% C - 0.44% Mn - 0.22% Si - 0.003% S 0.018% P - 3.40% Ni - 1.50% Cr - 0.15% Mo - 0.13% Cu 0.015% V 35 NCDV 10 Steel, 216 Composition: 0.34% C - 0.52% Mn - 0.37% Si - 2.65% Ni 1.80% Cr - 0.53% Mo - 0.15% V - 0.20% Cu Z 200sG23Steels. 216 Composition: 1.78% C - 0.27% Mn - 0.25% Si - 0.010% § 0.025% P - 0.35% Ni - 11.70% Cr - 0.61% Mo - 0.090% V 0.63% W Z 160 CDV 12 Steel, 216 Composition: 1.56% C - 0.37% Mn - 0.20% Si - 0.001% S 0.020% P - 0.26% Ni - 12.46% Cr - 0.54% Mo - 0.10% Cu 0.65% V - 0.28% W Z 85 DCWV 08-04-02-02 Steel, 217 Composition: 0.85% C - 0.27% Mn - 0.24% Si - 0.023% S 0.024% P - 4.03% Cr - 8.00% Mo - 1.380% V - 1.43% W 0.19% Co 1.030% V - 19.10% W - 9.66% Co Z 150 WK VC 12-05-05-04 Steel, 219 Composition: 1.46% C - 0.10% Mn - 0.27% Si - 0.033% §S - 0.031% P - 3.72% Cr - 0.47% Mo - 0.09% Cu - 4.100% V 13.70% W - 5.00% Co Z 165 WKVC 12-10-05-04 Steel, 219 Composition: 1.64% C - 0.21% Mn - 0.31% Si - 0.005% S 0.021% P - 4.50% Cr - 0.66% Mo - 5.050% V - 11.64% W 11.35% Co 55 NCDV 7 Steel, 219 Composition: 0.55% C - 0.68% Mn - 0.30% Si - 0.004% S 0.014% P - 1.65% Ni - 1.00% Cr - 0.35% Mo - 0.11% Cu - 0.220% V - 0.08% W Z 80 WDCV 6 Steel, 219 Composition: 0.76% C - 0.25% Mn - 0.35% Si - 0.031% S 0.025% P - 4.54% Cr - 5.75% Mo - 2.050% V - 6.60% W 0.86% Co Z 85 WDKCV 06-05-05-04-02 Steel, 220 Composition: 0.84% C - 0.22% Mn - 0.23% Si - 0.014% S - 0.025% P - 4.36% Cr - 4.95% Mo - 1.830% V - 6.48% W 4.85% Co Z 130 WDCV 06-05-04-04 Steel, 220 Composition: 1.29% C - 0.26% Mn - 0.43% Si - 0.006% S 0.025% P - 4.42% Cr - 4.10% Mo - 4.000% V - 5.54% W 0.37% Co Z 110 DKCWV 09-08-04-02-01 Steel, 220 Composition: 1.11% C - 0.24% Mn - 0.27% Si - 0.007% S 0.023% P - 3.91% Cr - 9.50% Mo - 1.210% V - 1.47% W 8.35% Co BENELUX STEELS, Example Page, 032 (SAE 1035), 221 - 242 223 224 Composition: 0.36% C - 0.60% Mn - 0.26% Si - 0.032% S - 0.012% P 034 (SAE 1045), 224 Composition: 0.45% C - 0.59% Mn - 0.28% Si - 0.03% S - 0.015% P - 0.06% Ni - 0.05% Cr - 0.14% Cu XVili 038, 224 183 (SAE 6150), Composition: 0.771% C - 0.784% Mn - 0.16% Si - 0.021% S - 0.013% P 041 (SAE 1330), 225 - 0.015% P - 1.23% Cr - 0.27% V 311 (AISI D1 Tool Steel, Composition: 0.26% C - 1.48% Mn - 0.28% Si - 0.015% S - 0.015% P - 0.08% Ni - 0.02% Cr - 0.01% Mo 0.14% Cu 045, 225 Composition: 0.36% C - 1.59% Mn - 0.26% Si - 0.038% S - 0.02% P Sion pes: Composition: 0.09% C - 0.45% Mn - 0.40% Si - 0.01% S - 0.02% P - 0.18% Ni - 12.30% Cr 287 (AISI D3 Tool Steel), 226 Composition: 2.09% C - 0.52% Mn - 0.33% Si - 12.76% Cr 505, 226 Composition: 0.145% C - 0.27% Mn - 0.02% Si - 0.005% S - 0.012% P - 9.12% Ni 507, 226 Composition: 0.315% C - 0.14% Mn - 0.01% Si - 0.006% S - 0.01% P - 9.12% Ni 506, 227 Composition: 0.14% C - 0.27% Mn - 0.01% Si - 0.005% S - 0.09% P - 9.12% Ni - 4.07% Co DOS. 227 Composition: 0.325% C - 0.13% Mn - 0.15% Si - 0.005% S - 0.09% P - 9.05% Ni - 4.07% Co 004.2227 Composition: 0.22% C - 1.25% Mn - 0.25% Si - 0.04% S - 0.03% P - 0.33% Cr 091 (SAE 34/35), 228 Composition: 0.285% C - 0.62% Mn - 0.30% Si-2.55% Ni - 0.71% Cr 144, 228 Composition: 0.12% C - 0.52% Mn - 0.22% Si - 0.014% S - 0.015% P-4.15% Ni - 0.86% Cr 092, 228 Composition: 0.34% C - 0.49% Mn - 0.30% Si-4.30% Ni - 1.16% Cr 455 229 Composition: 0.14% C - 0.68% Mn - 0.67% Si - 0.012% S - 0.024% P - 2.95% Ni - 17.98% Cr - 0.06% Mo 0.04% Al - 0.10% Co - 0.10% Cu 085 (SAE 4125), 229 Composition: 0.26% C - 0.73% Mn - 0.243% Si - 0.016% S - 0.018% P - 0.175% Ni - 1.065% Cr - 0.255% Mo 081 (SAE 1435), 229 Composition: 0.36% C - 0.72% Mn - 0.28% Si - 0.018% S - 0.077% P - 0.006% Ni - 0.97% Cr - 0.23% Mo 0.10% Cu 082 (SAE 4140), 230 Composition: 0.41% C - 0.82% Mn - 0.29% Si - 0.022% S - 0.035% P - 0.165% Ni - 1.005% Cr - 0.18% Mo 280, 230 Composition: 0.55% C - 0.58% Mn - 0.43% Si - 0.021% S - 0.013% P - 0.20% Ni - 0.79% Cr - 0.42% Mo 0.19% Cu - 0.025% Al 503, 230 Composition: 0.625% C - 0.30% Mn - 0.20% Si - 0.015% S - 0.015% P-1.60% Cr - 0.30% Mo 290 (AISI A2 Tool Steel), 231 Composition: 0.95% C - 0.50% Mn - 0.24% Si - 0.011% S - 0.018% P - 0.26% Ni - 4.90% Cr-1.03% Mo - 0.22% Cu - 0.02% Al ee 231 Composition: 0.53% C - 0.62% Mn - 0.25% Si - 0.01% S 231 Composition: 0.90% C - 1.07% Mn - 0.30% Si - 0.49% Cr - 0.638% W 213, 232 Composition: 0.33% C - 0.38% Mn - 0.30% Si - 1.06% Cr-1.01% PUNO W ON: Composition: 0.64% C - 0.39% Mn - 0.67% Si - 1.20% Cr-1.68% 509, W 232 Composition: 0.21% C - 1.46% Mn - 0.38% Si - 0.019% S - 0.016% P - 0.45% Mo 007, 233 Composition: 0.201% C - 1.55% Mn - 0.26% Si - 0.019% S - 0.025% P - 0.39% Cr - 0.005% Al - 0.11% Nb 21598253 Composition: 0.46% C - 0.39% Mn-1.40% Si - 0.30% Ni - 1.41% Cr - 0.10% V - 0.0017% 005, Bo 233 Composition: 0.224% C - 1.498% Mn - 0.226% Si - 0.02% S - 0.022% P - 0.037% Ni - 0.33% Cr - 0.195% Mo - 0.054% Al 297, 234 Composition: 0.70% C - 1.91% Mn - 0.35% Si - 0.009% S - 0.009% P - 0.98% Cr - 1.40% Mo 312 (AISI 02 Tool Steel), 234 Composition: 0.85% C - 1.98% Mn - 0.40% Si - 0.46% Cr - 0.14% V 150 (SAE 8620), 234 Composition: 0.20% C - 0.80% Mn - 0.27% Si - 0.017% S - 0.018% P - 0.58% Ni - 0.49% Cr - 0.18% Mo 454, 235 Composition: 0.67% C - 1.09% Mn - 0.31% Si - 0.016% S - 0.027% P - 0.75% Ni - 1.70% Cr - 0.36% Mo 0.04% Cu 458, 235 Composition: 1.485% C - 0.80% Mn - 0.46% Si - 0.028% S - 0.028% P - 0.40% Ni - 1.24% Cr - 0.55% Mo 113 (SAE 4340), 235 Composition: 0.43% C - 0.49% Mn - 0.33% Si - 0.008% S - 0.02% P - 1.51% Ni - 1.10% Cr - 0.33% Mo 453, 236 Composition: 0.345% C - 0.42% Mn - 0.43% Si - 0.015% S - 0.015% P - 3.43% Ni - 1.36% Cr - 0.23% Mo 0.041% Al - 0.19% Cu 295, 236 Composition: 0.54% C - 0.53% Mn - 0.36% Si - 0.005% S - 0.011% P - 3.14% Ni - 1.02% Cr - 0.34% Mo 504, 236 Composition: 0.25% C - 0.469% Mn - 0.235% Si - 0.023% S - 0.007% P - 3.65% Ni - 1.65% Cr - 0.395% Mo - 0.008% Ng - 0.013% Al 114, 237 Composition: 0.36% C - 0.50% Mn - 0.31% Si - 0.014% S - 0.02% P - 4.04% Ni - 1.99% Cr - 0.54% Mo - 0.28% Cu 292, 23:7 Composition: 0.37% C - 0.58% Mn - 0.41% Si - 0.007% S - 0.021% P - 0.53% Ni - 16.20% Cr - 1.10% Mo 206, 237 Composition: 0.325% C - 0.54% Mn - 0.22% Si - 1.103% Cr - 0.63% Mo - 0.17% V ee — a 451, Molybdenum 238 S - 0.016% P - 0.23% Ni - 1.18% Cr - 1.15% Mo 0.27% V 368, 238 Composition: 0.28% C - 0.24% Mn - 0.29% Si - 0.005% S - 0.024% P - 0.18% Ni - 2.68% Cr - 2.84% Mo 0.50% V 294 (AISI D2 Tool Steel), 238 Composition: 1.62% C - 0.40% Mn - 0.48% Si - 0.01% S - 0.024% P - 12.44% Cr - 0.80% Mo - 0.83% V 271 (AISI S1 Tool Steel), - 0.15% Mo Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr - 0.30% Mo Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr - 0.38% Mo Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr - 0.50% Mo Silicon Steel Series, 239 Composition: 0.37% C - 0.34% Mn - 0.94% Si - 0.015% S - 0.02% P - 4.80% Cr - 1.34% Mo - 1.19% V 006, 239 Composition: 0.18% C - 1.36% Mn - 0.21% Si - 0.025% S - 0.014% P - 0.91% Ni - 0.26% Cr - 0.837% Mo 0.057% V - 0.048% Al 502, 240 Composition: 0.29% C - 0.52% Mn - 0.32% Si - 1.34% Ni - 0.77% Cr - 0.25% Mo - 0.19% V 501, 240 Composition: 0.22% C - 0.76% Mn - 0.32% Si - 0.023% S - 0.012% P - 2.657% Ni - 1.276% Cr - 0.51% Mo 0.203% V - 0.002% Al 452, 240 Composition: 1.16% C - 0.30% Mn - 0.57% Si - 0.009% S - 0.006% P - 0.71% Ni - 1.79% Cr - 0.27% Mo 1.30% W 354, 241 Composition: 0.545% C - 0.46% Mn - 0.26% Si-4.12% Ni - 1.16% Cr - 0.48% Mo - 0.80% W 0.10% C - 0.7% Mn - 0.3% Si Steels (Mo Additions), 248 Composition: Fe - 0.10% C - 0.74% Mn - 0.29% Si Composition: Fe - 0.09% C - 0.72% Mn - 0.29% Si - 0.28% Mo Composition: Fe - 0.10% C - 0.71% Mn - 0.29% Si - 0.54% Mo 0.10% C - 0.7% Mn - 0.3% Si - B Steels (Mo Additions), 249 Composition: 0.0050% B Composition: 0.37% C - 0.49% Mn - 0.32% Si - 0.0033% Mo Composition: 0.36% C - 0.50% Mn - 0.32% Si - 0.077% Mo Composition: 0.36% C - 0.50% Mn - 0.31% Si - 0.19% Mo 241 0.40% C - 0.8% Mn - 0.3% Si Steels (Mo Additions), 251 Composition: Composition: Composition: Composition: 241 S - 0.006% P - 4.64% Cr - 4.80% Mo - 2.45% V - 7.12% WwW 365 (H 11 Tool Steel), 242 0.40% 0.38% 0.40% 0.40% C - 0.83% C - 0.82% C - 0.82% C - 0.80% Mn Mn Mn Mn - 0.34% - 0.32% - 0.35% - 0.33% Si - 0.01% Si - 0.26% Si - 0.53% Si - 0.79% Mo Mo Mo Mo 0.39% C - 0.8% Mn - 1.5% Si Steels (Mo Additions), 252 Composition: Composition: Composition: Composition: Composition: 0.40% C - 0.48% Mn-1.01% Si - 0.01% S 0.014% P - 0.36% Ni - 5.13% Cr - 1.72% Mo - 0.50% V - 0.25% W - 0.13% Cu - 0.015% Al - 0.11% Co 242 0.40% 0.39% 0.38% 0.37% C - 0.81% C - 0.80% C - 0.80% C - 0.80% Mn Mn Mn Mn - 1.48% - 1.48% - 1.47% - 1.47% Si - 0.02% Si - 0.26% Si - 0.52% Si - 0.79% Mo Mo Mo Mo 0.10% C - 1.4% Mn - 0.3% Si - B Steels (Mo Additions), 253 Composition: 1.42% C - 0.43% Mn - 0.38% Si - 0.025% S - 0.005% P - 4.42% Cr - 0.70% Mo - 4.55% V 12.99% W - 4.97% Co A\2 242 Composition: 0.088% C - 1.45% Mn - 0.35% Si - 0.0055% B Composition: 0.10% C - 1.46% Mn - 0.34% Si - 0.26% Mo 0.0051% B Composition: 1.19% C - 0.31% Mn - 0.29% Si - 0.021% Composition: 0.11% C - 1.43% Mn - 0.35% Si - 0.52% Mo - 0.0062% B 0.40% C - 1.3% Mn S - 0.01% P - 4.54% Cr - 5.10% Mo - 3.29% V - 7.92% W - 12.27% Co Additions), STEELS, - 0.32% Si - 0.0048% B 0.0054% B 0.37% C - 0.5% Mn - 0.30% Si Steels (Mo Additions), 250 Composition: 0.95% C - 0.24% Mn - 0.28% Si - 0.018% MOLYBDENUM C - 0.66% Mn Composition: 0.093% C - 0.70% Mn - 0.36% Si - 0.51% Mo - S - 0.013% P - 0.31% Ni - 2.36% Cr - 0.22% Mo 0.32% V - 8.59% W - 0.16% Cu - 0.013% Al 405 (T 15 Tool Steel), 0.096% Composition: 0.097% C - 0.70% Mn - 0.36% Si - 0.26% Mo - Composition: 0.31% C - 0.32% Mn - 0.41% Si - 0.014% 411 (AISI Tool Steel), 247 Composition: Fe - 0.07% C - 0.93% Mn - 0.99% Si - 0.27% Mo - 0.32% Cr Composition: Fe - 0.07% C - 0.93% Mn - 1.50% Si - 0.27% Mo - 0.32% Cr Composition: Fe - 0.07% C - 0.93% Mn - 2.00% Si - 0.27% Mo - 0.32% Cr Composition: 0.415% C - 0.34% Mn - 0.52% Si - 1.40% Cr - 0.31% V - 2.28% W 367 (H 13), 239 361 (AISI H 21 Tool Steel), Steel Series, 246 Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr - 0% Mo Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr Composition: 0.20% C - 0.70% Mn - 0.57% Si - 0.009% 243 - 296 - 0.3% Si - B Steels (Mo 254 Composition: 0.40% C - 1.32% Mn - 0.33% Si - 0.004% Mo 0.004% B Composition: 0.40% C - 1.33% Mn - 0.35% Si - 0.08% Mo - Chromium Steel Series, Composition: Fe - 0.05% Mo - 0% Cr Composition: Fe - 0.05% Mo - 0.16% Cr Composition: Fe - 0.05% Mo - 0.30% Cr Composition: Fe - 0.50% Mo - 0.48% Cr 0.003% B 245 Composition: 0.40% C - 1.33% Mn - 0.36% Si - 0.18% Mo - C - 0.9% Mn - 1.20% Si - 0.40% 0.003% B 0.39% C - 1.4% Mn - 0.3% Si Steels (Mo Additions), 255 C - 0.9% Mn - 1.20% Si - 0.40% Composition: Composition: Composition: Composition: C - 0.9% Mn - 1.20% Si - 0.40% C - 0.9% Mn - 1.20% Si - 0.40% XX 0.39% 0.40% 0.39% 0.38% C - 1.46% C - 1.47% C - 1.45% C - 1.45% Mn Mn Mn Mn - 0.36% - 0.37% - 0.37% - 0.36% Si - 0.038% Mo Si - 0.26% Mo Si - 0.49% Mo Si - 0.76% Mo 0.10% C - 0.7% Mn - 0.3% Si - 0.3% Ni - B Steels (Mo Additions), 256 Composition: 0.10% C - 0.71% Mn - 0.28% Si - 0.33% Ni - 0.0040% B Composition: 0.11% C - 0.75% Mn - 0.31% Si - 0.34% Ni - 0.24% Mo - 0.0047% B 0.40% C - 0.8% Mn - 0.3% Si - 4.5% Ni Steels (Mo Additions), 264 Composition: 0.41% C - 0.76% Mn - 0.35% Si - 4.45% Ni - 0.01% Mo Composition: 0.40% C - 0.75% Mn - 0.35% Si - 4.43% Ni 0.25% Mo Composition: 0.11% C - 0.73% Mn - 0.31% Si - 0.35% Ni - 0.53% Mo - 0.0053% B 0.10% C - 0.7% Mn - 0.3% Si - 1.4% Ni - B Steels (Mo Additions), 257 Composition: 0.097% C - 0.69% Mn - 0.31% Si - 1.45% Ni - Composition: 0.40% C - 0.74% Mn - 0.36% Si - 4.40% Ni - 0.47% Mo 0.40% C - 0.3% Mn - 0.2% Si - 4% Co Steels (Mo Additions), 265 Composition: 0.10% C - 0.72% Mn - 0.33% Si - 1.43% Ni - Composition: 0.40% C - 0.34% Mn - 0.17% Si - 0.01% Mo 3.76% Co Composition: 0.39% C - 0.32% Mn - 0.18% Si - 0.48% Mo - 0.26% Mo - 0.0053% B 3.72% Co 0.0048% B Composition: 0.099% C - 0.67% Mn - 0.32% Si - 1.46% Ni - Composition: 0.40% C - 0.33% Mn - 0.16% Si - 0.95% Mo - 0.51% Mo - 0.0058% B 3.90% Co 0.10% C - 0.7% Mn - 0.3% Si - 3.0% Ni-B Steels (Mo Additions), 258 0.10% C - 0.7% Mn - 0.3% Si - 0.3% Cr - B Steels (Mo Additions), 266 Composition: 0.11% C - 0.72% Mn - 0.31% Si - 3.03% Ni - Composition: 0.10% C - 0.68% Mn - 0.32% Si - 0.29% Cr - 0.0052% B 0.0038% B Composition: 0.11% C - 0.73% Mn - 0.32% Si - 3.06% Ni - Composition: 0.11% C - 0.70% Mn - 0.35% Si - 0.28% Cr - 0.24% Mo - 0.0050% B 0.25% Mo - 0.0045% B Composition: 0.11% C - 0.74% Mn - 0.34% Si - 3.03% Ni - 0.55% Mn - 0.0057% B 0.20% C - 0.6% Mn - 0.3% Si - 3.0% Ni Steels (Mo Additions), 259 Composition: 0.11% C - 0.70% Mn - 0.35% Si - 0.28% Cr 0.50% Mo - 0.0057% B 0.10% C - 0.7% Mn - 0.3% Si - 0.7% Cr - B Steels (Mo Additions), 267 Composition: 0.21% C - 0.58% Mn - 0.28% Si - 2.95% Ni - Composition: 0.10% C - 0.70% Mn - 0.29% Si - 0.76% Cr - 0.004% Mo 0.0036% B Composition: 0.20% C - 0.58% Mn - 0.31% Si - 2.90% Ni - Composition: 0.11% C - 0.72% Mn - 0.32% Si - 0.75% Cr - 0.25% Mo 0.22% Mo - 0.0052% B Composition: 0.21% C - 0.56% Mn - 0.27% Si - 2.95% Ni 0.51% Mo 0.36% C - 0.8% Mn - 0.3% Si - 0.7% Ni Steels (Mo Additions), 260 Composition: 0.10% C - 0.71% Mn - 0.32% Si - 0.7% Cr - 0.51% Mo - 0.0060% B 0.10% C - 0.7% Mn - 0.3% Si - 1.4% Cr-B Steels (Mo Additions), 268 Composition: 0.36% C - 0.80% Mn - 0.30% Si - 0.75% Ni - Composition: 0.10% C - 0.72% Mn - 0.29% Si - 1.43% Cr - 0.02% Mo 0.0059% B Composition: 0.37% C - 0.79% Mn - 0.31% Si - 0.74% Ni - Composition: 0.11% C - 0.75% Mn - 0.33% Si - 1.46% Cr - 0.24% Mo 0.25% Mn - 0.0059% B Composition: 0.36% C - 0.78% Mn - 0.31% Si - 0.73% Ni 0.49% Mo 0.56% Mo - 0.0066% B Composition: 0.36% C - 0.75% Mn - 0.29% Si - 0.72% Ni - 0.82% Mo 0.37% C - 0.8% Mn - 0.3% Si - 1.4% Ni Steels (Mo Additions), 261 Composition: 0.37% C - 0.85% Mn - 0.36% Si - 1.44% Ni 0.02% Mo Composition: 0.37% C - 0.85% Mn - 0.37% Si - 1.44% Ni 0.24% Mo Composition: 0.37% C - 0.84% Mn - 0.36% Si - 1.40% Ni - 0.47% Mo Composition: 0.36% C - 0.82% Mn - 0.35% Si - 1.41% Ni ; 0.74% Mo 0.36% C - 0.8% Mn - 0.3% Si - 2.6% Ni Steels (Mo Additions), 262 Composition: 0.36% C - 0.86% Mn - 0.37% Si - 2.62% Ni - 0.02% Mo Composition: 0.36% C - 0.84% Mn - 0.38% Si - 2.60% Ni J 0.24% Mo dComposition: 0.36% C - 0.83% Mn - 0.36% Si - 2.60% Ni - 0.49% Mo Composition: 0.35% C - 0.80% Mn - 0.36% Si - 2.58% Ni - 0.78% Mo } . Composition: 0.11% C - 0.75% Mn - 0.32% Si - 1.44% Cr Composition: 0.10% C - 0.72% Mn - 0.33% Si - 1.43% Cr - 1.03% Mo - 0.0064% B 0.35% C - 0.8% Mn - 0.3% Si - 0.3% Cr Steels (Mo Additions), 269 Composition: 0.36% C - 0.83% Mn - 0.38% Si - 0.34% Cr 0.01% Mo Composition: 0.35% C - 0.83% Mn - 0.39% Si - 0.35% Cr - 0.24% Mo Composition: 0.35% C - 0.80% Mn - 0.38% Si - 0.35% Cr 0.51% Mo Composition: 0.34% C - 0.80% Mn - 0.38% Si - 0.34% Cr 0.78% Mo 0.40% C - 0.8% Mn - 0.3% Si - 0.3% Cr Steels (Mo Additions), 270 Composition: 0.41% C - 0.86% Mn - 0.36% Si - 0.33% Cr 0.01% Mo Composition: 0.40% C - 0.87% Mn - 0.36% Si - 0.34% Cr 0.25% Mo Composition: 0.41% C - 0.84% Mn - 0.35% Si - 0.35% Cr - 0.49% Mo : Composition: 0.41% C - 0.84% Mn - 0.34% Si - 0.35% Cr 0.77% Mo 0.39% C - 0.8% Mn - 0.3% Si - 3.5% Ni Steels (Mo Additions), 263 Composition: 0.39% C - 0.71% Mn - 0.39% Si - 3.53% Ni ; 0.02% Mo Composition: 0.39% C - 0.69% Mn - 0.29% Si - 3.56% Ni - 0.24% Mo ; Composition: 0.38% C - 0.68% Mn - 0.29% Si - 3.48% Ni - 0.48% Mo ———— a ————E———————E———————— SS ee ee ee 0.39% C - 0.8% Mn - 1.5% Si - 0.7% Cr Steels (Mo Additions), 279 0.37% C - 0.8% Mn - 0.3% Si - 0.7% Cr Steels (Mo Additions), 271 Composition: 0.37% C - 0.85% Mn - 0.37% Si - 0.74% Cr 0.02% M Con nertiont 0.37% C - 0.85% Mn - 0.39% Si - 0.73% Cr - Composition: 0.40% C - 0.84% Mn - 1.50% Si - 0.74% Cr 0.02% Mo ; ie 0.40% C - 0.84% Mn - 1.50% Si - 0.74% Cr ea Caraneation: 0.37% C - 0.84% Mn - 0.37% Si - 0.74% Cr - as 0.26% M 0.26% 0.50% M 0.52% 0.77 Composition: 0.39% C - 0.82% Mn - 0.26% Si - 1.00% Cr - 4150, (Mo ame0.38% C - 0.82% Mn - 1.48% Si - 0.72% Cr - : o Additions), 280 Composition: 0.38% C - 1.50% Mn - 0.40% Si - 0.77% Cr - 0.02% Mo 272 0.37% C - 1.49% Mn - 0.41% Si - 0.77% Cr 5 a cae : 0.36% C - 1.47% Mn - 0.41% Si - 0.76% Cr See eerie Composition: 0.53% C - 0.83% Mn - 0.34% Si - 0.92% Cr - 0.21% Mo 0.36% C - 0.8% Mn (Mo Additions), 0.39% C - 0.84% Mn - 1.49% Si - 0.73% Cr - 0.37% C : 1.4% Mn - 0.3% Si - 0.7% Cr Steels SAE 4140, 272 SAE Mo oe Cohesion: 0.37% C - 0.82% Mn - 0.36% Si - 0.73% Cr - 0.76% M 0.21% Mo Mo - 0.3% Si - 1.5% Cr Steels Composition: 0.36% C - 1.46% Mn - 0.42% Si - 0.75% Cr - 273 0.78% Mo Composition: 0.36% C - 0.82% Mn - 0.37% Si - 1.54% Cr - 0.85% Mn - 0.3% Si - 1.4% Ni - 0.7% 0.12% C - (Mo 281 Additions), Mo 0.01% Composition: 0.36% C - 0.86% Mn - 0.38% Si - 1.54% Cr - Cr Steels 0.26% M ; of Bee eerition: 0.36% C - 0.85% Mn - 0.37% Si - 1.52% Cr - eee 0.50% M ee Lr : , : npg an ay C - 0.87% Mn - 0.34% Si - 1.43% Ni - 0.35% C - 0.82% Mn - 0.36% Si - 1.51% Cr - eon ee ~ 0.85% Mn ~ 0.33% Si - 1.41% Ni - Ha C - 0.85% Mn - 0.4% Si - 2821.4%Ni - 0.7% 0.11% Cr - B Steels (Mo Additions), | odious), OtoeeComposition: 214 0.81% C - 0.76% Mn - 0.50% Si - 6.04% Cr 0.035% M Ceeditiont 0.81% C - 0.73% Mn - 0.45% Si - 6.10% Cr 1.05% ° 0. ir - ; 0.84% Mo 0.80% C - 0.7% Mn - 0.5% Si - 6.0% Cr Steels 0.12% C - 0.87% Mn - 0.35% Si - 1.44% Ni - Ripe M a rey ; Cereals 1.03% C - 0.76% Mn - 0.50% Si - 6.03% Cr - Sek ates ee eek bine 1.02% C - 0.73% Mn - 0.46% Si - 6.08% Cr - ea ayee 038% .76% 1.03% 275 co) el sae 1.35% C - 0.73% Mn - 0.45% Si - 6.00% Cr - Ghee - 0.38% Si - 1.42% Ni - 1t10ns), Giaan - 0.69% Mn - 0.40% Si - 0.20% Ni - Toe eee pi 0.98% Mo , > aa ; - 0.69% Mn - 0.38% Si - 1.79% Ni - fo} r-0O. , M : - 0.36% Si - 1.44% Ni - 0. =O Cr - 0. seen Composition: 1.36% C - 0.77% Mn - 0.50% Si - 5.99% Cr 0.041% o- ae ee Me cee oe 0.4% Si - Ni - Cr Steels 1.35% C - 0.7% Mn - 0.5% Si - 6.0% Cr Steels (Mo Additions), r - 0. : M A : i ayici - 0.87% Mn - 0.37% Si - 1.45% Ni - : 0.85% C - 0.7% Mn - 0.5% Si - 12.0% Cr Steels peep eee Cee ~ 0.69% Mn - 0.38% Si - 0.20% Ni - . dditions), 276 (iorComposition: 0.85% C - 0.75% Mn - 0.45% Si - 12.0% Cr - C - 0.7% Mn - 0.4% Si284- 0.8% Ni - 0.7% 0.40% Cr Steels (Mo Additions), eta oe 0.84% C - 0.72% Mn - 0.44% Si - 12.10% Cr 1.05% M Serer apeste C - 0.74% Mn - 0.40% Si - 0.78% Ni ; ee” i 2 . Cunnesition: 0.85% C - 0.71% Mn - 0.43% Si - 12.10% Cr - Soe 5 iene. 0.7% Mn Mo Additions), a 0.75% Ce— 050% Me aa 0.38% ae ee 0.74% 1.00% M Oosiaen foi 1.36% C - 0.70% Mn - 0.43% Si - 11.9% Cr - VU. - 1. cman 1. - : Si - 1.4% Ni : - 0.7% ; Mo ey C - 0.85% Mn - 0.35% Si - 1.45% Ni - lke OO2 MG OR ere 0.40% C - 0.7% Mn - 0.4% Si - 2.5% Ni - 0.7% ele ietapert ere ri - - 0.3% 0.73% Cr - 0.24% Mo Senora row C - 0.84% Mn - 0.34% Si - 1.46% Ni they ’ ; i a ‘a Composition: 0.41% C - 1.42% Mn - 1.52% Si - 0.02% Mo ST dee Mn see C - 0.85% Mn - 0.33% Si - 1.46% Ni - Cr - 0.01% orate 3.06% M 0.40% C - 1.4% Mn - 1.5% Si Steels (Mo Additions), 278 sition: C - 0.8% Cr Steels (Mo Additions), ; 285 Ciemoaition: 1.36% C - 0.72% Mn - 0.44% Si - 12.0% Cr - oI - 0.73% Mn - 0.40% Si - 0.78% Ni - ce) Composition: 0.40% C - 0.72% Mn - 0.40% Si - 0.78% Ni - - 0.5% Si - 12.0% Cr Steels 277 Composition: 1 38% C - 0.74% Mn - 0.46% Si - 11.80% Cr - 0.078% M a ane r-U. U. ae Cr Steels (Mo Additions), Cameaition: 0.40% C - 1.38% Mn - 1.50% Si - 0.80% Mo 286 Composition: 0.40% C - 0.74% Mn - 0.38% Si - 2.57% Ni 0.75% Cr - 0.038% Mo Composition: 0.40% C - 0.73% Mn - 0.38% Si - 2.58% Ni 0.75% Cr - 0.24% Mo Composition: 0.39% C - 0.73% Mn - 0.35% Si - 2.51% Ni 0.75% Cr - 0.49% Mo XXil 0.40% C - 0.8% Mn - 0.3% Si - 3.5% Ni - 0.8% Cr Steels (Mo Additions), 287 18Ni350 Maraging Steel, 294 Composition: 0.008% C - 0.03% Mn - 0.03% Si - 17.4% Ni - 3.7% Mo - 0.17% Al - 12.4% Co - 1.62% Ti Composition: 0.41% C - 0.76% Mn - 0.32% Si - 3.59% Ni - Se 0.77% Cr - 0.038% Mo Fe - 15.0%Co - 10.0% Mo Alloys, Composition: 0.41% C - 0.76% Mn - 0.32% Si - 3.59% Ni - 0.77% Cr - 0.25% Mo Composition: 0.004% C - 0.42% Mn - 0.12% Si - 9.95% Mo - Composition: 0.40% C - 0.74% Mn - 0.31% Si - 3.56% Ni - 15.20% Co 0.77% Cr - 0.50% Mo Composition: 0.004% C - 0.41% Mn - 0.15% Si - 9.95% Ni - 0.40% C - 0.7% Mn - 0.3% Si - 4.5% Ni - 0.7% Cr Steels (Mo Additions), 288 0.75% Cr - 0.03% Mo 9.99% Mo - 15.30% Co Composition: 0.003% C - 4.78% Mn - 0.21% Si - 10.04% Mo - 15.33% Co Carbon-Free Fe - 15.0% Co - 20.0% Mo Alloys, Composition: 0.41% C - 0.73% Mn - 0.42% Si - 4.54% Ni - 296 Composition: 0.41% C - 0.74% Mn - 0.40% Si - 4.56% Ni - 0.75% Cr - 0.26% Mo Composition: 0.003% C - 0.47% Mn - 0.13% Si - 20.02% Mo Composition: 0.40% C - 0.73% Mn - 0.41% Si - 4.53% Ni - - 15.00% Co 0.75% Cr - 0.50% Mo 0.40% Cr - 1.4% Mn (Mo Additions), Composition: 0.004% C - 0.43% Mn - 0.13% Si - 9.95% Ni - - 1.5% Si - 0.7% Cr Steels 20.02% Mo - 15.13% Co 289 Composition 0.006% C - 4.938% Mn - 0.23% Si - 20.17% Mo 15.33% Co Composition: 0.41% C - 1.44% Mn - 1.50% Si - 0.75% Cr - 6.01% Mo Composition: 0.40% C - 1.43% Mn - 1.51% Si - 0.76% Cr - 0.26% Mo VANADIUM Composition: 0.39% C - 1.41% Mn - 1.49% Si - 0.74% Cr 0.51% Mo Mn-V Composition: 0.39% C - 1.39% Mn - 1.48% Si - 0.73% Cr - 0.77% Mo Ni-Cr-Si-Mo-V Steel Series, 290 0.81% Cr - 0.40% Mo - 0.067% V Composition: 0.32% C - 0.86% Mn - 1.44% Si - 0.51% Ni - 1.01% Cr - 0.49% Mo - 0.071% V Composition: 0.35% C - 0.86% Mn - 1.55% Si - 0.21% Ni 1.21% Cr - 0.58% Mo - 0.037% V Composition: 0.35% C - 0.86% Mn - 1.58% Si - 0.23% Ni - 1.50% Cr - 0.58% Mo - 0.071% V 0.40% C - 1.4% Mn - 1.4% Si - 1.4% Ni - 0.8% Cr Steels (Mo Additions), 291 Composition: 0.41% C - 1.42% Mn - 1.42% Si - 1.37% Ni 0.78% Cr - 0.03% Mo Composition: 0.41% C - 1.41% Mn - 1.41% Si - 1.36% Ni 0.78% Cr - 0.26% Mo Composition: 0.40% C - 1.39% Mn - 1.37% Si - 1.34% Ni - 0.76% Cr - 0.52% Mo Composition: 0.40% C - 1.37% Mn - 1.38% Si - 1.31% Ni 0.75% Cr - 0.73% Mo 0.40% C - 0.3% Mn - 0.2% Si - 8.0% Ni - 4.0% Co Steels (Mo Additions), 292 Composition: 0.39% C - 0.30% Mn - 0.20% Si - 8.0% Ni 3.89% Co Composition: 0.39% C - 0.29% Mn - 0.22% Si - 7.78% Ni 0.44% Mo - 3.87% Co Composition: 0.39% C - 0.28% Mn - 0.20% Si - 8.04% Ni - 293 Composition: 0.08% C - 1.0% Ni - 12.0% Cr - 2.0% Mo - 0.3% V Composition: 0.08% C - 1.0% Ni - 12.0% Cr - 2.0% Mo 293 Composition: 0.012% C - <0.03% Mn - <0.05% Si - 17.6% Ni - 3.1% Mo - 0.10% Al - 8.3% Co - 0.08% Ti Maraging Steel, 18Ni300 Maraging Steel, 18Ni250 299 - 308 Composition: 0.19% C - 1.44% Mn - 0.37% Si - 0.007% S - 1.00% Mo - 3.90% Co Steel, Steels (As Rolled), 0.011% P - 0.10% Cr - 0.08% Ni - 0.01% Mo - 0.17% V 0.20% Cu - 0.03% Al - 0.010% N Composition: 0.20% C - 1.45% Mn - 0.30% Si - 0.005% S 0.012% P - 0.11% Cr - 0.10% Ni - 0.02% Mo - 0.08% V 0.14% Cu - 0.01% Al - 0.010% N Composition: 0.20% C - 1.46% Mn - 0.34% Si - 0.008% S 0.013% P - 0.12% Cr - 0.10% Ni - 0.02% Mo - 0.14% V 0.19% Cu - 0.03% Al - 0.012% N Composition: 0.06% C - 1.97% Mn - 0.37% Si - 0.020% S 0.006% P - 0.45% V - 0.029% Al - 0.009% Composition: 0.06% C - 2.00% Mn - 0.37% Si - 0.005% S 0.006% P - 0 - 0.45% V - 0.029% Al - 0.009% N Composition: 0.07% C - 1.99% Mn - 0.25% Si - 0.004% S 0.013% P - 0.48% V - 0.038% Al - 0.008% N Composition: 0.07% C - 1.90% Mn - 0.24% Si - 0.006% S 0.010% P - 0.08% Mo - 0.43% V - 0.06% Al - 0.009% N 0.08% C - 1.0% Ni - 12.0% Cr - 2.0% Mo - 0.3% 0.3% V 18Ni200 Maraging Structural 297 - 370 Composition: 0.04% C - 1.90% Mn - 0.11% Si - 0.021% S 0.019% P - 0.09% V - 0.02% Al - 0.009% N Composition: 0.06% C - 1.95% Mn - 0.29% Si - 0.003% S 0.010% P - 0.010% Mo - 0.25% V - 0.037% Al - 0.008% N Composition: 0.07% C - 1.94% Mn - 0.30% Si - 0.003% § 0.009% P - 0.010% Mo - 0.14% V - 0.038% Al - 0.007% N Composition: 0.09% C - 1.48% Mn - 0.25% Si - 0.060% S 0.014% P - 0.010% Cr - 0.010% Ni - 0.010% Mo - 0.04% V 0.010% Cu - 0.047% Al Composition: 0.11% C - 1.28 % Mn - 0.31% Si - 0.018% §S 0.031% P - 0.08% V - 0.005% N Composition: 0.11% C - 1.23% Mn - 0.31% Si - 0.018% S 0.031% P - 0.08% V - 0.005% N Composition: 0.11% C - 1.40% Mn - 0.55% Si - 0.063% V Composition: 0.14% C - 1.52% Mn - 0.48% Si - 0.004% S 0.011% P - 0.071% V Composition: 0.14% C - 1.53% Mn - 0.36% Si - 0.008% S 0.009% P - 0.06% Cr - 0.03% Ni - 0.01% Mo - 0.04% V 0.02% Cu - 0.057% Al Composition: 0.15% C - 0.90% Mn - 0.40% Si - 0.05% V 0.014% N Composition: 0.15% C - 1.30% Mn - 0.27% Si - 0.009% S$ 0.010% P - 0.15% Cr - 0.15% Ni - 0.04% Mo - 0.13% V 0.19% Cu - 0.02% Al - 0.010% N Composition: 0.16% C - 1.42% Mn - 0.44% Si - 0.021% S 0.032% P - 0.025% V - 0.003% Ti - 0.002% Nb - 0.042% Al Composition: 0.33% C - 0.86% Mn - 1.62% Si - 1.80% Ni - V Steel, STEELS, 294 Composition: 0.02% C - 0.09% Mn - 0.09% Si - 17.8% Ni 0.0021% B - 0.12% Al - 7.9% Co - 0.42% Ti 294 Composition: 0.02% C - 0.07% Mn - 0.07% Si - 18.4% Ni - 4.9% Mo - 0.003% B - 0.09% Al - 8.8% Co - 0.66% Ti a XXill I Mn-V-N Structural Steels (As Rolled), 310 Ey Orie pan Composition: 0.07% C - 1.57% Mn - 0.49% Si - 0.008% S 0,0005% B - 0.01% Cu - 0.066% Al 308 - 0.004% P - 0.01% Cr - 0.01% Ni - 0.27% Mo - 0.05% V - Composition: 0.12% C - 0.83% Mn - 0.30% Si - 0.005% S - Oe ee 0.03% V 0; 1, 53 yee = 1.11% Mo -- 0.03% Nii.-0.49% . ion: 0.16% C - 1.40% Mn - 0.04% Si - 0.012% S Composit 0.11 V - 0.04% Al - 0.018%N P -04% 0.0 V - ei 0.02% Al-0.038%N 0.016% P - 0.27% Mo - 0.05% V - 0.018% Al - 0.004% N 0.013% P - 0.57% Ni - 0.13% V - Composition: 0.17% C - L5ee Me ; eae : Ce oe : a 0.012% P - eae. setae He 0 =8,008 belies 0.002% Nb - 0. 0.001% S 0.82% Mn - 0.26%NbSi- -0.040% Composition: 0.06% C - - 0.08% Al V - 0.04% 0.015% P - 0.25% Mo 0.003% N Composition: 0.17% C - 1.48% Mn - 0.30% Si - 0.021% S 0.034% P - 0.035% Cr - 0.075% Ni - 0.02% Mo - 0.15% V 0.04% Cu - 0.028% Al - 0.018% - 0.32% Si - 0.005% S Composition: 0.19% C - 1.55% Mn 0.01% Al - 0.017% N 311 324 - 326 0.007% P - 0.25% Cr - 1.07% Ni - 0.05% Mo - 0.08% V - Composition: 0.06% C - 1.21% Mn - 0.25% Si - 0.001% S 0.014% P - 0.25% Mo - 0.08% V - 0.044% Nb - 0.036% Al - 0.15% Cu Mn-V-Ti Structural Steels (As Rolled), 311 - 312 0.003% N Composition: 0.05% C - 1.17% Mn - 0.26% Si - 0.015% S - Composition: 0.07% C - 1.49% Mn - 0.26% Si - 0.001% S - 0.016% P - 0.04% V - 0.01% Ti ee E - 0.25% Mo - 0.08% V - 0.042% Nb - 0.036% Al - Composition: 0.06% C - 1.27% Mn - 0.30% Si - 0.080% S ote Oe Mo - Fear Structural Steels (As Rolled), Mn-Mo-Nb-V Composition: 0.15% C - 0.71% Mn - 0.28% Si - 0.005% S - elas , Maal ae Se A Siki sou Mac n-O0. ORT Composition: 0.15 - 0-0.10% Composition: 0.17% C - 1.75% Mn - 0.20% Si Ni-V Structural Steels (As Rolled), it Composition: 0.09% C - 1.03% Mn - 0.28% Si - 0.015% S - ODS 0.010% P - 0.01% Cr - 0.01% Ni - 0.31% Mo - 0.10% V - Composition: 0.10% C - 1.51% Mn - 0.44% Si - 0.008% S - 0.09% Nb - 0.021% Al 0.033% P - 0.05% V - 0.013% Ti - 0.002% Nb - 0.033% Al Composition: 0.12% C - 1.72% Mn - 0.28% Si - 0.005% S 0.016% P - 0.20% Mo - 0.06% V - 0.038% Nb - 0.068% Al 0.0001% N Composition: 0.14% C - 1.44% Mn - 0;.23% Si - 0.007% S 0.011% P - 0.065% Cr - 0.23% Ni - 0.035% Mo - 0.10% V 0.03% Nb - 0.48% Cu - 0.028% Al - 0.013% N Mn-Nb-V, 313 - 317 Composition: 0.05% C - 1.82% Mn - 0.39% Si - 0.012% S 0.018% P - 0.06% V - 0.055% Nb - 0.011% Al - 0.011% N Composition: 0.06% C - 1.21% Mn - 0.25% Si - 0.001% S 0.015% P - 0.31% Ni - 0.07% V - 0.043% Nb - 0.30% Cu 0.041% Al - 0.003% N Composition: 0.07% C - 1.35% Mn - 0.29% Si - 0.004% S - Quenched 327 - 339 0.005% P - 0.08% V - 0.025% Nb - 0.036% Al - 0.006% N and Tempered Structural Steels, Composition: 0.08% C - 1.52% Mn - 0.37% Si - 0.007% S 0.023% P - 0.21% Cr - 0.10% Ni - 0.10% V - 0.05% Nb - Composition: 0.09% C - 0.94% Mn - 0.28% Si - 0.008% § 0.010% P - 0.10% Cr - 2.54% Ni - 0.64% Mo - 0.04% V - 0.34% Cu - 0.02% Al - 0.008% N Composition: 0.06% C - 1.69% Mn - 0.25% Si - 0.001% S 0.015% P - 0.31% Ni - 0.08% V - 0.043% Nb - 0.30% Cu 0.040% Al - 0.003% N Composition: 0.06% C - 2.33% Mn - 0.38% Si - 0.008% S 0.025% P - 0.40% Cr - 0.01% Ni - 0.01% Mo - 0.08% V - 0.07% Cu - 0.029% Al Composition: 0.09% C - 0.59% Mn - 0.57% Si - 0.010% S 0.015% P - 2.00% Cr - 0.56% Mo - 0.37% V - 0.18% Ti 0.005 % B - 0.41% W Composition: 0.09% C - 1.01% Mn - 0.32% Si - 0.009% S 0.011% P - 0.52% Cr - 1.49% Ni - 0.52% Mo - 0.05% V - 0.048% Nb - 0.01% Cu - 0.035% Al 0.002% B - 0.25% Cu - 0.055% Al Composition: 0.09% C - 0.82% Mn - 0.29% Si - 0.013% S$ - Composition: 0.10% C - 1.53% Mn - 0.35% Si - 0.010% S cae P - 0.01% Mo - 0.07% V - 0.05% Nb - 0.045% Al - 0.019% P - 0.12% Cr - 1.85% Ni - 0.53% Mo 0.007% N 0.01 - 0.04% V - =O) Composition: 0.10% C - 1.48% Mn - 0.36% Si - 0.008% S 0.014% P - 0.019% V - 0.003% Ti - 0.023% Nb - 0.046% Al aires - 2.00% Mn - 1.09% Si - 0.005% S$ tac ’ 0.012% P - 1.80% Cr - 0.65% Mo - 0.15% V Composition: 0.11% C - 1.60% Mn - 0.30% Si - 0.002% S - Composition: 0.10% C - 0.76% Mn - 0.22% Si - 0.007% S - 0.017% P - 0.09% V - 0.005% Ti - 0.032% Nb - 0.021% Al 0.012% P - 0.68% Cr - 0.85% Ni - 0.48% Mo - 0.07% V - Mn-V-Nb-Ti, 0.001% B - 0.21% Cu 317 Composition: 0.11% C - 0.52% Mn - 0.26% Si - 0.012% S 0.007% P - 0.56% Cr - 4.92% Ni - 0.53% Mo - 0.08% V - Composition: 0.10% C - 1.50% Mn - 0.37% Si - 0.007% S 0.011% P - 0.022% V - 0.023% Ti - 0.023% Nb - 0.044% Al Mn-Mo-V 324 Structural Steels (As Rolled), 0.10% Cu - 0.04% Al 318 - Composition: 0.11% C - 0.85% Mn - 0.31% Si - 0.009% §S - Composition: 0.04% C - 1.19% Mn - 0.30% Si - 0.001% $ P - 0.02% Cr - 0.02% Ni - 0.33% Me - 0.09% V 0.002% 0.01% Nb - 0.087% Al 0.007% P - 0.51% Cr - 1.80% Ni - 0.48% Mo - 0.08% V B - 0.27% Cu - 0.077% Al 0.002% Composition: 0.11% C - 0.56% Mn - 0.28% Si - 0.005% S - Composition: 0.04% C - 1.90% Mn - 0.11% Si - 0.021% S - 0.017% P - 1.08% Cr - 0.04% Ni - 0.31% Mo - 0.22% V - 0.019% P - 0.19% Mo - 0.09% V - 0.02% Al - 0.009% N 0.08% Cu - 0.01% Al Composition: 0.04% C - 1.90% Mn - 0.11% Si - 0.021% S - Composition: 0.12% C - 0.75% Mn - 0.06% Si - 0.008% S - 0.007% P - 0.57% Cr - 2.62% Ni - 0.48% Mo - 0.05% V 0.002% B - 0.25% Cu - 0.062% Al Composition: 0.12% C - 0.73% Mn - 0.37% Si - 0.003% § 0.008% P - 5.75% Cr - 0.55% Mo - 0.24% V - 0.16% Ti - 0.019% P - 0.19% Mo - 0.09% V - 0.02% Al - 0.009% N Composition: 0.04% C - 1.90% Mn - 0.11% Si - 0.021% S 0.019% P - 0.34% Mo - 0.09% V - 0.02% Al - 0.009% N Composition: 0.06% C - 1.96% Mn - 0.32% Si - 0.003% S - 0.011% B - 0.26% W P - 0.18% Mo - 0.22% V - 0.020% Al - 0.005% N 0.006% Composition: 0.06% C - 1.70% Mn - 0.50% Mo - 0.10% V - Composition: 0.12% C - 0.55% Mn - 0.68% Si - 0.010% S - 0.012% P - 2.05% Cr - 0.55% Mo - 0.32% V - 0.08% Ti 0.006% B - 0.32% W 0.020% N Composition: 0.06% C - 1.46% Mn - 0.14% Si - 0.003% S 0.018% P= 0.20% Cr - 0.02% Ni - 0.25% Mo - 0.03% Composition: Vie 0.13% C- 0.71% Mn - 0.56% Si - 5.43% Cr 0.01% Cu - 0.035% Al 0.47% Mo - 0.20% V - 0.16% Ti - 0.010% B - 0.19% W 0.004% P - 0.01% Cr - 0.01% Ni - 0.27% Mo - 0.05% V Cu - 0.064% 0.01% 0.018% P - 0.23% Cr - 0.01% Ni - 0.27% Mo - 0.05% V 0.01% Cu - 0.010% Al - Composition: 0.13% C - 1.16% Mn - 0.31% Si - 0.017% S$ - Composition: 0.07% C - 1.52% Mn - 0.47% Si - 0.008% S - i xxiv Composition: 0.13% C - 0.60% Mn - 0.29% Si - 0.016% S - Composition:0.40% C - 0.60% Mn - 1.00% Si - 0.003% S - 0.010% P - 0.98% Cr - 0.01% Ni - 0.31% Mo - 0.20% V - 0.010% P - 5.00% Cr - 1.30% Mo - 0.40% V 0.02% Cu- 0.010% Al Composition: 0.14% C - 0.53% Mn - 0.54% Si - 0.006% S - Composition:0.43% C - 0.90% Mn - 0.32% Si - 0.30% Cr 0.10% V - 0.03% Nb - 0.015% Al - 0.015% N o.0aay Be Pt a - apeti - 0.03% V - 0.006% Ti omposition: 0.15% C - 0.57% Cr-Ni-Mo-V Mn - 0.28% Si - 0.019% S - 0.013% P - 0.63% Cr - 0.91% Ni - 0.61% Mo - 0.30% V 0.032% Al Composition: 0.14% C - 0.50% Mn - 0.30% Si - 0.008% 0.008% P - 0.38% Cr - a Hi otek ae “ ee 0.01% Cu - 0.010% Al $ i 0.014% P - 1.08% Cr - 0.72% Ni - 1.25% Mo - 0.31% V Composition: 0.15% C - 3.06% Mn - 0.59% Si - 0.005% $ - Composition: 0.27% C - 1.36% Mn - 0.50% Si - 0.006% S 0.016% P - 0.58% Cr - 0.68% Ni - 0.34% Mo - 0.08% V Composition: 0.32% C - 0.40% Mn - 0.40% Si - 1.43% Cr 3.30% Ni - 0.33% Composition: 0.33%Mo C - - 0.19% 0.89% VMn - 0.24% Si - 0.009% S - 0.020% P - 0.14% Cr - 0.04% Ni - 0.46% Mo - 0.09% V 0.09% Cu - 0.70% W Composition: 0.15% Ci - 0.77% 7 MnMa - O200.20% Si2 - 0.011% ° S moines pee y 0.23% Nb i Cr - 4.25% Ni - 0.45% Mo - 0.10% V - 0.008% P - 1.13% Cr - 0.15% Ni: - 1.19% Mo - 0.22% V Composition: Si ~ <0,070% $ - 0.14-0.20% <0.070% P C - - 0.60-1.00% : Mn - 0.17-0.37% a < ‘ <0.25% Cu 0.05-0.09% V ~ Composition’ O:S8/01C Ot Mooie- 0.12% ae 0.004% P : - 1.09% Cr - S029) 3.60% NiMaia - 0.72% V 0.002% Ti 0.013% Nb 0.09% Cu 0.009% Al See : <0.25% Cr - <0.25% Ni Composition: 0.22% C - 1.45% Mn - 0.30% Si - 0.006% $ - Composition: 0.34% C - 0.26% Mn - 0.13% Si - 0.007% S - 0.010% P - 0.61% Cr - 5.10% Ni - 0.53% Mo - 0.09% V 0.020% P - 0.98% Cr - 0.01% Ni - 0.45% Mo - 0.03% V - Cc elas C % M 1% Sii - 0.010 % Ss = no Oy? omposition: 0.34% C - 0.62 0.006% P - 1.22% Cr - 2.80% Ni - 0.50% Mo - 0.09% V 0.01% Cu - 0.044% Al Composition: 0.23% C - 0.53% Mn - 0.30% Si - 0.018% P - 1.55% Cr - 0.30% Ni - 0.29% Mo - 0.21% V - 0.11% Cu et OF Oe Sr Quenched and Tempered Engineerin ee se MES ial as a Composition: 0.24% C - 0.74% Mn - 0.25% Si - 0.016% S 0.012% P - 0.37% Cr - 0.67% Ni - 0.52% Mo - 0.03 V Composition: 0.26% C - 0.76% Mn - 0.32% Si - 0.012% S - Composition: 0.37% C - 0.83% Mn - 0.35% Si - 0.006% S 0.017% P - 0.87% Cr - 1.70% Ni - 1.18% Mo - 0.18% V Composition: 0.38% C - 0.46% Mn -0.26% Si - 0.008% S - ee Composition: 0.26% C - 0.75% Mn - 0.26% Si - 0.014% $ - precel “ onic 0.45% Ni - 0.45% Mo - 0.12% V - Si - 0.015% uae veS - 07eMo - 0.003% V 01s70. 0.8290Cr C- 50.19% Compesition NiMin- 0.03% P - 0.94% 0.008% 0.010% P - 0.45% Cr - 0.81% Ni - 0.61% Mo - 0.05% V - 0.80%Mo= Mn 0.11% 1.67% Ni. 0.26%Ce.C -0.08% Composition: P "6 UE% pose 0.01% Git < 0.013% a x ; ; ; : a ' eel aU Deane 0.007% Ti - 0.21% Cu - 0.01% N Composition: 0.39% C - 0.77% Mn - 0.39% Si - 0.032% S - 0.006% P - 0.96% Cr - 0.14% Ni - 0.08% Mo - 0.05% V 0.21% Cu - 0.01% N 340 - Mn-V Quenched and Tempered Steels, 341 i Composition: 0.34% C - 1.31% Mn - 0.24% Si - 0.10% V 0.018% Al - 0.016% N Composition: 0.40% C - 0.83% Mn - 0.33% Si - 0.007% S 0.011% P - 1.00% Cr - 1.75% Ni - 0.46% Mo - 0.12% V 0.07% Cu - 0.010% Al 0.001% P - 0.10% Cr - 0.10% Ni - 0.01% Mo - 0.11% V 0.14% Cu - 0.02% Al Composition: 0.49% C - 0.78% Mn - 0.26% Si - 0.012% S 0.018% P - 1.04% Cr - 0.50% Ni - 0.96% Mo - 0.09% V 0.018% P - 0.02% Cr - 0.01% Ni - 0.12% Mo - 0.07% V - 0.012% P - 0.76% Cr - 1.53% Ni - 0.24% Mo - 0.14% V - Composition: 0.35% C - 1.62% Mn - 0.47% Si - 0.008% S - Composition: 0.56% C - 0.67% Mn - 0.31% Si - 0.023% S - Composition: 0.38% C - 1.63% Mn - 0.30% Si - 0.016% S - 0.06% Cu - 0.010% Al Prestressed Concrete 0.01% Cu - 0.021% Al Composition: 0.45% C - 1.34% Mn - 1.45% Si - 0.013% S - Steels, ition: tevce = = OGRE =UOT Mie age es 342 Rail - 343 oe - 0.018% Al - 0. 0.024% P - 1.01% Cr - 0.51% Ni - 0.49% Mo - 0.07% V - S 0.86% Mn - 1.62% Si - 0.014%Vee Composition: 0.33% C - 1.80% Ni - 0.40% Mo - 0.07% ; 0.024% - Ni P- 0.81% Cr 0.040% Al - 0.020% N 5 - . Composition: 0.35% C - 0.86% Mn - 1.55% Si - 0.014%V S- - 0.023% P - eee - 0.21% Ni - 0.58% Mo - 0.06% 345 - 347 V 0.80-1.20% ara -ET tea Ya 0.037% Al - 0.022% N Cr-Mo-V Quenched and Tempered Engineering Steels, ’ Composition: 0.27% C - 0.77% Mn - 1.39% Si - 1.64% Cr - P - 0.67% Mo - 0.07% V 0.016% Composition: 0.35% C - 1.51% Mn - 0.28% Si - 0.007% S 0.64% Mo - 0.14% V - 0.015% S - 0.20% Ni - 0.56% Mo - 0.07% V - 1.40% Si - 0.78% Cr oe C ea eS . O o 1-0. ath Can paniion: 0.82% C - 0.86% Mn - 1.54% Si - 0.014% $ - Tempere -Moj es, 344 = 345, Ba : Si - 0.009% S 0.34% Mn Composition: 0.30% C - 1.91% ; - 0.021% N Ct Or ea - - #0: S pring 0.035% Ti - 0.20% Cu - 0.01% N C- HS Composition: 0.78% C - 1.61% Mn - vay S|Sey E - 0.007% P - 0.96% Cr - 0.13% Ni - 0.07% Mo - 0.06% V - 0.33% 356 Steels, S Pian Composition: 0.40% C - 0.75% Mn - 0.27% Si - 0.034% S - Composition: 0. - 0.46% Mo - 0.05% V 0.012% 0.010% CrAl - 0.01% Ni 0.05% CuP -- 1.58% ee V - 0.10% Cu A 0.015% P - 1.29% Mo - 0.21% 2.16% Mn - 0.32% Si - 2.02% i- Composition: 0.73% C - 0.77% Mn - 0.27% Si - 0.010% S - 0.021% Ti - 0.20% Cu - 0.022% Al - 0.01% N +4: n: 0.39% C - 0.76% Mn - 0.28% Si: - 0.033% S Compositio 0. - eel 0. Composition: 0.65% C - 1.14% Mn - ue 0.024% P - 1.15% Cr - 0.15% V - 0.00 Composition: 0.38% C - 0.78% Mn - 0.29% Si - 0.030% S 0.005% P - 0.99% Cr - 0.14% Ni - 0.08% Mo - 0.06% V - a -ee ae 0. Ti .047% n- 0.005% Al - 0.007%N 35 P Cr-V-Ti Quenched and Tempered Engineering Steels. 1.4 0.030% P - 0.05% Cr - 0.03% Ni - 0.19% V - 0.03% Cu - fe ane - Composition: 0.69 eee nro ase an 0.002% Al - ie 342 355 Wires, Composition: 0.67% C - 1.39% Mn - 0.75% Si - 0.009% S 0.015% P - 0.03% Cr - 0.32% Ni - 0.19% V - 0.40% Cu - . 0.022% P - 0.10% V Cr-V Quenched and Tempered Engineering ee pana 0.35% C - 0.86% Mn - 1.55% Si - 0.014% S - 0.024% P - 1.50% Cr - 0.23% Ni - 0.58% Mo - 0.07% V 0.039% Al - 0.022% N ~ XXY a Composition: 0.55% C - 0.50% Mn - 0.87% Si - 0.035% S 0.02% P - 0.10% Cr - 0.10% Ni - 0.55% Mo - 0.22% V Composition: 0.64% C - 0.73% Mn - 0.82% Si - 0.011% S 0.014% P - 1.26% Cr - 0.05% Ni - 0.16% V - 0.03% Cu 0.006% Al - 0.012% N High-Temperature Creep-Resistant Steels, 361 - 364 Composition: 0.11% C - 0.53% Mn - 0.35% Si - 0.010% S 0.015% P - 2.28% Cr - 0.04% Ni - 1.00% Mo - 0.20% V 0.03% Cu - 0.010% Al Composition: 0.12% C - 0.47% Mn - 0.31% Si - 0.010% $ - 0.014% P - 2.16% Cr - 0.16% Ni - 0.88% Mo - 0.17% V 0.05% Cu - 0.010% Al Composition: 0.12% C - 0.65% Mn - 0.26% Si - 0.015% S - 0.007% P - 1.16% Cr - 0.01% Ni - 1.02% Mo - 0.26% V 0.02% Cu - 0.010% Al Composition: 0.18% C - 0.53% Mn - 0.26% Si - 0.007% S - 0.012% P - 1.00% Cr - 0.96% Mo - 0.19% V Composition: 0.20% C - 0.45% Mn - 1.03% V - 0.-002% N Composition: 0.21% C - 0.48% Mn - 0.97% Si - 2.92% Ni 1.09% V - 0.01% Al Composition: 0.24% C - 0.45% Mn - 2.92% Ni - 1.09% V 0.55% Al Tool and Die Steels, 365 - 367 1-3/4 Mn (SAE 1330), 380 Composition: 0.30% C - 1.80% Mn - 0.15% Si - 0.020% P 0.020% S 1-1/4 Mn (SAE 1536), 381 Composition: 0.36% C - 1.20% Mn - 0.20% Si - 0.020% P 0.020% S 381 1-1/2 Mn (SAE 1536-1541), Composition: 0.36% C - 1.50% Mn - 0.20% Si - 0.020% P 0.020% S 382 1-3/4 Mn (SAE 1541, 1335-1340), Composition: 0.38% C - 1.80% Mn - 0.25% Si - 0.025% P 0.020% S 1-3/4 Mn (SAE 1547, 1345), 382 Composition: 0.46% C - 1.80% Mn - 0.25% Si - 0.020% P 0.015% S 383 1 Mn + S (SAE 1212-12L14), Composition: 0.10% C - 1.10% Mn - 0.20% Si - 0.020% P 0.250% S 1 Mn + S (SAE 1140-1146), 383 Composition: 0.42% C - 1.15% Mn - 0.20% Si - 0.020% P 0.160% S 1-1/2 Mn + S (SAE 1139), 384 Composition: 0.44% C - 1.50% Mn - 0.20% Si - 0.020% P - Composition: 0.37% C - 0.51% Mn - 1.00% Si - 5.10% Cr 1.26% Mo - 0.97% V Composition: 0.75% C - 0.31% Mn - 0.22% Si - 0.019% S - 0.250% S 1-3/4 Si Mn, 0.025% P - 4.25% Cr - 0.20% Ni - 1.45% V - 17.54% W Composition: 0.92% C - 0.31% Mn - 0.35% Si - 0.019% S 0.025% P - 4.10% Cr - 4.90% Mo - 1.88% V - 6.20% W Composition: 1.06% C - 4.43% Cr - 0.44% Mo - 2.32% V - 0.030% S 2 Si Mn, - 7.90% Co Composition: 2.50% C - 2.00% Cr - 0.60% Ni - 5.20% Mo 7.20% V 0.030% S Stainless Steels, 368 - 369 1/2 Ni, Composition: 0.20% C - 12.00% Cr - 1.00% Mo - 0.30% V Composition: 0.20% C - 0.48% Mn - 0.36% Si - 0.012% S - 386 0.55% C - 0.65% Mn - 0.20% Si - 0.025% P - 0.025% S 0.65% Ni 1 Ni, 387 Composition: 0.36% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 0.85% Ni Composition: 0.43% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 0.85% Ni 0.016% P - 12.80% Cr - 0.13% Ni - 0.03% Mo - 0.05% V 0.01% Cu - 0.036% Al Composition: 0.20% C - 0.51% Mn - 0.33% Si - 0.006% S 0.022% P - 11.80% 385 - 386 Composition: 0.54% C - 0.85% Mn - 1.90% Si - 0.030% P 0.030% S - 0.10% Cr - 0.02% Mo - 0.16% Ni Composition: 0.59% C - 0.85% Mn - 1.90% Si - 0.030% P 0.030% S Composition: 0.62% C - 0.85% Mn - 1.90% Si - 0.030% P - 10.32% W - 3.92% Co Composition: 1.13% C - 0.51% Mn - 0.50% Si - 0.022% S 0.025% P - 4.02% Cr - 8.80% Mo - 1.24% V - 1.80% W Cr - 0.49% Ni - 1.00% Mo - 0.31% V - 0.03% Cu - 0.010% Al 1-1/2 Ni, BRITISH STEELS, ENGINEERING 1005-1006), 371 - 451 0.015% S - 0.20% Cr - 0.05% Mo - 1.50% Ni 3 Ni, 388 Composition: 0.30% C - 0.51% Mn - 0.32% Si - 0.011% P 0.007% S - 0.07% Cr - 3.03% Ni - 0.032% Al - <0.01% Ti 377 3-1/2 Ni, Composition: 0.05% C - 0.25% Mn 0.06 C (SAE 1005-1006), 1008), 377 0.005% S - 0.05% Cr - 3.65% Ni - 0.045% Al - 0.07% Cu Composition: 0.33% C - 0.74% Mn - 0.23% Si - 0.031% P 0.027% S - 0.07% Cr - 0.11% Mo - 3.47% Ni 378 Composition: 0.40% C - 0.62% Mn - 0.26% Si - 0.007% P - Composition: 0.06% C - 0.50% Mn 0.005% S - 0.23% Cr - 0.10% Mo - 3.45% Ni 5 Ni, 390 Composition: 0.10% C - 0.40% Mn - 0.20% Si - 0.020% P 0.020% S - 4.8% Ni 9 Ni, 391 1-1/4 Mn (SAE 1518-1524), 378 Composition: 0.19% C - 1.20% Mn - 0.20% Si - 0.020% P - 0.020% S 1-1/2 Mn (SAE 1518-1524), 379 Composition: 0.19% C - 1.50% Mn - 0.20% Si - 0.020% P - 0.020% S 1-1/4 Mn (SAE 1525-1527), 0.020% 1-1/2 Mn (SAE 1526-1527), 389 - 390 Composition: 0.10%C - 0.53% Mn - 0.26% Si - 0.007% P - Composition: 0.06% C - 0.30% Mn 0.06 C (SAE 388 Composition: 0.16% C - 0.60% Mn - 0.25% Si - 0.020% P - Introduction, 373 - 376 0.05 C (SAE 384 Composition: 0.40% C - 0.85% Mn - 1.75% Si - 0.030% P - Composition: 0.09% C - 0.45% Mn - 0.25% Si - 0.010% P - 0.012% S - 0.10% Cr - 0.04% Mo - 9.00% Ni - 0.030% Al 1/2 Cr (SAE 5015, 4118), 391 Composition: 0.15% C - 0.40% Mn - 0.20% Si - 0.020% P 0.020% S - 0.40% Cr 379 Composition: 0.28% C - 1.20% Mn - 0.20% Si - 0.020% P - 380 Composition: 0.28% C - 1.50% Mn - 0.20% Si - 0.020% P - 0.020% S SS nn ne XxXVI TE Tn 3/4 Cr (SAE 5117-5120, 4118), 392 1-1/2 Mn Mo, 403 - 405 Composition: 0.20% C - 0.80% Mn - 0.20% Si - 0.020% P - Composition: 0.27% C - 1.55% Mn - 0.20% Si - 0.025% P - 0.020% S - 0.80% Cr 0.025% S - 0.28% Mo 1 Cr, 392 Composition: 0.20% C - 0.75% Mn - 0.30% Si - 0.020% P WV) 0.020% S - 0.95% Cr Cr (SAE 5130-5132), 393 ee Composition: 0.30% C - 0.70% Mn - 0.20% Si - 0.020% P a Composition: 0.30% C - 1.55% Mn - 0.20% Si - 0.025% P 0.025% S - 0.28% Mo Composition: 0.32% C - 1.50% Mn - 0.18% Si - 0.020% P 0.020% S - 0.27% Mo Composition: 0.35% C - 1.55% Mn - 0.20% Si - 0.025% P - 0.020% S - 1.05% Cr 0.025% S - 0.28% Mo Composition: 0.38% C - 0.70% Mn - 0.25% Si - 0.020% P - 0.020% S - 0.27% Mo Composition: 0.38% C - 1.50% Mn - 0.25% Si - 0.020% P 0.020% $ - 0.45% Mo 1/2 Cr, 393 Composition: 0.37% C - 1.50% Mn - 0.18% Si - 0.020% P - 0.020% S - 0.50% Cr 1 Cr (SAE 5140), 394 Composition: 0.39% C - 0.70% Mn - 0.20% Si - 0.020% P - 1-1/4 Mn Cr, 406 - 407 0.020% S - 1.05% Cr 394 5046), 1/2 Cr (SAE ined ee Composition: 0.22% C - 1.10% Mn - 0.21% Si - 0.015% P - Bohs - 0.60% Cr - 0.02% Mo - 0.18% Ni - 0.08% V - : : O:70769Min =10 2676 Si:002070 B= 1 Cr (SAEa 5145-5150), 395 pe Noe Composition: 0.20% C - 1.25% Mn - 0.25% Si - 0.025% P - : C Mn -- 0.35% Si P Ccomposition: tion: 0.50% 0. - 0.75% 0. 0. - 0.025% 0. 0.020% S - 1.20% Cr 1/2 Cr (SAE 5060, 5155-5160), 0.015% S$ - 1.15% Cr - 0.02% Mo - 0.15% Ni é : 1-1/2 Si Cr, 395 407 satin Composition: 0.59% C - 0.60% Mn - 0.25% Si - 0.025% P 0.025% S - 0.65% Cr - 0.20% Ni 3/4 Cr, u Composition: 0.16% C - 1.15% Mn - 0.25% Si - 0.020% P - ; Sonne ES ere Ci 0.757% Mn- 1:50% 31". 0.0207, 3-1/2 Si Cr 408 : 396 st Composition: 0.60% C - 0.85% Mn - 0.25% Si - 0.025% P - ; akan 0.025% S - 0.75% Cr = tegee ‘ORIN SaP ens ame 1-1/2 Ni Mn, 408 bam ») ob ee 51405-51409), 396 . omposition: 0.07% C - 0.50% Mn - 0.40% Si - 0.020% P - Pooh 13 Cr (SAE Composition: 0.16% C - 1.40% Mn - 0.25% Si - 0.020% P 0.015% § - 0.20% Cr - 0.05% Mo - 1.50% Ni opener oe 51410), 397 1-3/4 Ni tek Mo (SAE 4615-4620), 409 . 0.12% C - 0.50% Mn - 0.40% Si - 0.020% P - 0.010% $ 12.5% Cr - 0.20% Ni 13 Cr (SAE 51420), 397 - 398 ae eae 1-3/4 Ni Mo, 409 . Composition: 0.24% C - 0.55% Mn - 0.20% Si - 0.020% P - Composition: 0.17% C - 0.40% Mn - 0.38% Si - 0.020% P - 0.020% S - 12.5% Cr - 0.20% Ni | : ah Composition: 0.24% C - 0.27% Mn - 0.37% Si - 0.021% P - =e = = greta Mo (SAE 1/4 Mo, alk 400 ‘A Soe 4023 ee. is ha : é Composition: 0.10% C - 0.40% Mn - 0.20% Si - 0.020% P - & 0.020% S - 0.20% Mo - 5.00% Ni =? 4024), 41] 3/4 Ni Cr, - 0.90% Mn - 0.30% Si - 0.020% P - Composition: 0.15% C - 0.80% Mn - 0.20% Si - 0.020% P a l eee eet att i - nS: Composition: 0.38% C - 0.80 Composition: 0.15% C - 1.40% Mn - a 0.020% S - 1.55% Cr - 1.55% Ni 2NiCr, 414 Composition: 0.16% C - 0.50% Mn - 0.31% Si - 0.013% P - ee 0. me ane ort Composition: 0.14% C - 0.50% Mn - 0.25% Si - 0.020% P - 0.025% P - sieisedde 1-1/2 Mn (SAE 1513-1518), ‘ Sr Composition: 0.15% C - 0.75% Mn - 0.25% Si - 0.020% P 0.020% S - 0.95% Cr - 1.45% Ni SONG «ASSL x Ss NE ee enn ae Composition: 0.22% C - 0.60% Mn - 0.257% S1--0.0207%'P 0.020% S - 0.50% Mo icinedi Sa Composition: 0.35% C - 0.75% Mn - 0.23% Si - 0.020% P 0.020% S - 0.65% Cr - 1.30% Ni Composition: 0.40% C - 0.75% Mn - 0.23% Si - 0.020% P - yi hie GAR H41S-4422), 01 1/2 Mo, 402 ie Composition: 0.16% C - 0.80% Mn - 0.20% Si - 0.020% P - 400 4042), 401 AMG GAE-4047) ; ae aie - 0.80% Mn - 0.25% Si - 0.025% P ee 0.014% S - 1.95% Cr - 0.03% Mo - 2.02% Ni - 0.030% Al i - 0.020% P - 3-1/4 Ni Cr, 0.020% S 415 P Composition: 0.12% C - 0.50% Mn - 0.20% Si - 0.020% 0.020% S - 0.90% Cr - 3.25% Ni ee : Soa 5 Na No. 2 has Gr Os on Composition: 0.40% C - 0.80% Mo - 0.30% Si - 0.025% P - 0.021% S$ - 0.53% Mo 410 40% C - 0.48% Mn - 0.15% Si - 0.016% P - - 0.009% P Composition: 0.18% C3 - 0.47% Mn ‘ - 0.27% Si : Composition: 0.32% C - 0.80% Mn - 0.30% Si - 0.025% P - yao : Ni Mo, -3/4 ie eG b) i Composition: 0.17% C - 0.60% Mn - 0.25% Si - 0.020% P - 0.020% S - 0.30% Mo 0.020% S - 0.20% Cr - 0.25% Mo - 1.80% Ni vat a Bae ee. a Repo ree a 3-1/2 Ni Mo. (SAE 4815-4820), 410 0.010% S - 13.3% Cr - 0.06% Mo - 0.32% Ni Composition: 0.32% C - 0.30% Mn - 0.30% Si - 0.020% P - ares a dale 399 4012), Mo (SAE 1/4EE Re a ee: eee ee Xxvil ee a 3 Cr Mo, 3 Ni Cr, 415 426 - 427 Composition: 0.20% C - 0.50% Mn - 0.25% Si - 0.020% P 0.020% $ - 3.10% Cr - 0.52% Mo Composition: 0.32% C - 0.57% Mn - 0.20% Si - 0.020% P 0.020% S - 1.15% Cr - 3.00% Ni 4NiCr, 416 Composition: 0.15% C - 0.40% Mn - 0.15% Si - 0.020% P - Composition: 0.28% C - 0.50% Mn - 0.25% Si - 0.020% P 0.020% S$ - 3.10% Cr - 0.52% Mo Composition: 0.30% C - 0.50% Mn - 0.20% Si - 0.020% P 0.020% S - 1.25% Cr - 4.10% Ni 18 Cr Ni (SAE 51431), 417 0.020% S - 3.05% Cr - 0.40% Mo - 0.30% Ni 3-1/4 Cr Mo, 428 Composition: 0.17% C - 0.60% Mn - 0.14% Si - 0.020% P - 0.012% S - 17.98% Cr - 0.06% Mo - 2.95% Ni - 0.04% Al 0.10% Co - 0.10% Cu Composition: 0.26% C - 0.60% Mn - 0.14% Si - 0.020% P 0.020% S - 3.25% Cr ~ 0.55% Mo 0.020% S - 1.15% Cr - 4.10% Ni Composition: 0.32% C - 0.55% Mn - 0.25% Si - 0.020% P - 0.020% S - 3.25% Cr - 0.55% Mo Composition: 0.14% C - 0.68% Mn - 0.67% Si - 0.024% P - 1/2 Cr Mo, - 418 417 5 Cr Mo (SAE 51501), 0.020% S - 0.60% Cr - 0.55% Mo 1/2 Cr Mo, 418 3/4 Cr Mo, 418 - 419 Composition: 0.20% C - 0.75% Mn - 0.25% Si - 0.020% P 0.020% S - 0.40% Cr - 0.45% Mo Composition: 0.12% C - 0.45% Mn - 0.30% Si - 0.015% P - 0.015% S - 0.85% Cr - 0.60% Mo - 0.16% Ni Composition: 0.27% C - 0.60% Mn - 0.13% Si - 0.030% P 0.022% S - 0.74% Cr - 0.55% Mo - 0.19% Ni 3/4 Cr Mo (SAE 4161), 419 Composition: 0.60% C - 0.85% Mn - 0.25% Si - 0.020% P 0.020% S - 0.80% Cr - 0.30% Mo 1 Cr Mo, 420 429 Composition: 0.14% C - 0.45% Mn - 0.26% Si - 0.016% P - Composition: 0.14% C - 0.55% Mn - 0.25% Si - 0.020% P - 0.025% S - 4.66% Cr - 0.56% Mo - 0.13% Ni 5 Cr Mo, 429 9 Cr Mo, 430 Composition: 0.28% C - 0.50% Mn - 0.25% Si - 0.020% P 0.020% S - 5.00% Cr - 0.55% Mo Composition: 0.12% C - 0.70% Mn - 0.30% Si - 0.025% P - 0.020% S - 9.0% Cr - 1.00% Mo 1 Cr V (SAE 6150), 430 Composition: 0.50% C - 0.75% Mn - 0.25% Si - 0.025% P - 0.025% S - 0.95% Cr - 0.05% Mo - 0.15% Ni - 0.20% V 1-1/2 Mn Ni Mo, 431 Composition: 0.19% C - 1.60% Mn - 0.20% Si - 0.020% P - 0.020% S - 0.25% Mo - 0.55% Ni Composition: 0.18% C - 0.75% Mn - 0.25% Si - 0.020% P 0.020% S - 1.00% Cr - 0.20% Mo 2 Si Cr Mo, 431 Composition: 0.60% C - 0.85% Mn - 1.90% Si - 0.025% P - 0.020% S - 1.05% Cr - 0.22% Mo 1/2 Ni Cr Mo (SAE 8115, 8615-8617), Composition: 0.26% C - 0.70% Mn - 0.25% Si - 0.020% P - 0.025% S - 0.30% Cr - 0.25% Mo 432 421 Composition: 0.15% C - 0.80% Mn - 0.20% Si - 0.020% P - 0.020% S - 1.00% Cr - 0.20% Mo 1/2 Ni Cr Mo (SAE 8622-8627, 8720, 8822), 432 1 Cr Mo (SAE 4130), Composition: 0.30% C - 0.50% Mn - 0.25% S - 0.020% P - 421 1 Cr Mo (SAE 4135), Composition: 0.34% C - 0.65% Mn - 0.25% Si - 0.020% P - 0.020% S - 1.05% Cr - 0.25% Mo 1 Cr Mo (SAE 422 C - 0.80% Mn - 0.25% ition: 0.36% i Si - 0.020% x P - 1 Cr Mo (SAE 4140-4142), 422 Composition: 0.40% C - 0.85% Mn - 0.20% Si - 0.020% P - 0.020% $ - 1.05% Cr - 0.30% Mo 1 Cr Mo (SAE 4145-4147), 0.020% $ - 1.00% Cr - 0.20% Mo (SAE 4147-4150), Mo - 0.55% Ni Composition: 0.41% C - 0.85% Mn - 0.25% Si - 0.020% P 0.020% S - 0.50% Cr - 0.25% Mo - 0.55% Ni 1/2 Ni Cr Mo (SAE 8645-8650), 434 0.010% S - 0.58% Cr - 0.20% Mo - 0.60% Ni 1/2 Ni Cr Mo (SAE 8660), 434 Composition: 0.60% C - 0.85% Mn - 0.25% Si - 0.025% P - 1-1/4 Cr Mo (SAE 4137), 424 Composition: 0.37% C - 0.85% Mn - 0.25% Si - 0.020% P - 11/4 Cr Mo (SAE 4140-4142), Cr - 0.20% S - 0.50% 1/2 Ni Cr Mo (SAE 8640-8642, 8740), 433 423 0.020% S$ - 1.00% C - 0.22% Mo 424 Composition: 0.42% C - 0.85% Mn - 0.25% Si - 0.020% P 0.020% $ - 1.15% Cr - 0.20% Mo 1-1/4 Cr Mo, 0.020% 433 a ma C- Bees Mn - Bad Si - 0.020% P - Composition: 0.48% C - 0.75% Mn - 0.34% Si - 0.020% P - Composition: 0.50% C - 0.85% Mn - 0.25% Si - 0.020% P - 0.020% S - 1.15% Cr - 0.20% Mo 1/2 Ni Cr Mo (SAE 8625-8630), 423 Composition: 0.46% C - 0.85% Mn - 0.25% Si - 0.020% P - 1 Cr Mo Composition: 0.24% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 0.50% Cr - 0.20% Mo - 0.55% Ni pore 4135-4137), Ce Merrie an 0.020% S - 0.50% Cr - 0.20% Mo - 0.55% Ni 0.025% S - 0.50% Cr - 0.20% Mo - 0.55% Ni 3/4 Ni Cr Mo, 435 1 Ni Cr Mo, 435 Composition: 0.40% C - 0.65% Mn - 0.25% Si - 0.020% P 0.025% S - 0.75% Cr - 0.25% Mo - 0.85% Ni Composition: 0.36% C - 0.65% Mn - 0.25% Si - 0.020% P - 0.020% S - 1.05% Cr - 0.22% Mo - 1.05% Ni 11/2 Ni Cr Mo, 436 - 438 Composition: 0.16% C - 0.80% Mn - 0.20% Si - 0.020% P - 425 0.020% S - 1.05% Cr - 0.15% Mo - 1.40% Ni Composition: 0.15% C - 0.60% Mn - 0.30% Si - 0.030% P - Composition: 0.16% C - 0.50% Mn - 0.25% Si - 0.020% P - 0.030% $ - 1.25% Cr - 0.50% Mo 0.020% S - 1.65% Cr - 0.20% Mo - 1.55% Ni Composition: 0.36% C - 0.70% Mn - 0.25% Si - 0.020% P 0.020% S - 1.50% Cr - 0.25% Mo - 1.50% Ni Composition: 0.35% C - 0.55% Mn - 0.27% Si - 0.031% P 0.022% S - 1.23% Cr - 0.51% Mo - 0.14% Ni 2-1/4 Cr Mo, 426 Composition: 0.40% C - 0.60% Mn - 0.25% Si - 0.020% P 0.020% S - 1.20% Cr - 0.15% Mo - 1.50% Ni Composition: 0.14% C - 0.46% Mn - 0.23% Si - 0.010% P 0.010% $ - 2.28% Cr - 1.05% Mo - 0.21% Ni Composition: 0.40% C - 0.60% Mn - 0.25% Si - 0.020% P - 0.020% S - 1.20% Cr - 0.30% Mo ee Xxvili - 1.50% Ni 1-3/4 Ni Cr Mo, 438 - 439 12 Cr Mo V (SAE 51420 mod), Composition: 0.16% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 1.05% Cr - 0.15% Mo - 1.80% Ni Composition: 0.41% C - 0.70% Mn - 0.25% Si - 0.020% P 0.020% S - 0.80% Cr - 0.25% Mo - 1.80% Ni 2 Ni Cr Mo, 439 - 440 Composition: 0.17% C - 0.60% Mn - 0.20% Si - 0.020% P 0.020% S - 1.55% Cr - 0.20% Mo - 2.00% Ni Composition: 0.30% C - 0.48% Mn - 0.25% Si - 0.020% P 0.020% S - 2.00% Cr - 0.40% Mo - 2.00% Ni 2-1/2 Ni Cr Mo, 440 - 441 Composition: 0.31% C - 0.60% Mn - 0.25% Si - 0.020% P - 0.020% S - 0.65% Cr - 0.55% Mo - 2.55% Ni Composition: 0.40% C - 0.60% Mn - 0.25% Si - 0.020% P 0.020% S - 0.65% Cr - 0.55% Mo - 2.55% Ni 3 Ni Cr Mo, 441 - 442 0.030% S - 12.00% Cr - 1.00% Mo - 0.65% Ni - 0.30% V OTHER Composition: 0.12% C - 0.53% Mn - 0.28% Si - 0.020% P - 0.010% S - 0.58% Cr - 0.20% Mo - 3.20% Ni 3-1/2 Ni Cr Mo (SAE 9310), 442 Composition: 0.138% C - 0.50% Mn - 0.20% Si - 0.020% P 0.020% S - 0.85% Cr - 0.18% Mn - 3.40% Ni 4 Ni Cr Mo, 443 - 444 Composition: 0.15% C - 0.40% Mn - 0.25% Si - 0.020% P 0.018% S - 1.15% Cr - 0.20% Mo - 4.10% Ni L6 Tool Steel, Composition: 1.36% C - 1.84% Mn - 1.14% Si - 1.81% Ni - 0.15% Cr - 1.41% Mo - 0.38% Graphite 2315, 458 Composition: 0.19% C - 0.57% Mn - 0.22% Si - 0.015% P 0.023% S - 3.60% Ni - 0.09% Cr - 0.05% Mo 2340, 459 Composition: 0.40% C - 0.89% Mn - 0.31% Si - 0.021% P 0.011% S - 3.34% Ni - 0.11% Cr 0.020% S - 1.80% Cr - 0.35% Mo - 4.00% Ni 1/2 Cr Mo V, 444 Composition: 0.12% C - 0.55% Mn - 0.25% Si - 0.020% P 0.020% S - 0.40% Cr - 0.60% Mo - 0.15% Ni - 0.25% V 1 Cr Mo V, 445 Composition: 0.22% C - 0.60% Mn - 0.30% Si - 0.020% P 0.020% S - 1.15% Cr - 0.60% Mo - 0.13% Ni - 0.22% V 9% Nickel Low Carbon Steel, 459 Composition: 0.10% C - 0.77% Mn - 0.28% Si - 8.56% Ni 0.05% Cr - 0.02% Mo 445 3120 Steel, 460 Composition: 0.21% C - 0.61% Mn - 0.24% Si - 0.017% P 0.016% S - 1.35% Ni - 0.67% Cr - 0.02% Mo - 0.04% 3190 Steel, 460 Composition: 0.91% C - 0.65% Mn - 0.23% Si - 0.013% P 0.026% S - 1.35% Ni - 0.60% Cr - 0.03% Cu Composition: 0.37% C - 0.62% Mn - 0.29% Si - 0.032% P - 0.026% S - 1.19% Cr - 0.59% Mo - 0.13% Ni - 0.22% V 446 Composition: 0.30% C - 0.60% Mn - 0.25% Si - 0.010% P - 0.015% S - 2.50% Cr - 0.20% Mo - 0.30% Ni - 0.18% V 3-1/4 Cr Mo V, 446 Composition: 0.39% C - 0.60% Mn - 0.15% Si - 0.020% P 0.020% S$ - 3.25% Cr - 0.95% Mo - 0.20% V 1 Cr Al Mo, 447 Composition: 0.33% C - 0.65% Mn - 0.30% Si - 0.020% P 0.020% S - 1.15% Cr - 0.20% Mo - 1.00% Al 1-1/2 Cr Al Mo, 447 - 448 3240 Steel, 461 Composition: 0.43% C - 0.52% Mn - 0.29% Si - 0.025% P - 0.021% S - 1.76% Ni - 1.19% Cr - 0.05% Mo - 0.06% Cu 3330 Steel, 461 Composition: 0.29% C - 0.21% Mn - 0.06% Si - 0.026% P 0.017% S - 3.25% Ni - 1.45% Cr Krupp Composition: 0.31% C - 0.55% Mn - 0.30% Si - 0.020% P - 0.15 C Steel, 462 Composition: 0.15% C - 0.45% Mn - 0.20% Si - 0.013% P 0.020% S - 4.03% Ni - 1.54% Cr - 0.03% Mo 0.020% S - 1.60% Cr - 0.20% Mo - 1.10% Al Composition: 0.39% C - 0.55% Mn - 0.30% Si - 0.020% P 0.020% S - 1.60% Cr - 0.20% Mo - 1.10% Al Composition: 0.42% C - 0.65% Mn - 0.30% Si - 0.020% P 0.020% $ - 1.65% Cr - 0.33% Mo - 1.00% Al 1-1/2 Mn Ni Cr Mo, 457 Composition: 0.72% C - 0.85% Mn - 0.23% Si - 0.018% P 0.010% S - 1.75% Ni - 0.94% Cr Composition: 0.75% C - 0.70% Mn - 0.25% Si - 1.35% Ni 0.75% Cr - 0.30% Mo - 0.15% V A10 Tool Steel, 458 Composition: 0.30% C - 0.60% Mn - 0.25% Si - 0.020% P 0.020% S - 1.25% Cr - 0.30% Mo - 4.10% Ni Composition: 0.34% C - 0.50% Mn - 0.20% Si - 0.020% P - 2-1/2 Cr Mo V, 453 - 520 Composition: 0.22% C - 1.30% Mn - 1.36% Si - 1.88% Ni 0.22% Cr - 0.38% Mo AMS 6428 and 6434, 456 Composition: 0.32% C - 0.72% Mn - 0.19% Si - 0.012% P 0.021% S - 1.70% Ni - 0.82% Cr - 0.31% Mo - 0.12% Cu 0.17% V Composition: 0.31% C - 0.55% Mn - 0.25% Si - 0.020% P - V, STEELS, 8640 & 8740, 455 Composition: 0.42% C - 0.89% Mn - 0.30% Si - 0.018% P 0.015% S - 0.58% Ni - 0.52% Cr - 0.24% AMS 6416 (300-M), 455 Composition: 0.43% C - 0.83% Mn - 1.55% Si - 0.021% P 0.009% S - 1.84% Ni - 0.91% Cr - 0.40% Mo - 0.12% V AMS 6418, 456 0.020% S - 1.05% Cr - 0.28% Mo - 3.00% Ni 1-1/4 Cr Mo 451 Composition: 0.20% C - 0.70% Mn - 0.25% Si - 0.030% P - Krupp 0.90C Steel, 462 Composition: 0.89% C - 0.39% Mn - 0.19% Si - 4.00% Ni 1.58% Cr 4330 Steel, 463 Composition: 0.33% C - 0.69% Mn - 0.41% Si - 0.043% P 0.028% S - 1.41% Ni - 0.72% Cr - 0.28% Mo 4330 Mod. (Si + V) Steel, 463 449 - 451 Composition: 0.27% C - 1.35% Mn - 0.24% Si - 0.025% P 0.025% S - 0.45% Cr - 0.20% Mo - 0.75% Ni Composition: 0.33% C - 1.35% Mn - 0.24% Si - 0.025% P - 0.025% S - 0.45% Cr - 0.20% Mo - 0.75% Ni Composition: 0.37% C - 1.35% Mn - 0.24% Si - 0.025% P 0.025% S - 0.45% Cr - 0.20% Mo - 0.75% Ni Composition: 0.38% C - 1.40% Mn - 0.25% Si - 0.030% P 0.030% S$ - 0.50% Cr - 0.20% Mo - 0.75% Ni Composition: 0.43% C - 1.35% Mn - 0.24% Si - 0.025% P 0.025% S - 0.45% Cr - 0.20% Mo - 0.75% Ni Composition: 0.34% C - 0.98% Mn - 1.37% Si - 0.015% P - 0.005% S - 1.82% Ni - 0.95% Cr - 0.42% Mo - 0.14% V 4630 Steel, 464 Composition: 0.32% C - 0.74% Mn - 0.31% Si - 0.015% P 0.014% S - 1.70% Ni - 0.12% Cr - 0.23% Mo 4695 Steel, 464 Composition: 0.95% C - 0.58% Mn - 0.24% Si - 1.79% Ni 0.25% Mo ee ~ 3633155 I on SAE EX-1 Steel, 465 Composition: 0.17% C - 0.49% Mn - 0.29% Si - 0.010% P - 0.015% S - 5.07% Ni - 0.18% Cr - 0.24% Mo - 0.10% Cu SAE EX-2 Steel, 465 Composition: 0.69% C - 0.42% Mn - 0.80% Ni - 0.20% Cr 0.13% Mo 8695 Steel, 466 Composition: 0.95% C - 0.82% Mn - 0.23% Si - 0.56% Ni - 0.52% Cr - 0.19% Mo 9310 Steel, 466 Composition: 0.11% C - 0.70% Mn - 3.19% Ni - 1.26% Cr - 0.11% Mo 9315 Steel, 467 Composition: 0.95% C - 0.60% Mn - 0.22% Si - 3.27% Ni 1.23% Cr - 0.18% Mo 6F4 Tool Steel, 468 Composition: 0.22% C - 0.50% Mn - 0.30% Si - 0.016% P 0.026% S - 2.80% Ni - 2.95% Mo 6F5 Tool Steel, 468 Composition: 0.55% C - 0.90% Mn - 1.00% Si - 2.75% Ni 0.40% Cr - 0.45% Mo - 0.13% V 2-3/4 Nickel Forging Steel, 469 Composition: 0.29% C - 0.77% Mn - 0.23% Si - 0.34% P - 0.31% S - 2.72% Ni - 0.04% Cr - 0.05% Mo 2-1/2 Nickel Saw Steel, 0.011% S - 7.61% Ni 7-1/2% Nickel Steel, 0.50% C, 475 7-1/2% Nickel Steel, 0.80% C, 475 0.016% S - 7.53% Ni 7-1/2% Nickel Steel, 1.2% C, 475 Composition: 0.48% C - 0.22% Mn - 0.16% Si - 0.006% P 0.16% S - 7.61% Ni Composition: 0.79% C - 0.21% Mn - 0.22% Si - 0.008% P Composition: 1.18% C - 0.22% Mn - 0.22% Si - 0.008% P - 0.016% S - 7.64% Ni 0.023% S - 2.50% Ni - 0.13% Cr - 0.08% Mo - 0.12% Cu VCM Nitriding Steel, 470 Composition: 0.32% C - 0.76% Mn - 0.014% P - 0.018% S - 0.70% Ni - 1.06% Cr - 1.01% Mo 2-1/2 Ni - 1/2 Mo - V Turbine Rotor Steel, 47C Composition: 0.34% C - 0.71% Mn - 0.22% Si - 0.039% P 0.028% S$ - 2.52% Ni - 0.14% Cr - 0.42% Mo - 0.02% V 5-1/4 Ni - 1/4 Mo- V, 471 Composition: 0.23% C - 0.52% Mn - 0.25% Si - 5.35% Ni - 0.20% Cr - 0.27% Mo - 0.08% V Ni-Cr-Mo-V-Cu-B, 471 472 Composition: 0.33% C - 0.57% Mn - 0.23% Si - 0.005% P - 0.007% S - 3.26% Ni - 0.85% Cr - 0.09% Mo 3 Ni-Cr-Mo-V, 472 Composition: 0.32% C - 0.51% Mn - 0.19% Si - 0.013% P 0.009% S - 3.02% Ni - 1.37% Cr - 0.48% Mo - 0.18% V 4-1/4 Ni - 1-1/2 Cr - 1/10 Mo, 473 Composition: 0.35% C - 0.44% Mn - 0.14% Si - 0.016% P - 0.008% S - 4.23% Ni - 1.43% Cr - 0.13% Mo 4-1/4 Ni - 1-1/2 Cr - 1/3 Mo, 473 Composition: 0.33% C - 0.51% Mn - 0.17% Si - 0.013% P - 0.009% S - 4.16% Ni - 1.44% Cr - 0.31% Mo 474 Composition: 0.51% C - 0.23% Mn - 0.17% Si - 0.006% P 0.017% S - 5.26% Ni 5% Nickel Steel, 0.80% C, 474 Composition: 0.79% C - 0.23% Mn - 0.22% Si - 0.007% P - 0.015% S - 5.25% Ni 5% Nickel Steel, 1.2% C, 10% Nickel, 0.80% C, 476 Composition: 0.77% C - 0.20% Mn - 0.22% Si - 0.006% P 0.019% S - 10.01% Ni 10% Nickel Steel, 1.2% C, 476 Composition: 1.17% C - 0.21% Mn - 0.22% Si - 0.009% P 0.019% S - 10.30% Ni Fe-1V-0.2C Steel, 476 Composition: 0.19% C - 0.92% V Fe-1V-1AI1-0.2C Steel, 476 Composition: 0.21% C - 0.96% V - 0.97% Al Fe-1V-1.5Ni-0.2C, 476 Fe - 0.19 C - 1.81 Mo Steel, 477 Composition: 0.19% C - <0.002% Mn - 0.004% Si - 0.006% P - 0.002% S - 1.81% Mo Fe - 4Mo - 0.4C Steel, 477 Composition: 0.43% C - 4.0% Mo Fe - 4 Mo - 1.0C Steel, 477 Composition: 1.0% C - 4.0% Mo Fe - 2.3% Mo - 0.22% C Steel, 477 Composition: 0.22% C - 2.3% Mo Fe-C-Mo Steels, 478 Composition: 0.14% C - <0.003% Mn - 0.0009% Si - 0.002% P - 0.002% S - <0.005% Ni - <0.004% Cr - 2.29% Mo - Composition: 0.15% C - 0.92% Mn - 0.26% Si - 0.014% P 0.020% S - 0.88% Ni - 0.50% Cr - 0.46% Mo - 0.32% Cu 0.06% V - 0.003% B 5% Nickel Steel, 0.50% C, 475 Composition: 0.51% C - 0.21% Mn - 0.16% Si - 0.005% P 0.016% S - 10.11% Ni Composition: 0.20% C - 1.46% Ni - 0.96% V 469 Composition: 0.76% C - 0.41% Mn - 0.20% Si - 0.012% P - 3-1/4 Ni-Cr-Mo, 474 Composition: 0.29% C - 0.15% Mn - 0.13% Si - 0.010% P - 10% Nickel Steel, 0.50% C, 467 Composition: 0.17% C - 0.59% Mn - 0.30% Si - 3.18% Ni 1.12% Cr - 0.13% Mo 9395 Steel, 7-1/2% Nickel Steel, 0.25% C, i 474 Composition: 1.26% C - 0.21% Mn - 0.23% Si - 0.009% P 0.019% S - 5.30% Ni <0.002% Cu - <10 ppm N - 168 ppm O Composition: 0.15% C - <0.002% Mn - 0.001% Si - 0.001% P - 0.006% S 2.55% Mo Composition: 0.17% C - 0.002% Mn - 0.003% Si - 0.002% P 0.004% S - 0.030% Ni - 0.002% Cr - 2.94% Mo - 0.007% Co 0.004% Cu - 0.002% Al - 0.003% V - 0.004 N Composition: 0.15% C - 3.40% Mo Composition: 0.15% C - 3.67% Mo Composition: 0.14% C - 3.98% Mo Composition: Composition: Composition: Composition: 0.19% 0.19% 0.19% 0.17% Composition: Composition: Composition: Composition: Composition: Composition: Composition: Composition: Composition: 0.20% 0.18% 0.24% 0.24% 0.26% 0.25% 0.24% 0.23% 0.24% C - 2.30% C - 2.56% C - 2.98% C - 3.76% Mo Mo Mo Mo C - 4.00% Mo C - 4.25% Mo C - 2.31% Mo C - 2.56% Mo C - 2.94% Mo C - 3.19% Mo C - 3.76% Mo C - 4.00% Mo C - 4.28% Mo Fe - 7.6 Ni - 0.48 C Steel, 478 Composition: 0.48% C - <0.01% Mn - 0.011% Si - 0.003% P - 0.004% S - 7.64% Ni - <0.01% Cr - <0.01% Al Fe - 0.61C Steel, 478 Composition: 0.61% C - 0.01% Mn - 0.014% Si - 0.003% P 0.005% S - <0.01% Ni - <0.01% Cr - <0.01% Al Fe - 0.13C - 2.99 Cr Steel, 479 Superhardening Composition: 0.18% C - 0.002% Mn - 0.001% Si - 0.001% P - 12TT Steel, 486 Composition: 0.42% C - 1.75% Mn - 0.36% Si - 0.031% P - 0.006% S - 2.99% Cr Low Carbon 2.4-4.15% Cr Steels, 479 Ponmmoattion: 0.16% C - <0.02% Ni - 2.40% Cr - <0.02% Mo 0.029% S - 0.24% Ni - 0.28% Cr - 0.12% Mo - 0.17% Co 0.020% Sn - 0.11% Al D-6ac High Strength Steel, 486 - <0.001% B Composition: 0.17% C - <0.02% Ni - 3.16% Cr - <0.02% Mo Composition: 0.45% C - 0.80% Mn - 0.25% Si - 0.55% Ni 1.15% Cr - 1.0% Mo - 0.05% V - <0.001% B Deep Hardening Steels, 487 ys caine 0.14% C - <0.02% Ni - 3.83% Cr - <0.02% Mo Composition: 0.65% C - 0.79% Mn - 0.35% Si - 1.27% Ni - Composition: 0.15% C - <0.02% Ni - 4.15% Cr - <0.02% Mo Composition: 0.60% C - 0.37% Mn - 0.24% Si - 3.22% Ni - = <0; 1.00% Cr - 0.29% Mo - <0.001% B Fe - 10 Cr Steel, 2.14% Cr - 0.07% Mo 480 Composition: 0.35% C - 0.69% Mn - 0.24% Si - 3.25% Ni - Composition: Fe - 0.003-0.007% C - 9.6% Cr PecCiGr Steel. 1.32% Cr - 0.48% Mo - 0.27% V 480 Ni-Cr-Mo ’ SA Steel. 481 Ses 0.029% Nb SAE Composition: 0.86% C - 0.66% Mn - 0.38% Si - 0.040% P - 1513 + Cb (Nb), 0.024% S - 2.47% Ni - 1.21% Cr - 0.50% Mo Composition: 0.60% C - 0.60% Mn - 0.30% Si - 0.035% P - 482 0.024% S - 2.75% Ni - 1.25% Cr - 0.50% Mo - 0.12% V Composition: 0.42%C - 0.67% Mn - 0.31% Si - 0.030% P - 482 AONE Composition: 0.10% C - 0.38% Mn - 0.62% Si - 0.013% P - uaa peetekg aeles 2 sree Si - 4.02% Cr SAE as ee - 2.99% W Composition: 0.10% C - 0.42% Mn - 0.25% Si - 0.018% P - cg? 0.013% S - 0.27% Ni - 2.16% Cr - 0.96% Mo 3M, 483 ee ee c- an NES oa Si - 0.017% P - 0.016% S - 0.34% Croloy 5,: 483 Ni - 2.95% Cr - 0.94% EO Mo 0.013% S - 0.27% Ni - 2.16% Cr - 0.96% Mo ae Steels, 492 S - 8.8 r eee C - 0.33% Mn - 0.35% Si - 0.020% P - Composition: 1.04% C - 0.18% Mn - 0.35% Si - <0.01% P <0.01% $ - 4.0% Cr Composition: 1.05% C - 0.31% Mn - 0.35% Si - 0.017% P - Ces . 0.52% Cr - 0.47% Mo 485 Paes 0.012% S - 5.7% Cr Composition: 0.16% C - 0.81% Mn - 0.19% Si - 1.80% Ni - 0.48% Cr - 0.66% Mo 3% Mo Low Carbon Tool Steels, Cr os rede C - 0.33% Mn - 0.35% Si - 0.016% P - sect Composition: 0.22% C -0.79% Mn - 0.82% Si -0.87% Ni PS 55 Steel, ae S- 1.04% COs a 491 ae C - 0.39% Mn - 0.25% Si - 0.020% P - eS 0.013% 0.011% 485 = eee Cre ees Mn - 0.27% Si - 0.02% P - 1.0% C High-Chromium 484 Composition: 0.2% C - 0.6% Mn - 1.0% Ni - 1.0% Cr - 0.4% 0, Hypereutectoid Carbon Steels, 493 Composition: 1.20% C - 0.91% Mn - 0.23% Si - <0.003% P - 485 Composition: 0.22% C - 0.50% Mn - 0.30% Si - 0.016% P oe gues 0.026% S - 2.80% : - atone i- 0.016% P n - 0. C - 0.63 Composition: 0.24% 0.002% Ss : compere 1.48% C - 0.90% Mn - 0.24% Si - 0.002% P 0.0039 Composition: 1.72% C - 0.90% Mn - 0.25% Si - <0.003% P <0.003% S _ 0.027% S - 2.95% Mo Composition: 0.10% C - 0.50% Mn - 0.26% Si - 0.017% P - 403/410 Stainless Steels, 0.025% S - 2.95% Mo 494 Composition: 0.06% C - 12.8% Cr Composition: 0.10% C - 12.4% Cr Composition: 0.12% C - 12.3% Cr Non-Superhardening NPL.D Steel, 486 Composition: 0.43% C - 1.58% Mn - 0.42% Si - 0.022% P 0.042% S$ - 0.24% Ni - 0.27% Cr - 0.12% Mo - 0.18% Co 0.033% Sn - 0.005% Al 2 EEE = A : pee 5vee a : Hie Cr teel; E Composition: 0.10% C - 0.42% Mn - 0.25% Si - 0.018% P - : hosaseseee Composition: 0.93% C - 0.50% Mn - 0.26% Si - 0.01% P - 0.017% $ - 0.28% Ni - 8.40% Cr - 0.96% Mo 2-1/4 Cr - 1 Mo Steel, 484 sys E cay are Gi. : 0. le - 0. i- 0. 0.02% S rome - 0.017% Cr - :0.006% Mo - 0.003-0.01% e Al Peewee Composition: 0.12% C - 0.50% Mn - 0.45% Si - 0.013% P - 32 Steel, Le teen) nee 0.02% S - 0.58% Cr - 0.30% Mo 3.5% Chromium Magnet Steel, 0.036% S - 0.07% Ni - 7.50% Cr - 0.45% Mo Croloy 9M, 483 PS : 0.02% S - 0.60% Cr - 0.16% Mo - 0.003-0.01% Al Composition: 0.12% C - 0.53% Mn - 0.55% Si - 0.015% P - Mo hd; Sane - 0.17% Si - 0.013% P - 20200i Composition: 0.76% C - 0.82% Mn - 0.25% Si - 0.02% P - Croloy 7, 483- 0.2% Carbon , panne OG 0 0:75Cr 6:6- 0.10% Compontion: 0.02% S - 0.004% MoNan- 0.003-0.01% Al Composition: 0.12% : C - 0.46% Mn - 0.35% Si - 0.012% P 0.016% S - 0.20% Ni - 4.79% Cr - 0.54% Mo Steel, ar tdnee - 1.00% Cr - 0.48% Mo ec 0.012% S - 0.17% Ni - 1.15% Cr - 0.48% Mo - 0.10% Cu Croloy 2-1/4, 482 Croloy : 0.022% S - 1.06% Cr - 0.54% Mo - 0.12% V 0.11% C - 1.51% Mn - 0.34% Si - 0.003% S - 1-1/4, 488 - 489 Composition: 0.59% C - 0.96% Mn - 0.28% Si - 0.032% P - Compoosition: 0.12% C - 1.23% Mn - 0.23% Si - 0.03% Al Croloy Steels, , 482 eel, e 0.020% S - 2.35% Ni - 0.75% Cr - 0.52% Mo - 0.11% V Alloy Composition: Fe - 0.1% C - 13.0% Cr HSLA 488 . Composition: 0.32% C - 0.58% Mn - 0.30% Si - 0.032% P - position: Fe - 0.22% C - 10.6% Cr Fe-Cr-C Steels, Steel, eae Composition: Fe - 0.19% C - 4.5% Cr EE XX el LE nn 403 Stainless Steel, H14 Tool Steel, 495 H16 Tool Steel, 0.04% max P - 0.08% max S - 11.50-13.00% Cr 416 Stainless Steel, 6.90% W H21 Tool Steel, 507 Composition: 0.28% C - 3.25% Cr - 0.25% V - 9.00% W D2 Tool Steel, 507 Composition: 0.12% C - 0.79% Mn - 0.74% Si - 0.017% P 0.08% Zr 496 Composition: 0.62% C - 0.30% Mn - 0.17% Si - 16.59% Cr 440B Stainless Steel, Composition: 1.50% C - 11.50% Cr - 0.80% Mo - 0.20% V 496 D4 Tool Steel, Composition: 0.93% C - 0.49% Mn - 0.43% Si - 18.40% Cr 0.55% Mo 0.1% C - 13.0% Cr Steels, A2 Tool Steel, 497 - 498 1.04% Mo - 0.25% V O1 Tool Steel, 509 Composition: 0.85% C - 1.18% Mn - 0.26% Si - 0.50% Cr 0.44% W Composition: 0.13% C - 0.50% Mn - 0.45% Si - 0.034% P - O2 Tool Steel, 0.010% S - 0.52% Ni - 13.2% Cr - 0.99% Co Composition: 0.13% C - 0.49% Mn - 0.15% Si - 0.012% P 0.010% S - 0.51% Ni - 12.4% Cr - 4.9% Co S1 Tool Steel, Composition: 0.10% C - 0.48% Mn - 0.55% Si - 0.024% P - S2 Tool Steel, 499 S5 Tool Steel, 0.30% Mo P2 Tool Steel, 0.17% C - 0.56% Mn - 0.46% Si - 0.35% Ni - 20.96% Cr 0.04% Mo - 0.013% Al - 0.12% N Mo P2 (Carburized Case) Tool Steel, 499 Mo 500 P4 Tool Steel, Composition: 0.81% C - 0.24% Mn - 0.26% Si - 0.016% P - 5.12% Cr - 0.51% Mo 500 P20 Tool Steel, Composition: 0.83% C - 0.32% Mn - 0.25% Si - 3.89% Cr - 0.25% Mo L1 Too! Steel, Composition: 0.85% C - 4.00% Cr - 8.00% Mo - 1.90% V 501 L2 Tool Steel, F2 Tool Steel, 502 514 Composition: 1.32% C - 0.28% Mn - 0.50% Si - 0.22% Cr - Composition: 0.85% C - 4.00% Cr - 0.75% Mo - 2.10% V - 3.51% W W1 Tool Steel, 502 515 Composition: 0.95% C - 0.25% Mn - 0.20% Si Composition: 1.14% C - 0.22% Mn - 0.16% Si Composition: 0.72% C - 0.23% Mn - 0.43% Si - 4.04% Cr 4.72% Co - 1.24% V - 18.38% W W2 Tool Steel, 503 516 Composition: 6.95% C - 0.20% V Composition: 0.73% C - 4.00% Cr - 2.00% V - 14.00% W W4 Tool Steel, 503 pees r Composition: 0.80% C - 4.00% Cr - 0.75% Mo - 5.00% Co 2.00% V - 14.00% W Fe-Ni-Cr 504 516 1.05-1.15% C - 0.30% Mn - 0.50% Si - 0.25% Steels, 517 Composition: 0.10% C - 0.40% Mn - 0.30% Si - <0.005% P - Composition: 0.40% C - 1.05% Si - 5.00% Cr - 1.35% Mo 0.35% V <0.015% S - 4.00% Ni - 17.0% Cr - 0.005% N Composition: 0.11%C - 0.38% Mn - 0.33% Si - <0.005% P - 504 <0.015% S - 7.25% Ni - 15.6% Cr - 0.005% N Composition: 0.32% C - 0.35% Mn - 0.95% Si - 4.86% Cr 1.45% Mo - 1.29% W H13 Tool Steel, 514 Composition: 0.45% C - 0.70% Mn - 1.00% Cr - 0.20% V 1.25% V - 18.59% W H12 Tool Steel, 513 Composition: 1.01% C - 0.50% Mn - 0.30% Si - 1.21% Cr Composition: 0.72% C - 0.27% Mn - 0.39% Si - 4.09% Cr - Tool Steel, 513 Composition: 0.30% C - 0.75% Mn - 0.50% Si - 0.80% Cr - 4.30% Mo - 1.30% V - 5.79% W M10 Tool Steel, 501 H11 512 Composition: 0.14% C - 0.41% Mn - 0.21% Si - 0.19% Ni - 0.007% S - 4.10% Cr - 4.69% Mo - 1.64% V - 5.95% W T8 Tool Steel, 512 Composition: 0.07% (max) C - 0.55% Ni - 1.35% Cr - 0.20% 24.85% Cr - 0.02% Mo - 0.010% Al - 0.17% N T7 Tool Steel, 511 Composition: 0.07% (max) C - 0.55% Ni - 1.35% Cr - 0.20% Composition: 0.24% C - 0.46% Mn - 0.42% Si - 0.26% Ni - 18.50% W T4 Tool Steels, 511 Composition: 0.60% C - 0.75% Mn - 1.90% Si - 0.25% Cr - 17.20% Cr - 0.06% Mo - 0.010% Al - 0.038% N 442 Stainless Steel, 499 T2 Tool Steel, 510 Composition: 0.50% C - 0.35% Mn - 1.0% Si - 0.018% P 0.013% S - 0.19% Ni - 0.11% Cr - 0.50% Mo Composition: 0.09% C - 0.40% Mn - 0.33% Si - 0.34% Ni - T1 Tool Steel, 510 Composition: 0.50% C - 1.25% Cr - 0.20% V - 2.75% W 0.011% S - 0.51% Ni - 13.3% Cr - 8.0% Co Composition: 0.13% C - 0.42% Mn - 0.33% Si - 0.025% P 0.012% S - 0.49% Ni - 13.5% Cr - 11.9% Co M2 Mod Tool Steel, 509 Composition: 0.87% C - 1.78% Mn - 0.29% Si - 0.027% P 0.010% S - 0.15% Ni - 0.20% Cr - 0.038% Mo Composition: 0.13% C - 0.52% Mn - 0.22% Si - 0.023% P 0.008% S - 0.48% Ni - 12.8% Cr - 1.87% Co M2 Tool Steel, 508 Composition: 0.97% C - 0.48% Mn - 0.40% Si - 4.58% Cr - 0.012% S - 0.46% Ni - 12.50% Cr - 0.45% Co 446 Stainless Steel, 508 Composition: 2.25% C - 11.50% Cr - 0.80% Mo - 0.20% V Composition: 0.11% C - 0.49% Mn - 0.10% Si - 0.016% P 0.013% S - 0.48% Ni - 12.80% Cr Composition: 0.12% C - 0.49% Mn - 0.09% Si - 0.024% P - 430 Stainless Steel, 506 Composition: 0.54% C - 0.62% Mn - 0.93% Si - 7.83% Cr - 495 0.190% S - 0.25% Ni - 12.82% Cr - 0.05% Mo - 0.037% N - 440A Stainless Steel, 506 Composition: 0.40% C - 1.15% Si - 5.25% Cr - 4.25% W Composition: 0.15% C - 1.00% max Mn - 0.50% max Si - Fe-Ni-Mn Steels, 518 Composition: 0.016% C - 3.62% Mn - 0.04% Si - 23.2% Ni - 505 0.001% N - 0.015% O Composition: 0.05% C - 3.73% Mn - 22.94% Ni - 0.015% N Composition: 0.40% C - 1.05% Si - 5.00% Cr - 1.35% Mo 1.10% V nee Eee EE ES eee KL Ni-Al-Ti-Cb Steel, 519 1010 Mo Steel, Composition: 0.010% C - 0.08% Mn - 0.08% Si - 24.9% Ni - 0.26% Al - 1.58% Ti - 0.15% Cb (Nb) Alnico Steels, 519 a, C Composition: 0.10% C - 0.52% Mn - 0.21% Si - 0.002% P 0.005% S - 0.0063% B - 0.050% Al - 0.0007% N ee C - 14.92% Ni - 34.25% Co - 3.20% Cu - 2.10 Ti C - 14.92% ition: 0.008% ‘ paeesiuen ree 2% Ni - 1036 Steel, 532 : 0.37% C - 1.45% Mn - 0.25% Si Composition: 10B36 84. Ni - 34.50% Co - 2.88% Cu Steel, Composition: 0.014% C - 14.76% Ni - 34.50% Co - 3.05% Cu 533 Composition: 0.36% C - 1.45% Mn - 0.25% Si - 7.10% Al - 6.25% Ti Ticonal 600, 520 SAE 1038 Steel, 534 Composition: 0.38% C - 0.70% Mn - 0.25% Si - 0.015% P - _Composition: 13.6% Ni - 24.0% Co - 3.0% Cu - 7.85% Al 0.030% S - 0.063% Al - 0.003% N Ticonal 800, 520 someon: 13.75% Ni - 23.7% Co - 2.9% Cu - 8.0% Al 1.8% Nb Ticonal 1500, 520 eure 14.3% Ni - 34.1% Co - 3.6% Cu - 7.55% Al 5. i ; Ticonal 600 Si-Mod., - 0.22% Si - 0.002% P - 0.007% S - 0.56% Mo - 0.003% Ae 0.002% N 1010 Mo-B Steel, 532 Composition: 0.025% C - 14.90% Ni - 34.75% Co - 3.55% Cu - 7.00% Al - 0% Ti Ss 531 Composition: 0.11% C - 0.50% Mn Composition: 0.38% C - 0.70% Mn - 0.25% Si - 0.015% P - 0.030% S - 0.063% Al - 0.003% N] SAE 1040 Steel, 535 Composition: 0.39% C - 0.72% Mn - 0.23% Si - 0.010% P 0.018% S SAE 1541 Steel, 535 520 Composition: 13.45% Ni - 24.7% Co - 3.0% Cu - 7.95% Al - Composition: 0.39% C - 1.56% Mn - 0.21% Si - 0.010% P - 0.8% Nb + Si 0.024% S ADDITIONAL STEELS, . SAE 15B41 Steel, 536 Composition: 0.42% C - 1.61% Mn - 0.29% Si - 0.006% P - 521 - 607 0.019% S - 0.004% B Low Carbon Low Alloy High Strength Steels, VAN-80 HSLA Steel, 536 : Composition: 0.18% C - 1.28% Mn - 0.40% Si - 0.004% P - 523 - 524 5 eae AO:a vy,Ae Al - 0.018% N Composition: 0.12% C - 0.83% Mn - 0.30% Si - 0.004% P - 05% $ ‘ - ee 0.30% Cuee - 1.11% Ni- 0.53% eaeCr - 0.49% ats Mo eee Composition: 0.41% C - 0.86% Mn - 0.26% Si - 1.28% Ni 0.71% Cr Composition: 0.22% C - 0.83% Mn - 0.24% Si - 0.007% P - 0.011% S - 0.30% Cu - 1.06% Ni - 0.54% Cr - 0.51% Mo - SAE 4024 Steel, 0.029% sol. Al Composition: 0.22% C - 0.85% Mn - 0.24% Si - 0.008% P - Composition: 0.24% C - 0.88% Mn - 0.33% Si - 0.23% Mo SAE 4047 Steel, 538 a SEIS ay tah ras = re Composition: 0.51% C - 0.81% Mn - 0.25% Si - 0.26% Mo LOS SAE 4130 Steel, 539 2.6 Ni - a 0.4 e Mo Steel, 525 : Composition: 0.30% C - 0.52% Mn - 0.18% Si -<0.02% P - Composition: 0.31% C - 0.47% Mn - 0.34% Si - 0.021% P 0.019% S - 0.26% Ni ~ 0.92% Cr - 0.17% Mo SAE 0.021% S - 2.64% Ni - <0.05% Cr - 0.37% Mo - <0.015% Al Composition: C - 0.52% (0), Mn SAE 326 - 0.11% Si - ition: 0.26% C - 0.41% Mn - 0.22% Si - <0.02% P - 0.024% 32.91 Ni - 1.98% Cr - 0.69% Mo - <0.015% Al 3-1/2NiCrMoV Turbine Disk Steel, 528 ition: 0.3% none Gee AISI S7 Tool Steel, 529 1.32% Mo ‘tion: 0.51% eae 1010 Steel, 531 ‘tion: 0.12% Fa aonan C - 0.34% Mn ‘ C - 0.70 verre oe n - 0.42% Si - 0. - 0.91% Cr - 0.40% Mn - 0.12% V - 0.083% Al Composition: 0.50% C - 0.71% Mn - 0.30% Si - 3.20% Cr - Duracut Chipper Knife Steel, 4315 cee 542 SAE 4340+Si Steel, 544 Composition: 0.43% C - 0.83% Mn - 1.55% Si - 1.84% Ni - ; - aie 0.72% Cr - 0.20% Mo - 3.64% Ni - 1.63% Cr - C - 0.3% Mn - 541 0.029% S - 1.84% Ni - 0.78% Cr - 0.35% Mo SAE 4330 Steel, 543 Composition: 0.26% C - 0.60% Mn - we Si - 0.008% P 0.007% S - 1.77% Ni - 0.70% Cr - 0.32% Mo SAE 4340 Steel, 544 Composition: 0.41% C - 0.87% Mn - 0.28% Si - 1.83% Ni - oles. See = fase _ OAT% Vee net .. 0.040% Al 3 Nei? Cro-'0:7:Mo' Steel, 327 C oe Composition: 0.16% P - <0.02% 540 ; ? ie Composition: 0.12% C - 0.57% Mn - 0.29% Si - 1.86% Ni 0.47% Cr - 0.18% Mo - 0.07% V - 0.0014% B Composition: 0.26% C - 0.72% Mn - 0.72% Mn - 0.29% Si <0.02% P - 0.025% S - 0.11% Ni - 1.01% Cr - 1.04% Mo 0 23% V - <0.015% Al Cr - 0.5 Mo Steel, Steel, Composition: 0.44% C - 1.04% Mn - 0.29% Si - 1.13% Cr - eS 526 1 Cr'- | Mo - 0.2 V Steel, qn AY Pomposhian: 0.37% C - 0.77% Mn - 0.98% ve - 0.21% Mo 0.30% C - 0.41% Mn - 0.28% Si - <0.02% P - 0.014% S - 3.64% Ni - <0.05% Cr - 0.47% Mo - 0.058% Al 2 Nie*1.3 4140 525 3.6 Ni - 0.5 Mo Steel, 537 SAE 4640 Steel, 545 Composition: 0.42% C - 0.71% Mn - 0.28% Si - 1.77% Ni - 530 0.24% Mo - 0.40% Si - 0.32% Ni - SAE 4815 Steel, 545 ave. C - 0.50% Mn - 0.16% Si - 0.004% P - Composition: 0.14% C - 0.45% Mn - 0.22% Si - 3.42% Ni 0.21% Mo ’ SAE 5140 Steel, 546 Composition: 0.42% C - 0.87% Mn - 0.25% Si - 0.89% Cr e En Sex es ee SAE 5160 Steel, HSLA 546 SAE 52100 Steel, 6115 Steel, ASTM A710 Mod. Composition: 0.06% C - 1.45% Mn 0.35% Si - 0.97% Ni - 0.72% Cr - 0.42% Mo - 1.25% Cu 0.040% Nb 548 Composition: 0.16% C - 0.85% Mn - 0.34% Si - 0.009% P 0.019% 560 0.88% Ni - 0.71% Cr - 0.20% Mo - 1.12% Cu - 0.035% Nb 547 Composition: 1.06% C - 0.33% Mn - 0.32% Si - 1.44% Cr SAE Steels, ASTM A710 Composition: 0.05% C - 0.50% Mn - 0.28% Si - Composition: 0.63% C - 0.86% Mn - 0.23% Si - 0.83% Cr HSLA 80/10 Composition: 0.05% S - 0.92% Cr - 0.15% V - 1.00% Mn - 0.34% Si - Composition: 0.17% C - 0.82% Mn - 0.31% Si - 0.52% Ni - 1.77% Ni - 0.72% Cr - 0.50% Mo - 1.25% Cu - 0.040% Nb HSLA 100 Composition: 0.06% C - 0.83% Mn - 0.37% Si 3.48% Ni - 0.58% Cr - 0.59% Mo - 1.66% Cu - 0.28% Nb 0.24C-Mn-Mo-V Composition: 0.24% C - 1.67% Mn - 0.39% Si - 0.14% Ni - 01.17% Cr - 0.22% Mo - 0.11% V 0.50% Cr - 0.20% Mo 0.35C-Mn-Mo-V Composition: 0.35% C - 1.40% Mn - 0.76% SAE 6135 Steel, 549 Composition: 0.67% Mn - 0.45% Si - 0.98% Cr - 0.23% V SAE SAE 8620 Steel, 8620 Steel, 550 551 Si - 0.06% Ni - 0.07% Cr - 0.19% Mo - 0.14% V Cu-Ni-Mo-Cb Composition: 0.21% C - 0.71% Mn - 0.30% Si - 0.002% P - 0.006% S - 0.63% Ni - 0.49% Cr - 0.17% Mo - 0.014% Cu 0.014% Al Composition: 0.21% C - 0.71% Mn - 0.30% Si - 0.002% P 0.006% S - 0.63% Ni - 0.49% Cr - 0.17% Mo - 0.014% Cu 0.014% Al SAE 8630 Steel, 552 Composition: 0.31% C - 0.94% Mn - 0.26% Si - 0.009% P 0.023% S - 0.59% Ni - 0.53% Cr - 0.21% Mo SAE 8640 Steel, 553 Composition: 0.16% C - 0.58% Mn - 0.53% Si - 0.009% P - 0.005% S - 1.41% Cr - 0.59% Mo - 0.062% sol. Al - 0.0003% B Mn-Mo-V-N Steel, 562 Composition: 0.15% C - 1.49% Mn - 0.39% Si - 0.018% P - 0.015% S - 0.50% Mo - 0.16% V - 0.14% N CrMoZr Structural Steel, 562 Composition: 0.17% C - 0.84% Mn - 0.54% Si - 0.019% P - 0.011% S - 0.89% Cr - 0.40% Mo - 0.031% Al - 0.09% Zr 2-1/4Cr - 1Mo Steel, 563 555 Composition: 0.09% C - 0.44% Mn - 0.26% Si - 0.008% P 0.010% S - 2.25% Cr - 0.99% Mo Composition: 0.11% C - 0.41% Mn - 0.43% Si - 0.012% P - Composition: 0.87% C - 1.21% Mn - 0.28% Si - 0.52% Cr 0.58% W 555 0.012% S - 0.25% Ni - 2.10% Cr - 1.02% Mo 1Cr-0.5Mo Stuctural Steel, 564 Composition: 0.62% C - 0.72% Mn - 1.72% Si - 0.46% Mo - 0.7Si Steel, 556 Composition: 0.19% C - 0.60% Mn - 0.30% Si 0.023% P 0.021% S - 1.07% Cr - 0.48% Mo - 0.047% Al Composition: 0.038% C - 3.83% Mn - 0.72% Si - 0.005% P - 0.019% S - 0.04% Ni - 0.02% Cr - <0.005% Mo - 0.04% Cu - 1Cr-0.5Mo-B 0.080% Al - <0.005% Nb - <0.005% Ti Fe - 2.9Mn - 0.7Si Steel, 556 557 - 558 Composition: 0.061% C - 1.0% Mn - 1.0% Si Composition: 0.08% C - 1.17% Mn - 0.70% Si - 0.62% Mo Composition: 0.061% C - 1.13% Mn - 0.77% Si - 0.28% Cr - 0.30% Mo Hot-Rolled Dual Phase Steel, 558 2.7Ni-0.9Cr-0.25Mo-B C-Mn Steels, 559 Composition: 0.12% C - 1.33% Mn - 0.28% Si - 0.011% P 0.009% Ss HY-80 Composition: 0.11% C - 1.99% Mn - 0.29% Si - 0.012% P 0.009% S ; 565 Steel, 565 Steel, 566 Composition: 0.15% C - 0.32% Mn - 0.31% Si - 2.72% Ni - 1.52% Cr - 0.41% Mo Composition: 0.19% C - 0.30% Mn - 0.04% Si - 0.007% P - 0.005% S - 3.30% Ni - 1.78% Cr - 0.50% Mo - 0.004% Al Low C MnNiMoB Steel, 567 Composition: 0.015% C - 1.99% Mn - 0.31% Si - 0.006% P - Composition: 0.11% C - 1.58% Mn - 0.28% Si - 0.013% P - Composition: 0.11% C - 1.73% Mn - 0.29% Si - 0.009% P - Steel, 0.32% C - 0.13% Mn - 0.15% Si - 0.090% P - 0.005% S 9.05% Ni - 4.07% Co 0.004% S - 1.00% Ni - <0.01% Cr - 0.29% Mo - 0.017% Al - 0.009% S 0.010% S Structural 0.0017% B 9Ni-4Co Ultrahigh-Strength 0.064% Al Steel, 564 Composition: 0.19% C - 0.57% Mn - 0.35% Si - 0.018% P 0.009% S - 2.72% Ni - 0.87% Cr - 0.25% Mo - 0.10% V - Composition: 0.06% C - 1.19% Mn - 0.87% Si - 0.38% Mo - Iron-Manganese-Nickel Steel, 0.025% S - 1.03% Cr - 0.49% Mo - 0.006% B - 0.041 Al 0.016% S - 0.02% Ni - 0.04% Cr - <0.005% Mo - 0.03% Cu 0.033% Al - <0.005% Nb - <0.005% Ti Steels, Structural Composition: 0.19% C - 0.62% Mn - 0.36% Si - 0.022% P - Composition: 0.037% C - 2.90% Mn - 0.73% Si - 0.009% P - Mn-Mo-Si-Cr 561 0.009% S - 0.39% Ni - 11.59% Cr - 0.98% Mo - 0.002% Al 0.28% V - 0.0323% N 1-1/4Cr - 1/2Mo Steel Plate, 561 Composition: 0.15% C - 0.65% Mn - 0.58% Si - 0.009% P 0.005% S - 1.40% Cr - 0.59% Mo - 0.027% sol. Al Composition: 0.44% C - 0.88% Mn - 0.34% Si - 0.49% Ni 0.65% Cr - 0.14% Mo, B SAE 9260 Steel, 554 Composition: 0.57% C - 0.91% Mn - 1.95% Si SAE 9840 Steel, 554 Composition: 0.43% C - 0.84% Mn - 0.25% Si - 1.00% Ni 0.81% Cr - 0.23% Mo Fe - 3.8Mn Steel, Composition: 0.20% C - 0.47% Mn - 0.24% Si - 0.026% P - Composition: 0.37% C - 0.87% Mn - 0.25% Si - 0.56% Ni - AISI S5 Tool Steel, 561 12.0% Cr - 1.0% Mo-V 0.44% Cr - 0.18% Mo SAE 86B40 Steel, 553 AISI 01 Tool Steel, Steel, Composition: 0.14% C - 0.98% Mn - 0.35% Si - 0.009% P 0.012% S - 1.21% Ni - 0.32% Cr - 0.40% Mo - 0.63% Cu 0.032% Al - 0.014% N - 0.02% Cb 0.002% B HY-80 Steel, 568 Composition: 0.1% C - 0.1% Mn - 0.05% Si - 10.0% Ni 8.0% Co - 2.0% Cr - 1.0% Mo 559 Composition: 0.11% C - 3.00% Mn - 0.16% Si - 1.70% Ni - 0.25% Mo TS ————ee TTT EE HeSCOGAY V-Mo-Ti Steel, 569 BS En Composition: 0.18% C - 0.81% Mn - 0.26% Si - 0.40% Ni 0.49% Cr - 0.17% Mo - 0.056% Ai - 66 ppm N BS En 17 Steel, 0.59% Cr - 0.09% Mo - 0.07% V - 0.021% Al - 0.34% Ti 150 ppm N 0.028% S - 0.24% Ni - 0.10% Cr - 0.41% Mo BS En 19 Steel, 0.023% S - 0.24% Ni - 1.19% Cr - 0.37% Mo BS En 235 Steels: 577 570 Composition: 0.033% C - 0.57% Mn - 0.22% Si - 0.006% P - Composition: 0.32% C - 0.61% Mn - 0.28% Si - 0.018% P - 0.007% S - 8.63% Ni - 0.13% Cr - 0.02% Mo - 0.032% Al - 0.013% S - 3.22% Ni - 0.63% Cr - 0.22% Mo BS En 26 Steel, 578 0.0083% No QNi-Mo Steel, 571 Composition: 0.095% C - 0.48% Mn - 0.27% Si - 0.008% P 0.008% S - 9.30% Ni - 0.17% Cr - 0.51% Mo - 0.045% Al 0.008% No 15Mo3 Steel, 571 Composition: 0.38% C - 0.56% Mn - 0.15% Si - 0.011% P - 0.005% S - 2.42% Ni - 0.74% Cr - 0.46% Mo BS Ene lit Steel 0.032% S - 1.27% Ni - 0.55% Cr BS En 160 Steel, 579 Composition: 0.41% C - 0.48% Mn - 0.13% Si - 0.016% P - 571 0.043% S - 1.75% Ni - 0.17% Cr - 0.22% Mo Composition: 0.11% C - 0.56% Mn - 0.30% Si - 0.015% P - 42Cr Moé4 Steel, 0.015% S - 0.07% Ni - 0.84% Cr - 0.48% Mo - 0.01% V 0.002% Al - 0.011% N 10CrMo 9 10 Steel, 571 seat - 0.31% Ni - 1.03% Cr - 0.17% Mo - 0.28% Cu 0.01 0.27C-1.17Mn-0.31Si-0.48Cr-0.0013B 0.013% S - 2.43% Cr - 1.06% Mo - 0.01% V - 0.012% N 571 0.0013B Weld Zone CCTs, 0.007% S - 0.29% Ni - 6.31% Cr - 0.51% Mo - 0.04% V - 572 C-Mn Composition: 0.19% C- 0.46% Mn - 0.34% Si - 0.019% P 0.013% S - 0.09% Ni - 7.83% Cr - 2.02% Mo - 0.01% V 0.005% Al - 0.013% N mI2CEoe 9.1 Steel, 5/2 C-Mn-Ni 582 - 584 Weld Metals, 585 - 588 Composition: 0.05% C - 0.98% Mn - 0.33% Si - 0.017% P 0.011% S - 0.06% Ni - 0.06% Mo - 45 ppm N - 446 ppm O Composition: 0.04% C - 1.20% Mn - 0.41% Si - 0.024% P 0.014% S - 1.10% Ni - 0.07% Mo - 120 ppm N - 430 ppm O Composition: 0.05% C - 1.18% Mn - 0.38% Si - 0.022% P 0.010% S - 2.52% Ni - 0.08% Mo - 178 ppm N - 482 ppm O Composition: 0.04% C - 1.29% Mn - 0.38% Si - 0.030% P 0.017% S - 3.58% Ni - 0.08% Mo - 141 ppm N - 432 ppm O 0.009% S - 0.39% Ni - 11.49% Cr - 0.98% Mo - 0.28% V 0.002% Al - 0.0323% N 12Cr-1Mo-1W-V-Nb Steel, 572 Composition (approx.): 0.1% C - 0.5% Mn- 0.25% Si - 12.0% Cr - 1.0% Mo - 0.28% V - 0.06% Nb - 1.0% W 18-0-1 Steel, 573 Composition: 0.54% C - 0.44% Mn - 0.33% Si - 0.023% P - Ti-Oxide 0.023% S - 4.02% Cr - 0.42% Mo - 1.24% V - 7.44% W 6-5-2-Steel, 573 Composition: 0.51% C - 0.40% Mn - 0.41% Si - 0.023% P 0.030% S - 3.94% Cr - 2.45% Mo - 1.24% V - 1.50% W Bearing Steel, 589 Composition: 0.079% C - 1.839% Mn - 0.20% Si - 0.0007% P 0.0007% S$ - 0.002% Al - 0.012% Ti - 0.0015% N - 0.0017% O Composition: 0.092% C - 1.42% Mn - 0.20% Si - 0.0010% P 0.0008% S$ - 0.020% Al - 0.0015% N - 0.0020% O 573 Si-Mn Steel, Composition: 0.52% C - 0.42% Mn - 0.47% Si - 0.028% P 0.030% S - 3.97% Cr - 3.15% Mo -1.15% V - 0.99% W Steel, Weld Metals, 0.005% S - 0.05% Ni - 0.01% Mo - 94 ppm N - 352 ppm O Composition: 0.07% C - 2.12% Mn - 0.33% Si - 0.023% P 0.008% S - 0.06% Ni - 0.01% Mo - 81 ppm N - 317 ppm O X20CrMoV121 Steel, 572 Composition: 0.20% C - 0.47% Mn - 0.24% Si - 0.026% P - 1524MoV 581 Composition: 0.06% C - 0.56% Mn - 0.41% Si - 0.023% P 0.008% S - 0.05% Ni - 0.01% Mo - 71 ppm N - 411 ppm O Composition: 0.07% C - 1.35% Mn - 0.52% Si - 0.022% P - Composition: 0.09% C - 0.30% Mn - 0.62% Si - 0.022% P 0.008% S - 0.14% Ni - 9.29% Cr - 1.01% Mo - 0.04% V 0.009% Al - 0.018% N 2-9-2 Steel, 580 Composition: 0.094% C - 1.32% Mn - 0.3% Si Composition: 0.18% C - 1.3% Mn - 0.27% Si 0.003% Al - 0.015% N Steel, Steel, Composition: 0.27% C - 1.17% Mn - 0.31% Si - 0.48% Cr - Composition: 0.08% C - 0.58% Mn - 0.68% Si - 0.019% P - 8Cr-2Mo 579 Composition: 0.41% C - 0.66% Mn - 0.25% Si -0.008% P - Composition: 0.10% C - 0.49% Mn - 0.24% Si - 0.013% P - 7..stecl, 57s Composition: 0.35% C - 0.65% Mn - 0.13% Si - 0.035% P - Composition: 0.16% C - 0.60% Mn - 0.26% Si - 0.015% P0.009% S - 0.31% Mo - 0.03% V - 0.004% Al - 0.009% N MA2CrMo. 577 Composition: 0.44% C - 0.60% Mn - 0.22% Si - 0.023% P - 0.017% S - 0.10% Cr 4 4 Steel, 576 Composition: 0.38% C - 1.49% Mn - 0.25% Si - 0.036% P - Rail Steel, 570 Composition: 0.77% C - 0.95% Mn - 0.22% Si - 0.014% P - 13CrMo 576 0.028% S - 0.26% Ni - 0.16% Cr - 0.27% Mo Composition: 0.20% C - 0.70% Mn - 0.29% Si - 0.10% Ni - ONi Steel, 16 Steel, Composition: 0.33% C - 1.48% Mn - 0.18% Si- 0.028% P - 590 Composition: 0.09% C - 0.81% Mn - 0.11% Si - 0.017% P 0.013% S - 0.11% Cu - 0.0050% N - 0.014% O 574 Composition: 0.25% C - 0.40% Mn - <0.10% Si - 3.50% Ni - Si-Mn-Ti-B Steel, 590 Composition: 0.11% C - 1.16% Mn - 0.29% Si - 0.013% P 0.011% S - 0.08% Mo - 0.10% Cu - 0.043% Ti - 0.0034% B 0.0057% N - 0.020% O Tl Steel, 591 Composition: 0.32% C - 0.74% Mn - 0.25% Si - 0.037% P - Composition: 0.15% C - 1.00% Mn - 0.23% Si - 0.014% P 0.023% S - 0.94% Ni - 0.53% Cr - 0.45% Mo - 0.34% Cu 0.004% Ti - 0.0014% B - 0.05% V - 0.008% Sn Composition: 0.22% C - 1.54% Mn - 0.35% Si -0.014% P 0.036% S - 0.11% Mo - 0.11% V - 0.011% N 3.5NiCrMoV Rotor Steel, 574 1.50% Cr - 0.50% Mo - 0.10% V Cr-Mo-V Rotor Steel, 575 0.036% S - 0.34% Ni - 1.04% Cr - 1.20% Mo - 0.24% V B.S. En 12 Steel, 575 Composition: 0.43% C - 0.95% Mn - 0.21% Si - 0.018% P 0.024% $ - 0.93% Ni - 0.15% Cr - 0.04% Mo SAE 1320 Steel, 591 Composition: 0.24% C - 1.59% Mn - 0.23% Si - 0.024% P 0.019% S me XXXV I—Ii I SAE 1050 Steel, Composition: 0.50% C - 0.91% Mn SAE 4340 Steel, 4142 Steel, Composition: 0.23% C - 0.85% V Composition: 0.20% C - 0.023% Nb - 1.04% V - 15 ppm N - 593 Composition: 0.40% C - 0.70% Mn - 0.31% Si - 0.010% P - 0.026% S - 0.16% Ni - 1.11% Cr - 0.16% Mo - 0.15% Cu SAE 52100 Steel, 594 13 ppm O Composition: 0.15% C - 0.020% NB - 0.75% V - 40 ppm N 41 ppm O Composition: 0.99% C - 0.37% Mn - 0.24% Si - 0.011% P 0.022% S - 0.07% Ni - 1.50% Cr - 0.01% Mo - 0.11% Cu Composition: 0.09% C - 0.016% Nb - 0.48% WV - 40 ppm N - 59 ppm O Composition: 0.04% C - 0.02% Mn - 0.020% Nb - 0.55% V - 595 Composition: 0.44% C - 0.50% Mn - 0.18% Si - 0.42% Ni - 5 ppm N - 1 ppm O Austenitic Steel, 613 Composition: 0.059% C - 1.138% Mn - 0.34% Si - 25.15% Ni - 0.22% Cr 0.82 C Steel, 595 15.39% Cr - 0.86% Al - 4.30% Ti - 0.01% N Composition: 0.82% C - 0.50% Mn - 0.18% Si - 0.42% Ni 0.22% Cr Ni-Cr Steel, Composition: Composition: Composition: Composition: 596 597 Fe-V-C Composition: 0.36% C - 1.45% Ni - 1.1% Cr - 0.27% Mo Fe-0.2C-5Cr Steel, Steel, 597 Alloy Steel, 597 Composition: 0.105% C - 0.0035% Si - 0.0015% P - 0.003% S - 0.0005% O 598 Composition: 0.105% C - 1.53% Mn - 0.0035% Si - 0.0015% P - 0.0617% S - 0.0001% O Nb Steel, 599 Composition: 0.10% C - 1.54% Mn - 0.0035% Si - 0.0015% P - 0.0012% S - 0.04% Nb - 0.0003% O 3.25% Si Steel, Composition: 0.06% C - 0.42% Mn - 0.014% Si - 0.002% P - 0.009% S - 0.006% Cu - 0.018% Nb - 0.051% Al - 0.004% N Composition: 0.05% C - 0.42% Mn - 0.045% Si - 0.002% P 0.009% S - 0.006% Cu - 0.035% Nb - 0.057% Al - 0.004% N Nb HSLA Steel, HSLA 602 - 603 Si - 0.018% P Al - 0.0058% N Si - 0.017% P Al - 0.0061% N Composition: 0.059% C - 1.70% Mn - 0.12% Si - 0.018% P - 605 - 606 0.011% S - 0.29% Mo - 0.080% Nb - 0.022% Al - 0.0062% N Composition: 0.062% C - 1.75% Mn - 0.12% Si - 0.018% P 0.011% S - 0.03% Mo - 0.075% Nb - 0.029% Al - 0.0102% N Composition: 0.20% C - 0.87% Mn - 0.30% Si - 0.38% Mo 0.003% B - 0.006% N - 0.052% Zr Steel, 619 - 621 Composition: 0.063% C - 1.71% Mn - 0.11% 0.011% S - 0.03% Mo - 0.084% Nb - 0.024% Composition: 0.060% C - 1.74% Mn - 0.12% 0.011% S - 0.29% Mo - 0.075% Nb - 0.022% Composition: 0.10% C - 0.88% Mn - 0.35% Si - 0.66% Mo 0.003% B - 0.005% N - 0.044% Zr Nb Steels, Composition: 0.062% C - 1.71% Mn - 0.12% Si - 0.016% P 0.011% S - 0.02% Mo - 0.074% Nb - 0.025% Al - 0.0060% N Composition: 0.10% C - 0.88% Mn - 0.34% Si - 0.39% Mo - Steel, 618 - 0.02% Al - 0.006% (max) N Composition: 0.065% C - 1.25% Mn - 0.18% Si - 0.045% Nb - 0.08% Al - 0.006% (max) N 601 0.003% B - 0.005% N - 0.046% Zr 0.1C-0.66Mo-B Steel, 604 - 605 0.2% C - 0.38% Mo-B Steels, Composition: 0.067% C - 1.23% Mn - 0.20% Si - 0.040% Nb Composition: 0.10% C - 0.87% Mn - 0.33% Si - 0.24% Mo 0.002% B - 0.005% N - 0.048% Zr 0.1C-0.39Mo-B 616 0.011% S Composition: 0.030% C - 0.08% Mn - 3.30% Si - 0.006% P 0.012% S Nb Steels, 617 0.0038% N Composition: 0.02% C - 1.60% Mn - 0.16% Si - 0.043% Nb 0.017% Ti - 0.0018% B - 0.0020% N Steel, 615 Composition: 0.051% C - 0.21% Mn - 3.44% Si - 0.010% P - Low-Carbon Bainitic Steel, 600 Composition: 0.08% C - 1.57% Mn - 0.28% Si - 0.011% P 0.002% S - 0.07% V - 0.03% Nb - 0.018% Ti - 0.042% sol. Al 0.1C-0.24Mo-B 615 0.010% S - 0.05% Ti - 0.01% Al - 0.0052% N Composition: 0.058% C - 1.67% Mn - 0.20% Si - 0.005% P 0.010% S - 0.11% Ti - 0.03% Al - 0.0062% N Composition: 0.075% C - 1.51% Mn - 0.30% Si - 0.005% P 0.010% S - 0.18% Ti - 0.02% Al - 0.0084% N Composition: 0.050% C - 1.43% Mn - 0.27% Si - 0.005% P 0.010% S - 0.25% Ti - 0.01% Al - 0.0070% N 598 Composition: 0.57% C - 0.82% Mn - 0.30% Si - 0.016% P - Steel, C - 0.031% Nb C - 0.036% Nb - 0.003% B C - 1.07% Mn - 0.033% Nb C - 0.031% Nb Composition: 0.072% C - 1.50% Mn - 0.24% Si - 0.005% P - 0.019% S - 1.16% Ni - 1.07% Cr - 0.26% Mo Carbon Steel, 598 C-Mn Alloy Steel, 0.002% N Ti Bearing Steels, Composition: 0.18% C - 1.09% V Low Fe - 0.07% Fe - 0.09% Fe - 0.07% Fe - 0.07% Composition: 0.12% C - 0.02% Mn - 0.02% Mo - 0.46% V - Composition: 0.23% C - 5.1% Cr Fe-0.2C-1V 613 - 614 Alloy Steels, Fe-Nb-C Composition: 0.30% C - 0.27% Mn - 0.019% P - 0.019% S 3.50% Ni - 1.25% Cr SAE 4337 Steel, 611 - 612 Steels, Carbon 0.33% Mo 0.44 C Steel, 609 592 Composition: 0.42% C - 0.78% Mn - 1.79% Ni - 0.80% Cr - SAE PRECIPITATION, TIME-TEMPERATURE - 652 592 607 0.15C Steel, Composition: 0.16% C - 1.41% Mn - 0.36% Si - 0.018% P 0.017% S - 0.031% Nb - 0.020% sol. Al - 0.0054% N 622 - 623 Composition: 0.17% C - <0.1% Mn - 0.04% Si - <0.001% P - 0.004% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - <0.017% Al - <0.01% V Composition: 0.14% C - <0.1% Mn - 0.14% Si - <0.001% P 0.004% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - 0.013% Al - <0.01% V Composition: 0.17% C - <0.1% Mn - 0.36% Si - <0.001% P - 0.006% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - <0.005% Al - 0.01% V ee XXXVI Composition: 0.16% C - <0.1% Mn - <0.1% Si - <0.001% P - 0.005% S - 0.94% Ni - <0.01% Cr - <0.1% Mo - 0.007% Al Ferritic Stainless Steels, - <0.01% V Composition: 0.17% C - <0.1% Mn - 0.04% Si - <0.001% P - 0.004% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - <0.017% Al - <0.01% V Composition: 0.14% C - <0.1% Mn - 0.14% Si - <0.001% P 0.004% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - 0.013% Al - <0.01% V Composition: 0.17% C - <0.1% Mn - 0.36% Si - <0.001% P 0.006% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - <0.005% Al - 0.01% V P - 0.008% S - 0.05% Ni - 24.60% Cr Composition: (A6) 0.06% C - 0.36% Mn - 0.65% Si - 0.024% P - 0.008% S - 0.08% Ni - 31.00% Cr Composition: (A7) 0.08% C - 0.72% Mn - 0.80% Si - 0.05% Ni - 33.03% Cr 25Cr-3Mo-4Ni Ferritic Stainless Steel, 633 Composition: 0.014% C - 0.29% Mn - 0.27% Si - 0.019% P - 0.011% S - 3.90% Ni - 24.53% Cr - 3.54% Mo - 0.32% Al 0.17% Nb Composition: 0.013% C - 0.29% Mn - 0.27% Si - 0.012% P 0.009% S - 4.66% Ni - 24.41% Cr - 3.50% Mo - 0.012% Al 0.32% Nb - 0.08% Ti Composition: 0.16% C - <0.1% Mn - <0.1% Si - <0.001% P - 0.005% S - 0.94% Ni - <0.01% Cr - <0.1% Mo - 0.007% Al - <0.01% V Composition: 0.17% C - <0.1% Mn - 0.04% Si - <0.001% P 0.004% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - <0.017% Al - <0.01% V Austenitic Composition: 0.16% C - <0.1% Mn - <0.1% Si - <0.001% P Esshete - 0.007% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - 0.039% Al - <0.01% V Composition: 0.15% C - <0.1% Mn - <0.1% Si - <0.001% P - 0.004% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - 0.078% Al - <0.01% V Stainless Steels, 624 - 625 0.008% AlgOg - 0.0058% acid soluble N Composition: 0.05% C - 0.35% Mn - 0.008% Si - 0.013% P - 0.027% S - 0.03% Ni - 0.02% Cr - 0.03% Cu - 0.058% Al 0.008% AlgO2 - 0.0058% acid soluble N Composition: 0.055% C - 0.33% Mn - 0.006% Si - 0.010% P 0.022% S - 0.020% Al - 0.0088 acid soluble N Composition: 0.043% C - 0.35% Mn - 0.004% Si - 0.010% P 0.023% S - 0.079% Al - 0.0072% acid soluble N Do ae De 3Mn 5B beSteel, 626 3Mn 20B Steel, 627 Si - 0.014% Al Composition: 0.0005% C B- 2.86% Mn - 0.21% 0.00018% N - 0.089% Steel, P - 0.012% S - 9.0% Ni - 18.7% Cr - 0.026% N 316 - Composition: 0.05% C - 1.81% Mn - 0.63% Si - 0.029% P - 0.010% S$ - 11.9% Ni - 16.6% Cr - 2.3% Mo - 0.024% N 321 - Composition: 0.05% C - 1.76% Mn - 0.59% Si - 0.024% P - 0.008% S - 10.5% Ni - 17.6% Cr - 0.35% Ti - 0.011% N 627 0.002% $ - 0.04% Al - 0.008% . Ti - 0.0030% 347 - Composition: 0.05% C - 1.64% Mn - 0.59% Si - 0.019% Cr - 0.025% N - 0.87% Nb P - 0.014% S - 10.4% Ni eh- 17.6% al N - 0.0014% B Tempaloy Composition: 0.05% C - 1.5% Al - 0.0019% N Composition: 0.02% C - 0.003% Al - 0.0034% N ei A-1 - Composition: 0.07% C - 1.71% Mn - 0.66% Y Si - 0.028% P - 0.005% S - 9.8% Ni - 18.0% Cr - 0.06% Ti 0.033% N - 0.138% Nb 628 - 629 enG27 Compont 639 304 - Composition: 0.05% C - 1.73% Mn - 0.60% Si - 0.028% Composition: 0.08% C - 1.4% Mn - 0.25% Si - 0.008% P - Fe-C Alloys, 636 - 638 7.78% C Cr 27.78% Austenitic Stainless Steels, Composition: 0.061% C - 3.02% Mn - 0.23% Si - 0.008% Al 0.0009% N - 0.0020% B HT-50 635 Laboratory Experimental Heat. - Composition: 0.04% C 0.38% Mn - 0.54% Si - 0.024% P - 0.015% S - 0.08% Ni - ; hee 635 P - 0.030% S - 0.30% Ni - 25.51% Cr 625 N Steel, 0 Steel, 304 - Composition: 0.06% C - 0.52% Mn - 0.53% Si - 0.018% P - 0.014% S - 9.14% Ni - 19.17% Cr 347 - Composition: 0.05% C -1.56% Mn - 0.32% Si - 0.018% P - 0.016% S - 10.30% Ni - 17.86% Cr 316 - Composition: 0.04% C - 1.54% Mn - 0.58% Si - 0.024% P - 0.015% S - 11.96% Ni - 17.27% Cr - 2.47% Mo 309 - Composition: 0.13% C - 1.54% Mn - 0.39% Si - 0.024% P - 0.015% S - 13.40% Ni - 23.21% Cr 310 - Composition: 0.05% C - 1.95% Mn - 0.37% Si - 0.023% P - 0.007% S - 21.09% Ni - 27.23% Cr 446 - Composition: 0.14% C - 0.70% Mn - 0.64% Si - 0.021% 0.027% S - 0.03% Ni - 0.02% Cr - 0.03% Cu - 0.058% Al - a 634 Composition: 0.05% C - ~9.0% Ni - ~18.0% Cr Composition: 0.038% C - ~9.0% Ni - -18.0% Cr Composition: 0.05% C - 0.35% Mn - 0.008% Si - 0.013% P - Fe-0.07% 1250 Austenitic 304 Stainless Steel, - 0.004% S - <0.1% Ni - <0.01% Cr - <0.1% Mo - 0.15% Al Steels, Stainless Steel, 0.019% S - 0.17% Ni - 23.23% Cr - 0.46% N - <0.01% V Carbon Cr-Mn-C-N Composition: 0.43% C - 13.54% Mn - 0.25% Si - 0.008% P - Composition: 0.10% C - 6.0% Mn - 0.5% Si - 9.6% Ni 15.25% Cr - 1.02% Mo - 0.3% V - 1.1% Nb - 0.0066% B Composition: 0.14% C - <0.1% Mn - <0.1% Si - <0.001% P Low 633 Composition: (A4) 0.06% C - 0.31% Mn - 0.59% Si - 0.026% 316 Stainless Steel, 640 Composition: 0.033% C - 1.55% Mn - 0.44% Si - 0.022% P - ay 0.022% S - 13.6% Ni - 16.4% Cr - 2.12% Mo - 0.025% N - ee (Carbon Steel, Composition: 0.046% C - 0.35% Mn - 0.020% P - 0.018% S - 0.03% sol. Al, 0.010% insol Al - 0.006% N 0.0012% B - 0.18% Co - 0.07% Cu Composition: 0.021% C - 1.74% Mn - 0.41% Si - 0.030% P - Composition: 0.12% C - 0.5% V Composition: 0.12% C - 1.3% Mo Composition: 0.023% C - 1.74% Mn - 0.73% Si - 13.1% Ni - Low Ferritic Steel, 0.007% S - 12.3% Ni - 17.2% Cr - 2.40% Mo - 0.080% N 0.0032% B - 0.21% Co - 0.15% Cu 630 2-1/4 Cr - 1% Mo Steel, 631 - 632 Composition: 0.15% C - 0.50% Mn - 0.18% Si - 0.018% P 0.012% S - 0.165% Ni - 2.12% Cr - 0.94% Mo - 0.077% Cu 0.009% Sn 12% Cr Martensitic Steels, 17.3% Cr - 2.66% Mo 316 Stainless Steel, 642 Composition: 0.066% C - 1.57% Mn - 0.21% Si - 12.3% Ni 17.4% Cr - 2.05% Mo Composition: 0.05% C - 1.68% Mn - 0.44% Si - 0.023% P - 632 0.012% S - 11.85% Ni - 16.81% Cr - 2.21% Mo - 0.16% Cu 0.030% Al - 0.007% Sn - 0.002% Pb - 0.002% B Composition: 0.21% C - 13.2% Cr - 0.024% N Composition: 0.18% C - 0.58% Mn - 0.31% Si - 0.18% Ni - 11.7% Cr - 0.49% Mo - 0.01% Al - 0.38% V - 0.20% Nb - 0.033% N TEE ee ee MxXVil aaa a 316 Austenitic Stainless Steel, TIME-TEMPERATURE 653 - 700 642 Composition: 0.06% C - 1.72% Mn - 0.40% Si - 0.012% P 0.007% S - 13.30% Ni - 17.30% Cr - 2.33% Mo - 0.003% Ti Titanium Modified 316 Stainless Steel, 643 SAE 1050 Steel, C-Mn Steel, C-Mn-B 644 Composition: 0.45% C - 0.77% Mn - 0.35% Si - 0.015% P 0.013% S - 0.72% Cr 644 SAE <0.01% Ti - <0.001% B - 0.10% Cu - 0.039% No 308CRE Stainless Steel, 644 645 Composition: 0.142% C - 1.20% Mn - 0.56% Si - 19.08% Ni - 0.023% S - <0.1% Ni - 2.1% Cr - 1.0% Mo Ni-Cr 645 - 646 0.011% S - 13.55% Ni - 16.80% Cr - 4.80% Mo - 0.039% N Composition: 0.050% C - 0.67% Mn - 0.49% Si - 0.016% P 0.011% S - 13.45% - 17.05% Cr - 4.73% Mo - 0.145% N Austenitic Steel, 647 0.020% S - 3.53% Ni - 0.84% Cr Alloy Steel, 661 - 663 Composition: 0.33% C - 0.23% Mn - 0.06% Si - 0.013% P 0.021% S - 3.78% Ni - 1.79% Cr Composition: 0.44% C - 1.64% Mn - 0.06% Si - 0.029% P 0.022% S - 1.84% Ni - 1.64% Cr - 0.40% Mo - 0.15% V Fe-30Cr (Alloy 90) Steel, 664 15.6% Cr - 4.10% Ti - 0.009% N 647 - 648 Cr - 0.08% Mo - 0.004% N Austenitic Stainless Composition: 0.002% C - <0.01% Mn - <0.01% Si - 13.60% Cr - 1.88% Mo - 0.004% N Composition: 0.24% C - 1.72% Mn - 2.13% Si - 0.008% P - Composition: 0.044% C - 0.64% Mn - 0.31% Si - 18.04% Cr - 0.010% S - 22.8% Ni - 25.7% Cr - 0.016% N 316 Stainless Steel, 649 0.01% Mo - 0.091% N Composition: 0.043% C - 0.64% Mn - 0.31% Si - 18.03% Cr 1.94% Mo - 0.092% N 19-12-3 Weld Composition: 0.044% C - 0.64% Mn - 0.31% Si - 17.94% Cr - 1.93% Mo - 0.052% N - 0.42% Ti Ti-stabilized Steel - Composition: 0.013% C - 0.45% Mn - Wrought 316 Steel Composition: 0.04-0.10% C - <2.00% Mn - <1.00% Si - <0.045% P - <0.030% S - 10.6-14.0% Ni 16.0-18.5% Cr - 2.00-3.00% Mo 0.27% Si - 0.020% P - 0.011% S - 17.4% Cr - 2.02% Mo 0.0148% N - 0.24% Ti 19-12-3 Weld Metal Composition: <0.08% C - 0.50-2.50% Nb-stabilized Steel - Composition: 0.013% C - 0.49% Mn 0.27% Si - 0.019% P - 0.013% S - 17.4% Cr - 2.00% Mo - Mn - <1.00% Si - <0.040% P - <0.035% S - 10.0-14.0 Ni 17.0-20.0 % Cr - 2.5-3.5% Mo Duplex Stainless Steel, 0.0095% N - 0.35% Nb 650 Duplex Composition: 0.028% C - 1.63% Mn - 0.45% Si - 0.031% P 0.012% S - 5.00% Ni ~ 21.8% Cr - 3.12% Mo - 0.113% N 0.05% Cu Uranus 50 Duplex Stainless Steel, Stainless Steel, 651 Composition: 0.03% C - 0.7% Mn - 0.6% Si - 5.0% Ni 26.0% Cr - 1.3% Mo Composition: 0.02% C - 0.94% Mn - 0.48% Si - 0.02% P 0.009% S - 6.64% Ni - 25.3% Cr - 2.96% Mo - 0.49% Cu 0.11% N - 0.32% W Stainless Steels, 666 5Mo Composition: 0.025% C - 0.26% Mn - 0.10% Si - 0.012% P - 0.015% S - 7.38% Ni - 24.49% Cr - 4.99% Mo - 0.36% N 6Mo Composition: 0.018% C - 0.28% Mn - 0.14% Si - 0.011% P - 0.012% S - 9.18% Ni - 23.82% Cr - 5.98% Mo - 0.20% N 650 Composition: 0.032% C - 0.62% Mn - 0.45% Si - 0.022% P 0.021% S - 7.38% Ni - 21.08% Cr - 2.39% Mo - 1.33% Cu 0.003% B - 0.071% N - <0.01% Ti (33% ferrite) Duplex 664 - 665 Composition: 0.002% C - <0.01% Mn - <0.01% Si - 0.001% P - 17.35% Cr - 0.01% Mo - 0.003% N Composition: 0.004% C - <0.01% Mn - <0.01% Si - 0.001% P - 17.61% Cr - 2.02% Mo - 0.004% N Composition: 0.003% C - <0.01% Mn - <0.01% Si - 13.68% Composition: 0.11% C - 1.76% Mn - 0.70% Si - 0.02% P 0.011% S - 19.75% Ni - 24.66% Cr - 0.31% Mo - 0.051% Al 0.12% Cu - 0.0015% B - 0.005% Pb - 0.004% Sn Wrought 316 Stainless Steel and Metal, 649 660 Ferritic Stainless Steels, Composition: 0.046% C - 1.14% Mn - 0.36% Si - 25.5% Ni - Cast 25.7%Cr-22.8%Ni Steel, 648 Steel, Composition: 0.26% C - 0.66% Mn - 0.07% Si - 0.026% P - Composition: 0.042% C - 1.50% Mn - 0.45% Si - 14.34% Ni 17.76% Cr - 4.72% Mo - 0.025% N Composition: 0.048% C - 0.80% Mn - 0.64% Si - 0.017% P - 310 Stainless Steel, 657 0.015% S - 0.14% Ni - 0.13% Cr - 0.25% Mo SAE 3140 Steel, 658 - 659 2.25Cr-1Mo Steel, 660 Composition: 0.07% C - 0.50% Mn - 0.38% Si - 0.020% P - 0.015% S - 9.98% Ni - 19.96% Cr - <0.01% Mo - 0.04% V 0.57% Ti - 0.002% B - 0.03% Cu - 0.011% Ng 17 13 Steel, 4047 Steel, Composition: 0.48% C - 0.83% Mn - 0.28% Si - 0.019% P - Composition: 0.043% C - 1.96% Mn - 0.62% Si - 0.011% P - 22.45% Cr X 5 CrNiMo 656 0.032% S - 0.0034% B SAE 5140 Steel, 657 Composition: 0.068% C - 1.61% Mn - 0.49% Si - 0.018% P 0.012% S - 10.28% Ni - 20.89% Cr - 0.05% Mo - 0.06% V - Austenitic Stainless Steel, Steel, Composition: 0.26% C - 1.67% Mn - 0.32% Si - 0.021% P - Composition: 0.088% C - 1.06% Mn - 0.42% Si - 8.0% Ni 24.85% Cr - 0.0115% N 308 Stainless Steel, 655 Composition: 0.26% C - 1.63% Mn - 0.28% Si - 0.021% P 0.034% S 643 Composition: 0.06% C - 1.69% Mn - 0.54% Si - 0.012% P 0.006% S - 9.58% Ni - 17.48% Cr - 0.50% Ti - 0.011% N Stainless Steel, 655 Composition: 0.46% C - 0.75% Mn - 0.02% P - 0.034% S 0.03% Ni - 0.12% Cr Composition: 0.057% C - 1.41% Mn - 0.03% Si - 0.005% P 0.004% S - 13.96% Ni - 17.52% Cr - 2.51% Mo - 0.29% Ti - 0.004% N 321 Stainless Steel, EMBRITTLEMENT, ELI Ferritic Stainless Steel, 666 Composition: 0.074% C - 0.12% Si - 0.013% P - 0.002% S - 3.93% Ni - 24.8% Cr - 4.05% Mo - 0.0117% N - 0.51% Nb Ferritic Cr-Mo-Ni Stainless Steels, 667 29Cr-4Mo Ferritic Stainless Steel, 668 29-4 Ferritic Stainless Steel, 668 Composition: 0.004% C - 0.1% Mn - 0.1% Si - 0.01% P - 0.015% S - 0.1% Ni - 29.0% Cr - 4.0% Mo - 0.012% N XXXVili 29%Cr-4Mo-2Ni Ferritic Stainless Steel, 669 316L Stainless Steel, Composition: 0.0040% C - 0.04% Mn - 0.02% Si - 0.007% P 0.012% S - 2.17% Ni - 29.5% Cr - 4.0% Mo - 0.0146% N 0.06% Al - 0.0011% O Uranus 50 Duplex Stainless Steel, 669 0.013% S - 12.62% Ni - 18.42% Cr - 3.00% Mo - 0.020% Ng 304L Stainless Steel, 682 Composition: 0.020% C - 1.40% Mn - 0.41% Si - 0.032% P 0.013% S - 10.30% Ni - 18.10% Cr - 0.32% Mo - 0.24% Cu - Composition: 0.032% C - 0.62% Mn - 0.45% Si - 0.022% P - 0.021% S - 7.38% Ni - 21.08% Cr - 2.39% Mo - 1.33% Cu - 0.039% N 304 Stainless Steel, 682 - 685 Composition: 0.038% C - 1.60% Mn - 0.45% Si - 0.021% P - 0.071% N - 0.003% B - <0.01% Ti (33% ferrite) AL-6X Austenitic Stainless Steel, 669 Composition: 0.02% C - 1.5% Mn - 0.4% Si - 0.02% P - 0.019% S - 9.2% Ni - 18.4% Cr - <0.03% Ti - <0.03% Cb+Ta - 0.027% Al+Ta 18%Cr-8%Ni Austenitic Stainless Steel, 685 304 Stainless Steel, 686 - 687 0.002% S - 24.5% Ni - 20.5% Cr - 6.3% Mo 12% Cr Ferritic Stainless Steel, 670 - 671 Composition: 0.009% C - 12.77% Cr - 0.002% N - 0.15% Ti Composition: 0.006% C - 12.66% Cr - 0.018% Ni - 0.40% Ti Composition: 0.069% C - 0.01% Si - 0.003% P - 0.009% S - 9.4% Ni - 18.6% Cr - 0.002% N Composition: 0.002% C - 13.20% Cr - 0.011% N - 0.42% Ti Fe-26Cr Ferritic Stainless Steel, Composition: 0.063% C - 0.01% Si - 0.060% P - 0.003% S - 672 9.4% Ni - 17.6% Cr - 0.001% N Composition: 0.0023% C - 0.01% Mn - 0.106% Si - 0.018% P Composition: 0.068% C - 0.01% Si - 0.003% P - 0.033% S - - 0.015% S - 0.072% Ni - 25.5% Cr - 0.01% Mo - 0.0083% N 18Cr-2Mo-Ti Stabilized Ferritic Stainless Steel, 9.6% Ni - 18.6% Cr - 0.002% N Composition: 0.022% C - 0.01% Si - 0.004% P - 0.006% S 9.2% Ni - 18.5% Cr - 0.01% N Composition: 0.022% C - 0.01% Si - 0.060% P - 0.006% S 9.2% Ni - 18.2% Cr - 0.01% N Composition: 0.005% C - 0.030% S - 9.5% Ni - 18.5% Cr Composition: 0.078% C - 1.12% Mn - 0.41% Si - 0.025% P - 672 - 673 Composition: 0.023% C - 0.33% Mn - 0.16% Si - 0.019% P - 0.012% S - 0.33% Ni - 17.15% Cr - 2.23% Mo - 0.04% Cu - 0.05% Co - 0.61% Ti Austenitic Stainless Steels, 673 - 676 0.027% S - 8.49% Ni - 18.1% Cr - 0.21% Cu 316 Stainless Steel, 687 Composition: 0.069% C - 9.4% Ni - 18.6% Cr - 0.002% N Composition: Composition: Composition: Composition: 0.035% N 0.045% 0.028% 0.013% 0.067% C - 9.51% Ni - 17.22% Cr - 0.003% N C - 9.2% Ni - 18.5% Cr - 0.010% N C - 9.5% Ni - 18.5% Cr - 0.010% N C - 8.76% Ni - 17.67% Cr - 2.0% Mo - Composition: 0.057% C - 0.54% Si - 1.67% Mn - 0.035% P 0.025% S - 12.77% Ni - 17.14% Cr - 2.21% Mo - 0.31% Cu 20% Cr and 12 to 46% Ni Stainless Steels, 316 Stainless Steel, 689 Composition: 0.067% C - 8.80% Ni - 17.65% Cr - 2.03% Mo - 0.013% 0.015% 0.069% 0.077% C - 8.49% Ni - 17.30% Cr - 0.037% N C - 8.77% Ni - 17.96% Cr - 0.097% N C - 9.4% Ni - 18.6% Cr - 0.002% N C - 11.6% Ni - 18.08% Cr - 2.0% Mo - Austenitic 308 Stainless Steel, Duplex 0.067% C - 8.80% Ni - 17.65% Cr - 2.03% Mo - AISI 321 Stainless Steel, Rolled Stainless Steel and Metal, 692 - 693 Composition: 0.029% C - 1.54% Mn - 0.52% Si - 0.03% P 11.88% Ni - 18.13% Cr - 0.13% N Composition: 0.030% C - 1.6% Mn - 0.38% Si - 0.03% P 7.88% Ni - 18.58% Cr - 0.108% N Composition: 0.038% C - 1.59% Mn - 0.49% Si - 0.03% P 9.52% Ni - 20.22% Cr - 0.083% N 677 - 678 0.025% C - 9.0% Ni - 18.0% Cr 0.028% C - 21.65% Ni - 25.29% Cr - 0.041% N 0.026% C - 14.97% Ni - 18.02% Cr - 0.027% N 11% Ni - 18.5% Cr 679 - 680 18%Cr-15%Ni Stainless Steel, 678 P Composition: 0.07% C - 0.38% Si - 1.50% Mn - 0.031% 0.008% S - 11.75% Ni - 18.41% Cr - 0.81% Cb - 0.050% No Rolled Stainless Steel and Weld Metal, 693 Weld 18Cr-12Ni-2.8Mo Composition: 0.025% C - 0.69% Mn - 0.72% Si - 12.84% Ni 18.44% Cr - 2.75% Mo, Ferrite content 0.3% Rolled Stainless Steel and Metal, 694 Rolled Stainless Steel and Weld Metal, 694 18Cr-10Ni Weld 18Cr-12Ni-2 to 3Mo Austenitic Cr-Ni-Mo Steel X 5 CrNiMo 694 17 13, Composition: 0.042% C - 1.50% Mn - 0.45% Si - 14.34% Ni 17.76% Cr - 4.72% Mo - 0.025% N P Composition: 0.08% C - 1.28% Mn - 0.41% Si - 0.020% No 0.030% Cb 0.77% Cr 18.30% Ni 0.022% S$ - 10.72% 304L Stainless Steel, 18Cr-10Ni Composition: 0.039% C - 0.69% Mn - 0.72% Si - 10.57% Ni 18.63% Cr - <0.01% Mo, Ferrite content = 0.5% Composition: 0.023% C - 0.70% Mn - 0.74% Si - 10.62% Ni 19.09% Cr - <0 01% Mo, Ferrite content 1.1% Composition: 0.016% C - 0.72% Mn - 0.80% Si - 11.09% Ni 19.28% Cr - <0.01% Mo, Ferrite content = 0.7% 0.030% C - 14.37% Ni - 17.78% Cr - 2.04% Mo 347 Stainless Steel, 690 - 692 Composition: 0.09% C - 1.17% Mn - 0.37% Si - 13.4% Ni 18.1% Cr - 0.51% Ti - 0.017% N 8.83% Ni - 18.02% Cr - 0.002% N 678 689 - 690 0.008% S - 9.82% Ni - 20.95% Cr Composition: 0.068% C - 1.89% Mn - 8.67% Ni - 17.72% Cr - 0.091% N Composition: 0.028% C - 1.64% Mn - 0.34% Si - 0.03% P 9.78% Ni - 16.29% Cr - 2.53% Mo - 0.078% N Composition: 0.034% C - 1.51% Mn - 0.64% Si - 0.04% P - 304 Stainless Steel, 308 Stainless Steel, Composition: 0.040% C - 1.76% Mn - 0.41% Si - 0.016% P - 0.096% N Composition: - 0.024% N Composition: Composition: Composition: Composition: 689 Composition: 0.040% C - 1.76% Mn - 0.41% Si - 0.016% P 0.008% S - 9.82% Ni - 20.95% Cr 0.064% C - 8.53% Ni - 17.38% Cr - 0.124% N Austenitic Steel, 688 Composition: 0.057% C - 1.65% Mn - <0.07% Si - <0.025% P - 0.007% S - 12.44% Ni - 16.62% Cr - 2.32% Mo - 0.135% Cu - <0.01% Ti - <0.01% Nb 0.096% N Composition: Composition: Composition: Composition: 0.097% N Composition: Composition: 681 Composition: 0.023% C - 1.40% Mn - 0.32% Si - 0.018% P - 681 Si - 0.021% P Composition: 0.022% C - 1.04% Mn - 0.34% 0.018% S - 9.39% Ni - 19.31% Cr - 0.053% Ng a EXeveUIEX: ee Alloy 800, Composition: 2.89% C - 3.08% Mn - 0.61% Si - 17.0% Cr - 695 - 699 1.49% Mo Composition: 0.019% C - 1.21% Mn - 0.49% Si - 33.5% Ni - Composition: 2.94% C - 0.78% Mn - 0.58% Si - 1.16% Ni - 20.6% Cr - 0.01% Cu - 0.51% Al - 0.46% Ti - 0.027% N 17.6% Cr - 0.54% Mo Composition: 0.029% C - 0.63% Mn - 0.48% Si - 0.007% P - Composition: 2.93% C - 0.76% Mn - 0.56% Si - 2.07% Ni 17.5% Cr - 0.45% Mo Composition: 2.90% C - 0.76% Mn - 0.55% Si - 0.61% Ni - 0.011% S - 33.40% Ni - 21.30% Cr - 0.07% Cu - 0.41% Ti - 0.18% Al - 158 ppm N Composition: 0.028% C - 0.56% Mn - 0.46% Si - 0.008% P - 0.004% S - 33.20% Ni - 21.50% Cr - 0.07% Cu - 0.50% Ti 0.05% Al - 150 ppm N 17.4% Cr - 1.43% Mo Composition: 2.93% C - 0.76% Mn - 0.55% Si - 1.10% Ni 17.4% Cr - 2.43% Mo Composition: 2.91% C - 0.77% Mn - 0.58% Si - 17.4% Cr - Composition: 0.030% C - 0.60% Mn - 0.39% Si - 0.008% P - 0.005% S - 33.80% Ni - 21.75% Cr - 0.07% Cu - 0.55% Ti 0.19% Al - 154 ppm N Composition: 0.029% C - 0.59% Mn - 0.45% Si - 0.008% P - 0.56% Mo - 1.02% Cu Composition: 2.93% C - 0.77% Mn - 0.55% Si - 17.5% Cr - 0.012% S - 33.25% Ni - 21.75% Cr - 0.07% Cu - 0.50% Ti - 0.56% Mo - 1.95% Cu 0.28% Al - 150 ppm N Composition: 0.030% C - 0.61% Mn - 0.49% Si - 0.007% P - Composition: 2.96% C - 0.79% Mn - 0.52% Si - 17.5% Cr - 0.005% S - 33.25% Ni - 21.85% Cr - 0.07% Cu - 0.20% Ti - 1.55% Mo - 0.98% Cu 0.20% Al - 150 ppm N Composition: 0.029% C - 0.61% Mn - 0.47% Si - 0.007% P - Composition: 2.88% C - 0.78% Mn - 0.60% Si - 16.9% Cr 1.52% Mo - 1.74% Cu Composition: 2.96% C - 0.79% Mn - 0.93% Si - 17.5% Cr 1.55% Mo - 0.98% Cu Composition: Fe - 2.19% C - 11.65% Cr - 0.02% Mo 0.005% S - 33.45% Ni - 21.40% Cr - 0.06% Cu - 0.31% Ti 0.19% Al - 151 ppm N Carpenter 20Cb-3 Stainless Steel Strip, 700 699 - C Composition: 0.036% C - 0.23% Mn - 0.38% Si - 0.020% P - Duplex Stainless Steels, Composition: Fe - 2.65% C - 12.65% Cr Composition: Fe - 2.55% C - 12.40% Cr - 1.25% Mo 700 Composition: Fe - 2.41% C - 12.15% Cr - 2.45% Mo Composition: 0.030% C - 1.29% Mn - 0.78% Si - 0.022% P - 0.014% S - 5.14% Ni - 24.75% Cr - 1.80% Mo - 0.071% N Composition: Fe - 3.51% C - 12.20% Cr - 0.02% Mo Composition: 0.020% C - 1.19% Mn - 0.31% Si - 0.027% P - Composition: Fe - 3.39% C - 11.95% Cr - 1.36% Mo 0.009% S - 5.52% Ni - 21.90% Cr - 2.97% Mo - 0.151% N Composition: Fe - 3.25% C - 11.80% Cr - 2.60% Mo Composition: Fe - 2.08% C - 15.85% Cr - trace level Mo Composition: Fe - 2.05% C - 15.60% Cr - 0.81% Mo Composition: Fe - 1.96% C - 15.40% Cr - 2.20% Mo IRONS, 701 - 766 V aan { : ition: Fe he - 2.13% % C - 11.30% Cr - 1.41% sMo vender Me Composition: Fe - 1.05% © - 10.8% Cr - as.807 0.02% Mo 0.004% S - 33.70% Ni - 19.76% Cr - 2.25% Mo - 3.14% Cu 0.79% Cb LE Composition: Fe - 2.67% C - 14.95% Cr - trace level Mo \ Composition: Fe - 2.67% C - 15.20% Cr - 1.09% Mo Gray Cast Irons, 703 - 704 Composition: 3.63% C -2.92% GC* - 0.71% CC** - 0.53% Composition: Fe - 2.60% C - 15.20% Cr - 1.95% Mo Mn - 1.75% Si - 0.56% P - 0.10% S Composition: Fe - 3.58% C - 14.45% Cr - trace level Mo Composition: 3.68% C - 2.56% GC* 1.12% CC** - 0.37% Composition: Fe - 3.58% Composition: Fe - 3.56% Composition: Fe - 4.10% Composition: Fe - 3.96% Mn - 1.20% Si - 0.28% P - 0.11% S - 2.03% Ni Composition: Fe - 1.17% C - 0.75% Mn - 2.0% Si - 0.30% Mo - 0.60% Cu Malleable Irons, 704 - 705 Composition: Fe - 2.58% C - 0.42% Mn - 1.37% Si - 0.15% Mo - 0.001% B Composition: Fe - 2.58% C - 0.40% Mn - 1.44% Si - 0.32% Composition: Fe - 2.08% C - 20.55% Cr - <0.01% Mo Composition: Fe - 2.04% C - 20.55% Cr - 0.61% Mo Mo - 0.001% B Composition: Fe - 2.57% C - 0.48% Mn - 1.44% Si - 0.27% Composition : Fe - 1.98% Composition: Fe - 2.67% Composition: Fe - 2.54% Composition: Fe - 2.45% Composition : Fe - 3.62% P - 0.11% S - 0.05% Cr - 0.008% Al - 0.0028% B White Irons, 706 C - 0.13% Mn C - 0.44% Mn C - 0.72% Mn C - 0.03% Mn C - 0.02% Mn C - 0.03% Mn C - 0.02% Mn - 1.21% - 1.22% - 1.24% - 1.25% - 1.23% - 1.23% - 1.20% Si - 0.008% Si - 0.007% Si - 0.007% Si - 0.015% Si - 0.064% Si - 0.123% Si - 0.275% S S S S S 8 S$ White Cast Irons, 707 - 753 Composition: 2.93% C - 0.78% Mn - 0.60% Si - 17.4% Cr - 0.04% Mo Composition: 2.90% 0.48% Mo Composition: 2.93% Cr-1.59% Mo Composition: 2.91% Cr-2.89% Mo Composition: 2.89% C - 14.80% Cr - 1.45% Mo Composition : Fe - 4.13% C - 18.22% Cr - 0.05% Mo Composition: Fe - 4.08% C - 18.00% Cr - 1.14% Mo Composition : Fe - 3.96% C - 17.55% Cr - 2.53% Mo 0.017% Mo - 0.002% B 2.75% 2.71% 2.70% 2.73% 2.73% 2.83% 2.71% C - 15.10% Cr - trace level Mo Composition: Fe - 3.81% C - 14.75% Cr - 2.50% Mo Composition: Fe - 2.60% C - 0.42% Mn - 1.43% Si - Composition: Composition: Composition: Composition: Composition: Composition: Composition: C - 14.65% Cr - 0.52% Mo C - 14.60% Cr - 1.47% Mo C - 0.75% Mn - 0.56% Si - 17.6% Cr C - 0.76% Mn - 0.59% Si - 17.5% C - 20.25% Cr - 2.14% Mo C - 20.75% Cr - <0.01% Mo C - 20.22% Cr - 1.52% Mo C - 19.82% Cr - 2.94% Mo C - 20.35% Cr - <0.01% Mo Composition: Fe - 3.51% C - 20.10% Composition: Fe - 3.40% C - 19.85% Composition: Fe - 2.95% C - 25.82% Composition: Fe - 2.87% C - 25.50% Composition: Fe - 2.72% C - 25.15% Cr - 1.37% Mo Cr - 3.40% Mo Cr - 0.02% Mo Cr - 1.22% Mo Composition: Fe - 3.70% C - 25.32% Composition: Fe - 3.66% C - 24.95% Composition: Fe - 3.52% C - 24.65% Composition: Fe - 4.31% C - 24.80% Cr - 0.02% Mo Cr - 1.53% Mo Cr - 2.52% Mo Cr - 2.67% Mo Cr - 0.02% Mo Fe - 4.10% C - 23.67% Cr - 1.32% Mo Composition: Fe - 3.94% C - 23.45% Cr - 2.94% Mo Composition: C - 0.76% Mn - 0.59% Si - 17.5% C - 1.56% Mn - 0.60% Si - 17.4% Cr - 1.49% Mo ss CC xl ee Ductile Irons, 754 - 766 Composition: Fe - 3.62% C - 0.32% Mn - 2.46% Si-1.17% Ni-Mo alloyed ductile iron Ni - 0.49% Mo Composition: Fe - 3.37% C - 2.62% Si - 0.31% Mn oo ate Fe - 3.33% C - 0.32% Mn - 2.69% Si - 0.25% ° Composition: Fe - 3.32% C - 0.31% Mn - 2.58% Si - 0.49% Composition: Fe - 3.59% C - 0.29% Mn - 2.71% Si - 0.024% P - 0.007% S - 0.04% Cr-0.03% Ni - 0.02% Mo - 0.024% Mg Composition: Fe - 3.60% 0.022% P-0.009% C - 0.37% Mn-3.68% Si - 0.022% P - 0.007% S - 0.04% Cr - 0.03% Ni - 0.03% Mo - 0.027% Mg Mo Composition: Fe - 3.37% C - 0.31% Mn - 2.62% Si - Composition: Fe - 3.61% C - 0.20% Mn - 2.83% Si - s 0.022% P - 0.009% S - 0.04% Cr - 0.04% Ni - 0.02% Mo - Composition: Fe - 3.34% C - 0.32% Mn - 2.65% Si - 0.025% Mg Composition: Fe - 3.54% C - 0.31% Mn-3.45% Si - 0.024% 0.022% P - 0.008% s - 0.20% Mo Composition: Fe - 3.33% C - 0.32% Mn - 2.69% Si - P - 0.005% S - 0.04% Cr - 0.04% Ni - 0.02% Mo - 0.023% Mg 0.022% P - 0.008% s - 0.25% Composition: Fe - 3.32% C - 0.31% Mn - 2.58% Si - Composition: Fe - 3.87% C - 0.44% Mn - 2.32% Si - 0.024% P - 0.008% S - 0.49% Mo 0.040% P - 0.011% S - 0.02% Cr - 0.01% Mo - 0.094% Mg Composition: Fe - 3.33% C - 0.31% Mn - 2.57% Si - Composition: Fe - 3.79% C - 0.42% Mn - 2.75% Si - 0.024% P - 0.008% S - 0.75% Mo 0.039% P - 0.010% S - 0.02% Cr - 0.04% Mo - 0.050% Mg Composition: Fe - 3.47% C - 0.33% Mn - 2.47% Si - Composition: Fe - 3.86% C - 0.43% Mn - 2.31% Si - 0.022% P - 0.011% S - 0.05% Ni - 0.50% Mo - 0.044% Mg 0.039% P - 0.012% S - 0.02% Cr - 0.37% Mo - 0.042% Mg Composition: Fe - 3.39% C - 0.32% Mn - 2.45% Si - Composition: Fe - 3.77% C - 0.42% Mn - 2.74% Si - 0.023% P - 0.011% S - 0.61% Ni - 0.50% Mo - 0.041% Mg Composition: Fe - 3.36% C - 0.32% Mn - 2.46% Si - 0.038% P - 0.011% S - 0.02% Cr - 0.43% Mo - 0.047% Mg Composition: Fe - 3.60% C - 0.38% Mn - 2.61% Si - 0.023% P - 0.011% S - 1.17% Ni - 0.49% Mo - 0.044% Mg 0.005% S - 0.02% Cr - 0.01% Mo - 0.01% Cu - 0.025% Al - 0.041% Mg - 0.0027% B Composition: Fe - 3.33% C - 0.32% Mn - 2.40% Si - 0.024% P - 0.008% S - 2.37% Ni - 0.50% Mo - 0.038% Mg Composition: Fe - 3.62% C - 0.37% Mn - 2.70% Si - Composition: Fe - 3.24% C - 0.31% Mn - 2.36% Si - 0.005% S - 0.02% Cr - 0.08% Mo - 0.08% Cu - 0.021% Al - 0.024% P - 0.008% S - 4.82% Ni - 0.49% Mo - 0.034% Mg 0.043% Mg - 0.0023% B Composition: Fe - 3.47% C - 0.33% Mn - 2.47% Si - 0.05% Ni - 0.50% Mo Composition: Fe -3.39% C - 0.32% Mn - 2.45% Si - 0.61% 0.003% S - 0.07% Cr - 0.24% Mo - 0.07% Cu - 0.020% Al 0.040% Mg - 0.0024% B Composition: Fe - 3.61% C - 0.35% Mn - 2.75% Si - Composition: Fe - 3.58% C - 0.32% Mn - 2.69% Si - Ni - 0.50% Mo 0.004% S - 0.02% Cr - 0.46% Mo - 0.06% Cu - 0.017% Al 0.040% Mg - 0.0008% B li =a eee ioe > Meee £0 ne A » 7-7, ete me: aw. ea 762 eens. _ fi 0 7 aah | [ae 7 a= aoe oe ° s eee od = «q * , ae a ~ = > = . eld ~ 5 > a a b= 7 Te “PP. > ee o2@ Ua. “( - > ee i <* 2 - sy Mad ser i>-e - om ane aie meee i rasevy ; 2 — ~9-<en -C «Fees ; ~~. : | ® wah eer ‘ : = > - ; a. - 3 F424 nee a ee ee (ORO 6 ow eer c fi. ; H 7 > .7 - = , ie tort ™~ e an a Ae | - = ay oa ihe $92+<* e, = ove on a a is s 4 a [= — - Aa Be &*e' - > = : Saar. , | ae) 7 sr = Ao leone oY rT a eens ~ ay : a6 C OeSete «2D =p ek @ ire 7 ss O_oee | omntacee oO a + ~ sbi. (opener, : ‘ CaaS =a ae yan oraes <a td ? ae. = dare . US Steels l-T Diagrams Atlas of Time-Temperature Diagrams Significance of the Isothermal Transformation Diagram When steel any constant in the austenitic temperature state is held at lower than the minimum at which its austenite is stable, it will in time transform. The course of isothermal transformation may be represented by plotting percentage of austenite transformed against corresponding elapsed time at constant temperature in the manner illustrated in the upper portion of Fig. 1. . 3 tw 3, i afewanl egal i TYPICAL ISOTHERMAL TRANSFORMATION CURVE AT 700°F § eee Ending ies ° 50% z 3 i Beginning £ = + Jio00 Shape and position of curves of the I-T diagram The form of each of the curves constituting the I-T diagram and their position with respect to the time axis depend upon the composition and grain size of the austenite which transforms. Certain alloying elements, Or combinations 60) 2 5 10 Fig. 1. Diagram isothermal toz TIME - SECONDS showing how transformation 108 104 measurements of summarized by are the isothermal transformation diagram For a given steel austenitized way, information given in a particular by a series of such curves, each determined at a _ different constant temperature, can be summarized in a single diagram, as illustrated in the lower portion of Fig. 1. This type of diagram, which constitutes the so-called isothermal transformation diagram (I-T diagram, TTT diagram, time or S-curve) of the steel, shows required transform, completely temperature to for austenite proceed halfway, to begin and to the to be transformed at any _ constant in the range covered by the curves. Thus, the I-T diagram of a steel may be regarded as a kind of map which charts the transformation of austenite as a function of temperature and _ time and permits approximation of how the steel will respond to any mode of cooling from the austenitic state. SOURCE: change the purposes, it suffices to state that, with few exceptions, an increase in alloy content or in grain size of the austenite always retards isothermal transformation (moves the curve toward the right) at any temperature higher than about 482°C (900°F): that is, above what has been called the "nose" or "knee" of the beginning curve. This retardation is reflected Material I elements, in the greater hardenability of steel with higher alloy content or larger austenite grain size; indeed, it is generally recognized that response of a steel to any specified heat treatment which involves transformation of austenite is largely, if not’ entirely, determined by those factors which influence the time required for isothermal transformation, and hence, the shape and position of the curves which comprise the I-T diagram. TEMPERATURE °F - os of form of the curve in a characteristic way; in effect, this permits classification of steels on the basis of the type of curve. For present used Each diagram contains sufficient information to identify the steel to which it pertains with respect to principal elements of its composition, austenitizing temperature employed, and usually the austenite grain size established at that temperature. In most cases, the steels were made commercially in an electric or open-hearth furnace, cast in large ingots, and then reduced to relatively small cross-section, such as bars 1/2 to 1-1/2 inches in diameter. Specimens were prepared in such a way that a representative area of the entire cross-section was examined, no effort having been made to minimize possible segregation by discarding certain portions in the cross section; consequently, the I-T diagrams are believed to be reasonably representative of austenite transformation as it occurs in commercial grades of steel. Conventions for constructing the I-T diagrams diagram is transformation The isothermal drawn upon a uniform-size chart having a I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh, 1963 EE eee ae Atlas of Time-Temperature Diagrams 4 a linear scale of temperature drawn vertically and a logarithmic scale of time drawn horizontally. The logarithmic time scale is used in conformance with well-established practice in order to encompass both the very short and extremely long encountered. Time intervals time _ intervals of 1 minute, | hour, are 1 day and 1 week shown for convenience in locating familiar reference points on the basic logarithmic scale of time in seconds. The basic temperature scale is in degrees Fahrenheit but a__ reference Centigrade scale is also shown to the left. The significance of the various lines, numbers, and symbols comprising’ the diagram proper is discussed below under each appropriate subheading. Martensite A formation horizontal line, labeled M,, appears on the indicates line this diagram; each temperature at which martensite starts to form on quenching from the austenitizing temperature. Upon further cooling below this temperature, more and more martensite will form. The percentage of austenite transform- ed to martensite as cooling progresses is indicated on the diagrams by arrows pointing to the temperatures at which the austenite is half 90% transformed the M,, transformed (Msg,) and (Mg). 2 shows how temperatures are of transformation of Ms o and Figure Mogg is determined. A,-Ag Temperatures uw The A, (austenite start) and Ay, (austenite finish) temperatures, represented by horizontal lines near the top of the diagram, correspond respectively to the lower and upper limit of the so-called critical range. Because these temperatures are limiting or ceiling temperatures for isothermal transformation, they are a significant feature of the diagram. e ' on < o ° z a SG z Ww > ro] we ° w « =} e < 4 wd a = Ww — For the determination of the A, and A, temperatures, specimens are heated to and held for a relatively long time at each of a series of temperatures in the vicinity of the austenite start and austenite finish temperatures. The A, temperature is chosen as that temperature at which a trace amount of austenite forms in the ferrite matrix and does not increase perceptibly in amount when the holding denotes time is doubled. the maximum tempering Thus, A, temperature that can be used without forming a significant amount of austenite in the particular steel being considered. Similarly, As denotes the maximum temperature at which a barely detectable amount of ferrite can exist in a hypoeutectoid steel. eutectoid and hypereutectoid steels, the In Ags temperature is only slightly higher than A, and is of relatively little practical significance. Therefore, only the A, is given on the diagrams for such steels. On some of the diagrams the A, and % 20 40 MARTENSITE 60 Bo OBSERVE id Fig. 2. Typical example austenite to martensite These particular percentages of martensite have no special significance and are used merely to convey some idea of the progress of transformation of austenite to martensite as cooling continues below M,. The temper- ature for 90% martensite, rather than that for some higher percentage, was chosen because these measurements became increasingly less reliable with greater percentages of martensite, and because some of the steels may retain an appreciable percentage of austenite, the precise amount being dependent upon several complex factors. Ags temperatures are noted as "estimated." This indicates that these temperatures were calculated according to an empirical formula In many diagrams, the data on martensite formation were obtained by direct measure- designed to estimate A, and Ay, such ment using a metallographic was the —————————— Se case, the M,, technique. When Msg, Mg and Atlas of Time-Temperature Diagrams 5 se appear without a qualifying note. In others, these temperatures were calculated according to an empirical formula developed for this the M,, Msg, and Mgg symbols and purpose, are designated as "estimated temperatures." It should be noted that these are not to be construed as highly precise temperatures, for the of composition the cases some in exactly known not either was austenite carbides) or the of undissolved (because was not within the range to composition which the empirical formula applies. curve extends from the first near the As Acm, or A, temperature down to the line labeled M,. This so-called beginning line is drawn through points representing the time required at each temperature level investigated for a measurable amount of austenite to transform. In its simplest form the beginning line has a "C" shape with a Minimum time value at a_ temperature usually in the vicinity of 538°C (1000°F); alloying elements, especially those of the carbide-forming type, such as chromium and molybdenum, cause the beginning curve to assume a more complex shape. The percentage of transformation product necessary for a measurable beginning depends upon the sensitivity of the technique used in following the progress of transformation; in most of the curves about 0.1% transformation served as the basis for locating the beginning line. In all but eutectoid left. which a few steels, diagrams that second curve the the starts in the vicinity of A, and exception to the above statement occurs in the diagrams of the 9200 series and certain other diagrams in which the appearance of the microstructure in the range of the 538-482°C lower diagrams, a prevented portion reliable of the cross-hatched farthest toward the right never cross A,. It extends from near A, down below M, will in time transform isothermally location line; in these zone below the M, _horizontal--this portion of the ending line is shown dashed because some uncertainty exists as to its correct location, reliable measurement being relatively difficult in this region. | In some of the higher alloy steels a portion of the ending curve lies beyond the range of the chart, but it may be logically assumed that the ending line is continuous since austenite is unstable at all temperatures below A, and in time will presumably transform. In certain steels the time required for austenite to transform completely below M, and at temperatures in the vicinity of 482°C is far beyond the duration of ordinary heat treatments. The line labeled "50%" and located between the beginning and ending lines represents the time required at each temperature for transformation of half of the total austenite. It is included to give. some idea as to the progress of transformation and is especially useful in regions of a diagram in which the beginning and ending lines are not parallel. represent from extends down to about 482°C where it merges with the beginning line, represents the beginning of transformation to ferritecarbide aggregate (pearlite in its broadest sense) in the range of temperature where the first product of austenite transformation is either proeutectoid ferrite or proeutectoid carbide. An curve to below M,. A specimen quenched below M, will transform, at least in part, to martensite during cooling and hence strictly isothermal of all of the austenite is transformation impossible below M,. The portion of the temperature any reaches which austenite extended at the left of the diagram, encountered, broad represents the time required at each temperature for the last trace of austenite to transform. This curve approaches but can to what for all practical purposes may be regarded as bainite. The time required is indicated by the portion of the ending line Curves of the I-T diagram Starting The has _ been drawn to indicate uncertainty of the point at which it merges with the beginning line. The principal curves of the I-T diagram have been drawn as broad lines, not only so that they will stand out among fainter coordinate lines but also to emphasize that their exact location on the time scale is not highly precise even for the particular steel sample represented. Portions of these lines are often shown as dashed lines to indicate a much higher degree of uncertainty. Thus, all portions of lines extending to the left of the 2-second coordinate are dashlines because for times less than about 2 seconds reliable and accurate measurements were not possible by the methods used. In this connection, it should be recognized that the I-T diagram is designed to represent the overall pattern of transformation in a and particularly in particular composition regions in Sa which transformation ae occurs Atlas of Time-Temperature Diagrams 6 aD rapidly should not be regarded as always being a summary of a complete set of highly precise quantitative measurements. The principal fundamental difficulty is that even a very small piece of steel requires some appreciable time interval to cool throughout to the temperature of the isothermal bath. The order of magnitude of this time interval is influenced by many factors including: 1. the cross-section of the specimen, 2. the agitation it receives when immersed in the isothermal bath, and 3. the composition, volume, and ature of the isothermal bath. temper- When quenching in a lead-alloy bath such as is commonly used in determining an I-T diagram, rapid movement of the specimen through the bath is especially desirable since mechanical stirrers are relatively ineffective in agitating such a heavy liquid. Consequently, an accurate evaluation of the time to reach bath temperature after immersion is rarely feasible. When transformation begins within a few seconds and proceeds rapidly as in the "nose" region of a plain carbon steel, the time required for the specimen to reach the temperature of the bath is a considerable portion of the total time required for transformation. An _ additional difficulty arises from the circumstance that heat generated by transformation (recalescence) may prevent a specimen from ever quite reaching bath temperature until after transformation is completed. Despite these limitations, a beginning line even in the "nose" region of a rapidly transforming steel can be located with sufficient accuracy for many _ practical purposes. This is possible because accumulated knowledge of the kinetics of isothermal transformation makes it possible’ to rationalize the entire reaction from a limited number of measurements. The method of plotting isothermal data first proposed by Austin and Rickett is especially useful in estimating a beginning time from measured data for longer times. It is also true that the beginning curve has a characteristic "C" shape which is modified in a_ predictable way by certain alloying elements. Since a large number of I-T diagrams, including many for steels which transform slowly direct accurate permit to enough measurement at all temperature levels, are EE now available, accurate direct limited difficulty in measurements temperature range need obtaining within a not construction of a reasonably reliable region the of for I-T diagram a prevent "nose" rapidly transforming steel. A given a from I-T diagram, even if constructed precise of highly set complete measurements, is truly accurate only with respect to transformation of the particular sample of steel used in its determination. Other samples of the same grade of steel may vary appreciably in the exact time required for transformation to begin and to end at each temperature. In_ practice, isothermal data are usually used in connection with the heat treatment of pieces of steel very much larger than the small specimens used in developing an_ I-T diagram. Although it appears that the mass of the sample does not per se appreciably influence transformation rates provided the difference in cooling time (from immersion to attainment of thermal equilibrium with the isothermal bath) at the center of a large, as compared to a small, piece of steel is taken into account, it frequently happens that the large piece encompasses a greater range of composition due to segregation. Hence, portions of the large piece may begin to transform somewhat sooner and finish transformation somewhat later than _ is indicated by the I-T diagram. Thus, the usefulness of an I-T diagram is not seriously impaired by failure to obtain a highly precise measurement of the beginning time at all temperature levels. Considerable judgment is often required in constructing an I-T diagram from experimental data, and equal judgment is required in _ its interpretation with respect to conditions different from those under which it was determined. The experienced user will not read into an I-T diagram an unduly high degree of accuracy, nor condemn it because it 1s not always based upon a complete set of highly precise measurements. The use of a dashline to the second coordinate has been left of the 2explained as representing a relatively high degree of uncertainty as to the exact location of the line in this region. In some instances, other portions of a beginning or an ending line may appear as a dashline because the number or kind of measurement did not serve to locate the dashed portion with quite the same certainty realized elsewhere. cars Atlas of Time-Temperature Diagrams > Fields of the I-T diagram Hardness Each field on the diagram above M, is labeled to indicate the phases observed in At the right-hand edge of many of the diagrams a series of HRC numbers indicates the hardness of a specimen held only long specimens austenitized and then quenched and held isothermally within the timetemperature limits of each field. The region above the A; temperature and to the left of the beginning line is labeled A for austenite which was presumed to have existed in this region because specimens treated within the time-temperature limits of this field were entirely martensitic when quenched to room temperature. In a few of the diagrams, the austenitizing treatment did not dissolve all carbides in austenite and this is indicated on each of such diagrams. The region labeled A+F or A+C between the beginning line which and_ lies the intermediate broad line represents the timetemperature region in which austenite and a proeutectoid phase were observed. The latter is ferrite (F) in a hypoeutectoid steel and carbide (C) in a hypereutectoid steel. This field is, of course, missing in a eutectoid composition. The A+F (or A+C) field extends from near A, (or Acm) usually down to about 482°C where the field is pinched out due to the merging of its two boundary lines. after transformation enough at each temperature to transform all of the austenite, measured at room temperature. In all these steels hardness increases as the transformation temperature decreases, although in the intermediate region in the vicinity of 538°C Microstructure In practically all steels hardenable by heat treatment, the character of the ferritecarbide aggregate is determined primarily by the temperature at which it formed; there is the same general sequence of microstructures ranging in appearance from coarse lamellar at the higher temperature to fine acicular at the lower levels. Regardless of differences in composition, familiarity with this sequence in only a few steels makes it possible merely by examining the I-T diagram for any steel to make a reasonably good prediction as to its microstructure temperature The field labeled A+F+C--which is bounded at the right by the ending line, at the left by the right-hand boundary of the A+F (or A+C) field at higher temperatures, and by the beginning line at lower temperatures-- extends from A, or somewhat above, down to M,. Samples held at any constant temperature for a time period within the limits of the A+F+C field were observed to contain the three phases: (1) austenite (observed at room temperature as martensite); (2) ferrite; and (3) carbide. Either ferrite or carbide may exist separately as a proeutectoid constituent and in addition the two are_ usually intimately associated with each other in the form of an aggregate constituent. The latter is classified as pearlite at higher temper- atures and bainite at lower temperatures; at intermediate temperatures both pearlite and bainite may form. The labeling of fields on the basis of phases formed avoids the necessity of classification of all microconstituents resulting from austenite transformation at constant temperature and thus simplifies the diagram. The field to the right of the ending line is labeled F+C to indicate that only ferrite and there is often an inversion in this overall trend. at each transformation level. Characteristic differences in microstructure exist between steels of markedly different composition, but these differences are more readily taken into account when the I-T diagram is available for comparison with those of more familiar steels. Thus, the presence of proeutectoid ferrite in the microstructure is indicated by an "A+F" field on the I-T diagram. For a particular austenite grain size, the relative amount of proeutectoid ferrite is roughly proportional to the temperature and A; The character difference between A, of the ferrite-carbide aggregate is primarily determined by transformation temperature so that the difference in its appearance among different steel compositions is usually less than that which results from a_ difference in of little more temperature transformation than 38°C. In general, acicular aggregates usually classified as bainite form from the vicinity of the "nose" temperature (the lower "nose" if there happen to be two) down to M,. Microstructures formed in many alloy steels, particularly those containing strong carbideas _ chromium, such elements forming and vanadium, are somewhat molybdenum different from those in plain carbon steel, converted by the transformation process to yet the same general trend is common to all by the I-T indicated modifications with these phases. 0 E ee E a E carbide are present, all austenite having been Atlas of Time-Temperature Diagrams 8 er diagram. It is generally true that two different steels with similar I-T diagrams will also have similar microstructure at corresponding temperature levels, and hence quite similar mechanical properties when heat treated alike. When it is necessary to discontinue a particular composition that has long been successfully used, it is a sound rule to select a substitute which has an I-T diagram as nearly as possible like that of the old one. If this can be done, very little modification of heat-treating practice will be required when the new composition is substituted for the old. APPLICATION OF I-T DIAGRAMS TO HEAT TREATMENT Quenching tempering and The common most method of hardening steel by heat treatment consists of heating to a temperature at which the steel becomes austenitic and then cooling fast enough, usually by quenching in a liquid such as water or oil, to avoid any transformation of the austenite until it reaches the relatively low-temperature range within which it transforms to the hard, = martensitic microstructure. The minimum rate of cooling necessary is related to the location with respect to the time scale of the "nose" of the I-T diagram. In Fig. 3, illustrating a quench and temper type of heat treatment, the CUSTOMARY QUENCHING AND TEMPERING cooling curves as drawn lie to the left of the "nose" and thus indicate full hardening on quenching. One of the curves represents cooling at the surface of a quenched piece of steel, whereas the other curve represents cooling at the center of the same piece. Locations between surface and center would, of course, cool at intermediate rates. In Fig. 3, austenite transforms entirely to martensite as the steel cools through the temperature range of martensite formation, as indicated by cross-hatching on the cooling curves. A tempering cycle such as usually follows the quenching operation is illustrated schematically merely to complete the picture. The I-T diagram has no bearing on the tempering operation unless the austenite-to-martensite transformation is incomplete, as sometimes happens. In this case, retained austenite usually transforms during tempering to the transformation product indicated by the I-T diagram. Martempering MARTEMPERING :;’”YDih,. QQ AARARARARRERE x BORN TEMPERED TO DESIRED HARDNESS TEMPERATURE Xw PR TEMPERED MARTENSITE TIME - LOG SCALE Fig. 4. Schematic chart illustrating relationship of martempering to a typical I-T diagram TEMPERATURE \ NATRANSFORMATION TIME- LOG PRODUCT TEMPERED MARTENSITE SCALE Fig. 3. Schematic chart illustrating relationship of hardening type of quench and temper treatment to a typical I-T diagram Application of the I-T diagram to martempering is illustrated in Fig. 4. In this heat treating process, the steel is quenched into a bath at a temperature in the vicinity of M, and held in the bath until the center of the piece reaches bath temperature, after which it 1s removed and allowed to cool in air. Again, if complete hardening is to occur, austenite must cool with sufficient rapidity to avoid transformation at the "nose" of the I-T diagram. Since it shows the M, temperature, the I-T diagram is useful in _ Atlas of Time-Temperature Diagrams ee 9 eee selecting the optimum bath temperature for martempering and in estimating how long the steel may be held in the bath without forming bainite. moderately hard bainite. Steels contaniiii., certain alloying elements or combinations of alloying elements may have an I-T diagram of such nature that unique hardening treatments are feasible. In such diagrams there Austempering Austempering is a hardening process based upon isothermal transformation of austenite to bainite. Hence the I-T diagram, or at least its lower portion, is not only useful but almost indispensable. In an ideal austempering treatment, austenite is transformed isothermally, or nearly so, and as illustrated in Fig. 5 the I-T diagram shows the time required for austenite to transform and hence the minimum duration of the austempering treatment. The I-T diagram is also useful in planning austempering treatments because it shows the temperature range within which bainite forms and the hardness of bainite as a function of temperature. AUSTEMPERING may be a "nose" separated transformation. Annealing softening lower by as well a region as an upper of very slow or The aim of the heat treatment in the foregoing examples has been to harden steel, but it may be equally important to know how to avoid hardening. In this case, the curve of the I-T diagram _ representing completion of transformation is the important one. For instance, in conventional annealing in which steel initially in the austenitic state is slowly and continuously cooled, as shown in Fig. 6, the I-T diagram in conjunction with the cooling curve indicates the approximate temperature range in which transformation occurs and when slow cooling may be safely discontinued. It is also possible to estimate in advance a cooling rate that will allow austenite to transform completely in a temperature range sufficiently high to develop the desired soft microstructure without unnecessary expenditure of time. CONVENTIONAL ANNEALING TEMPERATURE >W MQ QQ GGG ES PRODUCT con Siam S Ss ~S BAINITE TIME -— LOG SGALE Fig. 5. Schematic chart illustrating relationship of austempering to a typical I-T diagram TEMPERATURE — Other applications to hardening PRODUCT minor or treatments, hardening Special variations of regular hardening practice, may be based upon the specific pattern of austenite transformation for a particular steel. Thus, in high carbon steel there is opportunity for variation cycle. When austenite transform to Ve in the hardening has cooled below the "nose" of the I-T diagram, martensite it will inevitably or at least to TIME - LOG Fig. 6. Schematic FERRITE & PEARLITE SCALE chart illustrating relationship of conventional annealing cycle to a typical T diagram I- In many alloy steels there is a pronounced minimum in the ending line of the I-T diagram at a relatively high temperature. Atlas of Time-Temperature Diagrams 10 nee eeUEEEaNEUES EES SEER RUE nnn Assuming that the transformation produced at this temperature is satisfactory, as is often the case, advantage may be taken of the The I-T diagram is useful in planning heat treatments and in understanding why steel responds as it does to a particular heat time-temperature coordinates of this minimum to design a short annealing cycle. As shown in Fig. 7, this is accomplished by cooling the steel initially in the austenitic state as rapidly as convenient to the temperature of the minimum in the ending line and then holding it approximately at treatment, but it cannot be used directly to predict accurately the course of transformation as it occurs during continuous cooling. It is possible, however, to derive this temperature for the time required to transform austenite completely. Subsequently the steel may be cooled in any convenient manner. ISOTHERMAL ANNEALING from the I-T diagram another timetemperature-transformation diagram which while not highly accurate, is of considerable aid in bridging the gap between isothermal and continuous cooling transformation. This diagram will be referred to as the cooling transformation diagram (C-T diagram). It is necessary to derive only a few C-T diagrams in order to demonstrate their relationship to the I-T diagram; once the fundamental difference between the two types. of transformation diagrams is recognized, it is possible to interpret diagram with conditions. TEMPERATURE ~s rationally any to continuous I-T cooling C-T diagram for eutectoid carbon steel anand FERRITE AND PEARLITE TIME -LOG more respect SCALE Fig. 7. Schematic chart illustrating relationship of isothermal annealing cycle to a typical I-T diagram Transformation on continuous cooling In heat-treating operations involving continuous cooling from the austenitic condition, transformation occurs over a _ range of temperatures rather than at a single constant temperature, and therefore the final structure is a mixture of isothermal transformation products. The I-T diagram, particularly the examination of isothermal microstructures incidental to its construction, aids greatly in classifying the microstructure of steel transformed during continuous cooling. If the I-T diagram is at hand, it is possible to visualize at what stage of the cooling cycle different structures formed; this facili- tates changes in heat treatment necessary to obtain more of the desirable and less of the undesirable structures. In Fig. 8, a C-T diagram has been derived and superimposed on the I-T diagram of a eutectoid carbon steel, chosen for this purpose because of its relative simplicity. The cooling rates plotted measurement of temperature indicated locations in an are based upon change at end-quenched bar such as is commonly used in hardenability. At the top of the measuring chart, the measured hardness curve has been superimposed over a sketch of the endquench bar. Four representative locations (A, B, C, D) along the bar have been related by means of each corresponding cooling curve to the I-T and C-T diagrams; austenite at a particular location transforms when _ its cooling curve passes through a shaded zone of the C-T diagram. The type of microstructure resulting from transformation in each zone is given and the final microstructure on reaching room temperature is listed in the lower portion of the chart. This correlation shows the origin of microstructures in the end-quenched bar and the reason why hardness changes along the bar. Thus, at point A the hardness is high because the cooling rate at this point was fast enough to miss the pearlite zone of the C-T diagram and austenite transformed entirely to hard martensite. At point B, hardness is lower because the cooling curve for this point intersected the pearlite zone and austenite transformed in part to fine pearlite. The remainder of the austenite transformed to martensite during cooling Atlas of Time-Temperature Diagrams 1] SS through Some a much acicular lower aggregate temperature range. (bainite) would also be present after cooling at a rate such as represented by curve B, but for simplicity this is not indicated on Fig. 8. The cooling rates at point C and at point D are slow enough in relation to the C-T diagram to the in_ transformation complete permit pearlite zone. The structure at C and D is pearlite which is coarser and softer at D than at C. This correlation is not highly accurate for three principal reasons: 1. in the vicinity of the "nose" of the I-T diagram the beginning line is subject to experimental error because of very short time periods involved; 2. recalescence occurs during transformation so that the actual cooling departs from the cooling curve as drawn once transformation is well under 3. the way; and, derivation of the C-T diagram from the I-T diagram is only an approximation. ENO-QUENGH HARDENABILITY A 05 ‘10 HARDNESS ~~. -RC 205 | DISTANCE FROM ' 18 2 QUENCHED \ Nevertheless, the chart does show, in principle at least, how the I-T diagram through the medium of a C-T diagram derived from it, can be correlated with a typical heat treatment which involves austenite transformation as it occurs during continuous cooling. Consideration of the I-T diagram in relation to the location of lines of the C-T diagram in Fig. 8 shows that the "nose" of the former has, in effect, been moved downward and toward the right by continuous cooling. Thus, direct use of isothermal "nose" times for predicting hardenability leads to considerable error in the direction of a predicted hardenability lower than is actually obtained. In comparing hardenability of different isothermal reasonably compositions, the respective "nose" times are, however, a reliable indicator of the relative order of hardenability. In the plain carbon steel represented in Fig. 8, bainite, which forms isothermally within the range 454°C to 204°C, is sheltered by an _ overhanging pearlite "nose," and bainite is not formed in any appreciable quantity on _ ordinary continuous cooling in this steel. That is, the rates of bainite formation are so slow relative to rates of pearlite formation that austenite cooled slowly enough to permit formation of bainite has already completely transformed to pearlite before cooling down to bainite-forming temperatures. In analyzing I-T diagrams and C-T diagrams, it is important to note that the former are usually interpreted by scanning from left to right along a temperature level, whereas the C-T diagram is interpreted by scanning downward from upper left to lower right along a cooling curve. C-T diagram for 4140 steel WO RTEHSITE ee S=S WARTENSITE AND MODULER PEARLITE rime PEARLITE COOLING TRANSFORMATION DIAGRAM _—_———_ ISOTHERMAL TRANSFORMATION DIAGRAM ——— COOLING CURVES anor siete TRANSFORMATION DURING COOLING ae 10. TIME -SECONDS Fig. 8. Correlation of continuous cooling and isothermal transformation diagrams with endquench hardenability carbon Steel test data for eutectoid An analogous continuous cooling transformation diagram for a typical alloy steel, SAEAISI 4140, has been derived from the I-T end-quench with correlated and diagram hardenability in Fig. 9. In this alloy steel, steel eutectoid carbon plain the unlike previously considered, the pearlite zone lies relatively far to the right and does not "shelter" the bainite region. Consequently, the ferrite-carbide aggregate structure in the bar is bainite rather than end-quenched pearlite. Because 4140 is hypoeutectoid in field ferrite a proeutectoid composition, appears both on the I-T diagram and on the C-T diagram. The interpretation of Fig. 9 is similar to that of the previously discussed Atlas of Time-Temperature Diagrams 12 eutectoid carbon steel diagram. Again, several representative locations along the end-quenched bar are related to a hardness curve and to the C-T diagram by means of the cooling curve at each _ location. Considered together, Figs. 8 and 9 demonstrate the difference in transformation on continuous cooling of two steels having different types of I-T diagrams. The fields of the C-T diagram are displaced downward and to the right with respect to analogous fields of the I-T diagram. An overhanging "nose" on the I-T diagram may preclude transformation to acicular microstructures formed on continuous cooling to lower temperatures by permitting complete transformation in the "nose" region. In steels in which a_ considerable proportion of proeutectoid ferrite is formed, continuously cooled austenite may become enriched in carbon on reaching intermediate and low temperatures, to such an extent that the bainite zone and the martensite zone are appreciably lowered in temperature as compared to these zones on the I-T diagram. Even if feasible, a precise derivation of an I-T or C-T diagram would rarely be limitations in mind, the I-T diagrams are useful in interpreting and_ correlating observed transformation phenomena on a rational basis even though austenite transforms during continuous cooling rather than at a constant END-QUENCH HARDENABILITY TEST ~RG HARDNESS SS Temperature °F - RK KSA WS Co A SER @* Martensite ae Mortensite, Ferrite end Bainite FertaaBonite Mortensite, Ferrite and Balnite Cooling war- ranted since a particular I-T or C-T diagram exactly represents but one sample. Samples from other heats, or even from _ other locations in the same heat, are likely to have slightly different I-T or C-T diagrams. When used with discrimination and _ with its temperature. LEGEND ' 2 5 10 transformation diagram Isothermal transformation diagram) Cooling curves Transformation during cooling 10? 10° 104 Time - Seconds Fig. 9. Correlation of continuous cooling and isothermal transformation diagrams with endquench hardenability test data for 4140 steel Atlas of Time-Temperature Diagrams 13 Type: 1006/1008 Type: 1019 Composition: Fe - 0.06% C - 0.43% Mn Grain size: 7 (rimmed Composition: Fe - 0.17% C - 0.92% Mn Grain size: 0-2 steel) Austenitized at 913°C (1675°F) Austenitized at 1316°C (2400°F) °C °C ° Tae 800 2 700 700 Le 600 600 86RB 78RB & 5 500 = 500 ra < li 400 tt S J - 19 < ul 5 400 S 300 200;- = 300 400 eepe 100 200 Sigs i Je 100 * coin HOUR () LUI O'S 275) 0 102 I WEEK] Liki 103 | 0.51 5 2 02 0 TIME - SECONDS Composition: Fe - 0.35% C - 0.37% Mn Grain size: 75% 2-3, Austenitized at 927°C (1700°F) 25% 7-8 Austenitized at 843° C (1550°F) TL omy cs i 800 °C 3 800 700 700 IEE he 85RB 600) 9ORB 500 22 e ee =a pall 1400 Aa 7 As 'OOOF 100 I ul 102 TIME — SECONDS | DAY 104 1 10° ] -F+O 10& F a) lis 25 27 oe = Ms + Mook 400 200}/—+ 4 XK Mso, NI | 4 Estimated 50 a 43 — —— 1-T DIAGRAM + ane 10% = — IHOUR 102 +135 Ab + LMIN. 0512 i> i Temperature | WEEK 48 U 3 Zz 12 - {HOUR m @ 25 a 100 102 7 |_| * 800 200 sl - + TEMPERATURE 300 DIAGRAM +——} if 600 200) At+F Wee A+Frec 500 400 300 TEMPERATURE A 4 Ar ==" 1200) 34 400 ro 600 14 ° 10° 104 Type: 1035 Mod. Composition: Fe - 0.20% C - 0.81% Mn Grain size: 8-9 pate I 10> TIME - SECONDS Type: 1021 °C 42 ° 10# — LOAY | 1WEEK!52 104 105 10& TIME - SECONDS SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 eee ae Atlas of Time-Temperature Diagrams 14 Type: 1045/1050 + Cu Composition: Fe - 0.48% C - 0.57% Mn- 0.20% Si - 0.46% Cu Grain size: 65% 8, 35% 5 Austenitized at 843°C (1550°F) Type: 1045/1050 Composition: Fe - 0.47% C - 0.57% Mn - 0.06% Cu Grain size: 50% 8, 50% 5 Austenitized at 843°C (1550°F) 2¢ ° o (% F 800 oF 800 1400 700 1400 : 1200 18 21 9 700 o 600 27 600 oe, asta 30 ¢ 3| Ae) 2500 ® 800 352 = ¢ 400 = 300 60 200} Te oan 600 deat 0512 510 102 10 3 10 4 10 5 29go 30 v © 400 §E 300+ 200} 400 100 00 isle ccitiaat 200 28m, ( 800 ASE (ULE Soe 400 O 10 6 34 2 e 600 °F Hina are eae) 102 Time - seconds Type: 1045/1050 16 22 & oa rill 1000 Seo] i) 1200 103 104 10° 108 : Time, seconds + Cu + Cu Type: 1045/1050 Composition: Fe - 0.49% C - 0.57% Mn - 0.97% Cu Grain size: Composition: Fe - 0.49% C - 0.54% Mn - 0.20% Si - 1.49% Cu 50% 8, 50% 4 Austenitized at 843°C (1550°F) Grain size: 50% 8, 50% 5 Austenitized at 843°C (1550°F) AC ine)N rdness-Rc ie) Hardness Temperature Temperature aR ereede a 0512 510 io2 o> Time - seconds SOURCE: 10% 105 108 os 12 510 10? | 1025) 1O8— Time, seconds R.A. Grange, et al., "Effect of Copper on the Heat Treating Characteristics of Medium-Carbon Transactions, Vol 51, 1959, pp 377-393 SSS Steel,” ASM A1O® 0° Atlas of Time-Temperature Diagrams 15 Type: 1050 Type: 1055 Mod. Composition: Fe - 0.50% C - 0.91% Mn Grain size: 7-8 Composition: Fe - 0.54% C - 0.46% Mn Grain size: 7-8 Austenitized at 910°C (1670°F) °C 800 Austenitized at 910°C (1670°F) oF ° SG 2 g & 800 1400 rf § 1200 18 700 700 600 Wd 1000 600 28 & 500 Ee a 20 23 WwW 2 = aoe See 200+ 400 '00/— 200 oo Ee © ty 400 Se ta a. 400 28 = £00 32 800 25 ae a. 48 56 F 300 ou 42 rt efi 50 200+ 400 ool i200 a reine: I WEEK| 62 ctuul 0 0512 , Eitlul 50 I-T eopounre 0512 5 0 TIME - SECONDS Type: 1060 Type: |HOUR TT 104 10° 102 [ DAY | WEEK] 58 10& 10° 1060 Mod./1065 Mod. Composition: Fe - 0.64% C - 1.13% Mn Grain size: 7 Austenitized at 910°C (1670°F) i @ GF) 2 800 g ook g 700 oT | A i 26 600 [ Best 72) a) Al Ww 35 w Bic < 38 28 = © s00 = a i ney CeO: Composition: Fe - 0.63% C - 0.87% Mn Grain size: 5-6 Austenitized at 816°C (1500°F) = "] | 1 MIN. 108 DIAGRAM 1 Fa TT 0 + 4 35 F+C 36 < + 37 Wr 400 a F 300 42 a 44 fo) a 50 = 55 ~~ | he} = 200 DIAGRAM 100 1oe : 65 10& TIME - SECONDS of eaasine | T | MIN LHOUR tafol veto Ly tal oftu 5 10 102 TIME 10% 104 [WEEK] 105 65 LU 10& - SECONDS SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 ee Atlas of Time-Temperature Diagrams 16 Type: 1080 Type: 1086/1095 Composition: Fe - 0.79% C - 0.76% Mn Grain size: 6 Composition: Fe - 0.89% C - 0.29% Mn Grain size: 4-5 Austenitized at 899°C (1650°F) Austenitized at 885°C (1625°F) CG TMT 1 cer A 800 |7 3 8oo}- i 700 700 OL a LL + z A if F a 32 600 + ee = e 400 600 +40 a are ir > relealee 4\ = A. re tu) 400 40 = = 42 a te F 33 38 50 300 + = - 300;- 22 =| 55 200 47 + ih 200 + 57 — 58 —h\ 100 | Estimated Temperature iz of cid O51 2) velo fv tit bated 50 102 10% TIME 100 IDAY | IWEEK! 66 IHOUR MIN. pti 10% i 10° + = 1 108 ATA TTTA 50 10? 0512 IHOUR I MIN. - SECONDS TOTO 10% TIME Type: W1 Tool Steel LDAY | IWEEKI 66 10% 10° 10& - SECONDS Type: 1320 Composition: Fe - 1.13% Cc =, 0.30% Mn Grain size: 7-8 Composition: Fe - 0.20% C - 1.88% Mn Grain size: 7-8 Austenitized at 910°C (1670°F) Austenitized at 927°C (1700°F) : 6 oF fT Ieat Py=r) TM 1400; Ss = Cy, 7 700 + A+G es ptm > 700 43 45 F+C +6 800} i i 146 — ne heft - Ly 400 50% > & F 300h = sneer + 5S 500;— ie iey) o if 1000}, | ive ; = ry + | 1200 600}-— w ptm 600 A a7 Trae a 51 55 SS = 200+ 400h—- le Ce a TTT : 2 iShatoen 2ey z : |2001-4 8IRB 600}- wi / 12 eo Ue 5 500 i a a = 800 31 tu 400}a 4\ a F 3oop 60° 60 + M5 + So wv Ste 62 200+ 400}— 100+ 200 7 * Mso 10OF- ae 200 ip Tock L |* csrimores MIN. IHOUR temperanere | fi 0.5 | 2 5 10 LDAY | I WEEK] 65 mit 102 TIME SOURCE: DIAGRAM 103 min 104 105 eee 10& i Estimated LMIN, 4 IHOUR ni 051 ; 2 5 0 — SECONDS I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 : LDAY mi 10 2 E nae 10 TIME —- SECONDS bli IL i ea ‘Terpercture ull, 10 10° EEK = 108 i Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH TO Sabie ag caa SSSMSSSmmmmMhsesssssssfsss ———— — SSSSSS —__—— Atlas of Time-Temperature Diagrams Type: Carburized 17 1320 (0.4% C) Type: Carburized Composition: Fe - 0.4% C - 1.88% Mn Grain size: 75% 7-8, 25% 3-5 Austenitized at 927°C (1700°F) S55 Austenitized at 927°C (1700°F) oF 800 3 800 3 1200 Es 7 600 5 500 a Ceo ‘ °¢ 1400) 700 Ww | 0° 200}- 400 !00F 200) —_ TM 2 g 700 : 23 600 3! 25 w 34 oy = 500 31 - a 400 a Px 43 ci300 ne 41 g oF z 23 1000) 300|- 1320 (0.6% C) Composition: Fe - 0.6% C - 1.88% Mn Grain size: 5-8 bi 53 200 100 EEK! 6 | y 0512 58 102 TIME 103 104 108 EEK] 65 0 108 Litt | 0512 510 102 TIME - SECONDS 108 lu 104 108 - SECONDS SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 Type: Carburized 1320 (0.8% C) Composition: Fe - 0.8% C - 1.88% Mn Grain size: 5-8 Austenitized at 927°C (1700°F) | RC $HARDNESS- TEMPERATURE TIME - SECONDS Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 ——————————————————————————————— 18 Atlas of Time-Temperature Diagrams Type: Carburized 1320 (1.0% C) Composition: Fe - 1.0% C - 1.88% Mn Grain size: 7-8 Austenitized at 927°C (1700°F) °C oF 800 L 1400 -RC HARDNESS 700 1200 600 1000: 500 re) o 400 TEMPERATURE 200+ 400 !10OF 200 °o 0512 50 102 10> 107 10° 10& TIME - SECONDS SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 Type: Carburized 1320 (1.2% C) Composition: Fe - 1.2% C - 1.88% Mn Grain size: 6-8 Austenitized at 927°C (1700°F) °C 400 300, TEMPERATURE 200 100 0512 50 102 103 104 TIME - SECONDS 105 106 Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 ——$—$—$—$—$—$—————LLL Se LE SSS Atlas of Time-Temperature Diagrams 19 Type: 1335 Composition: Fe - 0.35% C - 1.85% Mn Grain size: 70% 7, 30% 2 Austenitized at 843°C (1550°F) °C oF 800 1400 Type: 1340 Composition: Fe - 0.43% C - 1.58% Mn (low Mn) Grain size: 8-9 Austenitized at 885°C (1625°F) o. °C 3 800 8 8 15 86RB 1200 600 15 1000 & s00 < S o 400 poe = 300; 600 200;- 400 100F 200 = 700 = 700 WwW ° g 600 18 Ww a & 500 33 q 23 23 . as 400 ae S 300 bile 33 S abe ieee 200 100 i ws EK/ 59 LMIN. ° ° OSiln2) 5110 102 105 10% 10° |HOUR Lt LL 10& 0512 5 0 TIME - SECONDS 1 LHI 102 10% | DAY | WEEK! 62 10° 108 ol 104 TIME - SECONDS Type: Fe-Ni-C Type: 2340 Composition: Fe - 0.56% C - 0.26% Mn - 1.97% Ni Grain size: Composition: Fe - 0.37% C - 0.68% Mn - 3.41% Ni Grain size: 8-10 Austenitized at 804°C (1480°F) 7-8 Austenitized at 788°C (1450°F) °C TIT 800 r 2 °C | 3 800 Laj= 700 E18 700 T ale 600 q | | rr 400 | | T | 1400 g : 600 J © s500}- - a 1200 | w ce Ww 1000 32 $ 500 El 2 400 a < 800) a a F 300 ue Pa is - Galas aie a | mea 0512 | tT II | 5 0 eee iI 10? 10% TIME - SECONDS rt EK 300 60° 200+ 400 '00}- 200 LDAY | | WEEK|64 |HOUR LMIN. |= (oy ain | | | | | I-T DIAGRAM ot coolLL aco {8° tu 104 | 10° ° 108 0512 50 102 TIME - SECONDS PA, 1963 as published in Atlas of Isothermal SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 a 20 Atlas of Time-Temperature Diagrams Type: Fe-Ni-C Type: 2512 Composition: Fe - 0.59% C - 0.25% Mn - 3.90% Ni Grain size: Composition: Fe - 0.10% C - 0.52% Mn - 5.00% Ni Grain size: 7-8 Austenitized at 927°C (1700°F) 8-10 Austenitized at 804°C (1480°F) °C °C 800 800 700 700, HARONESS-RC 600 14 «=) 500 = L ra 400 fae t=" 400 + = uu 500 31 = HARDNESS RC - 600 46 300) 300 TEMPERATURE =| 200 400 + F |1—1M90 | '00/- * 200+ +—- | | \ | MIN I O51 | Estimated Temperature — 0 2 ae 53 200 |-T DIAGRAM | i Us So IU 5 10 102 |HOUR S| | DAY Ll stimoted 100 Temperoture | Lawl 103 | WEEK] 64 thy 105 10& TIME TIME - SECONDS Type: Carburized Type: Carburized 2512 (0.4% C) Composition: Fe - 0.4% C - 0.52% Mn - 5.00% Ni Grain size: 25% 3, 75% 7-8 Austenitized at 927°C (1700°F) eG 104 10% 102 50 0512 10& 10° - SECONDS 2512 (0.6% C) Composition: Fe - 0.6% C - 0.52% Mn - 5.00% Ni Grain size: 80% 4-5, 20% 7 Austenitized at 927°C (1700°F) °C oF 800 800 8 ”a 1400 1200 z 4 <a =x HARDNESS RC - 600 600 A) w 700 700 1000 (ae, 5 500 4 tj 400 800 400 a a3300 200 23 500 = 27 800 < A+F+C—-@€ ie ale riaea YS TEMPERATURE 30op- 60° 200} 400 400 Ms 200 100 | WEEK! ° 22 40 ae =toe) ins elles no o50% 5! tt Lt Mso 100 —- F + C—++—++—_+-_ 55 I- T DIAGRAM 2o0h—-—1Mo0|_| 58 Ne +— LMIN. HOUR IDAY | IWEEK| 6g (e} i} OS 2S TIME - SECONDS 10 102 10% 104 105 1o& TIME - SECONDS SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1 963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 Ue a Atlas of Time-Temperature Diagrams /44| Type: Carburized 2512 (0.8% C) Type: Carburized Composition: Fe - 0.8% C - 0.52% Mn - 5.00% Ni Grain size: 6 Composition: Fe - 1.0% C - 0.52% Mn - 5.00% Ni Grain size: Austenitized at 927°C (1700°F) 2512 (1.0% C) 6-7 Austenitized at 927°C (1700°F) °F °C) S A -—+ Approx. Acm-—1-- 800 | 1400 140 Approx. zAG [SS gs 30 35 = PAE xz 5 +— 4 | 324 = Lt 30 A+F+C 800 tu 400 = <q z a9 =p Cs 1000) 5 500 o e 3 Sp 600] 26 4 pee 1200 . ~ A 700 WW i} i 37 ~ 45 ~ 35 a a2 e 3001 600 A——+ 200}- 400 jam 49 53 46 © en oe |1-T DIAGRAM 2 i 100 200! Seas] —s ts i I MIN. ' | DAY |HOUR | WEEK] 50 ie) 0512 50 102 10% 104 10 10& TIME - SECONDS bd TIME - SECONDS SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 Type: Carburized 2512 (1.2% C) Composition: Fe - 1.2% C - 0.52% Mn - 5.00% Ni Grain size: 7 Austenitized at 927°C (1700°F) x Z tH Whe TEMPERATURE TIME - SECONDS Society for Metals, Metals Park OH, 1977 Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Atlas of Time-Temperature Diagrams 22 Type: 2910 Type: 5140 Composition: Fe - 0.08% C - 0.49% Mn - 8.94% Ni Grain size: 10-12 Austenitized at 843°C (1550°F) Composition: Fe - 0.42% C - 0.68% Mn - 0.93% Cr Grain size: 6-7 Austenitized at 843°C (1550°F) °C oF °C oF F 800 4 1400 z 13 700 1200 24 600 Ww & s00 q© uj 400 31 1000) WwW 800 q PP 37 Be S 44 fe ee. S 300}- 60° 200} 400 26 = ee eae |- T DIAGRAM '00F 200 + | I MIN. MIN Z 0512 50 a |HOUR 102 103 LWEEK 62 | WEEK) ae 104 108 108 102 TIME - SECONDS 108 104 10° 108 TIME - SECONDS Type: 5160 Type: 52100 Composition: Fe - 0.61% C - 0.94% Mn - 0.88% Cr Grain size: 7 Austenitized at 843°C (1550°F) Composition: Fe - 1.02% C - 0.36% Mn - 0.20% Ni - 1.41% Cr Grain size: 9 Austenitized at 843°C (1550°F) cca mm 7M 800 : °6)—F Zz 800 1400} < 1200 33 Ww 1000 43 w 32 5 200 = 800 39 = 700) 22 600 = 500 tu) 400 = FE 300 45 y 1400 ¢ 1200 Sil 1000 36 700 40 a 2 \8 600 ti 400 36 35 800 41 a Austen! = 600 50 Undissolved bd 300 600 Corbldes 57 200} 400 46 t Be 4 Ms 200; 400 +Ms50 100 200 | Bee 58 Mao 20 ; EEK|65 05! 2 5 10 102 TIME 10% - SECONDS 104 10% mt i 0 cence tit OSA 2) 85) 10 Paiitol E etn 102 TIME fut 103 104 10> 10& - SECONDS SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 ens Atlas of Time-Temperature Diagrams 23 Type: Fe-C-Cr Composition: Fe - 0.33% C - 0.45% Mn - 1.97% Cr Grain size: 6-7 Austenitized at 871°C (1600°F) °C Type: Fe-C-Cr-Mo Composition: Fe - 0.11% C - 0.38% Mn - 0.44% Si - 5.46% Cr - 0.42% Mo Grain size: 7-8 Austenitized at 899°C (1650°F) 3 °G ta 800 <' 800 700 i 700 COP 32 28 600 oF 1400 WW 1200 27 w 31 & 500 : 35 ‘ SS tu 400 800 F 300 ea 300} 600 200+ 400 100 200 2 500 4 tw 400 200 eS 1000 = : Sa WEEK! 58 r) r) oie) 5) 6 10? 103 104 10° 10® 0512 50 TIME - SECONDS 102 103 104 108 108 TIME - SECONDS Type: 410 Type: Fe-C-Ni-Cr-Mo-V Composition: Fe - 0.11% C - 0.44% Mn - 0.37% Si - 0.16% Ni - Composition: Fe - 0.22% C - 0.54% Mn - 0.64% Ni - 12.46% Cr 12.18% Cr Grain size: 6-7 Austenitized at 982°C (1800°F) - 0.99% Mo - 0.29% V Grain size: 4-5 Austenitized at 1010°C (1850°F) °C 800 700 600 WwW 5 — a =) Wi (400 a o = < = 500 a Ww p= a F 300 200 100 ie) 0512 TIME - SECONDS 50 102 TIME 10% 10% 10> “10 - SECONDS as published in Atlas of Isothermal SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 Transformation 1977 and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, ee 24 Atlas of Time-Temperature Diagrams Type: 4027 Type: 4037 Composition: Fe - 0.26% C - 0.87% Mn - 0.26% Mo Grain size: 7 Austenitized at 857°C (1575°F) Composition: Fe-0.35% C - 0.80% Mn - 0.25% Mo Grain size: 7 Austenitized at 857°C (1575°F) °C 2 4G 800 43 800 TP 2 g @ 1400 < 700 82RB 700 600 ny aoe 88RB 1200 13 al it¢ Ww & 500 i fra 24 32 Fae i 400 40 ss - 300 18 Ww 1000 a 800 & 500 a tu 400 = 00/- 200 Terenalore qr : 0512 TT 104 nr a 102 10% 50 LDAY I WEEK] 10> 4! 89° 200+ 400 100} 200 tet |HOUR 33 = 3001. 200 {25 509 | ae pes 10& | MIN. Lo OSM OSIIO 9 |HOUR Lill 102 TIME — SECONDS | DAY 103 | WEEK | enn 105 | | LL 104 56 10& TIME — SECONDS Type: Fe-C-Mo Type: 4047 Composition: Fe - 0.42% C - 0.20% Mn - 0.21% Mo Grain size: 5-6 Austenitized at 871°C (1600°F) Composition: Fe - 0.48% C - 0.94% Mn - 0.25% Mo Grain size: 6-7 Austenitized at 816°C (1500°F) °C; 800 °F I 1400) a 700 A Tm Got he ie IES ae 1200) } =o) ¢ a w 5 500 1000 } t He A+F+C 4 et i Rom 4 is ‘fall 88RB 16 t i 23 alles F+C yam ry] I rym) A fe GS g (eae eaeear | | = 12001-A 600} | Ww 1000 BS Gee IL 17mm 2 | 400-7 roo = 600 2 | |: = =e — le f = hey 72 \ ec sles Re © iy 400 a — 300; 60° Se 5O% Ms £ al Mso Moot| = if | = \.7% Bec a +— +— _ AF 1 ue fe + 40 ty 400;— (aw, ils 449 400 ai c OC 200 i 5 |-T erasine Lectuul CE ee j a 300|- S00R===t fe LMIN. Wo? HOUR Wo? J+ 200+ 400 = iy bv Eycou) TIME il DIAGRAM Ms eal Mso i™ Moot eaten t 150 | na [ — +— 1- T DIAGRAM =| 100 200 DAY | WEEK| 60 Se ay else oe | = 3] 200} 35 ! 800 il ale 0512 ATi - SECONDS 510 | MIN. OT 102 OTT IHOUR 103 omen 104 | DAY I WEEK] 63, 108 106 eT TIME - SECONDS SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 CaN NS ttc ti genes Atlas of Time-Temperature Diagrams 25 Type: 4068 Type: Fe-C-Mo Composition: Fe - 0.68% C - 0.87% Mn - 0.24% Mo Grain size Composition: Fe - 0.97% C - 1.04% Mn - 0.32% Mo Grain size 7-8 Austenitized at 899°C (1650°F) eG 7-8 Austenitized at 843°C (1550°F) oF 16 800 oF 800 HARDNESS-RC | w 1400 As 1200} S00 1000 + ; ea a* al po ily Zz a= al A 4 27 34 \ if 37 ey * austenite XN Undissolved Corbides hn ng a-F 300 Gale TEMPERATURE 200+ 400 ile 200+ 400 = 33 800 400 & & eo A+F+C 500}- tw 400 a TM fi al 800 = P 100o}—+— ge Ss 500 = rym 7 Trym ix’ 700 1200 600 TM] | 1400) 700 = + F Meso \ 43 C 47 59 | Ms 7 100F 200 NNSA INS = = LMIN. | a0 102 TIME Type: Mn-Mo : 62 Ns lie 200 fe) OSs =[ 10> HOUR OF | 104 LDAY | IWEEK| 66 | 0512 50 102 - SECONDS 103 104 10° 10° TIME - SECONDS Type: Fe-C-Mo Weld Metal Composition: Fe-0.10% C - 1.63% Mn - 0.41% Mo Grain size 5-6 Austenitized at 1093°C (2000°F) for 20 s °C cS) Composition: Fe - 0.22% C - 0.79% Mn - 0.50% Mo Grain size: 8-9 Austenitized at 899°C (1650°F) °C x 4 g= 800 on o HARONESS-RC c a x 700 76RB 600 83RB 500 25 32 400 300 TEMPERATURE TEMPERATURE 200 jimoted Estimated Temperature 1 MIN. {HOUR vr iTc er [8 |__ =| J | : seas eratars | MIN. eis | ey 400, 102 10% DAY 104 10° | WEEK! T 39 10& TIME — SECONDS TIME - SECONDS in Atlas of Isothermal SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published Metals Park OH, 1977 Transformation and Cooling Transformation Diagrams, American Society for Metals, Se EE EEE or Atlas of Time-Temperature Diagrams 26 Type: Fe-C-Mo Type: Fe-C-Mo Composition: Fe - 0.40% C - 0.42% Mn - 0.53% Mo Grain size: 6-7 Austenitized at 871°C (1600°F) hea 2 es Z 6-7 Austenitized at 871°C (1600°F) TTT TP apy "GF soo é anil 3 20 Ww ee & 500 28 - + 1200 600/- Ww 1000 f u& 500}- Ir = \ a a \ = t—1Mso r| OF Teaceuie | | Lowi 0512 5 10 MIN Pa 1 102 TIME IWEEK] 69 | 108 104 108 F+o LW ool. 6004 of 108 Msi ! ij Moo ial [Te , 36 “SN 400 100} 2001 eo +26 800 200 * T i he ac Kage eel Me es19 rome 45 200 At+F ae: 37 hy) 80RB = | | 7 7 © ie = soe a II © Po 5 her Tas te 7 ef ; - At |—+ rol 700 600 ity Composition: Fe - 0.36% C - 0.17% Mn - 0.82% Mo Grain size DAG RRA + 7 teeta eee loo * i -—— remperctre t 0512 LMIN TTT 50 - SECONDS 45 IHOUR TT 102 TIME 103 LDAY | IWEEK] 59 10% 108 108 - SECONDS Type: Fe-C-Mo Type: Fe-C-Ni Composition: Fe - 0.33% C - 0.41% Mn - 1.96% Mo Grain size: 3-4 Austenitized at 1038°C (1900°F) Composition: Fe - 0.40% C - 0.57% Mn - 3.49% Ni - 0.01% Mo Grain size: 8 Austenitized at 871°C (1600°F) Sines 2 *C “ar cre} : 800 is Late) = 1200 28 700 18 600 W < na a 800 a F soof- 0° 200;- 400 ‘ory 100/— 200 fine hea : B 13 1000 22 368 & 500 Pe 47 a 38 40 = + 600 Ww % 500 x 1400 700 31 '000 0 qo yal 800 30 = F soof- £00 200} 400 100 200 fale porticles Beaten LWEEK| 57 0 0512 50 102 108 TIME - SECONDS SOURCE: WEEK| 5g ie) 104 108 10& 0512 50 102 103 104 108 108 TIME - SECONDS I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 N-_e«_-:___@_, , 0 0.0009._S_a“es_“lH ...0.0.0. ——_—_—_—_—_——___—_—_—_(:::_— tlas of Time-Temperature Diagrams 27 Type: Fe-C-Ni-Mo Composition: Fe - 0.41% C - 0.60% Mn - 3.51% Ni - 0.21% Mo Grain size: 7-8 Austenitized at 871°C (1600°F) Type: Fe-C-Ni-Mo Composition: Fe - 0.39% C - 0.56% Mn - 3.53% Ni - 0.74% Mo Grain size: 8-9 Austenitized at 871°C (1600°F) a 4 ll 800 ‘ 800 700 © < 700 \2 600 1200 Ww 1000 rt] & 500 — <q « Ags 800 S 600 soo} ak 7 @& 500 25 r= qt 30 or ya! 39 Cs 47 Rol 1 1 Teta; ta ecteeeat 3 aies [=e@ + s+ 1200-—++ 600) LO + 1400 2 1400) 1 myn ig L 1000) A I | 800 - L 600 = Ss F>—Ms0 200k 400 200} 400+-——4M90 /—7 ou = 100F 200 '00F- EEK 58 ° O51 2 g00b Cems om Na | HOUR LMIN. TT 5910 12) =| DIAGRAM St 4 O15 108 TIME I-T 102 10% 10 TIME — SECONDS | DAY | WEEK! 58 10° 10° - SECONDS Type: Fe-C-Si Type: Fe-C-Si Composiion: Fe - 0.50% C - 0.23% Mn - 0.53% Si - 0.05% Cr Composition: Fe - 0.54% C - 0.23% Mn - 1.27% Si - 0.05% Cr Grain size: 20% 2-3, 80% 7 Austenitized at 843°C (1550°F) Grain size: 40% 3-4, 60% 7 Austenitized at 871°C (1600°F) ro 8 °C 800 é 800 700 Ks £G | oF 1200\ 600 24 W & 500 Be a0 1000 Ww & 500}- 35 q 43 a afj 400 = = 300,- we oe = : - = : nye - — FL 28 ie = 80: 0 31 cles ry36 a= N 46 Ms += 52 2 300 als += 200|/- jojeaiea | | 51 62 . an ey Soe TT 0512 in 100 200 | 100 = fe 54 200 102 TIME SOURCE: 600 & soo = 2 nT A 700 2\ = 2 eee ye —SeEovEeeen Ge] 1400-— ,. — = < TT pM [ 103 —- SECONDS 104 10° 10® 0512 50 102 DAY (HOUR I MIN. es (WEEK! vb Poth Yt oh CA Lael Pathol cal 10° 10% 108 63 0 TIME - SECONDS published in Atlas of Isothermal I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as 1977 Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, i Atlas of Time-Temperature Diagrams 28 Type: Fe-C-Si-Cr Type: Fe-C-Si-Cr Composition: Fe - 0.55% C - 0.78% Mn - 1.62% Si - 0.77% Cr Grain size 6 Austenitized at 899°C (1650°F) Composition: Fe - 0.53% C - 0.24% Mn = 2.32% Sit= 0.32% Cr Grain size: 50% 2-3, 50% 7 Austenitized at 982°C (1800°F) °C). °F ‘ °C 800 z 800 32 700 1400 < 700 1200) 37 1000 42 ei “yi & 500 me a44 uj a 400 E 300; °° ok » 300 200;- 400 100 200} 600 a 42 & 500 q 600 q 400 a Fa 57 = 200 100 | WEEK! 65 ° Mm O51 2 © 102 108 104 108 0 108 0512 580 TIME — SECONDS 102 103 TIME 104 108 108 - SECONDS Type: Fe-C-Si-Cr Type: 9260 Composition: Fe - 0.51% C - 0.25% Mn - 3.80% Si - 0.32% Cr Composition: Fe - 0.62% C - 0.82% Mn - 2.01% Si - 0.07% Cr Grain size: 30% 3-5, 70% 7-8 Austenitized at 1038°C (1900°F) Grain size: 6-7 Austenitized at 871°C (1600°F) * a =F 800 800}- = : ETT Pp PUT : 3 nm @ 700 ol a 600 WwW 5 Ww 1000 aSs 500 = 500 = 36 \ 33 33 e ac uj 400 = 800 uu) 400}- . (oe E 300 rad eer See 200F 400 100/— 200 = = 36 43 50 55 200 oa of al + + E LMIN Osa 2 50 + i IHOUR cll) 2 veto 3 foDetut 4 cf 5 10 10 TiME - SECONDS SOURCE: LDAY | WEEK| 64 0 10 10 6 0 ae 0512 510 monet 102 IWEEK|@5 103 104 pada 08 108 TIME — SECONDS I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 —_—_——_—_—_—_—_X PXRnkRkn ra _ Atlas of Time-Temperature Diagrams 2? Type: 9261 Composition: Fe - 0.62% C - 0.95% Mn - 2.01% Si - 0.15% Cr Grain size: 6-7 Austenitized at 871°C (1600°F) °C Type: 9262 Composition: Fe - 0.62% C - 0.86% Mn - 2.13% Si - 0.33% Cr Grain size: 6 Austenitized at 871°C (1600°F) °C °F 800 -RC HARONESS-RG HARONESS 700 600 600 500 400 TEMPERATURE 600 TEMPERATURE 200 200 400 100 200 0512 TIME — SECONDS 50 102 10% 104 10° 10& TIME - SECONDS SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Diagrams, American Society for Metals, Metals Park OH, 1977 Transformation and Cooling Transformation O E eee ee Atlas of Time-Temperature Diagrams 30 Type: 6145 Type: 6150 Composition: Fe - 0.43% C - 0.74% Mn - 0.92% Cr - 0.16% V Grain size: 8 Austenitized at 843°C (1550°F) Composition: Fe - 0.53% C - 0.67% Mn - 0.93% Cr - 0.18% V Grain size: 9 Austenitized at 843°C (1550°F) °G) °F 800 : ieee SCs pT | A : L 2 ; ; z | S's ; 800/- 1200 26 1200 600}- 105 600}- Ww 1000 & soofE 33 sles Ww 1000 & 500}= Pee 800 “Sif a =|44 r2 5 300}- 60° oes of Lt fiat OS alee I MIN. Patil on Petit 102 |HOUR Ealtunt 103 TIME | DAY 104 bh 105 iF 3! 36 7 36 31 39 800 = Lil ool 600 52 200+ | 400 ical 200[+-+* esa IWEEK] eal é = 20 45 | H ‘od SSSI a 200;+- 400 '20F- 200 - a 700 afk 700}— r 1400 Me iy ry it 6! L— of 10 051 clu! 2 MIN Evil 5 10 102 — SECONDS TIME Type: Fe-C-Cr-Mo-V |HOUR Pvt LDAY Viti 103 | WEEK] Pati) |ruil 104 10° 65 1o& - SECONDS Type: Fe-C-Cr-Mo-V Composition: Fe - 0.23% C - 0.82% Mn - 1.22% Cr - 0.53% Mo Composition: Fe - 0.40% C - 0.78% Mn - 1.25% Cr - 0.53% Mo - 0.22% - 0.22% V Grain size: not given Austenitized Cer at 843°C mm pT PTT @ °¢, ‘si 3 ete |—=-7—+-+ | < Tay 800 1400 “| =} g 700 ele] ipa solved Carbides) 50% 1000 - 3 400 | i Hh Le 1000 © 500 =_ 7 Nt 40 oe Pass < th400 sa = | 400 (1600°F) te 600 WwW F, +¢ | Feesoolsacoe 200}- + at 843°C 1200 = =a) pal 800 size: not given Austenitized °F aan os) =—|—- S 500 = V Grain 1400 ra 1200 WwW (1600°F) ‘lineal | el oral Gale POO e400 100 200 M * Estimated 100) 200 * Estimoted Temperature if Te 0 | 0512 50 102 TIME SOURCE: HOUR Lili 103 — SECONDS UW 104 108 |-T Temperature 4 DIAGRAM af 108 ‘ Aer a s amie LU | la Tan | DAY ae a ae TIME - SECONDS I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 SSS SSS Atlas of Time-Temperature Diagrams 31 Type: Fe-C-Cr-Mo-V Composition: Fe - 0.33% C - 0.84% Mn - 1.05% Cr - 1.07% Mo - 0.26% V Grain size: 7 Austenitized at 1010°C (1850°F) Type: Fe-C-Mn-Ni-V Composition: Fe - 0.20% C - 1.44% Mn - 0.49% Ni - 0.16% V Grain size: 12 Austenitized at 843°C (1550°F) o °C oF | 800 E 1400) “Ay * an 1 T pry | | 1200 WwW o > 500) rd -———— | A LF a KS : ~ ine 700 meene) \ 30 34 SS S| 440 600 = —-Ms = wu 300 600 200} 400 a6 ij sm 42 45 1* lawl T 1200 WW 1000 ra 800 lu 400 a & i 300 600 200k 400 100} 200 7 -T 200 4 encacure DIAGRAM {4 | ° 1400 me 5 500 hs Ih 1 ie. J al Sine i (—s0%4 iy 2 = ogtiga +Ft m 100 é Se= Aas 2 +—|— | 800 tJ/'400 a °, i ek. = - -}+—— (ooo 8 pa eee el ae 7‘00 600 ya [ LMIN. IHOUR Temperchiret Estimoted LpAY | |WEEK oO ) 0512 50 102 10% 104 105 10& 0512 50 TIME - SECONDS 102 10> 104 10> 10& TIME - SECONDS Type: Fe-C-Ni-Mo-V Type: Fe-C-Ni-Mo-V Composition: Fe - 0.26% C - 0.57% Mn - 2.20% Ni - 0.48% Mo - 0.09% V Grain size: not given Austenitized at 843°C (1550°F) Composition: Fe - 0.24% C - 0.69% Mn - 3.35% Ni - 0.50% Mo - 0.09% V Grain size: not given Austenitized at 843°C (1550°F) °C 2 °C er si 1400 | 7 Ato 1-743 — A a 1000 Wy iaa (32, A + F apcts ‘ ~~ 50%tt WwW 600 =! ara +— 400 +, tl [= SEs |-T 700 z 27 ie a 43 ro eal a 800 = 2c ra eines DE ae 200F [ I. g3 1 E4 tJ & 400 F 300 ' oa = = rs Z A+F+e wes = imalpsae i Sa l |+ + a <1 t BL = al Z ok & 4 200 Saat 0 1200 mo ee = 400 5 800 Fra} poe a Penge a LMIN. OSieano7 600 Pe tah DIAGRAM 100F Taiaull if a eee Tt * 100/— oF oF 200 Temperature IHOUR 102 10% TIME — SECONDS 104 105 108 ) TIME - SECONDS in Atlas of Isothermal SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published 1977 OH, Park Metals Metals, for Society American n Diagrams, Transformatio Cooling n and Transformatio ee EEE Atlas of Time-Temperature Diagrams oe Type: Fe-C-Mn-Ni-Cr-Mo-V Type: Fe-C-Mn-Ni-Cr-Mo-V Composition: Fe - 0.27% C - 0.84% Mn - 0.60% Ni - 0.73% Cr - Composition: Fe - 0.25% C - 0.88% Mn - 0.59% Ni - 0.73% Cr - 0.90% Mo - 0.11% V Grain size: 7 Austenitized at 927°C 0.88% Mo - 0.23% V Grain size: 6 Austenitized at 1010°C (1700°F) °C 800 (1850°F) oF 1400 {8} 2 800 16 700 & 700 1200) 25 600} WW g oF Zz 1400 < W 1200 3I 28 600 1000) ive] & 500 33 1000 & 500 < mie < fi 400 ss 600 aF 300 600 200} 400 200} 400 100 200 100 200 ta 400 a aFr 300 2 id 39 o 43 Estimated Temperature | _ 35 44 LMIN. ° | 0.51 f°) 2 108 TIME |HOUR LLU 0512 | DAY | WEEK! cul | iffil =| 5 10 102 —- SECONDS TIME 10% 104 10> 10& - SECONDS Type: 3140 Type: 3310 Composition: Fe - 0.38% C - 0.72% Mn - 1.32% Ni - 0.49% Cr Grain size: 7-8 Austenitized at 843°C (1550°F) Composition: Fe - 0.11% C - 0.45% Mn - 3.33% Ni - 1.52% Cr Grain size: 9 Austenitized at 899°C (1650°F) ne 800} *) mill rym 1400-4 700 =W TT & pS <= a g e & Cia c= = =) ie Se 1200 13 600 ira) = t & soo} = <eal + 26 ra = 4 4 34 800 (at = = 300 600} 200K 400} | Es rm 5 ul = LMIN heat OS 48 + Kae = sett of iva — 2 5, 10 iHOUR Lisl 102 A Lu 103 TIME - SECONDS 104 | DAY | |WEEK] l 105 60 108 1400 TT | TM 2 3 z Ae 600/— 21 t— mM eek : 1200: +20 1ooo}_ +4 es = 15 Ga OT; L- * . 400 100/— 200} || | 36 Mso Mga 600) 200;- Of 34 Ll y,*} 800k a = re 300 12 1000F A & s500}ss Para 84RB I-T DIAGRAM | | , OS) 1 ™ esnmeres = | MIN 0 2 | a |HOUR a TT SiO 102 TIME 10% = + 104 iDAY | |WEEK] 42 105 10& - SECONDS SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 eee Atlas of Time-Temperature Diagrams 33 Type: Carburized 3310 (0.4% C) Type: Carburized Composition: Fe - 0.4% C - 0.45% Mn - 3.33% Ni - 1.52% Cr Composition: Fe - 0.6% C - 0.45% Mn - 3.33% Ni - 1.52% Cr Grain size: 65% 8, 35% 5 Austenitized at 927°C (1700°F) ne poe hs er 1400 t Bk. acai PTT PTT TT ne A RIGS eal ;a [fe 5 % s00}- 2< ty 400f- Ms = t=] F+CO 423 600}- eae = 400 100F ob 200 ae t— LL 0512 7 ‘B en Ese PHELSN Bers =e e= te é r 14 27 = s00e.6OCh b A f toatl 5 10 =! el 7 Wo at F+e l-sox t t t 200 |-T | ~= + al ata! | = a = 48 ii 1: | LMIN Z [ 800 © s00- = ase 1- T DIAGRAM Ue ee Eis Li as 26 tel lial 5lana 0 * TTI PTTT | po et +Mgo fe 1400/4 ra seem ae, ee Mso 200} ie [ 20 pala os b— 700 | as a F 300f- 6° —_ $ = = | 800 a 800 —t | Qa 3 TTT PATI TTT 4) “FT PAT TTT TT -A+F 4 A 1000 Grain size: 6 Austenitized at 927°C (1700°F) hohe = so0Ww ATT A 3310 (0.6% C) + 55 ai ~ i DIAGRAM f- 100 46 _)52 t: + | | DAY HOUR | WEEK] 69 beat! Tito) Cetinh 1i Viv 102 TIME |HOUR UM an 0 10& 108 104 10% MIN 102 TIME —- SECONDS 10% am 104 | DAY et [WEEK] 10° 62 10° - SECONDS SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 Type: Carburized 3310 (0.8% C) Composition: Fe - 0.8% C - 0.45% Mn - 3.33% Ni - 1.52% Cr Grain size: 8 Austenitized at 927°C (1700°F) °C 800 700 TEMPERATURE 200 100 0512 50 102 103 104 105 1o® TIME - SECONDS American Society for Metals, Metals Park OH, 1977 Atlas of Isothermal Transformation and Cooling Transformation Diagrams, Atlas of Time-Temperature Diagrams 34 Type: Carburized 3310 (1.0% C) Type: 4130 Composition: Fe - 1.0% C - 0.45% Mn - 3.33% Ni - 1.52% Cr Grain size: 4-5 Austenitized at 927°C (1700°F) Composition: Fe - 0.33% C - 0.53% Mn - 0.90% Cr - 0.18% Mo Grain size: 9-10 Austenitized at 843°C (1550°F) 16) oF HARDNESS-RG n -RC HARDNESS TEMPERATURE TEMPERATURE + |- T DIAGRAM | 1 | Estimated lt Temperature of QSEttmel al 2 750 — LMIN. 102 i 105a |HOUR eT 104 10° |DAY | WEEK! 0 4g 10& A510 rr 102 | 0512 TIME - SECONDS I MIN. |HOUR 103 104 | DAY | WEEK! 56 10° 10& TIME - SECONDS Type: 4137/4140 Type: 4150 Mod. Composition: Fe - 0.37% C - 0.77% Mn - 0.98% Cr - 0.21% Mo Grain size: 7-8 Austenitized at 843°C (1550°F) Composition: Fe - 0.55% C - 0.60% Mn - 1.03% Cr - 0.19% Mo - 0.36% Ni Grain size: 7-8 Austenitized at 843°C (1550°F) °C °C 800 800 HARDNESS-RC HARDNESS-RC 700 700 600 600 31 38 4\ W WwW © soo & 500 = i= 31 < = 39 ai 400 tu 400 4 - 300 g 45 Ww F 300 51 200 200 100 100 a ° O5 le 2.50 TIME - SECONDS 102 TIME 10% 104% 10> 10 - SECONDS SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 a aaa eee Atlas of Time-Temperature Diagrams 35 Type: 4317 Type: 4340 0.24% Mo Grain size: 7 Austenitized at 927°C (1700°F) 0.33% Mo Grain size: 7-8 Austenitized at 843°C (1550°F) Composition: Fe - 0.17% C - 0.57% Mn - 1.87% Ni - 0.45% Cr - Composition: Fe - 0.42% C - 0.78% Mn - 1.79% Ni - 0.80% Cr - G Z SRS 800 rd soot é qoS i : 86RB 600 13 Wy 1400-1 700}- 33 rE a 05 400 ey py é = 15 eS w 1000 © s00 = < ei800 ox = = FJ 300 i [ | 100 200 of ts } || LMIN ttl |vit 0512 510 102 bay ree 200 LHOUR 103 LDAY | IWEEK! 4g e 104 nT 10° +—4 32 4\ 48 51 Mso 200. 400-4 Moo r | + +——_|_ | -+—— |-T DIAGRAM ++—_+++—— 24 Med = | +++ * Son | 20 i— A b = 3001 °° 200}- 400}—+ L 2 A HIi As feoole 600 MG Sy rt | 108 ea & of +. |-T DIAGRAM 0512 cell 510 TIME - SECONDS su Seah Lyitll | ysl 102 t— | |HOUR MIN 105 LDAY | | WEEK| 62 | yh 104 10° 10& TIME - SECONDS Type: 4360 Type: 4615 Composition: Fe - 0.62% C - 0.54% Mn - 0.67% Si - 1.79% Ni - Composition: Fe - 0.15% C - 0.63% Mn - 1.90% Ni - 0.24% Mo 0.60% Cr - 0.32% Mo Grain size: 7-8, occasional 4 Austenitized Grain size: 8 Austenitized at 927°C (1700°F) at 982°C (1800°F) Shh A 800 mM e | 2 1400 700 i As aI 600 = & soo}= Ps tj 400;- g | ea | 800 S a Fe SS cee x 200;- 400 100f— 200) Mso* ® Estimores Moo i ed 1S 26 zs ae ° 87RB r ime ie400 eS 85RB 1000) = tw 400 = ea S 300- “aa 1200 &= 500 A Z 800 6 [a= 600) w | 3 1400 700 + il 1000 oF 800 g 1200}-4+—_+_+ Ww 2G, * Ei Temperature 0512 Cy ital 50 Lith ° Oye aps Swe OE Temperatur it - 0512 50 102 108 TIME - SECONDS 104 10° 10S TIME — SECONDS SOURCE: in Atlas of Isothermal I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published Metals Park OH, 1977 Transformation and Cooling Transformation Diagrams, American Society for Metals, ._ Atlas of Time-Temperature Diagrams 36 Type: 4640 Type: 4815 Composition: Fe - 0.36% C - 0.63% Mn - 1.84% Ni - 0.23% Mo Grain size: 7-8 Austenitized at 843°C (1550°F) e FL TM pr Tym) 2 Me) |3 800 = 700 800|— 6 === 1400 700}- fel. — 1200 L~ >] 1000} 2 Od= IL 23 OTL | ft 42 48 t= = F 300f- | °° cs 400 100 200 [ 0 Tym = oe | z Ww q tj a 400 a F 300 | | 200+ mm) & 500 32 a 0111] IF 600 is a 65 400+ ao oe 3 600;- Ww : Composition: Fe - 0.16% C - 0.52% Mn - 3.36% Ni - 0.19% Mo Grain size: 8-9 Austenitized at 899°C (1650°F) I-T DIAGRAM IMIN. 0.512 5 10 aT 10? TT TIME IHOUR 200 DAY | IWEEK| 60 TT 108 100}— 104 10° oF 108 | T al A OT 400 = ft is 200+ + |1-T |sacar | 7] DIAGRAM | | Temperature = 0512 | IMIN AAA 510 - SECONDS IHOUR OT Tc TO 102 10 TIME LDAY | IWEEK] 4g 104 108 108 —- SECONDS Type: 4815 (1.0% C) Type: 8620 Composition: Fe - 0.97% C - 0.52% Mn - 3.36% Ni - 0.19% Mo Grain size: 7 Austenitized at 982°C (1800°F) Composition: Fe - 0.18% C - 0.79% Mn - 0.52% Ni - 0.56% Cr 0.19% Mo Grain size: 9-10 Austenitized at 899°C (1650°F) < | 00 LL s 2 800 1400 A 700 E aes e 1200}—+ 600 iW z 700}- ~e i | 31 Sor 38 fp A [ lis LL RANE: z e i = isere 2 16 1000 19 & 500}| ot < =e AGO Inn tJ 400;— 48 Ws soot. 60° 36 a ES 53 200/— 400; 200F GS RL Ato = g 100/— +4 = 600} WW GO EL 1400; \7 = a afl L 1200 = 2 500 = 74 800}— + 1000 WwW400}- Vea sy a 3 * L 0512 Mst eerennis (oe + LMIN. mim 5 10 HOUR eT UT 10? 10% | a. 200 = 100}- 200 LDAY | I WEEK] 62 ull min 10% 10° 400+ \- T DIAGRAM * eavimores OF 10& LE 0512 TIME - SECONDS | Temperature bs 510 LIN illu 102 TIME HOUR HEL LLL 108 IDAY | IWEEK] a6 | 104 108 108 — SECONDS SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 hl TCT —eee—e—e— I — ——————e_ Atlas of Time-Temperature Diagrams 37 SS Type: 8630 Composition: Fe = 0.30% C - 0.80% Mn - 0.54% Ni - 0.55% Cr 0.21% Mo Grain size: 9 Austenitized at 871°C (1600°F) a a Soi PL Ag -4—}—-- a 4-4-4 | 4-} Type: 8660 Composition: Fe - 0.59% C - 0.89% Mn - 0.53% Ni - 0.64% Cr 0.22% Mo Grain size: 8 Austenitized at 843°C (1550°F) Th Poy, + - Z 800}- A < 82RB 18 et S 26 E as ac a 42 E 36 = OOO LL V8 1400 & 1200 24 1000 35 800 34 ; 600}— Ww 32 sy JOS] - 32 WW ALLL On LOL 700;— 13 w vee ee Ps 29 tw 400;- a 43 e cyaile G89 49 = 55 200+ 400 '00/— 200 of 0512 Lv luol Pvatul 510 | ee Pvt | vebuot (vito 102 103 10% TIME — SECONDS 10° 64 Alc 10° 0.51 2 10® TIME - SECONDS Type 8745 Type: 9420 Composition: Fe - 0.44% C - 0.90% Mn - 0.45% Ni - 0.54% Cr - Composition: Fe - 0.24% C - 0.94% Mn - 0.47% Si - 0.30% Ni - 0.22% Mo Grain size 9-10 Austenitized at 843°C (1550°F) 0.34% Cr - 0.14% Mo Grain size: 7-8 Austenitized at 899°C ‘ (1650°F) g © Tom < 800} ne 16 700} & 12 aa 7 23 Ww 26 S E= 26 30 ve) S be WW 49 r 12 600}— 17 &= soot 26 p=¢ 35 a 443 5 400+ ri F- 300+ of 0512 | ea BOO ToC aie [ lenewpecties T — I MIN. flats (ati sith LH 50 we fo® IHOUR Tul TIME - SECONDS 10 LDAY | IWEEK| 6} Lect Te 8 4" F+oO Ww = 0. Sl 2755 cell 0 LDAY | IWEEK| 50 IHOUR LMIN. l =] | | eee 4 100 200b of jae 1- T DIAGRAM vat! (oft 102 10% veoh |tid 104 105 10& TIME —- SECONDS I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Society for Metals, Metals Park OH, 1977 Transformation and Cooling Transformation Diagrams, American SOURCE: NEE EEE eae Atlas of Time-Temperature Diagrams 38 Type: 9440 Type 9860 Composition: Fe - 0.38% C - 1.08% Mn - 0.70% Si - 0.34% Ni 0.40% Cr - 0.11% Mo - 0.030% Zr Grain size 10-11 Austenitized at 857°C (1575°F) Composition: Fe - 0.57% C - 0.82% Mn - 1.16% Ni - 1.07% Cr 0.26% Mo Grain size: 4-5 Austenitized at 927°C (1700°F) °C oF 800 Ay 7 1400 A ea = A °C < % z 800 i 6 oe < 700 22 427 600 32 i Sj + = 700 1200 18 600 w 1000 5 500) < 800) 26 w 27 % 500 oT < 33 u 400;- uj 400 iz = soo} be $ 300}- 60° 200+ 400 '00F 200) 60° = 200}- 400 100F (Sh 200+ ah LMIN. HOUR LDAY | I WEEK| 60 Oe ry LUA oye) (|) (2 0512 50 102 103 TIME 104 108 PE Le) 108 102 103 104 10° 108 TIME - SECONDS - SECONDS Type: Fe-Ni-Cr-Mo Type: Fe-Ni-Cr-Mo Composition: Fe - 0.14% C - 0.26% Mn - 2.21% Ni - 1.05% Cr 0.26% Mo Grain size: not given Austenitized at 899°C (1650°F) Composition: Fe - 0.13% C - 0.16% Mn - 3.08% Ni - 1.76% Cr 0.49% Mo Grain size: not given Austenitized at 899°C (1650°F) © Far am 800 7 BOh i 1400 1400 700 1200 600 WW } 700 /\ 600 A = 1200 {000 % 500 ra = WW b a 2 = = ee = 300f- °° 200+ 400 200 = 60° 200K 400 100 200 I MIN. L| ‘Saal iccac SO oa |HOUR | 5 10 DIAGRAM { 4 ee 0512 FE 300} 1-T DIAGRAM he ) 800 W 400 — 100} 1000 5 500 80o}-+ W 400 gas 800 L iH 102 TIME |IHOUR HLL 108 —- SECONDS 104 108 108 ° 0512 510 102 TIME 103 104 105 108 - SECONDS SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 —_——<—S— ees $< Atlas of Time-Temperature Diagrams 39 Type: Fe-Ni-Cr-Mo Composition: Fe - 0.55% C - 0.83% Mn - 1.15% Ni - 1.01% Cr - 0.48% Mo Grain size: not given Austenitized at 899°C (1650°F) sO a FTL 1400) OTUL % Af =I ; 7OO}-— “Oy a3 800 < = ieee 30 32 1000 Ex 800 1 [ sr | a 400 be 100F 200 — of ww 1000} F 800 rales 60° i + 2 aF 300} 49 55 200k 400}——Ms * 100 200 7 Felnaled ae celuol 0512 22 29 WW 400 Ns eae | | 57 * 200} z3 = i Ps . F soot °° “h a 1200 ae i” W 400;— B ats =a 600 & 500 2 He t 700 oes | rr 1400 =i As L Ww Composition: Fe - 0.51% C - 0.73% Mn - 2.74% Ni - 0.99% Cr - 0.45% Mo Grain size: not given Austenitized at 899°C (1650°F) NOEL 1200/4 600}© soo OU (1, OnORL111 PRE ij 8o0o}- Type: Fe-Ni-Cr-Mo 5 0 | 5 eet LMIN. Epi Lyell 102 TIME {HOUR Evite 104% 10% LDAY cdi 10° | WEEK Eth DIAGRAM [ Estimated Lo JI Temperature 1 MIN. 0 HOUR TT eT 102 510 0512 108 - SECONDS TIME 104% 10% L | DAY 108 10° - SECONDS Type: Nitralloy, 135 Mod. Type: 1060/10B60 Composition: Fe - 0.41% C - 0.57% Mn - 1.57% Cr - 0.36% Mo - 1.26% Al Grain size: 7-8 Austenitized at 927°C (1700°F) Composition: Fe - 0.63% C - 0.87% Mn - none or 0.0018% B Grain size: 5-6 for both Austenitized at 816°C (1500°F) Boron ° CG) ° g Be Foo °C 1400 2 ue 800 1200 30 w 2°° a 200+ 400 '00F 200) 35 5 aay 28 rsies: 33 LWEEK| 60 fc) 0512 50 102 10? TIME - SECONDS 104 10° 1000 45 3 60° 86RB 12 600 & 500 soo} West -—J 1200) 1000 < soot. Z 700 3 600 2 1400 22 700 w oF = As 800 treated: black lines ao f *1600°F 106 S re 300 S00 200+ 400 100 200 Yansasare r 6 0512 50 EEK] 42 1 I MIN. 102 10> 10% 105 10& TIME - SECONDS published in Atlas of Isothermal SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as Park OH, 1977 Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals LEE 40 Atlas of Time-Temperature Diagrams Type 4317/43B17 Type: 4615/46B15 Composition: Fe - 0.17% C - 0.57% Mn - 1.87% Ni - 0.45% Cr - Composition: Fe - 0.15% C - 0.63% Mn - 1.90% Ni - 0.24% Mo 0.24% Mo / Fe - 0.14% C - 0.81% Mn - 1.81% Ni - 0.49% Cr - / Fe - 0.16% C - 0.60% Mn - 1.92% Ni - 0.27% Mo - 0.0017% B 0.27% Mo - 0.0030% B Grain sizes: 7 for 4317, and 4-7 for 43B17 Austenitized at 927°C (1700°F) Boron treated: black Grain sizes: 8 for 4615, and 3-7 for 46B15 Austenitized at 927°C (1700°F) Boron treated: black lines nes Caan: °C oF ys, 800 1400 é 700 1200 ey B6RB 1200 aDa soot Lf a 600 12 500 oe 4pg | e oe 28 E 33 td2 o a uJ = — — 300f- 80° 200} 400 100} 200! a a a 300/— ete Ay | a * = / x Fe fe 50%, = is bet {Meo ert eae 600 ° O52) S00 10? 108 104 108 oF | Ct ag ai t Sa | | 17 26 | += 33 a | T 1 | | | — eal | | evens | 0512 AN | |-T DIAGRAM el + L } | niet Le 100 200 ES ree a | T 200;- 400 ene 4 é | ? 7\ 800-7). si ii | Ze 7. EEK) 42 oi | \_ can 40 }- | rir le i A + soo ae | [ T At 1400 © = TMT 2 d B00 / mT 510 | iMiv. (tet: a ee 102 108 108 my | |rpay 104 10° WEEK] 43 ull is 0 TIME - SECONDS TIME - SECONDS Type 5160/51B60 Type 8620/86B20 Composition: Fe - 0.61% C - 0.94% Mn - 0.88% Cr / Fe 0.64% C - 0.88% Mn - 0.83% Cr - 0.0006% B Grain sizes: 7 for 5160, and 6-7 for 51B60 Austenitized at 843°C (1550°F) Boron treated: black lines Composition: Fe - 0.23% C - 0.72% Mn - 0.59% Ni - 0.52% Cr 0.21% Mo / Fe - 0.22% C - 0.76% Mn - 0.57% Ni - 0.51% Cr 0.20% Mo - 0.0025% B Grain sizes: 8 for 8620, and 9 for 86B20 Austenitized at 927°C (1700°F) Boron treated: black lines 5S Maes TM 1400) cGy. 800 cae 700 se 700 1200) 34 600 w 2 re] ¥ 800 1000 = ti 400 a. ey 300} 600 = = ia F001 Sa RAL On OL flea a OL Cac (clea Nalos OT ede 8 5 1400 < it 1200 4\ & 500) ~2E 13 600 20 42 w 32 & 500 1000 39 < 45 tr 400 (at a oa 300} 600 200}- 400} 23 26 20 = S57, 200}- 400 -—— +— imoted 100F 200 '00F EEK! 65 r) 0512 50 lo IWEEK] 4g 0 0512 TIME - SECONDS SOURCE: Temperature 200 50 102 TIME 108 104 108 108 - SECONDS I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 ——————————— nnn I —I—— ( Atlas of Time-Temperature Diagrams 4] Type: 8650/86B50 Composition: Fe - 0.50% C - 0.77% Mn - 0.60% Ni - 0.51% Cr 0.22% Mo (0.21% Mo for 86B50, plus 0.0016% B) Grain size: 9 for both Austenitized at 843°C (1550°F) Boron treated: black _ lines Type: 8680/86B80 Composition: Fe - 0.79% C - 0.77% Mn - 0.58% Ni - 0.50% Cr - : 0.21% Mo / Fe - 0.78% C - 0.86% Mn - 0.59% Ni - 0.49% Cr 0.21% Mo - 0.0025% B Grain size: 8 for both Austenitized at 843°C (1550°F) Boron treated: black lines TTP TTI HARONESS-RC | HARONESS-RC ™ 800 400 600 TEMPERATURE TEMPERATURE OS 102 V2; = 5710 10> TIME 104 0.51 102 5 0 2 - SECONDS 10% TIME Type: 80B20 104 - SECONDS Type: 81B40 Composition: Fe - 0.18% C - 0.57% Mn - 0.31% Ni - €.31% Cr - Composition: Fe - 0.43% C - 1.02% Mn - 0.31% Ni - 0.48% Cr - 0.15% Mo - 0.0009% B Grain size: 8 Austenitized at 927°C 0.13% Mo - 0.0009% B Grain size 7 Austenitized at 843°C (1700°F) (1550°F) Ss 7 1000 ie aN . =F S = 15 2 ie | * Estimated S| Temperature 200 { 1 L 1-T 0512 51 At al 1200 600 ly + 1000 A lu TTY pT TYP TTT = SSeslees es 45 = | 5 = | i + \h hE F+C 7|~ A+ F+C 800 A E 3W500, 600=- Mc Je 2 aes oy tas < ei 400 ae eis alk TPT |TTT FS 35 \s-50% \ re _|43 ii \ iesitat ed rook 1 il | 1-T DIAGRAM + ~— LI 1400-4 As 200K DIAGRAM | MIN. ° Ty t—-Ms9] - 400 “is 700}— 8 10 | 600}—- 100;—- Sa 38 iS 80o}- Fe 800 g0¢ 200} = + Qa a g > e<[S= eo e TU L & 500;-a 400 om a [Nests 1200 600;— WwW bh im 7OO;- Pal rel LTV] | A 1400}—, < Ml Baul Hg 800 HOUR PLE 102 DAY 103 TIME — SECONDS 104 | WEEK) cell | itu | LU Py Lh 10° 106 102 TIME 108 104 - SECONDS SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 Transformation ee e ee ee 42 Atlas of Time-Temperature Diagrams Type: 86B45 Type: 94B17 Composition: Fe - 0.45% C - 0.89% Mn - 0.59% Ni - 0.66% Cr 0.12% Mo - 0.0015% B Grain size: 6-7 Austenitized at 843°C (1550°F) Composition: Fe - 0.19% C - 0.77% Mn - 0.42% Ni - 040% Cr 0.12% Mo - 0.0018% B Grain size: 7-8 Austenitized at 927°C (1700°F) °C 800 oF TMM 1400}—+—+- 700}- r= 1200} 600}— At += + AS 4 = 1000 ie oeAls 800 = 600 200;- 400 100 200) g 800 @ 9 4+ 33 ty 7 T e Z < Se 1200 i 10 1000 ae ar Bo) 600 15 w 3 500 34 = ee oe 43 a 26 800 = re 300|- 60° 200;- 400 !00F 200) = 33 ace ee ie + Ms * Estimated Moo} ; T ee 29 5! : 700 3I A— oF 1400 23 a he 300 °C mee [ rr & s00}- Ley 2 Temperature | | a al |-T DIAGRAM ) ATT a TT O}Sslee SO 102 TIME 10° 104 T EEK! 62 108 LMIN. ) 108 0512 |IHOUR 104 103 102 50 - SECONDS LDAY | IWEEK! 4g Pav am TTT TIME 108 108 —- SECONDS Type: 98B45 Type: USS Cor-Ten Composition: Fe - 0.46% C - 0.79% Mn - 0.91% Ni - 0.77% Cr 0.18% Mo - 0.0021% B Grain size: not given Austenitized at Composition: Fe - 0.12% C - 0.45% Mn - 0.41% Si - 0.12% P 0.31% Ni - 0.62% Cr - 0.26% Cu Grain size: 5-6 Austenitized at 843°C (1550°F) °C 800 oF 1400 1200 °C g 800 a 700 24 600 tw 899°C (1650°F) : & 700 3I 1000 38 & 500 Steel oF id 2 1400 < 90 1200-A 88 1000 97 600) Ww 94 & 500 q q & 400 a oar 44 br 400 oe aF 300} 60° a a 300} 60° 200} 400 200}- 400 100F— 200) '00F 200 Mg I-T DIAGRAM 0 0 0512 50 102 10> 104 105 10& wl 0512 50 TIME - SECONDS UMIN. HOUR Lyall {veto Taito | 102 10> 104 105 10& TIME - SECONDS SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 i se ~ Atlas of Time-Temperature Diagrams Type: USS 43 T1 Steel Composition: Fe - 0.15% C - 0.92% Mn - 0.88% Ni - 0.50% Cr - 0.46% Mo - 0.06% V - 0.32% Cu - 0.0031% B Grain size: 6-7 Austenitized at 913°C (1675°F) na f : Composition: Fe - 0.39% C - 0.89% Mn - 0.48% Si - 0.68% Ni 0.95% Cr - 0.50% Mo - 0.03% V - 0.002% B Grain size: 7-5 Austenitized at 843°C (1550°F) LO OPE 800 Type: USS Strux F Aries Z Ae 1400 1499 700 760 1200 4as+—|-4— _| = 800 : 400 ra 500 aa © S00 = 3 tl 400 200 400 A i | “Estimated 100 ° 200 ait ois! 2 Temperature ae AtFtG vit (5/0 | 102 Ly vtnt Litt 104 105 1 F+e 20 = 2i 200 400 100 200 =Fw, ss = F+o 448 t \ ooh mated Temperature a ae | |"T DIAGRAM + HOUR IDAY | IWEEK 10° nn 108 0 I LMIN. 0512 508 jm 102 TIME - SECONDS TIME Type: USS | °° & es UW SS f+t+-50% F 300} aei a ve I-T DIAGRAM + { I MIN. tilt tot Se At+F & 80° + LAtryC A ee a 500 F 300} gaa a nsf 600 1000 tu 4 ee (eS = S stallsee oleeaces ie06 600 & mm mmm ee TT rT eae Airsteel X 200 Type: 1021/1021 Composition: Fe - 0.44% C - 0.79% Mn - 1.63% Si - 2.10% Cr 0.54% Mo - 0.06% V Grain size: not given Austenitized at 954°C (1750°F) LDAY | WEEK HOUR 103 104 | 108 Nl 108 —- SECONDS + 1 Ni Composition: Fe - 0.20% C - 0.81% Mn / Fe - 0.18% C - 0.67% Mn - 1.07% Ni Grain sizes: 8-9 for 1021, and 7-8 for 1021 + 1 Ni Austenitized at 927°C (1700°F) for 1021 and 843°C (1550°F) for 1021 + 1 Ni Black lines: 1021 + 1 Ni AG | HARONESS-RC 800 25 HARDNESS-RC 700 @ 2) D o 600 500) 46 TEMPERATURE TEMPERATURE 100) 200 cSEstimated + it Temperature + + + + I MIN. ° LL) 0512 50 = HOUR LI LT 102 | DAY Atul 10% 104 | WEEK 100 vf 10° 106 ° TIME — SECONDS TIME —- SECONDS PA, 1963 as published in Atlas of Isothermal SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh Metals Park OH, 1977 Transformation and Cooling Transformation Diagrams, American Society for Metals, EEE Atlas of Time-Temperature Diagrams 44 Type: 1021 + 1 Ni / 1021 +1Ni+B Type: 1021 + Ni / 1021 + 1 Ni + Mn> Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni / Fe - 0.19% C - 0.75% Mn - 1.04% Ni + 0.0021% B Grain sizes: 8 Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni / Fe- 0.17% C - 1.65% Mn - 1.07% Ni. Grain size: 6 Austenitized at 816~C Austenitized at 927°C (1700°F) Black lines: 1021 + 1 Ni+ B (1500°F) Black lines: 1021 + 1 Ni + Mn go 800 TF rTM hated : 1400 rym 2 °C peteerall 3 800 a 700 700 1200 — 86RB 1000 - 18 600 w g q thes! 600 23 22 & 500 33 32 Fe 36 a = 30of- 600 2- 300 200}- 400 200 100F 200 ° '3 b 400 s Es 64RB " & 500 & 6 tii 400 0512 100 | I MIN. 50 AT iri AT 102 103 EEKl ag 104 108 46 0 0512 10& 50 TIME — SECONDS 102 103 104 108 10& TIME — SECONDS Type: 1021 + 1 Ni / 1021 + 1 Ni + 0.5 Cr Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni / Fe - 0.21% C - 0.75% Mn - 1.08% Ni - 0.48% Cr Grain size: 9 Austenitized at 927°C (1700°F) Black lines: 1021 + 1 Ni + 0.5 Cr Type: 1021 + 1 Ni / 1021 + 1 Ni+1 Cr Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni / Fe - 0.21% C - 0.78% Mn - 1.09% Ni - 0.99% Cr Grain size: 10 Austenitized at 927°C (1700°F) Black lines: 1021 + 1 Ni+ 1 Cr x“ 2 cc 2 800 ¢ 800 Z z Oo ae 700 86RB 600 2 iit 600 18 lJ \7 WwW 2i % 500 23 & 500 aA ta 400 5 400 = Qa a WJ - 300 uJ t- < 31 = = 200 300 200 100 100) ; EEK| 45 0512 50 102 TIME SOURCE: < 10% 104% 10> 10& : re 0512 50 - SECONDS 102 TIME 103 104 105 108 — SECONDS I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 ——_—_:: ee vO Atlas of Time-Temperature Diagrams 45 Type: 1021 + 1 Ni / 1021 + 1 Ni+2Cr Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni / Fe - 0.22% C - 0.77% Mn =,1.08% Ni - 1.91% Cr Grain size: 8 Austenitized at 927°C (1700°F) Black lines: 1021 + 1 Ni +2 Cr °C ° Tn fe 800 Type: 1021 + 1 Ni / 1021 + 1 Ni + 0.25 Mo Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni / Fe - 0.18% C - 0.65% Mn - 1.09% Ni - 0.26% Mo Grain size: 6-7 Austenitized at 871°C (1600°F) Black lines: 1021 + 1 Ni + 0.25 Mo Z f z 2 4 6 1400 700 600 42 700 14 1200 18 80RB 86RB 600 ira 2 SOS < w 1000 q a tJ 400 800 & 500 tJ 400 43 a 7 - TTY 800 | 300 18 ae 35 a! $ te 300 cou) 200 > 200+ 400 LDAY | IWEEK} 66 100;= 200 te 0 — 100;— = 200 | 0 0512 tit 50 LMIN. IHOUR | Evita mM SO TIME -— ee SiS 0:50 SECONDS iweex| 47 OT 5:10 25 104% 103 TIME Io 10° - SECONDS Type: 1021 + 1 Ni / 1021 + 1 Ni + 0.5 Mo Type: 1021 + 1 Ni / 1021 + 1 Ni + 0.75 Si Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni / Fe - 0.21% C - 0.70% Mn - 1.08% Ni - 0.49% Mo Grain size: 10 Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni / Fe - 0.18% C - 0.75% Mn - 0.71% Si - 1.07% Ni Grain size: 9 Austenitized Austenitized at 927°C (1700°F) Black Lines: 1021 + 1 Ni + 0.5 at 927°C (1700°F) Black lines: 1021 + 1 Ni + 0.75 Si Mo °C BC a @ 800 é 700 3 800 < 700 — trea rab 1400 A As Ze o 2 tt 1 a = 84RB 12 10 19 rg 500 5 ie AAs F4G \ = Sr a Be < 800 a a 600 600 An 2 <a 1200 84RB a DAt lu 400 +M, 7 iS 28 fn F+C = i bei 34 ao oa = tw 400 S = 300 300f 60° 200+ 400 100 200) ] / I-T DIAGRAM if 200 '!00/— 200) ali O52) (5.0 IDAY | WEEK| gg HOUR LMIN. LI ° + {tut 1 hi idl 102 TIME 10% 10% nT 10> aa 0512 106 LU LUT ) 510 iat IHOUR I MIN. ] 102 I 103 104 IDAY | IWEEK! 47 LI wl | 108 108 TIME —- SECONDS - SECONDS PA, 1963 as published in Atlas of Isothermal SOURCE: I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh Park OH, 1977 Metals Metals, for Society American Diagrams, ion Transformat Cooling and Transformation i ee Atlas of Time-Temperature Diagrams 46 Type: 1021 + 1 Ni / 1021 +1 Ni +2 Si Type: 1030 Mod Composition: Fe - 0.18% C - 0.67% Mn - 1.07% Ni / Fe - 0.19% C - 0.75% Mn - 2.09% Si - 1.06% Ni Grain size: 7 Austenitized Composition: Fe - 0.27% C - 1.12% Mn Grain size: 0-2 (black lines) Austenitized at 1288°C (2350°F) at 954°C (1750°F) Black lines: 1021 + 1 Ni + 2 Si Grain size: 7-8 (gray lines) Austenitized at 852°C (1565°F) °C oF 800 °C Z < 1400 2 800 700) z 700 1200 600 17 600) 20 1000 Ww & 500 25 = 36 Is mT 18 & 500 24 < : 5 400 oe =F 300f- 6° isj a. 400 200}- 400 200 100F 200 a = 15 5 300 100 I WEEK] 4g EEK! 54 n) t) 0512 50 102 TIME 10% 104% 105 106 Osile2 15.0 102 -— SECONDS 10> 104 10> 10& TIME - SECONDS Type: 4140 Type: Fe-C-Mo Composition: Fe - 0.37% C - 0.77% Mn - 0.98% Cr - 0.21% Mo Composition: Fe - 0.22% C - 0.79% Mn - 0.50% Mo Grain size: 2-3 (black lines) Austenitized at 1093°C (2000°F) Grain size: 7-8 (gray lines) Austenitized at 843°C (1550°F) Grain size: 1-2 (black lines) Austenitized at 1371°C (2500°F) Grain size: 8-9 (gray lines) Austenitized at 899°C (1650°F) °C) 800 °F 1400 1200 = 800 rapa reser ci clots 200}- 400 '00F 200 a, a: 45 bi 400 i air = 50 a CH + 8 LD he 18 TTL 21 eee 1000 SSS 800; 4 M Ene oe |+ ns eer oe Le 36 wot | [VIN soo} 600 nn i 200;- 400 100F 200 \ ——— \ al 1-T DIAGRAM t— Tees | WEEK] 60 | UNG IMIN. HOUR aces DAY | WEEK] 48 ) 0512 5 0 10& TIME - SECONDS SOURCE: LL At dia At<2: 600 & s00 ) jas rie 1200 31 29 Ay 700 26 1000 2 g il . —+-11 a 1400 Seng 600 & 500 ‘ctr Bao = 700 ni ; ® 0512 50 102 103 104 108 108 TIME - SECONDS I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 ———————————————————— eco Atlas of Time-Temperature Diagrams Type: 1086/1095 4/ + 0.25% V Type: 52100 Composition: Fe - 0.87% C - 0.30% Mn - 0.27% V Grain size: 2-3 (black lines) Austenitized at 1052°C (1925°F) Composition: Fe - 1.02% C - 0.36% Mn - 0.20% Ni - 1.41% Cr Grain size: 3 (black lines) Austenitized at 1066°C (1950°F) Grain size: 9 (gray lines) Austenitized at 843°C (1550°F) Grain size: 11 (gray lines) Austenitized at 816°C (1500°F) °C : a 800 Z soot 700 32 TOOL 600 42 600 0 . = 38 Ww = 500 * & s00}Ee ws400 F+C 1) Ne 50%, é 200+ st sks es ee '00;- a 100 Estimated O51 2 5710 102 {tl 102 6) Lo OB 10& 108 104 103 | | hell (0) Temperature ° 61 | be 2c 6 LDAY | WEEK! ee LMIN. 4 i 154 4 Al 200 WEEK| 66 ; 50 59 DIAGRAM I-T +—+t | dl 35 400 aes \ SS 200 mle 4 ea ys 800 52 on AF+C = 300} 6° F 300 51 t— + A = 50 = 45 alee te < 1000) WwW 36 “Al a lie Pe a PS 1200 = Wl 400 < fisaat arr 1400;—-—+ = z A | 103 104 105 10& TIME - SECONDS TIME - SECONDS Type: Fe-C-Mo Composition: Fe - 0.97% C - 1.04% Mn - 0.32% Mo Grain size: 5-6 (black lines) Austenitized at 954°C (1750°F) Grain size: 7-8 (gray lines) Austenitized at 843°C (1550°F) °C oF 800 1400 700) 1200) 600 Ww c 5 500 = 1000 = 800 tj 400 a ai = S00; te 200+ 400 100F- 200 fo) 0512 50 102 TIME SOURCE: 105 10% 105 10& - SECONDS in Atlas of Isothermal I-T Diagrams, Third Edition, United States Steel Corporation, Pittsburgh PA, 1963 as published Transformation and Cooling Transformation Diagrams, American Society for Metals, Metals Park OH, 1977 OS eee ee ee Atlas of Time-Temperature Diagrams 48 Type: Fe-C (Carbon) Composition: Fe - 0.54% C - 0.46% Mn / Fe- 0.89% C - 0.30% Mn / Fe - 1.13% C - 0.30% Mn Beginning of transformation at left, ending at right 1200 | 4 Serr eH —| TT | TT MUA | fail | Steel 1-Hypo-Eut. 2-Eutectoid 1000 Hl iia ui aad = 1400 |Jey Hi asa ANI 3-Hyper-Eut %C O54 089 %Mn 0.46 0.30 1.13 elena srrereih fT 200 pit cia am | _ W 600 0.30 5 S) vy © on Bi 2 :600 I)|Ta & alt yin ve A 100 Beginning Type: Fe-C-Mn 1000. ee R | Mig! nN pr eee Stic 051 c it Q Mis H 3008 il In 211 ee in pili ii200 aaa le ee ete 10000 } Time in ee 0000 100000 i (Manganese) Composition: Fe - 0.59% C - 0.30% Mn / Fe - 0.54% C - 0.45% Mn / Fe - 0.50% C - 0.91% Mn / Fe - 0.64% C - 1.138% Mn / Fe - 0.65% C - 1.32% Mn Beginning of transformation at left, ending at right lARtaE te ai OU MICAUIATes NIN *C. Temperature, SOURCE: E.S. Davenport, "Isothermal Transformation in Steels,” Transactions of American Society for Metals, Vol 27, December 1939, pp 837-886 ———— Atlas of Time-Temperature Diagrams 49 nn Type: Fe-C-Ni (Nickel) Composition: Fe - 0.59% C - 0.20% Mn / Fe - 0.61% C - 0.19% Mn - 0.94% Ni / Fe - 0.57% C - 0.17% Mn - 1.94% Ni / Fe - 0.55% C - 0.17% Mn - 3.88% Ni Beginning of transformation at left, ending at right Am , a e H atf eH SSeS esau realli et i a Hera eet th C200 ST og ii ta MTUA atS Tall Ge a NH | ¥ 800 Hes ma HEH ‘ iy 05? : i ees Enoing Time in Seconds Type: Fe-C-Cr | | | soo Series ut | :600 Mt 00 ry) 100000 (Chrominum) Composition: Fe - 1.13% C - 0.30% Mn / Fe - 1.17% C - 0.30% Mn - 0.26% Cr Beginning of transformation at left, ending at right ml roi Omani ie Carbon Stee! “or %C 1000 s tf 7 CM QO OLO peli Mtn 4 pa He aa %Mn 213 080 Wi? WnO30. | lll is MB i! 3! iw Hi. 1 g .é 2 8 TSH ul iii i rau ane SOURCE: E.S. Davenport, "Isothermal Transformation in Steels,” Transactions of American Society for Metals, Vol 27, December 1939, pp 837-886 ese EEE Atlas of Time-Temperature Diagrams 50 Type: Fe-C-Cr (Chromium) Composition: Fe - 0.35% C - 0.37% Mn / Fe - 0.37% C - 0.37% Mn - 0.93% Cr / Fe C - 0.68% Mn- 0.57% Cr / Fe - 0.42% 0.32% C - 0.45% Mn - 1.97% Cr Beginning of transformation at eas ar fimd i) i waite i left, ending at right “S i mnuamall ‘i i 200 Cr ae ally Ih 2 | it a} > A~ | Qa | Chromium Shien Medium Carbon Steel %Cr Tempereture, °C. 8 Temperature, °F 0 as} Type: Fe-C-Mo (Molybdenum) Composition: Fe - 0.35% C - 0.37% Mn / Fe - 0.42% C - 0.20% Mn - 0.21% Mo / Fe - 0.40% C - 0.43% Mn - 0.52% Mo / Fe 0.36% C - 0.17% Mn - 0.82% Mo / Fe - 0.33% C - 0.41% Mn 1.96% Mo Beginning of transformation at left, ending at right mat MOP Tra | 1200 1000 | at1 Haitee i MS aii seit te!eA THT I S00 c5 400 $ as 3 g 500 || Beginning Si Molybdenum Series i> : 100 %C 0.35 Stee! %Mo Qo FsQ i SOURCE: 1S Ul MIS 600 ees = ol & 5 400 | fi200 5 | 3 1 300 & | S 200 is . Time in Seconds 1000. 10000 100000 Ending E.S. Davenport, "Isothermal Transformation in Steels,” Transactions of American Society for Metals, Vol 27, December 1939, pp 837-886 EE eee ee E Dene EEE Atlas of Time-Temperature Diagrams ol Type: Fe-C-V (Vanadium) Composition: Fe - 0.88% C - 0.41% Mn / Fe - 0.90% C - 0.47% Mn - 0.20% V The curves are for 50% transformation of T_T 001 woof Hill a il|Hil Hh aii II ant eel aT i700 ail 7200 1000 I 500 Ni HY S00 Sb wi § 60. Q ug 900 s Vanadium Series 400 Steel HV %HC %MA A Q0 020 088 0.90 ‘O41 047 | 300 Nil 200 200 | a an 0 054 1000 ‘0 | 10000 Time for a,% Peano Type: Fe-C-Co (Cobalt) Composition: Fe - 0.95% C - 0.45% Mn / Fe - 0.95% C - 0.48% Mn - 0.95% Co / Fe - 0.98% C - 0.49% Mn - 1.98% Co Beginning of transformation at left, ending at right meen) aia a ith! limiii| l e fi n A I Hi com ROT Ael wz I 1000 * 800 SA rca mall (crit ie | SHS IN Out J NS Ih Foo iS | SHELTIE HTMUTS § 600 a s 400 200 Ee | | Ms Q Cobelt Senies Steel 1 2 %Co QO %C 095 095 O95 198 098 ' il is jook %Mn 045 ” 0.48 0.49 is ki, 38 = 35 SOURCE: e Hi 0 Society for Metals, Vol 27, December E.S. Davenport, "Isothermal Transformation in Steels,” Transactions of American 1939, pp 837-886 eS ee ee 7 see = a? ata a0 Pee Co an —ta ===_y (awe ey ane me pian’) Ae > ri: Vv aa Tian Pink i>: pales ohhae British En Steels l-T Diagrams Atlas of Time-Temperature Diagrams 55 Transformation Characteristics of Direct-Hardening Nickel-Alloy Steels Isothermal transformation constituent and of pearlite, and there is often uncertainty whether a transformation has diagrams When a Steel is quenched from a temperature at which it is austenitic, to temperatures at which austenite is no longer the stable phase, it transforms ultimately to mixtures of ferrite and carbide or to martensite. The time taken for transformation to ferrite and carbide, at each of a series of temperatures, can be represented by a diagram relating temperature, time, and progress of transformation. Diagrams of this type are known as isothermal transformation diagrams and they have for many years made a major contribution to the understanding and control of the heat treatment of alloy steels. The most direct of the commonly used methods of obtaining the data for these diagrams is the microscopic method originally used by Davenport austenitizing appropriate small and Bain.! This involves samples temperature, of the steel at an quenching to ance,? and hardness,”* have also been used by various investigators, but these and _ the dilatation method, when used alone, do not provide the detailed information obtainable from microscopical examination. For example, not the Heal and Mykura,® and more recently Gillam and Cole,’ demonstrated the possibility of following transformations by measuring, as transformation proceeds, the changes in the intensity of a line in the X-ray diffraction pattern of either the gamma or the alpha phase. This method, although experimentally somewhat cumbersome, has the attractive feature of being even more direct than the microscopical method, and also of providing information not otherwise obtainable. a sub- critical temperature, holding at that lower temperature for progressively increasing times, and finally quenching to room temperature. By microscopical examination of the quenched samples it is then possible to determine the time taken for the transformation to start, the tate. at which it proceeds;, and the (time required for its completion. This method is still the most reliable of those available for studying steels which undergo rapid _isothermal transformation; it is, however, timeconsuming, and considerable skill is required to interpret the large number of microstructures which must be examined to provide an accurate diagram. It is consequently often more convenient to follow the course of transformation by measuring the changes in some physical property accompanying transformation and, since breakdown of austenite is accompanied by an expansion, and changes of length are readily measured, the dilatation method is by far the most widely adopted. Techniques involving measurement of changes in magnetic permeability,? electrical resist- they do between proceeded to completion or has stopped at some stage of partial transformation. Consequently, it is customary to supplement the results obtained by these less direct methods by some microscopical examination. For example, the isothermal diagrams presented in the Iron and Steel Institute Atlas® were determined by the combined application of the dilatation and microscopical methods. reliably usually differentiate proeutectoid of a separation Results of experimental observations at a series of subcritical temperatures are usually presented on a single diagram, the ordinates and abscissae of which represent, respectively, the temperature and the time of transform- ation. Smooth curves are drawn through points indicating the time required for transformation to start at various temperatures and through those indicating the time required for complete transformation. Additional curves may be drawn to indicate the time required for various percentages of transformation, and the separation of proeutectoid ferrite is frequently distinguished from the transformation of austenite to pearlite. The critical transformation temperatures of the steel (Ac, and Acs) and the martensite reaction range are usually indicated by horizontal lines but the lengths of the lines used for this purpose have, of course, no significance. All the samples used for the determination of the isothermal transformation diagrams presented here were taken from batches of commercial steel. The analyses, grain sizes and methods of manufacture are given in the pages showing the relevant isothermal transformation diagrams. Specimens were machined from material which had been hot-rolled and cold-drawn to 9 s.w.g. wire or to 0.030-in. thick tape. All the micrographs in this introduction are at 64% of their original size Limited, London, SOURCE: Transformation Characteristics of Direct-Hardening Nickel-Alloy Steels," The Mond Nickel Company 1950 (eS E ee ee ee Atlas of Time-Temperature Diagrams 56 Each specimen was austenitized for 30 minutes. The temperature adopted was usually at or near the center of the range recommended in the appropriate British Standard En specification. The diagrams for the more rapidly transforming steels (B.S. En 12, 111 and 160) were determined solely by the microscopical method. Those for the remaining steels were derived from a consideration of dilatation curves and of the microstructures of samples quenched after being allowed to transform to various stages. No tests extended beyond 24 hours. A_ general view of the isothermal and accessory equipment employed is provided in Fig. 1. The Ac, and Acg temperatures shown on the diagrams were determined from continuous- heating dilation test specimens used curves. were for the isothermal heating rate was The dilatometer of the same tests adopted, and types as those and a standard 100°C per hour, over the range 500 to 870°C. The M,, Myo, Mso, Mg) temperatures were determined according to the method Troiano. introduced The values hardness by Greninger developed by the and steel, when isothermally transformed at each of a series of temperatures, are indicated on the right-hand side of each diagram. The bold figures indicate the hardness values of the fully transformed steel. Figures in_ italics apply to cases where transformation had not started or was incomplete after 24 hours; such hardness values are of the structures develop- ed by holding at the selected temperatures for 24 hours followed by quenching to room temperature. For example, after 24 hours at 650°C, the 4.25% Ni-Cr Steel (B.S. En 30A) had transformed at only 8%, and on quenching to room temperature, the remaining 92% of the structure transformed to martensite. Thus, al- Fig. 1 General view of equipment used for the determination of isothermal trans formation diagrams at the Birmingham Laboratory of The Mond Nickel Company Limited The method adopted for the presentation of the diagrams is in most respects conventional. The time-scale is logarithmic and is based on seconds, but for convenience of reference it is marked in minutes and hours. A hypoeutectoid steel generally transforms in the pearlite range in two stages: separation of proeutectoid ferrite followed by separation of pearlite. The start of transformation to pearlite, as distinct from _ separation’ of proeutectoid ferrite, has been indicated in these diagrams by a heavy broken line, which will be referred to as the "carbide line." The position of this line was determined from a consideration of the microstructures of partially transformed samples. This line does not necessarily indicate the end of the separation of pro-eutectoid ferrite, since it is probable that the ferrite and pearlite stages of the transformation overlap to an appreciable extent. In certain diagrams, where the pearlite and the bainite reactions overlap, the full extent of this line has not been shown, owing to the difficulty of defining adequate its position with accuracy. eS though the product of transformation at 650°C was of low hardness, the final structure had the relatively high hardness of 590 D.P.N. This steel, however, transformed completely at 600°C in less than 24 hours. The room-temperature structure of. a sample transformed at that temperature contained no martensite, and had a hardness value of 210 D.P.N. General features of isothermal transformation diagrams Isothermal transformation takes place by processes involving nucleation and growth of nuclei. If a sample of steel is austenitized and then quenched to a subcritical temperature, for a definite period of time after the sample reaches this temperature, there will be no microscopically detectable sign of transformation. This initial period is usually referred to as the "incubation period," or "period of induction." At the end of the incubation period, nuclei are visible in the structure and transformation proceeds by the growth of these nuclei, and of course, by the development and growth of additional nuclei. The type of structure formed depends primarily on the temperature at which the transformation occurs, but is influenced also by the composition of the steel. The general features of an isothermal transformation diagram may conveniently be discussed by ~ Atlas of Time-Temperature Diagrams 57 reference to the diagram (Fig. 2) for the low alloy (B.S. En 100) type of steel. Between the upper and lower equilibrium transformation temperatures (Az and Aj) only ferrite is formed by isothermal transform- ation. The separation is preceded by an incubation period and proceeds by nucleation and growth, but some of the austenite remains untransformed. Reaction ceases when austenite and ferrite are present in the proportion indicated by the equilibrium diagram at the chosen temperature. With falling temperature of ferrite which can form increases up to a amount which depends on the steel. between Ags and A, limiting In the range between the amount the A, temperature and about 550°C, transformation occurs in two stages: precipitation of ferrite, followed by formation of pearlite. The amount of ferrite formed decreases as the temperature of transformation is lowered, and the amount of pearlite increases proportionally; the carbon content of the pearlite decreases, therefore, as the temperature of its formation is lowered. B00} Ac Se | | eS | | | | Ac, 700 | es j : role ‘ \ 1 Austenitizing Temperature 860°C | : i! i | if | i 1 | ke , |- | ; . a im eyRN tens, a ER eS so $ = aS 410 DPN TRANSFORMATION ~ ‘i L ' = 260 DPN [o} -s<—————— 600 FERRITE & PEARLITE < LINE (| i G ——> IN FERRITE & PEARLITE 770 DPN. 3/0 DPN. 330 DPN. amet The above remarks apply to a hypoeutectoid steel. The proeutectoid constituent in a hypereutectoid steel would, of course, be cementite. The interlamellar spacing of pearlite depends on the temperature at which it is produced. For example, pearlite formed just below the A, temperature is readily resolved under the microscope (Fig. 3), having coarse carbide lamellae which tend to globularize, but as the temperature of transformation is reduced the pearlite becomes progressively finer until that formed towards the lower end of the pearlite formation range is usually too fine to be resolved with a light microscope (Fig. 4). The lamellar form of these structures is revealed, however, with the electron microscope (Fig. 5). As would be expected, this change in the pearlite structure is accompanied by an increasé of hardness. Figure 6 shows various stages in the formation of a ferrite-pearlite structure in a high-carbon 2.5% Ni-Cr-Mo steel (B.S. En 26). The microstructures represent samples’ isothermally transformed for various times at 650°C, and then water-quenched. Figures 6a and 6b illustrate the early part of the transformation, during which ferrite precipitation predominates. Figures 6c and 6d demonstrate the subsequent separation of pearlite. The microstructure shown in Fig. 6d represents complete isothermal transformation, but in the other three samples isothermal transformation was eth TRANSFORMATION TO MARTENSITE i TEMPERATURE Centigrade Degrees The diagram for the B.S. En 100 steel shows, in the vicinity of 550°C, a very narrow range of temperature within which formation of pearlite is not preceded by formation of ferrite (Fig. 2). This range is wider in some steels (e.g., B.S. En 110), but in others formation of pearlite is always preceded by formation of ferrite (e.g., B.S. En 25). te 0% 19% 0% 2 MINUTES yo % My } too |. | 4= +4 i G Ti 20 | | 2 SECONDS cf DURATION OF ISOTHERMAL ay Of 2 HOURS 5 10 201 DAY. TREATMENT Fig. 2 Isothermal trans formation diagram for low alloy steel (B.S. En 100) austenitized at Fig. 3 Ferrite and a coarse lamellar pearlite formed by isothermally transforming a sample of low Ni-Cr steel (B.S. En 111) at 700°C. Etchant: 4% picric acid in alcohol 860°C EEE Atlas of Time-Temperature Diagrams 58 < PEARLITE FERRITE > Fig. 4 Ferrite and fine irresolvable pearlite formed by isothermally transforming a sample of low Ni-Cr steel (B.S. En 111) at 600°C. Etchant: 4% picric acid in alcohol incomplete and the matrix in consists of martensite formed water-quenching treatment. Within the temperature each case during the range between Ag and the lower limit of the pearlite range (540°C, in Fig. 2) the incubation period at first becomes shorter and then longer with decreasing temperature of transformation. Simultaneously, the rate of reaction passes through a maximum. The part of the curve at which the incubation period reaches a minimum is Fig. 5 Ferrite and pearlite in a sample of B.S. En 100 low alloy steel, isothermally transformed at 630°C. Electron micrograph. Preshadowed evaporated aluminum replica usually referred to as the pearlite "nose" or "knee" and is of considerable importance since its position on the time scale may determine the hardenability of a steel. The structures produced in the lower temperature range of transformation (e.g., between 540 and 310°C, in Fig. 2) are usually referred to as "bainite" or "intermediate" structures. These are harder than pearlite, the hardness increasing progressively as the temperature of formation is lowered. Bainite structures vary b 14 hours x 850 d 24 hours x 850 greatly in appearance, but one characteristic type, which is formed at temperatures towards the upper end of the range, has many of the general characteristics of proeutectoid ferrite although it is more irregular in outline and has no marked tendency to precipitate at grain boundaries (Fig. 7). At intermediate temperatures in the bainite-formation range, separation of ferrite is followed rapidly by precipitation of carbide, within or near the ferrite phase (Fig. 8). At the higher intermediate temperatures the carbide particles dispersed in the ferrite are relatively coarse, but these become progressively finer and more numerous as the temperature of transform- ation is lowered (Fig. 9 and 10). The bainite structures formed in the lower temperature range have a dark-etching acicular appearance not readily distinguishable from that of tempered martensite (Fig. 11). Such structures ee c 19 hours x 850 Fig.6 Various stages in the formation of a ferrite-pearlite structure in a 2.5% Ni-Cr-Mo high-carbon Steel (B.S. En 26) austenitized at 835°C and isothermally transformed for the times indicated at 650°C. Etchant: 2% nitric acid in alcohol Atlas of Time-Temperature Diagrams consist of a very fine dispersion 59 of carbide particles in a ferrite matrix (Fig. 12), and it is probable that the two phases separate almost simultaneously. Until recently there was some doubt regarding the mechanism of formation < MARTENSITE of acicular bainite, but Ko and Cottrell! have demonstrated that the lower-bainite needles are formed by nucleation and growth. By observing the surface-relief effects produced on a polished surface when a steel transforms from austenite to bainite, these authors have 4 UPPER < BAINITE Fig. 9 Upper bainite and martensite in 2.5% NiCr-Mo high-carbon steel (B.S. En 26), partially trans formed isothermally at 475°C. Electron micrograph. Preshadowed evaporated aluminum replica shown that the mechanism of growth is such that the bainite lattice is coherent with that Fig. 7 Upper bainite structure developed ina B.S. En 26 steel (2.5% Ni-Cr-Mo high-carbon), austenitized at 835°C, and isothermally transformed at 500°C for 90 h. Etchant 2% nitric acid in alcohol of the parent austenite. In this respect, the formation of bainite is unlike that of ferrite and pearlite, which result from incoherent growth. The pearlite- and bainite-formation ranges of the B.S. En 100 steel (Fig. 2) overlap between 540 and 480°C, and within this range formation of upper bainite is followed by separation of a dark-etching pearlite. This change is illustrated by Fig. 13a and 13b. The diagram for the B.S. En 110 (low Ni-CrMo) steel also shows a partial overlap of the two ranges of transformation. A greater extent of overlap is apparent on the diagram for the B.S. En 22 (3.5% nickel) steel, and in the diagram for the B.S. En 12 (1% nickel) steel the two ranges overlap to such an extent that it is difficult to distinguish them individually. INTERMEDIATE BAINITE §<—MARTENSITE ¢ 1 hour 30 minutes x 850 Fig. 8 Three stages in the formation of intermediate bainite in a 2.5% Ni-Cr-Mo high- x 10,000 Fig. 10 Intermediate bainite and martensite in and isothermally transformed for the times 2.5% Ni-Cr-Mo high-carbon steel (B.S. En 26), partially trans formed isothermally at 450 °C. Electron micrograph. Preshadowed evaporated alcohol aluminum carbon steel (B.S. En 26), austenitized at 835°C, indicated at 450°C. Etchant: 2% nitric acid in replica Atlas of Time-Temperature Diagrams reaction starts.!! On the other hand, the bainite reaction is, in general, steadily retarded by progressive increase of carbon content. Alloying elements differ in the nature and magnitude of their effects on isothermal transformations. Nickel!!1215 and manganese!l14 retard the pearlite and bainite transformations fairly uniformly at all temper- atures. Copper and silicon are similar to nickel in their effects on isothermal transformations, but their retarding effect is much weaker. Cobalt!5 appears of transformation to increase the rate at all temperatures. Molybdenum!)1214,16,17 = and = chromium?!?18 strongly retard the pearlite reaction, but affect the bainite reaction to a much smaller c 5 minutes x 850 d 1 hour x 850 Fig. 11 Four stages in the formation of lower bainite in a 2.5% Ni-Cr-Mo high-carbon steel (B.S. En 26), austenitized at 835°C and isothermally transformed for the times indicated at 340°C. Etchant: 2% nitric acid in alcohol By contrast, the pearlite and bainite ranges in the diagrams of steels containing appreciable amounts of chromium or molybdenum are separated by a range of temperature within which austenite is relatively stable. For example, the diagram for the B.S. En 25 (2.5% Ni-Cr-Mo) steel shows that no transformation occurs within 24 hours at temperatures in the range 525 to 565°C. The general effect of carbon, and of all the common alloying elements except cobalt, is to move the curves of the isothermal transformation diagram to the right, i.e., to delay the initiation of transformation and _ to decrease the rate at which the _ reaction proceeds. Compare, for example, the curves for B.S. En 12 (1% nickel) steel and B.S. En 30B (4.25% Ni-Cr-Mo) steel. Increase of carbon the incubation period and accelerates the rate of reaction. This latter effect, it has been suggested, is due to the nucleating action of particles Vanadium, in the amounts in which it is normally added to hardenable steels, increases pearlite- and bainite-incubation periods only slightly, but, markedly prolongs the reaction times of both types of transformation.!9 Small amounts 0.003%, have of marked boron, effects of the on the order of rates of LOWER BAINITE-> MARTENSITE—> [ag content, up to the eutectoid percentage, retards the pearlite reaction but further increase of carbon content shortens carbide extent. These elements also raise the temperature range within which the pearlite reaction occurs and lower that over which the bainite reaction takes place. Consequently’ the isothermal transformation diagrams for steels containing appreciable amounts of either of these elements frequently show a "bay" of austenite stability between the two reaction zones. rejected before the pearlite ee Fig. 12 Lower bainite and untempered martensite in a 2.5% Ni-Cr-Mo high-carbon steel (B.S. En 26), partially trans formed isothermally at 320°C. Electron micrograph. Preshadowed evaporated aluminum replica Atlas of Time-Temperature Diagrams 6] nickel. Hodge, Giove and Storm?‘ have also demonstrated than an addition of 0.3% molybdenum is about twice as effective in retarding transformation in a steel containing 3% nickel as in one containing 1% chromium. The martensite reaction The upper and lower limits of the martensite range, i.e., the temperatures at which the formation of martensite starts and finishes, are usually designated M, and Mg, respectively. The additional symbols Myo, Msg and Mgg indicate the temperatures at which 10, 50 or 90% of the austenite has transformed to martensite. The martensite reaction is fundamentally different from the pearlite and _ bainite reactions. If a sample of steel is austenitized b =.2: hour 45 minutes and cooled to a temperature just below its M, temperature sufficiently rapidly to prevent transformation in either the pearlite or the bainite range, a small fraction of the austenite x 850 Fig. 13 The formation of upper bainite and pearlite in a low alloy steel (B.S. En 100), austenitized at 860°C, and isothermally transformed for the times indicated at 500°C. Etchant: 2% nitric acid in alcohol transformation of a steel. This element retards the formation of ferrite and of bainite but, although the start of the pearlite reaction is delayed by the presence of boron, the total time required to complete the pearlite reaction is not usually affected appreciably.2%?! Increase in grain size retards formation of pearlite by reducing the grain boundary surface area available for nucleation, but has little, if any, effect on the rate of formation of bainite structures.27? Combinations of — weakened by the however, two or combinations presence clear more _ alloying are products. For shown transformation presence example, that to that particularly transformation have of another. indications delaying nickel a to They certain effective in non-martensitic have using certain been of a rates made steel can that be the M, lowered by of cooling?> and that in some highly alloyed steels the reaction can be suppressed if very high cooling rates are used.2© These suggestions have not, however, been supported by other investigators.2”78 It has been shown by Machlin and Cohen?9 retards isothermal extent chromium not proceed uniformly with falling temperature below M,, but occurs in a series of "bursts," in which groups of martensite needles are generated almost simultaneously. This "burst" phenomenon is less apparent in polycrystalline alloys, since the temperatures at which the bursts occur vary for the individual crystals and the integrated effect is one of continuous uniform transformation. Miller?* and Brophy greater of manganese, claims temperature that the formation of martensite in single crystals of a 70% iron, 30% nickel alloy does elements have complex effects on isothermal transformations and a great deal of systematic work is required to determine to what extent the effects of one element are intensified or are, will transform to martensite. If cooling is continued to lower temperatures, additional martensite will form as the temperature falls. The individual needles or plates of martensite are formed almost instantaneously from the austenite, and it is generally accepted that the reaction is essentially not time-dependent. It cannot, therefore, be suppressed by the use of high cooling rates. On the other hand, isolated in or the moly- bdenum than when it is present alone, and that similarly these elements are more effective in the presence, than in the absence, of a If the cooling of a low-alloy or medium-alloy steel through the martensite temperature range is interrupted, further transformation to martensite ceases. In certain highly alloyed steels (e.g., steels containing 0.6% C, 6% Mn isothermal and 0.7% C, 15% Cr), however, EEEnEEIEEEE Atlas of Time-Temperature Diagrams 62 ee ee formation of martensite has been observed to follow athermal formation of this constit- vente 222} This effect is, of course, quite carbon and alloying elements similar discrepancies. will also lead to distinct from the isothermal formation of bainite at temperatures within the martensite range, which is well recognized. Recent work has shown that this bainite-forming reaction may be nucleated more readily in austenite partially transformed to martensite than in i.e., the temperature at reaction ceases, is more difficult to determine experimentally, but the that the limited published indicate data effects of different alloying elements on the Carbon and most temperature depress the M, austenite containing no martensite.1°*2 of the alloying elements The My temperature, which the martensite M; temperature are similar in magnitude to their effects on the M, temperature.*”'*% It has been suggested, that the M,-M; however, range is extended with increase the of carbon content.*® Steven and Haynes*? have effects of alloying elements are, however, relatively slight compared with that of carbon. shown that for a limited range of carbon contents (0.32 to 0.44%) and a wide range of alloy contents, the at which temperatures various proportions of martensite are formed can be obtained from the following equations: temperature of steel; Since low M, temperatures favor the retention of austenite and promote the development of internal stress and quenching cracks, the mild effects, in this respect, of alloying elements in general and of nickel and chromium in particular must be regarded as advantageous. chemical compositions.3%:34:35.36.37 How- ever, Steven and Haynes*? determined the M, temperatures of a wide range of steels and found that none of these formulae was adequately reliable. In preference they offer the following formula for steels within the composition range: carbon 0.1 to 0.55%, silicon 0.1 to 0.35%, manganese 0.2 to 1.7%, nickel trace to 5%, chromium ttrace to 3.5%, molybdenum trace to 1%. Mg in deg. This formula illustrates the relative magnitude of the effects of the more common alloying elements. Thus 1% carbon depresses about 14 times as much as would 1% of manganese, and manganese has twice the effect of nickel or chromium. Silicon, at least in amounts up to about 0.4%, appears to have a negligible effect. Cobalt been reported to raise M, temperatures.1*38 has The usefulness of the above formula and of other formulae which have been proposed for calculating M, temperatures from chemical composition, is limited by the fact that they presume complete and uniform solution of all carbon and alloying elements in the austenite. If a steel contains carbide which is undissolved at the austenitizing temperature, as is frequently of strong the case when appreciable carbide-forming amounts elements are present, the observed M, temperature will be higher than would be expected from the of macro-segregation and Microformulae. EE 3 9 Mf deg.C.= Ms —215 +15 The Greninger and Troiano method used to determine the martensite transformation temperatures shown on the diagrams, involved quenching small samples of each steel from the austenitizing temperature to a series of temperatures within and near the martensite formation range. These samples were tempered immediately, for a time and at a temperature which would darken the martensite formed, but would not allow isothermal transformation, and were then quenched to room temperature. The proportion of tempered martensite in the microstructure of each sample was measured, and from the results the C = 561-474(%C)-33(%Mn)-17(%Ni)-17(%Cr)-21(%Mo) the M, temperature 10+ 47+ Mg) deg. C. = Ms — 103 + 12 A number of formulae have been proposed for calculating the M, temperatures of steels from their M,, deg. C.=Ms— M,;, deg. C. = Ms— M, Mio, Msp and Mog p temperatures were estimated. The microstructures of several samples used to determine the martensite formation range of a sample of 1.25% Ni-Cr-Mo steel (B.S. En 24) are reproduced in Fig. 14. In these structures the progress of the reaction with falling temperature is illustrated by the increasing proportion of the dark-etching tempered martensite. For a few of the steels of lower alloy content (B.S. En 12, 111 and 160) the progress of martensite formation at temper- atures below M, could not be recorded because it was found impossible experimentally to separate the effects of bainite and martensite formation. The hardness is governed of a fully martensitic by its carbon content structure and is produced by influenced to only a negligible extent by the Presence of alloying elements. The generally accepted relationship between the hardness and carbon content of martensite Atlas of Time-Temperature Diagrams 63 quenching small samples®9 is shown in Fig. 15. However, relatively indicated in commercial practice involving large sections, the hardness values are frequently not attained*? since the rate of cooling through the martensite transformation temperature range may be sufficiently slow to permit the martensite formed at temperatures above about 200°C to undergo tempering during cooling to this temperature. This is usually referred to as "self-tempering." It will be appreciated that failure to develop maximum hardness may . Ly as + be of solution also to incomplete attributed carbide or the presence of ferrite, pearlite, ~ fede LoShen) i * steal © 3 | | C HARDNESS ROCKWELL Saale EQUIVALENT HARDNESS D.P.N. 200 a2 HEE 0-2 0-4 PER CENT 0-6 CARBON 0-8 1-0 Fig. 15 The relationship between hardness and carbon content of martensite therefore appear that even when the carbon content is not high the martensite reaction does not always proceed to completion above room temperature. This may be a _ normal characteristic of the martensite reaction. Alternatively, it may be a secondary effect due to other reactions. For example, the precipitation of ferrite prior to the martensite reaction will increase the carbon content of Fig. 14 Four stages in the transformation of austenite to martensite in a 1.5% Ni-Cr-Mo steel the parent (B.S. En 24), austenitized at 835°C, and ature is depressed below room temperature, retention of austenite at room temperature is to be expected. It is very likely that the precipitation of proeutectoid ferrite or the formation of some upper-bainite structure, which would have a closely similar effect, is responsible for at least some of the retained austenite observed in quenched samples. quenched to the temperatures indicated. Etchant: 2% nitric acid in alcohol. The martensite formed at each quenching temperature has been darkened by tempering immediately at 550°C for 20 s, before quenching to room temperature bainite, or retained austenite, in the asquenched microstructures. On the other hand, the maximum hardness high-carbon steels martensite if relatively value may of quenched exceed that large amounts of of hard carbide particles are present in the martensite matrix. Small amounts retained in lowat room steels are frequently and medium-alloy and temperature structural it would of austenite austenite and thereby depress both the M, and M,; temperatures. If the M, temper- Inhomogeneity of the steel when in the austenitic condition may also contribute to austenite retention. Such inhomogeneity may have persisted from the original as-cast structure or may even be developed by heat treatment. For example, very short austenitizing cycles, such as those associated with welding, may be insufficient to allow complete diffusion of carbon, and zones originally aE Ee EERE Atlas of Time-Temperature Diagrams 64 nnn of high carbon content, e.g., pearlite grains, may not be completely dispersed. As a result, certain grains in the steel will have lowerthan-average martensite transformation ranges, and if the total magnitude of this and other effects is sufficient, austenite may be retained at room temperature. The martensite formation ranges of many high-carbon steels, including certain carburized steels, overlap room temperature. Retention of austenite at room temperature must therefore be expected in such steels. If the steel is to be tempered to a relatively low tensile level, the retained austenite will transform during the tempering treatment, but if the steel is to be used in a lightly tempered condition as in, for example, a carburized case, the tempering temperature may be too low to effect removal of austenite. In such circumstances, sub-zero treatment is the most effective method, cooling being extended through the lower portion of the martensite temperature range and the breakdown of austenite to martensite continuing with falling temperature in the normal manner. To some extent, retention of austenite is favored and its removal by sub-zero treatment is complicated by a phenomenon usually referred to as "stabilization" of austenite.4! 4? It has already been pointed out that if cooling between the M, and Mg temperatures is interrupted, transformation to martensite ceases. This effect is accompanied by an increase in the stability of the untransformed austenite and when cooling is resumed transformation does not start immediately as might be expected, but only after a distinct degree of under-cooling, the extent of which depends on the temperature and the duration of the interruption. In certain circumstances a proportion of the austenite may even become wholly resistant to sub-zero treatments. The phenomenon of austenite stabilization has been most frequently observed in high-carbon steels, but evidence of its occurrence in steels of medium-carbon content has also been obtained.®?43 In addition, it has been shown that raising the chromium content of a 1% carbon-chromium steel increases its sensitivity to austenite stabilization, thus rendering subzero treatment less effective. On the other hand, nickel and manganese in steels of the reduce _ the will content carbon same roomat stabilization to susceptibility the promote thus and temperatures, effectiveness of refrigeration.*4 The presence of retained austenite appreciable amounts of in a quenched structure EEE EEEEEEEEEEEEEEEEEEEEEESES ERE is some there Further, hardness. lowers evidence to suggest that this phase is trainsensitive it may that and decompose to martensite when plastic deformation occurs during mechanical presence tempered of at testing.4°46 the Thus, retained austenite in less than 250°C may a_ steel lead to elastic limit and yield stress values which are low in relation to the tensile strength. Temper- ing a hardened steel at these low temperatures does effect an improvement in its mechanical internal by relieving properties of course quenching stresses to a great extent. Tempering at temperatures above 250°C often results retained isothermal of in transformation austenite, although in some types of steel the austenite may not transform at the tempering temperature but may undergo "conditioning" and then transform to bainite or martensite during cooling tempering.4748 after The presence of martensite in the tempered steel structure will have a deleterious effect on its properties in such cases the impact and application of a second tempering treatment is desirable. The influence of structure on mechanical properties Hardened and tempered steels develop the best combination of tensile strength, ductility and notched-bar impact properties when their structures consist wholly of tempered martensite. The presence of ferrite, pearlite or bainite usually lowers the values for proofstress, impact, fatigue-strength and, in certain instances, elongation and _ reduction-of-area associated with a given tensile strength. It is therefore desirable to avoid transformation to Structures other than martensite during the hardening operation. Achievement of the optimum structure depends on several factors, the more important of which are the transformation characteristics of the steel, the size and the shape of the part to be treated, and the quenching conditions adopted. The more rapidly the steel transforms, i.e., the shorter the incubation periods indicated by the isothermal transformation diagram, the faster must it be cooled to prevent transformation to structures other than martensite. The cooling rates which can be achieved in practice are limited by the size of the component being treated and thus, although a given quench may fully harden a small bar of steel, it may not be rapid enough to ensure full hardening in a larger bar of the same material. The rate of cooling can be increased by Increasing in the the severity absence of ence SS other eee of the quench considerations, eS a and. Ee the Atlas of Time-Temperature Diagrams 65 a most drastic quenching medium would always be used, since this would ensure full hardening to the greatest depth. The steep temperature gradients associated with high rates of cooling, however, increase the dangers of distortion and cracking and make _ it advisable to use the slower but safer oilquenching or air-cooling whenever practicable. Examination of a selection of isothermal transformation diagrams will show that with some steels the pearlite reaction is more easily avoided than the bainite reaction, whereas with other steels the reverse is true. By a suitable choice of composition it is usually possible, however, to retard the pearlite transformation sufficiently to avoid formation of that structure when the steel is hardened even in the largest sizes. Transformation to bainite on the other hand, is less easily avoided and, unless highly alloyed steels are used, the development of some of this structure towards the center of medium-to-large sections must be tolerated. Fortunately, presence of bainite, and particularly bainite, affects mechanical properties much smaller extent than does pearlite. the lower to a Special heat treatments based on isothermal transformation diagrams Martempering consists of quenching from the austenitizing temperature into a bath of molten metal, salt, or other suitable medium at a temperature just above the M, temperature of the steel, holding at that state for sufficient time to allow equalization of temperature throughout the part and then cooling, usually in air, to room temperature. By cooling rapidly to just above the M, temperature, transformation to pearlite is prevented, and during subsequent cooling to room temperature the martensite reaction occurs almost simultaneously through the section, thereby minimizing internal stress, distortion and quench cracking. If full hardening is to be developed, it is obviously essential that no transformation to at the martempering occur bainite should temperature and it therefore follows that the time required for thermal equalization should not exceed the bainite incubation period at This applies particularly ss the case of carburized parts. Unfortunately, the bainite incubation periods for most of the low-alloy construction steels are too short in the relevant temperature range to allow substantial equalization of temperature in any but the smallest sections. The transformation characteristics of many of the higher-carbon steels which might be expected to benefit more from the treatment are, on the other hand, eminently suitable for martempering. If the bainite incubation period is too short for martempering, two compromises are possible: either to allow partial transformation to bainite to occur at the martempering temperature and thereby derive the benefits of a martempering treatment with some sacrifice of mechanical properties; or, alternatively, to use an "interrupted quench." As_ previously indicated, many isothermal transformation diagrams show a temperature range between the pearlite and the bainite reactions within which austenite quenching is relatively to a temperature within stable. By this range, holding long enough to allow equalization of temperature, and then oil- or air-cooling through the martensite range, it is possible to obtain some of the benefits of martempering for a steel which would be unsuitable for full martempering. On the basis of isothermal transformation diagrams, a number of special heat treatments have been evolved but these procedures, which are considered in this section, are not included in the provision made in current B.S. En specifications. this temperature. eee to It is frequently inconvenient to quench a component into a salt or molten bath at the martempering temperature, and in_ these circumstances, "time quenching" may _ be adopted. For this treatment, the part is quenched in oil, withdrawn when it reaches the martempering temperature, and _ then allowed to cool immediately in air. Time quenching is less beneficial than martempering but is much more readily applied under production conditions and is of undoubted value in reducing cracking and distortion. The oil-cooling curves of Fig. 16, 18 and 20 should assist in determining the requisite quenching times for various sections. These curves represent the cooling of infinitely long cylindrical bars of a deep-hardening steel, and are unaffected by transformations for the range of temperature shown. The quenching conditions used in their determination are believed to be typical of those used in practice for bars treated individually. The cooling curves of bars quenched in bundles will, of course, be very different. A close approximation to the cooling curve applicable to the centers of other simple shapes such as rectangular bars, plates, cubes and spheres, when quenched in a given medium is provided by the cooling curve for ee e—e—eeye—EE————————————————————————— ae Atlas of Time-Temperature Diagrams o a °o °C TEMPERATURE ' o ~a Temperature Fractional U °C TEMPERATURE Temperature Fractional U : 6 DIAMETER - inches = | 450L ! ——— ! 2 SECONDS 5 the 10 20 = 4 2 Ss 10 20 40" MINUTES TIME UsxT-Tz ina uf HOUR APPROXIMATE EQUIVALENT SECTIONS LONG BARS AND LARGE PLATES OF Rectangular Bar Thickness Breadth 2 | 10 5 | DIAMETER - inches _— a \ =e __| | AYO Wet 0-65 -\0-60 2 SECONDS MINUTES HOUR Fig. 17 Air-cooling curves for the axial position of i-in. to 6-in. diameter bars where T «Temperature of bar at any Instant. T,=Initial temperature of bar. Tz=Temperature of the cooling medium the center of a cylindrical bar possessing the same ratio of volume-to-surface area..°? A selection of equivalent sections of bars and plates obtained by this method is given in the table below. The values were derived for infinitely long round and rectangular bars, and the plate length and breadth were also considered to be infinite. Diameter I | a TIME Fig. 16 Oil-cooling curves for the axial position of 1-in. to 6-in. diameter bars Round Bar vik eet In view of what has been said of the disadvantages of bainitic structures in steels of low- and medium-carbon content, it may seem strange deliberately to promote their development. In certain circumstances however, and notably when the carbon content is high, these structures do possess certain advantages. For example, Davenport, Roff and Bain,>! Volume—Surface i austempering temperature after transformation is usually not important, and depending on the properties required, the steel may or may not be subsequently tempered. Area have shown that better ductility is developed by austempering high-carbon steels to hardness values of the order of 50 Rockwell C (approx. 520 D.P.N.) than by fully hardening and tempering to the same hardness value. Again, Bennek and Bandel®? have shown that the creep properties of certain bainite structures in the temperature range 400 to 500°C are superior to those of tempered martensite. Austempering treatments are intended to develop microstructures consisting wholly or substantially of bainite. Accordingly, the steel is austenitized, cooled to the selected temperature at a rate sufficiently rapid to avoid prior transformation to ferrite or pearlite, held at that temperature for the time required for complete transformation, and then cooled to room temperature. The temperature chosen for austempering depends on the hardness required and the rate of transformation of the variations in steel. In view of the known transformation characteristics which can exist given any of bars and billets within commercial steel, it is advisable to austemper for approximately double the time indicated by the appropriate isothermal transformation the from of cooling rate The diagram. a The tensile and impact properties of austempered steels of low- or medium-carbon content are, however, generally inferior to those of fully hardened and tempered steels, and austempering is usually advantageous except as a method of avoiding the dangers of cracking and distortion associated with the martensite reaction. In isothermal annealing, the steel is austenitized and then allowed to transform as completely as possible in the pearlite range. This treatment is usually applied with object of softening the steel sufficiently machining and cold-forming operations. the for For isothermal annealing it is not necessary to quench the steel to the selected transformation temperature, temperature but very slow cooling should be avoided to this because Atlas of Time-Temperature Diagrams 67 ee o Kor ooa u 10-75 °C TEMPERATURE actional =0-70Temperature £ i os SECONDS MINUTES HOUR TIME iaTeiizs wt where T= Temperature of bar at any instant. Ty=Initial temperature of bar. Ta=Temperature of the cooling medium The type of pearlite formed during isothermal annealing is strongly influenced by the austenitizing temperature adopted; the latter must be closely controlled if the most suitable structure is to be developed. Low austenitizing temperatures just above the Ag temperature or slightly lower temperatures. at which austenitization is incomplete, promote the development of spheroidal carbide, whereas high austenitizing temperatures favor production of lamellar carbide. The particular type of carbide to be preferred depends on the nature of the forming operation to which the part is to be subjected. For example, a spheroidal structure is usually preferred to cold-heading operations and for turning, but a lamellar structure is often chosen for milling, drilling and broaching. Fig. 18 Oil-cooling curves for the mid-radius position of 2-in. to 6-in. diameter bars L °e u | | Fractional Temperature -|0-75 °C TEMPERATURE —t-— $00 factional -UL 2) xrc) FTemperature 1 = : pales -rches | | 7 \I) | —|\0-65 | | —}0-S5 4 50 he i 2 SECONDS | s 4 10 20 40 1 2 MINUTES $ 10 20 40 i HOUR TIME Fig. 19 Air-cooling curves for the mid-radius position of 1-in. to 6-in. diameter bars additional before proeutectoid the annealing ferrite may temperature separate is reached, thus promoting the development of a banded structure and thereby impairing machinability. This effect is most likely to occur in steels of low-carbon content such as are used for carburizing. As in austempering, oes aT 2 SECONDS hee it is of variation for provide to advisable transformation characteristics within any one batch of steel by allowing double or treble the transformation time indicated as necessary by the isothermal diagram. In cooling from the austenitizing temperature to the temperature selected for isothermal annealing, it is often one from samples to transfer convenient furnace to another; the air-cooling curves in i eee Se (nae a7 \ioee ee F 2 MINUTES in uo ae ar HOUR TIME Fig. 20 Oil-cooling curves for the “near-surface” position of 2-in. to 6-in. diameter bars The austenitizing temperature also markedly influences the time required to. effect transformation to pearlite; low austenitizing temperatures favor more rapid rates of transformation. Consequently, it is usually possible to reduce annealing times by using lower austenitizing temperatures than those employed for hardening. Data illustrating the influence of austenitizing temperature on pearlite-reaction times for the alloy-rich steels are presented with the relevant isothermal transformation diagrams. The effects observed are due partly to the smaller grain size developed at the lower austenitizing temperatures and partly to the presence of undissolved carbides, which reduce the alloy content of the austenite and serve as nuclei for transformation. Fig. 17, 19 and 21 provide an indication of In selecting the transformation temperature the temperature drop which will occur during for isothermal annealing, a compromise is the transfer and the length of time available often necessary. Temperatures just below the for the operation. EE EEE EEE ane Atlas of Time-Temperature Diagrams 68 a eee eee of is governed by the same globular carbide structures with low hardness values, but in such conditions transformation rates are slow and there is a tendency for ferrite bands to form. At slightly lower temperatures towards the pearlite nose of the isothermal diagram, transformation rates are higher and more lamellar structures are developed. Consequently, the optimum anneal- isothermal annealing. A, temperature favor the development ing temperature depends on the type of structure required and the time which can be allowed for the treatment. Sometimes a useful compromise is to allow most of the transformation to take place at a high temperature where a soft structure is formed, and then to cool to a lower temperature at which transformation is completed more rapidly. required rate considerations as for indications of the the trans- Some of cooling through transform too formation range can be derived by superon the isothermal imposing cooling curves n so obtained is informatio the diagram, but slower and, in practice, only approximate cooling rates than those indicated by the diagram will generally be found necessary. A study of the isothermal transformation diagram and the hardness values of the structures formed at different temperatures will indicate, however, the temperature range over which controlled cooling is necessary and below which relatively rapid cooling is permissible. Some pearlite steels range for the slowly application isothermal or continuous cooling Such steels are usually annealed TEMPERATURE SECONDS MINUTES HOUR TIME U=T -T; where Ti-Ta T « Temperature of bar at any instant T= Initial temperature of bar. Ta=Temperature of the cooling medium Fig. 21 Air-cooling curves for the “near-surface” position of I-in. to 6-in. diameter bars The formation of globular carbide is often promoted by holding the steel for several hours at a temperature just below the A, temperature prior to heating to the austenitizing temperature.°* This treatment causes the carbide particles to agglomerate, and in consequence they do not dissolve so readily at the austenitizing temperature and serve as nuclei for the precipitation of globular carbide during subsequent transformation in the pearlite range. Continuous cooling annealing is often less time consuming than isothermal annealing for large components or large batches of steel which would require considerable time for the entire mass to cool to the optimum isothermal transformation temperature. For continuous cooling annealing, selection of the austenitiz- and the rate of cooling ing temperature through the transformation temperature range in _ the of either annealing. by a pro- longed tempering treatment, often referred to as subcritical annealing. This type of treatment serves to globularize the carbide structure and is adequate for many purposes, but for a steel which is to undergo difficult machining operations it is sometimes advantageous to use a two-stage treatment. The first stage involves austenitizing the steel, allowing it to transform as far as possible in the pearlite range either during slow cooling or isothermally, and then cooling to room temperature. During cooling to room temperature that portion of the austenite which did not transform to pearlite transforms to the harder bainite and martensite structures, and this part of the structure is softened during the second stage of annealing which comprises a prolonged tempering treatment just below the A, temperature. Continuous cooling transformation diagrams A number of attempts have been made to derive from isothermal transformation diagrams information on the _ transformations likely to occur at known rates of continuous cooling. Notable amongst these are the methods which have been suggested by Scheil,®4 Steinbert®> and Manning and Lorig,®® for calculating the temperatures at which transformation begins during cooling. Other methods have been proposed by Grange and Kiefer®’ and by Pumphrey and Jones®® for deriving the temperatures for various stages of transformation. Although some degree of success has been claimed for these methods, their general applicability is limited. One of the difficulties in the calculation of temperatures for the start of transformation —”,.,rrrreseeeee OE EE Atlas of Time-Temperature Diagrams 69 a arises from the apparent complexity of the interrelationships the between nucleation processes at various temperatures. Several investigators have endeavored to resolve this oil-quenched cylindrical bars; relation is shown in Fig. 27. yet to be found. Calculation of the progress of transformation during continuous cooling, using isothermal transformation data, is also difficult for various reasons. Firstly, it is uncertain to what extent transformation products formed at one temperature nucleate ed here provides transformation data for various positions in oil-quenched cylindrical problem,°?®6! but a satisfactory solution has transformations at lower temperatures. Secondly, partial transformation in one temperature range may modify the composition of the untransformed austenite and thus alter its temperat lower behavior transformation atures. For example, separation of proeutectoid ferrite in the pearlite range will increase the carbon content of the untransformed austenite and this enriched austenite a will more transform consequence as reluctantly in the bainite range and will have a lower M, temperature than austenite of the original composition. Thirdly, the heat liberated during transformation retards cooling, often with marked effects on the progress of transformation. It is extremely difficult to take the heat of transformation into account when deriving continuous cooling transformation data from isothermal diagrams and the various methods of calculation which have this proposed ignored have been hitherto factor. The limitations of isothermal diagrams for application to continuous cooling conditions have stimulated efforts to develop diagrams which would formation portray under such the progress conditions. of trans- The major difference between the methods used to determine the two types of diagram is that in isothermal studies the progress of transformation with time is measured for a series of constant temperatures, whereas for continuous cooling conditions the progress of transformation with falling temperature is measured for a series of cooling cycles. Determination and presentation of continuous cooling transformation diagrams Various methods of determining and presenting continuous cooling transformation data a typical cor- The method used in determining the continuous cooling transformation diagrams present- bars of infinite length, varying in diameter from | in. to 6 in. This size range covers the maximum ruling sections quoted in the British Standards Institution’s Schedule of Wrought Steels (B.S. 970, 1955). Since full details of the method used have been described elsewhere only the broad given here. outline of the procedure is In view of the obvious practical difficulties involved in recording transformations which occur in bars quenched directly in oil, the cooling rates characteristic of oil-quenched bars were obtained by air-cooling smaller bars of appropriate sizes. Steven and Mayer?? have shown that the diameter of an oil quenched bar and the equivalent size of bar which cools in air at the same rate over the temperature range of 700 to 300°C are connected by the following equation: Log Dy = 1:59 log Do + log b where D, = Diameter ofair-cooled bar Do = Diameter of oil-quenched bar b 0-052, 0-045 and 0-036 (where D, and = Do are in inches) for cooling at the axis, mid-radius and a near-surface position, respectively, of the oil-quenched bar. Where Dy, and Do are in millimetres, corresponding values for b are 0-0077, 0-0067 and 0-0053. The transformations occurring in the aircooled bars were ingeneral followed dilatometrically; a view of the apparatus employed is shown in Fig. 22. For the smallest bar size studied however (0.9-in. diameter bars quenched in oil) information on transformation characteristics was obtained by a microscopical method. This method also involved simulating oil-cooling by air-cooling, but cooling was interrupted at various temperatures by quenching in water, and the progress of transformation with temperature was derived from a microscopical study of the quenched samples. A_ typical series of microstructures showing the progress of transformation in a B.S. En 12 steel cooled at the rate of a 0.9-in. diameter oil-quenched bar, is reproduced in Fig. 23. have been described in the literature. Some of these have employed purely arbitrary cooling rates, but others have used the range of cooling rates along the length of a Jominy end-quench hardenability test-piece. The cool- Continuous cooling transformation diagrams for each of the steels dealt with in this article are presented with the isothermal transformation diagrams, but it will be convenient to of the characteristics discuss general piece method the one for the B.S. En 111 steel (see Fig. 24). ing rates obtained by the end-quench test- can be correlated with those of continuous cooling diagrams EEE as typified by Atlas of Time-Temperature Diagrams 70 As in isothermal transformation diagrams, the ordinate scale of the diagram shown in Fig. 24 represents represents temperature, the abscissa scale oil-quenched bar diameter, and the diagram shows the temperatures at which transformation starts and reaches’ various stages of completion (10, 50, 90 and 100%) when l-in. to 6-in. diameter bars are oilquenched from the austenitizing temperature. It will be noted that there are three scales along the bottom of the diagram. The top scale should be used to assess the progress of transformation at the axes of oil-quenched bars (r/b = 0, where r = distance from axis of bar, and b = radius of bar); the second third scales are for use in assessing oil-quenched bar of the B.S. En 111 steel (Fig. 24) would transform is indicated by drawing an ordinate from the 3-in. position on the and this upper scale representing bar diameter, which at temperatures the reading ordinate which intersects the lines of the diagram depict progress of transformation. Thus, and the progress of transformation at the mid-radius (r/b = 0.5) and "near-surface" (r/b = 0.8) bar positions. The temperature material range at the axis within which the of, say, a 3-in. diameter a 540°C. x 850 b 500°C. x 850 e x 850 d x 850 450°C. 350°C. Fig. 23 Four stages in the transformation of austenite to bainite in 1% nickel steel (B.S. En 12) when cooled at the rate of a 0.9-in. diameter oil-quenched bar. Etchant: 2% nitric acid in alcohol. Small test pieces were air-cooled to the temperatures indicated to simulate this cooling rate, and were then water-quenched transformation would begin at 600°C, 50% of the austenite would be transformed when the temperature at the axis reaches 505°C, and transformation would be complete at 400°C. An ordinate drawn from the 3-in. position on the scale representing the "near-surface" Fig. 22 General view of the dilatometric apparatus used for the determination of continuous-cooling transformation diagrams. The movable furnace employed for austenitizing the steel samples is seen in the lower part of the apparatus; above this is the dilatometer and camera used for recording the dilatation of the specimen. During cooling the specimen is enclosed in a small compartment, the front panel of which has been removed for this illustration to provide a view of the lower part of the dilatometer EE position shows that the temperatures for the same stages of transformation of the material near the surface of the bar would be 565, 495 and 360°C respectively. The transformation lines of the continuous cooling diagrams transformation are not continued below the M, line to join up with the corresponding martensite transformation lines, since at temperatures below about 300°C the method of air-cooling small bars to simulate the cooling of oil-quenched bars does not provide a sufficiently close match of Atlas of Time-Temperature Diagrams 71 LS cooling rates to justify the application method of the to these lower temperatures. The structures which can be expected in the as-quenched bars are indicated beneath each diagram, e.g., in the diagram for the B.S. En 111 steel it is shown that with increasing bar diameter, the resulting structures consist of martensite, martensite + bainite, ferrite + pearlite + bainite, and ferrite + pearlite. No attgmpt is made to indicate the proportions of the various constituents when two or more are present in the as-quenched bars, but a useful guide in this respect is provided by the curves of the diagram showing percentages of transformation. In general, transformation at temperatures above 550°C may be accepted as giving ferrite and pearlite structures, whereas between this temperature and the M temperature bainite is formed. . . e 8 The as-quenched hardness values to be expected in the oil-quenched bars are also shown with each continuous cooling transformation diagram. These’ values’ were obtained on the equivalent air-cooled testpieces. A 2-in. diameter oil-quenched bar of this steel starts to transform at 500°C, and at 485°C 50% of the transformation to bainite is complete. This high-temperature bainite is of lower carbon content than the austenite from which it is formed, consequently the remaining aus- General features of continuous cooling transformation diagrams The continuous cooling transformation diagram for the B.S. En 111 steel shown in Fig. 24 illustrates the various features of transformation which are encountered in diagrams of this type. Transformation of the austenite at the axes of oil-quenched bars more than 4.25-in. diameter results in the formation of ferrite and _ pearlite. The transformation occurs in a fairly narrow range of temperature, for example, at the axis of a 5-in. diameter bar transformation starts is much wider. tenite becomes on enriched in carbon gos I ? 4 ¢ e and the M, ‘cam 122 Austentelzing Temperature ¢ i4 8457 Sen TRANSFORMATION TO. BAINITE STRUCTURES t t 1 1 1 1 1 ' 1 i 1 at 650°C, and is completed when the temperature reaches 590°C. At 4.25-in. diameter, the transformation lines representing the later stage of transformation fall sharply to lower temperatures, and for bars between 2.25-in. and 4.25in. diameter, the temperature range of trans- formation In the size range in which ferrite/pearlite Structures are the first to separate during cooling, the temperature for the start-oftransformation usually decreases gradually with decreasing bar diameter, but when bainite is the first constituent to form there is often a range of bar sizes in which the temperature for the start-of-transformation remains constant, or falls less rapidly. Thus, the minimum diameter for pearlite formation is often indicated by an inflection in the curve representing the start-of-transformation; in the continuous cooling transformation diagram for the B.S. En 111 steel this is shown at the 2.25-in. diameter position. For bars smaller than 2.25-in. diameter, the product of transformation in this steel is therefore either wholly bainitic, or martensitic, or contains a proportion of each of these constituents. The critical diameter below which it is possible to obtain full hardening by oil-quenching is not shown precisely in the continuous cooling transformation diagram of the BS. En 111 steel, since it is less than the smallest diameter which could be tested, but the trend of the start-of-transformation line suggests that it is about 0.8-in. R FERRITE & PEARLITE STRUCTURES é 4 0% Degrees TEMPERATURE Centigrade : 0% 909, fo“ey 100% FERRITE PEARLITE & BAINITE STRUCTURES Transformation In this size-range, of starts with a separation transformation ferrite and pearlite, followed by bainite at a lower temperature. occur together The over but as the temperature pearlite gradually two a range reactions falls, the formation gives way may NEAR-SURFACE , ae ase eel! ati = 1 1 to formation of AS-QUENCHED of bainite. With decreasing bar diameter below 4.25-in., the amount of ferrite and pearlite formed decreases, until 2.25-in. diameter little or no pearlite appears in the microstructure. = ; Sas : 20 vs HARDNESS Pe 270 VALUES ae 260 a w of temperature, wb D.P.N. : 260 2s 20 235 : 26 aa ms Fig. 24 Continuous cooling trans formation diagram for B.S. En 111 steel austenitized at 845°C Atlas of Time-Temperature Diagrams 72 8585656555555 i temperature of the steel is depressed. At small diameters, the bainite is formed at lower temperatures and its carbon content approaches that of the initial austenite. With decreas- ing bar size, the M, temperature is therefore gradually restored to the normal value for the steel. This feature is not shown by every steel, however, since the amount of low-carbon bainite formed is often insufficient to increase significantly the carbon content of the remaining austenite. Many of the deeper-hardening steels, when oil-quenched as I-in. to 6-in. diameter bars, do not transform to ferrite/pearlite structures, and the continuous cooling diagrams of these steels merely show a zone of bainite transformation. Typical examples are provided by the diagrams presented for the B.S. En 25, 26, 100 and 110 steels. 23, 24, The transformation data given by the continuous cooling diagrams for quenched bars provide a useful indication of the suitability of a steel for applications in which specific mechanical properties after tempering are required. In the low Ni-Cr steel B.S. En 111 (Fig. 24), bars up to a diameter of about 0.75-in. would be fully hardened by oilquenching, and after lightly tempering a satisfactory combination of tensile and impact properties should be obtained at high tensile strengths. Slightly larger bars containing a proportion of bainite could be tempered to somewhat lower strengths and would have impact-resistance adequate for most purposes. However, as the bar size increases beyond the critical diameter for full hardening by oilquenching, the proportion of bainite in this steel increases rapidly, and even’ with relatively small sections it is unlikely that sufficiently close control of heat treatment could be maintained to secure consistent properties at relatively high tensile strengths. Tempering to intermediate strength levels is therefore advisable for all bar sizes up to about 1-1/8-in. diameter. Bars between 1-1/8-in. and 4-in. diameter should be tempered to still lower tensile levels to secure satisfactory impact-resistance, and those of more than about 4-in. diameter would be suitable only for relatively low-strength applications. Limitations of transformation diagrams Certain limitations inherent in both isothermal and continuous cooling transformation diagrams should be borne constantly in mind. i Each diagram is based on a study of samples taken from a single cast of steel. Other casts of the same type of steel may, because of alloy content, and carbon their different rmation transfo their in ially differ substant characteristics, while still conforming to all requirements of the specification. Particularly wide variations are to be expected from lowalloy steels likely to contain variable amounts of residual alloying elements. It should also be remembered that the small samples used for determining transformation representnot be completely diagrams may ative of the cast as a whole. Other parts of the cast may yield significantly different results. Furthermore, there may be variations the section of individual across bars or forgings®”, some zones of which will usually transform more readily and others less readily suggest. would Such the diagram than differences are at a maximum in castings and are believed to be progressively reduced by forging and rolling. At best, the diagram can show no more than the average transformation characteristics of the cast. The transformation diagrams are not appreciably affected of many steels by quite wide variations of austenitizing time and temperature, but if the steel contains appreciable amounts of strong carbide-forming elements the effect may be significant. Raising the austenitizing temperature of such a steel causes progressive solution of alloy carbide and alters the composition of the austenite, which in turn affects the transformation characteristics of the steel at subcritical temp- eratures. Similarly, varying the austenitizing time at a given temperature may modify the transformation characteristics, although the magnitude of this effect is appreciably less. Subject to these limitations, isothermal and continuous cooling transformation diagrams can be of great assistance in controlling the heat treatment of alloy steels. The isothermal transformation diagrams presented in this section portray the fundamental transformation characteristics on which the behavior of the steels during heat treatment largely depends and they are of direct value in the application of special heat treatments based on this type of diagram. The continuous cooling transformation diagrams are of particular value for directly assessing the transformation behavior of simple shapes quenched in oil; they obviate the need for use of continuous cooling transformation data of uncertain value derived by calculation from _ isothermal diagrams. Atlas of Time-Temperature Diagrams 73 ee a Hardenability Hardenability refers to the ability of a steel to form martensite when cooled at a variety of rates from an austenitizing temperature; it is related therefore to the maximum thickness of section which can be fully hardened throughout. It is not concerned with the maximum hardness obtainable in the steel; as has already been indicated (see Fig. 15), this depends almost entirely on carbon content and is substantially independent of alloy content. For example, a 1% carbon steel rapidly cooled after austenitizing will develop a much higher hardness than a 3% nickel steel containing only 0.3% carbon, but the nickel steel will have the greater hardenability because it will harden fully through a larger section. The difference between hardness and hardenability may be illustrated by considering the response to hardening of two steels A and B, steel "A" having the lower carbon content but the higher alloy content. Suppose that several different sized bars of each of these steels are quenched under identical conditions, transversely sectioned, and tested for hardness from the surface to the axis. If the hardness of each bar is then plotted in the form of a curve of hardness values vs. distance from the axis, two sets of "hardness-transverse" curves are obtained, such as those shown in Fig. 25. It will be noted that the 0.5-in. and 1-in. diameter bars of steel "A" have hardened completely, whereas the 2-in. diameter bar has only partially hardened, and the 3-in. diameter bar has not hardened to any extent. On the other hand, the 0.5-in. diameter bar of steel "B" has hardened fully, but the 1-in. diameter bar has only partially hardened, and neither the 2-in. nor the 3-in. diameter bars have hardened appreciably. Thus, the rate at which a l-in. diameter bar cools in the particular quenching medium adopted, has been sufficient to harden fully steel "A", but not steel "B." The higher-alloy steel "A" despite its lower maximum hardness, is therefore said to have greater hardenability than steel "B," since under similar quenching conditions it will harden in greater diameters, although steel "B" is capable of developing the greater maximum hardness. Hardenability is expressed quantitatively in diameters" or "ruling secdiameter of a steel may be defined as the maximum diameter in which, after quenching in a selected medium, it will develop a specified hardness or a structure containing a specified proportion of martenterms of "critical tions." The critical site either at the axis or at some other chosen point. The proportion ee specified is usually between 50 and 100% martensite and the hardness values specified are usually those of predominantly martensitic structures. It will be appreciated that the smaller the proportion of martensite or the lower the hardness required, and the more efficient the quench specified, the greater will be the critical diameter of a given steel. To facilitate comparisons, the effect of the quenching medium can be eliminated mathematically by converting the critical diameter to an "ideal critical dia- meter." The latter is the critical diameter for an infinitely fast quench, ie., a theoretically ideal quench which reduces the surface of the sample instantaneously to the temperature of the quenching medium. The "ideal critical diameter" will clearly be greater than the critical diameter for a quench in, say, oil or water. STEEL A STEEL B x3 3 DPN HARDNESS DISTANCE 0 FROM | inch AXIS 1 DISTANCE FROM AXIS inch Fig. 25 Hardness traverse curves to illustrate differences in hardenability. Steel A has the greater hardenability, steel B higher maximum hardness, but less hardenability Instead of using the as-quenched martensite content as a criterion, hardness or the harden- ability of a steel can be assessed in terms of mechanical properties. The critical diameter of a steel is then the largest diameter which can be hardened and tempered to develop a selected at some of the combination of mechanical properties specified position in the cross-section bar. The critical diameter is then usually referred section." This ment and to method control as a maximum "ruling of hardenability is that commonly assess- employed in Great Britain and it is used extensively in the British Standards Institution’s Schedule of Wrought Steels (B.S. 970, 1955). The specifications included in this schedule stipulate several maximum ruling sections for each type of direct-hardening steel, and these are associated with certain minimum tensile and Izod impact requirements for test pieces machined ee EE Atlas of Time-Temperature Diagrams 74 NN from the axial or mid-radial positions of round bars. Thus, each ruling section dictates the minimum hardenability of the steel if the specified mechanical properties are to be obtained. Influence of chemical composition on hardenability All the common alloying elements including manganese, copper, nickel, chromium and molybdenum increase hardenability; cobalt has the reverse effect.t5 Addition of carbon up to at least the eutectoid content, improves hardenability and the small percentages of silicon and phosphorus usually present in steel also exert a positive effect. Sulfur, on the other hand, by combining with manganese to form sulfide, reduces the alloy content of the austenite and impairs’ hardenability. The presence of about 0.003% boron markedly enhances hardenability but further increase of boron has no addition effect and may impair forgeability. As would be expected, austenitic grain size also exerts an influence on _ hardenability: hardenability is increased by increase of grain Size. In 1942 Grossmann®? proposed a method of calculating hardenability from chemical composition and grain size. This involved allotting to the steel a basic hardenability or critical diameter (Dc) dependent on its carbon content and grain size, and then multiplying this value in turn by a series of factors to allow for the effect of each of the alloying elements present. Thus Di, the critical diameter of an ideal quench, was obtained from an equation of the following type: Di = De X A(% Mn) X B(% Si) X C(% Ni), etc. ation of the effects of alloying elements on isothermal transformation characteristics. In a steel hardened to a 50% martensitic structure, the remainder of the as-quenched structure will in some cases consist of pearlite, in others it will consist of bainite, and in still other cases both pearlite and bainite transformations may precede the formation of martenthe site. As already mentioned, alloying elements vary in the extent to which they affect rates of transformation in the pearlite and bainite ranges. For example, molybdenum markedly retard the pearlite and chromium reaction, but have a much less potent effect on the bainite reaction; thus an addition of molybdenum to a steel effect on hardenability the A, B, C, etc. were multiplying factors were claimed to be characteristic of the effects of the elements on hardenability. The critical diameters obtained by Grossmann were related to as-quenched structures containing 50% of martensite and no stipulation was made products regarding of the nature of transformation which might other be present. It soon became apparent that although the method was fairly successful when applied to low-alloy steel, it was unreliable when applied to steels of higher alloy content. As Hollomon reason for have and Jaffe? this is apparent ———<___ ———_., pointed from x out, the a considers«_@WX— of pearlite, same the but addition to a steel, the hardenability of which is limited by the formation of bainite, will have a much therefore, which smaller attend assumes, any effect. Failure method of must, calculation as does the Grossmann method, will that a given addition of an element always have the same effect on hardenability. From considerations such as the above, Hollomon and Jaffe decided that the hardenability of a steel should be assessed by two factors--pearlitic hardenability and _ bainitic hardenability--the former value representing the largest diameter that will harden without the formation of pearlite and the latter the largest diameter that will harden without the formation of bainite. The effective hardenability of a steel is then the smaller of these two values. These investigators decided that the bulk of Grossmann’s multiplying factors had been determined under such conditions that they probably applied to _ pearlitic hardenability. In deriving multiplying factors they assume that changes in the percentages of carbon, manganese, nickel, copper and silicon will produce the same changes in bainitic as they do in pearlitic hardenability, that where which formation will have a marked if this is limited by changes in molybdenum and grain size have negligible effects on bainitic hardenability, and that chromium has only half the effect on bainitic that it has on pearlitic hardenability. These assumptions are, at the most, no better than rough approximations, but the information required to assess more accurately the effects of alloying elements on bainitic hardenability is not yet available. This concept of pearlitic and bainitic hardenability is an important contribution to the understanding modified of the subject, approach but even will not provide calculation of hardenability composition. from this a reliable chemical Atlas of Time-Temperature Diagrams a Measurement of 75) hardenability 8 The most reliable method of assessing the hardenability of a steel is to quench bars of various sizes and examine their microstructures or determine their hardnesses and mechanical properties directly. This, however, is a tedious and time-consuming method and of quantities of large ‘use the involves material, a feature which is often inconvenient, particularly during the development stages of a steel. Continuous cooling transformation diagrams provide an assessment of test by but the end-quench hardenability, Jominy” has been used most widely for this CURVE X HARDNESS D.P.N. x CURVE 109 02 04 06 03 1-0 DISTANCE FROM QUENCHED 12 14 END OF BAR 16 8 Y 20 inch Fig. 26 Examples of end-quench curves for steels of high and medium hardenability purpose. the The Jominy end-quench test involves austenitizing a test bar 4-in. long by 1-in. diameter, and then quenching it under standard con- ditions by a water jet which impinges on one end only of the specimen. The sample consequently cools very rapidly at the quenched end and progressively less rapidly towards the Opposite end. The hardness of the endquenched bar is determined at closely spaced intervals along its length, at a standard depth below the surface, and these values are plotted against the distance from the quenched end to give end-quench hardenability of curves of the type shown in Fig. 26. A deep-hardening horizontal steel end-quench will curve, give "X," which indicates that the develop substantially martensitic when cooled at any rate within covered medium an similar Jominy almost to curve steel will structures the range by the end-quench test. A steel of hardenability, however, will give a curve similar to curve "Y," which shows that within the range of cooling rates developed over the first 0.2 in. of the test specimen the steel will develop substantially martensitic structures, but over the range of cooling rates developed within 0.2 to 0.4 in. from the quenched end of the specimen it will harden only partially. When cooled at slower rates such a steel will transform transformation products. wholly to soft structures hardenability, basis are and simple adequate for comparisons most on this purposes. For more detailed comparisons, however, a number of particular points on the Jominy curve have been used; these include the position at which the steel develops 50% martensite, or the distance over which the steel develops a fully martensitic structure. Both of these must be determined by microscopical rr examination of the end-quenched test Application of end-quench hardenability curves During duction the period shortly after of the Jominy end-quench the introtest it was widely claimed’”:?3 that the curves so obtained could be used to forecast the hardness of different points across the section of quenched bars. The method recommended involved a knowledge of the cooling rates developed along the length of the Jominy test specimen during end-quenching, and of the cooling rates of quenched bars, and it was assumed that the quenched bar would develop the same hardness as that developed at that point on the Jominy test specimen which cooled at the same rate. However, neither the cooling curve of the end-quenched specimen nor of the quenched bar is linear, and consequently a variety of cooling-rate criteria are possible; two that have been widely used are the rate of cooling at 704°C (1300°F) and the "“halftemperature-time," i.e., the time taken to cool to the arithmetical mean of the austenitizing temperature and the temperature of the quenching Clearly the position of the steep part of the end-quench curve provides an index of along specimen. Other criteria which have been used include the distance to some selected hardness level, or to the inflection point of the curve. Each of these criteria has a field of usefulness in correlating the influence of the variables controlling hardenability. medium. Steven and Mayer‘? have demonstrated that the cooling rate over the temperature interval 700 to 500°C is a more satisfactory criterion. The work of the tee’4 showed that Hardenability the hardness Sub-Commit- of quenched bars could not be calculated with accuracy from end-quench hardenability curves, and demonstrated that the discrepancies between values calculated from these curves and those actually developed are due mainly to transnae Atlas of Time-Temperature Diagrams The end-quench test can be used also to indicate the hardness to be expected in quenched and tempered bars. For this purpose, the specimen is end-quenched in the normal manner and then uniformly tempered before hardness testing. The hardness of a quenched and tempered steel bar should then be the same as the hardness at the equivalent Jominy distance indicated by Fig. 27. The error in forecasting the hardness of a quenched and tempered bar decreases as the tempering temperature is raised, and for tempering temperatures above 500°C, it is almost negligible. BAR OIL-QUENCHED OF DIAMETER inch The 02 04 06 08 EQUIVALENT JOMINY 10 12 DISTANCE 4 16 Steel Institute inch Fig. 27 Equivalent Jominy distances for the axis (r/b = 0), mid-radius (r/b = 0.5), and “nearsurface” positions (r/b = 0.8) of oil-quenched bars verse and longitudinal variations of hardenability within steel billets of normal commer- cial quality.”> The standard 1-in. diameter end-quench test piece is usually machined from 1-1/8-in. diameter hot-rolled bar, and the hardness measurements along the length of the bar reflect the hardening response only of the material near the surface of the bar. Endquench hardenability curves should therefore be used only semi-quantitatively to forecast the behavior of quenched bars. For example, a Jominy curve can be used to decide whether a bar of given size is likely to harden fully, to harden partially, or to transform completely to soft transformation products when quench- ed in oil. For this purpose, the relationship*9 between end-quench hardenability curves and oil-quenched bars shown in Fig. 27 should be satisfactory. Curve "Y" of Fig. 26 will serve to illustrate the use of the relationship. The equivalent Jominy distances for the axes of oil-quenched 0.5-in., l-in., and 2-in. diameter bars are, respectively, 0.15, 0.30 and 0.62-in. These distances correspond to the top portion, the mid-slope and the lower flat of the Jominy curve. Thus, the 0.5-in. diameter oilquenched bar may be expected to harden fully, but the l-in. diameter bar will only partially harden, and the 2-in. diameter bar will fail completely to harden at the axis. The relationship shown in Fig. 27 is based on equality of cooling rates over the range 700 to 500°C, between the cooling curves of an endquench test specimen, as reported by Russell and Williamson,’® oil-quenched Mayer.49 bars and as the cooling curves reported end-quench by Steven hardenability curves present- ed here were determined in accordance with the procedure recommended in the Iron and of and Special Report No. 36, 1946.74 The end-quenched specimens were subsequently tempered at several temperatures to provide an indication of the hardness values to be expected from each steel when quenched and tempered. Limitations of end-quench hardenability curves An end-quench hardenability curve suffers from disadvantages similar to those outlined for transformation diagrams, i.e., the test data provided by a single test do not indicate the variations which may be encountered in different steels conforming to a_ given specification. Due to the effects of micro- and macro-segregation, appreciable differences in hardenability can also exist between different samples of the same cast of steel. As mentioned previously, the standard endquench test provides hardenability data for the material at the surface of a l-in. diameter test piece, and when this test piece has been machined from 1-1/8-in. diameter rolled bar the information obtained can often be misleading if steel with transverse hardenability variations is used. These limitations can be particularly important if the steel is to be used in a lightly tempered condition after quenching, because in sections of critical size small variations in hardenability can cause significant differences in the degree of hardening. A single end-quench test will, however, indicate the bar size range which may be critical in this respect, should transverse hardenability variations be suspected. Providing end-quench its limitations test provides are a recognized, simple means the of assessing the hardenability of a steel and it is particularly useful because it can be applied for controlling the heat treatment of steels under production conditions. EE » Atlas of Time-Temperature Diagrams Sh rr Effects of tempering Hardened Stresses steels or invariably "quenching contain stresses," internal which are greater the more drastic the quenching treatment and the more complex the shape of the hardened components. Sometimes these stresses are relieved to some deformation, extent by induced but\this may plastic be accompanied by a certain amount of distortion. Hardened steels also lack toughness and ductility to an extent which depends on the composition of and of the degree steel the hardening achieved. Tempering is effected, therefore, to relieve the quenching stresses and to provide improved toughness and ductility insofar as this is compatible with tensile strength adequate for service requirements. Amongst other things, the toughness and ductility of a steel depend to a large extent on the nature, size and distribution of the carbides dispersed in the ferrite matrix, and the effects of tempering are due mainly to the changes which occur in these carbides on heating. condition tempering, atoms of internal stresses are high. On carbides are precipitated, and iron the lattice are rearranged, thus providing considerable stress relief. The nature of the carbide which separates during the first stage of tempering has not been definitely established, but there is sufficient evidence to show that it has a composition between that of FegC and that of Fe,C.7778 This carbide has been termed €-iron carbide. The separation of €-iron carbide, at least in high-carbon steels, begins at about 100°C79 and this carbide subsequently decomposes to cementite at higher temperatures. The first stage of carbide separation from a martensitic steel is sometimes accompanied by a slight increase of hardness, but this hardening, which has been ascribed to the formation of & -iron carbide,®° is accompanied by softening due to the simultaneous removal of carbon from the martensite matrix. Depending on the amount of carbide that precipitates, either hardening or softening may therefore be observed. The marked softening that occurs at higher tempering temperatures is associated with the formation of cementite and complete carbon depletion of the martensite. The relief of internal stresses and the breakdown of the martensite atomic lattice on tempering up to about 250°C results in some improvement in ductility and toughness, and in an increased ratio of yield stress to breaking strength in tension. The optimum values of yield or proof stress are usually obtained after tempering at 300 to 325°C, but as the tempering temperature is raised above about 250°C there is, for most steels, an intermediate range of tempering temperature which causes loss of toughness. The extent of this temperature range, and the degree of embrittlement occurring within it, varies with the alloy content and is also affected by other Fig. 28 Untempered martensite in a low Ni-Cr- Mo steel (B.S. En 110), austenitized at 860°C and water quenched. Electron micrograph. Preshadowed evaporated aluminum replica variables, such as the presence of small amounts of those elements which are normally regarded as impurities. An example of the influence of alloy content on the extent of the embrittlement range is provided by the response to tempering of steels containing about 2% of silicon. Certain steels of this type can be tempered at temperatures up to about 300°C without serious embrittlement®! or loss of tensile strength, and this renders it possible to obtain high ratios of yield stress to tensile strength at high tensile levels. Martensite decomposition and associated effects It has and been Cohen®® suggested that by Lement, Averbach this embrittlement, which generally reaches a maximum on tempering at the steel, temperatures of the order of 350°C, is assositic marten ed harden In a fully a in ciated with the resolution of €-iron carbide carbon is almost entirely in solid solution and the precipitation of cementite films along this body-centered tetragonal lattice and in e ————EO ee Atlas of Time-Temperature Diagrams 78 a martensite plate boundaries. At temperatures above the embrittlement range, however, the softening of the matrix due to carbon depletion causes an increase in ductility which eventually overcomes the embrittling effect of the cementite films. coalescence of carbides The nature of carbides in a fully hardened and tempered 1.5% nickel-chromium-molybdenum steel are given in Fig. 28 and 30. in tempered alloy steels during the initially formed The cementite percenthigh containing steels of tempering ages of change elements carbide-forming to gradually more stable tends alloy to car- bides.82:8:84:85 The rate at which these changes Fig. 29 Tempered martensite in a low Ni-Cr-Mo steel (B.S. En 110), water-quenched from 860°C and tempered 1h at 350°C. Electron micrograph. Preshadowed replica evaporated aluminum (Editor’s Note: A more up-to-date review of embrittlement associated with the tempering of steels can be found in Properties and Selection: Irons, Steels, and High-Performance Alloys, Vol 1, 10th ed., Metals Handbook, ASM International, Materials Park OH, 1990, pp 689-736) Fig. 30 Tempered martensite in a low Ni-Cr-Mo steel (B.S. En 110), water-quenched from 860°C and tempered at 550°C. Electron micrograph. Preshadowed evaporated aluminum replica The further softening produced by tempering at which that than higher temperatures cementite formation is complete is associated with coalescence of carbides, resulting in a further increase in ductility and toughness. Structures illustrating the precipitation and a occur is governed to some extent by the rate of diffusion of carbon, but more particularly by the rates of diffusion of the alloying elements in the ferrite matrix. At low temperatures, the diffusion rates are too low to enable the composition of the carbides to change significantly within normal tempering only at the times and the change occurs temperatures or on prohighest tempering longed treatment at intermediate temperatures. In low- and medium-alloy steels of the types included here, however, formation of stable alloy carbides does not occur even after prolonged tempering at high temperatures, although the alloy content of the _ initial cementite increases as tempering progresses. The formation of carbides of increased alloy content leads to a diminution in the alloy content expected strength of the that ferrite this and would of the ferrite also it matrix,8® would be reduce the apart from any effect which the coalescence of carbides might have. In these steels the low rates of diffusion of the alloying elements which have a strong affinity for carbon tend, however, to reduce coalescence of carbides, and in order to temper to a given tensile strength it is usually necessary to employ’ tempering temperatures somewhat higher than would be used for plain carbon steels. Consequently, internal stresses can be removed more effectively. In steels which are incompletely hardened, the extent to which carbides coalesce during tempering is influenced by the size and dispersion of the carbides initially present in the untempered material. If the carbides are relatively coarse and well separated, as in coarse lamellar pearlite, little further change is effected in the size and distribution of the carbide unless high tempering temperatures or long tempering times are applied. Within the times normally used for tempering, coalescence of carbides generally occurs to a Significant extent only if the tempering temperature is higher than that at which the initial structure was formed during the hardening treatment. Atlas of Time-Temperature Diagrams ee 79 REFERENCES E.S. Davenport, E.C. Bain, "Transformation of Austenite at Constant Subcritical Temperatures," Trans. AIME, ae 1930, vol 90, pp 117-154 ation of Austenite in Pure Iron-Nickel and Iron-Nickel-Molybdenum Alloys Containing 0.55% Carbon," Trans. ASM, H.A. Smith, "Reactions in the Solid State. I. Initial Course of Subcritical Isothermal Diffusion Reactions in Austenite AIME, 1949, vol 41, pp 1145-1164 in an Alloy Steel," Trans. 13. M.P. Sheehan, C.A. Julien, A.R. Troiano, "The Transformation Characteristics of Ten Selected Nickel Steels," Trans. ASM, 1949, vol 41, pp 1165-1181 14. C.R. Austin, J.R. Doig, "The Suppression of Pearlite in Manganese-Molybdenum 1935, vol 116, pp 342-362 F.B. Rote, W.C. Truckenmiller, W.C. Wood, "Electrical Resistance Method the Determination of Isothermal Austenite Transformations," Trans. ASM, 1942, vol 30, pp 1359-1373 D.A. Scott, W.M. Armstrong, F.A. Forward, "Influence of Nickel and Molybdenum on Isothermal Transform- for Steels," Trans. ASM, 1946, vol 36, pp 336-360 R.L. Rickett, F.C. Kristufek, "The Microstructure of Low Carbon Steel," Trans. ASM, 1949, vol 41, pp 1113-1141 15; Atlas of Isothermal Transformation Diagrams of B.S. En Steels (2nd Ed.), Iron and Steel Institute, Special Report No. 56, 1956 H.T. Heal, H. Mykura, "An J.R. Blanchard, R.M. Parke, A.J. Herzig, "The Effect of Molybdenum on the Isothermal Subcritical Transformation of Austenite in Low and Medium Carbon Steels," Trans. ASM, 1941, vol 29, pp 317-335 X-Ray Method for the Study of Phase Changes at High Temperatures," Metal Treatment and Drop Forging, pp 129-135 1950, vol 17, No. 61, J.R. Blanchard, R.M. Parke, A.J. Herzig, "The Effect of Molybdenum on the Isothermal Subcritical Transformation of Austenite in Eutectoid and Hypereutectoid Steels," Trans. ASM, 1943, vol 31, pp 849-868 E. Gillam, D.G. Cole, "S-Curves. Completion below the M, Temperature," /ron and Steel, 1953, vol 26, pp 471-474 N.P. Allen, L.B. Pfeil, W.T. Griffiths, "Determination of Transformation Characteristics of Alloy Steels,” Iron and Steel Institute, Second Report of the Alloy Steels Research Committee, Special Report No. 24, 1939, Section XIII, pp 369-390 T. Lyman, A.R. Troiano, "Isothermal Transformation of Austenite in 1% Carbon, High-Chromium Steels," Trans AIME, 1945, vol 162, pp 196-220 19. 20. T.G. Digges, C.R. Irish, N.L. Carwile, "Effect of Boron on the Hardenability of High-Purity Alloys and Commercial Steels," Jnl. Res. Nat. Bur. Standards, 1948, vol 41, pp 545-574 21, Atlas of Isothermal Trans formation Diagrams, United States Steel Company, Pittsburgh, 1951 T. Ko, S.A. Cottrell, "The Formation of Bainite," Jnl. Iron Steel Inst., 1952, vol 172, pp 307-313 kis E.S. Davenport, "Isothermal Transformation in Steels," Trans. ASM, 1939, vol 27, pp 837-886 Hardening of Alloy Steels of Various Compositions," Arch. f.d. Eisenhuttenwesen, 1949, vol 20, pp 13-18 in Steel," Trans. ASM, 1940, vol 28, pp 537-562 W. Bischof, "Investigations on the Intermediate Transformation A.B. Greninger, A.R. Troiano, "Kinetics of the Austenite to Martensite Trans- formation M.F. Hawkes, R.F. Mehl, "The Effect of Cobalt on the Rate of Nucleation and the Rate of Growth of Pearlite," Trans. AIME, 1947, vol 172, pp 467-492 Atlas of Time-Temperature Diagrams 80 nn a. 23: 32: G.R. Brophy, A.J. Miller, "An Appraisal 33; P. Payson, C.H. Savage, "Martensite Reactions in Alloy Steels," Trans. ASM, 1944, vol 33, pp 261-275 167, pp 654-663 34. J.M. Hodge, J.L. Giove, R.G. Storm, "The Hardenability Effect of Molybdenum," Trans. AIME, 1949, vol 185, pp 218-227 L.A. Carapella, "Computing A” or M, (Transformation Temperature on Quenching) from Analysis," Metal Progress, July 1944, vol 46, p 108 35. R.A. Grange, H.M. Stewart, "Temperature Range Martensite Formation," Trans. AIME., 1946, vol 167, pp 467-490 36. A.E. Nehreberg, in Contribution to Discussion on Grange and Stewart (see Composition," 255 Trans. AIME, 1946, vol C.L.M. Cottrell, "Is M, Temperature Influenced Temperature of Formation of Martensite and Bainite in Low-Alloy Steels - Some Effects of Chemical Composition," Jnl. Iron and Steel Inst., 1956, vol 183 pp 349-359 of the Factor Method for Calculating the Hardenability of Steel from 24. W. Steven, A.G. Haynes, "The W.T. Griffiths, L.B. Pfeil, N.P. Allen, "The Intermediate Transformation in Alloy Steels," Iron and Steel Institute, Second Report of the Alloy Steels Research Committee, Special Report No. 24, 1939, Section XII, pp 343-367 by Cooling Rate?" Brit. Welding Jnl., 1954, vol 1, no 4, p 160 26. G.V. Kurdyumov, O.P. Maksimova, "Kinetics of the Transformation of Austenite into Martensite at Low Temperatures," Doklady Akademii Nauk S.S.S.R., 1948, vol 61, pp 83-86 35 above), Trans. AIME., pp 494-498 37. E.S. Rowland, 1946, vol 167, S.R. Lyle, "The Appli- cation of M, Points to Case Depth oT on the Martensite Transformation in S.A.E. 1050 Steel," Trans. ASM, 1954, vol 46, pp 1225-1250 28. 293 30. Ws Measurement,” pp 27-46 M.R. Meyerson, S.J. Rosenberg, "Influence of Heat-Treating Variables S.A. Kulin, M. Cohen, "On the Martensitic Transformation at Temperatures Approaching Absolute Zero," Trans. AIME, 1950, vol 188, pp 1139-1143 S.C. Das Gupta, B.S. Lement, "Isothermal Formation of Martensite at Sub-zero Temperatures in a High Chromium Steel," Trans. AIME, 1951, vol 191, pp 727-731 1946, vol 37, 38. H.H. Chiswik, A.B. Greninger, "Influence of Nickel, Molybdenum, Cobalt and Silicon on the Kinetics and Ar” Temperatures of the Austenite to Martensite Transformation in Steels," Trans. ASM, 1944, vol 32, pp 483-516 39. J.L. Burns, T.L. Moore, R.S. Archer, “Quantitative Hardenability," Trans. ASM, 1938, vol 26, pp 1-21 E.S. Machlin, M. Cohen, "Burst Phenomenon in the Martensitic Transformation,” Trans. AIME, 1951, vol 191, pp 746-754 G.V. Kurdyumov, O.P. Maksimova, "Contribution to the Problem of Formation of Martensite Nuclei," Doklady Akademii Nauk S.S.S.R., 1950, vol 73, pp 95-98 Trans. ASM, F.T. Sisco, Modern Metallurgy for Engineers, 2nd Ed., Pitman Publishing Corporation, New York, 1948, p 499 41. W.J. Harris, M. Cohen, "Stabilization of the Austenite-Martensite Transformation," Trans. AIME, 1949, vol 180, pp 447-470 42. T. Ko, B. Edmondson, "Thermal Stabilization of Austenite in Nickel Steels," Acta Metallurgica, 1953, vol 1, No. 4, pp 466-467 43. H. Esser, H. Cornelius, "The Mechanisms in the Tempering of Quenched Steels," Arch. f.d. Eisenhuttenwesen, 1934, vol 7, pp 693-697 Atlas of Time-Temperature Diagrams 81 ——— 44. J.O. Ward, M.D. Jepson, J.R. Rait, "Effect of Alloying Elements on the Breakdown of Austenite at Sub-zero 56. Temperatures - Part I," Jnl. Iron and Steel Inst., 1952, vol 170, pp 1-9 45. L.S. Castleman, B.L. Averbach, M. Cohen, "Effect of Retained Austenite upon Mechanical Properties," Trans. ASM, 1952, vol 44, pp 240-256 46. B.L. Averbach, S.G. Lorris, M. Cohen, "Stress-Induced Transformation of Retained Austenite in Hardened Steel," Trans. ASM, 1952, vol 44, pp 746-756 47. 48. 49. G.K. Manning, C.H. Lorig, "The Relationship between Transformation at Constant Temperature and Transformation during Cooling," Trans. AIME, 1946, vol 167, pp 442-463 O73 R.A. Grange, J.M. Kiefer, "Transformation of Austenite on Continuous Cooling and its Relation to Transformation at Constant Temperature," Trans. ASM, O. Zmeskal, M. Cohen, "The Tempering of Two High-Carbon High-Chromium Steels," Trans. ASM, 1943, vol 31, pp 380-408 J.A. Cameron, "Bainitic Retained Austenite," Jnl. Iron and Steel Inst., 1956, vol 183, pp 260-267 58. W.I. Pumphrey, F.W. Jones, "InterRelation of Hardenability and Isothermal Transformation Data," Jani. Iron and Steel Inst., 1948, vol 159, pp 137-144 29) J.H. Hollomon, L.D. Jaffe, M.R. Norton, "Anisothermal Decomposition of Austenite," Trans. AIME, 1946, vol 167, pp 419-439 60. L.D. Jaffe, "Anisothermal Formation of Bainite and Pro-eutectoid Constituents in Steels," Trans. AIME, 1948, vol 176, pp 363-376 W. Steven, G. Mayer, "A Method of Simulating the Oil-Cooling of Steel Bars," Jnl. Iron and Steel Inst., 1951, vol 169, pp 370-376 1941, vol 29, pp 85-114 61. P.T. Moore, "Anisothermal Deposition of Austenite in a Medium-Alloy Steel," 50. Jnl. Iron and Steel Inst., 1954, vol 177, pp 305-311] H.J. French, O.Z. Klopsch, "The Characteristics of Some Quenching Sil: a2, Curves," U.S. Bureau of Standards Technical Publication No. 313, 1926 62. E.S. Davenport, E.L. Roff, E.C. Bain, "Microscopic Cracks in Hardened Steel, Their Effects and Elimination," Trans. ASM, 1934, vol 22, pp 289-310 C.A. Liedholm, "Continuous Cooling Transformation Diagrams from Modified End-Quench Method," Metal Progress, January 1944, vol 45, pp 94-99 63. A.W. McReynolds, "Electrical Observations of the Austenite-Martensite Transformation in Steel," Jnl. Applied H. Bennek, G. Bandel, "The Influence of Genesis of Crystalline Structure Resulting from Heat-Treatment and Alloy Content on the Creep Strength of Steel," Stahl und Eisen, 1943, vol 63, pp 653-700 Physics, 64. 1946, vol 17, pp 823-833 A. Rose, W. Strassburg, "The Application of TTT Continuous Cooling Diagrams to Heat-Treatment Problems," Arch. f.d. Eisenhuttenwesen, EEE G.R. Brophy, "Cycle Annealing of Hypo-eutectoid Steels," Jron Age, 13 December 54. 55. 1945, vol 156, pp 69-71 E. Scheil, "Initiatory Period of the Austenite Transformation," Arch. f.d. Eisenhuttenwesen, 1935, vol 8, pp 565-567 S. Steinberg, "Relationship between Rate of Cooling, Rate of Transformation, Under-Cooling of Austenite and Critical Rate of Quenching," Metallurg., 1938, vol 13, no 1, pp 7-12 1953, vol 24, pp 505-514 65. R.D. Chapman, for Determining W.E. Jominy, "A Method the Continuous Cooling Transformations in Steel," Trans. ASM, 1955, vol 47, pp 869-883 66. W. Steven, G. Mayer, "Continuous Cooling Transformation Diagrams of Steels," Jnl. Iron and Steel Inst., 1953, vol 174, pp 33-45 re EE Atlas of Time-Temperature Diagrams 82 mm 67. E.H. Bucknall, "A Note on the Effect of Tie K.H. Jack, "Structural Transformations in the Tempering of High-Carbon Steels," Jnl. Iron and Steel Inst., 1951, vol 169, pp 26-36 78. C.S. Roberts, B.L. Averbach, M. Cohen, "The Mechanism and Kinetics of the First Stage of Tempering,” Trans. ASM, 1953, vol 45, pp 576-599 79. D.P. Antia, S.G. Fletcher, M. Cohen, "Structural Changes During the Tempering of High-Carbon Steel," Trans. ASM, 1944, vol 32, pp 290-324 80. B.S. Lement, B.L. Averbach, M. Cohen, "Microstructural Changes on Tempering Iron-Carbon Alloys," Trans. ASM, 1954, the Location of the Test-Piece on the Jominy Hardenability of Billets," Symposium on the Hardenability of Steel, Iron and Steel Institute, Special Report No. 36, 1946, pp 120-131 68. M.A. Grossmann, M. Asimow, S.F. Urban, "Hardenability, its Relation to Quenching and Some Quantitative Data," Symposium on Hardenability of Alloy Steels, ASM, 1938, pp 124-190 69. 70. 71. TZ. 73. 74. M.A. Grossmann, "Hardenability Calculated from Chemical Composition," Trans. AIME, 1942, vol 150, p 227 vol 46, pp 851-877 J.H. Hollomon, L.D. Jaffe, "Hardenability Concept," Trans. AIME, 1946, vol 167, pp 601-612 81. W.E. Jominy, A.L. Boegehold, "A Hardenability Test for Carburizing Steel," Trans. ASM, 1938, vol 26, pp 574-599 A.G. Allten, P. Payson, "The Effect of Silicon on the Tempering of Martensite," Trans. ASM, 1953, vol 45, pp 498-525 82. W.E. Jominy, "Hardenability Tests," Symposium on Hardenability of Alloy Steels, ASM, 1938, pp 66-87 W. Crafts, C.M. Offenhauer, "Carbides in Low-Chromium Steel," Trans. AIME, 1942, vol 150, pp 275-282 83. W. Crafts, C.M. Offenhauer, "Carbides in Low Chromium-Molybdenum Steels," Trans. AIME, 1943, vol 154, pp 361-372 84. T. Lyman, A.R. Troiano, "Influence of Carbon Content upon the Transformations in 3% Chromium Steel," Trans. ASM, 1946, vol 37, pp 402-444 85. K. Kuo, "Carbides in Chromium, Molybdenum and Tungsten Steels," Jni. Iron and Steel Inst., 1953, vol 173, pp 363-375 86. W.P. Rees, B.E. Hopkins, H.R. Tipler, "Tensile and Impact Properties of IronSilicon, Iron-Nickel, Iron-Chromium and Iron-Molybdenum Alloys of High Purity," Jnl. Iron and Steel Inst., 1954, vol 177, pp 93-110 M. Asimow, W.F. Craig, M.A. Grossmann, "Correlation between Jominy Test and Quenched Round Bars," §S.A.E. Journal, July 1941, vol 49, p 283 Symposium on the Hardenability of Steel, Tron and Steel Institute, Special Report No. 36, 1946 viey H. Allsop, W. Steven, "A Study of the Relationship between End-Quench Hardenability Curves and the Hardness of Bars Quenched in Oil," Symposium on the Hardenability of Steel, Iron and Steel Institute, Special Report No. 36, 1946, pp 199-252 76. T.F. Russell, J.C. Williamson, "Surface Temperature Measurements During the Cooling of a Jominy Test-Piece," Symposium on the Hardenability of Steel, Iron and Steel Institute, Special Report No. 36, 1946, pp 34-46 Atlas of Time-Temperature Diagrams 83 I 1% Ni Steel (B.S. En 12) Chemical Composition, c Specification: Rs Man, |= si % End-Quench |4 Mn j ns — = eee 0.48 |0 33 | 1-50 |0-05 0-05 mE = = 100 (= f= ; Hardenability Curves amma aay! caratae a i a Zz Q < i" Diagram 04 Continuous go S 5 =) fe 5 f= < 2 i a, Sy 2 5 et < fe i Qu 10% 5% 90%, 100% Transformation 2 BR 300 | | | & 06 AH SOY, 0%, | AXIS i 10 i Siee 8B 10 20 QUENCHED 22 END Cooling Transformation — 1 | : o8 FROM OO 24 26 OF BAR Diagram ————. 2 a] 100% Transformation 300 rs ase pet guns) Austenitinng Temperature 845°C fa DISTANCE o% ale eae Panes a Grain Size, 3 (A.s.T.M.) Isothermal Transformation 2 rat or Grain Size :—As-Quenched Grain Size, 7 & 8 (A‘s.T.M.) McQuaid-Ehn ah iz a 0-08 |0-02 0:34 |0-20 |1-06 |0-04 0-037, 0-75 Steel Studied 1% Ni Steel (B.S. En 12) ° DIAMETER OF OILQUENCHED BAR, inch od ehh 1 —~ 2 a ee 3 = 4 — = 5 =e!| ‘ AS QUENCHED HARDNESS VALUES D.P.N. \ L DURATION ? .i 10 20 Of ISOTHERMAL 40 1 2 5 10 7i} TREATMENT Hardness values in bold figures are shown of the fully transformed steel; the values in italics represent structures developed by holding at the selected temperatures for 24 hours and then quenching to room temperature ean PO eC: etl Us SO, BSED Atlas of Time-Temperature Diagrams 84 nnn Cc Si Min. Max. 0:35 0-45 0-10 0-35 Steel Studied 0:40 0:26 Ss P 0-50 0-80|0-05 Mn f {0-05 Gr Mo 3-25 | 3-75 0:30; Ni — | 0-62 |0-005 | 0-007 3:45 z 4. Peer, <<. | ome : | n D2 40! I Grain Size, 5 & 6 (A.S.T.M.) a | | Tempered at 575°C 300) | Tempered at625°C = I nol Isothermal Transformation Diagram ol | i alee o2 [z | cant cea | 800 | + 1 | | | | j | ' | { i ; Austenitizing Temperature . | 1 | | | | ' | | O4 oe DISTANCE 860°C : H | || A sx METHOD OF MANUFACTURE:—Basic Electric Arc Grain SIZE:—As-Quenched Grain Size, 5 (A.s.T.M.) McQuaid-Ehn ce hyQ } 0-28 | 0-10 Curves Hardenability End-Quench Composition, % Specification: EE UEEEEE EEE EEE 3.5% Ni Steel (B.S. En 22) 3.5% Ni Steel (B.S. En 22) Chemical nnn oe 10 FROM 2 4 Mek 16 8 20 QUENCHED Ss) 22 END 24 | rod OF BAR H I pe Diagram Cooling Transformation Continuous - — - - —---——-— + | 730 DPN art eels] Austeniciting Temperature 860°C 480 DPN 3/0 DPN °C TEMPERATURE, °C TEMPERATURE, imal ACC o% | 0% %O% W% 100% Transformation 10% DIAMETER BAR ramen ar QUENCHED soy, 100%, Transformation RY OF OILBAR, inch ae ee a Errect oF AUSTENITIZING TEMPERATURE 100 |——+ 0% Austenieizing Temperacure °C on Rens To Ann ar wel os [ne [sf Incubation Period .. ea minute Time for 50 per cent transformation hour End ofTransformation... hour Final Hardnets DURATION 6 Of ISOTHERMAL 3 2 TREATMENT Hardness values in bold figures are shown of the fully transformed steel; the values in italics represent structures developed by holding at the selected temperatures for 24 hours and then quenching to room temperature AS QUENCHED l HARDNESS 550 520 490, 410 VALUES 330 no D.P.N. US 310 J Atlas of Time-Temperature Diagrams 85 3% Ni-Cr Steel (B.S. En 23) Chemical 3% Ni-Cr Steel (B.S. En 23) Composition, % GW Specification: Min. Max. Steel Studied End-Quench | Mn) s | P | Ni | Cr Basic Electric Arc Hardenability cats Als | Mo 0-25 0-10 0-45/ — | — | 2-75| 0-50 | — 0:35 | 0:35 0-70 |0-05 |o-05 |3-50 |1-00 |0-65¢ 0-33 | 0:23 0-57 |0-007|0-005 |3-26 |0-85 |0-09 METHOD OF MANUFACTURE:— GRAIN SizE:— si i if * a Curves ¥ 1 « is «=«606)SCO8SCD i) ry 1@ > § 20 22 a “ a4 26 0 * Optional i: a s : i i 8 As-Quenched Grain Size, 9 (A.s.T.M.) McQuaid-Ehn Grain Size, 4 to 5 (a.s.T.M.) s Isothermal Transformation Diagram D.P.N. HARDNESS 02 04 : e | DISTANCE alah: Cart et Continuous ‘ 700 680 DPN FROM QUENCHED END Cooling Transformation : ri 4 ‘ OF BAR Diagram T € T its cenricerrer ry 4 | Austenitizing Temperacure | 035°C 7 450 DPN +1 4210 DPN 4. 610 DPN: : B 5 a i | 370 DPN fy + 4 360 OPN fy 5 | | a & = = fa | ae ie & 6ree $00 | fa BH = 5 P| BS a QUENCHED wee NeansurACe ri. i t 2 AS QUENCHED ‘ 4 Day Hardness values transformed steel; Of ISOTHERMAL TREATMENT bold shown in the figures values in are italics of represent the fully structures developed by holding at the selected temperatures for 24 hours and then quenching to room temperature 3 HARDNESS 5 585 . . 5 si hi : i 3 SSS DURATION BAR, inch ? oS 6 7 VALUES SSS * 580 : 4S Pete D.P.N. 535 3 520 5 Atlas of Time-Temperature Diagrams 86 se ea 1.5% Ni-Cr-Mo Steel (B.S. En 24) Chemical 1.5% Ni-Cr-Mo Steel (B.S. En 24) End-Quench Composition, % Hardenability Curve a is tle Z Specification: Gc Si Min. Max. 0:35 0-45 0:10 0-35 0-70 0-05 Steel Studied 0-36 0-22 0°52 |0:005 QrOO THe: 52) Mol 0-45) — 1:30 1:80 0-05 0-90 1°40 0-20 0-35 Se inept re aa | Ay wo AQ so evOn27: METHOD OF MaNUFACTURE:— Basic Electric Arc Grain Size:— As-Quenched Grain Size, 7 & 8 (A.S.T.M.) 3 seo | Tempered at525% McQuaid-Ehn Grain Size, 4 to 5 (A.s.7.M.) Zz, ae : 3 Tempered at 650°C i) Isothermal Transformation ee 800} | ac | | eee ne a \ Austenitizing Temperature 835°C ! { & 200 Diagram 04 DISTANCE Continuous oat | | z | eet 700 | | oo 180 DPN 700 06 os 10 FROM 12 4 [en 16 20" QUENCHED END Cooling Transformation la ~~ + aa) awmnase OF BAR Diagram = ; aan | | | Austenitizing Temperature 835°C 210 DPN | oo | Oo ° | { a fy i a 500 } a fox] 400 i] = 300 1oy%, : <—,, 0% ; 90% °C TEMPERATURE, latesraxeneroutes | See 0% | —4,, 10% 50% 9% Transformation DIAMETER OF OILQUENCHED BAR, inch | = | -{ Errect oF AUSTENITIZING TEMPERATURE ON Response TO ANNEALING AT 650°C Incubation Period +. minute Time for SO per cent transformation minute End of Transformation Final Hardness SECONDS DURATION ah Gn cies a) MID-RADIUS \ [er [we [| 8 65 6 38 2 19 { minute Span MINUTES Of ISOTHERMAL HOURS DAY TREATMENT Hardness values in bold figures are shown of the fully transformed steel; the values in italics represent structures developed by holding at the selected temperatures for 24 hours and then quenching to room temperature Baer ee SIS SSS eeaLays465 $00 3 410 : 380 : 37s z Mm ail 40 Atlas of Time-Temperature Diagrams 87 a eee 2.5% Ni-Cr-Mo - Medium (B.S. En 25) Carbon Steel 2.5% Ni-Cr-Mo - Medium Chemical Composition, % Specification: c Si Mn End-Quench Ss P | Ni Min. 0-27 Max. 0-10 0:50 0-35 0:35 0-70 O05 Steel Studied 0-32 | 0:27 0:56 0-012 |0-018 | Doar — |— | Cr Mo z | 2-30! 0-50, 0-40 {0-05 Hardenability Curves i 5 ns » 4 %0 q a af 0 3s 02 O4 o6 os 10 12 14 6 a 20 22 oT ° =) $00 +#0-51 METHOD OF MANUFACTURE:— GraIN SizE:— el a” 2-80 |0-80 |0-70 |0:74 Carbon Steel (B.S. En 25) Basic Electric Arc As-Quenched Grain Size, 7 & 8 (A.s.T.M.) 7 < ica} McQuaid-Ehn Grain Size, 3 to 4 (a.s.T.M.) Zz oa a {eo Isothermal Transformation | vie | Diagram < al | DISTANCE | FROM QUENCHED END 24 26 OF BAR | Pa Continuous Cooling Transformation we: T ; 7 i Diagram T r Auscenitizing Temperature 7 835°C OD ° Oo f ~ “ : naz rs} e me > S soo os} 400 \ Sg 5 | = 2 ooo : & —n, ~ 1, DIAMETER , EFFECT OF AUSTENITIZING TEMPERATURE ON RESPONSE TO ANNEALING AT 650°C Incubation Period Time for 50 per cent transformation hour End of Transformation hour ; < axis L values bold figures 5 AS QUENCHED t Of ISOTHERMAL in i — OF OILBAR, = inch . ; A Austenitizing Temperature °C Final Hardness DURATION QUENCHED a BAR.Recent on Hardness m% 4 Ds = seo are TREATMENT shown of the fully transformed steel; the values in italics represent structures developed by holding at the selected temperatures for 24 hours and then quenching to room temperature i HARDNESS if 525: 485 : VALUES 45. 430. D.P.N. 406 * 380ata Atlas of Time-Temperature Diagrams 88 2.5% Ni-Cr-Mo - High Carbon Steel (B.S. En 26) 2.5% Ni-Cr-Mo - High Carbon Steel (B.S. En 26) Chemical Composition, % Specification: Cc Si Min. Max. 0:36 0:44 0:10 0:35 Steel Studied 0-38 | 0-15 METHOD OF MANUFACTURE:— GRAIN SizE:— Mn End-Quench Hardenability Curves | s P Ni O- 50 | oo 0:70 /0-05 ‘0:05 |330 |0:56 Cr | Mo / 0°50 0-40 0-80 |0-70 . 700(- Z, | - age Branly ; ‘ he tes Be Noe, di a e358C ‘ A, 0 . | Tempered at 250°C |0:005 0 o11| 2° 42 |0: 74 |0:46 =| ai Basic Electric Arc 4 of Tempered a¢ SS0°C As-Quenched Grain Size, 8 (A.s.T.M.) FE) McQuaid-Ehn Zz al Grain Size, 5 (A.s.T.M.) |_ Tempered ax 425°C Aa Isothermal Transformation rr | | ic s|ate | ae p ee Bh ee Se | Diagram ae | = tal A iol | eee. ey c | 3 : z ¢ = F cs EES glk a aea eo WA 600 ° Bj 0-6 08 FROM 1-0 Ete 12 | epee a 20 16 ie 1-4 QUENCHED 22 END 24 26 OF BAR Cooling Transformation Diagram Continuous 700 DPN 700 : ea ae Austenitizing Temperacure « 200 : x eee 400 DPN Oo | Oo 04 f | | Aan 02 DISTANCE 3 | | 700 | ac Po 2” = MeRrithe Temmermietisre 4 O5°C s00 oa | | So) e l | 500 | fom} 5 tae & fe fe S100 | 5 } Oy e= | | =) 740 DPN | = fs] % 10% 0%, % Ms oe . nea ° pees —e H 100%, Transformation | +, (can o% Seat ae E 1 pee ni monsons | y 100 Erect oF AUSTENITIZING TEMPERATURE + |ON Response TO ANNEALING AT 650°C ———v— Final Hardness ' 2 SECONDS s 10 Hardness values 401 2 MINUTES S10 20 Of ISOTHERMAL in | Sal bold figures are 40 1 2 HOURS $s 10 201 DAY of the ° 1 1 ' = aa “ae eS 3 fi os ee 2 = = 3 i 3 eee Med BO TREATMENT shown |__ 4 s 4 ad 4 5 ve s = é if 6 4 T AS QUENCHED HARDNESS VALUES D.P.N. one 20 DURATION | i ‘Avscenitizing Temperature °C Se NEAR-SURFACE 50% Transformation DIAMETER OF OILQUENCHED BAR, inch ceatreeto| a 10% fully transformed steel; the values in italics represent structures developed by holding at the selected temperatures for 24 hours and then quenching to room temperature OC ees Atlas of Time-Temperature Diagrams 89 I a a 3.5% Ni-Cr-Mo Steel (B.S. En 28) Chemical Composition, % Specitication: | C | Ni | | ¢r 0-25/ 0-10; — ' — | — |3-00] 0-40 |0:35 0-70 0-05 |0-05 | 4-50) Min. Max. | Mo | v 0-75 |0-20) — 1-50| 0-65 | — 0-32 |0-19 | 0-51 {0-009 |0-013 |3-02 |1-37 | 0-48 | 0-18 Steel Studied METHOD OF MANUFACTURE:— Basic Electric Arc GRAIN SizE:— As-Quenched Grain Size, 9 (A.s.T.M.) McQuaid-Ehn Grain Size, 6 (A.s.1.M.) Isothermal Transformation in | Us | Se | | || | | Seer \ 700} | Sea — | | i \ i ee Ac i: Diagram | | taal 7 Austenitizing Temperature late | ta es | || | =| 7 835°C | ee l=) i — — 680 DPN °C TEMPERATURE, 300) MS : : : 0% 10% 0% Errect oF AUSTENITIZING TEMPERATURE 9% 100%, Transformation Austenitizing Temperature °C ON ResPONse TO ANNEALING AT 650°C 100 ) Incubation Period Time for SO per cent transformation hour End of Transformation hour Final Hardness DPN 03s #10 790 “7 22 12 " | L ' | 2 SECONDS 5 "tor 20; DURATION 40: 2 MINUTES s} to 20: 40°11 Of ISOTHERMAL 2 HOURS S10 20% DAY TREATMENT in bold figures are shown of the fully Hardness values transformed steel; the values in italics represent structures developed by holding at the selected temperatures for 24 hours and then quenching to room temperature End-Quench ™ z ‘eo ; T s Hardenability T 10 s 2» ne 0 5 Curves 7 “s “ aie » T ss Sais co) “) 24 =26 | ay’ “| =) $00 n wn “0 fz) Tempered at 525°C Tempered (ied) 4- -- a 600°C Tempered at 625°C z Me | aie ic 02 o4 DISTANCE o6 o8 FROM Lo . 12 14 16 QUENCHED 18 210 END 22 OF BAR ee Atlas of Time-Temperature Diagrams 90 ee Sn 4.25% Ni-Cr-Mo 4.25% Ni-Cr Steel (B.S. En 30A) Chemical Chemical Composition, % Specification: c Si Min. Max. 0-26 0-34 0-10 0-35 Mn Steel Studied 0:35 0:14 |0-44 s P Ni 0-40|— 0-60 | 0-05 | 0-05 lo. 008 ||0-016 4: 23 |1-43 | 0-13 Isothermal 800 | | { 4 Spams 3 4 ae 0:26 0:10 0-40 Max. 0:34 0:35 0-60 0-05 Steel Studied 0-33 0:17 0°51 0-009 0:013| 4-16 | 1-44 | 0-31 a 820°C 4 — | 3-90 1-10! 0-20 0:05 | 4:30 1-40 | 0-40 Grain Size, 4 to 5 (a.s.T.M.) Diagram |Bicda | ease | Pita. ; ! | eel Hehe isliasPost meyates | | Ac, r nt }\ =9 590 DPN. pes | 210 DPR Ne id | | | | +-—- ai = : 600 o t H i | ti i 700 4 soe r SS ed > 600 | Keele: J 630 DPN | $ ' | ‘ ty + 340 DPN 430 DPN 710 OPN Seat ° a fs) $00 ' =) & < foe | 660 DPN | 400 640 DF 1 | Ay 2 | ie {- | Eee pet $00 680 DPN | = & Min. Isothermal Transformation ra | 700 Mn McQuaid-Ehn Austenitizing Temperature Ac, | S Specification: Si METHOD OF MANUFACTURE:— Basic Electric Arc GRAIN Size:— As-Quenched Grain Size, 9 (A.s.T.M.) Diagram ] | % Cc Grain Size, 4 to 5 (A.s.T.M.) Transformation ire Steel (B.S. En 30B) Composition, 3:90 | 1-10 4-30 1-40 METHOD OF MANUFACTURE:— Basic Electric re Grain SizE:— As-Quenched Grain Size, 9 (a.s.T.M.) McQuaid-Ehn eae 440 DPN 300 | Ms en 4 re is | \ Ld | | i 200 te °C TEMPERATURE, ' . Errect oF AUSTENITIZING TEMPERATURE - |ON Response TO Incubation Period ANNEALING AT . Erect oF AUsTENMZING TEHPERATURE Auscenitizing Temperature °C ov Resonst ro Anwenune ar ewre| eee[ne [re [78]: 600°C minuce Time for SO per cent transformation End of Transformation Final Hardness Tae to FOr Time for50percenttransformation hour = Austenite transformed after24hr. per cent Final Hardness , OPN 2G SECONDS Se 0208) sei MINUTES DURATION a ye wor HOURS Of ISOTHERMAL i) 2 $ 10 20 401 2 s 10 20 40 1 2 5 10 207 DAY TREATMENT DURATION Of ISOTHERMAL TREATMENT Hardness values in bold figures are shown of the fully transformed steel; the values in italics represent structures developed by holding at the selected temperatures for 24 hours and then quenching to room temperature The values in italics represent structures developed by holding at the selected temperature for 24 hours and then quenching to End-Quench End-Quench Hardenability Curves Hardenability Curves room temperature z Hated i [ s * Py Q Tempered at 475°C = wa Y «| 1s = — Tempered at475°C fx Zw 3 T 10 Ucn 20 as T T » ay ‘Tas 2 eels eer eae s ay ss | 3 | 7 -. | = + = | ~ = Q Weoloten Sere HARDNESS D.P.N 02 O4 es, 06 08 DIAMETER 10 ——— 12 14 ee 16 8 ee 20 OF OIL-QUENCHED 22 | 24 26 BAR, inch = pale = 02 O4 6 DIAMETER o8 bo 42 14 16 i 8 20 OF OIL-QUENCHED 22 ' 24 ea 26 BAR, inch Atlas of Time-Temperature Diagrams Low Chemical 9] Alloy Steel (B.S. En 100) Low Alloy Steel (B.S. En 100) Composition, % Specification: Cy Min. Max, 0-35 GRAIN Mn Si) | — | 1-20! — 0-45 Steel Studied METHOD si 0-50 PANG Auscenitizing Temperature 860°C 1:38 0-031 0-033 se Acid Open Hearth 0:74 0:53 | 0-16 Tempered at SS0°C Tempered at 600°C Tempered a¢ 650°C 8 Transformation ra 800] a | Curves ee 10-05 | 1-00 0-60 |0-25 SIzE:— _ As-Quenched Grain Size, 8 (A.s.7.M.) McQuaid-Ehn Grain Size, 4 (a.s.T.M.) Isothermal Hardenability se -; fo — — | 0-50} 0-30 |0-15 1-50 0-05 |0-40 0-24 OF MANUFACTURF:— End-Quench ro crite 5| Diagram = Kis D.P.N. HARDNESS tooL T Aurtenitizing Temperature ac | <= 02 860°C | O4 O6 DISTANCE Continuous exat 410 OPN es: oe 10 FROM ee a ae } 0 600 16 18 : 20 22 END 26 Diagram all | Austenitizing Temperature 860°C || | | 4 24 OF BAR i | +--—— ie] 14 Cooling Transformation eats O 12 QUENCHED : sn | | pe a =) : 500 | Ay = 400 <3) al 300 “e 0% °C TEMPERATURE, 10% 0% 100% Transformation MH 10 «—", BAR POSITION 0 + = = 1 4 ° rt L : 2 s 10 20 40 SECONDS values transformed 2 5 10 20 40 MONUTES steel; in the bold 1 | 2 $s 10 HOURS Of ISOTHERMAL DURATION Hardness 4 figures are in italics values 201 DAY TREATMENT shown of represent the fully structures developed by holding at the selected temperatures for 24 hours and then quenching to room temperature t Jt i BAR, $80 1 3 n 4 Ses zs 5 1 HARDNESS $80 inch 4 4 2 100%, Transformation| Wh, | OF OIL3 Lt AS QUENCHED | \ 2 1 ° NEAR-SURFACE L l 1 DIAMETER ; QUENCHED axis Lo MID-RADIUS L 100 o% | i 90% 1 10% ! il i 5 L VALUES ee ye 6 1 eeeMS ‘6 J D.P.N. 60 Atlas of Time-Temperature Diagrams OZ a Low Ni-Cr-Mo Chemical Low Ni-Cr-Mo Steel (B.S. En 110) Steel (B.S. En 110) ae Specification: 0-35 0-45 0:10 0:35 0-40 0-80 — 0-05 = 0:05 1:20' 1:60 0:90) 1-40 0:10 0:20 Steel Studied |0:44 0:23 0-58 0-004 '0:029 1:40 1:26 0-11 METHOD GRAIN OF MANUFACTURE:— S1zE:— Isothermal [ | 800 Diagram ee eta 2 | «“ “5 ia 16 ‘6 be) 3S 20 22 A ca i 8 Transformation Bet ee i} Basic Electric Arc As-Quenched Grain Size, 7 to 8 (A.s.T.M.) McQuaid-Ehn Grain Size, 6 (A.s.T.M.) ( Ac, aS 9 As ene-quenched 0 Min. Max. Curves Hardenability End-Quench Composition, % | ‘ h 8 ae ela eivenrersrtre Bere . ; j al t 200 DPN D.P.N HARDNESS a.) 06 DISTANCE Continuous (08 fom FROM tae QUENCHED END Cooling Transformation 24 246 OF BAR Diagram 700 r —-- ‘ t 8 t lasmaered 2 Auscenitizing Temperature 860°C | 1 220 OPN 240 DPN 230 DPN °C TEMPERATURE, °C TEMPERATURE, H, Cl ' park a DIAMETER ' 2 Ss 10 SECONDS DURATION 20 40 1 eer 2 s 10 20 cals 40 MINUTES Of ISOTHERMAL 4 2 HOURS aes s 10 t 201 DAY TREATMENT Hardness values in bold figures are shown of the fully transformed steel; the values in italics represent structures developed by holding at the selected temperatures for 24 hours and then quenching to room temperature | 50%, OF OIL- _QUENCHED BAR, inch = f s AS QUENCHED eal 10% a NEAR-SURFACE L aaa 0% sis. 4 HARDNESS | GIS: 610. 605 ni S75 i 7 5 VALUES 530 rn m0A | 40: D.P.N. 400: Atlas of Time-Temperature Diagrams 93 Low Ni-Cr-Steel (B.S. En 111) Chemical Low Ni-Cr-Steel (B.S. En 111) Composition, % Specification: Si "ma isa P | N |G Min. 0-30 0-10 Max. 0:40 0-35 “60 0:90 0: 05 — 0-05 1:00 1:50 0-45 0-75 0-35 | 0-13 | 0-65 |0-032:0-035 1:27. 0-55 Steel Studied GraIN End-Quench Ce Size:— Hardenability Curves As-Quenched Grain Size, 7 (A.s.T.M.) McQuaid-Ehn Grain Size, 2 to 3 (A.s.T.M.) SaaS Isothermal ears 5 BEBE Sr? ee fodRat an re D.P.N. HARDNESS 02 04 A DISTANCE 06 = 08 ame 10 FROM a 12 4 ee 16 16 QUENCHED 20 22 END 24 16 OF BAR i SS Continuous 200 DPN Cooling Transformation 700 rc Oo + Diagram = r 4 oud ° sa e=4 =) 500 BH < fe i] Ay 400 2 | 0% 10% $0% 90% 100% a Transformation & °C TEMPERATURE, ay “4 100% Transformation DIAMETER BAR POSITION QUENCHED woh 1 2 AS QUENCHED itz ploiiiipi 1 2 s 40 20 40 1 SECONDS values 2 Ss t0 20 MINUTES DURATION Hardness tiit in figures 1 2 5 10 HOURS Of ISOTHERMAL bold 40 on are 2014 DAY TREATMENT shown of the fully transformed steel; the values in italics represent structures developed by holding at the selected temperatures for 24 hours and then quenching to room temperature 1 290 He ‘ OF OILBAR, 3 HARDNESS vs chert v0 inch ane 260 wieteers i s ‘ VALUES 10 . ws 240 235 D.P.N. 20 as i Atlas of Time-Temperature Diagrams 94 2% Ni-Mo Steel (B.S. En 160) 2% Ni-Mo Steel (B.S. En 160) Chemical End-Quench Composition, % Specification: Cc Si Mn: Min. Max, 0-35 0°45 0-10 0:35 0-30 0-60 Steel Studied GRAIN Size:— Isothermal § P | ; Ni Cr 1:50 2:00 = _ 0:20 0:35 0-41 0-13 0-48 0-043 0-016 1°75 0-17 0-22 y= 0:05 0:05 As-Quenched Grain Size, 6 to 7 (A.S.7.M.) McQuaid-Ehn Grain Size, 2 and Transformation Hardenability 700 fsael a 5 z TT 5 x» 1 els as 30 | Curves T if 3s | 19 “ . matt 4s] 0! ma mijlimerces | 55] ad ay Avstentiang Temperature 845°C ) A sw oe wn 3 (a.s.7.M.) TA m = Tempered at $25°C Qe a Diagram > at Fool 02 5 06Ee 08 04 DISTANCE 5S) DPN = oe == es, ae 190 DPN ee 12 14 (6 16 10 FROM 20 QUENCHED 22 END 24 2-4 OF BAR Continuous Cooling Transformation Diagram PA a ne ; i on || ee 200 DPN | ié) 210 | a ° as | : 500 Ay 400 > | Pp ; eal 1 =] eee eee piece | wD (2) DPN 3) = f& & Ce 300 0%) 10% Se N% 109% Transformation | | DIAMETER 200 BARPOSITION + . | hj ! | QUENCHED Met 100 4 —= | t et he ee 2 s 10 SECONDS DURATION 20 | 40 1 ‘ s 10 | oe f | ea = ee = ee 7 4 ae 5t ie 5 seeps 40 MINUTES Of ISOTHERMAL 1 AS QUENCHED | LL ea | | 20 aha i "3 = = = ee 4 yet =F - s (cdo taca —- pat ee * 6 —_— SS =e 7 t t [ Peete 2 a ——— ce SAAC = | | ‘ 1 F | — | ; scene | OF OIL- BAR, inch 2 HOURS s 10 201 DAY TREATMENT Hardness values in bold figures are shown of the fully transformed steel; the values in italics represent structures developed by holding at the selected temperatures for 24 hours and then quenching to room temperature 525 aay 26S © HARDNESS 250 ° 250 ° 245* VALUES 240 . 240 : 240 : D.P.N. 2s= 230 te Atlas of Time-Temperature Diagrams 95 En 42 (1074/1075) * En 44 (1095) Composition: 0.75% C - 0.70% Mn - 0.33% Si - 0.20% Ni 0.17% Cr - 0.02% Mo Grain size: 5-6 Austenitized at 800°C (1472°F) for 30 min Composition: 0.96% C - 0.55% Mn - 0.32% Si - 0.08% Ni 0.11% Cr - 0.01% Mo Grain size: 5 Austenitized at 780°C (1436°F) for 30 min * Closest US grade designations are given ie 900 nat 800}; a maa at mand ss Pr ia Cn isco 300 1.300 HH,200 rH.200 1100 CONTIN —s 1000, e 2 L000 MNT ENOIN = > wl « 5 2 re 2 2 = cee ea Se wl RSS CS & 400 Baba z ————— TT ann tii 400 a ie | 4,500 s |-— kK fe TTT 400 700 2 EH TT Trmtseo PT 600 HE geo ENS < aN BAINSS, es # Coon I é 200 € = w 700 a = PT 500 a Seen ies FR BHR TAIT IL Cy a A oo = 400 = a ae atl a aa Hite BOTT) Tit tT :° ° 8# TIME HELD IN CONSTANT START OF 100. Dara | |t4300 | Sey =I ico an TI _ FROM 50 |__010 >a Ey i — : TEMPERATURE QUENCH (SECONDS) 8 BATH = OFT OV WI aE. =p TIME soe OO LONN OF 2 885 HELD IN CONSTANT FROM START OF ONT ONO) OO EO°o = ° 8 888 ao w TEMPERATURE QUENCH (SECONDS) BATH Gate 900 Oe mae an ° 8 006 000 = 2° 4 En 15 (1536) En 14B (1527) Composition: 0.33% C - 1.54% Mn - 0.23% Si - 0.18% Ni 0.15% Cr - 0.05% Mo Grain size: 8 Austenitized at 860°C (1580°F) for 30 min 0.12% Cr - 0.04% Mo Grain size: 8 Austenitized at 860°C 900 909 za | Ay 11 - = t| + = f+ iia (nl s i+ ine CONTENT ; | + } iS THT mi | BEEN i ol Tio f{]{s0 90 4 100 TRANSFORMATION aps om 1.100 + Te s 41.000 Hi4” 2 oe < 2 < a Sesh 800g AA a s mes = ea ° ARE ti el ila +} 600 st 5 ww 1 Pa _% en . ae 2 a &@400 o3 | iz soo 4 + 1 ,| $s + 400 | cm i 4 ale zZ 2 oOo wr BTU. a 2 x1 ake Bagge) 202= Mie ieee6 2666 eee 5 “4 @ TW IN CONSTANT TEMPERATURE Jone aTAR OF QUENCH (SECONDS) BATH ee SS — | pig | Py TT Cot ;a im 14 ie + iii EREEIE Et t } | A| tt iE a 700 jw= 00 T ] pt cH rT ae OS Pane LL aig aaa}| x Ed OHS 0 = O00 LO Omn0.0) Om OWrOl0 NOMEO MEOLONO UO a Tit +1 300 ia it] TTT tt TH6 tio so 90 1oo_t Ht “T—T71_ TRANSFORMATION. % # < } 300 “a| iss . 5 + | Sealelet tT = 300 — i —+ is fantasia | =a 2 4 400 a: | ih 700 1.200 T a 800 L300 = 5< lod Hi 600 « roves 1.400 700 4 500 (1580°F) for 30 min 1500 T wet 2 Composition: 0.29% C - 1.67% Mn - 0.26% Si - 0.21% Ni - 1400 Ac: 800 e 500 nae WT] PT 2 ae a) ee SEE ae a ADE = = 600 Ms Co ia en el Daw ANT + z= 0° wl & - Ce TT + Eu Tin “5 HHH tt tat meniid =e aOu O10 Dig a TIME A tt abies = oti ; {ig —O 171 101477 St100 Tot | Tit UT 00) Cain OiO ORLON COCUTS Tile ee eeSee eeSOS aeOO O10 Oe HELD IN CONSTANT TEMPERATURE BATH FROM START OF QUENCH (SECONDS) . S Special Report No. 56, The Iron and Steel SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Institute, London, 1956 een eee Atlas of Time-Temperature Diagrams 96 ne En 45 (9260) EEE ’ En 12 (1030 + 0.9% Ni) Ni Composition: 0.33% C - 0.62% Mn - 0.21% Si - 0.89% Composition: 0.55% C - 0.87% Mn - 1.74% Si - 0.16% Ni - 0.10% Cr - 0.05% Mo Grain size: 7-8 Austenitized at 845°C 0.10% Cr - 0.02% Mo Grain size: 7-8 Austenitized at 915°C (1678°F) for 30 min (1553°F) for 30 min se 900 1600 1600 1500 800 As A) 1,400 t+ 1,300 = 1200 i calle sae | = Til 200 | V4 1,100 0 600 1.100 Ee, = oto i] 1,000 uu yp 500 5 = 800 oo rm ad Ms (CALC) ss w ai Sot NT 300 lo O ie 50 10 90 TRANSFORMATION — “le 4 200 100 z : + EA | 8 Om OLOMmOMN ONO TON Om OlmQLONOMEO FOS TIME EES = 700 ji hae H 500 8 soc = TT =I mM E z == Shoo ° 1 TIME HELD 000 0 aan FROM = 89 999 020 9 wm a Eien)ee1.0 a° S}a 8 9 HELD IN CONSTANT TEMPERATURE BATH FROM START OF QUENCH (SECONDS) a to} 990 0 ° 888a 8h en 8 ao 2 IN CONSTANT START 9 > ES OF TEMPERATURE QUENCH (SECONDS) 8 fe) 3 Boo poly fey s aSligo U te) 8 8 888 8 9 9 9 O BATH En 11 (5060) En 18 (5150) Composition: 0.59% C - 0.66% Mn - 0.34% Si - 0.17% Ni 0.65% Cr - 0.02% Mo Grain size: 8 Austenitized at 840°C 0.98% Cr - 0.04% Mo Grain size: 5-6 Austenitized at 860°C (1544°F) for 30 min Ww a rea Cwey ke) #: 800 & 1 of. 72 900 a Bae 300 12 1,000‘ mani be al 5 S ION - % TRANSFORMAT } 366 hse Pott * % 400 500 |_ x OOS = & 600 i 8 LN XN a 400 3 5 d Con 4H Sg Fs a0 i2 & ° T 700 |AC) 1,300 = = toe f} __1_J : AC |,400 Ac, ° 800 ; Ls00 Composition: 0.48% C - 0.86% Mn - 0.25% Si - 0.18% Ni - (1580°F) for 30 min ele) PT Com = [|] mel a Con cot _| ae RE i Cte! °c TEMPERATURE TEMPERATURE TEMPERATURE TIME HELD IN CONSTANT TEMPERATURE BATH FROM START OF QUENCH (SECONDS) SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel : Institute, London, 1956 TEMPERATURE Atlas of Time-Temperature Diagrams on ——————————————————— En 31 (52100) En 56 (420 Stainless Steel) Composition: 1.08% C - 0.53% Mn - 0.25% Si - 0.33% Ni - Composition: 0.24% C - 0.27% Mn - 0.37% Si - 0.32% Ni - 1.46% Cr - 0.06% Mo Grain size: 7 Austenitized at 820°C 13.3% Cr - 0.06% Mo Grain size: 7 Austenitized at 960°C (1508°F) for 30 min (1760°F) for 30 min 900 7” i 600 =I 800 SIE |s00 Ac, 1,400 700 = 1,300 ones 4 cK) XN TT ) 4 S00 5 = | int 1,200 1100 aS =F 1000 a 900 < i t S ca Ww 300 to iS = e wl HH 500 400 | [] TRANSFORMATION = % Y +——+ 300 E | S _ 700 =ju Litt 200 i 100 w Re LG 600 SS = + F B 800 = 400 s tt) ° BRENIG Zz 2 =u cen OO EAM, TO HOU m1 = TIME HELD IN CONSTANT FROM START 2 18 a) CO = NOLOmO) TO"O'O) RO OF SI NOmmOnG IO, TORO. MO eO20 Pa TEMPERATURE QUENCH 200 (SECONDS) > 12 2 1090 0 9) Or NO NEO LOmOnmO JO, NOLO NON nO OC ORS Ee. BATH = Ce | xX) 9 ° Q lt ° ° Q 8 TIME HELD IN CONSTANT FROM START OF TEMPERATURE QUENCH (SECONDS) 8 BATH as En 16 (4032) En Composition: 0.33% C - 1.48% Mn - 0.18% Si - 0.26% Ni - Composition: 0.38% C - 1.49% Mn - 0.25% Si - 0.24% Ni - 0.16% Cr - 0.27% Mo Grain size: 7-8 Austenitized at 845°C 0.14% Cr - 0.41% Mo Grain size: 8 Austenitized at 845°C (1553°F) for 30 min (1553°F) for 30 min 900 17 (4037) 900 Ac3 1600 poe } 800 1] 1,400 -—14 AC, 1,400 1,200 tit AOS 2 4 kK < “ - “a 500 tiyas 2 w | t 900 w ai + | < 800g2 a 5| mins | = fe) 90) TRANSFORMATION ia 7oo a w In =<: + et 600 Be 400 Z Os if moe 2 T TEMPERATURE aT OF QUENCH BA TH (SECONDS, Atlas of Isothermal Transformation Institute, London, 1956 a S| OHH PONS = te = < 800 2 : rd 700 & 300 eee Ta | et = = +H i Ht joan 100 at ron ann _ 400 TL 300 | = ene ial Zui CHtHt ° 600 = TRANSFORMATION ~ % ele) TSyI00 0 29 OPO MONEO. Ug CIOMONELO ank 8 MOLOMO Vek ceNOEF Se oie LehBakes MGS TY ohiey oy {oy TIME, HELD SOURCE: 200 oe 1 7 900 w a 400 300 a 1,000 7 Ms % 200 ‘ 500 1100 =a = 53 ae tT 300 — L200 = 600 000 iM Ms 7 1100 [er i 1,300 = 700 ¥e00. i = 700 \soo 800 p= = pe | Es. ek be Ac, 1600 Ac . 500 te 2 7 000 06 a Site EI OHH $3 ha} 09000 0090 9 9000 200 TP St100 ° SRP OMCT CSR= ee0)GC4) OlececOO". cremeg TIME HELD IN CONSTANT FROM START OF TEMPERATURE QUENCH (SECONDS) BATH a Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel Atlas of Time-Temperature Diagrams 98 En 21 (2330) En 111 (3135) Composition: 0.33% C - 0.74% Mn - 0.23% Si - 3.47% Ni - Composition: 0.37% C - 0.89% Mn - 0.28% Si - 1.24% Ni 7 . | 0.07% Cr - 0.11% Mo Grain size: 7-8 Austenitized at 840°C 0.63% Cr - 0.05% Mo Grain size: 8 Austenitized at 845°C (1544°F) for 30 min (1553°F) for 30 min BeSeuiie? 900 500 800 AC “ESR 900 eet 800 | |,400 700 Re =e = isle, 700 1200 600 as 1,100 ame) a fHELL at 1000, r a ° w 500 P 800 & > :é && 700 3 - 3cee - 2 F as ae 2 & al 3ae = ee TOT 300 ws =e 600 = aoe [ITRANSFORMATION ~ %o_|_| 300 = pee 200 400 i 100 le z 1s at “wwe 200 300 ig L 200 1oo >= TBH 00 8 888 8 $88 8 888 8 888 8 TIME HELD FROM IN CONSTANT START OF SECS ROCIO TEMPERATURE QUENCH (SECONDS) BATH i SCTE ae 3 TIME HELD FROM IN CONSTANT START OF TEMPERATURE QUENCH (SECONDS) BATH g = En 47 (6150) En 19 (4140) Composition: 0.51% C - 0.72% Mn - 0.27% Si - 0.15% Ni = 0.94% Cr - 0.05% Mo - 0.20% V Grain size: 7 Austenitized at Composition: 0.41% C - 0.67% Mn - 0.23% Si - 0.20% Ni 1.01% Cr - 0.23% Mo Grain size: >8 Austenitized at 860°C 875°C (1607°F) for 30 min (1580°F) for 30 min SoS [isos tas = 800 = ao Kee ae 700 600 ep aa =. tise oO Ke e « H < F : i: e iS 2 a coy g a 400 a = fa : 500 w Nah 100 m ose TIME HELD IN CONSTANT TEMPERATURE BATH START OF QUENCH (SECONDS) FROM 100,000 TIME HELD FROM IN CONSTANT START OF TEMPERATURE QUENCH (SECONDS) BATH 10,000 30,000 20,00050,000 100,000*— SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel Institute, London, 1956 TIME , Special Report No. 56, The Iron and Steel SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition Institute, London, 1956 . I HELD IN CONSTANT FROM START OF QUENCH (SECONDS) TEMPERATURE BATH BNOH NINES] ++ NIW ° : || ett }| iz x z 2 Z Fa= fe)is a io S lor z | ! {| ° Be al { {1 Tot ee | = / | | |_| = \ ; = if oa = o ° |2 | Z| ° 7 es oes oe SEEEEEE ° . x a2 Bey faa] 820 oS ' Sa me = : 5 4 a rH pa MET K H Hh A : | 2 O 0.20% Cr - 0.31% Mo Grain size: 6-8 Austenitized at 870°C E s ° ha & ° © lMae v4aa oo Ax ee ~ rar v2) © ee S ; ro E 56 a wa = ro Ee Pe Ez b> HY bu o. Fs =r & za 4s A ira $ 000%00! > || je He KNIT TIME HELD IN CONSTANT FROM PNT 5 START OF QUENCH 13 H ,N TT NOTIN I ie I SS one Ss 2 ° 9 U 39 ° 00 = an TEMPERATURE (SECONDS) BATH ° [| 6Nu ” 0 @ bd OmoaL NO)“ a 2 oN HH SH ae aie. a Saas —] 2 Q $ 9 07 o : oor o[| ON = 8 °Calan Je = SRD Oo es <4 3aN.LvaadnaL 4d, cH 7 es | = == 5 ra | q H 8 O CT PT fem U2 ome eT 9 38 090 9.0 nom = ED -O8 O. oF PO. oe ze : re 00 xs Ae) ° 00 Composition: 0.41% C - 0.58% Mn - 0.28% Si - 0.15% Ni 1.39% Cr - 0.74% Mo Grain size: 7-8 Austenitized at 870°'C E x fo) a = 2= TS eS o 8 om RE z; = % oO ov 3 <U 0 = 00 & Ncam te x 2 oe =) tan ts Do FA ae Sha o fOr a = ss OO OL Oo ar. BO fe) YT eis oe so) feoSa ro) fh fe 7 ce 9 TL wo UTZ Pa mania TT ATTN UT 3aNivesdN3L 4, + = = 0) RN re Vy S LLY i = 5 SuNLvesdW3al 2, ee, aeod || VA Feessqaeses=e 2.mo88 = Meee 3ansvasdnaL ote ° 2 Z, see a “| So oe | a's < N m3 K+ o S Sy qh oO' Nn 6 wD ee tons oe oO wes es qo Ora oO ° Be AB Bx02TJ omc oO o irs} i— w 3srz] 8-1 By Saco Gio be uns Sie th ipa pe mee See babe Pies 000'Oo! Ayal 000%0s Olt NOH o00'o€ 000‘'0z 000'o! 000'2 o00'e| o00's OOO"! 0s 002 ooe 001 os oc oz if = a 9 En 20 ol " 012 €om Fe z or 7 SeNLVeSdNSL ° “ ° D3, jae: BUNLVeSdNSL ° 3, ° Atlas of Time-Temperature Diagrams 99 En 20 a TIME HELD IN CONSTANT TEMPERATURE BATH FROM START OF QUENCH (SECONDS) Composition: 0.19% C - 1.37% Mn - 0.14% Si - 0.56% Ni - 2 Atlas of Time-Temperature Diagrams 100 En 23 (3435 + Mo) En 25 (3430 +. Mo) Composition: 0.31% C - 0.62% Mn - 0.20% Si - 2.63% Ni - Composition: 0.32% C - 0.61% Mn - 0.28% Si - 3.22% Ni 0.63% Cr - 0.22% Mo Grain size: 7 Austenitized at 830°C (1526°F) for 30 min 0.64% Cr - 0.58% Mo Grain size: 6-7 Austenitized at 835°C (1535°F) for 30 min 900 1600 B00 S00 a3 1,400 700 |Ac, 1,300 1,200 600 1,100 2 = & —= 1000 ° 900 w 500 & = {" e 5 800g & 400 & w bE 700 i 300 Ms |— = TRANSFORMATION — % BSCE Soe) 200 400 i 300 100 200 He = ° TEMPERATURE 600 - am nun OVO) Sane ONO Or x P= 100 8 oOo Oo isd seer 8 ° ° 8 ° os SG) ge ° ° 90 8“ 98 588 090 an TIME HELD FROM IN CONSTANT START TEMPERATURE OF QUENCH (SECONDS) Ef>Ay| 0 8 g “ Oo TIME BATH HELD FROM IN CONSTANT START OF TEMPERATURE QUENCH (SECONDS) BATH En 30B (3335 + Mo) En 110 (4340) Composition: 0.32% C - 0.47% Mn - 0.29% Si - 4.13% Ni 1.21% Cr - 0.30% Mo Grain size: 7 Austenitized at 820°C Composition: 0.39% C - 0.62% Mn - 0.23% Si - 1.44% Ni - (1508°F) for 30 min (1553°F) for 30 min vee Iii Soi Saas 1.11% Cr - 0.18% Mo Grain size: 7 Austenitized at 845°C Saas Cry 70O 600 ‘fel °S wu° fe) TEMPERATURE TEMPERATURE TEMPERATURE oo oO am w TIME HELD FROM IN CONSTANT START OF TEMPERATURE QUENCH (SECONDS) BATH TIME HELD IN CONSTANT TEMPERATURE BATH FROM START OF QUENCH (SECONDS) SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel Institute, London, 1956 Atlas of Time-Temperature Diagrams 10] En 24 (4340) En 26 (4340) Composition: 0.38% C - 0.69% Mn - 0.20% Si - 1.58% Ni 0.95% Cr - 0.26% Mo Grain size: 6-8 Austenitized at 835°C Composition: 0.42% C - 0.67% Mn - 0.31% Si - 2.53% Ni 0.72% Cr - 0.48% Mo Grain size: 6-7 Austenitized at 830°C (1535°F) for 30 min (1526°F) for 30 min 900 800 |AC3 bad hee 800 TTT 1.400 aE = Ac, fara 1600 700 1,300 700 1,200 1,100 600 2 z= — = rdse @ é 600 fees, 2 , 900 Ww w Be) is 800 & = uw w nd wi 3 es 2 iY a = i Ms Joo - 5 P 3 ad - 600 300 TRANSFORMATION - % 200 ee 300 400 200 300 loo le Z z 2 ° = am w co = ey ee =- ai eee eee 100 100 1 S 200 w Oo go 9 “~*~ 8 lj — 22828 8 883 8 888 2 888 § = wom eee aetna ta 6 9° 9 8 : En 100 (8640/8740) En 28 Composition: 0.40% C - 1.34% Mn - 0.21% Si - 1.03% Ni 0.53% Cr - 0.22% Mo Grain size: 6 Austenitized at 845°C (1553°F) for 30 min Composition: 0.25% C - 0.52% Mn - 0.15% Si - 3.33% Ni 1.14% Cr - 0.65% Mo - 0.16% V Grain size: >8 Austenitized at 830°C (1526°F) for 30 min 900 °c TEMPERATURE TEMPERATURE STANT TRE TEMPERATURE POML START Loe QUENCH (SECONDS) BATH TEMPERATURE TEMPERATURE TIME HELD FROM IN CONSTANT START OF TEMPERATURE QUENCH (SECONDS) BATH and Steel SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron Institute, London, 1956 Atlas of Time-Temperature Diagrams 102 Neen eee eee eeee neem En 351 (3120) En 351 (3120) (1598°F) for 30 min (1526°F) for 30 min EEUU EEEEEEEE EEE EERE Composition: 0.17% C - 0.88% Me - 0.22% Si ee 0.59% Cr - 0.05% Mo Grain size: 6 Austenitized at Composition: 0.17% C - 0.88% Mn - 0.22% Si - 0.86% Ni 0.59% Cr - 0.05% Mo Grain size: 6 Austenitized at 870°C 900 900 1500 800 700 T 1500 Acs 800 = 1400 J | 600 \600 alt = 1,400 Ac, 1,300 FOO 1,300 = i200 1,100 600 1,100 soe 1200 > i? 500 rd = <= Fs 2 400 = se posts v 900 w w FI z CAO) soo 2 | 7 We 10 iu wu SE RANSFORMATION % aaa Ss Ms (CALC, < = 600 300 Lt pt +++ = imal so %o -—/ wie = 200 700 i 2 4 600 —_ 400 a sood<< an 11h Bauoue sea 300 900 w 100 '90 TRANSFORMATION 500 i) ee + 200 = 500 Hiss 90! fe 1000 500 [ i 400 at © | 100 att ° =n ‘jeg Tat T I = ES OlOTONO NNO nn ONN ORONO @ ow @ Wow €© 477 ae TIME HELD FROM IN CONSTANT START OF it I3 a Ww ao (SECONDS) 3 = “—- = BATH 0900 8 vam ° zI ° = HELD IN CONSTANT FROM START an & a =|100 fe] w TEMPERATURE OF QUENCH (SECONDS) ie} © 0 =< nm BATH © 8 oO En 351 (3120 at 0.9% C) 0.57% Cr - 0.03% Mo Grain size: >8 Austenitized at 830°C (1526°F) for 30 min AC {S00 1,300 4 500 F iat TRANSFORMATION -°% O a 400 = ia IO (5 [e) 10 — 1000 ue 2 900 2 s00 & - JOO w> ea] 200 : ge THES a ROO anti || PTT t— 600 ~ < Fs T Ht RANSFORMATION-‘ -9 OL -NIO|( So(90-}HHFi00 =| M [| H Ee T etter 200 HeOH = as HELD FROM IN CONSTANT START OF ee TEMPERATURE QUENCH (SECONDS, See 2 ae 333 BATH 1 - 2% carbide present at austenitizing temperature SOURCE: > E Ss a NESE iz 300 200 {14300 —— 700 i “S J 600 HHH pM== 100 500 ©) = 400 TERI H eee i SI 00 —SeralonivOmmOlOm OME O NIOLON GS. ORORO 10101. Ol O80LONNOLOM 90108 ON 0 110m ON (OlOmOmZO OLOT Ona O TIME Beadie at 400 thf |_| 4 Ms =5 ° 900 w a = I 1 1H = a 400 Ww 500 ‘=P 1a 1,000 fet at 1} 300 1,300 = a ais 1,400 COMMS 600 100 ei gsi a) AC, 700 200 A tt 500 sli = —_ x 1600 at BOs 1,400 | ooo | nu -. | ie ° 2 2 S| 900 800 '00 360 Composition: 0.92% C - 0.93% Mn - 0.30% Si - 0.90% Ni - 1600 200 300 a O OC NOOO HONNQIONO 1 On NQTONO ain) 4) ONONO) 0 MOIS esac MOR OLOmS OUCH ORO CMCC = amu Q 010)16) 716) 0 06 Carburized 900 é< z =) hal ial = (1598°F) for 30 min (3 = = = 4 TIME Carburized En 351 (3120 at 0.9% C) Composition: 0.92% C - 0.93% Mn - 0.30% Si - 0.90% Ni 0.57% Cr - 0.03% Mo Grain size: >8 Austenitized at 870°C 700 rT = rT ++ ONON Ol KO te me te 0 000 9 Att 100 Shoo r2 COMO i ow 600 6 TEMPERATURE QUENCH 200 | _j-si S| = = ian 300 eis Al + =e IH a7 PEs : Hat2 Zz e © TIME = | Z| 8B eeo Skee HELD IN CONSTANT FROM START OF 8 6 2 SES 888 en TEMPERATURE QUENCH (SECONDS) BATH 8 300 ee a 8} 60 SBR 8 eS 8 8 > 86 088 6 1 - 2% carbide present at austenitizing temperature Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel Institute, London, 1956 Atlas of Time-Temperature Diagrams 103 En 352 (3120) Composition: 0.20% C - 0.71% Mn - 0.15% Si - 1.13% Ni 0.80% Cr - 0.05% Mo Grain size: 6-7 Austenitized at 865°C (1589°F) for 30 min 900 Sea PSI mmo ia new aon (= aan a HH PT En 352 (3120) Composition: 0.20% C - 0.71% Mn - 0.15% Si - 1.13% Ni 0.80% Cr - 0.05% Mo Grain size: 6-7 Austenitized at 800°C (1472°F) for 30 min SOC Garam mea ino Rea a. %6 bit2 "¢ soo > TEMPERATURE TEMPERATURE | 3 TEMPERATURE far] HH TEMPERATURE === ==== wy } tC) nitEH= t+ SSeeo= ae ==SS a bs H a an Co oo 0 ° °° ° °° aes TIME Carburized ss pres eo Goh oeseo ce meres ° HELD FROM IN CONSTANT START OF TEMPERATURE QUENCH (SECONDS) ° Qeo.[U°8 eS 6 OOO BATH ° Pao am w PBS °Q 9 ° : RTI 9 ° ° 28 OG ° °° ° Pes hei’ 4 cog cars baa TIME En 352 (3120 at 1% C) Carburized Composition: 0.96% C - 0.74% Mn - 0.26% Si - 1.19% Ni 0.84% Cr - 0.09% Mo Grain size: >8 Austenitized at 865°C (1589°F) for 30 min HELD FROM IN CONSTANT START OF TEMPERATURE QUENCH (SECONDS) BATH rim En 352 (3120 at 1% C) Composition: 0.96% C - 0.74% Mn - 0.26% Si - 1.19% Ni 0.84% Cr - 0.09% Mo Grain size: >8 Austenitized at 800°C (1472°F) for 30 min 900 al ia 1600 ae soo 800 1,400 Ac, 1,300 — 7900 =a 600 2 w z< 2 a 2 F ao SS i SUNY w sco F: a 400 F F iu 8 RT OF QUENCH (SECONDS) Tee 1 - 2% carbide present at austenitizing temperature 7 a 400 = OC =+H+ 5= z seal! SONLOTOLO! eee =e Z| ONNO1On See 0.0 300 fe 2= 828 BS loleee pes Oot ae 18 8 88eQ 18 FO SS > g BOP ae TIME QOM START OF QUENCH (SECONDS) 1 - 2% carbide present at austenitizing temperature 2nd edition, Special Report No. 56, The Iron and Steel SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, Institute, London, 1956 2 700 200 ps : S = yw 800g a sai a co = al = f ey 900 300 ME ett © | { R < a a a5 1100 i _|TRANSFORMATION-% | He ; w 1200 al Atlas of Time-Temperature Diagrams 104 En 33 En 33 Composition: 0.11% C - 0.36% Mn - 0.21% Si - 2.89% Ni 0.28% Cr - 0.09% Mo Grain size: >8 Austenitized at 770° Composition: 0.11% C - 0.36% Mn - 0.21% Si - 2.89% Ni 0.28% Cr - 0.09% Mo Grain size: 8 Austenitized at 865°C C (1418°F) for 30 min (1589°F) for 30 min 900 600 7OO 600 °c w °° ° ° oO Ms > fe} ° >) @ ° °fe) TEMPERATURE TEMPERATURE TEMPERATURE 300 200 ele) Ei \[DAy. ro) ° HOUR | NM 88 Min Os OO am 50 TIME HELD IN CONSTANT = ° ° “ ° ° 9 10,000 FROM START OF TEMPERATURE QUENCH SECONDS) BATH 50,000 100,000 TIME HELD FROM IN CONSTANT START OF TEMPERATURE QUENCH (SECONDS) BATH 1% carbide present at austenitizing temperature Carburized En 33 Composition: 0.95% C - 0.40% Mn - 0.26% Si - 2.95% Ni - Carburized En 33 Composition: 0.95% C - 0.40% Mn - 0.26% Si - 2.95% Ni - 0.36% Cr - 0.08% Mo Grain size: >8 Austenitized at 865° C (1589°F) for 30 min 0.36% Cr - 0.08% Mo Grain size: >8 Austenitized at 770°C (1418°F) for 30 min 900 700 12) w « °c 500 rz < 4 & 400 = ti i w 5 [| 300 200 TEMPERATURE TEMPERATURE NSFORMATION ’O]| NSB 100 TIME HELD IN CONSTANT TEMPERATURE BATH FROM START OF QUENCH (SECONDS) 20% ferrite present at austenitizing temperature SOURCE: 5% carbide present at austenitizing temperature Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel Institute, London, 1956 Atlas of Time-Temperature Diagrams 105 En 36 (9310) En 36 (9310) .Composition: ae sige pay oeZ 0.38% Mn - 0.13% Si: - 3.26% Ni é - ne Composition: 0.11% C - 0.38% Mn - 0.13% Si, - 3.26% Ni; - Grain size: >8 Austenitized at 860°C (1580°F) for 30 30 minMo 0.87% Cr - 0.08% Mo Grain size: >8 Austenitized at 770°C (1418°F) for 30 min 900 1600 800 LE S00 Fro 1,400 |! 700 1,300 200 600 ae) v (as any all ye 1100 = 1000 e 4 500 & && & F t if ry % 40° 900 w & = 90 10 RANSFORMATION” °% 1 300 soon & (aa lal res be = 700 @ 600 = Seal 500 =I 400 200 aI 300 200 loo ninety PS GS Ss 23 RS =— N18; HF 8 4 ee LO OO Ha aspen the 7, — ic eae ; oS 8Q 8 Fal z ars aie 8 aoa \ x BHtSloe nes Se 8 090 0 = am oo 0 98 ° w ° 10% ferrite present at austenitizing temperature En 36 (9310) En 36 (9310) Composition: 0.14% C - 0.46% Mn - 0.19% Si - 3.55% Ni 1.11% Cr - 0.12% Mo Grain size: 6-7 Austenitized at 860°C Composition: 0.14% C - 0.46% Mn - 0.19% Si - 3.55% Ni 1.11% Cr - 0.12% Mo Grain size: >8 Austenitized at 770°C (1418°F) for 30 min (1580°F) for 30 min 900 900 1400 | a0 700 AC 1 oA ce ia : Ps 900 pee =i -—FTELTRANSFORMATION - % | : Saat 300 600 e 900 a a 400 lo |50 TAM TRA F TION, 400 L : 2 oa on > ar =| pa} = PBee iI 4 | 100 8 i Ky | ele} 8 eae eee Pees 2 ae 8 aoe g TEMPERATURE BATH OF QUENCH QUENC TIME ROM ctaRT. OF Ou START (SECONDS) 600 500 400 200 300 1 ‘os 100 2 =!00 es am wm Doo OP ESE TIME HELD FROM IN CONSTANT START OH 4 1+S}100 =|! LRSS Moe es ct ee oka TEMPERATURE OF QUENCH C 200 [nd pa = ° (SECONDS) BATH 2 - 5% ferrite present at austenitizing temperature SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel Institute, London, 1956 ee g yooh 300 tf200 iw 800g a2 Ms = 500 200 arr eraes i 522. &g = 1100 2 2 te : 800 & =>— 1,300 1.200 600 1000 } tt = ees 1,100 Ms 2 400 700 tAC 200 R ww eee 1400 1,300 = 600 L600 \s00 fools oe) aco} ACs 5 eit 1600 = Atlas of Time-Temperature Diagrams 106 Carburized Carburized En 36 (9310 at 0.7% C) En 36 (9310 at 0.7% C) Composition: 0.70% C - 0.35% Mn - 0.16% Si - 3.24% Ni - Composition: 0.70% C - 0.35% Mn - 0.16% Si - 3.24% Ni 0.96% Cr - 0.06% Mo Grain size: >8 Austenitized at 860°C 0.96% Cr - 0.06% Mo Grain size: >8 Austenitized at 770°C 900 900 (1418°F) for 30 min (1580°F) for 30 min if 600 Ht 800 500 fea a aaa 700 +— FAC, 1,300 = CT = Lt 800 |,400 700 1,200 600 1,100 | [ 2 tt woe? [3 iS - =~ _- &5 I 5 400 j + TRANSFORMATION 2.0 “ION S5OMK90/(1l00 v w 4 2 & FHtH70 CTT 300 ess 900 w « Fs) soos@ a | 600 ~ = iS 200 300 ne | 100 le ize NE OME OTOMO NN OOO SOE BORE CFO HELD FROM IN CONSTANT START 200 fe) =i a ed =!00 ONNOm (Or OU ONMOM OO! 01 ORONO MOMONNOTONO 9 SN 066 OM TEMPERATURE OF QUENCH (SECONDS) 2 10 IO 0006 VOT Ol OO am BATH 100 > xe =z 2 797» TIME [a 2 = maou $ 300 400 — gfm & 400 500 2001MS Cae w w > - & rs 600 = oe 500 ° ° ° 0 ) 10 wn 8 fe) TIME HELD FROM IN CONSTANT START OF TEMPERATURE QUENCH (SECONDS, pe 1 - 2% carbide present at austenitizing temperature Carburized Carburized En 36 (9310 at 1% C) En 36 (9310 at 1% C) Composition: 1.00% C - 0.30% Mn - 0.12% Si - 3.27% Ni 0.90% Cr - 0.07% Mo Grain size: 8 Austenitized at 860°C Composition: 1.00% C - 0.30% Mn - 0.12% Si - 3.27% Ni 0.90% Cr - 0.07% Mo Grain size: >8 Austenitized at 770°C (1580°F) for 30 min (1418°F) for 30 min 900 >] Pees Coon soo 800 = 700 oy 1,400 FAc 1,300 =I) 200 600 1,100 nat 2 4 50° CoM = ooo THT & | <B om nt = U = +4 wl ae -E < : ==) Joo a a = F 300 SSon0 wy 5 a a = w 600 = i °AP ¥ fofo} < “ eee Boo a 2 900 & 000 ss 500 tH 200 = ct + — Hi offal HR EERE HE HE tht s at ° =F aan o >t 2 3 > 2 Si i= OH PS100 oO 9 900 Be Fes HELD IN CONSTANT FROM i Zz POP TIME 400 = START ° GT 8 (Oe =; oo06U€U°8lCUQ 888 OVOROw ao TEMPERATURE OF QUENCH (SECONDS) BATH 8 Teo ° o ae BOLO MONE 000 am 1 - 2% carbide present at austenitizing temperature [} QUOMO ME OME OLOMOTNO ey i 39 8com o. 90 9° & C 8 9° fe} am TIME HELD FROM IN CONSTANT START OF TEMPERATURE QUENCH (SECONDS) w BATH O° ‘010 ano 10. g 6 1 - 2% carbide present at austenitizing temperature SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel Institute, London, 1956 ’ Atlas of Time-Temperature Diagrams 107 En 39A (9310) En 39A (9310) Composition: 0.11% C - 0.38% Mn - 0.09% Si - 4.15% Ni 1.33% Cr - 0.07% Mo Grain size: >8 Austenitized at 770°C (1418°F) for 30 min Composition: 0.11% C - 0.38% Mn - 0.09% Si - 4.15% Ni 1.33% Cr - 0.07% Mo Grain size: 7 Austenitized at 865°C (1589°F) for 30 min 900 900 Oo TTT [ [| w « > La q & 2 Fr a cit ues! cot Coe w a8 an TEMPERATURE TEMPERATURE 5,000 fscees 4 TIME HELD IN CONSTANT TEMPERATURE BATH FROM START OF QUENCH (SECONDS) TIME HELD IN CONSTANT TEMPERATURE BATH FROM START OF QUENCH (SECONDS) Carburized En 39A (9310 at 0.5% C) Composition: 0.54% C - 0.34% Mn - 0.26% Si - 3.92% Ni 1.28% Cr - 0.07% Mo Grain size 7 Austenitized at 865°C (1589°F) for 30 min Carburized En 39A (9310 at 0.5% C) Composition: 0.54% C - 0.34% Mn - 0.26% Si - 3.92% Ni 1.28% Cr - 0.07% Mo Grain size: >8 Austenitized at 770°C (1418°F) for 30 min 900 900 ae 600 (e) "6 o Wo 500 w « ° 500 w a e< e < @ w & w a 400 a z - TEMPERATURE = w F 200 100 TIME HELD IN CONSTANT TEMPERATURE BATH ROM START OF QUENCH (SECONDS) Less than 1% carbide present at austenitizing temperature TIME HELD IN CONSTANT TEMPERATURE BATH FROM START OF QUENCH (SECONDS, A trace of carbide present at austenitizing temperature SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel Institute, London, 1956 Atlas of Time-Temperature Diagrams 108 Carburized En 39A (9310 at 1% C) Carburized En 39A (9310 at 1% C) Composition: 1.02% C - 0.47% Mn - 0.27% Si - 4.15% Ni - Composition: 1.02% C - 0.47% Mn - 0.27% Si - 4.15% Ni - 1.22% Cr - 0.05% Mn Grain size: 7 Austenitized at 865°C (1589°F) for 30 min 1.22% Cr - 0.05% Mo Grain size: >8 Austenitized at 770°C (1418°F) for 30 min 900 mane Ty 800 700 600 2 § = (ee v a s < g z & z 2 Zrs Z 500 ae FE i 300 200 100 28S ©) me o_= Spee Soda eae ° a Bae a TIME HELD FROM IN CONSTANT START OF TEMPERATURE QUENCH (SECONDS) BATH TIME 1 - 2% carbide present at austenitizing temperature HELD FROM IN CONSTANT START OF ee TEMPERATURE QUENCH (SECONDS) eee ° 00 0 CEES BATH es 2 - 3% carbide present at austenitizing temperature En 34 En 34 Composition: 0.16% C - 0.53% Mn - 0.18% Si - 1.56% Ni 0.26% Cr - 0.25% Mo Grain size: 8 Austenitized at 865°C (1589°F) for 30 min Composition: 0.16% C - 0.53% Mn - 0.18% Si - 1.56% Ni 0.26% Cr - 0.25% Mo Grain size: 8 Austenitized at 770°C (1418°F) for 30 min 900 A C —— weet 800 — 1600 = EEF — Te 700 |Ac, 1,400 COT 600 TC 200 1 1100 (s) zal &nee ae . 1,300 L E = Te (catc aS sottt-9o Z 5 = 100 4000 6 ae¥ zw - e : a z i 2< § wi 5 F - s00 [TTT TRANSFORMATION-% 100 2 w 600 300 4 500 200 400 ula 300 100 200 Zz : — nn wn > = ca TESS TIME HELD FROM IN =100 Fee are Smee 8 $38 § CONSTANT START YU) OF TEMPERATURE QUENCH (SECONDS) BATH <7 [] : TIME HELD IN CONSTANT TEMP! oe FROM START OF QUENCH (SECOND: ° 25% ferrite present at austenitizing temperature SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel ’ Institute, London, 1956 - Atlas of Time-Temperature Diagrams Carburized 109 En 34 Carburized Composition: 0.99% C - 0.56% Mn - 0.29% Si - 1.61% Ni 0.32% Cr for - 0.29% Mo Grain size: 8 Austenitized at 865°C (1589°F) 30 min ce iH] — na HH En 34 Composition: 0.99% C - 0.56% Mn - 0.29% Si - 1.61% Ni 0.32% Cr - 0.29% Mo Grain size: >8 Austenitized at 770°C (1418°F) for 30 min l HI600 °c TEMPERATURE == a J SES Ay Ft FH TIME HELD IN CONSTANT TEMPERATURE BATH FROM START OF QUENCH (SECONDS) TIME 1 - 2% carbide present at austenitizing temperature 20,000 30,000 HELD IN CONSTANT TEMPERATURE BATH FROM START OF QUENCH (SECONDS) 2 - 3% carbide present at austenitizing temperature En 39B (9315) En 39B (9315) Composition: 0.15% C - 0.38% Mn - 0.20% Si - 4.33% Ni 1.16% Cr - 0.17% Mo Grain size: 7 Austenitized at 865°C (1589°F) for 30 min Composition: 0.15% C - 0.38% Mn - 0.20% Si - 4.33% Ni 1.16% Cr - 0.17% Mo Grain size: >8 Austenitized at 770°C (1418°F) for 30 min 900 900 1600 soo 800 C. | 700 1,400 | 1,300 Ac, 1,200 a 1,100 si aL r) , = w x: & = 00 . [4 w s : a é rn w aé w % 400 M i re E 4000, r 900 wW g Fs 7: 800g if s . sy= F TH HiE = 700 & = 5 O10 TRANSFORMATION ~ 7 600 300 500 400 200 | 300 | | +t 100 Ee TIME HELD IN CONSTANT FROM START OF TEMPERATURE QUENCH (SECONDS) BATH 81 £8 . Fr Nici alyON TIME fs 2 ty4 H S OTO pee TOO MOTO NOME OME OTO SOME 3 > 1 S100 °OMNOTOoo 9 O° am ie} 8 G.oy ORES 6 866 eeOF8) SOOT ES RS a) eNO HELD IN CONSTANT TEMPERATURE BATH FROM START OF QUENCH (SECONDS) SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report Institute, London, 1956 200 Z) Zz =. No. 56, The Iron and Steel Atlas of Time-Temperature Diagrams 110 2D flBRZO aOR NEi 5368 Osis SF maw => msES Sin erase 2 Ud0xaAd eeos Carburized En 39B (9315 at 0.6% C) Composition: 0.56% C - 0.47% Mn - 0.18% Si - 4.25% Ni 1.16% Cr - 0.18% Mo Grain size: mixed 7 and finer Austenitized a at 865°C (1589°F) for 30 min 900 e 800 ° 3 790 x0 Srxer Are ons 8o2G ae 3 8 Sete x z Saline «8 ee PS aBO oat wwe sO pre & on” i eee ° g AV} ine A yA ° 8 600 2, a) aunivasd g BanlvasdnaL Beaks v2 Wal Banivasdn3at 7) 2, sunivasdwal °° o 30 NX N ° °& TT TATTTIN\_ ANNI Ls HT TNT ND ONT bes] 200 ° 9° 200 100 TIME HELD IN CONSTANT FROM START OF TEMPERATURE QUENCH (SECONDS) TIME BATH HELD FROM IN CONSTANT START TEMPERATURE OF QUENCH (SECONDS) BATH Less than 0.5% carbide present at austenitizing temperature Less than 0.5% carbide present at austenitizing temperature Carburized Carburized En 39B (9315 at 0.9% C) Composition: 0.93% C - 0.50% Mn - 0.30% Si - 4.25% Ni 1.18% Cr - 0.16% Mo Grain size: 8 and finer Austenitized at 865°C (1589°F) for 30 min 1.18% Cr - 0.16% Mo Grain size: finer than 8 Austenitized at 770°C (1418°F) for 30 min Do 3, “ s8NLVesdW3L SUNLVESdNSL v a TIME HELD IN CONSTANT START <p KO NT TEMPERATURE OF QUENCH (SECONDS) BATH 1 - 2% carbide present at austenitizing temperature SOURCE: TIME HELD IN CONSTANT TEMPERATURE BATH FROM START OF QUENCH (SECONDS) 2 - 3% carbide present at austenitizing temperature Atlas of Isothermal Transformation Diagrams of B.S. En Steels , 2nd edition, Special Report No. 56, The Iron and Steel Institute, London, 1956 JaNiveadWaL fa PE FROM En 39B (9315 at 0.9% C) Composition: 0.93% C - 0.50% Mn - 0.30% Si - 4.25% Ni - Atlas of Time-Temperature Diagrams ] I] En 355 En 355 Composition: 0.20% C - 0.61% Mn - 0.23% Si - 2.00% Ni 1.65% Cr - 0.19% Mo Grain size: 8 Austenitized at 800°C (1472°F) for 30 min Composition: 0.20% C - 0.61% Mn - 0.23% Si - 2.00% Ni 1.65% Cr - 0.19% Mo Grain size: 8 Austenitized at 870°C (1598°F) for 30 min 900 1600 Ac3 Pan i Ac 700 t Coan Tit ~ au °¢ ia a= «< a 400 TEMPERATURE TEMPERATURE as Cont / sea 1 Moo Tr t | ; 4 5 - 1200 Cot San aac pe 4 500 400 { q 2 — 1,300 st 600 L500 |iI ‘ mS : Bi Lf 1000, t Z 900 w & = 800g< aiw = zi M Ms fed i a ° o!Tsoll im moan " 90 TRANSFORMATION 300 = % | mi 700 | 600 a |_| 500 si a aaa 200 400 }iitt 300 100 5 z = i) TIME =H MEM HELD IN CONSTANT TEMPERATURE BATH FROM START OF QUENCH (SECONDS) NOOO: = Sin imgn) TIME 3 > =a OH Shi00 LOM OOO HO 66 OlNOTONOTNC © 660 © | IQMIOTO 0 FO Oromo) Ea IM HELD IN CONSTANT FROM 200 Z| START OF MO aOn OLOm Om. = NEO OS Os TEMPERATURE BATH TION am OcOm Onn: QUENCH OO) 0 ww fe) (SECONDS) 2 - 5% carbide present at austenitizing temperature Carburized En 355 Composition: 0.93% C - 0.71% Mn - 0.38% Si - 2.10% Ni - Carburized En 355 1.70% Cr - 0.20% Mo Grain size: 7 Austenitized at 870°C Composition: 0.93% C - 0.71% Mn - 0.38% Si - 2.10% Ni 1.70% Cr - 0.20% Mo Grain size: 7 Austenitized at 800°C (1598°F) for 30 min (1472°F) for 30 min 900 990. 1600 oo 800 700 — a a ae Ht Ht Cn arn man ew oa a enue i U a 600 an8 ez —— <a SS soe SS Oo 2c w° ° Hit "et Ht TTS! 2 8 LL 4 TEMPERATURE 600 300 200 = TEMPERATURE ae 200 100 on 0 é IME 000 oo nnn HH maar cH CH] HHH 4! one an 1MIN e jo w Ms loo ey Q res) o.6° = 5 Ht annie °° Fee 0D 0. HELD IN CONSTANT TEMPERATURE BATH FROM START OF QUENCH (SECONDS) 10,000 50,000 2% carbide present at austenitizing temperature TIME HELD IN CONSTANT TEMPERATURE BATH FROM START OF QUENCH (SECONDS) 3% carbide present at austenitizing temperature 56, The Iron and Steel SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. Institute, London, 1956 OTT ° 7 = TEMPERATURE SMahes: Titatat 2 400 ~° ° ‘e [S N ° fe °°° a oe Atlas of Time-Temperature Diagrams 112 En 353 En 353 Composition: 0.18% C - 0.93% Mn - 0.26% Si - 1.34% Ni - Composition: 0.18% C - 0.93% Mn - 0.26% Si - 1.34% Ni 1.11% Cr - 0.11% Mo Grain size: finer than 8 Austenitized at 870°C (1598°F) for 30 min 1.11% Cr - 0.11% Mo Grain size: finer than 8 Austenitized at 800°C (1472°F) for 30 min A) SSSR a iia aeagonn REO ipa anoMN °c TEMPERATURE TEMPERATURE TIME Carburized HELO FROM IN CONSTANT START OF TEMPERATURE QUENCH (SECONDS) TEMPERATURE TEMPERATURE TIME BATH Carburized En 353 HELD IN CONSTANT FROM START OF TEMPERATURE QUENCH (SECONDS) BATH En 353 Composition: 1.00% C - 0.99% Mn - 0.28% Si - 1.42% Ni 1.12% Cr - 0.11% Mo Grain size: finer than 8 Austenitized at Composition: 1.00% C - 0.99% Mn - 0.28% Si - 1.42% Ni - 880°C (1616°F) for 30 min 800°C (1472°F) for 30 min 1.12% Cr - 0.11% Mo Grain size: finer than 8 Austenitized at 900 cc 2¢ # eicd CTrNIn SIO ait TEMPERATURE == w ° Oo 2 § w = vi E & =§ 400 < o¥ < TEMPERATURE 100 nt isSan ceI EER ERUIUIE HY SEAS, ° — pits ae: E ae gan Ooi ee Cecaeceesg ae 8 8 gog °o.lU°8 = ° °° TIME HELD IN CONSTANT TEMPERATURE BATH FROM START OF QUENCH (SECONDS) TIME HELD IN CONSTANT TEMPERATURE BATH FROM START OF QUENCH (SECONDS) 1 - 2% carbide present at austenitizing temperature 1 - 2% carbide present at austenitizing temperature ano ° ° SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. En Steels, 2nd edition, Special Report No. 56, The Iron and Steel Institute, London, 1956 Atlas of Time-Temperature Diagrams En 354 113 (4320) Composition: En 0.19% C - 0.90% Mn - 0.21% Si - 1.87% Ni - 1.08% Cr - 0.18% Mo Grain size: finer than 8 Austenitized at 870°C (1598°F) for 30 min _Tin 7 —_ 44 rin ico , : a 900 Thy 1 400 iii Se = it L 41500 ST Th a ars. 0 = 4 ae Bb 0° tinea = z % 21 Ms |___ flit £400 z iS = O y . = < care Ai} 50 90 RANSFORMATION %o es = Cin Kk AGRON 2 > 2 400 +3 700 ww 4 J 4 500 E 800a ta = Ms - | = ttt te tt tt a 4 } 10 TRANSFORMATION ital } } tis3800 & Pit ws $ | ° = °° “r= 2282 8 888 8 883 3 888 8 =-— TIWE HELD FROM IN CONSTANT START OF ah40 TEMPERATURE QUENCH (SECONDS) 6 o°9 g BATH [ g ri Liisi a _t Cooni [ mal | ag | tT - HH sll = ht z iit _1 11 | °%o ret 2. = 900 Bim 600 300 ° - 0.21% Si - 1.87% Ni - ae ——Sasanssersadaer en alas er! SS C - 0.90% Mn TiT#k00 = soe | 700 0.19% 1.08% Cr - 0.18% Mo Grain size: finer than 8 Austenitized at ws tail Fe (4320) 820°C (1508°F) for 30 min 900 Fes 354 Composition: iw 3 ito O 100 pene Ht “we 2 eee § 882 8 883 2 888 8 ae a TIME HELO FROM IN CONSTANT START OF CPCS TEMPERATURE QUENCH (SECONDS) en Ser go 9g 8 BATH ars 1 - 2% carbide present at austenitizing temperature Carburized En 354 (4320 at 1% C) Carburized En 354 (4320 at 1% C) Composition: 0.97% C - 1.00% Mn - 0.33% Si - 1.93% Ni 1.13% Cr - 0.23% Mo Grain size: 8 Austenitized at 870°C (1598°F) for 30 min Composition: 0.97% C - 1.00% Mn - 0.33% Si - 1.93% Ni 1.13% Cr - 0.23% Mo Grain size: 8 Austenitized at 820°C (1508°F) for 30 min soo 90° B00 700 °F G TEMPERATURE TEMPERATURE § “Cc TEMPERATURE TEMPERATURE CK OK SK 7 9OPIG KITS AT TY Tote) 1090 Ug ° a9 ° ° S TE T_ TEMPERATURE gu START OFQUENCH (SECONDS) BATH 1 - 2% carbide present at austenitizing temperature g .; TIME HELD IN CONSTANT TEMPERATURE FROM START OF QUENCH (SECONDS) BATH 8 1 - 2% carbide present at austenitizing temperature En Steels, 2nd edition, Special Report No. 56, The Iron and Steel SOURCE: Atlas of Isothermal Transformation Diagrams of B.S. Institute, London, 1956 ~~ -_ - ch er ve 28 faeg = - are; German Steels l-T and CCT Diagrams iz a t= Saga a a ame — 1 o wt * Hi Vd te: aoe7 7 i n Pp - e SS" ee Atlas of Time-Temperature Diagrams 117 German Steels - Example Diagram Holding time, 15 min, brought up to temperature in 3 min Austenitizing temperature 7000 900 800 Temperature 700 es Se nes ; & 3S 500 S a S | : ieRace E SBTC wi SOARS 100 1 eh SUS Sekunden YANN fie “oe Seconds Time A +1 F Pe O Zw M RA 1;2... 79 Minuten Bereich des Austenits und Karbids Bereich der Ferritbildung Bereich der Perlitbildung Hiirtewerte in HV Bereich der Zwischenstufen-Gefiigebildung Bereich der Martensitbildung Restaustenit Gefiigeanteile in Prozent 100 1000 i Minutes Area for austenite and carbides Area for ferrite formation Area for pearlite formation Hardness in HV Area for intermediate structure (bainite formation) Area for martensite formation Residual austenite (refers to numbers on curves) proportion of structure formed, in percent Atlas of Time-Temperature Diagrams 118 Ck 45 0.44% C - 0.66% Mn (SAE 1042) Composition: 0.44% C - 0.66% Mn - 0.22% Si - 0.022% P 0.029% S - 0.15% Cr - 0.02% V Austenitized at 1050°C (1922°F) Austenitisierungstemperatur 1050°C (Haltedauer5min) aufgeheizt in1 min Gains Zaiie im aaa Sinaian 3 > 600 iS Ea Acy = 735°C c = "GC SErtt : actpsi UlinZ i aes TL Pes fel[I Acg = 785°C ae S = & 400 300 in 50° ee 200 Bereich des Austenits Bereich der Ferritbildung P Bereich der Perlitbildung 90°%o Zw Bereich der Zwischenstufen-Gefugebilaung M_ Bereich der Martensitbildung © Aartewerte3 in HRcaiebzw. in HV 700 IT A F ° Z eerier 1 os RE es 10 Minuten 19% 100 Zeit—> 105 eae a 1000 7 108 70000 10 Stunden 100 Ck 45 0.44% C - 0.66% Mn (SAE 1042) Composition: 0.44% C - 0.66% Mn - 0.22% Si - 0.022% P 0.029% S - 0.15% Cr - 0.02% V Austenitized at 880°C (1616°F) 7000 ee eee ee 680 C 3 min) aufgeheizt in@ min SS = & AGT =(735°C 3 8 Acg = 785°C % : = , Me Bereich des Austenits Bereich der Ferritbildung R Bereich der Pertitbilduni Bereich der Zwischenst Geftigebildung Bereich der Martensit= bildung Hartewerte in HRebzwAV 2... befligeanteile in Yo CCT Ssekunden 0 HW 0 4% 100 Minuten 7000 7 Zi 10 fi ——<—<——— oo SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf 7 Stunden Germany, 1954 5 as = e ae Atlas of Time-Temperature Diagrams 119 C 70 W 1 0.76% C - 0.29% Mn (SAE 1078) Composition: 0.76% C - 0.29% Mn - 0.22% Si - 0.008% P 0.008% S - 0.11% Cr - 0.17% Cu - 0.019% 0.02% V Austenitized at 810°C (1490°F) Mo - 0.07% Ni - Austenitisierungstemperatur 870 °C Haltedauer 70min, aufgeheiztin 7min al eeteer til eelLil mal Revue CHET in °C Temperatur Ht 3 Lie eee a ye Austenitisierungstemperatur 870 °C Haltedauer 10 min, aufgeheizt in 3 min Sees Ses Se aS SS600 = cas eal ) Ll Bc T ivi aa eK ‘: ENS TIER \ Sal LERAVIA ALRITE ET ENV 5 900 i 3 ; th AN INCMICLERC EH vs Ht ae AN MITT Ni 100 ry 300 cor, G1 Ht syasee CAN eS Te Sekunden t LONE <3 = 10? L 7 703 19 Minuten 10* t 100 | 10§ 1000 A+K_ Area for austenite and carbides F K Area for carbide formation F+K _ Area of nonlamellar eutectoids 22 Area for pearlite formation Z Cementite O Hardness in HV 10Z 10% Cementite We? Zw Area for intermediate structure (bainite formation) M Area for martensite formation RA Residual austenite Area for ferrite formation ; (refers to numbers on curves) proportion of structure formed, in percent Ac; = 720°C Acg = 740°C Mg after austenitizing 10 min 810°C : 245°C M, after austenitizing 10 min 860°C : 210°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, 1954 EE eee 120 Atlas of Time-Temperature Diagrams C 100 W 1 1.03% Steel) C - 0.22% Mn (AISI WI Tool Composition: 1.03% C - 0.22% Mn - 0.17% Si - 0.014% P - 0.012% S - 0.07% Cr - 0.14% Cu - 0.01% Mo - 0.10% Ni - trace V Austenitized at 780°C (1436°F) IT; Austenitized at 790°C (1454°F) CCT Austenitisierungstemperatur 790 °C | Haltedauer 10min, aufgeheizt in 17min ee Gos eee PTfee ile ‘siink mmiinAl ETT ettETTT it immerse Gane ee iSane eee in °C Temperatur TE eS eSisaMl imc i IT 2 Austenitisierungstemperatur 790 °C Haltedauer 10 min, aufgeheizt in 3 min aesSa [LS CCIE PE NAAL INTEALIATA ata CCEA TAC Temperatur °C in CCT 0 = SHENINK TAIN ILE all Bese Te INS Be Te o7 7 10? 10° 70% ry Sekunden te Zeit ——> d 70 Minuten 100 0. wes A+K _ Area for austenite and carbides F Area for ferrite formation K Area for carbide formation F+K_ Area of nonlamellar eutectoids O Hardness in HV 10Z 10% Gementite Zw Area for intermediate structure (bainite formation) 1;2 (refers to numbers on curves) M Area for martensite formation é P RA Area for pearlite formation Z Residual austenite Cementite . proportion of structure formed Acyp = 717°C Acie = 736°C M, after austenitizing 10 min at 790°C : 175°C Mg after austenitizing 10 min at 860°C : 160°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, ee 1954 , ae eres t Atlas of Time-Temperature Diagrams 12] 0.48% C - 1.98% Mn Composition: 0.48% C - 1.98% Mn - 0.28% Si - 0.020%P 0.011% S Austenitized at 850°C (1562°F) 1000 Austenitisierungstemperatur 850 °C Ps (Haltedauer 7 min) aufgeheizt in 2 min 800 es : ST ; HT Gamlel Esa Ags (ee aera a eeBet esc CIC 700}—— sea et ©, 600 3 aah = c s 400 HN ulani me Z Ms. 200 W Tet Bereich des Austenits Bereich der Ferritbildung Bereich der Perlitbildun Bereich der Zwischenstufen- ue sat eit SMILE || a aed Bereich der Martensit = bildung phe 4,96 befugeanteile in %/o IT abe) | 7000 Austenitisierungstemperatur 850 °C Af 800 (Haltedauer 7 min) aufgeheiztin 2 min SSS S= oT Ne 700}— S © 600 < = 500 = S400 s N ANE Ht 300|M- AUK mee Bereich des Austenits Bereich der Ferritbildung A \ a da aN Bereich der Perlitbildun ak Bereich der Zwischensty, Gefugebildung Bereich der Martensit « bildung Hartewerte in HRe bzw. HV 200 100 pas o 4... Gefiigeanteile in °/o a Ls 7 a a es exunden . 10° 100 Minuten 7 1000 10 : Zest ——> 106 es ee Stunden 10000 700 Acy = 720°C Acg = 765°C M, = 290°C ty, SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, EE ee Germany, 1954 Atlas of Time-Temperature Diagrams 122 0.98% C - 1.84% Mn Composition: 0.98% C - 1.84% Mn - 0.08% Si - 0.023% P - 0.011% S Austenitized at 900°C (1526°F) Austenitisierungstemperatur $00 °C (Haltedauer 6 min) aufgeheizt in @ min PE va Ne [ooMpa et esas ea Pea rE HHP HP Ne bel 1 CHAE A Bereich des Austenits P ZW Bereich der Perlitbildun Bereich der Zwischenst ‘en- CCCI CCHIT ee es A Te Jetta ee in Temperatur °C Eee SBS SS SS La ae ee © Hartewertein HRcbzw. HV ee, 7399 beftigeanteileinYo IT 0 SE EH Smale SS {SS Austenitisierungstemperatur 900 °C (Haltedauer 10min) aufgeheizt in 3 min il Yt ae BANGae CN ERC PTUTE LPNS TT col CMAN A in °C Temperatur CCAICC TINNY AS A A Bereich des Austenits P Bereich der Perlitbildun Zw Beruth den Dwschoratihe Gefugebildung \ M_ IF]K Bereich der Martensit= bildung Bereich der Karbidbildung (Zementit) © dartewerte inte bzw.HV 42... Gefigeanteilein"Io CCT 0 y/ Sekunden Le ef 7 5 Le 100 eh, 1000 70000 Minuten Zeit > Stunden Aci, = 710°C Accom= 750°C M, = 120°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, 1954 eee eee Atlas of Time-Temperature Diagrams 123 0.73% C - 1.62% Si (71 Si 7) Composition: 0.73% C - 0.73% Mn - 1.62% Si - 0.019% P= 0.012 S - 0.10% Cr - 0.19% Cu - 0.12% Ni - 0.01% V Austenitized at 845°C (1555°F) Austenitisierungstemperatur 845 °C Maltedauer 10min, aufgeheizt in 3min SST ITLL SUIMFADae = = |Ga) | (6|| SeA ALP1? Pees : eC > “| LI. alli 2 ee Cee Hiii a LTT Ga SHIH ml TT ti00 poe PSeab alter! S iba Austenitisierungstemperatur 845% Haltedauer 70 min, aufgeheizt in 3 min £ SSS SVS A) A_/L 9 4 \| a Se Sess Ai So Ses ————— dl rit =e iNwit aul tinh ne IE HINSSINENIC KL of ASL AGS Pacto Po CCT CTI Pall Weleae! 8& ae Us Sekunden LOS femme 100 10 7 Minuten 5 7000 Area for austenite and carbides F Aranioe rastite fdenetion us P O Zw Area for carbide formation Area for pearlite formation Hardness in HV Area for intermediate structure (bainite formation) _ F+K z 10Z NEED of nonlamellar eutectoids Area Camentits 10% Cementite (refers to numbers on curves) mt Incrcensseorenos AEA Ter Residual austenite A+K RA _ proportion of structure formed, in percent Acy = 750°C Acg= 775°C M, after austenitizing at 845°C : 215°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, nn 1954 EEE Atlas of Time-Temperature Diagrams 124 0.30% C - 3.03% Ni (SAE 2330) Composition: 0.30% C - 0.51% Mn - 0.32% Si - 0.011% P - 0.007% S - 0.032% Al - 0.07% Cr - 3.03% Ni - <0.01% Ti Austenitized at 850°C (1562°F) Austenitisierungstemperatur 8509 ¢ (Haltedauer 10 min) au, yeheizt in 3 min HH ila HEHEHE CCHS Pe ecsan oe Th coe é : B z HE in °C Temperatur IT 9 Austenitisierungstemperatur 850° ¢ (Haltedauer 70min) TTTin 3 min MEE HoH Boece i: ul < Ags in °C Temperatur CCT 0 07 mev tt We 7 3 $ Sekunden 7 10 Area for austenite and carbides Area for carbide formation Area for pearlite formation Hardness in HV Area for intermediate structure (bainite formation) Area for martensite formation Residual austenite F F+K_ Z 10Z 1-52 Zeit-——> A+K K P O Zw M RA 5 ad Minuten bo a al Area for ferrite formation Area of nonlamellar eutectoids Cementite 10% Cementite (refers to numbers on curves) proportion of structure formed, in percent Ac, = 690°C Acg = 760°C M, = 340°C SOURCE: SSS Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, Se 1954 eee eee Atlas of Time-Temperature Diagrams 125 34 Cr 4 (SAE 5135) an Composition: 0.35% C - 0.656% Mn - 0.23% Si - 0.026% P 0.013% S - 1.11% Cr - 0.18% Cu - 0.05% Mo - 0.23% Ni <0.01% V Austenitized at 850°C (1562°F) Austenitisierungstemperatur 650 C (Haltedauer 5 min) aufgeheiztin 2 min in °C Temperatur A F P Bereich des Austenits Bereich der Ferritbildung Bereich der Perlitbildung M Bereich der Martensitbildung Zw Bereich der Zwischenstufen-Gefigebildung O Hartewerte in HRe bzw.in HV 40.80 Geftgeanteile in Io IT 00 POE ba Austenitisierungstemperatur 850 °C (Haltedauer 8 min) aufgeheizt in 3 min J800 am > 600 S 3s 500 © 499 ed fi peat ls SSS ea 0 +k Tal 4| TT SRY CCT 0 an MN \ \ | [Ne = \ \ 100 See x XiHee see KR ea ee crn wt VAL EN oe 300 200 ae ee ie el ee ah P Bereich der Perlitbildun ie Zw Bereich derZwischenst aN \ Bereich der Martensit= Geftigebildung CETTE ANYaN " acs Bereich der Ferritbildung NIE) \aN Na Boel F ntti rey \ \ v bildung TTIel BS [Tb se JODO! 10 Sekunden 107 \ 7 | 10 10* ! 100 10> 1000 Minuten ANE i 10000 le 7 10 Stunden Acy = 745°C Acg = 795°C M, SOURCE: = 360°C Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, 1954 a 10° 126 Atlas of Time-Temperature Diagrams 41 Cr 4 (SAE 5140) Composition: 0.44% C - 0.80% Mn - 0.22% Si - 0.030% P - 0.023% S - 1.04% Cr - 0.17% Cu - 0.04% Mo - 0.26% Ni <0.01% V Austenitized at 840°C (1544°F) S 600 :‘an rE Hor TH iHN vsan Peis cf — HH a §CSE 000s Bes Ss (i de 50 nA a A Bereich des Austenits P_ Bereich der Perlitbildung F Bereich der Ferritbildung Zw Bereich der Zwischenstufen-befugebildung 4 Bereich der Martensitbildung @ Hartewerte in HRe bzw. in HV 70;95 beftgeanteileinlo IT j Austenitisierungstemperatur 840°C (Haltedauer 8 min) aufgeheizt in 3 min See Sige | SSS | YAR A Ee 2)S BAG RN PoE \ am Beall Soo = cee Temperatur °C in Bereich des Austenits F Bereich der Ferritbildung P Bereich der Perlitbildun Zw Bereich derZwischenstufen- aa ice taht CCHIT ase Tis Gefugebildung M Bereich der Martensit= bildung Hartewerte in HRe bzwHV .. befigeanteile in o CCT 0 7 10 Sekunden 2 7 10? 4 arr B70, Micuten Ro 5 100 7 6 er 7000 70 Stunden 10000 100 Acy = 745°C Acg = 790°C M, = 355°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, 1954 SS ll sssssssssssssssssssssssssSsh Atlas of Time-Temperature Diagrams 127 100 Cr 6 Composition: 1.04% C - 0.33% Mn - 0.26% Si - 0.023% P - 0.006% S - 1.53% Cr - 0.20% Cu - <0.0 Mo 1% - 0.31% Ni<0.01% V Austenitized at 860°C (1580°F) Austenitisierungstemperatur 860°C Haltedauer 75min, aufgeheizt in 3min a in °C Temperatur IT Austenitisierungstemperatur 860°C ree 15min, aufgeheizt in 3min Set FE eae Fea | NSEaneaT ALL PRIN ACADEMIC TICETrT LI Ms\ Se aa BS Jf | il a Temperatur in °C CCT ©||Ife|Tels || a (SEA ‘Sphanaen Zeit lL ——_>- inf la i. Minuten A+K Area for austenite and carbides K je O Zw M RA Area for carbide formation Area for pearlite formation Hardness in HV Area for intermediate structure (bainite formation) Area for martensite formation Residual austenite aan to* a oe 100 | aannes A he 108 1000 10000 -cammemenene F F+K_ Z Area for ferrite formation Area of nonlamellar eutectoids Cementite 10Z 12 10% Cementite (refers to numbers on curves) proportion of structure formed, in percent Acyp = 750°C Acye = 795°C Mg after austenitizing at 860°C : 245° C Mg after austenitizing at 1050°C : 135°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, a 1954 Atlas of Time-Temperature Diagrams 128 X 40 Cr 13 (AISI 420 Stainless Steel) Composition: 0.44% C - 0.20% Mn - 0.30% Si - 0. 025% P - Mo - 0.31% Ni0.010%S - 13.12% Cr - 0.09% Cu - <0.01% 0.02% V Austenitized at 980°C (1796°F) a Austenitisierungstemperatur HOC Haltedauer75 min, aufgeheiztin gmin POs ISGHUIE in °C Temperatur IT 7000 [ince |See |enn]ofa | S| NN | | al | ome [Re | t See a BRENDA NATE stenitisierungstemperatur 980 0,C icaHaltedauer-15 min, aufgeheiztin 3 min SE SSNGh MR RERSON@ URS Aaevs $00'— NANA et 700 % S Ss 600 (% 3 8 500 : CELINE NCTC lL lg ale LINN ATESTATN i SA AEPANY AGT as AACHCCTIL ee LULU | ie |ili] @ eto! [Tee || 10 4 Sekunden ae ‘ 2 0° 7000 100 rien 10000 A+K Area for austenite and carbides F Area for ferrite formation ‘ nee is ate yaaa : +K ae of nonlamellar eutectoids oO Hardness in HV Zw Area for intermediate structure (bainite formation) 10Z ion Caen M aa Area for martensite BE anal cantante formation 1;2 (refers to numbers on curves) proporti : percent portion of fatruct structure fformed, in Acjp = 790°C Acie = 850°C M, after austenitizing at 980°C : 280°C M, after austenitizing at 1050°C : 145°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf Germany, 1954 EES Atlas of Time-Temperature Diagrams 129 X 210 Cr (AISI D3 Tool Steel) Composition: 2.08% C - 0.39% Mn - 0.28% Si - 0.017% P 0.012% S - 11.48% Cr - 0.15% Cu - 0.02% Mo - 0.31% Ni 0.04% V Austenitized at 970°C (1778°F) qe TH ee Austenitisierungstemperatur 970°C Haltedauer 15min, aufgeheizt in 3min Ath fa NS YHSsSs Sy 0 Ea Hit te ras aTSe al K - natiSCA HEE LLL LULU ree tt meETT ANT Nore TTT aita h aaa ee . al ee in °C Temperatur IT ‘Fe il 700 elSFZeal ANpees aceTH BPACNNIAY "on CACTI ANTARCTIC Ah 4 Aaa |} °C in Temperatur CCT seraes ORIG saiasicePb tibet o 10 zo" Sekunden See 7 Zeit —> 0 a 10 a 100 ee 1000 ee 10000 Minuten A+K K P Area for austenite and carbides Area for carbide formation F F+K_ Area for ferrite formation Area of nonlamellar eutectoids Area for pearlite formation Z Cementite oO Hardness in HV 10Z Zw Area for intermediate structure (bainite formation) Lee, 10% Cementite (refers to numbers on curves) M RA Area for martensite formation Residual austenite proportion of structure formed, in percent Acyp = 768°C Acie = 979°C Mg after austenitizing at 970°C : 184°C Mg after austenitizing at 1050°C : 70°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, 8 1954 ee Atlas of Time-Temperature Diagrams 130 20 Mo 5 Composition: 0.23% C - 0.65% Mn - 0.30% Si- 0.013% P - 0.030% S - 0.051% Al - 0.12% Cr - 0.08% Cu - 0.50% Mo 0.05% Ni - 0.03% V Austenitized at 1050°C (1922°F) Austenitisierungstemperatur 1050 ¢ Haltedauer a min of Fj ENS es Suet ae = “TNT Tetot CECNIRNIN Mhcea TAT inateAMICI ETH : TENORS TINT : HEN SH as heehee [al BSes Tle TI) SOURCE: Atlas zur Warmebehandlung der Stahle, vol 2, Werlag Stahleisen mbH, Dusseldorf, Germany, a 1972 Atlas of Time-Temperature Diagrams 37 MnSi 13] 5 Composition: 0.38% C - 1.14% Mn - 1.05% Si - 0.035% P - 0.019% S - 0.23% Cr - 0.02% V Austenitized at 860°C (1580°F) Austenitisierungstemperatur 860 %C (Haltedauer 5 min) aufgeheiztin @ min eH ra ee neers ——— {— —} + EE at S 600 s 1 2 500 S S Q S 400 rai a i A alg Bereich der Ferritbildung Bereich der Perlitbildung Zw Bereich der Zwischenstufen-befugebildung Cen ett M O 700 IT Bereich des Austenits F P “ Bereich der Martensitbildung Hartewertein HRe bzw. in HV 0 7000 Austenitisierungstemperatur 860 °C pe (Haltedauer 7 min) aufgeheizt in 3 min = So }———_}_f_}_} ee | __j—— Noe 2 Nos: Pals © g09 aT a Same an ahAINE \ Bereich des Austenits Bereich der Ferritbildung Bereich der Perlitbildun Bereich der Zwischenstufen Gefuigebildung Bereich der Martensit= bildung & 300} — 200 100 CCT a 7 SauRU ANT ert V 3) (2)cle OO 2)g @)| ||@ res , Selonden “ 12... Gefiigeanteile in "Io I 7 | age 7o* | 100 105 I 1000 106 70000 Minuten w Zeit ———> 10 Stunden 700 Acy = 735°C Acg = 795°C M, = 380°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, EE ee 1954 mmmuaeee Atlas of Time-Temperature Diagrams [SZ 16 MnCr 5 (SAE 5115) Composition: 0.16% C - 1.12% Mn - 0.22% Si - 0.030% P 0.008% S - 0.015% Al - 0.99% Cr- 0.02% Mo - 0.12% Ni - 0.01% V Austenitized at 870°C (1598°F) 7000 Austenitisierungstemperatur 870° ¢ Th 70min) aufgeheizt in si soo St im SSS ols STS SS Ea ASHEN TEaweapene CTT PAUL DAN WASSMTTIC CTE Cle NCICNTER NSN VAN ES fe Hin w cAN ATTN TAIN RRB mei CATIA ENT ANTE TTL CUI TSI 11S Teer eell | Ll 700\— <2S G&S Temperatur in °C CCT 0,7 704 708 ieee ins Acyp = 750°C Acg = 845°C M, = 400°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 2, Verlag Stahleisen mbH, Dusseldorf Germany, 1972 SSSSSSSSsSSsSSSSSSssssS — — SSSSSSSSS S$ Atlas of Time-Temperature Diagrams 133 50 CrV 4 (SAE 6145) Composition: 0.47% C - 0.82% Mn - 0.35% Si - 0.035% P 0.015% S - 1.20% Cr - 0.14% Cu - 0.04% Ni - 0.11% V Austenitized at 880°C (1616°F) Austenitisierungstemperatur 680 C (Haltedauer 5 min) aufgeheizt in? min apt Er TT ees Teer een BA es Bonin&eeer eri Ti tit {S99 eve S| aleee aria Steet tt S 600 3 § «00 A Bereich des Austenits F Bereich der Ferritbildung P Bereich der Perlitbildung Zw Bereich der Zwischenstufen-befugebilaung M Bereich der Martensitbildung © Hartewerte in HRe bzw.in HV 80,93 befugeanteile in lo IT 4 Austenitisierungstemperatur 880 °C (Haltedauer 5 min) aufgeheizt in 3 min oo NNN i “TENN\S REC COONAN i : SS BN oS Bereich des Austenits Bereich der Ferritbildung Bereich der Perlitbildun Bereich der Zwischenstufen- ect HieN ANIL ; ccc RANI CCT 0 7 Tt SassPST COT 10 107 Sekunden 7 10 tH Gefugebildung Bereich der Martensit= bildung Hartewerte in HRe bzwHV .befiigeanteile in "a 10° 70* 1000 100 108 10000 Minuten 7 Zeit-——> 10 Stunden Acy = 735°C Acg = 780°C M, = 300°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, ee ee ee ee 1954 ee Atlas of Time-Temperature Diagrams 134 50 CrV 4 (SAE 6150) Composition: 0.55% C - 0.98% Mn - 0.22% Si - 0.017% P - 0.013% S - 1.02% Cr - 0.07% Cu - 0.01% Ni - 0.11% V Austenitized at 880°C (1616°F) Austenitisierungstemperatur 680 h Ke‘Haltedauer & min) aufgeheizt in@ min in °C Temperatur as ies =_— F Bereich der rerretoidong 50 % 90 Yo P Bereich der Perlitbildung LP Zw Bereich der Zwischenstufen-befugebiidung i M_ Bereich der Martensitbildung ©) tartewerte in HRe bzw. in H¥ 70 Geftigeanteile in %o IT adiiaalie Austenitisierungstemperatur 880 °C (Haltedauer 5 min) aufgeheizt in 3 min 900 800 s Big zi q RN ifTl SSSA a CHINNee aa See Bereich des Austenits Bereich der Ferritbilaung Bereich der Perlitbildun Bereich der Zwischenst ai Gefugebildung Bereich der Martensit= ee bildung Hartewerte in HRe bzwHV 100 ... beftigeanteile in Yo CCT G 10 Sekunden 5 n 7 10 | I 100 Zeit 10 ; t { 7. 1000 Minuten 7 ; t © oe 100 Stunden Acy = (PISKS. Acg = 760°C M, = 270°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, ee Germany, 1954 Atlas of Time-Temperature Diagrams 135 0.15% C - 0.67% Mn - 1.20% Cr - 0.31% V (SAE 6115) Composition: 0.15% C - 0.67% Mn - 0.48% Si - 0.044%P 0.024% S - 1.20% Cr - 0.18% Cu - 0.25% Ni - 0.31% V Austenitized at 920°C (1688°F) 7000 Austenitisierungstemperatur 920° ¢ alle een ey 5 ee in fey ia ER Sti Saiinaiiinmiieeiieeinten S 600 SS = oe pee ct ee PT oe ae eas Be Hh <1 eT = §8S ae - iS =e reps: ee ||| 50 |Zw [aait Ms S gy § yao|— 2 myeEE is 100 ee e ee eee ee eae aya BG aeSS WeaalFoe eee + Austenitisierungstemperatur Hf alee 920° C le LLL le in He sul ed ee CE Eteee SS ee ye Gest Ulisse sles NES SSESS teaT ON EABSUEZEN ESS ea NO —_— CS Sera ie SHINER RS VON iS z SS ml AG LAIN NEN UPei TOA Bae Ss : 500 = = yoo x ie NNant Perea MARIN — DiS |¥\| an SB "CP CIN_INLWSWN,WhtHIE = PCTS CNG : CHINE TTE Spesle|| ©|| cr aLil1oll © ||@leepeete NA > 100 10? Seiden 7 Zeit ——> 103 704 10 100 105 1000 Minuten A+K _ K P Area for austenite and carbides Area for carbide formation Area for pearlite formation F F+K_ VA Area for ferrite formation Area of nonlamellar eutectoids Cementite Oo Zw Hardness in HV Area for intermediate structure (bainite formation) 10Z LZ 10% Cementite (refers to numbers on curves) M RA Area for martensite formation Residual austenite proportion of structure formed, in percent Acy = 755°C Acg = 870°C M, = 435°C 1954 SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, ee EEEEEEEEEEEEEEEeee Atlas of Time-Temperature Diagrams 136 15 CrNi 6 Composition: 0.13% C - 0.51% Mn - 0.31% Si - 0. 023% P - 0.009% S - 0.010% Al - 1.50% Cr - 0.06% Mo - 1.55% Ni<0.01% V Austenitized at 870°C (1598°F) Al rV_ NS ps EIaes Emae ey N Sr in Temperatur °C CCT Zeit ins Acyp = 735°C Acg3 = 820°C M, = 440°C 18 CrNi 8 Composition: 0.16% C - 0.50% Mn - 0.31% Si - 0.013% P 0.014% S - 0.03% Al - 1.95% Cr - 0.03% Mo - 2.02% Ni - 0.01% V Austenitized at 870°C (1598°F) Austenitisierungstemperatur 870° ¢ (Haltedauer 10 min) aufgeheiztin 3 min epee eSLINN ail ll NAN NIeH in °C Temperatur a 0,1 ArSane 7 oe Acyp = 735°C Acye = 750°C SOURCE: Atlas zur Warmebehandlung ins 108 104 705 Acg = 790°C M, = 450°C der Stahle, vol 2, Verlag Stahleisen mbH, Dusseldorf, Germany, 1972 708 Atlas of Time-Temperature Diagrams 137 14 Nee pA 0.13% C - 0.46% Mn -0.26% Si - Crete eae 0.012% S -“0.012% Al 0.78% Cr - 0.16% Cu - 0.04% Mo Compositi 3.69%Ni Austenitized at 870°C (1598°F) =—— = = ae = N rei nani 2 in s NG pm ary, SCHONaS VA ne CoS zai feu rie Siar NONINE Oana \\ fe He QT 7 i roe Recpe he & = e x >ZA[G » ZA ease a0 aH Acyp = 675°C Acye = 715°C Acg = 820°C M, = 420°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 2, Verlag Stahleisen mbH, F Dusseldorf, Germany, 1972 e e e e Atlas of Time-Temperature Diagrams 138 25 CrMo 4 (SAE 4118) Composition: 0.22% C - 0.64% Mn - 0.25% Si - 0.010% P - 0.011% S - 0.97% Cr - 0.16% Cu - 0.2 - 0.33% NiMo3% <0.01% V Austenitized at 875°C (1605°F) Austenitisierungstemperatur 875 C s fi eat eeeee (taltedauer§min) aufgeheiztin7 min iE ee Ce ES Tiaannatn Hinzimape Freie Tl S 600 CTV § He cL S 500 FPL Fae il CHE SERIA REEF aa 5 IT 0 a7 7 F Bereich der Ferritbildung P Bereich der Perlitbilaung Zw Bereich der Zwischenstufen-Gefugebildung M_ Bereich der Martensitbidung ©) Hartewerte in HRe bzw. in HV 70,60 Gefugeanteile in %o 10? Sekunden 109 te ail Bereich des Austenits A mM Cor a300 1 10¢ - 108 ee 1 10 100 Minuten 1000 7 Gh 10000 10 Cae 100 Stunden 7000 FEST Austenitisierungstemperatur 875°C _ (Haltedauer 10 min) aufgeheizt in 2 min Na Snes ZN N NI ea TH Bereich der Ferritbitdung Bereich der Perlitbildun el Bereich der Zwischenstufen- she4 Y | N \ Bereich des Austenits F P Gefugebildung Bereich der Martensit= bildung oy N CELINE ANAM ntti ct CCT a 7 CHIPSTe BB) BEIfesse 70 0 Sekunden 7 aR 100 Minuten 7 4£005,—<—$—$—=— ==3 oT 0 i“ 70 Stunden 70000 700 Acy = 730°C Acg = 825°C M, = 400°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, 1954 en 196 Atlas of Time-Temperature Diagrams 139 34 CrMo 4 (SAE 4130) Composition: 0.30% C - 0.64% Mn - 0.22% Si - 0.011% P 0.012% S - 1.01% Cr - 0.19% Cu - 0.24% Mo - 0.11% Ni <0.01% V Austenitized at 850°C (1562°F) Austenitisierungstemperatur 850°C (altedauer 5 min) aufgeheiztin 1 min in °C Temperatur A F P Zw Bereich des Austenits Bereich der Ferritbildung Bereich der Perlitbildung Bereich der Zwischenstufen-befugebildung M_ Bereich der Martensitbildung O Hartewerte in HRe bzw.in HV 35;50 Geftigeanteile in Yo IT 7000 FOS Austenitisierungstemperatur 850 °C (Haltedauer 10 min) aufgeheizt in @ min 900 Eee fe 600 700 S S aS 600 : e 3 S z= 400 \ t at ii isBereich des Austenits aN Bereich der Ferritbildung < Bereich der Selatan Bereich der Zwischenstu; 300 Gefugebildung ang Bereich der Martensit= 200 WHE \ i CCT ke .a t is bildung Hartewerte in HRe bzw.HV By Gi) ee ©- 5... befligeanteile in lo : 0 ig Sekunden ! 10 7 : : I 77 10 10 # me 100 1000 10000 Minuten 7 Zeit —— > 10 100 Stunden Ac} = 730°C Acg = 795°C M, = 385°C SOURCE: Germany, 1954 Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Ee ee ee EEE 140 Atlas of Time-Temperature Diagrams 42 CrMo 4 (SAE 4135/4140) Composition: 0.38% C - 0.64% Mn - 0.23% Si - 0. 019% P - Mo - 0.08% NiS - 0.99% Cr - 0.17% Cu - 0.16% 0.013% <0.01% V Austenitized at 860°C (1580°F) IT; Austenitized at 850°C TT CCT Austenitisierungstemperatur 860 %C (Haltedauer§min) aufgeheizt in 7 min eee | [pt in °C Temperatur A F P Bereich des Austenits Bereich der Ferritbilaung Bereich der Perlitbilaung —| Zw Bereich der Zwischenstufen-befugebildung | Bereich der Martensitbildung @ Hartewerte in HRe bzw. in HV 50,60 Gefugeantelle in %o IT Austenitisierungstemperatur 850°C (Haltedauer 10 min) aufgeheizt in 2 min Swe Bite: fowl 7) SiS es Xa ————==2 ae Se Oe es NONUINSERERINTIE ETT :alPAN if <li ae NRENCE NICE SLT & } \ & 8ae Bee“ALAA © A Nhe Sere 300 sc ~ \h 4 Bereich des Austenits F Bereich der Ferritbildung P_ Bereich der Pertitbildun Zw Bereich derZwischenstufenGefugebildung TINECAH cn LNA \ M Bereich der Martensit= i bildung ve LTS TieIST a Forme + 0 70 Sekunden 3 T ¢ he v a, nee Zeit 100 7 5 10° 10° Se ee 1000 10 Stunden 10000 700 Acy = 730°C Acg = 780°C Mg = 360°C SOURCE: Neen Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, ne Eee 1954 Atlas of Time-Temperature Diagrams 14] 50 CrMo 4 (SAE 4150) Z Composition: 0.50% C - 0.80% Mn - 0.32% Si - 0.017% P - 0.022% S - 1.04% Cr - 0.17% Cu - 0.24% Mo - 0.11% Ni <0.01% V Austenitized at 850°C (1562°F) dal eeienee 650 | ff Haltedauer § min) aufgeheiztin 1 min 600 ele es ee " TET ceeah aes = pot or a 500 Com TT LU iliamiii aie aul Ea eS Pe S NN Ss 400 300 Ss mea Te F P Zw M_ ©) Bereich des Austenits Bereich der Ferritbildung Bereich der Perlitbilaung Bereich der Zwischenstufen-befugebildung Bereich der Martensitbildung tartewerte in HRe bzw. in HV 90;58 Geftigeanteile in Yo IT Austenitisierungstemperatur 850°C (Haltedauer 10 min) aufgeheizt in 2 min : : MER SISNUGRY cal PNG TT MECUENN SiS mit 5 : : S & x \A Neu iN th ae Bereich des Austenits F der Ferritbildung Bereich P ZW Bereich der Perlitbildun Bereich der Zwischenst eN- Awe anNICH ae ee mee NA rem ny Sa UN ee ea apeeesite i BIEL os aks] eee ae a | ne ae aes ae aie | fas i |= ©) tartewerte in HRebzwAV CCT 0 1 10 Sekunden | 7 \ ee Wi . Geftigeanteile in “/o L { 100 1000 0° N 70000 Minuten a) Zeit ——> 10 700 Stunden Aci = 726°C Acg = 760°C M,= 290°C 1954 SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, EES 10 ' Atlas of Time-Temperature Diagrams 142 20 MoCr 4 Composition: 0.22% C - 0.66% Mn - 0.30% Si - 0. 018% P - 0.011% S - 0.049% Al - <0.0005% B - 0.56% Cr - 0.18% Cu 0.44% Mo - 0.020% N - 0.15% Ni Austenitized at 890°C (1634°F) A ustenitisierungstemperatur 890 C Manne min co Aero Svs Sasa =H aS waivers ; = Bain APUINGsal = HE Ei aanteal = NN EA 600 B eel fine os TaN NE: 106 Zeit in § Acyp = 740°C Acje = 760°C 25 MoCr Acgz = 865°C s = 425-6 4 Composition: 0.27% C - 0.67% Mn - 0.20% Si - 0.017% P - 0.022% S - 0.034% Al - 0.002% B - 0.50% Cr - 0.45% Mo 0.005% N - 0.11% Ni Austenitized at 890°C (1634°F) a aoa Bs ia i5 Austenitisierungstemperatur 890 °C Haltedauer 15 min SiS bes SI ae petLf eal BE SSS SE SSS S ;saitee ANANTH [ea GBBLE ANINIAND uMCIN SHIEH A ee NTL ACHE WICC ETT aaACTIN NINE epeee [IL@ UT] °C in Temperatur g 3 >x{—_ ¢? CCT Ss Qi 706 Zeit in § Acyp = 740°C Acg Acje = 760°C M, = 410°C = 830°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 2, Verlag Stahleisen mbH, Dusseldorf, Germany, 1972 Atlas of Time-Temperature Diagrams 143 StE 70 (Cr-Mo-Zr) y Composition: 0.17% C - 0.84% Mn - 0.54% Si - 0.019%P 0.011% S - 0.031% Al - 0.019% As - 0.89% Cr - 0.07% Cu - 0.40% Mo - 0.05% Ni - 0.008% Ng - 0.005% O» - 0.008% Sn0.01% V - 0.09% Zr Austenitized at 950°C (1742°F) 7000; N To CS N SSR ii El OW =KES Ee Cais EWG ad GO IL CHINOYAS Ze RIESE COON NRE INN BHI RSANAN TM TUT Uh COUN SECT TH COHAN THT CCHICCAINENRE NTN iSTeestTTT CCOCCTSRSSSIeS ele Re ae ae eral vA er Ae LAY TO Austenitisierungstemperatur 950 C ead °C in Temperatur CCT 106 Zeit in s Acy = 765°C Acg = 900°C M, = 425°C StE 47 (Ni-V) Composition: 0.21% C - 1.52% Mn - 0.40% Si - 0.022% P 0.023% S - 0.043% Al - 0.019% N - 0.07% Ni - 0.138% V Austenitized at 900°C (1652°F) . Austenitisierungstemperatur 900°C Halfedauer 5min SSS a2 Ines NI asSA SISAAIS I ATTS oes e heeet"§ S AN asunann 3 HRS va S peer p | We ey 3 S x CCT FF Z a Zeit ins ACT — 730°C Acg = 850°C M, = 410°C SOURCE: is a Atlas zur Warmebehandlung der Stahle, vol 2, Verlag Stahleisen mbH, Dusseldorf, Germany, 1972 Atlas of Time-Temperature Diagrams 144 StE 47 (Ni-Ti) Composition: 0.17% C - 1.45% Mn - 0.55% Si - 0. 016% P 0.017% S - 0.055% Al - 0.74% Ni - 0.18% Ti Austenitized at 930°C (1706°F) Sen Austenitisrerungstemperatur 930 C Halfedauer 5 min NUN rh bi ELT bil io ak eee ee ed Fee a) iis a Q Q| HSN HiCCeihe ESSENS Zeit in S Acy = 715°C Acg = 880°C Mg = 420°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 2, Verlag Stahleisen mbH, Dusseldorf, Germany, 1972 ————— ee Atlas of Time-Temperature Diagrams 145 105 WCr 6 Composition: 1.03% C - 0.97% Mn - 0.28% Si - 0.016% P 0.018% S - 1.05% Cr - 0.25% Cu - 0.03% Mo - 0.13% Ni 1.15% W Austenitized at 815°C (1499°F) Austenitisierungstemperatur 875 °C Haltedauer 15 min, aufgeheizt in 3min ri atiiee iimatinnitiai al |eh Te | VCE rCrSti ICH IS = |BliesMatIBat Serr amaie It .; in °C Temperatur 300 IT f| CSS 0 Austenitisierungstemperatur 815 °C Haltedauer 15 min, aufgeheizt in 3min iS ~ no Sas ee We bal il NR Set wea 2: NU SEAN a : ie BERRA) TENANT in Temperatur °C WALT cK INSISSUICTNIL Cin Ss eee iis! lée{II TNR CCT : 10 10° Paine 7000 Zeit—> 70000 Minuten A+K _ K P Oo Area for austenite and carbides Area for carbide formation Area for pearlite formation Hardness in HV Zw Area for intermediate structure (bainite formation) M RA Area for martensite formation Residual austenite Area for ferrite formation Area of nonlamellar eutectoids Cementite 10% Cementite (refers to numbers on curves) proportion of structure formed, in percent Acyp = 730°C Acie = 770°C Mg after austenitizing at 815°C : 245°C M, after austenitizing at 890°C : 155°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, ee EEE 1954 Atlas of Time-Temperature Diagrams 146 0.20% C - 1.20% Mn - 0.97% Cu - 0.55% Ni Composition: 0.20% C - 1.20% Mn - 0.38% Si - 0.039% P 0.024% S - 0.06% Cr - 0.91% Cu - 0.55% Ni Austenitized at 870°C (1598°F) Austenitisierungstemperatur 870 °C (Haltedauer § min) aufgeheizt in 7 min fc Sit asceret oa [|__| |+@2) Bereich des Austenits Bereich der Ferritbildung in Temperatur °C Bereich der Perlitbildun Bereich der Zwischenstufen- Geftigebildung Bereich der Martensit= bildung Hartewerte in HRe bzw.HRb IT 7000, Austenitisierungstemperatur 870 °C As (haltedaver 8 min) aufgeheiztin 3 min SERIE SSS SSN Leal[I SNPSRENIN 700} <<PAS oe ie} ? = “iS EA 5 od 3 500 TURN & yoo Ms \ iN eae Nt J00 Jee oF ATT ae ara wie ® Ss IN AN Wie INES nie NH ee it le AK \\ Gefugebildung Bereich der Martensit= bildung M SAAUSGE coro Bereich der Ferritbildung Bereich der Perlitbildun ZW Baraich der Zwischenetape 200 100 Bereich des Austenits F P ©) Aartewerte inHRebzw.HRb | || 8 foCAH Gn | 70 Sekunden ee U 1,2... Gefugeanteile in "Jo 4 eee, Minuten IA rae 100 5 I | 7 10 ee 6 ORES 7000 Stunden oked 100 Acy = 705°C Acg = 805°C M,= 395°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, ————S ee Germany, 1954 Atlas of Time-Temperature Diagrams 147 28 NiCrMo 7 4 Composition: 0.30% C - 0.46% Mn - 0.24% Si - 0.030% P 0.025% S - 1.44% Cr - 0.20% Cu - 0.37% Mo - 2.06% Ni <0.01% V Austenitized at 850°C (1562°F) Austenitisierungstemperatur 850 % (taltedauer§min) aufgeheizt in 2 min ibe maeses 55s eae | Sige este actos ae ee S 600 S 1 3 500 © g& N s 400 300 90 if 200 % Bereich des Austenits Bereich der Ferritbildung Bereich der Perlitbildung Zw Bereich der Zwischenstufen-Gefugebildung M ee M 700 Vib Bereich der Martensitbildung ore ee Geftigeanteile in %o 30.70 0 7 10 10? Sekunden 109 7 10% _ 10° 100 10° 7000 70000 Minuten 7 eat 0 ) 700 Stunden Austenitisierungstemperatur 850 °C (Haltedauer 10 min) aufgeheizt in 2 min ra eee oF eee = KOSa BS hina Ee ee eal (alee)Orampera Oyler omc Cisse THT TTT Nii NIKI N NIAC AV AN NAR i o t LNIN, Bett =}= LIN ALIN Nae raley Slee | ANY CNNSI a =s8 CUCL s 600 I] \ S 500 N . ar mt AI NITY ja 300 CCT UI N ee i®)) ee ee 7 : - sre ter ibiding \ AVE eh NI CTRL fl NINEURSmatted| Nl at alkI ONINCTWL CCHIT Fie [etBetoet ExISIE N SLUNG et NN‘j Ht Eg) uy Sekunden 7 , — 7 Zeit ——_> Gefiigebildung Bree der Martensit= bildung ©) Aartewerte in HRc bzw. KV 1,15... Gefuigeanteile in lo 10 107 708 ae 700000 70000 7000 100 1 Minuten Zw pal Atak 105 nT 194 107 a P) Berelen derPeciitbildan 100 : Stunden Acy = 740°C Acg = 115°C M, = 350°C Germany, 1954 SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, EEE | 7000 Atlas of Time-Temperature Diagrams 148 X 45 NiCrMo 4 Composition: 0.40% C - 0.35%Mn- 0.20% Si - 0.010% P 0.015% S - 1.27% Cr - 0.16% Cu - 0.24% Mo - 4.03% Ni 0.04% V Austenitized at 860°C (1580°F) Austenitisierungstemperatur 860 °C 500 Haltedauer 15 min, aufgeheiztin 3 min i err eT eT S el :oe aatiaailCCC Sal HEEaie See a > 00 ; mAICI Stall anaail Sy 300 i Per THC HCL CI i SRE CCCI IT , 7000 Fen Austenitisierungstemperatur 860 °C Haltedauer 75 min, aufgeheizt in 3 min ( | fe «SESE Sos, | oS NOS SiS RE Se A 900 th SAORI : ake rm 600 ONT RST PAINT NTA TT ie MAA et : ie S NUL ATA will fa iTATA AWE niteanMtHh sal ao iseticait en \. ||| CHIPHIIL @| Bp AAS au 7 708 alll HO => Warten bs oe vue A+K _ Area for austenite and carbides F K P Area for carbide formation Area for pearlite formation F+K _ Area of nonlamellar eutectoids Gementite Z O Zw M RA Hardness in HV Area for intermediate structure (bainite formation) Area for martensite formation 10Z 1;2 Residual austenite Area for ferrite formation 10% Cementite (refers to numbers on curves) proportion of structure formed, in percent Acyp = 680°C Acje = 750°C M, = 270°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, ee 1954 Atlas of Time-Temperature Diagrams 149 20 NiMoCr 6 Composition: 0.20% C - 0.62% Mn - 0.15% Si - 0.015% P 0.020% S - 0.015% Al - <0.0005% B - 0.47% Cr - 0.48% Mo 1.58% Ni Austenitized at 870°C (1598°F) v4 1000 Austenitisierungstemperatur 870 °C or CCT Haltedauer 15 min KN rl NR RROSES ECHINGE I KREREERT RICHI COI CINTA NICSE TTT Teall NCTINASECST NINTH CETL SI] Sele Silist BT eet 6111 Zeit in § Acyp = 740°C Acye = 760°C Acg = 820°C M, = 415°C Dusseldorf, Germany, 1972 SOURCE: Atlas zur Warmebehandlung der Stahle, vol 2, Verlag Stahleisen mbH, 7 EE EEE as Atlas of Time-Temperature Diagrams 150 61 CrSiV 5 Composition: 0.58% C - 0.81% Mn - 0.89% Si - 0.013% P - 0.006%S - 1.27% Cr - 0.14% Cu - 0.02% Mo - 0.06% Ni 0.11% V Austenitized at 870°C (1598°F) Austenitisierungstemperatur 870 Ml Haltedauer 15 min, aufgeheiztin 3 min in °C Temperatur IT 7000 A aa=a Talon on i ee TS mel {INL NSN la ia sa IN s : Peel Ap | Pf STINT ASSEN Ss gan annaReOG 870°C 75 min, aufgeheizt in 3 min eee FeSSNS ~~ 5 600 \ IE iere I iin NT te Pa teen \ Nail : SMHS NAH NN ope ANA A ot iteaoe SNAWA ALE LAL ,i PELICAN\\ INUIT a LL |Lie! erereerel] @ [Il © LI += 560 Th 10? ener Zeit ——> a 0 Cee _ 0 208 eee 700 7000 Minuten 70000 A+K _ Area for austenite and carbides K Area for carbide formation P Area for pearlite formation F Area for ferrite formation F+K _ Area of nonlamellar eutectoids Z Cementite oO Zw Hardness in HV Area for intermediate structure (bainite formation) 10Z 1;2 RA Residual austenite M Area for martensite formation 10% Cementite (refers to numbers on curves) proportion of structure formed, in percent Acyp, = 745°C Ace = 800°C M, = 270°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf Ee ee Germany, 1954 ee Atlas of Time-Temperature Diagrams 151 X 38 CrMoV 5 1 (AISI H 11 Tool Steel) Composition: 0.39% C - 0.48% Mn - 0.94% Si - 0.013% P - 4 0.005% S - 5.53% Cr - 0.20% Cu - 0.87% Mo - 0.04% Ni 0.48% V Austenitized at 1030°C (1886°F) ; vg |Austenitisierungstemperatur 1030" ¢ +2) (Haltedauer 15min) aufgeheiztin? min in °C Temperatur IT A RSet aS sss] i SS SSS 4 exe lala seieniatereereie 7030° ¢ Se lr eaner 1smin) aufgeheizt in 3min —_|Git SS: tt [-—. SS SCR See is yet A AAAfeelTT HH hte |EZ AS 3. 4 Sas eA w + SS 7 rue € in Temperatur CCT SEAT : mata 0 70 Sekunden ‘ Zelt ——> Sole _ a Je Minuten 10° el ee 700 7000 70000 A + K Area for austenite and carbides F Area for ferrite formation K P Area for carbide formation Area for pearlite formation F+K_ Z Area of nonlameilar eutectoids Cementite oO Zw Hardness in HV Area for intermediate structure (bainite formation) Area for martensite formation Residual austenite 10Z 1he2 10% Cementite (refers to numbers on curves) M RA proportion of structure formed, in percent Acyp = 840°C Acj, = 920°C M, = 275°C SOURCE: Germany, Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, 1954 EERIE 152 Atlas of Time-Temperature Diagrams 45 CrMoV 6 7 Composition: 0.43% C - 0.75% Mn - 0.27 % Si - 0.011% P 0.011% S - 1.31% Cr - 0.72% Mo - 0.11% Ni - 0.23% V Austenitized at 970°C (1778°F) oo 80. ee Ce cca ! HOCH CoH Ter tir CARS ee ialaetis |S 9709 C min) aufgeheiztin 3 min Cee tt TT ealiaTH aaiamilic ree TTT :a feted SSnSRireatt |il pak Salle eo UL | pee Eee ; ase Cialsl He (leita Ett NE MICCHEfotict th . | feet [e SRE eee HSS © 600 Ms ais ee stenitisierungstemperatur 70% 900 aeSSS SGEN ry Keo Cao OG ee LS Srey Haltedauer 15 min) aufgeheiztin 3 min (1 RENCSSRESS TENS ADNAT ID NSE tel Lf : CATIA TINA Picliaiill ‘ CATT ANNNMIET VT TL Mies) SUAUIENIIS Scum min:ry AL[it SURNENINSS NaN AWFUL HE Sane : FANpee SneT TTTa Jas HitaniLN RCTS ATI a= a S| CCT a e : Belanden Te Gsiy peseele = | [6 lal || 10° 10 ae vines 7000 70000 At Area for austenite and carbides F Area for ferrite formation K P Area for carbide formation Area for pearlite formation F+K_ Area of nonlamellar eutectoids O Zw Hardness in HV Area for intermediate structure (bainite formation) 10Z i; 2 10% Cementite (refers to numbers on curves) M Area for martensite formation RA Z Gementite proportion of structure formed, in percent Residual austenite Acyp = 745°C Acie = 830°C M, = 325°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, 1954 a a Atlas of Time-Temperature Diagrams 153 StE 47 (Cu-Ni-V) Composition: 0.12% C - 1.28% Mn - 0.40% Si - 0.015% P - Z 0.016% S - 0.024% Al - 0.67% Cu - 0.62% Ni - 0.15% V Austenitized at 900°C (1652°F) Austenttisierungstemperatur 900 °C ail 7min OHSS LI = ag Cece U SS ic Senate Gey 800 SEs 3 wee e NR meus I Deeb HET aii ee ca ee liaNRE fill NEAR ICHHT I NURCIRNTICT ey ia ae (CNNOKENEANSIRE TET eo) B[fees LU C1 OmeZ Lonny aan BE Zeit in s Acy = 720°C Acg = 860°C M, = 475°C StE 47 (Cu-Ni-Ti) Composition: 0.12% C - 1.28% Mn - 0.40% Si - 0.015% P 0.016% S - 0.021% Al - 0.67% Cu - 0.62% Ni - 0.18% Ti Austenitized at 900°C (1652°F) av eE SNe eet it SRS “INS TNE AIA ati i CLIINNTIN- NIEA alas MIVA AN PNW EAE °C in Temperatur bh Hie tettHTN AT CCT 0 Zeit ins Acy = 725°C Acg = 875°C M, = 475°C 1972 vol 2, Verlag Stahleisen mbH, Dusseldorf, Germany, SOURCE: Atlas zur Warmebehandlung der Stahle, See eine oe Me z 154 Atlas of Time-Temperature Diagrams 56 NiCrMoV 7 Composition: 0.52% C - 0.70% Mn - 0.29% Si - 0.010% P 0.010% S - 1.09% Cr - 0.43% Mo - 1.72% Ni - 0.14% V Austenitized at 850°C (1562°F) Austenitisierungstemperatur 850° C (Haltedauer 15min) aufgeheiztin 3 min TL Leal aa Ae | ae in °C Temperatur seo ait HCH Ht Sntiniinit IT Austenitisierungstemperatur 850° C (Haitedauer 15 min) aufgeheizt in Smin mb Sta So Rsk SSS SRICGNUACIINRNSSI CoM CHICA ICES ACCIIT ea PACATN gi CHIPS Ea HST SeateeslBeTH NAN. Temperatur °C in cer ia il 10? Sekunden , L20——>- 7 10? 10 100 Minuten > +K _ Area for austenite and carbides Area for carbide formation F F+K P O Zw M RA Area for pearlite formation Z Hardness in HV ; a : Area for intermediate structure (bainite formation) Area for martensite formation Residual austenite 10Z eo 1000 70000 Area for ferrite formation Area of nonlamellar eutectoids Cementite 10% Cementite (refers to numbers on curves) proportion of structure formed, in percent Acyp = 710°C Acje = 790°C MM;=1275°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf SS ————————— Germany, 1954 Atlas of Time-Temperature Diagrams 155 X 30 WCrV 5 3 Composition: 0.28% C - 0.39% Mn - 0.16% Si - 0.020% P 0.006% S - 2.35% Cr - 0.06% Mo - 0.06% Ni - 0.53% V - 4.10% W Austenitized at 1090°C TH Leer L 7090" ee ¢ Leer 75 min) aufgeheizt ee in 3 min HIRRLLG Hit EHH dep 11 rr lel eT NT zCU tt Ei CCU TIPE ira IT SCHINCHICCTI HESS CREM TC Pe aa Saeeeatioartls an C in Temperatur i See IT ca aan it. tt cout ieee falUNCC HITE FH Acjp= 820°C Acie 925°C M, = 400°C SASS STC Bap SR EA HENSTICLT Sein tes =a ICN DAA NORA HI i Temperatur © in “Seeda {GTEC vin ee \Mab AIT lalLT ae MAK uleledals © | ||iolal|| 7 70 70 Sekunden F A+K _ Area for austenite and d 70% fe i/ bid carbides 77 7° 700 Minuten 0 ark 0° 7000 70000 75 Stunden Area for carbide formation F Area for ferrite formation Area for pearlite formation F+K_ Area of nonlamellar eutectoids Hardness in HV Z Cementite Area for intermediate structure (bainite formation) 10Z Area for martensite formation 1;2 10% Cementite (refers to numbers on curves) proportion of structure formed, in percent Residual austenite eos ou Germany, 1954 Dusseldorf, mbH, Stahleisen Verlag 1, vol SOURCE: Atlas zur Warmebehandlung der Stahle, Atlas of Time-Temperature Diagrams 156 X 30 WCrV 9 3 Composition: 0.28% C - 0.36% Mn - 0.11% Si - 0.008% P 0.004% S$ - 2.57% Cr - 0.03% Mo - 0.04% Ni - 0.35% V - 8.88% W Austenitized at 1120°C TTT Austenitisierungstemperatur 7720 ° C (Haltedouer 15 min) aufgeheizt in 4 min se BS 2 700 Ss c S & 8 \ nh HIS ee fi s© 500 Ms aS ge Seay. mt 50 [| 40 (aa =i oS mae _ L 636 6 i IT Acyp = 820°C Acye = 925°C Austenitisierungstemperatur 71¢0° C ee 15 min) aufgeheizt in ¥ min a M, = 420°C HNN Bae AH ave Y SS § S a S > M a N Bg | nny SIN ae ae \ i ‘Y 7 ee 70° onder A+K Area for austenite and carbides Area for carbide formation Area for pearlite formation Zest ——> Hardness in HV Area for intermediate structure (bainite formation) SPE OUR SOURCE: Area for martensite formation Residual austenite Area for ferrite formation 70° Z Area of nonlamellar eutectoids Cementite 10% Cementite (refers to numbers on curves) proportion of structure formed, in percent Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, 1954 Atlas of Time-Temperature Diagrams 157 X 210 CrW 12 Composition: 2.19% C - 0.32% Mn - 0.26% Si - 0.027% P - y 0.008% S - 11.75% Cr - 0.12% Cu - 0.12% Mo - 0.08% Ni 0.08% V - 0.84% W Austenitized at 970°C (1778°F) ;ae res TSE Austenitisierungstemperatur 970°C KI Haltedauer 1§ min, aufgeheiztin 3min SERN PAE NUTSIE ealTT BBN ieee sas EZ sich Serna TN Sentient Mee Ti CiCHINENNERAATTC TAREE SAUINEHANHIAR CINCH CLUE ATIRAAL ENCANA EINE i ECE HERE i in °C Temperatur CCT 0 cc mitment Seinen ‘ Zeit ——__>— 7 See Minuten 100 7000 10000 A+K _ K 12 Area for austenite and carbides Area for carbide formation Area for pearlite formation F Area for ferrite formation F+K _ Area of nonlamellar eutectoids Z Cementite Oo Zw Hardness in HV Area for intermediate structure (bainite tormation) 10Z 1332 M RA Area for martensite formation Residual austenite 10% Cementite (refers to numbers on curves) proportion of structure formed, in percent Acjp = 770°C Acye = 810°C M, = 180°C Atlas zur a SOURCE: Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, ES 1954 Atlas of Time-Temperature Diagrams 158 60 WCrV 7 Composition: 0.55% C - 0.34% Mn - 0.94% Si - 0.015% P 0.012% S - 1.27% Cr - 0.05% Mo - 0.12% Ni - 0.18% V - 2.10% W Austenitized at 880°C (1616°F) Austenitisierungstemperatur 860° C (Haltedauer 15 min) aufgeheizt in3 min S 600 ee HTH Here SEH Ran | @eal |_| at “COWIE s 3 500 & x fa TTT] eee = P +o 1S 2) Zw a el NS LL SiSian a etsail Z Ree oar ea i Austenitisierungstemperatur 860° C 75 min) aufgeheizt in 5min on ACip os —Bie B a FP WO4 eee| CAT VNC Ne SNCS ui ‘ BATIINBNStSIN Nim SasSS “- Sas 7 SEE 14570 SSION Y BS \ Shes > 500 VORA S : CONTACT NWA \ “ope NATTA AN NIN = Lisate 4 Mt aN AL FATTeT PAL oe } tT ch main SEL das [alll felfie [eeibeetele! [lo 6|| 10 7 108 LN <= ee Ree Sekunden 7 LL 100 Minuten 1000 10000 A+K_ Area for austenite and carbides F [Areatfor territenformation K P O Zw Area for carbide formation Area for pearlite formation Hardness in HV Area for intermediate structure (bainite formation) F+K_ Z 10Z 1;2 Area of nonlamellar eutectoids Gementite 10% Cementite (refers to numbers on curves) M RA Area for martensite formation Residual austenite proportion of structure formed, in percent Acyp, = 775°C Acie = 830°C Me = 310°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, 1954 —_—_—_—__ oor ——=v EE ET Atlas of Time-Temperature Diagrams 159 45 CrVMowW 5 8 Composition: 0.39% C - 0.45% Mn - 0.58% Si - 0.018% P 0.003% S - 1.45% Cr - 0.47% Mo - 0.13% Ni - 0.70% V - 0.55% W Austenitized at 1050°C (1922°F) 1000 See Seem: Ll = [I Austenitisierungstemperatur 1050" ¢ (haltedauer 15 min) aufgeheiztin 2 min rarieoaue! sae S SD ¥ V4 CHICSlibiiisPSHtttH Sanna eet in °C Temperatur IT AiCSSENNGSTTS SIT SE CNT ANINSEE EEE TET ANAL Austenitisierungstemperatur Ses S \ 8 SSJ 7050° ¢ (Haltedauer 75min) aufgeheizt in 3min 7000 |> \ \ f\ a +7 he RAMIUE Se ae ARANESEE A Till 6irsebisese's Te Ul} © in Temperatur rN -NUINCIN CCT ] 70 dl HOU. => a Minuten +K _ Area for austenite and carbides Area for carbide formation x Area for pearlite formation P oO Hardness in HV Area for intermediate structure (bainite formation) Zw M RA Area for martensite fermation Residual austenite 700 7000 10000 F Area for ferrite formation F+K _ Area of nonlamellar eutectoids Cenientite Z 10Z 10% Cementite (refers to numbers on curves) 132 proportion of structure formed, in percent Acjp = 790°C Acy. = 900°C M, = 360°C SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, EEE 1954 Atlas of Time-Temperature Diagrams 160 B 18 (AISI T1 High Speed Steel) Composition: 0.81% C - 0.33% Mn - 0.15% Si-0.024% P 0.003% S - 3.77% Cr - 0.44% Mo - 0.12% Ni - 1.07% V 18.25% W Austenitized at 1230°C (2246°F) Austenitisierungstemperatur 1230 oC ae _ (Vorwarmung: 20min 850%) ies al oe et a es a= Sa ect ee Pear pee ht fatal ee) [SS 600 \ {tT {Ee eter Ss AYE ELL Siitaeacmal ies- SEU hes 700 EEE Ce SIC HAH Ht Biil Beeen in °C Temperatur euie : ial Be 50 an M, = 160°C yo) HS ae en Cc Acyp = 810°C Acje = 860°C = Elicafes ewaotto eda etOa aha HEHE corr fom eae 7 Staes (eS 7 Zeit ——> EE 10 ee 100 ee 7000 ee ee 70000 Minuten D Composition: 0.87% C - 0.32% Mn - 0.27% Si - 0.020% P - 0.005% S - 3.99% Cr - 0.80% Mo - 0.11% Ni - 2.52% V 11.91% W Austenitized at 1210°C (2210°F) COT TT essere el ee We i a a Sees Snes pe at | ee PITT TTT TTeiekeae anti He [era as Sane in Temperatur °C IT Se Paspe Teee geil ik i Sane Aci) = 825°C Acye = 890°C M, = 205°C mia | OES || tis ES aaiMnill ee es HA ieh elblll |WIT Ul (te 7 Fetes , Zeit ——> 100 Minuten 7000 10000 A+K _ Area for austenite and carbides F Area for ferrite formation K Area for carbide formation Area for pearlite formation : F+K_ Z Area of nonlamellar eutectoids Cementite Zw Area for intermediate structure (bainite formation) x ls 3 peeuoEmieticn ae Residual austenite P Oo RA SOURCE: Hardness in HV s ; af 10Z 1052 10% Cementite (refers to numbers on curves) proportion of structure formed, in percent Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf Germany, 1954 ——_—_—_—_—$—_—$—_—_$_—$—_$—_———_—_—_—$_$_$_$< Atlas of Time-Temperature Diagrams 16] D Mo 5 Composition: 0.85% C - 0.31% Mn - 0.30% Si - 0.015% P 0.010% S - 4.15% Cr - 4.79% Mo - 0.18% Ni - 2.01% W Austenitized at 1190°C (2174°F) - Vv - 6.34% Austenitisierungstemperatur 1190 °C Tauchzeit 1720s (Vorwarmung: 20min 850°C) KUlGMIMMIIRTife=. es |memes [as|e |man oa ||| | Ba i | | ee |ane | a ait [es ees ee)Ace SAT eae ikeos eo CCCI Se || === ee aay = a — 8 500 Acje = 875°C iy, ICCC ren 300 =ate 200 —— ee byere ie Soe rSS eer eee aes 7 708 Pei l 7 Zei{——> ! 10 eel 100 MEE Eeiis Snel 7000 eS 70000 Minuten E 18 Co 5 (AISI T4 High Speed Steel) Composition: 0.80% C - 0.30% Mn - 0.23% Si - 0.019% P - 0.005% S - 4.52% Co - 4.34% Cr - 0.78% Mo - 0.30% Ni 1.52% V - 17.89% W Austenitized at 1250°C (2282°F) 7000 Austenitisierungstemperatur 1250 °C Tauchzeit 120s (Vorwarmung: 20min 850 %) sete (al ae oe 600}— ae = = ee 700 S 600 aS Acyp = 820°C $ 500 Acje S Ss400 M, = 180°C S ve l 865°C eS sie LHL TTT TTT Gedis Rl tt Te . Lie up | i 108 ye Z eit} ——_> A+K _ Area for austenite and carbides es i a a AIT Minuten K P Area for carbide formation Area for pearlite formation oO Zw Hardness in HV Area for intermediate structure (bainite formation) M Area for martensite formation RA = F Area for ferrite formation _ F+K _ Area of nonlamellar eutectoids Cementite Z 10Z 1;2 10% Cementite (refers to numbers on curves) proportion of structure formed, in percent Residual austenite SOURCE: Atlas zur Warmebehandlung der Stahle, vol 1, Verlag Stahleisen mbH, Dusseldorf, Germany, 1954 oa — ee — >a ing CE <_ : 'Me —> by rae _——— = 7 we es roLe ’ _ . _ ra? 7 - ' = a} . a French Steels l-T and CCT Diagrams i Znones i a a) a - J _ EP 6G TOD brn t-! ————-_ or aa Atlas of Time-Temperature Diagrams XC 165 32 Steel XC 38 Steel Composition: 0.35% C - 0.69% Mn - 0.31% Si - 0.018% S 0.011% P - 0.31% Ni - 0.12% Cr - 0.04% Mo - 0.14% Cu Grain size: 10 Austenitized at 850°C (1562°F) for 30 min Bie Ac; Composition: 0.36% C - 0.66% Mn - 0.27% Si - 0.016% S 0.020% P - 0.02% Ni - 0.21% Cr - 0.02% Mo - 0.22% Cu 0.060% Al Grain size: 10-11 Austenitized at 850°C (1562°F) for lh ules SS 800 3 q 2 Ac, 700 92 HRB 600 93 ee S 92 s 5 98 E 2 97 = 400 3 = 2 = 500 5 " calculé 300 46,5 HRC 200 100 56 0 1 2 5 10 20 50 100200 Temps en secondes CCT 500 10° ol Imn 10° | 2mn | 15 mn 108 Pes Th 2h 4h 8h 24h UREN IT Eh Riki nae Sh ie Imn Acy = 735°C XC ou ‘ 2mn 15mn fa th ne 2h 4h Bh Acg = 810°C 24h M, = 360°C 42 Steel Composition: 0.45% C - 0.52% Mn - 0.27% Si - 0.025% S 0.015% P - 0.12% Ni - 0.05% Cr - 0.01% Mo - 0.13% Cu Grain Composition: 0.44% C - 0.72% Mn - 0.26% Si - 0.028% S 0.038% P - 0.09% Ni - 0.16% Cr - 0.02% Mo Grain size: 10 size: 9-10 Austenitized at 850°C (1562°F) for 30 min Austenitized at 850°C (1562°F) for 30 min —— 900 3 3 800 A Ac; Ac, 700 93 HRE 97 99 9° 22 HRI 3 600 2= 500 é 400 E E Ms 300 200 100 si 2 1 5 10 20 50 100200 | IT Pe Acy = 740°C SOURCE: Iman 2mn Acg = 805°C 15mn 10° 10° 500 10° | th | | | 2h 4h Bh 24h B 28 25| 220 215 200195 iam |e San ame [ee a a Ps |a {2h me Ole20 ; emps CCT ig en eSO : fas 500 7 ima 2mn 1Smn is a secondes Wb, Sy S¥Iso, France, 1974 Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, th 2h 4h Bh 24h Atlas of Time-Temperature Diagrams 166 XC 55 Steel Composition: 0.53% C - 0.70% Mn - 0.35% Si - 0.010% S - Composition: 0.52% C - 0.60% Mn - 0.28% Si - 0.017% S - 0.020% P - 0.24% Ni - 0.09% Cr - <0.10% Mo - 0.52% Cu <0.03% V Grain size: 11 Austenitized at 825°C (1520°F) for 15 0.020% P - 0.05% Ni - <0.04% Cr - <0.05% Mo Grain size: 9 Austenitized at 830°C (1526°F) for 30 min min - 900 2 2 2 800 2 Ac; Ac, 700 99 HRB 22 HRC 600 25 ° .s 500 30 § : oe e 400 F F “lL ae 300 200 100 63 0 1 2 5 10 20 50 100200 | | 1mn 2mn Temps en secondes IT Acy = 735°C 500 10? 15mn 10° 10° | | | | | th 2h 4h Bh 24h Acg = 765°C 1 2 5 Temps en secondes 10 20 50 100200 500 10° | 15mn qimane2inn CCT | 10* | | | 10° | th 2h 4h 8h 24h M, = 240°C XC 70 Steel Composition: 0.75% C - 0.75% Mn - 0.24% Si - 0.010% S - Composition: 0.72% C - 0,72% Mn - 0.34% Si - 0.026% S - 0.012% P - 0.43% Ni - 0.06% Cr - <0.10% Mo - 0.56% Cu <0.03% V Grain size: 12 Austenitized at 800°C (1420°F) for 15 0.031% P Grain size: 9-10 Austenitized at 850°C (1562°F) for 30 min min = 900 z 3 c 8 800 4 Ac, 700 20 HRC 21 600 30 © oO 5 33 § 500 I 7: 400 E F e 300 . AMu ;100 PAAR i \\\ pt be 86 5635503835 eS 32295 © 5 80 8) a a a 0 1 2 5 10 20 | ve a Acy = 735°C SOURCE: 100200 50 Temps en secondes | eee 500 | | ENS Acg = 750°C | 1 10° 10* 10° | | ONTS rare | 2 5 10 20 x ccT ree eee 10000 0" | | Imn 2mn M, = 240°C Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 0 i 15 mn As ae Gp 500 - 2h i tf a Atlas of Time-Temperature Diagrams 167 55 S 7 Steel Composition: 0.55% C - 0.61% Mn - 1.68% Si - 0.014% S 0.012% P - 0.19% Ni - 0.05% Cr - 0.01% Mo - 0.20% Cu - trace V - 0.05% Ti Grain size: 11 Austenitized at 925°C (1700°F) for 15 min 900 i Ac; 8 Composition: 0.55% C - 0.61% Mn - 1.68% Si - 0.014% S$ 0.012% P - 0.19% Ni - 0.05% Cr - 0.01% Mo - 0.20% Cu - trace V Grain size: 11 Austenitized at 925°C (1700°F) 2 3 800 Ac, fa] 700 20 HRC 600 29,5 § 500 2 : 400 e 29 5 32 2 38,5 : F 45,5 300 60,5 Ms 200 100 63 0 RGI) Imn Acpegwis-C 2mn 15 mn th | " Bh 24h a | es | Sire ce See a IT 2h 4h Acg = 840°C CCT 7 2 1 emps en 16259744532, 29 25 el aes |e ee ee 10 20 secondes 50 meee 500 ena ma | 4 a te ne ciety Dai M, = 285°C 35 M 5 Steel Composition: 0.33% C - 1.12% Mn - 0.30% Si - 0.027% S - Composition: 0.33% C - 1.12% Mn - 0.30% Si - 0.027% S - 0.018% P - 0.24% Ni - 0.11% Cr - 0.04% Mo - 0.19% Cu - 0.018% P - 0.24% Ni - 0.11% Cr - 0.04% Mo - 0.19% Cu - 0.010% Al Grain size: 8-9 Austenitized at 850°C (1562°F) for 1 0.010% Al Grain size: 8-9 Austenitized at 850°C (1562°F) for 1 h h 900 = g soo a Ac; Ac, |—- a 700 : eS ——— im ——— A +F 600 ee oe 90 HRB ae 94 6 A+|F+C 9 § } E 400 - =; Ms I a 300 ee Eee — [AM 200 4 ii ‘aaa 100 2 e ie / 500 rE 98 / ++ —-+--—sa+ SC 27 HRC Z 28 = + T fi an 52 10} 2 1 It 5 Tempsen secondes Acy = 735°C SOURCE: 10 20 50 ire ete 500 ae Acg = 800°C mes a i oa i Sa eras act Saat CCT tsee 10 20 50 aH 1mn 2mn M, = 355°C Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 500 10 3 15mn he4 | th 2h 4h s i: 8h 24h Atlas of Time-Temperature Diagrams 168 45 M5 Composition: 0.47% C - 1.37% Mn - 0.36% Si - 0.025% S 0.015% P - 0.02% Ni - 0.15% Cr - 0.19% Cu Grain size: 11-12 Austenitized at 875°C (1610°F) for 30 min 900 Steel Composition: 0.47% C - 1.37% Mn - 0.36% Si - 0.025% Ss 0.015% P - 0.02% Ni - 0.15% Cr - 0.19% Cu Grain size: 11-12 Austenitized at 875°C (1610°F) for 30 min = 3 2 5 800 Ac; fa) Ac, 700 600 21 HRC 24 9 s 500 24 : 400 RY e Oo ¢ 3 iS 41 300 50 Ms 200 100 62 0 i 5 Temps IT 10 20 50 en secondes 100200 | 500 | 10? | 1mn 2mn 15mn 10° | | 108 | | 1h 2h 4h 8h A, | 24h CCT Temps 32) 5 10 20 en secondes 50 100200 | an Bane 500 10° 10* 15mn th 2h 4h 8h | | 10° | | | 24h 25 M 6 Steel Composition: 0.24% C - 1.58% Mn - 0.20% Si - 0.014% S 0.016% P - 0.20% Ni - 0.24% Cr - 0.02% Mo - 0.12% Cu 0.018% Co Grain size: 10-11 Austenitized at 875°C (1610°F) Composition: 0.24% C - 1.58% Mn - 0.20% Si - 0.014% § 0.016% P - 0.20% Ni - 0.24% Cr - 0.02% Mo - 0.12% Cu 0.018% Co Grain size: 10-11 Austenitized at 875°C (1610°F) for 30 min for 30 min 900 = Ac3 2 2 8 800 8 ral Ac, 700 88 | 600 18 18 9 S oO P 500 29 é 400 B Ms 3 ce 300 200 100 49 0 1 2 5 10 20 50 Temps en secondes IT 100200 500 10° Vee mn 2mn 15mn 10* 10° ale le et | 1h 4h Bh 24h 2h 1 CCT 2 5 10 20 50 100200 Temps en secondes | mn SOURCE: 500 10° | 2mn Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 15mn 10° 105 | | | | | 1th 2h 4h Bh 24h Atlas of Time-Temperature Diagrams ie 10 N 14 Steel oye Composition: 0.11%C - 0.44% Mn - 0.22% Si - 0.007% S 0.010% P - 3.47% Ni - 0.10% Cr - 0.04% Mo - 0.15% Cu 0.007% Al Grain size: 10 Austenitized at 900°C (1652°F) for 30 ! min 900 ~ Composition: 0.11% C - 0.44% Mn - 0.22% Si - 0.007% S 0.010% P - 3.47% Ni - 0.10% Cr - 0.04% Mo - 0.15% Cu Grain size: 10 Austenitized at 900°C (1652°F) for 30 min 900 a ‘ 800 ae Cc; * oa ae SUSURSHINASURADE | —" = SAO AN BEAN 2 pele cea a ea —__ 700 : 600 = 500 et 4 ae ee oes ae ee V At F vit i ane Pa 300 — | | et P| $a (el Acy = 670°C | | Imn 2mn \ 300 ~ 200 100 SD AED AEO ED ie en secondes 15mn Ea Ms — Temps \’ 50 08. 0 IT | Ve s | i‘ ay Noe See \| 2 ae 200 2 i |_— A = 500 Bae 4 V2 a A 600 At+C SiS i= \ =| ql i in 1 ' | A+F+4IC : Ms 7] Ac, ei EE eli bo SJ ie ovaine HRC 3 ih | | | | | th 2h 4h Bh 24h Acg = 820° 1 Temps 2 5 33 28 23] Sas 10 20 en secondes | CCT eee eee 50 100200 500 10° | Anon isma 10° 10° | | | | | fh Dhan sh oan M, = 435°C Z10N Composition: 0.10% C - 0.46% Mn - 0.33% Si - 0.011% S 0.025% P - 5.00% Ni - 0.23% Cr - 0.04% Mo - 0.14% Cu Grain size: 10 Austenitized at 850°C (1562°F) for 30 min 5 Steel Composition: 0.10% C - 0.46% Mn - 0.33% Si - 0.011% S 0.025% P - 5.00% Ni - 0.23% Cr - 0.04% Mo - 0.14% Cu Grain size: 9 Austenitized at 850°C (1562°F) for 30 min Dureté Rockwell 24 HRC Température °C en Température °C en HRC]39 37 33 27 26 [231 225 ‘ 1 IT, 2. 5 Temps en secondes Acy = 630°C SOURCE: 10 20 50 100200 500 10° ? | cot oe: OEE nag Ee = ° Acg = 775°C ? a , aOR 1 SER CCT ea 2 5 Kade ornciiane 10 20 214]HV] eal ae iS [ales 50 100200 ae 1mn 2mn rey Mg, = 410°C Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 500 Dice 15mn 105 10° 10° th 2h 4h 8h 24h Atlas of Time-Temperature Diagrams 170 Z10N 9 Steel Composition: 0.09% C - 0.51% Mn - 0.27% Si - 0.008% S - Composition: 0.09% C - 0.51% Mn - 0.27% Si - 0.008% S - 0.010% P - 9.00% Ni - 0.05% Cr - 0.03% Mo - 0.13% Cu - 0.010% P - 9.00% Ni - 0.05% Cr - 0.038% Mo - 0.13% Cu 0.012% Al Grain size: 11-12 Austenitized at 790°C (1454°F) for 0.012% Al Grain size: 11-12 Austenitized at 790°C (1454°F) for 30 min 30 min =7 =$ 900 900 8 c 800 2 ena IL lI 5 a cs Ac.3 600 2 aliens = Se 700 is i 600 Ae, Ac, 2 el = A+ ° <5 500 5 500 »2 — = | emt Nf|eee Nea a= [ + o 5 é5 = 400 = 400 £ 200 es 10\15 300 ae 200 ile Fr Ajt+M levis 8 200 | fal A+F 2 Ms Z 45 P a ee 85 96 . Le 100 100 0 1 2 § 10 20 50 500 10° | | Temps en secondes IT 100200 1S5mn Ima 2mn 10° | th | | 2h 4h ° © Acy - 530°C 10° Acg = 710°C | Bh M, & | 2 Te 24h = 345 38 40 40 42 42 HRC] 41,5 ae ® Cc CCT Temps saa = 10 20 en secondes a, 500 weiss th 15mn 1mn 2mn 10° 10° 10? Bh 2h 4h 24h 32 C 4 Steel Composition: 0.32% C - 0.76% Mn - 0.30% Si - 0.010% S 0.021% P - 0.26% Ni - 1.08% Cr - 0.02% Mo - 0.17% Cu Grain size: 10-11 Austenitized at 850°C (1562°F) for 30 min Composition: 0.32% C - 0.76% Mn - 0.30% Si - 0.010% S 0.021% P - 0.26% Ni - 1.08% Cr - 0.02% Mo - 0.17% Cu Grain size: 10-11 Austenitized at 850°C (1562°F) for 30 min Rockwell Dureté °C Température en Température °C en 300 200 I\ 100 \_I\ 50 45 38 31||224 193182171 176| HV| aro aS 55 5 2 1 Temps en secondes IT ‘ Acy = 755°C SOURCE: 10 20 100200 50 | mn 500 10° | 2mn | 15 mn Acg = 810°C 1th 10* | | | 10* | 4h 8h 24h 2h ee ccT 5 10 20 Sian Temps en secondes Imn 500 10° 10* | | | 2mn 1mn th M, = 350°C Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 | 2h 10° 4h Bh 24h Atlas of Time-Temperature Diagrams 17] 38 C 4 Steel Composition: 0.38% C - 0.74% Mn - 0.26% Si - 0.010% S - 0.023% P - 0.26% Ni - 0.90% Cr - 0.04% Mo - 0.17% Cu Grain size: 9-10 Austenitized at 850°C (1562°F) for 30 min 900 — = | Ac, —— | | eee 4 A 600 § 500 oN “A = Za | Be) pty i a i bas E ——| |e - —+ e Ac. 3 aye 3 4 Ac, 83 HRB SELL: ~ 700 92 21 HRC 600 9 Seis Cay a 5 500 Wiles : 400 [ + FF \ s 306 is — gai —+_—, 9 Seer aed i 700 900 2 Ac. 800 Composition: 0.38% C - 0.74% Mn - 0.26% Si - 0.010% S$ - 0.023% P - 0.26% Ni - 0.90% Cr - 0.04% Mo - 0.17% Cu Grain size: 9 Austenitized at 880°C (1616°F) for 30 min 4 2 +] = —4 37 a 400 re * Me sf r ie 42 Mg 50 300 AiM 200 alt 100 | 200 1 100 F sa ie a? 5 10 20 50 Temps en secondes 100200 | 500 | 15mn Imo 2mn IT Acy = 750°C 10? 10° | th | iW i iciei.ged 105 | 2h 4h Acg = 805°C | 8h i CCT 24h 2 5 10 20 50 Temps en secondes 100200 | 500 | Aa, DB 10° 10* Ane city Pe City i | | 10° | | | PLD Mg = 325°C 42 C 4 Steel Composition: 0.44% C - 0.80% Mn - 0.31% Si - 0.013% S - Composition: 0.44% C - 0.80% Mn - 0.31% Si - 0.013% S - 0.030% P - 0.46% Ni - 0.96% Cr - 0.05% Mo - 0.18% Cu Grain 0.030% P - 0.46% Ni - 0.96% Cr - 0.05% Mo - 0.18% Cu Grain size: 9 Austenitized at 850°C (1562°F) for 30 min size: 9 Austenitized at 850°C (1562°F) for 30 min io 900 Es 8 c 3 800 a Ac; 92 HRB 700 Ac, A 2 22,5 HRC [Nw 5\ 30 600 3 2 0} | Att FitC 2 oO e3. 33 — 400 | 5 800 43 |= 0 oe é i= =a ? ' 214 [HV AA é \ Ms 51 am APA RLIES I | Pleats Alt M 200 | + ee gyoe ee 100 { HRC|59 5956535042 3836 27 2018 62 0 1 IT oe Acy = 750°C 2 5 ae 10 20 100200 50 m a 500 | 15 mn Ac3 = 790°C | i 2h 4h 2 1 haa 10° Bh 24h CCT emps ee en 5 secondes - 10 20 500 sla 1mn 2mn M, = 310°C Paris, France, 1974 Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, EE SOURCE: i. ha Y 15mn th 2h 4h Bh 24h Atlas of Time-Temperature Diagrams 172 100 C 6 Steel Composition: 1.00% C - 0.30% Mn - 0.27% Si - 0.030% S - Composition: 1.00% Cc = eS 0.013% P - 0.21% Ni - 1.71% Cr - 0.04% Mo - 0.14% Cu - 0.013% P - 0.21% Ni - 1.71% (1562°F) for 30 min (1562°F) for 30 min 0.010% V - 0.02% Ti Grain size: 7-8 Austenitized at 850°C 0.010% V- 0.02% Ti Grain size: ee a Austenitized 7-8 S- re as Bear 900 = 900 eee” ee BLA 2 ® 800 800 a Ac, Ac, 700 700 21 HRC 29 600 600 37 42 9° oO < 500 = 500 34,5 : 38 : aay a28 E 400 47 = 300 53 Ms 60 § 300 Ms \\| ane 200 a100 “ ‘ - 66 0 T IT Lae i E ee Acy = 740°C | ao Hea eee Cian | SU ial | 15 2) fi) i CCT waa Bn P es a \\ \K NO TRF Y i AW \\ i fe cee \ WE 238|HV| mA Kaede 10) 201 ca aes 50 an 2mn 500 Rae! si : es | . 15mn 1h 2h 4h 8h 24h M, = 240°C Z 40 C 14 Steel Composition: 0.42% C - 0.16% Mn - 0.44% Si - 0.049% §S - Composition: 0.42% C - 0.16% Mn - 0.44% Si - 0.049% S - 0.042% P - 0.27% Ni - 13.40% Cr - 0.08% Cu Grain size: 6-7 Austenitized at 1000°C (1832°F) for 10 min 0.042% P - 0.27% Ni - 13.40% Cr - 0.08% Cu Grain size: 6-7 Austenitized at 1000°C (1832°F) for 10 min 900 = z Ac, 900 Ac, = ve 800 Cy, 89 HRB 700 21 96 700 20 HRC 600 600 2 : 500 o s 500 fe a 400 £ E 400 2 300 i 300 Meo 200 200 Mso 100 100 56 0 Tea 5 apie ag IT 10820) SO : ee 500 10? 1ma 2mn ENGL re 7 ie Lalani) esa 2c | A 1 CCT Aci 825°C SOURCE: Mg = 255°C 2 5 10 20 Temps en secondes Myo = 205°C Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 50 100200 | 500 10? | | 1mn 2mn 15mn 1974 10° 10° | 1h | | | 2h 4h Bh | 24h Atlas of Time-Temperature Diagrams 173 60 SC 7 Steel Composition: 0.55% C - 0.88% Mn - 1.52% Si - 0.005% S - 0.032% P - 0.07% Ni - 0.74% Cr - 0.01% Mo - 0.03% Cu Grain size: 9 Austenitized at 850°C (1562°F) for 30 min Composition: 0.64% C - 0.74% Mn - 1.61% Si - 0.020% S - 0.016% P - 0.07% Ni - 0.61% Cr - 0.10% Cu Grain size: 10 Austenitized at 850°C (1562°F) for 30 min Dureté Rockwell Température °C en Température °C en T 1 2 5 10 20 Temps en secondes 50 I 100200 IP al (hon Acy = 765°C 500 10° ertiatn SSI Ly 10° alae Ue eae Acg = 800°C 10° ns a 1 2 Temps CCT 5 10 20 50 en secondes 100200 | | Iman 2mn 500 10° 15mn 10° | th 10° | | 2h 4h | 8h | 24h M, = 265°C 40 CV 5 Steel Composition: 0.38% C - 0.41% Mn - 0.21% Si - 0.010% § 0.013% P - 0.03% Ni - 1.29% Cr - <0.10% Mo - 0.05% Cu 0.120% V Grain size: 9-10 Austenitized at 925°C (1700°F) for Composition: 0.38% C - 0.41% Mn - 0.21% Si - 0.010% S 0.013% P - 0.03% Ni - 1.29% Cr - <0.10% Mo - 0.05% Cu 0.120% V Grain size: 9-10 Austenitized at 925°C (1700°F) for 30 min 30 min . 900 $ 3 Ac; 3 800 a Ac, 96,5 HRB 700 24 HRC 4 600 32 4 29 7 31 £ 39,5 § £ 400 F 5 £ g E 2 45,5 < 500 Ms 300 Mso 200 100 |_| 96,5 1 IT 2 5 Temps en secondes SOURCE: 10 20 50 100200 io mn puss 500 A i ie mn ee h (ea SE aT 0 10* 10* 10° 1\ 58 5756 1 pl cor 2 10 20 5 S$ ; | 50 | ee Imn 2mn 1974 Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 52473 500 10° | A | 15mn 1h 2h 4h i Bh 24h Ailas of Time-Temperature Diagrams 174 50 CV 4 Steel Composition: 0.53% C - 0.81% Mn - 0.27% Si - 0.016% S 0.024% P - 0.07% Ni - 1.09% Cr - 0.01% Mo - 0.11% Cu 0.100% V Grain size: 9 Austenitized at 850°C (1562°F) for 30 Composition: 0.53% C - 0.81% Mn - 0.27% Si - 0.016% S 0.024% P - 0.07% Ni - 1.09% Cr - 0.01% Mo - 0.11% Cu 9.100% V Grain size: 9 Austenitized at 850°C (1562°F) for 30 min mim 900 = © 3 Ac;3, S 800 2 =] x 8 a Ac, 700 90 HRB 600 30 20 HRC 33 w <6 2 2 © 500 € heo 400 30 3 34 Tenpérature °C en 43 300 50 Ms 200 100 61,5 0 din Temps Be 5 10 20 50 100200 en secondes IT Acy == 755°C 755° | | Imn 2mn 500 10° 15mn Acg == 10° 1 108 | | | | | wh 2h 4h Bh 24h 800°C 2 § 10 20 Temps en secondes 50 100200 | 500 10° 2mn 15mn 1mn CCT 10° 10° | | | | | 1h 2h 4h Bh 24h Mg, a = 285°C 90 MV 8 Steel Composition: 0.81% C - 2.10% Mn - 0.29% Si - 0.003% §S - 0.016% P - 0.06% Ni - 0.02% Cr - 0.01% Mo - 0.04% Cu 0.17% V - 0.05% W Grain size: 12 Austenitized at 800°C (1472°F) for 30 min Composition: 0.81% C - 2.10% Mn - 0.29% Si - 0.003% S 0.016% P - 0.06% Ni - 0.02% Cr - 0.01% Mo - 0.04% Cu 0.17% V - 0.05% W Grain size: 12 Austenitized at 800°C (1472°F) for 30 min 900 g —— | wd es— Rockwell Dureté eaec| Ea Je / 600 ae ea Att F(R A ——— 98 HRB } 22 HRC te iL 25,5 315 & _ ~ 500 —— — / { Ss 34 | : 400 Ven aos = SK 37 sieell 41 = Température °C en °C Température en ~N ra.| Se ir | |AM [ | 64 pez: IT Acj = 5 Temps en secondes 10 20 50 100200 | | Imo 2mn 500 | Hmn | Th | 2h 53932 10* 10* 10° | 4h | Bh | 24h ih ccrT 730°C SOURCE: Temps en 2 5 10 20 d secondes M, = 170°C Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 50 100200 | | Imn 2mn 1974 500 10? 15mn 10* 108 i ot th 2h 4h | Bh 24h Atlas of Time-Temperature Diagrams 175 15 MDV Composition: 0.14% C - 1.20% Mn - 0.23% Si - 0.017% S - 4-05 Steel = 0.065% V Grain size: 8 Austenitized at 900°C (1652°F) for 30 0.016% P - 0.15% Ni - 0.10% Cr - 0.48% Mo - 0.15% Cu - Composition: 0.14% C - 1.20% Mn - 0.23% Si - 0.017% S 0.016% P - 0.15% Ni - 0.10% Cr - 0.48% Mo - 0.15% Cu 0.065% V Grain size: 8 Austenitized at 900°C (1652°F) for 30 min min 900 Ac = ss : 900 Ac; oO g 8 ac 2 S| 800 ‘ Ac, ~_ coats 700 —> | ++ | \ \ AF ae = i A+IF + aoe 90 Se j— 95 HRB \} Pgs © < S< — BE A 600 x a —— 500 wy 600 == 4 g RrIs é / eal A} FI+C lL <stes 21 HRC a Ee 400 24 i AltM Température °C en 300 200 200 100 100 | HRC| 43 | 36 29 21][244 236 230 217/HV|186 173 141 (0) 1 2 Temps 5: 10 20 50 en secondes 100200 | IT fe} Acy —= 740°C 500 | 2mn Imo 10° 15mn 10° | 1th | 2h 108 | 4h Acg == 885°C | Bh 1 | 24h 2 5 10 20 Temps en secondes CCT 50 100200 hel 1mn 2mn 500 10° 1Smn 10° i! th 2h 4h 10° | Bh 24h M, = 440°C 16 MC 5 Steel Composition: 0.18% C - 1.10% Mn - 0.27% Si - 0.025% § 0.023% P - 0.28% Ni - 1.02% Cr - 0.04% Mo - 0.18% Cu Grain size: 10 Austenitized at 850°C (1562°F) for 30 min Composition: 0.18% C - 1.10% Mn - 0.27% Si - 0.025% S 0.023% P - 0.28% Ni - 1.02% Cr - 0.04% Mo - 0.18% Cu Grain size: 10 Austenitized at 850°C (1562°F) for 30 min ~ 900 = 3 8 ses ae Le a Ac; 25 5 800 a 700 | A\+F |A \ t 600 alt ss i IE, SS Ac, = > 87 HRB 91 . SS4 tCALFHIC 96,3 > aeNX ro) \ aT pe zat = 500 + s —- =: a o i 2 Al+ Fr+ S 2 400 ‘S 31 HRC |C BD aes et a Température °C en A|+ M 300 200 100 iat 47 0 1 IT cs Acq = 740°C SOURCE: 2 5 aca 10 20 50 100200 i 1mn 2mn = si | mn 1h 500 ° Acg = 835°C ee | 4h Bh 2h 43 3935 30 27 21] 205177 1 fee es ee ae ae ae ip 1 24h 1 e CCT Temps 2 5 en secondes 10 20 50 100200 tl 500 3 2mn mn 1mn th Sp | 108 | 4h Bh 24h 2h M, = 400°C Paris, France, 1974 Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Nee EERE! Atlas of Time-Temperature Diagrams 176 a 0000S i 90 M 5 Steel Composition: 0.93% C - 1.25% Mn - 0.20% Si - 0.007% S - 0.020% P - 0.24% Ni - 0.60% Cr - 0.15% Cu Grain size: 11-12 Austenitized at 825°C (1520°F) for 30 min a Composition: 0.93% C = Pe Bisa al Austenitized at S 900 2 e 800 ue a POUT 0.020%P - 0.24%825°C Ni - (1520°F) 0.6 a for 30imin = 800 fal fat Aci Ac, 700 fee A ce Aroo\oo'y? 27 HRC 600 aoe 600 ato 00 1 39 9° \ @ See 2 é 3 € 2 400 . 38 z 500 5 42 iS rofl ie 5\! | BO 3 Y C eee :| HOY 51 300 20HR 300 56 1 61 200 Ms 200 100 iy [elite Sea Ms A +|M aN Ske £-| {| 100 5 ae i} TT, 2 5 10 20 Uempciensecondes 50 100200 500 ee dma 2mn 10° 1Smn 10* Lionel 1h HRCI|66 65 65 575640 34 36 31 10° 2h 4h Bh 0 1 24h 2 5 “care eh eects 10 20 CCT 50 100200 500 10° tmn 2mn 15mn i 25 25 = Pa 1h 10° 10° | 2h 4h 8h 24h 50 NC 2 Steel Composition: 0.50% C - 0.78% Mn - 0.40% Si - 0.027% S - Composition: 0.50% C - 0.78% Mn - 0.40% Si - 0.027% S - 0.010% P - 0.48% Ni - 0.52% Cr - 0.08% Mo - 0.12% Cu Grain 0.010% P - 0.48% Ni - 0.52% Cr - 0.08% Mo - 0.12% Cu Grain size: 10 Austenitized at 825°C (1520°F) for 30 min size: 10 Austenitized at 825°C (1520°F) for 30 min 900 = 900 800 : 800 Ac; Ac, 3 Ac, Ac, 2 700 700 20 HRC 600 27 30 9 s 500 600 9 s E 400 FE 36 500 : 400 e 44 Ms 300 51 300 Ms Mso 200 200 100 100 [| KN 605955 36 3430222120]/Hv| a 0 0 1 IT 2 5 Temps en secondes SOURCE: 10 20 Sa mn 500 2mn 10? 15mn Le 1h 2h 4h 108 Bh | 24h a 1 Cc CT 2 5 10 20 Temps en secondes Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, ies 50 100200 | | Ape 1974 210 ieee 500 10? Cty 10° | erie | 105 | einerine| exe| Atlas of Time-Temperature Diagrams a7 ———— a 35 NC 6 Steel eee 0.41% C - 0.55% Mn - 0.24% Si - 0.007% S - 014% P - 0.93% Ni - 0.80% Cr - 0.06% Mo - 0.10% Cu ee V Grain size: 11-12 Austenitized at 900°C (1652°F) for Composition: 0.41% C - 0.55% Mn - 0.24% Si - 0.007% $ - 0.014% P - 0.93% Ni - 0.80% Cr - 0.06% Mo - 0.10% Cu 0.010% V Grain size: 11-12 Austenitized at 900°C (1652°F) for 30 min wey 900 a 900 z ; Nn Ac, $ Ac, sinian (really F rn 700 700 a 600 ww A 1 93 HRB | IAS (12 600 99 10 22 HRC & S) 2 2 Se cee < 500 é 35,5 2 5 400 P Ms 41 Mg H 300 50 Ann 200 at 200 SS -+ AkM Jt 5 65\ 60 89 ; 30 5\2 1 Mso = ] r\+ ec A ies 400 8 5E : = a a =: es Myo 100 100 i 59 HRCI5S 30 27 26 | 192191 545139 JHV 0 1 2 5 10 20 500 Pl Temps en secondes IT 100200 50 10° | qin Zar 15mn 10° | Th 0 108 ie 2h 4h 8h | 2 1 24h 5 avempsteniecconcles CCT 10 20 50 500 100200 fl tmn 2mn 10? 15mn 104 10° he hr tie 1h 2h 4h 8h | 24h 10 NC 6 Steel Composition: 0.11% C - 0.50% Mn - 0.30% Si - 0.005% § - Composition: 0.11% C - 0.50% Mn - 0.30% Si - 0.005% § - 0.017% P - 1.59% Ni - 0.64% Cr - <0.10% Mo - 0.31% Cu - 0.017% P - 1.59% Ni - 0.64% Cr - <0.10% Mo - 0.31% Cu - <0.03% V Grain size: 9 Austenitized at 925°C (1700°F) for 30 <0.03% V Grain size: 9 Austenitized at 925°C (1700°F) for 30 min min S s 900 900 Ac; 8 Ac, 800 Fy 800 Ac, Ac, =o —_— j—|— +} 82 HRB 600 _ 65 |\- At+C 5 } 600 if oo va ‘A A a = — 700 700 ‘ira —— aes 80 ; 86 g = 500 91 § =o400Me - y 2 s 500 99 £ 23,5 HRC &a ca +\E 25 = — 0 \ P| A FM \ 300 300 200 200 iby 100 ial HRC] 0 I rears 21: seeer y SOURCE: ae abies 1mn 2mn - 0? 10* ale | 2h 4h Bh ; I st 15mn 1h 10) 10° 24h 1 2 5 Taraaet an cecondes CCT j 25 10 20 25/223206B181156 50 100200 oa tmn 2inn Paris, France, 1974 Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, EE ee ee 145 145 136 105 10° 500 10° 15mn HV pire th 2h 4h ot 8h | 24h a. Atlas of Time-Temperature Diagrams 178 16 NC 6 Steel Composition: 0.15% C - 0.55% Mn - 0.30% Si - <0.010% S 0.013% P - 1.38% Ni - 0.82% Cr - 0.09% Mo - 0.11% Cu Grain size: 8-11 Austenitized at 900°C (1652°F) for 30 min 900 Composition: 0.15% C - 0.55% Mn - 0.30% Si - <0.010% S - 0.013% P - 1.38% Ni - 0.82% Cr - 0.09% Mo - 0.11% Cu Grain size: 8-11 Austenitized at 900°C (1652°F) for 30 min =o z Acy 8 ac ‘@ Fd 800 > a Ac, 700 82 HRB 600 85 600 S §< 500 3 o 22 HRC = 400 25 500 atc Température °C en 300 200 200 100 100 42 0 1 2 5 10 20 50 Temps en secondes 100200 500 10° 2mn 15 mn ag | 4h 8h ie 0 | 1mn IT Acy = 740°C Th 2h Acg = 835°C (hy 24h M, = 395°C Temps CCT 2 5 10 20 en secondes 50 | Imn 100200 | 2mn 500 10° 10* 10° | | | | | | 1S5mn th 2h 4h Bh 24h 20 NC 6 Steel Composition: 0.19% C - 0.55% Mn - 0.30% Si - 0.010% S - 0.018% P - 1.52% Ni - 0.81% Cr - <0.10% Mo - 0.20% Cu <0.030% V Grain size 10-11 Austenitized at 850°C (1562°F) for 30 min Composition: 0.19% C - 0.55% Mn - 0.30% Si - 0.010% S - 0.018% P - 1.52% Ni - 0.81% Cr - <0.10% Mo - 0.20% Cu <0.03% V Grain size: 10-11 Austenitized at 850°C (1562°F) for 30 min 900 =o z= 8 iS Ac; 800 2 ra} Ac, 700 82 HRB 600 89 600 YAS) o c o 500 500 2 26 HRC 2 3€ 400 F 30 Ms 400 Température °C en 300 Mso 300 200 200 Ms 100 100 44 0 1 2 5 Temps en secondes IT Acy = 740°C SOURCE: 10 20 100200 50 10% 10* 10° 500 | | | | | | | | Imn 2mn 15mn 1h 2h 4h Bh 24h ie) Acg —= 820°C 1 CCT 2 5 10 20 Temps en secondes 50 100200 aa mn 2mn M, = 375°C Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France 1974 500 10° 15mn 10* 10° SR ee ae th 2h 4h Bh 24h Atlas of Time-Temperature Diagrams 179 14 NC 11 Steel Composition: 0.12% C - 0.51% Mn - 0.29% Si - 0.014% S$ - 0.013% P - 2.69% Ni - 0.70% Cr - 0.06% Mo - 0.18% Cu Grain size: 9-11 Austenitized at 850°C (1562°F) for 30 min 900 ~ o a x Acs c = Composition: 0.12% C - 0.51% Mn - 0.29% Si - 0.014% S - 0.013% P - 2.69% Ni - 0.70% Cr - 0.06% Mo - 0.18% Cu Grain size: 9-11 Austenitized at 850°C (1562°F) for 30 min 900 8 800% 2 Ac; 5 800 (a) Ac, 700 700 Ac, od 85 HRB ° 5 600 89 3 500 s 500 o 3 2 3 rs 8 a € fF 3€ 400 400 Ms Ms 32,5 HRC 300 300 200 200 100 100 228 42 ie) 2011 te) 1 Temps 2 5 10 20 50 100200 en secondes IT 730 Ac,cy == 730°C 500 10? 10* 10° ! | i | | | | Imn 2mn 15 mn th 2h 4h Bh Acg c3 == 800°C 1 24h CCT 2 5 10 20 Temps en secondes 50 100200 | 500 | 10° 10* | 1mn 2mn | 15mn 1h | 10° | | 2h 4h Bh | 24h M, a = 380°C 35 NC 15 Steel Composition: 0.36% C - 0.53% Mn - 0.32% Si - 0.010% S - Composition: 0.38% C - 0.44% Mn - 0.22% Si - 0.003% S - 0.013% P - 3.74% Ni - 1.86% Cr - 0.05% Mo - 0.13% Cu - 0.018% P - 3.40% Ni - 1.50% Cr - 0.15% Mo - 0.13% Cu - 0.002% Ti Grain size: 9-11 Austenitized at 850°C (1562°F) for 0.015% V Grain size: 8 Austenitized at 850°C (1562°F) for 30 30 min min Rockwell Dureté 600 © i= 500 © te =] s a a iS eo 400 Température °C en \h 575756 2 1 IT eee Acy = 685°C Msg = 205°C SOURCE: 5 10° 50 | er 20 =. mn 2mn 500 15 mn Acg = 760°C 3 ha 10° Th 2h 4h Bh M, 24h li CCT a 5 Temps en secondes 10 20 100200 50 | | tmn 2mn = 265°C Mgg = 150°C 1974 Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 500 15mn 10° 10* 10° | 1h | | | 2h 4h Bh | 24h Atlas of Time-Temperature Diagrams 180 30 NC 11 Steel Composition: 0.32% C - 0.30% Mn - 0.20% Si - 0.008% S 0.017% P - 2.95% Ni - 0.69% Cr - <0.10% Mo - 0.31% Cu = <0.030% V - 0.06% W Grain size: 12 Austenitized at 850°C (1562°F) for 30 min Composition: 0.32% C - 0.30% Mn - 0.20% Si - 0.008% S 0.017% P - 2.95% Ni - 0.69% Cr - <0.10% Mo - 0.31% Cu = <0.030% V - 0.06% W Grain size: 12 Austenitized at 850°C (1562°F) for 30 min = 900 3 800 fa} Acs 900 g é 800 Acs ] 700 a p—L Ac, Ac, 700 A }—+ A\+ 600 93 HRB ee SS = A+F+C\go Fao A A 600 o 15 [s) 2\\5 ‘ 500 ¢ 500 s 2 200 100 peels Aaah Ae E 400 39 Y ce vy boARM —4 + AW F|\+c 32 HRC i 200 Meo i - L 5: abe eek \ | (60 \70) XE > + = 100 sé HRCI505050 47 40 3331 26 25 23||HV175 0 0 i) IT : fem E £ 400 ‘ bas 2 5 10 20 Temps en secondes ea. 500 eee Acy = 720°C 10° , et eete Ty MMR | NS ST Acg = 765°C 1 ti zh ccT 2 5 10 20 Temps en secondes sateaees nl 500 is ay is Re kite Oza ee at M, = 320°C 50 CD 4 Steel Composition: 0.52% C - 0.60% Mn - 0.40% Si - 0.011% S 0.013% P - 0.17% Ni - 1.00% Cr - 0.22% Mo - 0.38% Cu <0.05% V Grain size: 10-11 Austenitized at 850°C (1562°F) for Composition: 0.52% C - 0.60% Mn - 0.40% Si - 0.011% S 0.013% P - 0.17% Ni - 1.00% Cr - 0.22% Mo - 0.38% Cu <0.05% V Grain size: 10-11 Austenitized at 850°C (1562°F) for 30 min 30 min 900 = 3 i Ac; z Ac, > 800 a 700 91 HRB 20 HRC 600 26 ° oO g 500 5 5 400 é 46 300 51 Ms 200 100 : [\ 63 0 1 2 sy ieee oe IT 10 20 50 100200 ial 1mn 2mn 500 10° | 15mn 10° oven 1h 2h 4h met Bh 10° | 24h ccT 1 2 5 10 20 Temps en secondes SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 50 100200 ral ty 1974 500 10° ye 10° ‘ ny fis A 10° AR Atlas of Time-Temperature Diagrams 18] 18 CD 4 Steel — Composition: 0.17% C - 0.80% Mn - 0.23% Si - 0.025% S 0.020% P - 0.21% Ni - 1.06% Cr - 0.24% Mo - 0.18% Cu - 0.006%2 V - 0.032% Ti Grain size: 9-10 Austenitized at 925°C (1700°F) for 30 min Composition: 0.15% C - 0.86% Mn - 0.28% Si - 0.010% S 0.014% P - 0.14% Ni - 0.84% Cr - 0.20% Mo Grain size: 7-8 Austenitized at 900°C (1652°F) for 30 min = 3 900 Ac 3 = c 800 8 fa} Ac, 72 HRB 700 78 600 ee oO ° s 500 & 23 HRC 5 £ es = 400 F § 28 Ms Ee me 300 200 100 42 ) 1 2 5 5 emps en secondes " IT 10 20 50 100200 Pewa nau 500 4 i Sue LES 10° Fede LYN 5 iiemps en secondes d 10 20 50 100200 Aieafl 500 a | ha | ‘eam ain ap by als te BE Mg = 385°C Acg = 845°C Acy = 755°C 2 1 CCT 25 CD Composition: 0.25% C - 0.68% Mn - 0.21% Si - 0.090% S - 0.018% P - 0.19% Ni - 1.10% Cr - 0.22% Mo - 0.16% Cu Grain size: 11 Austenitized at 900°C (1652°F) for 30 min 4 Steel Composition: 0.25% C - 0.68% Mn - 0.21% Si - 0.090% S 0.018% P - 0.19% Ni - 1.10% Cr - 0.22% Mo - 0.16% Cu Grain size: 7-9 Austenitized at 900°C (1652°F) for 30 min Rockwell Dureté 84,5 HRB 85 95 o ¢ c 5 25 oO ° °5 3 27,5 HRC :fet 31 ra5 38E \ e ~] a) it srusut 3320 29020 195 1 49,5 IT 1 2 5 Temps en secondes 0 20 Acq = 750°C SOURCE: 50 100200 ‘ mn! Fmn 500 10° ie — (e} Acg = 820°C 10 | | | | din Mo ieath eta 105 | heneaate ie CCT (228 foo uni0720 Temps en secondes en 100700 500 10° 1smn 1mn 2mn fe) = 365°C M, as France, 1974 Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, a ni, 1h 2h 4h 108 8 oir Atlas of Time-Temperature Diagrams 182 35 CD Composition: 0.37% C - 0.79% Mn - 0.30% Si - 0.010% S$ - 0.019% P - <0.17% Ni - 1.00% Cr - 0.18% Mo - 0.10% Cu Grain size: 8-9 Austenitized at 850°C (1562°F) for 30 min = 2 8 4 Steel Composition: 0.36% C - 0.77% Mn - ene 0.010% fe 0.019% Pi= 0.167% Nia O0670Cr for00-28 Oe 30 min Austenitized at 850°C (1562°F) 900 C Ac; Fe 800 a NS Ac, 87,5 HRB 700 92 25 HRC 600 9 26,5 é 33 = 400 - 45 "Ms 49 300 5 9 S apen Mso 200 100 | ef 3022 226 187 BSS 0 1 IT 2 5) 105520 eco Acq = 750°C 7 ata Imn 2mn 500 v | a 15 mn Th 2h \ 4h Acg = 800°C 8h 1 24h CCT 2 Ue 5 10;°20 set 50 100200 500 es aie 10° |HV 10* 15mn 10* as nf A ut ays M, = 335°C 100 CD 7 Steel Composition: 1.07% C - 0.32% Mn - 0.31% Si - 0.016% S - 0.012% P - 0.17% Ni - 2.05% Cr - 0.18% Mo - 0.13% Cu Grain size: 9-10 Austenitized at 850°C (1562°F) for 30 min 900 Composition: 1.07% C - 0.32% Mn - 0.31% Si - 0.016% S - 0.012% P - 0.17% Ni - 2.05% Cr - 0.18% Mo - 0.13% Cu Grain size: 9-10 Austenitized at 850°C (1562°F) for 30 min 3 900 zg é : i om a Ac, Ao, 700 25 HRC eS 700 A se 600 38 600 ig 9 Sane 2 2 38,5 2 E 400 42 oy 48 300 515 Ms 58 200 \ 2 Asc A e 20 100 G 10 a0 Ms Alec kM _ path IE eee =- : 67 2 5 10 20 50 i mn Temps en secondes IT Acyj = 750°C 100200 mn 500 10° 15 mn ; : Mg = 245°C 10° HRC] 10° UP pet sl ail 1h 2h Bh 24h 4h g 7 1 emps 2 5 10 20 —— rrcve 67 67 63 60 ) Het 4542 39 3431 27 26 500 op | & 1Smn th 2h | ig en secondes CCT SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, Se 5 a 100 1 IES 80 = 500 Mso ; 700 7\Ma vleWF + € \ oa 100 ee oO 5 500 £ A a ee Tmo 1974 2mn 4h Bh 24h Atlas of Time-Temperature Diagrams 183 30 CD Composition: 0.30% C - 0.63% Mn - 0.29% Si - 0.016% § 0.010% P - 0.17% Ni - 2.99% Cr - 0.43% Mo - 0.13% Cu 12 Steel es Composition: 0.30% C - 0.63% Mn - 0.29% Si - 0.016% S - 0.010% P - 0.17% Ni - 2.99% Cr - 0.43% Mo - 0.13% Cu Grain size: 8-10 Austenitized at 950°C (1742°F) for 30 min Rockwell Dureté 97 HRB 20 HRC °C Température en Température °C en jue2 emps iTi es. en BS 10 201950 secondes ae | : Ame Bar Acy = 800°C Ms0 = 270°C 500 i 15mn | a | . 1h 2h 4h Bh 24h Acg = 835°C Mgo = 190°C (0) 1 a & Wop COTM Gh was oe rah Me a 15 mn He : i i a or M, = 325°C Z 15 CD 5-05 Steel Composition: 0.11% C - 0.47% Mn - 0.24% Si - 0.015% § - Composition: 0.11% C - 0.47% Mn - 0.24% Si - 0.015% S - 0.016% P - 0.23% Ni - 4.48% Cr - 0.52% Mo - 0.15% Cu Grain 0.016% P - 0.23% Ni - 4.48% Cr - 0.52% Mo - 0.15% Cu Grain size: 9 Austenitized at 900°C (1652°F) for 30 min size: 9 Austenitized at 900°C (1652°F) for 30 min Rockwell Dureté ~ wo ae D fos} Na 700 [oa]B 600 ° 5 < 500 2 2 © a— 400 2o oO § 2 2 & E2 ‘i a Ms 300 Mso 200 100 1 IT 2 5 ace ya Rn 10 20 50 oes | 1mn 2mn 500 10° : Le 15mn 1h 2h 4h | 108 Bh 24h : | SOURCE: Acg = 845°C areata feet lea é CCT Acy = 815°C 43 44 423938 _22)|230HV HRC]45 45 ue 2 10 20 ae emps en secon les eh a tmn 2mn M, = 345°C Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 500 10° 3 ie | i 15mn 2h 4h Bh 1h 10° 24h Atlas of Time-Temperature Diagrams 184 EE e en 45 SC 6 Steel Composition: 0.43% C - 0.95% Mn - 1.38% Si - <0.010% $ - 0.012% P - 0.03% Ni - 1.06% Cr - <0.10% Mo - <0.05% Cu - Composition: 0.48% C- 0.98% Mins Ore ° 5 ee Ce an : ess 0.012% P - 0.03% Ni - 1.06% Cr - <0. 0.035% V Grain size: 10-11 Austenitized at 925°C (1700°F) for 0.035% W Grain size: 10-11 Austenitized at 925°C 30 min 30 min 900 = 900 Acs te Acs ) for (1 2 en) 2 800 Ac, fa] Ac, 700 20,5 0,5 H HRC 700 A+ ; ss 23 600 A 31,5 9 = 500 2 400 39,5 fe 44,5 49 300 Mg 600 1 1S) = 500 lL 3 400 =F ++ ? A F C F \ | / 300 Ms L a“ BY 200 Moo. 100 _- _ 100 | 53 HRC} 0 : IT 0 8 ia Me bapateMr —|- 200 ar 1 2 a 10 20 ee Sac See OnNces 50 ios eo 500 10° | ae | i 1mn 2mn 1h 2h 4h Bh 24h 15mn 0 CCT 1 8 fem emps en 6 aon x 59 5857 5655493323 : 100 200 500 10° eae secondes Aaa 221/193 | of ire Grey |HV ae ai GD” | 45 SCD 6 Steel Composition: 0.45% C - 0.55% Mn - 1.31% Si - 0.005% §S - 0.013% P - 0.21% Ni - 0.60% Cr - 0.22% Mo - 0.27% Cu <0.05% V - trace Ti Grain size: 11 Austenitized at 900°C (1652°F) for 30 min Composition: 0.42% C - 0.70% Mn - 1.40% Si - 0.005% S - 0.015% P - 0.24% Ni - 0.68% Cr - 0.19% Mo - 0.03% Cu Grain size: 9 Austenitized at 880°C (1616°F) for 30 min Rockwell Dureté Température °C en Température °C en 45 52 IT § 10 20 1 2 cs sratinianteaccrd p: 50 100200 al2mn 1mn 500 10° 15mn ome 1th 2h 10° eS4hFee et Bh 10° | 24h CCT 1 2 6 Temps en secondes 10 20 50 | 100200 500 10° 2mn 15mn imn Acy = 770°C SOURCE: ° Acg ia = 860°C ° M, == 310°C Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 | 10* | | | | th 2h 4h 8h 10° | 24h Atlas of Time-Temperature Diagrams 185 45 MS 6 Steel pes as 0.45%C - 1.50% Mn - 1.34% Si - <0.010% S - Composition: 0.45% C - 1.50% Mn - 1.34% Si - <0.010% $ - 017% P - 0.03% Ni - 0.03% Cr - <0.01% Mo - 0.09% Cu - 0.017% P - 0.03% Ni - 0.03% Cr - <0.01% Mo - 0.09% Cu - 30 min 30 min 0.040% V Grain size: 8-10 Austenitized at 925°C (1700°F) for 0.040% V Grain size: 8-10 Austenitized at 925°C (1700°F) for 900 a 900 g 8 Ac; Ci Ac, 800 : 800 Ac, 8 Ac, 700 700 26 HRC 600 28 600 | 30 °= 500 2= 500 5 33,5 = E400 ox 2 400 2 e 47 300 51 300 Ms Ms Mso 200 200 Fa he 1 2 Temps 5 10 20 en secondes 50 100200 500 ana 2a IT 10° 10* 15mn | 1h | | | Bh 2h 4h Rema 0 = 0 108 1 | Temps CCT 24h 15 MDV LIER AEE 62 60 59 535 403 2 5 20 10 100200 50 500 | en secondes 10° 10* 15mn Ima 2mn | th | 105 | | 2h 4h 8h | 24h 4-05 Steel Composition: 0.14% C - 1.20% Mn - 0.23% Si - 0.017% S - Composition: 0.14% C - 1.20% Mn - 0.23% Si - 0.017% S - 0.016% P - 0.15% Ni - 0.10% Cr - 0.48% Mo - 0.15% Cu - 0.016% P - 0.15% Ni - 0.10% Cr - 0.48% Mo - 0.15% Cu - 0.065% V Grain size: 8 Austenitized at 900°C (1652°F) for 30 0.065% V Grain size: 8 Austenitized at 900°C (1652°F) for 30 min min 900 = 900 Ac; & Acs 800 8 800 (=) Ac, Ac, 700 fn Tryon GRE Bar Y e Ae = 500 — 500 E Ms 21H EB 400 24 2 Ms : aoo 3 F 300 200 200 he Acy = 740°C SOURCE: en secondes 0) 20 207100200) be Lap yee his 50) ‘eam Acg = 885°C oh of 2h eR Ba h A it Fit |\C CCT + — HRC] 0 Temps 5 ssib [AS salStab 100 ; vei a Pe IT 7 Mso 300 100 2 g 600 95H 600 nan nS Aa +F ie 1 2 & Temps en secondes @ ao 36 29 21/244 236 230 217 HV|186 173141 ee ea oy Mg, = 440° France, 1974 Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, nn 500 Ke | Tacaaiact oe , ae mae ie Atlas of Time-Temperature Diagrams 186 20 CDV Composition: 0.15% C - 0.53% Mn - 0.26% Si - 0.013% § - 0.020% P - 0.11% Ni - 1.04% Cr - 1.05% Mo - 0.15% Cu 0.250% V - 0.028% Al Grain size: 9-11 Austenitized at 950°C (1742°F) for 2h 5-08 Steel Composition: 0.14% C - 0.96% Mn - 0.15% Si - 0.011% S0.017% P - 1.40% Cr - 0.96% Mo - 0.270% V Grain size: 6-7 Austenitized at 975°C (1700°F) for 30 min Ac; 900 800 Rockwell Dureté Ac, HRB 700 o PP 500 30 HRC °C Température en 33,5 Temperature °C en 37 200 100 l a 100200 50 20 10 5 12 Temps en secondes | | —— IT Acy = 780°C 1mn 2mo ikea | | | | Th 2h 4h Bh , Acg = 925°C 41 40 36533 31530529 20 0 10° 10° 10° 500 15 if 24h 2 5 10 20 50 Temps en secondes M, = 400°C 10 CD Composition: 0.15% C - 0.36% Mn - 0.44% Si - 0.020% S - CCT 100200 | | 1mn 2mn 500 10° 10* 15mn 1th 108 || | 2h BH 4h 24h 9-10 Steel Composition: 0.15% C - 0.36% Mn - 0.44% Si - 0.022% S - 0.022% P - 0.09% Ni - 2.24% Cr - 0.85% Mo - 0.23% Cu - 0.020% P - 0.09% Ni - 2.24% Cr - 0.85% Mo - 0.23% Cu - 0.097% Al - 0.01% Ti Grain size: 10 Austenitized at 975°C 0.097% Al - 0.01% Ti Grain size: 10 Austenitized at 925°C (1700°F) for 30 min (1700°F) for 30 min a :3 cxac LS] NANG 8 g00 ee -—+—+- ts zat y / Alte ae 700 mie [-- Soi \Seeee A+H+C A 600 2 800 hes , ANS. ¥— JAS ‘i ry 96 HRB 700 : > é A +\F s 500 Pt 600 (oes. iS SS 5 500 es- 2 5z las 300 §2 31,5 HRC Sa a y Bue 2 o “er A+E4C Z — A Hi Ll Ms a = 400 = Tihs 300 200 - 100 7 200 1 2 100 0 0 1 IT i Temps 2 5 en secondes Acy = 790°C 10 20 50 Iman a he 500 2mna 3 i | 15mn 1h oO Acg = 900°C h ‘ 2h “ , | 4h Bh 10 s 1 | 24h Temps 2 5 10 20 en secondes CCT 50 100200 Paris. France, 10° 10* | | | | | | 10° | 2mn 15mn 1h 2h 4h Bh 24h M, == 385°C SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, 500 | Imn 1974 Atlas of Time-Temperature Diagrams 1 28 CDV Composition: 0.26% C - 0.58% Mn - 0.49% Si - 0.010% S - ~ 5-08 Steel Composition: 0.26% C - 0.58% Mn - 0.49% Si - 0.010% S - 0.014% P - 0.18% Ni - 1.65% Cr - 0.84% Mo - 0.07% Cu - 0.014% P - 0.18% Ni - 1.65% Cr - 0.84% Mo - 0.07% Cu - 30 min 30 min 0.380% V Grain size: 5-7 Austenitized at 1050°C (1922°F) for 900 0.380% V Grain size: 5-7 Austenitized at 1050°C (1922°F) for = F 900 8 Ac; e 800 ne z 700 21 HRC oan 32 600 600 ay : a 400 é © E 400 © Ms 5 = 500 Me 300 300 200 200 100 : 1 IT Acy ba ¥ 2) 5 10 20 Se rts aie 500 10° | ‘< | ts icant 15mn 1h 2h 4h 8h 24h Mg, Acg cS 910°C 780°C = 50 | eS = ES j ERs 1 380°C | 525151 CCT 2 Ee 5 10 20 SMEs 50 Bese 100200 500 10° i 2mn mn re 1 mn| adage pee 44 4140 36 36 35 a) 10* 10° et oe an nA As Z 38 CDV 5 Steel Composition: 0.41% C - 0.45% Mn - 0.66% Si - 0.001% S - Composition: 0.41% C - 0.45% Mn - 0.66% Si - 0.001% S - 0.011% P - 4.90% Cr - 1.07% Mo - 0.09% Cu - 0.350% V Grain size: 6-7 Austenitized at 1000°C (1832°F) for 30 min 0.011% P - 4.90% Cr - 1.07% Mo - 0.09% Cu - 0.350% V Grain size: 6-7 Austenitized at 1000°C (1832°F) for 30 min = 900 Ac; = Ac, = 800 2 8 {a} IS HRC 700 22 29 600 2 s 2 500 5 F F 300 Ms 200 100 ht ee Temps IT Acy = en secondes 835°C SOURCE: 5 10 20 50 | oe sia Acg 500 oe =) 900°C i ae ae rie CMR M, CCT eth = Temps 2 5 en secondes 10 20 5 57 5346 26 SSE ee he Sa a 0 le | 6 50 ee ye hes 280°C Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 500 tk 10° an Pee : ehae i , Atlas of Time-Temperature Diagrams 188 30 NCD 2 Steel Composition: 0.28% C - 0.70% Mn - 0.29% Si - 0.014% S - Composition: 0.28% C - 0.70% Mn - 0.29% Si - 0.014% S - 0.011% P - 0.43% Ni - 0.70% Cr - 0.20% Mo - 0.20% Cu Grain size: 11 Austenitized at 850°C (1562°F) for 30 min 0.011% P - 0.43% Ni - 0.70% Cr - 0.20% Mo - 0.20% Cu Grain size: 11 Austenitized at 850°C (1562°F) for 30 min 900 900 3 = $ = z 3 c Acs 800 , éwy Ac, 28 800 32 a Ac, Ac, af, 700 86 HRE 95 ace 600 2 9< 500 5 ae 3 400 30,5H eeeive ls 400 F Ms 300 300 200 200 i: — a 0 8a i 2) See 1015208 Temps en secondes 5:50) 1001200) | IT 500110? | Tmn 2mn 10° TL es | | ! [i] sk[ea ae| ae |es ate] ite | REPLY SSH RH 1 eA 2 5 10 20 50 100200 Temps en secondes CCT 20 NCD a 45 373229 26 22 19HV|207 180178 165 | 500 10° | | 1mn 2mn 15mn 10° | 1h | 10° | | 2h 4h 8h | 24h 2 Steei Composition: 0.21% C - 0.88% Mn - 0.31% Si - 0.002% S - Composition: 0.21% C - 0.88% Mn - 0.31% Si - 0.002% § - 0.017% P - 0.65% Ni - 0.57% Cr - 0.26% Mo - 0.15% Cu Grain 0.017% P - 0.65% Ni - 0.57% Cr - 0.26% Mo - 0.15% Cu Grain size: 9-10 Austenitized at 875°C (1610°F) for 30 min size: 9-10 Austenitized at 875°C (1610°F) for 30 min 900 900 iS 8 wey Ac; 800 Ac 8 800 a Acy Ac, 700 700 90,5 HRB 600 600 ° 9 ¢ 500 5 25 HRC E 500 E 3 408 Fe E 400 e 300 300 200 200 a a 0 0 je IT 5 Temps en secondes Acy = 740°C SOURCE: 10 20 a Ae 500 re 10° RRL Acg = 835°C ey LRNn | , ainwieine 24h 5 Temps en secondes 10 TRUS 47 4234 28 26 21| 22519918718 [ce i CCT EGIL HRC| 20 tea 50 100200 Su a M, = 400°C Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 [a Ja eh 500 [ie rt (9B) 10° ear Ae ey yee if ee Atlas of Time-Temperature Diagrams 189 40 NCD Composition: 0.40% ce 0.80% Mn - 0.33% Si - 0.019% S 0.018% P - 0.58% Ni - 0.56% Cr - 0.28% Mo - 0.10% Cu Grain size: 8 Austenitized at 850°C (1562°F) for 30 min 900 \ 3 Steel Composition: 0.40% C - 0.80% Mn - 0.33% Si - 0.019% S 0.018% P - 0.58% Ni - 0.56% Cr - 0.28% Mo - 0.10% Cu Grain size: 8 Austenitized at 850°C (1562°F) for 30 min a 28 Ac; SS 3 800 * ra} Ac, 700 92 HRB 600 22,5 HRC 22,5 = 500 ° 2 400 37,5 a & E Ms F 300 200 100 57,5 te) = 1 emps IT 2 en 5 10 20 secondes . bas 50 ae 500 10? | Imn ‘he ie | 2mn iSmn th 2h 4h Bh 2 1 24h 5 10 20 Pe ae mn 2mn 500 ti fa 10? Temps en secondes Acy = 750°C Acg = 800°C M, = 325°C 35 NCD Composition: 0.33% C - 0.72% Mn - 0.24% Si - 0.010% S - 0.010% P - 1.22% Ni - 0.54% Cr - 0.17% Mo - 0.22% Cu Grain size: 10-11 Austenitized at 850°C (1562°F) for 30 min CCT 15mn 1h 2h 4h Bh 24h 5 Steel Composition: 0.33% C - 0.72% Mn - 0.24% Si - 0.010% S - 0.010% P - 1.22% Ni - 0.54% Cr - 0.17% Mo - 0.22% Cu Grain size: 10-11 Austenitized at 850°C (1562°F) for 30 min = 900 z é FE a 800 Ac; Ac, 700 92 HRB 98 600 S x5 s 500 2 o 34 HRC 2 s 42 Fe 2 3 5 = 400 Ms 300 Moo Moo 200 100 32 29 2 57 5 10 20 1 2 Tempsem, en secondes $s IT SOURCE: ¥ 500 10° | bo 2mn 15mn 1th mn dl 105 | Bh 24h 10° 50 100200 Led! 2h 4h 0 1 2 5 Temps en secondes CCT 10 20 50 100200 | | 15mn th | France, 1974 Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, 10° 10° 500 10° | 1mn 2mn | | 2h 4h | 8h | 24h Atlas of Time-Temperature Diagrams 190 50 NCD 6 Steel Composition: 0.49% C - 0.57% Mn - 0.26% Si - 0.012% S 0.011% P - 1.62% Ni - 0.83% Cr - 0.24% Mo - 0.13% Cu Grain size: 9-10 Austenitized at 850°C (1562°F) for 30 min 900 Composition: 0.49% C - 0.57% Mn - 0.26% Si - 0.012% S 0.011% P - 1.62% Ni - 0.83% Cr - 0.24% Mo - 0.13% Cu Grain size: 9-10 Austenitized at 850°C (1562°F) for 30 min 3 g 8 iva 2 if o 5 1 A Oo = Ke 5 600 N ATE 95 HRB rte A + 22 HRC 8 600 Sy a afi SS = 500 ay a \ + \‘| 400 °C Température en A H+ = eeee 500 [ae + C F + | 400 Température °C en \ \ 300 Ms + = 48 [ade | 200 = 100 4 100 — I | 62 1 Temps IT 2 5 10 20 50 en secondes 100 200 | mn 500 10? | 2mn 1Smn 10° (a le 108 | | | | | 1h 2h 4h Bh 24h 62 6054 49 41 35 34 29 26 21 ee lied 63 Temps CCT 2 5 10 20 62 50 en secondes | Imn 100200 500 10° | 2mn 15 mn ell hice 1h 4h 2h 8h 24h 28 NCD 6 Steel Composition: 0.29% C - 0.78% Mn - 0.24% Si - 0.009% §S 0.011% P - 1.62% Ni - 1.49% Cr - 0.44% Mo - 0.16% Cu 0.010% Ti Grain size: 11 Austenitized at 850°C (1562°F) for 30 Composition: 0.29% C - 0.78% Mn - 0.24% Si - 0.009% S 0.011% P - 1.62% Ni - 1.49% Cr - 0.44% Mo - 0.16% Cu - 0.010% Ti Grain size: 11 Austenitized at 850°C (1562°F) for 30 min Rockwell Dureté 88 HRB 99 600 500 400 Température °C en Température °C en Ms 45 HRC 300 200 100 i) IT 2 5 10 20 50 100200 | 500 10° mn 2mn 15 mn Temps en secondes i) Th 2h 4h 8h 24h CCT 2 ye Temps en secondes hes 42) 50 100 200 (ae 1mn SOURCE: 2mn Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 500 10° 15 mn th 2h 4h 8h Atlas of Time-Temperature Diagrams 19] 20 NCD Composition: 0.17% C - 0.63% Mn - 0.25% Si - 0.013% S - 7 Steel Composition: 0.17% C - 0.63% Mn - 0.25% Si - 0.013% S - 0.013% P - 2.02% Ni - 0.38% Cr - 0.18% Mo - 0.07% Cu 0.010% Al Grain size: 10-11 Austenitized at 900°C (1652°F) for 30 min 0.013% P - 2.02% Ni - 0.38% Cr - 0.13% Mo - 0.07% Cu - 0.010% Al Grain size: 10-11 Austenitized at 900°C (1652°F) for 30 min 900 Ac; 800 700 Ac, 600 io 8 s 500 Oo ate : 300 200 100 te) 1 2 5 10 20 50 Temps en secondes 100200 | | Vial) eae by Acy = 685° 500 10° 10° | 108 | Pt | iron al Hee cic Acg = 825°C 1 | 2 5 10 20 Temps en secondes 50 100200 fee 1mn 2mn CCT 500 10? | 15mn 10° | ea) 10° | 1h 2h 4h 8h | 24h M, = 385°C 20 NCD Composition: 0.17% C - 1.23% Mn - 0.25% Si - 0.013% S - 10 Steel Composition: 0.17% C - 1.23% Mn - 0.25% Si - 0.013% S - 0.015% P - 2.45% Ni - 0.94% Cr - 0.40% Mo - 0.012% Ng - 0.015% P - 2.45% Ni - 0.94% Cr - 0.40% Mo - 0.011% Ng - 0.042% Al Grain size: 11 Austenitized at 850°C (1562°F) for 30 0.042% Al Grain size: 11 Austenitized at 850°C (1562°F) for 30 min min i a = x 8 c a9 2 rd a c : 5 5 2 2 5 ® 2 £ 3E 3E £ F oO o 1 it 2 ae 5 des 10 20 100200 500 10° 1ma 2mn 15mn 50 eo | | | | 24h 2 1 105 10° | 1h 2h 4h Bh CCT T emps en 5 secondes 10 20 ic ad Vs 500 10° mn 2mn 1974 SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 15mn dai i 1h 2h 4h 8h 24h Atlas of Time-Temperature Diagrams 192 60 NCD 11 Steel Composition: 0.57% C - 0.65% Mn - 0.31% Si - 0.005% S - Composition: 0.57% C - 0.65% Mn - 0.31% Si - 0.005% S - 0.010% P - 2.35% Ni - 0.75% Cr - 0.41% Mo - 0.13% Cu Grain 0.010% P - 2.35% Ni - 0.75% Cr - 0.41% Mo - 0.13% Cu Grain size: 9-10 Austenitized at 850°C (1562°F) for 30 min size: 9-10 Austenitized at 850°C (1562°F) for 30 min = z 900 8 800 e Ac; a fa be ah Vaeae e Cy — — Na A 23 HRC Sy 600 6 ° | 500 5 E 400 5 E 550 : S g A - ZA se 49,5 A\t 300 Ms 200 FC 7 ; JE 1 Msy Pop —[Art3M-- 4— 4 4—-\- 755 4-7 |\ 100 61,5 1 IT 5 2 10 Temps en secondes 20 100200 50 he | Id 1mn 2mn 15mn 1h HRC] 2h 4h 2 1 | Bh 62 62 62 61 24h 10 20 5 Composition: 0.31% C - 0.67% Mn - 0.30% Si - 0.010% S - 50 100200 5351 363329 105 10° 500 10° Tierapsventsccondes Re CCT 32 CND 62 62 6160 0 10° 10* 10? 500 Imn 2mn 1Smn th th 2h 4h Bh 24h - 0.30% Si - 0.010% S - 11 Steel Composition: 0.31% C - 0.67% Mn 0.010% P - 0.94% Ni - 3.00% Cr - 0.51% Mo - 0.19% Cu Grain 0.010% P - 0.94% Ni - 3.00% Cr - 0.51% Mo - 0.19% Cu Grain size: 7-9 Austenitized at 900°C (1652°F) for 30 min size: 7-9 Austenitized at 900°C (1652°F) for 30 min = Es 900 : 3 Ac 700 A 94 HRB Ait\F \+ C 600 9 oO & § 500 5 5 400 42,5 HRC Ms 300 Mso © A *|Sate =itost = : Fic e = / 0 200 is 100 L é HRC|53 535352 53 535049 & Jo D0 son qo0 c0On sco niD® 44 43 42 4033 0 tee IT Tete SOURCE: See eee aes Imn 2mn 500 10° , A 15 mn Th 2h | 4h Bh iy 24h 1) CCT 2 MEUTES CIV GESTS Imn| | 2mn Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 ee ene epee rene 15mn 10° | 1h 2h| 105 4h| 8h| 24h Atlas of Time-Temperature Diagrams 193 16 NCD Composition: 0.16% C - 0.46% Mn - 0.20% Si - 0.013% S : : 0.008% P - 3.02% Ni - 1.02% Cr - 0.26% Mo - 0.12% Cu Grain size: 9-10 Austenitized at 850°C (1562°F) for 30 min 900 13 Steel Composition: position: 0.16% C - 0.46% Mn - 0.20% Sii - 0.013% §S - 0.008% P - 3.02% Ni - 1.02% Cr - 0.26% Mo - 0.12% Cu Grain size: 9-10 Austenitized at 850°C (1562°F) for 30 min = Es 8 2 c 800 Ac; 5 a Ac, 700 A+F+C 600 85 HRB ° 2 oO : 400 3 Faeants S = 500 300 200 100 44 HRC 2 1 Temps IT 2 en 5 10 20 secondes ee 30 = ! 1mn 2mn Acy = 725°C 500 10° | oe | i 1Smn 1h 2h 4h Bh 24h Acg = 780°C 0 COTE 7 2 oo a Ter: cu seeances Ga ame coo ae he a cas ae Fis me ue be us ae M, = 355°C 35 NCD Composition: 0.36% C - 0.39% Mn - 0.30% Si - 0.005% S 0.010% P - 3.70% Ni - 1.65% Cr - 0.23% Mo - 0.12% Cu Grain size: 10-12 Austenitized at 850°C (1562°F) for 30 min 16 Steel Composition: 0.34% C - 0.35% Mn - 0.26% Si - 0.006% S - 0.008% P - 3.55% Ni - 1.54% Cr - 0.31% Mo - 0.008% No Grain size: 9-10 Austenitized at 850°C (1562°F) for 30 min 3 gS [s) fe} c 3 2) [ay & Y 5 5 = o 2 8 $ 5 = id a E a = 5 56 HRC 0 2. 1 5 ndes IT ea aie Acq = 700°C SOURCE: 10 20 100200 50 | 1mn | 2mn 500 10° 10° | smn fo} Acg ==. 785 e th | | 2h 4h Bh 108 1 | Temps CCT 24h = 2 5 en secondes 10 20 100200 50 | 1mn | 2mn oO Mg = 275°C France, 1974 Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, 500 | i5mn 10° 10° 10° | 1h | | 2h 4h | Bh | 24h Atlas of Time-Temperature Diagrams 194 30 CND 8 Steel Composition: 0.30% C - 0.56% Mn - 0.27% Si - 0.014% S - Composition: 0.32% C - 0.35% Mn - 0.27% Si - 0.022% S - 0.012% P - 1.75% Ni - 1.85% Cr - 0.49% Mo Grain size: 12 0.018% P - 2.10% Ni - 2.30% Cr - 0.64% Mo - 0.19% Cu Grain Austenitized at 875°C (1610°F) for 30 min size: 9-10 Austenitized at 875°C (1610°F) for 30 min 3 900 x i2 Ac3 5 800 o a Ac, 700 90 HRB 600 re) oO 5 < 500 2 s ° © 5 & a 3 tS € ©. 400 a La F 41 HRC M. ue 306 Mso 200 Moo 100 Se: 1 2 5 10 20 50 100200 Temps en secondes 500 10° | | IT Imn 2mn Acy = 735°C Acg = 780°C 10° 15mn 10 | Eytan | | th 2h Bh 24h 4h 0 . t 2 & “Tames ent secondes 10 20 ccr 50 100200 500 10° ial 1mn 2mn , rl 15mn 1h | 2h 4h 8h M, = 280°C 30 NCD Composition: 0.30% C - 0.40% Mn - 0.30% Si - 0.016% S 0.015% P - 3.20% Ni - 0.86% Cr - 0.40% Mo - 0.17% Cu Grain size: 12-13 Austenitized at 850°C (1562°F) for 30 min 900 12 Steel Composition: 0.30% C - 0.40% Mn - 0.30% Si - 0.016% S - 0.015% P - 3.20% Ni - 0.86% Cr - 0.40% Mo - 0.17% Cu Grain size: 12-13 Austenitized at 850°C (1562°F) for 30 min = ry = ot Balai | 800 ms Ac, | — ~= 5 { a= = —= = : < - °° ee ciaalata aka -_ 2 ZL 23 2 € ‘= :s i el ae ea ae 400 Tae ES ) :2 es ee 5 ties 1 Asa | a E e 300 46 HRC Mgo Phil A+IM Moo 5 | 200 ——s 100 [ a \T\ 50 50 41 55 0 1 IT Temps 2 5 en secondes 10 20 50 100200 | | Imn 2mn 500 10° 10° 15mn | | | | th 2h 4h 8h 10° | 1 CCT SOURCE: 2 5 Temps en secondes 10 20 50 100 200 500 10° || | Poth Imn ihe 2mn Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 thimn, ih | ah sikh Atlas of Time-Temperature Diagrams 195 40 NCD Composition: 0.42% C - 0.40% Mn - 0.32% Si - 0.005% S - 0.010% P - 4.34% Ni - 1.56% Cr - 0.44% Mo - 0.05% Cu Grain size: 11 Austenitized at 850°C (1562°F) for 30 min 18 Steel Composition: 0.42% C - 0.40% Mn - 0.32% Si - 0.005% S - 0.010% P - 4.34% Ni - 1.56% Cr - 0.44% Mo - 0.05% Cu Grain size: 11 Austenitized at 850°C (1562°F) for 30 min Rockwell Dureté Température °C en Température °C en N KAIARAT A A ss v2 5 10 20 Temps en secondes 50 100200 | 500 | 15mn Imn 2mn IT 10° 10° | 1h See 10° | 2h 4h Sh 2 | CCT 24h 20 ND ul 5 10 20 Temps en secondes 50 100200 | 500 | 10? | 15ma Imn 2mn 10° | th | 10° | 2h 4h | Bh | 24h 16 Steel Composition: 0.20% C - 0.63% Mn - 0.32% Si - 0.026% S - Composition: 0.20% C - 0.63% Mn - 0.32% Si - 0.026% S - 0.017% P - 3.85% Ni - 0.25% Cr - 0.94% Mo - 0.17% Cu Grain 0.017% P - 3.85% Ni - 0.25% Cr - 0.94% Mo - 0.17% Cu Grain size: 10 Austenitized at 850°C (1562°F) for 30 min size: 10 Austenitized at 850°C (1562°F) for 30 min Cureté Rockwell Température °C en Température °C en 49 1 Temps IT SOURCE: 2 5 en secondes 10 20 100200 50 | ae | 500 10° 10° | Loner 10° | | ec | | ty | ac 2 5 Temps en secondes CCT 10 20 100200 50 | | ima 2mn , IRSID, Paris, France, 1974 Courbes de Transformation des Aciers de Fabrication Francaise 500 10° 10* 10° mn | | | | | 1h 2h 4h BH 24h Atlas of Time-Temperature Diagrams 196 40 CAD Composition: 0.40% C - 0.56% Mn - 0.53% Si - 0.001% S - 0.012% P - 0.21% Ni - 1.65% Cr - 0.23% Mo - 0.15% Cu 1.100% Al Austenitized at 900°C (1652°F) 6-12 Steel Composition: 0.40% C - 0.56% Mn - 0.53% Si - 0.001% S 0.012% P - 0.21% Ni - 1.65% Cr - 0.23% Mo - 0.15% Cu 1.100% Al Austenitized at 900°C (1652°F) 3 = x 8 [ra “0 ®si fa} 700 20 HRC 22 600 31 iS c5 o S| & o 500 i= (=© 400 Température °C en a 100 59 1 2 S10) 20 50 Terps en secondes 100 200 | Tmn IT Ac, = 790°C 500 | 2mn 10° 10° | th 1Smn | 2h eZ ie | 4h CCT | Bh Acg = 875°C 5 10 20 Temps en secondes 50 100200 500 | | Imo 2mn 24h 10° 10* mn | th 2h 10° | 4h | Bh | 24h M, = 320°C 18 CDSV §5 Steei Composition: 0.16% C - 0.49% Mn - 1.14% Si - 0.080% S 0.010% P - 0.25% Ni - 1.22% Cr - 1.05% Mo - 0.19% Cu 0.460% V - 0.030% Ti Austenitized at 1050°C (1922°F) for 30 min 900 25 ® Composition: 0.16% C - 0.49% Mn - 1.14% Si - 0.080% S - 0.010% P - 0.25% Ni - 1.22% Cr - 1.05% Mo - 0.19% Cu 0.460% V - 0.030% Ti Austenitized at 1050°C (1922°F) for 30 ze bere 900 : \AK wn ‘ 5é SNS Ac, ac Ac A ae ei —— a 800 A+ FIA4IC 700 NS KS | ay AEA 800 87 HRB 25 HRC AS 700 30 Pais ee <¢ she + 600 pam he 600 | 4 500 a i | eet ras = 2 2 500 - ( a 2 A itF] +/C £ 3 e 400 2 SIS + oM, / =a 7 = 331 — 37 } Sos irs 400 Température °C en Ms A+/M 300 Mso 300 200 -+ IL 200 100 Te I WP } +—J 100 ia ia | HRC|48 4746 41 40 38 38 3129 ies 48 0 1 Temps IT SOURCE: 2 5) en secondes 10920) 100:200! 50) | 1mn 500) | 2mn 15mn 10° 10° 10# th | | | 2h 4h Bh | i 24h CCT 2 5 Temps en secondes 10 20 50 100200 | | 1mn 2mn Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 500 10° 1Smn 20 10* th 105 | | | | 2h 4h Bh 24h Atlas of Time-Temperature Diagrams 197 100 WC 40 Steel Composition: 0.98%C - 0.30% Mn - 0.16% Si - 0.003% S - 0.015% P - 0.17% Ni - 0.63% Cr - 0.28% Mo - 0.11% Cu - 0.280% V- 3.66% W Grain size: 10 Austenitized at 850°C (1562°F) for 30 min Composition: 0.98% C - 0.30% Mn - 0.16% Si - 0.003% $ - 0.015% P - 0.17% Ni - 0.63% Cr - 0.28% Mo - 0.11% Cu - 0.280% V - 3.66% W Grain size: 10 Austenitized at 850°C (1562°F) for 30 min 900 800 Ac, 700 600 9 oO § 5 500 300 Ms 200 Mso 100 5 1 IT 2 Temps 5 10 20 50 en secondes 100200 | 500 | 1mn 2mn 10° 10° | iSmn | th 2h 4h 8h 24h 15 NCDV i 41 3938 ee A a ok Sa 10° | | 68 6766 1 2 5 10 20 50 Temps en secondes CCT 100200 | 500 | pine ihe 103 10* | i5mn | th 10° | 2h 4h | 8h | 24h 11 Steel Composition: 0.16% C - 0.51% Mn - 0.27% Si - 0.019% S - Composition: 0.16% C - 0.51% Mn - 0.27% Si - 0.019% S - 0.010% P - 2.59% Ni - 0.67% Cr - 0.49% Mo - 0.20% Cu - 0.010% P - 2.59% Ni - 0.67% Cr - 0.49% Mo - 0.20% Cu - 0.080% V Grain size: 9-10 Austenitized at 950°C (1742°F) for 0.080% V Grain size: 9-10 Austenitized at 950°C (1742°F) for 30 min 30 min ooo 3 z Bibl: Ac; = (2) Ac, 700 600 = 500 2 E_ 300 acy “| cs A OB (re A +|M |-—- 1 a a ers | | 100 2 1 10 5 20 IT a SOURCE: as 100200 50 500 | mn 2mn 15mn 1h | 2h Ue 10° 10* 10° | di | 4h | | Bh 24h Temps CCT 22 5 en secondes 10 20 100200 50 | | Imn 2mno France, 1974 Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, 500 10° 1s5mn 10* | | ih 2h 10° Ms 4 at Atlas of Time-Temperature Diagrams 198 55 NCDV 7-05 Steel Composition: 0.58% C - 0.62% Mn - 0.39% Si - 0.012% S - Composition: 0.58% C - 0.62% Mn - 0.39% Si - 0.012% S - 0.015% P - 1.68% Ni - 1.35% Cr - 0.40% Mo - 0.01% Cu - 0.015% P - 1.68% Ni - 1.35% Cr - 0.40% Mo - 0.01% Cu 0.100% V Grain size: 12 Austenitized at 850°C (1562°F) for 30 0.100% V Grain size: 12 Austenitized at 850°C (1562°F) for 30 min min 900 =o = te « ©4 800 5 a —— b—-. 700 A S 600 20 HI i 28 600 oY c o ra) 5 ° a) Q — yeo 500 500 400 400 Température °C en 300 Ms 200 200 Mso 100 100 ce) AZ IT Temps 5 10 20 50 en secondes 100200 | 500 | 10? | 1mn 2mn 15mn 10* | 1h | 10° | 2h 4h | Bh 1 | 24h Temps CCT 2 en 5 10 20 secondes 50 100200 | | 1mn 2mn 500 10? 10* | | 15mn | 1h 10° | | 2h 4h Bh | 24h Z 38 CDWV 5 Steel Composition: 0.37% C - 0.34% Mn - 0.95% Si - 0.008% S 0.018% P - 0.17% Ni - 4.70% Cr - 1.40% Mo - 0.11% Cu 0.500% V - 1.80% W Grain size: 8-9 Austenitized at 1000°C (1832°F) for 30 min Composition: 0.37% C - 0.34% Mn - 0.95% Si - 0.008% S 0.018% P - 0.17% Ni - 4.70% Cr - 1.40% Mo - 0.11% Cu 0.500% V - 1.80% W Grain size: 8-9 Austenitized at 1000°C (1832°F) for 30 min 3 z3 900 8 c Ac, Fe2 5 fa) 800 90 HRB oT, 21 HRC ~ pia ee secondai 600 ° 5 500 £ sa 400 E i5 °C Température en 200 58 2 IT Oe Scene Acy = 845°C Msg = 250°C SOURCE: 5 10 20 50 100200 i el 10° 500 a mn 2mn 15mn Acg = 925°C ° Mgo = 150°C — ro) 1h 2h 4h 8h 1 CCT 24h 2 5 Temps en secondes 10 20 50 100200 | | Imn 2mn fe) = 315°C M, en: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 500 10° | 15mn 10° th 2h 108 4h Bh 24h Atlas of Time-Temperature Diagrams 199 XC 48 Steel E 36 Steel Composition: 0.50% C - 0.67% Mn - 0.24% Si - 0.022% S - 0.031% P Grain size: 8-9 Austenitized at 875°C (1610°F) for 30 min °C Température en Température °C en 1 CCT Composition: 0.20% C - 1.37% Mn - 0.35% Si - 0.017% S - 0.022% P - 0.007% N - 0.054% Al Austenitized at 900°C (1652°F) for 30 min 2 5 10 20 Temps en secondes 50 100200 | 500 | 10° | Imn 2mn Sma 10° | 1h 10° | | 2h 4h | Bh | 24h 1 2 5 10 20 50 Temps en secondes CCT 100200 500 10? | 1mn 2mn 15mn 10° | 1h 105 | | 2h 4h | 8h | 24h 35 M 6 Steel 19 M Nb 6 Steel Composition: 0.34% C - 1.55% Mn - 0.18% Si - 0.028% S 0.026% P - 0.17% Ni - 0.08% Cr - 0.02% Mo Grain size: 10-11 Austenitized at 850°C (1562°F) for 30 min Composition: 0.19% C - 1.39% Mn - 0.26% Si - 0.019% S 0.029% P - 0.043% Nb - 0.007% N - 0.046% Al Austenitized at 900°C (1652°F) for 30 min ve oss ea Ss al a XNEN S3 —— NGI zie Ny cube Saeaee cae Ac, 600 9° o S ¢ 500 E i" P \— {50% a iS 400 Fe e 300 200 100 504641 26 caf 1) CCT ©2555 Temps en secondes 10; 20 22 171 ence (eal "S08 100)200!9500 | | 1mn 2mn 223 213 || a | th | | 2h 4h | Bh | 24h CCT 191176 160 154 fee eee | 1 108 10* 5510; 15mn ‘ 2 5 Temps en secondes 10 20 50 100200 | | Ima 2mn 1974 SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, a | 10° 10° 500 10° 1Smn ee | th | | 2h 4h | Bh | 24h 200 Atlas of Time-Temperature Diagrams 17 MV Az 6 Steel 22 N 8 Steel Composition: 0.17% C - 1.50% Mn - 0.34% Si - 0.018% S - 0.017% P - 0.110% V - 0.025% N - 0.082% Al Austenitized at 900°C (1652°F) for 30 min = Composition: 0.23% C - 0.56% Mn - 0.27% Si - 0.020% S - 0.021% P - 2.06% Ni - 0.15% Cr - 0.01% Mo - 0.18% Cu Grain size: 9-10 Austenitized at 900°C (1652°F) for 30 min ESN eu 800 q Ac, u 700 . \\ 800 Lh \ Ac, 5 700 600 600 °° 5 iY< 500 : 5 5600 2 5& 400 3 = Ms 2 oO o € 400 is 300 300 \\\ 200 200 100 100 32 P w 5 2 1 Temps en secondes CCT 10 20 50 100200 | Imn 2mn ma | 1th | 4h | 2h 1 | Bh | 24h 2 5 sreripetenisccandes 10° 10° 500 10° 24]219 206 176 I) Sc 10 20 | aa 50 el imn CCT 100200 2mn 162-149 a 500 a || 10° | items 15mn th || 10* 2h eaihnn a 4h Bh 10° | 24h 20 NCD 8 Steel 20 ND Composition: 0.19% C - 0.67% Mn - 0.20% Si - 0.020% S - Composition: 0.24% C - 0.52% Mn - 0.27% Si - 0.012% S - 0.019% P - 2.00% Ni - 0.39% Cr - 0.09% Mo - 0.05% Cu Grain size: 10-i1 Austenitized at 900°C (1652°F) for 30 min 8 Steel 0.015% P - 2.10% Ni - 0.05% Cr - 0.32% Mo - 0.10% Cu Austenitized at 875°C (1610°F) for 30 min Sraan : ze \ \ \ 500 400 Température °C en Température °C en Ms caleulé 300 200 100 206 19 (i CCT 2 5 Temps en secondes 50 100200 | mn 2mn 500 10° 15 mn 4 1 2 5 Temps en secondes Th 2h 4h 8h 24h 10 20 50 100200 | mn 2mn SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 500 10° 15 mn Th 2h 4h 8h 24h Atlas of Time-Temperature Diagrams 201 10 CAD 8 Steel 30 CAD Composition: 0.11% C - 0.46% Mn - 0.21% Si - 0.060% S - 0.020% P - 2.18% Cr - 0.31% Mo - 0.485% Al Grain size: 9-10 Austenitized at 975°C (1790°F) for 30 min 900 6-12 Steel Composition: 0.28% C - 0.49% Mn - 0.32% Si - 0.050% S 0.012% P - 0.13% Ni - 1.65% Cr - 0.22% Mo - 1.050% Al Grain size: 8-9 Austenitized at 900°C (1652°F) for 30 min PNAS NY \ ae Température °C en °C Température en Aca eee \ 187 140 flivess2: tT CCT e2 5 10 20 50 100200 Temps en secondes | mn 14 NCD 500 10° | 2mn 15mn 10* | | | | 1th 2h 4h Bh 24h 5 10 20 50 Temps en secondes 10° | 100200 | mn CCT | 2mn 500 10° | 15mn 10* | 1h | 2h 10* | 4h | Bh | 24h 18 NCD 6 Steel 4 Steel Composition: 0.13% C - 1.08% Mn - 0.14% Si - 0.020% S 0.027% P - 1.13% Ni - 0.88% Cr - 0.40% Mo Grain size: 8-9 Austenitized at 900°C (1652°F) for 30 min 900 Composition: 0.18% C - 0.86% Mn - 0.27% Si - 0.009% S - 0.010% P - 1.53% Ni - 1.05% Cr - 0.16% Mo - 0.13% Cu Austenitized at 850°C (1562°F) for 30 min 7 eeSS e =e eeeey Ac; Ae; sh 800 800 Ac, 700 Ac, 700 600 HEINE S ec PN Reeteas AS AE 500 ao o 2= us € 400 Ms 300 \ 200 \ 2 HRC] 1 CCT SOURCE: ~ 4038 29 gS es a ee 5 lee 2 5 ae a 10 20 50 I 100200 al 1mn 2mn 27 2523} a 500 is 15mn 178) 210 whaH | 1h = : = 1 2h 4h 8h 24h Temps CCT 2 5 en secondes 10 20 50 100200 | | 500 ". 2mn 15mn mn France, 1974 Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, 10° 10° | | | | | th 2h 4h Bh 24h Atlas of Time-Temperature Diagrams 202 80 DCV 42-16 Steel Composition: 0.81% C - 0.26% Mn - 0.21% Si - 0.002% S$ 0.021% P - 4.28% Cr - 3.98% Mo - 1.080% V Grain size: 4 Austenitized at 1140°C (2084°F) for 30 min 40 NDCV 18-11 Steel Composition: 0.41% C - 0.30% Mn - 0.36% Si - 0.006% S$ - Mo - 0.520%V P - 4.80% Ni - 0.54% Cr- 1.13% 0.017% Austenitized at 875°C (1610°F) for 30 min 500 °C Température en Température °C en DuretésHRCobten On CCT 5 10 20 Temps en secondes 50 100200 | | 1mn 2mn 500 10° 15mn 10* 1h | 10° | 2h 4h | 8h i) | 24h Z 40 WCY 5 Steel Composition: 0.38% C - 0.52% Mn - 0.37% Si - 0.022% S - CCT oa? 5 10 20 Temps en secondes Z30 WCV : i trempeidans Nal(ues apres 56, 50 100200 | 1mn 500 | 2mn 38 37 10° 15mn 10* | 1h 10* | 2h 4h | Bh | 24h 9 Steel Composition: 0.27% C - 0.43% Mn - 0.26% Si - 0.018% S - 0.018% P - 0.08% Ni - 3.23% Cr - 0.44% Mo - 0.580% V - 0.008% P - 0.10% Ni - 2.45% Cr - 0.13% Mo - 0.360% V - 4.15% W Grain size: 5 Austenitized at 1050°C (1922°F) for 30 8.70% W Grain size: 10 Austenitized at 1150°C (2102°F) for 30 min 900 Ac, 800 TEMA \\\ 900 Ac, 800 te 700 fh | 600 Y s @ 5 8 500 a€ 400 e6 Température °C en a 300 iy 200 tT | 1 CCT SOURCE: 2 5 Temps en secondes 10 20 57 575 es el ea SAK 500 10° | mn 2mn le Fe my 15 mn 10° iya cy 10° EN ahRees 1 CCT i at IN WALLA A AAR | 52. 52515495 45,5 44425]? 79 HV Mn Gne xce ome 100 60 60 VK 2 5, Temps en secondes 10, 20, 50 ee 500 10° | Iman 2mn Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 15mn 10* 10° | | | | | 1th 2h 4h 8h 24h Atlas of Time-Temperature Diagrams Z 20 CDNbV 203 11 Steel Z 65 WDCV Composition: 0.17% Cc - 0.39% Mn - 0.43% Si - 0.016% S See ns ee a 4 Sait Cr - 0.75% Mo - 0.370% V - % Ng 0) = 0 : 1150°C (2102°F) 06-05 Steel Composition: 0.56% C - 0.27% Mn - 0.23% Si - 0.17% Ni 4.00% Cr - 5.00% Mo - 1.800% V - 7.00% W - 0.40% Co Austenitized at 1140°C Grain size: 10-11 Austenitized at (2084°F ( i emai fone 900 900 Ac, Ac, 800 800 700 700 600 600 95 500 °< 500 . 400 : 400 F e Ms 6 300 300 Ms M50 200 200 | es a 10 5 am 1 53 52 |r [ame 20 | 2mn | imn Temps en secondes CCT Z 60 WCV 100200 50 50 49 4745 38 50 | 2h | 1h 10 5 50 20 CCT XC 18 Steel Composition: 0.60% C - 0.22% Mn - 0.19% Si - 0.20% Ni 4.65% Cr - 1.00% Mo - 1.350% V - 17.80% W - 0.72% Co Austenitized at 1200°C (2192°F) for 30 min 100200 500 | 2mn ian Temps en secondes | 24h | Bh | 4h 2 1 10° 10° 10° | 15mn a ae[ee | || 500 00 MT 10° 10* 10° | 2h | 1h 15mn | 4h | 8h | 24h 38 Steel Composition: 0.36% C - 0.66% Mn - 0.27% Si - 0.016% S 0.020% P - 0.20% Ni - 0.21% Cr - 0.02% Mo - 0.22% Cu 0.060% Al Grain size: <1 Austenitized at 1300°C (2372°F) for 30 min 3 2 96,5 HRB 98,5 98 eg © S = 98 24 HRC E § : a e ec 33 42 1 CCT SOURCE: 2. 5 Temps en secondes 10 20 100200 50 | | Imn 2mn 15mn | th 2h | 108 10° 500 10° | 4h | Bh | 24h IT Temps 2 en secondes Twas ima 2hm Paris, France, 1974 Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, 15mn 10s 10° Epon AS 500 10° | th 2h 4h Bh 24h Atlas of Time-Temperature Diagrams 204 XC 38 Steel ¥7 90 Steel Composition: 0.37% C - 0.69% Mn - 0.33% Si - 0.019% S 0.017% P - 0.06% Ni - 0.04% Cr - 0.05% Mo - 0.013% Ng Grain 0.012% P - 0.20% Ni - 0.12% Cr - <0.10% Mo - 0.62% Cu - size: 10-11 Austenitized at 825°C (1520°F) for 8 min Composition: 0.93% C - 0.31% Mn - 0.11% Si - 0.010% S$ - 0.03% V Grain size: 12 Austenitized at 800°C (1472°F) for 15 min 900 3 a45 900 8 c @ Ac3 ®5 800 (2) Dureté Rockwell Ac, 700 90 HRB 91 600 600 91 96,5 500 500 98 21 HRC 400 °C Température en 400 Yempérature °C en Ms 300 300 200 100 57 the ae 5 10 20 Temps en secondes 50 | Imn IT 100200 | 500 2mn 10° 15mn 10° | 1th | 2h io | 4h | 8h | 24h the IT Acj = Y; 120 Steel Composition: 1.29% C - 0.20% Mn - 0.27% Si - 0.005% S 0.015% P - 0.09% Ni - 0.04% Cr - 0.01% Mo - 0.08% Cu Austenitized at 825°C (1520°F) for 30 min 900 22: 5 10 20 Temps en secondes 740°C 50 100200 | Imn | 2mn 500 10° 10* | Th 1Smn | 2h 10* | 4h | Bh 24h M, = 195°C Y,1 20 Steel Composition: 1.29% C - 0.20% Mn - 0.27% Si - 0.005% S - 0.015% P - 0.09% Ni - 0.04% Cr - 0.01% Mo - 0.08% Cu Grain size: >1 Austenitized at 1200°C (2192°F) for 30 min 900 3 3 x 8 c © 800 2 5 fa) Rockwell Dureté Ac, 700 23 HRC 37 HRC 30 600 600 41 32 2 Ss 500 2 2 € feo 43 40 45 43 46,5 400 400 47 Température °C en 49 300 300 200 200 55 61 Ms estimeé Ms estimé 100 100 66 59'S 0 1 IT 2 5 Temps en secondes 10 20 100200 50 ee 1mn 2mn 500 | 15mn 10° 10* 10° th Nena 2h 4h | | Bh 24h 1 IT Temps 2 510520 5G 100200 | | | | | | | Imn 2mn 1Smn th 2h 4h Bh 24h en secondes Acy = 735 re) Cc SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 ee 500 10? 10° 10° Atlas of Time-Temperature Diagrams i a 41S a u Steel pee 0.42% C - 0.62% Mn - 1.78% Si - 0.013% S - ~ 0.18% Ni - 0.05% Cr - 0.01% Mo - 0.22% Cu - trace : 205 er V- 0.03% Ti Grain size: 12-8 Austenitized at 975°C (1790°F) for 15 min 900 Ac; =3 s i 700 93 HRB Z 120 M 12 Steel Composition: 1.28% C - 12.35% Mn - 0.35% Si - 0.009% S - 0.031% P - 0.28% Ni - 0.01% Mo - 0.23% Cu Grain size: 5-6 Austenitized at 1050°C (1922°F) for 30 min 22 HRC 600 23 s 500 24 : 3 26,5 Fa eae 37,5 F ° 26,5 (é) $ E 45,5 Ms he Hh 50 300 A “II austénite CeHoranulaire cémentite 200 100 54 o 1 2 5 10 20 en secondes Temps tT: 100200 50 500 10* 10? | | | | | | | | Imn 2mn 15 mn Th 2h 4h 8h 24h Acy = 780°C 1 5’ 10; 20; 50 Ae; = 680°C 500 100200 ll Imn IT Mg, = 325°C Acg = 880°C 2 Temps en secondes 10° 2mn 10? 10* | | [eo ah 1Smn th 2h Bh 4h 10* | 24h M, = <-180°C Ae3 = 900°C 10 N 8 Steel Z 12 C 13 Steel Composition: 0.08% C - 0.29% Mn - 0.16% Si - 0.035% S$ 0.007% P - 2.06% Ni - 0.08% Cr - 0.02% Mo - 0.13% Cu Q = . r= size: 10-11 Austenitized at 900°C (1652°F) for 30 min Composition: 0.11% C - 0.49% Mn - 0.45% Si - 0.050% S 0.012% P - 0.13% Ni - 12.00% Cr - 0.02% Mo - 0.07% Cu 0.020% V - 0.06% W Grain size: 10 Austenitized at 1000°C (1832°F) for 30 min ea o 900 ae 3 S 900 U0 « Ac; : 2 : g 800 .— E = c = (a) g 1 800 75 HRB 700 ra 80 700 84 600 89 600 ss 3 gs 500 s 500 3 a— 400 : (=o i Me Ms 300 300 200 200 100 100 34 HRC 2 1 : ieee teste 10 20 100200 50 | ae ie Acy = 705°C SOURCE: 5 , 500 10° 5 in 2h ee es Acg = 820°C i 5 2 1 Temps en secondes 8 oa 44 HRC 6 10° Ye IT M, = 425°C 10 20 100 200 | | 2mn Imn 50 10° | 1Smn Acq = 820°C ° Acgz == 900°C ce) Msg =— 300°C Mgg = 260°C er France, 1974 Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, a 500 10 a | th | 2h 4h Bh 24h On M, == 350°C oO Ee Atlas of Time-Temperature Diagrams 206 18 C 3 Steel Z 30 C 13 Steel Composition: 0.20% C - 0.72% Mn - 0.30% Si - 0.010% § 0.010% P - 0.27% Ni - 0.79% Cr - 0.02% Mo - 0.02% Cu Grain Composition: 0.29% C - 0.40% Mn - 0.85% Si - 0.050% S 0.023% P - 0.18% Ni - 12.32% Cr - <0.10% Mo - 0.12% Cu - size: 6 Austenitized at 850°C (1562°F) for 30 min <0.05% V Grain size: 10 Austenitized at 1000°C (1832°F) for ee 3 30 min z 3 Ac; = 800 2 900 3 Ac, = g 2 8 800 a Ac, $8 700 85 HRB 86,5 600 700 91 600 93,5 2 < 500 96,5 S = 20 HRC = 5 e 400 2 Ms 500 = 26 é 33 Fa = 400 300 300 Ms 200 36 Moo 100 100 46 0 ih 4 5 10 20 50 Temps en secondes 100200 500 10? fi IT Imn 2mn 1S5mn 104 10* | te 1h 2h 0 | 4h Bh 1 24h 2 5 10 20 50 Temps en secondes 100200 | IT —, mn Acy = 830°C 500 10° | | 2mn ‘San 10° | | 10° | | vhle2ih athe Sih) | 24h M, a= 265°C Msg = 205°C Mgo = 155°C 70 C 1 Steel 95 C 3 Steel Composition: 0.72% C - 0.35% Mn - 0.20% Si - 0.050% S - Composition: 0.88% C - 0.41% Mn - 0.24% Si - 0.010% S - 0.011% P 0.06% Ni - 0.28% Cr - 0.049% Cu Grain size: 9-10 Austenitized at 850°C (1562°F) for 30 min 0.010% P - 0.10% Ni - 0.78% Cr - 0.05% Mo - 0.12% Cu Austenitized at 850°C (1562°F) for 30 min = 900 = z $ 8 8 = c ® 800 3 fa] fa] Ac, 93 HRB 700 18 HRC 28 HRC 25 27 9 600 32 39 9 5 32 sl F = 500 35 é w5 é 400 42 : FE w“ : F 48 300 52 58 Ms 200 61 100 64,5 66 0 1 iss 2 5 Temps en secondes 40) -20 50 100200 | Imn | 2mn 500 10° 15mn 10° | 1h | 2h 10° | 4h | Bh | 24h 1 IT 2 5 Temps en secondes 10 20 50 100200 | nic | aya SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 eee? OOO 500 10° acing) 10° | | ie 105 | vim | | oa Atlas of Time-Temperature Diagrams 207 100 C 3 Steel ee . 30 MS 6 Steel 0.97% c - 0.27% Mn - 0.26% Si - 0.006% S - OA” P - 0.05% Ni > 0.77% Cr - <0.01% Mo - 0.04% Cu rain size: 9 Austenitized at 850°C (1562°F) for 30 min 900 Composition: 0.29% C - 1.33% Mn - 1.30% Si - 0.016% S 0.008% P - 0.12% Ni - 0.10% Cu Grain size: 9 Austenitized at 925°C (1700°F) for 30 min a a &3 Ss 8 : : 800 5 Ac, ra} 700 24,5 HRC 28,5 96,5 HRB 600 34 98,5 s 500 36 eZ 3 on ° 36 2 3 é 400 39 99,5 oO § 20,5 HRC $ g : EB 36 46,5 300 42,5 5 57 Ms 200 62 100 66 54,5 ie) oe IT ae ae P oo | eas io a8 Mohan a | AS im haat oe Te | 2 1 Na ee 5 20 10 Temps en secondes IT 50 100200 500 10? 10° 10* | | | | 4 Tmn 2mn 1Smn th 2h 4h | | 8h 24h M, = 215°C Ac, = 750°C 15 Steel 30 SC 6 Steel 12 NC Composition: 0.28% C - 0.92% Mn - 1.49% Si - 0.018% S - Composition: 0.13% C - 0.35% Mn - 0.33% Si - 0.015% S - 0.001% P - 0.12% Ni - 0.99% Cr - 0.10% Cu Grain size: 9-10 0.008% P - 3.42% Ni - 0.86% Cr - 0.08% Mo - 0.16% Cu Grain Austenitized at 925°C (1700°F) for 30 min size: 9-13 Austenitized at 850°C (1562°F) for 30 min = Z 900 = 2 2 ay 800 8 g eS a ra) 70 96,5 HRB 22 HRC 27 9 § 27 5 = 43,5 600 87 HRB 9< 500 PS s 35 HRC 300 200 100 43 51 0 1 5 2 10 20 a 500 10° | condes IT See 1mn 2mn 15mn 1h 2h 4h 8h 24h 2 1 _ Oy IT emps cP. en 5 secondes . 10 20 100200 50 | | Iman 2mn Francaise, IRSID, Paris, France, 1974 SOURCE: Courbes de Transformation des Aciers de Fabrication 8 8 aaa 500 | 10° ) ie | 1h 2h oe 8h 15mn | iy 24h eee Atlas of Time-Temperature Diagrams 208 40 NC 18 Steel 20 ND 8 Steel ' Composition: 0.42% C - 0.60% Mn - 0.41% Si - 0.012% S 0.013% P - 4.40% Ni - 1.25% Cr - 0.05% Mo - 0.14% Cu - Composition: 0.21% C - 0.55% Mn - 0.29% Si - 0.010% S 0.008% P - 1.84% Ni - 0.07% Cr - 0.20% Mo - 0.09% Cu Grain 0.02% Al Grain size: 11-12 Austenitized at 850°C (1562°F) for size: 10 Austenitized at 875°C (1610°F) for 30 min 30 min 900 & & 900 g : oo a: cy 700 A a 2 Ac; 700 — i Mee oars Ac, ol a 600 600 s iP 500 S § s Be 7 § s = 400 ee 300 ill |= I = 400 el aan Ale FAC Vi 500 i + ale a 2 She = = ai 99 HRB fe == == A+(M = 23 HRC im 300 L Ms 200 200 | + Mso | i 108 59,5 HRC 46,5 0 0 1 2 emps IT en ae 12 ND 5 10 20 secondes 50 100200 | ‘: 500 | Ima 2imn 10° 15mn 10° | th | 10° | 2h 4h | 8h 1 | 24h IT 16 Steel emps ae 2 en 5 10 20 50 secondes : ie a 500 1mn 2mn 10° i Smo 1h 10° | | 2h 4h 8h | 24h 30 C 5 Steel Composition: 0.08% C - 0.35% Mn - 0.06% Si - 0.020% S 0.010% P - 4.06% Ni - 0.07% Cr - 0.88% Mo - 0.15% Cu Grain size: 11 Austenitized at 850°C (1562°F) for 30 min eeu Composition: 0.30% C - 0.50% Mn - 0.25% Si - 0.016% S 0.012% P - 0.09% Ni - 1.28% Cr - 0.09% Cu - 0.050% V Grain size: 10 Austenitized at 875°C (1610°F) for 30 min = 2so &z Ac; = 8 ae s é é 800 ; ® 2 88 HRB ee 96 600 99,5 2 S 26 HRC : 500 2 = so 22,5 HRC 5 26 2 30 5 34,5 40,5 300 200 100 36 0 i IT 4 5 Temps en secondes 10 20 50 100200 | 1ma 2mn 500 10? 15mn 10° | 1th ie 10* aa 2h 4h 8h | 24h 2 IT 5 Temps en secondes 10 20 50 100200 ronal Ima 2mn SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 —_— Orr —ervee— 500 10° 1Sma 10° lal th 2h 4h 10° on Bh | 24h Atlas of Time-Temperature Diagrams 209 30 CV 5 Steel Composition: 0.32% C - 0.40% Mn - 0.21% Si - 0.016% S 0.007% P - 0.11% Ni - 1.30% Cr - 0.10% Mo - 0.13% Cu - 0.125% V Grain size: 11 Austenitized at 875°C (1610°F) for 30 min 140 C 10 Steel Composition: 1.43% C - 0.22% Mn - 0.21% Si - 0.013% S$ 0.020% P - 0.11% Ni - 2.55% Cr - 0.08% Mo - 0.05% Cu 0.015% V Grain size: 3-4 Austenitized at 1090°C (1994°F) for 1 h 900 Rockwell Dureté Dureté Rockwell 98 HRB 26,5 HRC 41 HRC 29 43 30 51 27 30,5 34,5 Température °C en Température °C en 39 300 55 AtM 200 100 + 52/5 10) 1 2 5 10 20 Temps en secondes 100200 | Imn IT 100 WC 50 500 | 2mn 10? 15mn | 10° | th | 2h | 4h | 8h 2 5 10 20 50 Temps en secondes IT 100200 500 | | imn 2mn 10° | 15mn 10° | Th | 2h 108 | 4h | Bh | 24h 30 SCD 6 Steel 10 Steel Composition: 0.28% C - 0.59% Mn - 1.25% Si - 0.048% S - Composition: 1.15% C - 0.38% Mn - 0.38% Si - 0.008% S 0.018% P - 0.21% Ni - 0.74% Cr - 0.02% Mo - 0.12% Cu 1.20% W Grain size: 12 Austenitized at 850°C (1562°F) for 30 0.055% P - <0.05% Ni - 0.92% Cr - 0.22% Mo - 0.03% Cu Grain size: 9-10 Austenitized at 925°C (1700°F) for 30 min min 900 900 Rockwell Dureté Rockwell Dureté 94 HRB 25 HRC 23,5 HRC 30 600 36 600 26 29 a 500 41,5 500 41,5 43,5 400 Température °C en 400 Température °C en Ms 46 49,5 300 54 300 58 200 200 100 525 66 IT 5 2) 1 Temps en secondes Acq = 750°C 10) 20 50 ha 100 200 500 hal “id 4 iain 2mn 15mn 1th 2h 4h 1 Bh 24h IT Temps 2 By en secondes 10)20: 50 100200 P| ITmn 2mn 500 | th 2h M, = 180°C IRSID, Paris, France, 1974 SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, i tet 10° smn _——————————E———————————————— ae 4h Bh 24h Atlas of Time-Temperature Diagrams 210 45 SCD 6 Steel Z 40 CSD Composition: 0.50% C - 1.05% Mn - 1.48% Si - 0.044% S 0.048% P - <0.05% Ni - 1.20% Cr - 0.20% Mo - 0.04% Cu Grain size: 8-9 Austenitized at 875°C (1610°F) for 30 min 10 Steel 0.012% V Grain size: 7-8 Austenitized at 1000°C (1832°F) for Composition: 0.30% C - 0.48% Mn - 2.20% Si - 0.012% S - <0.005% P - 0.12% Ni - 10.50% Cr - 1.00% Mo - 0.07% Cu - 30 min 900 900 3 iad 2 8 c Ac; 800 Ac, Rockwell Dureté 700 26 HRC 22 2 800 a 98 HRB 21 HRC 700 21 31 600 35 26 600 500 2 &c 500 © 400 B 5 ® £ 400 25 Température °C en 44,5 49 300 Ms Moon) 200 Myo 100 100 56 0 1 IT 2 5 10 20 Temps en secondes 50 100200 el Imn 2mn 500 10° 15 mn 10° [ee Th 2h Ie Gl 4h 8h 1 10° 5 10 20 Temps en secondes IT 24h 2 §0 100200 500 10° Imn 2mn 15mn | ie} Acq = 900°C | | 1h 105 | | 2h 4h | Bh Moo = 255°C 10) Mgg —= 160°C 18 NCD-4 Steel Composition: 0.17% C - 0.63% Mn - 0.28% Si - 0.011% S 0.022% P - 1.13% Ni - 0.49% Cr - 0.13% Mo - 0.10% Cu Grain size: 10 Austenitized at 850°C (1562°F) for 30 min 10° 24h Ms9 = 205°C 120 NCD 5-02 Steel Composition: 1.18% C - 0.63% Mn - 0.28% Si - 0.011% S - 0.022% P - 1.13% Ni - 0.49% Cr - 0.13% Mo - 0.10% Cu Austenitized at 850°C (1562°F) for 30 min 900 3 = x é Ac; 2 2 800 800 5 A Rockwell Dureté Ac, Ac, 700 700 HRC 600 86 HRB 600 ty 5< 500 500 2 22 97,5 HRB E 400 e Ms 21,5 HRC 3 400 Température °C en 300 200 200 Ms 100 100 Mso 42,5 Myo 0 1 2 5 Temps en secondes IT Acy = 730°C SOURCE: 10 20 50 100200 | | Tmn 2mn mn fe) Acg —= 830°C as 10" 500 10° | ea th 2h 4h | | Bh 24h 0) ly IT Temps 24 5 en secondes 10 20 50 100200 500 10° 10* 10§ | | | | | | | | Tmn 2mn 15mn th 2h 4h BH 24h ° M, = 385°C Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 ae EE EEE Atlas of Time-Temperature Diagrams 21] 30 NCD 8 Steel Composition: 0.32% C - 0.55% Mn - 0.27% Si - 1.90% Ni 1.80% Cr - 0.58% Mo Grain size: 10 Austenitized at 875°C (1607°F) for 30 min 900°C 600 UE TEE PAPE ELT tH LLL ge OUER RES Oureté Rockwell Température 555 eo IT Temps oe iS) tS fer 1S 50 hy en Shee - MN ono (oS° SS © SSS CP ay So om a wo secondes SOURCE: G. Delbart, A. Constant, Courbes de Transformation des aciers de fabrication francaise, vol II, IRSID, Saint-GermainEn-Laye, 1956 30 NC 12 Steel 35 NC Composition: 0.33% C - 0.51% Mn - 0.32% Si - 0.016% S 0.008% P - 3.38% Ni - 0.83% Cr - 0.038% Mo - 0.13% Cu Grain size: 8 Austenitized at 825°C (1520°F) for 30 min Composition: 0.37% C - 0.59% Mn - 0.26% Si - 0.025% S - 11 Steel 0.017% P - 2.54% Ni - 0.94% Cr - 0.12% Mo - 0.20% Cu Grain size: 10-13 Austenitized at 850°C (1562°F) for 30 min 900 Rockwell Dureté Rockwell Dureté Ac 700 90 HRB 99 HRB 600 21 HRC 23 HRC 400 Température °C en 38 Ms 46 °C Température en 47 300 200 100 58 3,5 4 IT Temps 2 5 en secondes 10 20 50 100200 el 1mn 2mn 108 500 10° ft | 15 mn 1h 2h 4h 1 | Bh 2 5 Temps en secondes 24h IT 10 20 50 100200 Pe Imn 500 a a 10° aa 2mn SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 EEE 15mn 1h 2h 4h Bh 24h Atlas of Time-Temperature Diagrams 212 10 NC 12 Steel 14 NC 12 Steel Composition: 0.15% C - 0.32% Mn - 0.35% Si - 0.005% S - Composition: 0.10% C - 0.33% Mn - 0.26% Si - 0.005% S - 0.010% P - 3.02% Ni - 0.68% Cr - 0.19% Mo - 0.14% Cu Grain size: 9 Austenitized at 850°C (1562°F) for 30 min 0.016% P - 3.09% Ni - 0.84% Cr - 0.14% Mo - 0.12% Cu Grain size: 8-9 Austenitized at 850°C (1562°F) for 30 min = 900 3 800 3 fa] = é 2 Acy fa} Ac, 700 600 ©) 85 HRB (2) 6 = 500 5 é 400 Fr Ms 300 200 100 43 Re 1 Tee v2 5 oo poeweons io 20 50 100200 10° I Imn Acy = 710°C 500 | 2mn Sima 10° 10° ieee Wh) 0 | 2h 4h 8ih Acg = 800°C 1 24h 2 5 10 20 50 Tempsrenreccondes IT M, = 385°C 100200 500 10° 10° | | | | | | | 2mn 15mn th 2h 4h BH 24h 32 NCD 15 Steel Composition: 0.31% C - 0.50% Mn - 0.28% Si - 0.005% S 0.010% P - 3.33% Ni - 1.20% Cr - 0.50% Mo - 0.15% Cu <0.03% V - 0.08% W Grain size: 11 Austenitized at 850°C (1562°F) for 30 min Rockwell Dureté Température °C en 55 1 IT SOURCE: 2 5 Temps en secondes 10° 20 50 100200 | Iman 500 10° | 2mn 15mn 10* 108 | | | | | 1h 2h 4h Bh 24h 10° | imn Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 Snore —————————————————— Atlas of Time-Temperature Diagrams 213 30 NCD 12 Steel Composition: 0.30% C - 0.40% Mn - 0.30% Si - 3.20% Ni 0.86% Cr - 0.40% Mo Grain size: 12-13 Austenitized at 850°C (1562°F) for 30 min Ac3 | 3 Aci 1s ale hed p=} A=] 3 a a és;| 46Re IT Temps SOURCE: G. Delbart, A. Constant, Courbes de Transformation En-Laye, 1956 35 NCD 16 Steel en secondes des aciers de fabrication francaise, vol II, IRSID, Saint-Germain- 16 NC 18 Steel Composition: 0.36% C - 0.39% Mn - 0.30% Si - 0.005% S 0.010% P - 3.70% Ni - 1.65% Cr - 0.23% Mo - 0.12% Cu Grain Composition: 0.15% C - 0.48% Mn - 0.33% Si - 0.010% Si 0.012% P - 4.21% Ni - 1.00% Cr - 0.20% Mo - 0.21% Cu Grain size: 10-12 Austenitized at 850°C (1562°F) for 30 min size: 10-11 Austenitized at 850°C (1562°F) for 30 min 3 900 z = $ & 8 [ 800 i = Ac; a 700 Ac, 600 e o 5 yp ae a e 400 e Fe Ms 300 200 100 56 HRC 44 HRC 0 2. 1 IT Temps Acy = 700°C Mgo = 215°C SOURCE: 5 en secondes 10 20 100200 500 10° , oi "i ae Sam. tt Docs 50 Ac3 = 785°C = 1) Ie Sree IT 2) 6 Temps en secondes 10) 20) “50 | oe eee M, = 275°C fo} Mgo = 155°C Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 500 , i ICE. Sez 10? | Be ney OE OH 214 Atlas of Time-Temperature Diagrams 7 100 CDV 5 Steel 6 Steel 100 CV Composition: 0.86% C - 0.35% Mn - 0.34% Si - 0.012% S - Composition: 0.91% C - 0.32% Mn - 0.37% Si - 0.006% S - ; 0.005% P - 0.58% Ni - 1.62% Cr - <0.01% Mo - 0.05% Cu - 0.016% P - 5.20% Cr - 1.07% Mo - 0.09% Cu - 0.420% V Grain 0.174% V Grain size: 12 Austenitized at 900°C (1652°F) for 30 size: 5-7 Austenitized at 975°C (1790°F) for 30 min min « 3 z 3 Ac, fa) 92 HRB 700 28,5 HRC 900 26 HRC 34 37 43 600 47 = ° = 500 BH E 400 43 3 5 = Fe 47 52,5 300 56 Ms 58,5 200 100 Of ; IT 1 2 5 10 20 50 100200 500 10 | ee Temps en secondes imn 2mn ismny | 10° 108 SE | uly hie Wace Acy = 800°C Acg = 845°C 45 WC 20-04 Steel 45 WC ea st eed Temps en secondes 24h dik) 2h) 4h Bh) SE IT | | laa 65 et a al | r oe super Mg = 205°C 20-04 Steel Composition: 0.48% C - 0.27% Mn - 0.67% Si - 0.005% S - Composition: 0.45% C - 0.34% Mn - 0.20% Si - 0.007% S - 0.013% Vie= 2.34% 0.360% V - 2.20% W Grain size: 10 Austenitized at 950°C 0.010% P - 0.14% Ni - 1.20% Cr - 0.02% Mo - 0.21% Cu W Grain size: 9 Austenitized at 950° 0.019% P - 0.44% Ni - 1.25% Cr - <0.10% Mo - 0.14% Cu - (1742°F) for 30 min (1742°F) for 30 min 900 25 Se 33 c 800 Ac, 92 HRB 25 HRC 700 30 600 9 9 5 = 500 Ey400 é 2 e Ms 300 50 200 100 60,5 0 1 IT Z 5 Temps en secondes SOURCE: 10 20 50 100200 | 1mn 2mn 500 10° 15mn 10° | 1h | 1 10° | 2h 4h | Bh | IT 2 5 Temps en secondes 24h 10 20 50 100200 | 500 103 | tmn 2mn 15mn 10° 10° | | | | | th 2h 4h Bh 24h Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 ———_—_—_—— NN NNN eee Atlas of Time-Temperature Diagrams Z18 40 WCDS 35-12 Steel Z 80 WCV 18-04-01 Steel Composition: 0.81% C - 0.17% Mn - 0.23% Si - 0.019% S - Composition: 0.40% C - 0.34% Mn - 0.26% Si - 0.010% S - 0.032% P - 0.12% Ni - 2.85% Cr - 0.16% Mo - 0.14% Cu - 0.018% P - 0.08% Ni - 4.25% Cr - 0.09% Mo - 1.080% V - (1832°F) for 30 min min 0.260% V - 3.39% W Grain size: 9-11 Austenitized at 1000°C 17.60% W - 0.05% Co Austenitized at 1275°C (2330°F) for 3 = 900 eg = BGs Fs 900 3 Ac, ac F a 800 800 29 HRC 98 HRB 700 21 HRC 700 39 23 600 600 2 2 s 500 s 500 3 400 e : 400 e Ms 300 XS a Ms 200 200 Mso Myo 100 100 t 1 2 5 10 20 | Temps en secondes IT 100200 50 mn | 2mn | th 1S5mn | 2h | 4h | 8h 5 2 1 sfamps fen’ secondes 105 10° 500 10° 65 4 61,5 50 100200 500 10° 10 20 i imn IT | 2mn 24h 35 NC 15 Steel Composition: 0.38% C - 0.44% Mn - 0.22% Si - 0.003% S 0.018% P - 3.40% Ni - 1.50% Cr - 0.15% Mo - 0.13% Cu - 0.015% V Grain size: 6-7 Austenitized at 925°C (1700°F) for 30 Ac Rockwell Dureté 700 600 te S 500 o 5 © a€ 400 5 = 45 HRC 300 Si Ms 200 100 53 0 eee 5 10 Temps en secondes IT 20 50 | mn 100200 | 2mn 500 10° 1Smn | | | | 10° | th 2h 10° 4h Bh 24h Paris, France, 1974 SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, s sss ss 1Smn 10° ir 1h 2h a 4 4h Bh 108 24h Atlas of Time-Temperature Diagrams 216 35 NCDV 10 Steel Composition: 0.34% C - 0.52% Mn - 0.37% Si - 2.65% Ni 1.80% Cr - 0.53% Mo - 0.15% V - 0.20% Cu Grain size: 10-11 Austenitized at 900°C (1652°F) for 30 min 600 uo Soo a Temperoture 100 0 oo o {=} 8 (sy 7 ey f= Do eewmereas S08= 8 S$ oss" 8S s 9s 5 2 SF I Sem mm 2 oS RS <3 IT Temps en secondes SOURCE: G. Delbart, A. Constant, Courbes de Transformation des aciers de fabrication francaise, vol I, IRSID, Saint-GermainEn-Laye, 1953 Z 200 C 12 Steel Z 160 CDV Composition: 1.78% C - 0.27% Mn - 0.25% Si - 0.010% S - Composition: 1.56% C - 0.37% Mn - 0.20% Si - 0.001% S - 0.025% P - 0.35% Ni - 11.70% Cr - 0.61% Mo - 0.090% V - 0.020% P - 0.26% Ni - 12.46% Cr - 0.54% Mo - 0.10% Cu - 0.63% W Grain size: 11 Austenitized at 950°C (1742°F) for 30 min 0.65% V - 0.28% W Grain size: 11 Austenitized at 1000°C (1832°F) for 30 min = 12 Steel 900 fe 8 3 g 2 2 ee 32 700 20 HRC 8 aa | EE Teasesd a aes E 22 HRC | T eG FG 32 + 33 600 9 2 & gs 500 § g E : 4oo | +—| 2 Acy = 815°C 5 secondes 7 10 20 wae has i Ima 2mn 500 10° | AS mn | SAH M, = 255°C a a! Alilcl+F —|__| E Ate+M 1 neh $C ict | | | * 0 hi | esibyAS 35 |-+ Me“ 63 en 35 jmat i esveins gree it aaa ale M,, emps 32 A}c aS ag: = “SIL lie i emps 2 en Acy = 815°C 5 10 20 secondes “ 50 100200 | | Ima 2mn M, =185°C SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 500 10° Has 10° i Msg = 140°C 10° - ah AA Mgo = 95°C Atlas of Time-Temperature Diagrams s 85 NCA omposition: 217 AGH ee Steel 0. C - 0.27% Z 130 WCV Mn - 0.24% Si - 0.023% S$ - Cc 0.024% P - 4.03% Cr - 8.00% Mo - 1.380% V - 1.43% W - 0.19% Be Co Grain size: 9 Austenitized at 1200°C (2192°F) for 10 12-04-04 Steel ition: 1.43% C - 0.17% Mn 0.023% P - 0.18% Ni - ae - i - Senta Dee 11.00% W Grain size: 12 Austenitized at 1250°C (2282°F) for 8 min 3 27 HRC 30 35 : : E F 2 63,5 1 1 IT Temps 2 5 10 20 en secondes 50 100200 | 1mn Ac, = 840°C 500 10° | 2mn 10? | 1h 15 mn | 2h 10° | 4h | 8h 12-04-02-02 2 Sy 10/520) empsfenkseconces 50 100200 500 Fe a 10° pid 10* 10* el an A AS au | 24h M, = 140°C Z 80 WCDX IT Acy = 845°C Steel M, = 155°C Z 85 WCV Mso9 = 90°C 18-04-02 Steel Composition: 0.82% C - 0.29% Mn ~ 0.25% Si - 0.010% S - Composition: 0.79% C - 0.17% Mn - 0.18% Si - 0.026% S - 0.032% P - 0.20% Ni - 4.10% Cr - 1.60% Mo - 2.060% V - 0.035% P - 0.08% Ni - 4.00% Cr - 0.20% Mo - 2.110% V - 12.10% W Grain size: 9-10 Austenitized at 1275°C (2330°F) for 18.15% W - 0.17% Co Grain size: 11 Austenitized at 1275°C 10 min (2330°F) for 10 min 900 3 Ac, 8 % g is : fa} 30 HRC 700 600 9° S oO 500 § : 400 2 2 300 200 Ms 100 Mso 61 0 IT 1 Vas Ac, = 825°C 2. 5 ar da 10 20 50 100200 500 10° a pe 15mn M, = 135°C rg iM 4 th 2h 4h s Bh IT Mgo= cope ez? 24h 70°C Da See Acy = 845°C 20 Santas tmn 2mn 500 10° , har | ie ibmn th 2h 4h Sh 24h M, = 205°C SOURCE: Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 Mso = 140°C Atlas of Time-Temperature Diagrams 218 Z 30 WCKY 09-03 Steel Z 80 WKCV 18-05-04-01 Steel Composition: 0.28% C - 0.54% Mn - 0.96% Si - 0.003% S 0.025% P - 0.54% Ni - 2.80% Cr - 0.13% Mo - 0.240% V - Composition: 0.80% C - 0.53% Mn - 0.28% Si - 3.80% Cr 1.050% V - 17.40% W - 4.62% Co Austenitized at 1280°C 8.77% W - 2.05% Co Grain size: 9 Austenitized at 1175°C (2336°F) for 10 min (2150°F) for 30 min ae 900 2= gs ro Ac; 800 me 800 ———- 22:HRC 700 7 700 ete . Pole pl a Sa BB Z LS a 2 6 Ube Peas Asc Ak c|+ Fi +d Gigs = 31 38 Wis cree 600 600 ry < 500 ¢ 500 s = 400 fe Ms ie =F i | 300 At ¢+ F+ic-t- 1 aa eee 300 ast 200 200 | Ms ae Mso 100 at ales et, JL aap 4 cll M ie baat jst 64,5 0 Temps 10 20 5 2 1 IT 0 53 en secondes Z 80 WKCV 100200 50 | 1mn | 2mn isma 18-10-04-02 Steel | wh | | | 2h 4h 1 TT. 108 10° 500 10° 2 5 10 20 50 i ce 500 10? grea + Tempsieticondes, he ll 10° mtd M3 i i ne | Sh 24h Acy = 820°C Mg = 140°C Z 80 WKCV 18-10-04-02 Mso9 = 75°C Steel Composition: 0.80% C - 0.29% Mn - 0.28% Si - 0.026% S - Composition: 0.89% C - 0.50% Mn - 0.18% Si - 3.90% Cr - 0.018% P - 4.40% Cr - 0.37% Mo - 1.600% V - 19.20% W 9.30% Co Grain size: 9-10 Austenitized at 1275°C (2330°F) for 1.030% V - 19.10% W - 9.66% Co Austenitized at 1280°C (2336°F) for 10 min 10 min r 2 Ac, a g00 }—+ Te A+ |c ESN gen ms ell Bl (Atle 4cy 700 See et a \ EB ra) Atcltctt FHC a aS “~ = as é 31 HRC Sails Pees. al TSS 600 oT a ° 5 arition uae San ‘ carbure ares A 400 t § . § + 2 5 300 i= A+ict+ F+ Ci 200 z Ms =e A +c +/M at |S" Se ae | = 65 63 0 1 IT 2 eee Acq = 830°C SGURCE: 45) 10 =201"'50 | 40920 500 10? 1mn 2mn Pd M, = 150°C ee ad he ively Zkae Msg = IT 1 2 bai a 5 10 20 50 100200 se 2mn 80°C Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 500 103 10* 108 15mn “A es i ” an Atlas of Time-Temperature Diagrams 2g Z 150 WKVC 12-05-05-04 Steel Composition: 1.46% C - 0.10% Mn - 0.27% Si - 0.033% $ 0.031% P - 3.72% Cr - 0.47% Mo - 0.09% Cu - 4.100% V 13.70% W - 5.00% Co Grain size: 10 Austenitized at 1250°C Z 165 WKVC 12-10-05-04 Steel Composition: 1.64% C - 0.21% Mn - 0.31% Si - 0.005% S$ 0.021% P - 4.50% Cr - 0.66% Mo - 5.050% V - 11.64% W 11.35% Co Grain size: 9-10 Austenitized at 1240°C (2264°F) (2282°F) for 8 min for 10 min 33 Z 8 37 HRC 3 HRC 42 39 41 = & e 62 65 5 2 1 10 20 100200 50 Temps en secondes IT 500 | | | | | | | 2mn 15 mn Th 2h 4h 8h 24h Acy = 845°C M, = 130°C 5 7) 1 10° 10* 10° | Imn Ms0 = 60°C 100200 20 50 | | = Imn 2mn 10 Temps en secondes IT Acq = 860°C 500 108 10* 10? 15 mn | | | | | 1h 2h 4h Bh 24h M, = 165°C 55 NCDV 7 Steel Z 80 WDCV 6 Steel Composition: 0.55% C - 0.68% Mn - 0.30% Si - 0.004% S 0.014% P - 1.65% Ni - 1.00% Cr - 0.35% Mo - 0.11% Cu 0.220% V - 0.08% W Grain size: 12 Austenitized at 850°C (1562°F) for 30 min Composition: 0.76% C - 0.25% Mn - 0.35% Si - 0.031% S 0.025% P - 4.54% Cr - 5.75% Mo - 2.050% V - 6.60% W 0.86% Co Grain size: 9-10 Austenitized at 1225°C (2240°F) for 10 min 3 $ 3 oc Eade = 800 Ss ee ees |eae = eee a Ac, a 3 3 S & | Ne, {| ® 2 [-bor44 | 700 - 22,5 CV ates a Ne 1 600 20,5 HRC HRC 27 +—+ i a Al+c ° 2 : = 500 ¢ a 400 3 (= e 48 300 |} }—___++—___—_—__ 4} 1 244 == == (Al+c ote: Se = 200 Ms Attc+M Mio Se 100 3 64 61,5 0 qi IT 1 2 5 aes Acy = 715°C Msg = 200°C SOURCE: 10 20 100200 50 e ou 15mn Acg = 810°C 1th 2h 4h fe ig i: 10° 500 8h IT 24h M, = 260°C a Acy = 825°C 2 5 is 10 20 50 ee Imn 2mn 10° , va 1Smn th 2h 500 M, = 200°C 4h ie Bh 24h Mso = 120°C France, 1974 Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, ee ——— 85 OOOO ee Atlas of Time-Temperature Diagrams 220 Steel 06-05-04-04 Z 130 WDCV Steel 06-05-05-04-02 Z 85 WDKCV Composition: 1.29% C - 0.26% Mn - 0.43% Si - 0.006% S - Composition: 0.84% C - 0.22% Mn - 0.23% Si - 0.014% S - 0.025% P - 4.42% Cr - 4.10% Mo - 4.000% sf- 5.54% W 0.37% Co Grain size: 8 Austenitized at 1230°C (2246°F) 0.025% P - 4.36% Cr - 4.95% Mo - 1.830% V - 6.48% W 4.85% Co Grain size: 7-8 Austenitized at 1230°C (2246°F) for 10 min Pe 28 HRC e fs 1 Th ee Acy = 850°C 2 5 Sea 10 20 50 100 200 mA PS * i 4h isima | 24h a igus | M, = 150°C 5 2 1 10* 10° 10° 500 a en emps secondes ' 20 Peet 200 = 1mm 2mn 10 Acy = 850°C Z 110 DKCWV 09-08-04-02-01 | Steel 0.023% P - 3.91% Cr - 9.50% Mo - 1.210% V - 1.47% W - 8.35% Co Grain size: 7-7 Austenitized at 1200°C (2192°F) for 10 min 900 800 700 600 cs <5 500 2 5 & 400 300 200 Ms 100 0 fe IT Temps 2 Acy = 845°C SOURCE: 5 en secondes 10 20 50 100200 | ima Mam | 2mn 500 10° | 1Smn 10° | ih 10° | | | | 2h 4h Bh 24h 125°C Courbes de Transformation des Aciers de Fabrication Francaise, IRSID, Paris, France, 1974 it 10° 10° 15mn M, = 180°C Composition: 1.11% C - 0.24% Mn - 0.27% Si - 0.007% S - 8 € 25 500 1h | | 2h 4h Bh 24h Benelux Steels CCT Diagrams Atlas of Time-Temperature Diagrams 223 Benelux Steels - Example Diagram The CCT diagrams developed by Center National de Recherches Metallurgiques in Liege, Belgium, have been constructed in a slightly different manner than those shown previously. The x-axis is not a simple plot of time and, therefore, cooling curves are not superimposed over the diagrams. Instead, the x-axis plots the time required to 500°C (1472 to 932°F), to cool from which 800 is related the cooling rate. Because of this manner graphical presentation, the transformation of is given along the usual superimposed because plot vertical lines, cooling of this construction, room temperature rather than curves. Also, it is possible hardness Hardness, 30 kg load) as a function "half-cooling" time with a single curve. to (Vickers of the to Time while austenite Time to temperature Austenitizing temperature Durée de chauff. * Durée d‘austénit. 15 min. Température d'austénit. 890°C Grain austénit. Ac 3: 842°C (786°C) 10 pales “Austenite grain size Ac 1: 708°C Units for HV test 30 min. “, | Ferrite + cementite “ (or, more generally, carbide) Température °C kg/mm2 Dureté (30kg )Vickers - Durée du refroidissement - entre 800 et 500°C - min. Cooling time between 800 and 500°C - minutes Vickers hardness (30 kg load) 224 Atlas of Time-Temperature Diagrams 032 (SAE 1035) Composition: 0.36% C - 0.60% Mn - 0.26% Si - 0.032% Cs 0.012% P Grain size: 10 Austenitized at 890°C (1634°F) for 15 min 800 Durée de chauff. 30min. Ourée d'austénit 15 min 890°C 10 Temperature d'austénit. Grain austénit Ac3: 842°C Ac 1: 708°C 700] (786°C) | T | MI 1] | “ 600 £ $500 g Ac = 708°C aoe § Aca = 842°C 600.6 wal | La vol EEC CETTE ! his: ig PHT ied 107 E i pe mela OTR 2 Durée rear) = du retroidissement ; | = entre 400 = radineee . ¢€ od! 800 et 500°C tet 4-4 2 6 200 0 10 - min. 034 (SAE 1045) Composition: 0.45% C - 0.59% Mn - 0.28% Si - 0.03% S 0.015% P - 0.06% Ni - 0.05% Cr - 0.14% Cu Grain size: 5-6 Austenitized at 825°C (1517°F) for 15 min Ourée de chauft i Durée d'austénit Temperature d'austénit. Ee Grain austénit - Ac 3: 798°C (757°C) Ac 1: 725°C 600] a Ik Ao F+ce $0 be ° ie wh 300 7 + sa 107 2 ml 1 ‘ aaa Bala en ‘ uy e ) Aey = (725°C a at : = ‘Ee E 600 = 400 Jal g Acg = 798°C o ie i 2 entre U) Sia} I soot du retroidissement be I PresetTT 2 | miei Sip eat : | Durée el [ 200® ++44+— | Litt ee 0 | ABOU Mi" inxs : TOU} ea a : all Lt CUES eg IIe tt i = Senet pie +4444 200 | | See Hi nail Sail Een SES TR oer |e Me | ; % aL | J Lay | =) 4 800 et 500°C « iii} @ to Heath ‘ 2 «4 10? - min 038 Composition: 0.771% C - 0.784% Mn - 0.16% Si - 0.021% S 0.013% P Austenitized at 950°C (1742°F) 600 Durée de chauft 7min Ourée d'austénit Omin Conan ee Ac3: 741°C Ac 1; 714°C || ] t patie er eta | | j Acy = 714°C : 2 g = Acg = 741°C 2 Durée du refroidissement entre 4 @ « 10! 600 et 500°C - min. SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformation des Aciers Fabriques dans le Benelux, Centre National de Recherches Metallurgiques, Brussels, Belgium, 1967 225 Atlas of Time-Temperature Diagrams 041 (SAE 1330) Composition: 0.26% C - 1.48% Mn - 0.28% Si - 0.015% S$ - 0.015% P - 0.08% Ni - 0.02% Cr - 0.01% Mo - 0.14% Cu Grain size: 10 Austenitized at 850°C (1544°F) for 15 min Durée dechauf?——sSmin 600] Durée d’austénit. Simin Température d’austénit. 840°C Grain austénit 10 Ac3: 700} 827°C = ul eS IUIES = (787°C) Ac 1: 708°C ott = oe 500) = ’ zt Al — dt = le SS eee | eo ° |" © 500 | ale | whe Fee Rae NIE /mm2 kg - pes5 Acq = 708°C =! i Acg = 827°C Oe Dureté (30kg )Vickers * 0 10° 2 Ourée rT du Cacia! refroidissement 2 entre oy 800 et 500°C eet! 2 4 - min 045 Composition: 0.36% C - 1.59% Mn - 0.26% Si - 0.03% S - 0.02% P Grain size: 7-8 Austenitized at 850°C (1562°F) for 15 min Durée de chauft. 600} 35 min Durée d'austénit. 850°C 7-8 Ac3: 799°C Ac 1: 706°C 700} 15min. Temperature d’austénit. Grain austénit: te) Se 4 (746°C) I Spemmacnn T 600| 2 rf € \| rs) ce =o 1 nin ¢5 500 s { :Erol °2 Acy = 706°C 8 :E Ul Acg = 799°C 600>% 300 eae 7 5 a ahold +44 400 200 st 100 200 = I 107? Le 2 © 6 10° 2 4 6 |2 01 Durée du refroidissement = entre a re ei0! 2 aie) Wa; 10' ; 800 et 500°C - min. 551 Composition: 0.09% C - 0.45% Mn - 0.40% Si - 0.01% S - 0.02% P - 0.18% Ni - 12.30% Cr Grain size: 9-10 Austenitized at 980°C (1796°F) for 30 min 800] Durée de chauft 35 min Durée d'austénit 30min Temperature d’austénit, Grain austénit 980°C 9-10 Ac3: 865°C (831°C) 700] Ac 1. 800°C 600) te See 3 fr A ] ] as | {11 | ae [ees |ae sha = #500} | 5 ra i Ls T He abe 3 = AE = mia ees le Bie See. “is eee a | eal } AIRE Se a os a {| | is Hi kg/mm? - | 2 Acy = 800°C 800 Acg = 865°C 2& 400|__| toni= 600 300 Dureté (30kg )Vickers |e -| |400 200 eevee 200 100 107 dice 7 Neen) 2 4 dk 6 6 10! Ourée du refroidissement SOURCE: entre 2 a 800 et 500°C 6 0* 2 i @ 8 10° - min ation des Aciers Fabriques dans le Benelux, M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transform Centre Nationa ] de Recherches Metallurgiques, Brussels, Belgium, 1967 a EEE ane Atlas of Time-Temperature Diagrams 226 287 (AISI D3 Tool Steel) Composition: 2.09% C - 0.52% Mn - 0.33% Si - 12.76% Cr Grain size: 10-11 Austenitized at 970°C (1778°F) for 30 min 800} Durée de chauff, 35min Durée d'austénit. Température d'austénit, Grain austénit 30min 970°C 10-11 Ac3: 860°C (842°C) Ac 1: 689°C 700} [ a SES es ae} rH a Bue Setest 600} Me [3 Are 2) : L| os ys 2 Th 4—| M2 _hs, gale eralALE HET Le e iba cP Ec i | [el [ eile sur aslanaise Mirela aiiiill aaa aiatean a 2 S aes & ila 4 200 oe 2 Of ig 1 ir) ne — Hat i i. ot Htty = tee 4 | im 4 LI o Acq = 689°C $£ Acg = 860°C Hoo2 E int - bee | 4 iF { 100 TEES Lene blll le ‘ 2 Durée ‘ ae 800 et 500°C - min ; : «10! ¢ du refroidissement entre abe H : H zi res 1 4 2 107 elt 100 6 10 6 ‘ 2 10? Composition: 0.145% C - 0.27% Mn - 0.02% Si - 0.005% S 0.012% P - 9.12% Ni Grain size: 10-11 Austenitized at 800°C (1472°F) for 30 min Durée de chauff. 800] 30min Temperature 800°C d’austénit. Grain austenit Ac3: 713°C Ac 1: 572°C 700} 35min Durée d'austénit (674°C) oO 2 =F eee Ea ae 4 Bol hen | a allt {| Sel aa ele di + att ae : TE & fot y at 2 : aN dE ea Re 200] ele - = i nil "| eae te Le Spee ak 3 a eae LL Ie _| ailing ated Tre - OW Fane @8 Acy = 572°C iit Acg = 713°C F 11600 -« | a | LH Jed-taqy 2 a‘ | M ie 10" leona | + 1411400 en 100 Spa 2 - ee pe oe E E | | wal Lb] SE Te ; Salas be LL x ee by ] ]| stl -! eee pe a 600] __| apes 10-11 | 200 aaa un. 2 Durée OMS du refroidissement 2 entre 4 800 et 500°C 6 «© 10? 2 | Ce Hite? - min Composition: 0.315% C - 0.14% Mn - 0.01% Si - 0.006% § 0.01% P - 9.12% Ni Grain size: 10-11 Austenitized at 820°C (1508°F) for 30 min 800} Durée de chautt 35 min Durée d'austénit, 30min. Temperature d’austénit. 820°C Grain austénit 10-11 Ac3: 651°C 700} Ac 1: 602°C (630°C) : $20 3 5 400 2 ++ aS ees eel i EE ed 600 i E aL Se aad aa | SI ed ee aeioiaree ik Ll = Se = fee me HIST PEE I eee, -4—} + AN ~ IC HE E o ; fe} | x3 Acy == 602°C i = nS - = ea 300 | es Sartre s lle saris co] §bal Acg = 651°C 6002 | ws z a ae 4 3 Ne 200 ea 4 +44 200 100 10° 2 Durée du retroidissement entre 800 et 500°C 4 ie eto2 - SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformation des Aciers Fabriques dans le Benelux, 1967 Centre National de Recherches Metallurgiques, Brussels, Belgium, Atlas of Time-Temperature Diagrams 227 ee SS EERE EE Se 506 Composition: 0.14% C - 0.27% Mn - 0.01% Si - 0.005% S 0.09% P - 9.12% Ni - 4.07% Co Grain size: 9 Austenitized at 840°C (1544°F) for 30 min Durée de chaut? “35 min Durée d'austénit 30min. Température d’austénit. 840°C Grain austénit 9 800} Ac3: 741°C Ac 1: 582°C 700} “| (727°C) 600 E o : s 2© 500 2 2 ‘ 8 : 400 § 6 > Acy = 582°C Acg = 741°C 2 300 e 5 fe) 200) 100 Ps 10"! 2 lea ee 2 4 6 = @ 10 Durée du retroidissement 2 4) £6. (a t0F 2 entre 800 et 500°C - min. Composition: 0.325% C - 0.138% Mn - 0.15% Si - 0.005% S 0.09% P - 9.05% Ni - 4.07% Co Grain size: 10-11 Austenitized at 790°C (1454°F) for 30 min Durée de chauff. Durée d'austénit. Temperature d’austénit. Grain austénit 800} Ac 3: 722°C Ac 1: 607°C 700} 35 min 15min 790°C 10-11 (703°C) ~ 600) 3 E 3 3) ' ic . 28 ba ; ¢ > Acy = 607°C Acg = 722°C 4 300 $ ao 200 100 10” iy Durée Ys 8,10) du refroidissement entre 2 cya 750 et 500°C se) 102 2 - min. Composition: 0.22% C - 1.25% Mn - 0.25% Si - 0.04% S - 0.038% P - 0.33% Cr Grain size: 8 Austenitized (1652°F) for 30 min at 900°C Durée de chauff. 35 min, Ourée d‘austénit 30 min. Température d‘austénit. 900°C Grain austénit 8 800] Ac3: Act: 700} 847°C 713°C (778°C) 600 * £ ;» $00 a2 2 ; 8 ‘ = 400 3 > : HM 300 Acy = 713°C Acg = 847°C re} 200, 100 10-7 2 6 ¢ 6 107 2 4 ooo) Ourée du refroidissement SOURCE: 2 ‘4 « 6 10! entre 800 et 500°C - min Diagrammes de Transformation des Aciers Fabriques dans le Benelux, M. Economopoul os, N. Lambert, L. Habraken, hes Metallurgiques, Brussels, Belgium, 1967 Centre National de Recherc Atlas of Time-Temperature Diagrams 228 s n 091 (SAE 34/35) Composition: 0.285% C - 0.62% Mn - 0.30% Si-2.55% Ni 0.71% Cr Grain size: 10 Austenitized at 820°C (1508°F) for 30 min Durée de chauft. Durée d'austénit. 600 35min. admin. SEIS! isi enh ties Ac 3: 773°C im rear a SS ea i 700] Ac 1: 693°C +} {| _t Meant L L 1 SE EW 600 ‘e £ | 10 [| + i Acq = 693°C a (§400 a 5 | 1600 = 300 LL Acg = THERE § 400 200 U 200 100 10°" 2 um eurent L 2 Durée « 6 joe i @ 10! du refroidissement entre es PU Ce 800 et 500°C ed 2 dnomtemrento> - min 144 Composition: 0.12% C - 0.52% Mn - 0.22% Si - 0.014% S 0.015% P-4.15% Ni - 0.86% Cr Grain size: 10 Austenitized at 850°C (1562°F) for 15 min Durée de chauft. Durée d’austénit. 800} 40 min Simin, PS er a SE basi te ee Set eee eee cs wrt Ac 3: 787°C (764°C) 700) Ac 1: 674°C Le | | #00 e fall i & 400 &) ‘ F+c E > Acy = 674°C : 8 & : o Wall Lt 4. ni g3 soo 1 | abl 4 H | ii 3 A : Acg = 787°C 600.¢ | : M a — if 200) 400 4h 200 100 ad 107 HS 2 Rn PE By tie SI ars 6 @ ew! Ourée du refroidissement 2 entre 4 0 6 2 s 6 0 10° 600 et 500°C - min, 092 Composition: 0.34% C - 0.49% Mn - 0.30% Si-4.30% Ni - 1.16% Cr Grain size: 8 Austenitized at 900°C (1652°F) 1h + 850°C (1562°F) for 30 min Durée de chauff, Ourée d'austénit 800] 7Tmin pre : Panapheet auaciialaey wel BEEN min aa el] EN ii Be CCIE Mile | Cre haa 1-4 Bo Ie eal rT 1 200 |_| Acy = 647°C : «Acs = 770°C 8 600 |, 2 400 é {| }200 100 1 2 <6) (eyt0! 2 © 6 0 0? Ourée du refroidissement SOURCE: a Tyg 4+—+44 300 ie [| | | | 600 entre 2 Cnr emrer ion Il 800 et 500°C - min M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformation des Aciers Fabriques dans le Benelux Centre National de Recherches Metallurgiques, Brussels, Belgium, 1967 a aa eS : eee Atlas of Time-Temperature Diagrams 229 455 Composition: 0.14% C - 0.68% Mn - 0.67% Si - 0.012% § 0.024% P - 2.95% Ni - 17.98% Cr - 0.06% Mo - 0.04% Al - 0.10% Co - 0.10% Cu Grain size: 5-6 Austenitized at 935°C (1715°F) for 30 min 600} {Durée de chautt Durée d'austénit 40 min. Grain austénit 5-6 30 min Température d'austénit. 700] te 935°C Ac3: 807°C Ac 1: 689°C 100 */. martensite ||] ee —L L Pas d’austénite résiduette = ae fi CO 2 facie = 3 - ry 2 t Acy = 689°C 00 ® : ies 3 600 300 Meals Acg = 807°C 5 IE 400 200 la} 200 LI. 1 2 ‘ TT 2 a wera 10" Ourée du refroidissement 2 entre s 6 6 10? 2 4 @ «@ 10 800 et 500°C - min. 085 (SAE 4125) Composition: 0.26% C - 0.73% Mn - 0.243% Si - 0.016% S 0.018% P - 0.175% Ni - 1.065% Cr - 0.255% Mo Austenitized at 875°C (1605°F) for 30 min Durée de chauft, ad I Grain austénit Ac2: Act: 700] 7 min. rat me ruie Hae 867°C (798°C) 727°C | Hl: poll lest 600 b+ An ae) j Ae i ‘| =| + EEE oa t-m Pehanthie 10°? 2 4 2 = fi ia ‘je Hee « = S I fo 2 entre a 2 i} mall § Acg = 867°C H 600 400 2 HH iy f I Jon) Acy = 72720 8 NTHHH rT T & SE | Durée du refroidissement a SL aN] Hy : aay il (6. 0) 107! in HU } PI ttt a Ke 5 HT Ht 4 Bhs eesti easteed ead 300 aia ry St [fe rHH IGE. 4 4 i = | Sees e 4 HEE EHH eH ras hile at 1 | p ip eae Tih Wists ok {14200 Hf il ns ? Guna a, Oy 600 et 500°C - min. 081 (SAE 1435) Composition: 0.36% C - 0.72% Mn - 0.28% Si - 0.018% S - 0.077% P - 0.006% Ni - 0.97% Cr - 0.23% Mo - 0.10% Cu Austenitized at 850°C (1562°F) for 30 min Durée de chauff Durée d’austénit 600] Température d’austénit. vo] 1 Se OM 7 min. 30 min. | 850°C Grain austénit. an he SVPIZTEVB HEE Ee | ES SSN tH 1 a)SO Te tee tt | Tet I abe AU le Bales ape ” | HS “| F+c Aaqelar fj oe CoH +oe = co ia {[I[e = 400 HHH x0 ees 200) : _ Bi a 100) LIEN 2 4 @ 0 Ot 2 pene AUT = eS eal il dls opt entre tH) Qui §06Acg = 800°C 600 es 5 SEMI aule i ‘Sy Ra 2 62 ©Acy = 730°C ae — cna : eee Durée du retroidissement 7 TET Boe lt it He ra Ty steel TT TTT i 10-2 Lon ~ ‘ Hi Eee O00! i: 2 +++ 4200 || 6 ET 0 600 et 500°C - min. Transformation des Aciers Fabriques dans le Benelux, SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Belgium, 1967 Centre National de Recherches Metallurgiques, Brussels, Atlas of Time-Temperature Diagrams 230 a 082 (SAE 4140) Composition: 0.41% C - 0.82% Mn - 0.29% Si - 0.022% S - 0.035% P - 0.165% Ni - 1.005% Cr - 0.18% Mo Austenitized at 850°C (1562°F) for 30 min Durée d‘austénit 30min Température d'austénit. 850°C Real ae et THT) leila TTTT 7min = Durée dechauff, 600] | th. Grain austénit Ac 3: 801°C (769°C) Ac 1: 730°C 2 SOUL Ge {| + E 5 Ac, = 730°C 2 | 14 Je00# 5 $ : e 3 <Acg = 801°C 600. “oot 200 10" 2 4 « «10° 2 4 facie Durée du retroidissement i entre Fm mLEOn Ly 2 s 6 @ to? 800 et 500°C - min 280 Composition: 0.55% C - 0.58% Mn - 0.43% Si - 0.021% S - 0.013% P - 0.20% Ni - 0.79% Cr - 0.42% Mo - 0.19% Cu - 0.025% Al Grain size: 10-11 Austenitized at 870°C (1598°F) for 20 min Durée dechautt. 35min. Ourée d‘austénit. Température d’austénit. Grain austénit. 20min. 670°C 10-11 600) Ac3: 782°C (764°C) 700 600) ¢ 20 2 i & : 3 § 00 $ Ace = 727°C Acg = 782°C 200 100 10" Durée du refroidissement entre 800 et 500°C - min. 503 Composition: 0.625% C - 0.30% Mn - 0.20% Si - 0.015% $ 0.015% P-1.60% Cr - 0.30% Mo Austenitized at 850°C (1562°F) for 1h 800 Durée de chauff. Tmin Durée d'austénit. 60min. Temperature d’austénit. 850°C LT + ha Ac 3: 792°C Act: 741°C 700) ETA a 7 Grain austénit. Ie et al ae ae i | AS oo aoe > Acy = 741°C : : $ Acg = 792°C 10° 2 ‘ oot we 2 a EN Gelke 10! 2 | ‘ z6 il « 10? 2 ; © 8 10 Durée du refroidissement entre 800 et 500°C - min SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformation des Aci 3 j dans le Benelux, ciers Fabriques Centre National de Recherches Metallurgiques, Brussels, Belgium, 1967 Atlas of Time-Temperature Diagrams 231 290 (AISI A2 Tool Steel) Composition: 0.95% C - 0.50% Mn - 0.24% Si - 0.011% § - 0.018% P - 0.26% Ni - 4.90% Cr-1.03% Mo - 0.22% Cu - 0.02% Al Grain size: 10-11 Austenitized at 935°C (1715°F) for 20 min Ourée de chauif, 35 min. Durée d‘austénit. 20min, j; Temperature d'austénit. 935°C Grain austénit. 10-11 Ac3: 806°C (798°C) 700) Act: 670°C 800} 600) 4 IL oa ¢ 500 J s M ae + ay =: 300) i i Tic. ibsOl il 200) f = + 2 ae cm 2 ie aa ori ao § Acg = 806°C J+ 600 ear — |= | +111 t.00 east ee aa ee 0! Tanto? Ourée du refroidissement +++ Acy = 670°C & pis a= a0 etpape! | : tots sO Gipeenieeiea ivan I Sects i: us 1 aaleiate tt Sanit 100 Ie t +t 14+ ++-—lo elt fb ST 1B cts ee 2 <i) 200 Ee ve 10? ‘Pusan atari entre 800 et 500°C - min. 183 (SAE 6150) Composition: 0.53% C - 0.62% Mn - 0.25% Si - 0.01% S 0.015% P - 1.23% Cr - 0.27% V Grain size: 11-12 Austenitized at 850°C (1562°F) for 15 min Durée de chauft. 35 min Durée d’austénit. 1S min. Température d’austénit. 850°C Grain austénit. W-12 600} Ac3: 700} 795°C Aci: 734°C (773°C) oo soo | Pa i2 5 es o y iec 2 :3 Acg = 795°C { $ hei]a= 300 Acy = 734°C 600 : 63 400 200 20 100 10? 2 ‘au ne) 16 167 2 Ane est Durée du retroidissement 2 oe OO 2 6 «¢ «10? entre 800et 500°C - min. 311 (AISI 01 Tool Steel) Composition: 0.90% C - 1.07% Mn - 0.30% Si - 0.49% Cr - 0.63% W Grain size: 11 Austenitized at 820°C (1508°F) for 30 min 600} 700} Ourée de cheuft. Durée d'austénit. Température d’austénit, Grain austénit Ac3: 775°C Ac 1: 723°C 30 min 620°C 1 Jt lee! if EEE op eal si hal (760°C) = * 600 = a © rf 500 o zs Acy = 723°C 8 be Acg = 775°C > * * a 200 5 io} oak 100 ' ral 2 © 6 10 Durée du retfroidissement entre 2 im 800 et 500°C He euentoe 2 a! uusmrenio> - min tion des Aciers Fabriques dans le Benelux, SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transforma 1967 Belgium, Centre National de Recherches Metallurgiques, Brussels, ture Diagrams Atlas of Time-Tempera 232 o ee e Oe 273 Composition: 0.33% C - 0.38% Mn - 0.30% Si - 1.06% Cr - 1.01% W for 30 min 600] Grain size: 11-12 Austenitized Ourée de chauff, Durée d'austénit. 35min, 30min Température d’austénit, Grain austénit. 950°C W-12 Ac3: 928°C Ac 1; 749°C 700) (847°C) at 950°C 2 (1742°F) el La is 600} £ 100 2 3 Acy = 749°C 3 Acg = 928°C 8 Bae ry 300 FA 200 100 10° 2 PIC 2 « @ 0 10! Ourée du refroldissement entre 2 «6 0 10? 2 « «10? 600 et 500°C - min. 22 Composition: 0.64% C - 0.39% Mn - 0.67% Si - 1.20% Cr - 1.68% W Austenitized at 850°C (1562°F) for 30 min wo| Secsgeatien Som Température d'austénit. 850°C Grain austénit. Ac 3: 820°C 700} TT [| TTT] at ie | | (801°C) Ac 1: 760°C —: ap 20d ate Tele t = Acy = 760°C A es $0 i mail rial maa ny a GH 0]ea isieal 0 We , petal 1” 2 Pe 2 Ourée oe 8 1 du refroidissement entre es ves uemento? 800 et 500°C 3 zl ea r be Acg = 820°C i, : oynea10? - min. 509 Composition: 0.21% C - 1.46% Mn - 0.38% Si - 0.019% S$ - 0.016% P - 0.45% Mo Grain size: 11 Austenitized at 880°C (1616°F) for 15 min 600] 700} Durée de chauft. Durée d'austénit. 35 min 15 min Température d’austénit. 880°C Grain austénit. n Ac3: 851°C Ac 1: 715°C (831°C) 600 : i = Acy = 715°C 300 3 2 Acg = 851°C 100 10 = 2 4 eet 2 Durée 4 6 6 10)\ enn 2 du refroidissement entre 4 800 et 500°C © «8 10? 2 - min SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformation des Aciers Fabriques dans le Benelux ‘ Centre National de Recherches Metallurgiques, Brussels, Belgium, 1967 Seen a wm SEE Atlas of Time-Temperature Diagrams 233 007 Composition: 0.201% C - 1.55% Mn - 0.26% Si - 0.019% S 0.025% P - 0.39% Cr - 0.005% Al - 0.11% Nb Grain size: 8 Austenitized at 925°C (1697°F) for 15 min 800| Durée de chauff. Simin. Durée d'austénit. Température d'austénit. Grain austénit. 30min. 925°C 8 Ac3: 914°C Act: 708°C 700} | (836°C) 600 re & $500 2 ff g = 400 rs 2 ' 2 3 Acy = 708°C Acg = 914°C 600. ry 5 300 6 400 200 100 107 2 Pane a Walon 2 Durée ek ae 2 du refroidissement entre Sees ee ee ee 4 @ @ 10! t 6 @ « 107 800 et 500°C - min. 275 Composition: 0.46% C - 0.39% Mn-1.40% Si - 0.30% Ni - 1.41% Cr - 0.10% V - 0.0017% B Austenitized at 900°C (1652°F) for 30 min Ourée de chauft. Durée d'austénit. 35min 30min Temperature d’austénit. Grain austénit Ac3: 906°C (836°C) 900°C Ac 1: 768°C kg/mm? - Acy = 768°C Acg = 906°C 5 Température °C )(Dureté Vickers 30kg Heese ‘ «0 10) Ourée du retroiaissement 2 ‘ + +10 id entre 800 et 500°C - min. 005 Composition: 0.224% C - 1.498% Mn - 0.226% Si - 0.02% S - 0.022% P - 0.037% Ni - 0.33% Cr - 0.195% Mo - 0.054% Al Grain size: 9 Austenitized at 860°C (1580°F) for 30 min 800| Durée de chauff. Ourée d’austénit. 700 Ac3: 819°C Ac 1: 702°C 35 min. 3 min. Température d'austénit.660°C Grain austénit 9 Acy = 702°C Acg = 819°C Température °C 5S38 2s kg/mm2 Dureté (30kg) Vickers ~ So=) 200 s «2 107 2 (eae cb 4 2 ayene Ourée du refroidissement w.590" 2 entre 800 et 500°C ye Os 2 ‘ - min Diagrammes de Transformation des Aciers Fabriques dans le Benelux, N. Lambert, L. Habraken, SOURCE: M. Economopoulos, Centre National de Recherches Metallurgiques, Brussels, Belgium, 1967 Atlas of Time-Temperature Diagrams nn 234 297 Composition: 0.70% C - 1.91% Mn - 0.35% Si - 0.009% S - _ 0.009% P - 0.98% Cr - 1.40% Mo Grain size: 11-12 Austenitized at 850°C (1562°F) for 30 min 800} Durée de chauft. 35min. Température d'austénit, 650°C Grain austénit. Ac3; 791°C (777°C) "12 Durée d'austénit. 700) Ac: 30min. mV Ne ph I he RE ea Py #00 be o | ANT Oe SS Pee Uh SS SS ee een sa] 100) eae 1 1" {Hed SN FS er me {44 UT Fy |} 7 poy Ve He PN ISTO ee oe I RUESEY HM fhe i fe ee ene ee Jitit 4 «@ 4-4-5 epee 0 10 as ENes 2 Ve ~ IE £a : ‘ g 800 ~C fj Bp 1d Acy = 719°C Acg = 791°C Lego © | 2 |_| {| }400 Bug 4H Bae 2 She —j—t—=t94 aN Hy ye Durée du retroidissement q | ++ | | el ff} A ae Seea eae the BEE (el I a iS Se HH DESL iT = Ha Uk a COAL 2 Ga ted <p Se Sesh Ae 200 =3) Cake SS —t—}—}-+ F+C lI PE + eat je 300 4 + }—_{ } © 400 aor }+-—— Con =F = aS HE = Ht + q S 719°C ic : “Hy E 200 Le abe: 4 6 6 10? I 2 cn ee On entre 800 et 500°C - min 312 (AISI 02 Tool Steel) Composition: 0.85% C - 1.98% Mn - 0.40% Si - 0.46% Cr - 0.14% V Grain size: 11 Austenitized at 790°C (1454°F) for 30 min 600 Durée de chauff, Ourée d'austénit, Température d'austénit. 35min 30min 790°C Grain austénit. Ac3; 763°C (764°C) " 700] Ac 1; 719°C 3 E oO ig 600 9 ‘ +5 500 3. £i Acy = 719°C Acg = 783°C 8 Dureté )(30kg Vickers 200 2 40 enue) 10" Durée du refroidissement 150 (SAE 2 4 @ «© 10? entre 750 et 500°C - min. 8620) Composition: 0.20% C - 0.80% Mn - 0.27% Si - 0.017% S - 0.018% P - 0.58% Ni - 0.49% Cr - 0.18% Mo Grain size: 10 Austenitized at 890°C (1634°F) for 15 min 800] 700] Durée de chauft. Durée d‘austénit. Température d’austénit. Grain austénit. 35min 15min 890°C 7 a Te if Ac3: 831°C (797°C) Ac 1: 698°C - al itt id : ae 2 F+c in i | a | ~ € E = 0 il : 2 po ee Z| 600) 7 Le rol: ielsicie 2 3@ 400 03000 iP 7 Ss SRS 300 te , 1 || 100 e s > = TT] e+ ——} Ac3 = 831°C 5 ttt SALE — —-- Acy = 698°C 600.: fet j= | Til e Pini if 2 200 107? L BEe F {|| 4 * = 2oe {400 * Sa ‘ius tt 200 Lit 2 ea haa! El 2 ceuennent ? £78 Faye z 4 6 a Durée du retroldissement entre 800 et 500°C - min. SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformation des Aciers Fabriques dans le Benelux, , Brussels, Belgium, 1967 Centre National de Recherches Metallurgiques Atlas of Time-Temperature Diagrams Zo 454 Composition: 0.67% C - 1.09% Mn - 0.31% Si - 0.016% § - 0.027% P - 0.75% Ni - 1.70% Cr - 0.36% Mo - 0.04% Cu Grain size: 10 Austenitized at 935°C (1715°F) for 20 min gee Durée dechautf. 40min. Grain austénit. 10 Ac3: 789°C (769°C) Ac 1: 727°C 700) 1] | || ia =i I Pe | % $500 ia i | ~ Aci = T27LC | 5 Heoo= Acg = 789°C 1 Bt bea Bae: a |! < Wi 200 200 100 ag 107 2 ‘ s seen 2 Durée ‘ 6 lI 6 10 du refroidissement 2 entre 4 és 800 et 500°C - min 107 2 4 6 TD) 6 10 458 Composition: 1.485% C - 0.80% Mn - 0.46% Si - 0.028% S 0.028% P - 0.40% Ni - 1.24% Cr - 0.55% Mo Grain size: 10 Austenitized at 830°C (1526°F) for 1h 600) Durée de chauft. Tmin. Ourde d'austénit. 60min Température d’austénit. 830°C 10 Grain austénit. Ac3: 777°C (760°C) Ac 1: 736°C 700] eo i 2 Acq = 736°C io i S & 400 § ; : ” Acg = 777°C 200 100 1' 2 Ourée du rziroldissement entre 800 et 500°C - min. 113 (SAE 4340) Composition: 0.43% C - 0.49% Mn - 0.33% Si - 0.008% S 0.02% P - 1.51% Ni - 1.10% Cr - 0.33% Mo Grain size: 9-10 Austenitized at 830°C (1526°F) for 15 min wo]Birks Sastanh Si Temperature d’austénit. IT] 830°C Miter ley cays ee 700] leant aletal Ac 1: 721°C Ty] colt ttt tt =I AEN Tile alas LH Pasi LE an| | 4 “ este a . 2 1) ali) rien d ML i ie LTE 4 i= rig n 4 E TEER Allies fel tt anna = 200 107 nee Oe wool |bgt of LAU Panes Oe JG |% ens AA =3 ' ao HHT HU ee 4 ra a =a 2 2 4 © 0 1? 1800 Acg = 776°C § +4444 | | e Boi 4 «© 0 10! Durée du retroidissement pa —+- = 2 400 Se HAL ipso Peerym| ale Il‘ Acy ee = 721°C 2 lk 200 4 6 0 0 entre 800 et 500°C - min le Benelux, Diagrammes de Transformation des Aciers Fabriques dans SOURCE: M. Economopoulos, N. Lambert, L. Habraken, 1967 Centre Notional de Recherches Metallurgiques, Brussels, Belgium, OS EEE Atlas of Time-Temperature Diagrams 236 ee 453 Composition: 0.345% C - 0.42% Mn - 0.43% Si - 0.015% S 0.015% P - 3.43% Ni - 1.36% Cr - 0.23% Mo - 0.041% Al 0.19% Cu Grain size: 10 Austenitized at 910°C (1670°F) for 30 min ee coat kore ieee Température d'austénit. Grain austénit 10 Ac 3: 783°C (760°C) Ac 1: 678°C 700} SPER ° t+ % cot 900 2 400 ft | slim li ais = Bai zie -+-+|— | LL 7 Seog PC i al COU 910°C teas Ea i safe TSIEN CS 4 | Pre a - SATE + So SS ° Salta i = 4 Se HH evra % H] = ' H tt Lethal! 300} 200 g ae) ++} {800-6 | loa | |400 ee 1 : -— ; M ers = 783°C 200 BoE =F 2 10°! Acg 5 a5 100 Acy = 678°C < soot Durée ae) du refroidissement entre 800 et 500°C ‘ — in+ 107 4 2 Leto 2 ipeaioe - min 295 Composition: 0.54% C - 0.53% Mn - 0.36% Si - 0.005% S - 0.011% P - 3.14% Ni - 1.02% Cr - 0.34% Mo Grain size 12 Austenitized at 850°C (1562°F) for 30 min 600} Durée de chauff Durée d’austénit. 35 min. 30 min Temperature d’austénit, Grain austénit. 850°C Ac 3: 764°C (749°C) Ac 1: 677°C 700] 600} i: 500 2 Acy= 677°C ; wo 5 400 § Acg = 764°C 600. 300 5 400 200 200 100) 1 2 4 « e 10! 2 4 ¢ 6 10 Durée du refroidissement 2 entre 4 © 0 10? 2 4 © «10° 800 et 500°C - min. 504 Composition: 0.25% C - 0.469% Mn - 0.235% Si - 0.023% S 0.007% P - 3.65% Ni - 1.65% Cr - 0.395% Mo - 0.008% Nog - 0.013% Al Austenitized at 875°C (1605°F) for 30 min 600] Température d’austénit. Grain austénit. 700} Ac3: 806°C Ac 1: 656°C an ioeammanAne Pannriiil 35min Durée de chauff. Durée d‘austénit. 30min ine 875°C he (764°C) ih eI liligienal line | fs Fe Se lie et ee ce eel [ JUL, mle IL i ATES CECCHICrH CEE HE TET tt) 2 ea .5} SSS ae. CEES Vela HH } = PET .e TE LT 100) 10°! +i 2 4 eoot aie Gg Elsie ales ni @ 400) wok | eS) al al BCE : i ae £ 4 ¢ ia Bis : Br a 6 10! entre 2 % § bel LU aes + 8 10 3 Acy = 656°C Acg = 806°C “HHH MH £00 & +f jet] |. Durée du refroidissement ret} 600 il ans 1 2 ; Jeet — ti} HET A 7 200 aoe 800 et 500°C - min SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformatio n des Aciers Fabriques dans le Benelux, Centre National de Recherches Metallurgiques, Brussels, Belgium, 1967 Atlas of Time-Temperature Diagrams | 237 114 Composition: 0.36% C - 0.50% Mn - 0.31% Si - 0.014% S - 0.02% P - 4.04% Ni - 1.99% Cr - 0.54% Mo - 0.28% Cu Grain size: 9 Austenitized at 825°C (1517°F) for 15 min 800 Durée de chauff, 35min an . Durée d'austénit. Tempereture d'austénit. 1Smin. IS & a eee encome) 700) Tale heed Na 4 | Ac 1: 658°C eerie 600] Z aban $0 y H | mT = LT nl | Me SS IL Q =e I rir | =] HUT ra | + T | al : a | S 3 Acy = 658°C § Acg = 801°C a FJ 600. 300 = K ‘ r 200 B & : 10” 2 <erement ae Ne ee Durée du refroldissement ‘4 2 entre 4 =4LHy Me iti 6 ie 400 a | PE m); 6 2 s 200 @¢ «00? 800 et 500°C - min. Sz Composition: 0.37% C - 0.58% Mn - 0.41% Si - 0.007% S - 0.021% P - 0.53% Ni - 16.20% Cr - 1.10% Mo Grain size: 8-9 Austenitized at 1000°C (1832°F) for 30 min 800 Durée de chauff. 40 min Durée d'austénit. 30min. Temperature d'austénit. Grain austénit. 1000°C 8-9 Ac3: 887°C Ac 1: 807°C 700] (858°C) us (Anish |_| | je alle Hill 'g500 ae " ti § 400 =} 41 Cl 3 i | : a + | =e = | = |_| $ al 300 Acy = 807°C BOO Ie | Acg = 887°C L600= : 400 200| as 100| It - 10° -[4200 aia L 2 SSSwEee ae) (ener 2 Ourée esis 10! du refroidissement entre 1 z oe 800 et 500°C 0) 107 Je ? Gu ie ie - min 206 Composition: 0.325% C - 0.54% Mn - 0.22% Si - 1.103% Cr 0.63% Mo - 0.17% V Austenitized at 850°C (1562°F) for 30 min Durée de chautt. Durée d‘austénit. 35 min. 30 min. eee Température d’austénit. 650°C Grain austénit. Ac 3: 858°C (797°) Ac 1: 736°C 4 : -2 5 : Acy — = 736° 736°C 3 Acg = 858°C 600.6 3 400 200 ¢ « 10! Durée du retroidissement 2 Grewia seito® 2 entre 800 et 500°C - min. Diagrammes de Transformation des Aciers Fabriques dans le Benelux, SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Belgium, 1967 Brussels, Centre National de Recherches Metallurgiques, Atlas of Time-Temperature Diagrams 238 nya 451 Composition: 0.20% C - 0.70% Mn - 0.57% Si - 0.009% S - 0.016% P - 0.23% Ni - 1.18% Cr - 1.15% Mo - 0.27% V Grain size: 10-11 Austenitized at 960°C (1760°F) for 15 min Ourée de chauff, Durée d‘austénit. Température d’austénit, 35min, 15min. 960°C Grain austénit. 10-11 Ac3: 907°C (872°C) ° | JME {+t} 4 4 44 4- vi __j—++ + Ac 1: 749°C F+C i Selet Sie NE - a ry s € =! £ : alia i panes H + Acy = 749°C ss | | IE ee teetests “L | +—+ AS § --¢—+- HHT} B 2 Garemenit 2 Durée a we du retroidissement entre Lit « 800 et 500°C - min. «10! “ Acg = 907°C 600 ; + [ 6 107 coo 8 400 ++ {200 4 aa oat 368 Composition: 0.28% C - 0.24% Mn - 0.29% Si - 0.005% S 0.024% P - 0.18% Ni - 2.68% Cr - 2.84% Mo - 0.50% V Grain size: 9-10 Austenitized at 1020°C (1868°F) for 30 min Durée de chauff, Durée d'austénit 40min 30min Temperature d’austénit. 1020°C Grain austénit, Ac3: 949°C (885°C) 9-10 Ac 1; 807°C Se £ $ 3 Acy = 807°C i 8 § Acg = 949°C Ourée du refroidissement entre 800 et 500°C - min 294 (AISI D2 Tool Steel) Composition: 1.62% C - 0.40% Mn - 0.48% Si - 0.01% § 0.024% P - 12.44% Cr - 0.80% Mo - 0.83% V Grain size: 9-10 Austenitized at 1030°C (1886°F) for 30 min 600} 700} Durée de chauff. Durée d'austénit. 45 min. 30min, Température d’austénit. 1030°C Grain austénit. Ac 3: 850°C (829°C) Aci: 807°C 9-10 eed if $7 > Acq = 807°C $ 600® oe § Acg = 850°C 600. 7 3 400 200 iron 10°" | 2 4 d eet LI 2 ‘ ¢ 200 ¢ 10! Durée du retroldissement 2 Fi ew entre 800 et 500°C - min. SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformation des Aciers Fabriques dans le Benelux, 1967 Centre National de Recherches Metallurgiques, Brussels, Belgium, Atlas of Time-Temperature Diagrams 239 271 (AISI S1 Tool Steel) Composition: 0.415% C - 0.34% Mn - 0.52% Si - 1.40% Cr 0.31% V - 2.28% W Austenitized at 900°C (1652°F) for 30 min Durée de chaff. Binin. = Ourée d ‘austénit. Température d'austénit. 30min. 900°C 700} Ac 1: 750°C Grain austénit. | 44 Acd: 861°C (834°C) anil 4 aut sal alcq F soo LE? bod nil i bet Lt o l_ | | aaa rth TTT 2 + Hill HHT CTEanil } 107 " | ; amen : ri cy = 750°C :a§ Ace 3 = 861°C CET ua tml TTT PEC H RUBEEII 300 _ TTT Ho anull nil we. § 100) 11 i : tl TT Sagoo ne Com pel TET Se) ; s anil LT ; Hee eee ne in 2 es @ 0 10! Durée du refroldissement 2 s 6 0 0 entre 800 et 500°C - min. 367 (H 13) Composition: 0.37% C - 0.34% Mn - 0.94% Si - 0.015% S 0.02% P - 4.80% Cr - 1.34% Mo - 1.19% V Grain size: 10 Austenitized at 1020°C (1868°F) for 15 min aaa ors 700} .emperature d'austénit. 1020°C Grain austénit Ac3: 923°C (879°C) Ac: 643°C 10 oo : fen + Acy = 843°C H ce 8 § Acg = 923°C 200 100 1o' 2 4 eke tt 2 Durée 4 ST du refroidissement entre ae Te « 800 et 500°C - min, « 10? 2 4 6 6 10° 006 Composition: 0.18% C - 1.36% Mn - 0.21% Si - 0.025% S 0.014% P ~- 0.91% Ni - 0.26% Cr - 0.37% Mo - 0.057% V 0.048% Al Grain size: 9 Austenitized at 900°C (1652°F) for 30 min pl eon Température 700] ae d'austénit. Grain austenit Ac3: 826°C A l| | 900°C 9 Be Ac 1. 686°C 4 eI ie) Nae ae ee sy L ia] aap ee F+cC le se Ap aie Vid aaa ‘ae iN a | Hill Eee 2 oe ia : lalalime ae q 4} : SS aecamel a TH a HO1 Bi 100 ear Sa oe = HHItSHiHt++tHHt iF ee slo: ik ea Eats aie Ourée du refroidissement f =e ef ekaspe 1} . 3 400 lesralelLd - a 2 £ EE b § Acg = 826°C aie AS STEN ian + Acy = 686°C &~ Satine ‘ |} 1 24} } ce £ ee Peles oa, iW alrelal 300 zoo} r «© 0 0! poppy 2 200 pt . 6 6 entre 800 et 500°C - min. Fabriques dans le Benelux, opoul os, N. Lambert, L. Habraken, Diagrammes de Transformation des Aciers SOURCE: ; M. Economop hes Metallurgiques, Brussels, Belgium, 1967 rc e National de Reche Centr e e Atlas of Time-Temperature Diagrams 240 a 502 Ni Composition: 0.29% C - 0.52% Mn - 0.32% Si - 1.34% Austenitized at 0.77% Cr - 0.25% Mo - 0.19% V Grain size: 10 900°C (1652°F) for 1 h + 800°C (1472°F) for 30 min 800 Durée de chauff, Durée d'austénit. Tmin §P min + 30min Temperature 900°C d’austénit, Cc Grain austénit Ac 3: 853°C Ac 1: 709°C 700] ‘e 600) £ 2 roe IH : ue oat + WH sei eee 300 Bee Ht "8 2 s 6 01 2 [ota ee Durée du refroidissement entre =I 3 oe a 107 § Acg = 853°C t+} at 200 Acy = 709°C 2 : aes FCA 2 4 800 et 500°C - min. 501 Composition: 0.22% C - 0.76% Mn - 0.32% Si - 0.023% S 0.012% P - 2.657% Ni - 1.276% Cr - 0.51% Mo - 0.203% V - 0.002% Al Austenitized at 875°C (1605°F) for 30 min wol Cats Som Température d’austénit. ~ | Grain austénit. Ac 3: 630°C 875°C 700] ISTE | Ac 1: 689°C ii fame | ||| ‘| |F | tae 600) |_| [ H | g 200 LI ; Ut =e 400 = aaa caus: Jal Be A . : | 200 SSM, SS SElghy td 100 | 107 2 4 « = er Het Wetec cd an 6 107 eal el 2 See oO §5 Acg =mee 830°C | % 2 ale ale acm ete ceus 2 entre s = +44 Ourée du retroidissement E 3 Acy = 689°C [ saci anTRTTsereMiusest =e ~ bai os ee © 06 10 eeent 2 800 et 500°C - min. 452 Composition: 1.16% C - 0.30% Mn - 0.57% Si - 0.009% § 0.006% P - 0.71% Ni - 1.79% Cr - 0.27% Mo - 1.30% W Grain size: 10 Austenitized at 880°C (1616°F) for 15 min 800} 700) :5 600 # 500 $ Durée de chauft 35 min Durée d'austénit Temperature d’austénit. Grain austénit 15min 880°C 10 Ac3: 780°C Ac 1: 736°C (769°C) H el. IEE =| i4 - ee a kates] ar ain F soo in AS ot e ss 17 Bae 200 Ie ale 10°! ‘ => os 8 : 8 Acg = 780°C i SEH iJ LMT 2 ' H H a :¢ Acy = 736°C 4 +i : 300 E <4 LY, $ L é Trt | Pt UE cna 2 Durée | 4 = « «10! du refroidissement entre 2 # 6 10? 800 et 500°C — min. SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformation des Aciers Fabriques dans le Benelux, 1967 Centre National de Recherches Metallurgiques, Brussels, Belgium, Atlas of Time-Temperature Diagrams 241 354 Composition: 0.545% C - 0.46% Mn - 0.26% Si-4.12% Ni 1.16% Cr - 0.48% Mo - 0.80% W Grain size: 8 Austenitized at 900°C (1652°F) for 1 h + 850°C (1562°F) for 30 min Température d’austénit Cc Grain austénit. Ac3: 782°C Ac 1: 660°C 700} ene 8 si % #500 j3 ~ Acy = 660°C $ Acg ES fo}GC = 782 Acy = 794°C wory & 400 1600 300 : 11400 a 200) 14200 100 1 2 4 ¢ 6 10 2 Durée 4 « 6 10? du retroidissement 2 entre JE ¢ 6 10° ‘ 800 et 500°C 2 4 « 6 104 - min. 361 (AISI H 21 Tool Steel) Composition: 0.31% C - 0.32% Mn - 0.41% Si - 0.014% S - 0.013% P - 0.31% Ni - 2.36% Cr - 0.22% Mo - 0.32% V - 8.59% W - 0.16% Cu - 0.013% Al Grain size: 9-10 Austenitized at 1130°C (2066°F) 600} Durée de chauff. Durée d‘austénit 6 min. Omin Température d'austénit. 1130°C Grain austénit. Ac 3: 910°C 700] Z| all 9-10 o 7 e | (854°C) son t+ Baail o raleoo nS HT Sen imnnniin 10 si eh ‘ ‘ aieaaatatalet | = Li ¢ a aul 2 8 : a THe | Peai TT aaa ae ca-ent : i Acg = 910°C ae SENT 2 | i=}. 1 Base te 4 sol CAT) i wath im i M+ 200 4 Wa i 300 Uh Fec Ac 1: 794 at ae ‘ar le te Durée du refroidissement 2 entre s 800 et 500°C 6 « - min. 411 (AISI M2 Tool Steel) Composition: 0.95% C - 0.24% Mn - 0.28% Si - 0.018% S - 0.006% P - 4.64% Cr - 4.80% Mo - 2.45% V - 7.12% W Grain size: 9-10 Austenitized at 1230°C (2246°F) 000} Durée de chauff. Durée d'austénit. Smin. Omin Grain austénit -10 w Température d’austénit, 1230°C Ac3: 910°C 700) Ac1:624°C Ht ant a 609 ttt 0 HH i os ial be ine HH 300 +H - ele Malle il BY Chest ne (879°C) Da | Lo | ai IL iG : h iv oF | ; : : [cs val } Acy = 824°C 8 - :§ Acg = 910°C 3 M+ a ; r ie 100 0” L| wT {4444 2 4 eet 2 4 @ @ 10) Durée du retroldissement entre 2 Ce OTR 900 et 600°C - min. , Diagrammes de Transformation des Aciers Fabriques dans le Benelux, SOURCE: M. Economopoulos, N. Lambert, L. Habraken Belgium, 1967 Brussels, iques, de Recherches Metallurg Centre National ee TT Atlas of Time-Temperature Diagrams 242 365 (H 11 Tool Steel) Composition: 0.40% C - 0.48% Mn-1.01% Si - 0.01% S - 0.014% P - 0.36% Ni - 5.13% Cr - 1.72% Mo - 0.50% V - 0.25%W - 0.13% Cu - 0.015% Al - 0.11% Co Grain size: 11 Austenitized at 1010°C (1850°F) for 20 min Durée de chauft. Durée d’austénit. 800 Se ' Tatalilne 40 min 20 min eat Set Pee ee Pema | a : ial | eu ale ol ea | | tt i Wier yt Dene 600) eae JESS LLL Mes Let bs ° I s SMe § 500) Ly 300 POCA I~ 200 aie 1 = 10" 2 A envent 2 Durée a Say eht0" du refroidissement = entre Bal = 00 Litt (elle CNS Acy = 814°C § Acg = 878°C 600> B . = 2 aie Teenie, 800 et 500°C z an = we ae + f- I apes £ Oak $—- liste 100 a A : - min. 405 (T 15 Tool Steel) Composition: 1.42% C - 0.43% Mn - 0.38% Si - 0.025% S 0.005% P - 4.42% Cr - 0.70% Mo - 4.55% V - 12.99% W 4.97% Co Grain size: 8 Austenitized at 1250°C (2282°F) Durée de chauff. Smin TTT Tamolatce uti, 20° dl RS TS 800 Durée d'austénit. Omin pat | CO pas Ee + Oy eee rT I | | [set Nett i ce E $ ¢ i 8 Acy = 851°C § Acg = 910°C 10°! 2 cumen cates 2 Ourée 4 6 it 0 10! du refroidissement entre 2 4 6 Lit © 10? eels 2 a en enion 900 et 600°C - min. 412 Composition: 1.19% C - 0.31% Mn - 0.29% Si - 0.021% S$ 0.01% P - 4.54% Cr - 5.10% Mo - 3.29% V - 7.92% W - 12.27% Co Grain size: 11 Austenitized at 1200°C (2192°F) Durée de chauff. Smin d'austénit. Omin Temperature d’austénit. 1200°C Ourée 800] Grain austénit. Ac3: 912°C 700} Tal iy tt (888°C) ah fp a re Ac 1: 856°C = e = = 600 i. ‘e 500 P= 3 2 $ lf or e00 ® 5 3 600 o- 300 Acq = 856°C 1 Acg = 912°C : 400 y 200 200 100) 10° Ne 2 1} tiiit 4 oot ie 2 4 Wad 6 Ll © 10! Durée du retroidissement entre 2 bail © 900 et 600°C 6 © 107 le 7 ‘mors - min SOURCE: M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de Transformation des Aciers Fabriques dans le Benelux, Centre National de Recherches Metallurgiques, Brussels, Belgium, 1967 Molybdenum Steels CCT Diagrams Atlas of Time-Temperature Diagrams 245 Chromium Steel Series Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.40% Mo - 0% Cr Grain size: 5-6 Austenitized at 1010°C (1850°F) Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.40% Mo 0.16% Cr Grain size: 5-6 Austenitized at 1000°C (1832°F) . XN “ oe 4 Chain ee ere 57 1330 Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.40% Mo 0.30% Cr Grain size: 5-6 Austenitized at 1000°C (1832°F) Composition: Fe - 0.50% C - 0.9% Mn - 1.20% Si - 0.40% Mo 0.48% Cr Grain size: 4-5 Austenitized at 1015°C (1859°F) 1 10 100 1000 10,000 100,000 COOLING TIME FROM Ta, SECONDS PF = polygonal ferrite P = pearlite CRmin CRmax = min and max cooling rates for obtaining good dual-phase structures in coiled strip PF, PF75 P, = min times for PF-start, 75% PF, and P-start Dual-Phase Steel,”; : ition of an As-Rolled imi the Compositi to Optimize i "Usi CCT Diagrams is, "Using - A.P. Coldren, G.T. Eldis, 1980, pp 41-48 March 3, No. 32, Vol Society, Materials & Metals Anta Daieahot Metals), a publication of the Minerals, ON JOM Atlas of Time-Temperature Diagrams 246 Steel Series Molybdenum 1200 1100 2000 Ta = 1025 C (1875) Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr 0% Mo Austenitized at 1025°C (1877°F) ted Ac3 = 990C 300 “ ; : 4 . 5 ee OG \2 1800 1600 : = ; Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr - 0.15% Mo Austenitized at 995°C (1823°F) Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr - 0.30% Mo Grain size: 6 Austenitized at 1010°C (1850°F) Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr 0.38% Mo Grain size: 4-5 Austenitized at 1015°C (1859°F) Ta = 1020 C (1870 F) 000 Rez = 985 1805] 180 900 - Composition: Fe - 0.05% C - 0.9% Mn - 1.20% Si - 0.5% Cr - x Ny : 300 a: 0.50% Mo Grain size 6 Austenitized at 1020°C (1868°F) 700 Facy =725¢ oe F 1400 so Snel ; PFs 1600 NL ORatn ‘ i PF 75 SF gt 1200 Ps 1000 1 10 100 1000 10,000 100,000 COOLING TIME FROM Ta, SECONDS PF = polygonal ferrite P = pearlite CRmin CRmax = min and max cooling rates for obtaining good dual-phase structures in coiled strip PF, PF75 P, = min times for PF-start, 75% PF, and P-start SOURCE: A.P. Coldren, G.T. Eldis, "Using CCT Diagrams to Optimize the Composition of an As-Rolled Dual-Phase Steel,” JOM (formerly Journal of Metals), a publication of the Minerals, Metals & Materials Society, Vol 32, No. 3, March 1980, pp 41-48 ————— rr a. sienna ee Atlas of Time-Temperature Diagrams 247 Silicon Steel Series Ty = 970 C (1780 F) Composition: Fe - 0.07% C - 0.93% Mn - 0.99% Si - 0.27% Mo - 0.32% Cr Grain size: 7-8 Austenitized at 970°C (1778°F) : : Composition: Fe - 0.07% C - 0.93% Mn - 1.50% Si - 0.27% Mo - 0.32% Cr Grain size: 4-5 Austenitized at 1020°C (1868°F) Composition: Fe - 0.07% C - 0.93% Mn - 2.00% Si - 0.27% Mo - 0.32% Cr Grain size: 5-6 Austenitized at 1095°C (2003°F) COOLING TIME FROM Ty, SECONDS PF = polygonal ferrite P = pearlite CRmin CRmax = min and max cooling rates for obtaining good dual-phase structures in coiled strip PF, PF75 P, = min times for PF-start, 75% PF, and P-start saa +) Tai f Heat iti = d Dual-Phase Steel,"’ JOM A-P. Coldren, G.T. Eldis, Using CCT Diagrams to Optimize the Composition of an As-Rolle isouenel ctMetals), a publication of the Minerals, Metals & Materials Society, Vol 32, No. 3, March 1980, pp 41-48 ee ee mee 248 Atlas of Time-Temperature Diagrams 0.10% C - 0.7% Mn - 0.3% Si Steels (Mo Additions) Composition: Fe - 0.09% e - pe Mn - 0.29% Si - 0.28% Mo Austenitized at Acg + 30°C (54°F) for 12 min Composition: Fe - 0.10% C - 0.74% Mn - 0.29% Si Austenitized at Acg + 30°C (54°F) for 12 min 1000 | 800 i uy« 600 Sere SS SS SS SS Soe == te = a | }—— S500) a t \ 4 | iy | 1 (aso) | | ! Seconds (126125118117 114 ; ay | = é s w S tsii $ Fe - & F >% 4my = ws a 400 200 (106 i aie 109,000 32 Boab 1,000 . <a 1 4 Minutes ee | 110) ie «m 600 s+ 10,000 1,000 100 f = ee 135) Up ! — al fe S a ! Iealre | | 10 {1 ! t 1 || pee. 1000 } —+ | 100 2408 = i |New 200 bis Se :| fla SSN NN | 1600 50 Sy) yy 200 = Iw . N= 1800 |__| Acs= 890¢ Sas SESS a Es &i 400 0 \ SSS PS a ee - ett REN_|. Loe Acy = 70 pss == 700 Ct | | AUSTENITIZED AT 920 ¢ 7s 12 Gunes 900 a 10 1 10 Minutes =A 30 Hours n 100 — SS 1 10 4 1,000 30 Hours Composition: Fe - 0.10% C - 0.71% Mn - 0.29% Si - 0.54% Mo Austenitized at Acg + 30°C (54°F) for 12 min 1000 i] 5 915 ¢ [acy = C TEMPERATURE, TEMPERATURE, F 100,000 Seconds it 10 ; Minutes T 7 100 1,000 RCI a re 1 4 TIME SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT a a a Atlas of Time-Temperature Diagrams 249 0.10% C - 0.7% Mn - 0.3% Si - B Steels (Mo Additions) Composition: 0.096% C - 0.66% Mn - 0.32% Si - 0.0048% B Austenitized at Acg + 30°C (54°F) for 12 min 1000 eR AT 915 C ee 12 MTS 900 } | 1 | | | | 800 700 2 = 710 C Lt 600 % 500 Il i Fe 400 peat Ey 300 = a Bo Ac, || C Ge AUSTENITIZED AT 960 C FOR 12 MINUTES 1600 1400 2 1 tiz00 w i 1 Ie iL ‘ 152 . 10 See 131116) (111 w ra a a ri ii) 101 10000 10 400 4 103 e00 i 32 100,000 100 Minutes 600 +| | ; ls 1,000 1 TIME 162M Ae we = {11 | S 800 tT 100 = 5 5 allah NY . ES | $1000 | \\ |. 2 w ‘3 | Noe 1 885 ( 30 — io 0 = N10, = ) wl a |—+ 200 1800 H SS SES QKG2SExe w = 5 = | Ac) | sua Composition: 0.097% C - 0.70% Mn - 0.36% Si - 0.26% Mo 0.0050% B Austenitized at Acg + 30°C (54°F) for 12 min i 1 10 1,000 AP ay 100 ae 1,000 1 30 Mines TIME 10 Hours 10,000 1 ue 4 100,000 10 uy 30 Hours Composition: 0.093% C - 0.70% Mn - 0.36% Si - 0.51% Mo - 0.0054% B Austenitized at Acg + 30°C (54°F) for 12 min 1000 AUSTENITIZED AT 960 C FOR 12 MINUTES | 1 vai | 900 ; t {t leben} i =o Se ‘ el | | \ | 800 700 ° Ac= 200¢ Sipe N= LEA | Net 500 SEA & 400 este] SHAS | Neely 1 | 1 | t 1 10 243 226)(227 | ‘ \ (213, 207 | 131 1 10 Minutes TIME ao = 200 116 100 we 1 z& 400 | + 225) ' —- Holla} u| a 600 | eer 100 1,000 10,000 100,000 ein ol ee secant SOURCE: SSRs 1] | | 1200) 1\ 4 {jt 309)) 9 | 1000 | 0 } ~ —— — 200 100 - | | |f2400 pean ; === leant seta 1 AA 300 £1800 | -1600 PEEOEA 1 | i | | 1 => : 105, | \ & oe 3 wW i+ | 1 Ac3 = 930 C' 32 1,000 4 10 30 Hours Alloys, Climax Molybdenum Company, Greenwich CT Witold W. Cias, Austenite Transformation Kinetics of Ferrous ee ee eC Atlas of Time-Temperature Diagrams 250 0.37% C - 0.5% Mn - 0.30% Si Steels (Mo Additions) Composition: BOGE - 0.50% Mn - 0.32% Si - 0.077% Mo Composition: 0.37% C - 0.49% Mn - 0.32% Si - 0.0033% Mo Austenitized at 843°C (1550°F) for 20 min 2088 AUSTENITIZED Austenitized at 843°C (1550°F) for 20 min 1800 | | STS TERITIRED AT 849 C FOR 20 ae 1000 AT 843 C FOR 20 MINUTES | a 1600 800 © u o ~ w = = rm 2 é we“ = & 500 : 3 = a S 3 400 ras e be 1400 700 Minutes 100 1,000 Ue Been 5 : 800 2 wu 600 400 100 200 100,000 a 10 Minutes 1,000 100 10 1 ae 1 10 a =H Hours TIME Hours Lele 1000 300 100,000 10 * 200 0 ee 1200 600 Composition: 0.36% C - 0.50% Mn - 0.31% Si - 0.19% Mo Austenitized at 843°C (1550°F) for 20 min 1000 AUSTENITIZED AT 843 C FOR 20 MINUTES | 1800 F TEMPERATURE, C TEMPERATURE, 100,000 Seconds 10 Minutes UIE SOURCE: 100 1 RR I 1,000 4 se] re re 10 30 Hours Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, aoe Greenwich CT 32 wz Atlas of Time-Temperature Diagrams 251 0.40% C - 0.8% Mn - 0.3% Si Steels (Mo Additions) Composition: 0.40% C - 0.83% Mn - 0.34% Si - 0.01% Mo Austenitized at Acg + 30°C (54°F) for 20 min Austenitized at Acg + 30°C (54°F) for 20 min 1000 1000 AUSTENITIZED AT 790 C FOR “anid 800 | | |1 1 900 I ee tell | | if = NK 600 t 25U 400 CTEMPERATURE, 1800 biel | ; 700 500 -| 50/ 130 AT 300 200 | al 7 | | | | ; Nig + ~ ae | 1200 * | }1000 | = ry = = S 500 800 = aw =& 400 {\| ||if 292) | | a | | | 1800 | || | | }1600 | Acy = 780 ¢ uw = 600 F i} 600 2H) ry 409 200 + 200 100 32 0 qoSe ap Nak e EC fF a | 238) (206)(203)(203) 100 (194) (186 1,000 172 ANA = TRCRERE Be hele x fe 1 1 ry\A D aes At (iN rt EES, | | 1200 = - SSS eds € ! |lio00 7 | L\I_ oN5 | || 10 10,000 1 4 1 10 289) 10 1,000 (252)(249X246)(222 100 Seconds 10 Minutes TIME 600 ap 176 10,000 1 200 172 100,000 - 100 1,000 ————— Hours hele et 187 1,000 1 30 800 i f+ 599 | Lb \ im |es | 100,000 100 Minutes + 168 a a a a) a 4 10 30 Hours Composition: 0.40% C - 0.82% Mn - 0.35% Si - 0.53% Mo he oO Austenitized at Acg + 30°C (54°F) for 20 min: 1000 - - AUSTENITIZED AT 820 C)FOR 20 MINUTES 1 900 |} i | ||| ee ieee: ! || | | 11 | 800 700 ; Da a &= - / 400 4 300 Wit ; }—+—+4 200 \ 25 50 A +~—75: \ fa i +t 620)) * & 800 a : | 600 | 1 400 1 | 351) (279X287X258) (258) (250 200 | 196) | a7g 1,000 10,000 100,000 a 10 100 1,000 (eee eS N Minutes TIME +| . 100 ee ES i | |99 1200 ;f1000 | \t i\ 90° Seconds Nee eae. | pe a } 10 = =e | a | 0 —= eA = |eee ~ | | | 2600 Re TES \ 100 eae 1800 | lac, = 790 ¢ = PRE== ° 2 | | | | | 1 4 10 32 30 Hours SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT Composition: 0.40% C - 0.80% Mn - 0.33% Si - 0.79% Mo Austenitized at 810°C (1490°F) for 20 min 1000 1800 a! 900 1600 Ac3 = 780 C 800 a 700 > bal 600 _-—>__- +- Uae Oe Ve aS Tg 1400 Acy = 695 C ices ari 1200 1000 ss, 500 TOSSA 400 CTEMPERATURE, 7 Ths | { f tit N\A I i t= (= == | 800 ie VN 1 300 RR o> ere A yi _| _ TEMPERATURE, F 600 X71 50 200 \ 400 90° e 200 613 325) (304)(333)(319) (289) 262 183) 186 32 1 10 100 SSCS 1,000 1 TIME 10 Minutes 10,000 100,000 100 ee 1 4 1,000 10 30 Hours Ph ase Transformation Kinetics and Hardenability of Medium-Carbon Alloy Steels, Climax SOURCE: Witold W. Cias, n wich Molybdenum Company, Gree CT 1400 Acy = 700 c 237 " N S YW H l | 1 810 ¢ ie 20 MINUTES 700 ih I | 800 1400 Ac) = 680 C | L TIME Acy = 760 .¢ ——— ERED 900 1600 2 eel coal ii| | 10 Seconds i \ \ : Composition: 0.38% C - 0.82% Mn - 0.32% Si - 0.26% Mo ee ee 32 wl = & 3 a= = Atlas of Time-Temperature Diagrams 202 0.39% C - 0.8% Mn - 1.5% Si Steels (Mo Additions) Composition: 0.39% C - 0.80% Mn - 1.48% Si - 0.26% Mo Composition: 0.40% C - 0.81% Mn - 1.48% Si - 0.02% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 AUSTENITIZED AT 870 || C FOR 20 Ba i Austenitized at Acg + 30°C (54°F) for 20 min Hak F TEMPERATURE, C TEMPERATURE, TEMPERATURE, F C TEMPERATURE, 100,000 100,000 1,000 Minutes it 4 10 1,000 Seconds 30 Minutes 1 Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, TIME 4 10 30 TIME Composition: 0.38% C - 0.80% Mn - 1.47% Si - 0.52% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 AUSTENITIZED AT 900 C als 20 MINUTES i H Ie 900 LAS so = ee 800 iN ee 700 oa . we s Ee 600 5G 400 eo - LN t a } 4} 1 \ { ) 0 pp yaa ie ON 737 + 200 I\ | i 90 i t = A ; | \ aya | | el i || | ' -+ }1000 yw =& g00 = rm : | \ ] \i a ce 1 | | fa200 o ae iy | £1400 Ac, = 737. ¢ Al | DXeqr cba gesehe a ran | I | ee A \ | |] 1800 | Ac, = 868 C ean n LY hee GoerS58 Eee 300 = —— | ertA ae i } j SSeS ' & : ‘ie i } He tet ete ae mt C08 anny 400 Jie 100 2 0 ! | Fy 1 10 . + (613) | | } 413) 100 | = | 10 200 212 10,000 100,000 100 Minutes TIME : (235) 1,000 1 Seconct SOURCE: (287X 294X 287% 254) 32 1,000 1 4 oe 30 10 Greenwich Composition: 0.37% C - 0.80% Mn - 1.47% Si - 0.79% Mo Austenitized at 915°C (1680°F) for 20 min 1000 1800 aa = {4 Ac = 883 ¢ — 800 700 e Ww5 a {J a = 600 w c+} Aey = 726 cf 1400 cS at Al Wiese a ma oe SSUanees ie NAL & =a —\--+4 {KA t 400 10. {25 == | : 50 7S 200 a 1000 ——-74" = &> | 2 800 = 5 \ J eee \ ee 30 100 12000 Sse =I! Atlee == APTA bi {ia 300 =] = rT] oh) 9 620 0 1600 > 1 525) 10 (322) 348 100 Seconds 1, Aine 336 294 262 1,000 10 Minutes 235, 215, 100,000 100 1 poe 32 10,000 1,000 4 10 30 Hours SOURCE: Witold W. Cias, Phase Transformation Kinetics and Hardenability of Medium-Carbon Alloy Steels, Climax Molybdenum Company, Greenwich CT OOOO. CT Atlas of Time-Temperature Diagrams 253 0.10% C - 1.4% Mn - 0.3% Si - B Steels (Mo Additions) Composition: 0.088% C - 1.45% Mn - 0.35% Si - 0.0055% B Austenitized at Acg + 30°C (54°F) for 12 min 1000 900 Composition: 0.10% C - 1.46% Mn - 0.34% Si - 0.26% Mo 0.0051% B Austenitized at Acg + 30°C (54°F) for 12 min 1000 AUSTENITIZED AT 880 c FOR 12 MINUTES | y | Acy = 850 H “tit T a + " + ie ; i eh ai | | 1 10 800 60 ne 400 + 197206} (256 201} 198, i Minutes | 1 122 100,000 10,000 1,000 100 10 1 TIME 200 168 179, 1,000 100 heii: 10 4 30 Hours Composition: 0.11% C - 1.43% Mn - 0.35% Si - 0.52% Mo 0.0062% B Austenitized at Acg + 30°C (54°F) for 12 min 1000 | AUSTENITIZED AT 930 C ro 12 MINUTES || | 900 ia 1800 | i { les = 900 c i | ‘ + 800 ' +1600 | f |{ 700 1400 lem Coe H Acy * 690 C \ 1200 600 500 - 253 400 CTEMPERATURE, aaa sE LIE 3 AF alae 9 | 1 300 ETERS | |f1000 SHE Seat i a eo eS Iya Led + + 1 ANS Ni 264 319) 221224 222)(225) (215 216) Seconds 10 1 Minutes TIME SOURCE: T | 200 (14g) 32 100,000 100 1 400 i 10,000 1,000 : { | i 100 600 H | 10 F TEMPERATURE, ; ! EES it =I 800 \ IN Lt 1,000 10 4 30 Hours Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT Witold W. Cias, Austenite Transformation ee @ & =Ww f 44 | 299, = 1000 } \y | ! 1200 a5 Noe en + 30 10 1400 S napa =f = i 100 0 ~, 4- eee So 1,000 4 | EN 100,000 Minutes Z ha PLS “497 — 200 == SO seen" Ze 300% 400 200) TIME They = 860 C |1699 t BESS 2y CTEMPERATURE, 32 al | 500 200 i Bi ce) al 870 ¢ 600 F TEMPERATURE, Heh 1 700 Jacy » C TEMPERATURE, i nel 800 1800 | AUSTENITIZED AT 890 C FOR 12 MINUTES | | ies| ea | T EES 32 s a &2 ¥ 254 Atlas of Time-Temperature Diagrams 0.40% C - 1.3% Mn - 0.3% Si - B Steels (Mo Additions) Composition: 0.40% C - 1.32% Mn - 0.33% Si - 0.004% Mo 0.004% B Austenitized at 843°C (1550°F) for 20 min 1000 era a AUSTENITIZED AT 843 C FOR 20 MINUTES 1800 CTEMPERATURE, Composition: 0.40% C - 1.33% Mn - 0.35% Si - 0.08% Mo 0.003% B Austenitized at 843°C (1550°F) for 20 min AUSTENITIZED AT 843 C FOR 20 MINUTES TEMPERATURE, F TEMPERATURE, F CTEMPERATURE, Seconds TIME Composition: 0.40% C - 1.33% Mn - 0.36% Si - 0.18% Mo - 0.003% B Austenitized at 843°C (1550°F) for 20 min 1000 AUSTENITIZED AT 843 C Lie 20 ears TEMPERATURE, C SOURCE: TEMPERATURE, F Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum SS se Company, ’ Greenwich CT eeeeeeSsSsSsSsS— Atlas of Time-Temperature Diagrams 255 0.39% C - 1.4% Mn - 0.3% Si Steels (Mo Additions) Composition: 0.39% C - 1.46% Mn - 0.36% Si - 0.03% Mo Composition: 0.40% C - 1.47% Mn - 0.37% Si - 0.26% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 Austenitized at Acg + 30°C (54°F) for 20 min ~ AUSTENITIZED 900 AT | 830 € FOR 1000 20 MINUTES ! +4 ! 900 800 800 700 700 600 600 500 500 js Oo w = S « > w =w z 400 400 CTEMPERATURE, F TEMPERATURE, TEMPERATURE, F 100,000 1,000 Minutes 10 TIME Minutes 30 if IME Composition: 0.39% C - 1.45% Mn - 0.37% Si - 0.49% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 AUSTENITIZED AT 835 1800 C FOR 20 MINUTES 1600 1400 1200 1000 w ° tS) F TEMPERATURE, C TEMPERATURE, x iooec° as AWN 100,000 Seconds 1,000 Minutes 10 30 TIME SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT Composition: 0.38% C - 1.45% Mn - 0.36% Si - 0.76% Mo Austenitized at 825°C (1515°F) for 20 min 1000 1800 900 1600 800 1400 700 1200 600 1000 500 \ 800 400 TEMPERATURE, C TEMPERATURE, F 600 300 400 200 579) (348 )(360 X493 242 360 32 10 1,000 reer Seconds 100,000 oo eee 1,000 100 10 Minutes TIME oor 1 4 10 30 Hours on Alloy Steels, Climax SOURCE: Witold W. Cias, Phase Transformation Kinetics and Hardenability of Medium-Carb CT wich Green ny, Compa denum Molyb a —— Atlas of Time-Temperature Diagrams 256 0.10% C - 0.7% Mn - 0.3% Si - 0.3% Ni - B Steels (Mo Additions) Composition: 0.11% C - 0.75% Mn - 0.31% Si - 0.84% Ni - Composition: 0.10% C - 0.71% Mn - 0.28% Si - 0.33% Ni 0.0040% B Austenitized at Acg + 30°C (54°F) for 12 min 0.24% Mo - 0.0047% B Austenitized at Acg + 30°C (54°F) for 12 min 1000 AUSTENITIZED AT 900 C FOR 12 MINUTES | | il ae oe 1800 poe + 1600 a 800 AUSTENITIZED AT 920 C FOR a | | |_| { - Sos 1400 =3. i ea200) 2 ‘iodo 3 = = 24 600 Fl é 2 800 Z 500 z hoe 2 é 600 oy Woe e |. LIDS / 300 om oh ar a | ue 400 200 + 200 00 ee == N =F 5 Vi (ioe) See 2 See SU = é == ee — Seconds 100,000 eS i 10 100 9 1 ip 1 4 lo w ip alle | | 209 188)(193 600 | mac? | | —T att +t 189) (175 156 118 | 200 106 100 1,000 10,000 100,000 oF 10 100 1,000 on 1 30 Minutes TIME Hours 1 4 10 30 Hours Composition: 0.11% C - 0.73% Mn - 0.31% Si - 0.35% Ni - 0.53% Mo - 0.0053% B Austenitized at Acg + 30°C (54°F) for 12 min 1000 AUSTENITIZED: AT 930 oie | | 12 MINUTES | | i on) |rf jAcy 2 z908 c 4 800 700 ° ul « -E S rr] S ; ‘Ac. 1800 1 | | | }1600 | +4 ; il705 ¢ ‘Te 1 o SS My _ 500 pi —-3 1__ | @ 400 Ty tl p——_—___4 200 4 —__ 3 1 \ 14 ~~. = = \ \ + 1 317 1 10 215)(213} 100 Second baat 212 209) 10 Minutes wi = 201 ; | llgf 600 + q 400 7 (203 1,000 1 00 ee tt | t 228 * & = aeric | | jo! eo | : 1200 Fl1000 i i 100 0 as C2 ee yall SS Sa ees 300 = — 1400 750 / 600 t 10,000 1 10 o = 200 100,000 4 =, 118 q 100 1,000 Oe 32 30 TIME Hours SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT Seen, a a * _frooo i Seconds eae Minutes 1200 | ey | 1 =e i 10 1,000 TIME 281 es ceo | i a400 = = Gel | a “102. ip el \\+ ie 4 || (002) 32 T1600 ZA | Soh sees Acz = 890 C. JESU | | |__| 1 i ' — 700 . Fy = Het eal = : 32 3 = Atlas of Time-Temperature Diagrams 257 0.10% C - 0.7% Mn - 0.3% Si - 1.4% Ni - B Steels (Mo Additions) Composition: 0.097% C - 0.69% Mn - 0.31% Si - 1.45% Ni 0.0048% B Austenitized at Acg + 30°C (54°F) for 12 min Composition: 0.10% C - 0.72% Mn - 0.33% Si - 1.43% Ni 0.26% Mo - 0.0053% B Austenitized at Acg + 30°C (54°F) for 12 min 1000 AUSTENITIZED AT 845 C FOR ( 12 MINUTES 1 AUSTENITIZEDAT 875 C FOR 12, MI TEMPERATURE, F F TEMPERATURE, CTEMPERATURE, CTEMPERATURE, Seconds TIME Minutes 1 4 lo 30 te Minutes UVES 1 4 10 30 Composition: 0.099% C - 0.67% Mn - 0.32% Si - 1.46% Ni 0.51% Mo - 0.0058% B Austenitized at Acz + 30°C (54°F) for 12 min 1000 AUSTENITIZED AT 900 C FOR 12 MINUTES | || —— TEMPERATURE, F CTEMPERATURE, Seconds Minutes by 4 10 30 TIME SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT i Atlas of Time-Temperature Diagrams 258 0.10% C - 0.7% Mn - 0.3% Si - 3,0% Ni - B Steels (Mo Additions) Composition: 0.11% C - 0.72% Mn - 0.31% Si - 3.03% Ni 0.0052% B Austenitized at Acg + 30°C (54°F) for 12 min Composition: 0.11% C - 0.73% Mn - 0.32% Si - 5.06% ~ 0.24% Mo - 0.0050% B Austenitized at Acg + 30°C (54°F) for 12 min UTES | AUSTENITIZED AT 865 C FORFOR 12 MINUTES! Z AT 860é C FOR 12 MINUTES AUSTENITIZED | | ee a { Es | 4| -| | A F TEMPERATURE, CTEMPERATURE, Minutes 1 4 10 TEMPERATURE, F CTEMPERATURE, 36 Minutes TIME 1 4 10 30 TIME Composition: 0.11% C - 0.74% Mn - 0.34% Si - 3.03% Ni 0.55% Mo - 0.0057% B Austenitized at Acg + 30°C (54°F) for 12 min 1000 AUSTENITIZED AT 895 C FOR 12 MINUTES j {tI 900 wu o ° F TEMPERATURE, C TEMPERATURE, 1 10 100 _——— 1 Sercis TIME SOURCE: Minutes : 10 10,000 100,000 100 1,000 tT eS 1 aero , 30 Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT SSS? Atlas of Time-Temperature Diagrams 259 0.20% C - 0.6% Mn - 0.3% Si - 3.0% Ni Steels (Mo Additions) Composition: 0.21% C - 0.58% Mn - 0.28% Si - 2.95% Ni - Composition: 0.20% C - 0.58% Mn - 0.31% Si - 2.90% Ni - 0.004% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 ‘ie 0.25% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 AT 770 C POR 20 MINUTES AUSTENITIZED AT 775 C POR 20 MINUTES 900 800 6 a a 3S Fa 3 2 wu Fd iw @3 a 2 = wi 1800 el | | || ae 1600 | i | rent 700 ——= 500 iA 400 pes tL / PS ‘Py i == Z & ( pet Sa = Gas AC 400 Ac) = 660 Cc w g00 pha= 300 —4-—X At I “set | Pesca 600 200 fees 400 322 433 0 1,000 100 10 |Se 1 Minutes eet 4 a al 10 ee 1 10 seo 242235240) 227)(210' Minutes 100,000 1,000 ean 1 200 185 201 100 1,000 10,000 or — 100 10 1 20 4 10 30 eae TIME aS 198 Composition: 0.21% C - 0.56% Mn - 0.27% Si - 2.95% Ni - 0.51% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 AUSTENITIZED AT 795 C POR 20 MINUTES TEMPERATURE, F CTEMPERATURE, 1 SOURCE: 10 eta 100 ie 1,000 ee 10 Ries iz gees eS Ws 100 TIME eR 10,000 100,000 100 1,000 ee st 4 10 30 Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT ——————_—EE_— 32 Atlas of Time-Temperature Diagrams 260 0.36% C - 0.8% Mn - 0.3% Si - 0.7% Ni Steels (Mo Additions) Composition: 0.37% C - 0.79% Mn - 0.31% Si agies Ni . Composition: 0.36% C - 0.80% Mn - 0.30% Si - 0.75% Ni ae AUSTENITIZED AT 800 C FOR 20 MII a 1800 | | H | | for 20 min 0.24% Mo Austenitized at Acg + 30°C (54°F) 0.02% Mo Austenitized at Acg + 30°C (54°F) for 20 min AUSTENITIZED AT 800 C FOR 20 MINUTES l [1 1600 1400 1200 me e 3 2 1000 5 : é 3 300 = F & 600 400 200 toons errr 1 Hnnutes: aS 4 Fires =male 30 10 a ae 1 Minutes 100,000 1,000 100 10 1 Secomes ooou 100 10 1 te 10 30 Composition: 0.36% C - 0.78% Mn - 0.31% Si - 0.73% Ni 0.49% Mo Austenitized at Acg + 30°C (54°F) for 20 min TEMPERATURE, F C TEMPERATURE, 100,000 Secon: 1 10 100 Minutes 1,000 1 4 10 30 TIME SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT Composition: 0.36% C - 0.75% Mn - 0.29% Si - 0.72% Ni 0.82% Mo Austenitized at 840°C (1545°F) for 20 min 1000 1800 900 |_| 1600 A) = Acy i) os i 600 VT t TT 1 300 || 200 Sep eh ee Se ~ ile 75-\y- alee Le = Jt 600 400 L : 585 1 §eo & é a / ‘oni a 100 1000 Va / - | ! 1200 [| ~ Walt ete lacy = 700 ¢ c ee / is Afi A AS = 400 0 Cc BEN. 4 500 Z& 810 1400 ° we >S S a = m 554 10 294)(309)(297K274 100 Seconds 1 Sari 264, 1,000 10 Minutes 227 207 10,000 100 1 208 100,000 32 1,000 4 10 30 Hours SOURCE: Witold W. Cias, Phase Transformation Kinetics and Hardenability of Medium-Carbon Alloy Steels, Climax Molybdenum Company, Greenwich CT eS Atlas of Time-Temperature Diagrams 261 0.37% C - 0.8% Mn - 0.3% Si - 1.4% Ni Steels (Mo Additions) Composition: 0.37% C - 0.85% Mn - 0.36% Si - 1.44% Ni 0.02% Mo Austenitized at Acg + 30°C (54°F) for 20 min Composition: 0.37% C - 0.85% Mn - 0.37% Si - 1.44% Ni 0.24% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 AUSTENITIZED AT 800 C tw 20 MINUTES | eS i AUSTENITIZED AT i 800 C FOR 20 MINUTES | | it 1600 \ | 1200 1000 C TEMPERATURE, F TEMPERATURE, TEMPERATURE, F C TEMPERATURE, 600 400 200 100,000 Seconds 1 10 100 32 100,000 1,000 1,000 Minutes 4 10 30 TIME Minutes TIME 10 30 Hours Composition: 0.37% C - 0.84% Mn - 0.36% Si - 1.40% Ni - 0.47% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 AUSTENITIZED AT 795 C ie 20 er 900 | | co i i "| He 700 S w 1800 | ! || 1 | a 400 Ay { i Saree 54h = WT 2\4 |} 1600 |Ac) = 670 Cl | alae re i | Fro00 > SD =te - i | 7) Site Se = s— = MGS ) ee 1 Saris . i \ Peee 1400 > } a & ! “+ i g F ive | \ ni { t 600 = || 1 tal 14 - | = & 600 (feeb 200 ++ | ie= | 4 100 / H | 1 | | ! 554) (299)( 322327 \296 ae | 400 =3 | a! | 642 a a | 200 242 219 H 10 100 pero 1,000 1 10,000 10 100,000 32 100 1,000 ——— Minutes TIME SOURCE: \ | ata so 1 4 eye 10 30 CT Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich Composition: 0.36% C - 0.82% Mn - 0.35% Si - 1.41% Ni 0.74% Mo Austenitized at 825°C (1515°F) for 20 min 1800 are 1600 | ae | 800 eae wi S =o a &2 o = 685 ©. E 600 + 500 Seance f <tr.== 400 i ie ps j—} 100 + g00 a Eas == eIDJe & Fe & Fs2 600 400 Ne = 572) (405)(421)(366)(322 m00 ite ! 9 613 0 a y eri Se ee Siena a SSN eee = 200 ts 1000 = aot NS 4 : 12CONae3 HT i si (ess) 260 238 32 Minutes 1,000 100 10 1 TIME 100,000 10,000 1,000 100 10 1 Seconds SOURCE: 1400 —— Ac) 700 is ‘ lAc3 = 795 C ail 1 4 10 30 ae Hardenability of Medium-Carbon Alloy Steels, Climax Witold W. Cias, Phase Transformation Kinetics and Molybdenum Company, Greenwich CT Atlas of Time-Temperature Diagrams 262 - 0.3% Si - 2.6% Ni Steels (Mo Additions) 0.36% C - 0.8% Mn PC 0.36% C a 0.84% Mn = 0.38% Sii - 2.6 2.60%MSNi Composition: ae : : Composition: 0.36% C - 0.86% Mn - 0.37% Si - 2.62% Ni - 0.24% Mo Austenitized at Acg + 30°C (54°F) for 20 min 0.02% Mo Austenitized at Acg + 30°C (54°F) for 20 min pal AUSTENITIZED AT 760 C FOR 20 imie | evi 7 | 800 3 400 s 1S meee "11600 IL 3 = 730 c| 71400 =F Se ee mel : ty AWA! t= “S 1 MAN 152 4 BON at 100 -9 ! 10 Seconds) 592 E ,f1000 ets i Nore Uf 800! \l_.} 600 ++ 400 i | 1 A 1 \t I | | ' | r | | Sait | = | | 247) (242)(235)(245)(225 + | 1 aN ROTA 25 s0-K7 Jl 200 T i (ee i I a | - 100 a 1 ———At 222 205, Minutes 1 4 TIME - :RA g E 4 a a s = # rs 200 100,000 10,000 aaa 1,000 100 eee 10 g & a 197 i 1,000 ‘ % oO “a 1200 C 645 * \ Ww \ \\ Acy ee Nene \\ \\ i 0 | Pin ort —— = J 600 500 im | | lata oO = pele, [| 700 & | | oe 10 32 ; = 30 Minutes ee 100,000 1,000 (tee ; 1 4 PUTSHS 10 30 Hours Composition: 0.36% C - 0.83% Mn - 0.36% Si - 2.60% Ni - 0.49% Mo Austenitized at Acg + 30°C (54°F) for 20 min AUSTENITIZED AT 780 C FOR 20 MINUTES || SS aS eS F TEMPERATURE, C TEMPERATURE, 100,000 Seconds 1 10 100 Minutes 1 1,000 4 10 30 TIME SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT Composition: 0.35% C - 0.80% Mn - 0.36% Si - 2.58% Ni - 0.78% Mo Austenitized at 810°C (1490°F) for 20 min 1000 1800 900 estate! Jol 1600 800 Aca = 780 ¢ 1400 700 e w ne Q < +j— 4 NI 600 i. 400 te akan —> A i / 300 y i eke ———>< 200 a eeeae oe = +--+ a S= 100 Tt 1 1000 be= a EA Alia w « erie, alee 800 ae a & = 600 / 7 S 400 13? 599 0 — “* = ro /a | 25—) 1z00 — 500 a =& Acy = 655 c| 572 10 560 A498) 100 Seconds 1 mae 566514 342 1,000 10 Minutes 297 283 100,000 100 1 ay 32 10,000 1,000 4 10 30 Hours SOURCE: Witold W. Cias, Phase Transformation Kinetics and Hardenability of Medium-Carbon Alloy Steels, Climax Molybdenum Company, Greenwich CT Ne aa a 263 Atlas of Time-Temperature Diagrams 0.39% C - 0.8% Mn - 0.3% Si - 3.5% Ni Steels (Mo Additions) Composition: 0.39% C - 0.71% Mn - 0.39% Si - 3.53% Ni - Composition: 0.39% C - 0.69% Mn - 0.29% Si - 3.56% Ni - 0.02% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 1 AUSTENITIZED 900 800 AT 760 C FOR | I 20 MINUTES 0.24% Mo Austenitized at Acg + 30°C (54°F) for 20 min ' AUSTENITIZED AT 760 C FOR 20 MINUTES i | afaif } | 700 600 500 400 CTEMPERATURE, F TEMPERATURE, TEMPERATURE, F CTEMPERATURE, 100,000 1,000 Minutes Minutes 30 Composition: 0.38% C - 0.68% Mn - 0.29% Si - 3.48% Ni 0.48% Mo Austenitized at Acg + 30°C (54°F) for 20 min cola 1000 | AUSTENITIZED 900 H ia 800 | - eee AT 775 C FOR 1800 20 MINUTES [eeiete eal | vedi hcg © Hb C = i al 1600 ld 1400 is | 11 ! Ac, = 610 C 1200 1000 a woo reese _-1--}- C TEMPERATURE, a LV tb I se iV | SaaS i TINS SSN Ne 703 Seconds 634] 642 FTEMPERATURE, see '5 600 Se = 90 10 800 -_— 7\4| \ 636) 100 6514 1,000 634 400 hs Fe 556 200 372 10,000 338 100,000 32 10 Minutes Climax Molybdenum Company, Greenwich CT Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, SOURCE: EEE Atlas of Time-Temperature Diagrams 264 0.40% C - 0.8% Mn - 0.3% Si - 4.5% Ni Steels (Mo Additions) Composition: 0.41% C - 0.76% Mn - 0.35% Si - 4.45% Ni - Composition: 0.40% © — OU a3 eer neo nie oyMoe or 20 min 0.25% Mo Austenitize 0.01% Mo Austenitized at Acg + 30°C (54°F) for 20 min | AUSTENITIZED AT 740 C POR 20 MINUTES | 900 | 800 i° >s S 2 Ss Fe + 708 Acy Ga | Acy = 600 ¢. © 710 © 500 : alt | | \ VAAN\ | Ci 100 cave 4] 7s S es 10 100 Seconds TIME ia 524 tS —-K- iat = as ea (a a 1000 === ~| =& ca ace Gs s 1000 = & = % Pe = 800 a a 800 é 600 | 600 \ 400 400 cy299 7 1 \ +4 = (ie 105) 1 1410S 1400 I 1200 —— JV Gao —+— taEn +! nt a 1600 1400 Soren {Ne NS i ita5 300 0 at +} | | Sng VAAL 200 | 1800 | ED AT 755 it Ta 1600 | : | 1800 a \ ee a {4 400 tf f See | ; 7 1000 - 1000 | | 335)(325) (311284 84 1,000 I~ 28 28n 10,000 Kaas an Minutes 4 100,000 ee nee ‘ eet 200 200 32 5 100,000 —— oor 1 10 100 1,000 —————— Minutes 1 4 10 30 Hours Seconds : 30 TIME Composition: 0.40% C - 0.74% Mn - 0.36% Si - 4.40% Ni - 0.47% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 | I | Te00 id AUSTENITIZED AT 755 C POR 20 MINUTES 1600 1400 1200 1000 FTEMPERATURE , C TEMPERATURE, 10 Seconds 4 i OT 1 10 Minutes 100 100,000 1,000 1 TIME SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT DE a 32 z & j é2 ive F Atlas of Time-Temperature Diagrams 265 0.40% C - 0.3% Mn - 0.2% Si - 4% Co Steels (Mo Additions) Composition: 0.40% C - 0.34% Mn - 0.17% Si - 0.01% Mo 3.76% Co Austenitized at Acg + 30°C (54°F) for 20 min Composition: 0.39% C - 0.32% Mn - 0.18% Si - 0.48% Mo 3.72% Co Austenitized at Acg + 30°C (54°F) for 20 min 1000 ae Bi CTEMPERATURE, TEMPERATURE, C F TEMPERATURE, {[ TIME 10 TEMPERATURE, F 30 Minutes TIME Composition: 0.40% C - 0.33% Mn - 0.16% Si - 0.95% Mo - 3.90% Co Austenitized at Acg + 30°C (54°F) for 20 min 1000 900) — — 800) ap = 836 C < y DBXENS 700) 5 LIN r — — TT Se tae -nic OT See) C TEMPERATURE, ae F TEMPERATURE, Seconds TIME SOURCE: Greenwich CT Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, a Atlas of Time-Temperature Diagrams 266 0.10% C - 0.7% Mn - 0.3% Si - 0.3% Cr - B Steels (Mo Additions) Composition: 0.10% C - 0.68% Mn - 0.32% Si - 0.29% Cr - Composition: 0.11% C - 0.70% Mn - 0.35% Si - 0.28% Cr 0.25% Mo - 0.0045% B Austenitized at Acg + 30°C (54°F) for 0.0038% B Austenitized at Acg + 30°C (54°F) for 12 min 12 min 1000 AUSTENITIZED AT 890 C FOR 12 MINUTES | : Hi z e |cal gl pert aate etal iesa alltel - 1800 1 ie 900 1200 5S = z }i000 i 800 © J 600 & é 3 500 a a 300 400 200 eel (ss) (ss) 1 are 10 100 Sieage a a a TN =1405 ie Ne-90 a 1400 1200 99 | }1000 o> Aa | it oH 800 }—+ 600 H ae 4 | TH 281 of 10: et eet aA 14 ZI 4 Y 0 an 216 191)(192){189%177 137, 1 200 497 i 10 100 Seconas 1,000 1 30 | 64 | 1,000 —_— 1 4 Minutes bos 63 = 860 | 11600 = Bou 100,000 Seconds || 100 : fecete ee mesI. oe en % 400 600 | (pened | | Rear: 700 * a eo ay RF om ca bata ep Boe 1400 rmy AUSTENITIZED Ay B90: 10 Minutes re Hours 32 10,000 100,000 ly 100 1,000 ee can image ag 1 4 10 30 Hours Composition: 0.11% C - 0.70% Mn - 0.35% Si - 0.28% Cr - 0.50% Mo - 0.0057% B Austenitized at Acg + 30°C (54°F) for 12 min 1,000 : AUSTENTNI ZED) AT. 910 C FOR 12 ntl H 900 800 700 ° wy 600 S 500 s2 wa &= Ac) = = 4 { ic eee eo 1 i 300 \ + 1 i = 1400 = 99 =. ett =) 1600 =10 3 elle att | 1200 H|f1000 He —- —+— a or 400 acy = 880 cl \ ae i XT PASS + | \ 4 1800 i Haut 800 + i i i Tt | Yan jel H 200 + 100 lati | | YF 600 fF 400 * 2 &z & x = is i] 317, 0 1 10 251 212)(207K213) 212 < 198 121 100 1,000 10,000 oe 1 10 100 — Seconds TIME Minutes 1 4 200 108 100,000 1,000 lo 32 30 Hours SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT EL SSS FE & é= e Atlas of Time-Temperature Diagrams 267 0.10% C - 0.7% Mn - 0.3% Si - 0.7% Cr - B Steels (Mo Additions) Composition: 0.10% C - 0.70% Mn - 0.29% Si - 0.76% Cr 0.0036% B Austenitized at Acg + 30°C (54°F) for 12 min Composition: 0.11% C - 0.72% Mn - 0.32% Si - 0.75% Cr 0.22% Mo - 0.0052% B Austenitized at Acgz + 30°C (54°F) for 12 min 1000 10 1800 AUSTENITIZED is 910 C FOR 12 MINUTES o 1800 AUSTENITIZED AT 920 C FOR 12 MINUTES | \ 900 1600 | | \ lacy = 890 C = \ Acy = 925 1400 2; 1200 1000 é 800 3 3 Z J = i 3 3S 2 3 # = CEN 500 axa 400 600 300 411 400 200 14 200 ace 32 C) \t f TIME 100,000 aaa 1,000 on rT 4 lo 30 iG Minutes = +l ~\y es T 10 800 Fe | ? | F 600 =" : 400 | . 236 URS z -—& ! So Te nas 1000 | 210)(206)K205)1199, 100 1,000 a 1 10 SEEE & Fi | | oa i] 99 | |bizoo | INS BIUelini ANS 1 1 ey 1 = ma rage 302 Seconds SS 1400 90 f = 600 & 50, 2 Nash 700 e 1600 10. 800 175, 106 L 1 Hl ot 200 104 L 10,000 100,000 100 1,000 (pa 1 4 10 30 Hours Composition: 0.10% C - 0.71% Mn - 0.32% Si - 0.7% Cr - 0.51% Mo - 0.0060% B Austenitized at Ac3 + 30°C (54°F) for 12 min 1000 - . AUSTENITIZED AT 925 ¢ FOR 12 MINUTES 900 Lt i} n joss all \ H Poy AP { ies a | 800 Ac) = 730 Z 2 y + 600 1 E 500 e& 400 2s] | | 300 \ 200 ; al = SSS EES] e ee) ; iace ies d ] | ;j ' | : re OT 7 be i : alpen, epee == 4 ~ aie ||| 1 v|ed 7 | + . 1 10 Sai TIME SOURCE: 306 | | 219) (228K230)(224 222 : 1 | 207 s & | 00 =o 1 4 éw 600 _.} -+ 400 | l ANF 200 112, 100 1,000 10,000 100,000 oo 1 10 100 1,000 ————— Minutes = 1000 1 Jl Fa wl ie : a+ (256 20D. 1 y 1a r | Ie Se <4 | ! 1600 | +1400 op | 1 | ~ | r eS | at | 1800 | \1% WIZ i i 0 | ; | \ | 100 | i = 895 cl (Mees. Acll , + | 1 ee ei mm OX-T oes z = AER PEce : | ty hae si it ANS) ¢J i | E . tf a 10 32 30 Hours Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT ——— 32 é & Atlas of Time-Temperature Diagrams 268 0.10% C - 0.7% Mn - 0.3% Si - 1.4% Cr - B Steels (Mo Additions) Cr6 Composition: 0.11% C - 0.75% Mn - 0.33% Si - 1.46% 5 0.25% Mo - 0.0059% B Austenitized at Acg + 30°C (54°F) for Composition: 0.10% C - 0.72% Mn - 0.29% Si - 1.43% Cr - 0.0059% B Austenitized at Acg + 30°C (54°F) for 12 min 12 min 800 es wy = 2 @ =a 3 wi em © W 600 500 = 800 In =2 w 7400 z = < 600 300 200 400 200 200 100 0 32 0 Minutes 1 4 S- a S | AREAS & ‘aitgus! | - ee Te 11505 50 i | {\\ _ _ Z 1 i] 10 276) 800 i | \_ | + 600 | Ber i| ry | 100 (247 110 10,000 100 10 Minutes TIME 1 400 200 As} 7 232 1,000 1 Seconds Hours x 4\ (253{251)(253) 4 H 114 i i 10 100,000 1,000 32 30 Hours Composition: 0.11% C - 0.75% Mn - 0.32% Si - 1.44% Cr - 0.56% Mo - 0.0066% B Austenitized at Acg + 30°C (54°F) for 12 min 1000 AUSTENITIZED AT 910 C ee 12 na 900 800 H L— H ey 3 f 600 Tis @ S 500 - ez Se = 400 all ges Bey 300 + o -—— 99 1 Sir iil oaeatiee R ! ! =: 2S imL ' 7 | J 10 WEN | | Buel << en eee aan Nitin | soothe SoS 100 (285, 285 1,000 1 | | el + 10 1200, py 1000 sa © 800 & & # 600 | —+ | ZS | 400 eS 266, Ba 121 100,000 100 1 1600 1400 — 10,000 f Minutes 1800 — ee en 296281)281) | ‘Acy = 880 C — : 314 TIME ' | || A ! SENS Ss EON {| bA 351 | tea 4 ee : SEE SOURCE: | ai ei SS — ' 0 es JEG , } 200 100 | | | \ \-—t + 2 | eee n eS . eee acy = 730°C 700 e t ; 4 32 1,000 10 30 Hours Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT Composition: 0.10% C - 0.72% Mn - 0.33% Si - 1.43% Cr 1.03% Mo - 0.0064% B Austenitized at 955°C (1750°F) for 12 min 1000 Be 1200 ee 1100 4 1000 2 °o 2= se w 900 CE es, 600 = : 800 5 j y % 400 Pr) » 2 tha= 600 500 200 cs 400 A 300 1 10 100 Seconds 1,000 1 TIME 10,000 10 100,000 100 y 1,000 Minutes ; w 19 ig Hours SOURCE: Witold W. Cias, Phase Transformation Kinetics and Hardenability of Low-Carb on Boron-Treated Steels, Metallurgical Transactions, vol 4, February 1973, ASM International, Materials Park OH 2> WwW \ | F100 . TT 348, 7 itA = i=l 1400 aie 1200 Ree,; 1 i \ | ps 1,000 lo : 30 100 10 1 TIME Ee= ST. 4 100 Seconds | ;| 4 f = 1600 = 860 cl > = = = : awi i= 400 E 300 100,000 acy = 730 ¢ 500 he, cae ae fa 600 ul (4 = ifi000 i i ] 700 ro 7 |i || 8 00 1400 700 | zoe ' +1600 mee 1800 AUSTENITIZED AT 890 C rom 12 le ae) 1800 Oe & 2 a = fea Atlas of Time-Temperature Diagrams 269 0.35% C - 0.8% Mn - 0.3% Si - 0.3% Cr Steels (Mo Additions) compen ee 0.36% C - 0.83% Mn =,0.38% Si - 0.34% Cr 0.01% Mo Austenitized at Acg + 30°C (54°F) for 20 min AUSTENITIZED Composition: 0.35% C - 0.83% Mn - 0.39% Si - 0.35% Cr 0.24% Mo Austenitized at Acg + 30°C (54°F) for 20 min AT 805 C FOR 20 MINUTES He | AT 850 C FOR 20 MINUTES AUSTENITIZED 900 1800 i IL \ 1600 800 700 ° w 5 ire © Es Es 3 = 2 a /) s 600 te S 500 5 rs) o@ a Fe Fi 400 4 ; 1 |1 | 100,000 Sreonds 1 ante 10 + 1 4 10 NEN 600 Tt r 299 602544251) (232, poe \ 179, 10 1 200 164, 100,000 1,000 100 aa Minutes ante 177, 10,000 1,000 100 ( Seconcs 30 y 7 10 1,000 100 co Minutes 1 HEAL i Ha 560, 0 1400 1200 1000 99 JOLY Abe Cc eae 75) 100 = =e. = 0X} 3 200 jac) C } i LAY | oy, Bo 820 Ss | Ure + ——4{—-—=bs = = St A / — = = ‘ lAc3 a J! He Hours Hours Composition: 0.35% C - 0.80% Mn - 0.38% Si - 0.35% Cr - 0.51% Mo Austenitized at Acg + 30°C (54°F) for 20 min TEMPERATURE, F C TEMPERATURE, Seconds 1 10 100 Minutes 1,000 1 4 10 30 TIME SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT Composition: 0.34% C - 0.80% Mn - 0.38% Si - 0.34% Cr - 0.78% Mo Austenitized at 825°C (1515°F) for 20 min 1000 1800 900 1600 B00 = jAc3 = 795 C Ss 700 ° ‘ wl 1400 ae a =+— ee a «600 Acy = 685 ¢ Sse - OS 7 =A a S 500 fe =3 a esa =a6| ani AEE c oy zB Ny 400 f L 50-—— i { 1 © ir 2 800 ]_ = = ra 400 | 99 Ae 566 0 1000 ae 7a I i 200 100 ive = 2 i LON sails +25 i 300 ee mae —-t\-4-+1] 1200) 493) 10 (319)(312)(325) 100 Secoes 243 1,000 1 TIME (283 10 Minutes 210, 180, 10,000 100,000 32 100 1,000 Oo 1 4 10 30 Hours ty of Medium-Carbon SOURCE: Witold W. Cias, Phase Transformation Kinetics and Hardenabili CT Molybdenum Company, Greenwich i Alloy Steels, Climax 32 2-& r=) 3 Atlas of Time-Temperature Diagrams 270 0.40% C - 0.8% Mn - 0.3% Si - 0.3% Cr Steels (Mo Additions) 1000 0.25% Mo Austenitized at 825°C (1515°F) for 20 min 900 Teen }— —- —-- - r - 1000 ip 1600 800 2690 1200 2wl == 1000 : goo a= ‘ 1800 = -— — - = om ii ° « & & =2 Ww rd = wl 600 w 2 a 400 * SSS -— ht —_} OCs a- = ES aes RE a0 200 100 32 0 +1} ie Ac = 795 C 705 c wry 1200 SSS wiee & <-& 800 re WI \ ; 2 b= 600 keot Ee ” 1000 ail Yeas i \, Te 7 sea i { + {HbSee4o 200 -—— = es ++ 1 400 Ch = ON 600 1600 = 700 * — +} }-+—— 4 f+ —}— +— — 900 ot] o - 0.pila Si - 0.34% Cr - Composition: 0.40% C - 0.Say Composition: 0.41% C - 0.86% Mn - 0.36% Si - 0.33% Cr - 0.01% Mo Austenitized at 790°C (1455°F) for 20 min 400 9 rT y 606, 100,000 1 10 100 Minutes 1,000 1 4 TIME lo 1 10 <i 294 270K274K268A245, 100 — eerie 216, 1,000 1 30 ah 188 10,000 10 100,000 100 1,000 oo Minutes 1 4 TIME Hours 200 182 10 30 Hours Composition: 0.41% C - 0.84% Mn - 0.35% Si - 0.35% Cr - Composition: 0.41% C - 0.84% Mn - 0.34% Si - 0.35% Cr - 0.49% Mo Austenitized at 805°C (1480°F) for 20 min 0.77% Mo Austenitized at 810°C (1490°F) for 20 min 1000 1000 900 900 800 800 1800 1600 Ait + 700 700 © 4 uw = 600 w s = w 32 = = 500 iy = S moe 1400 ies & & iN w s 600 4 i S500 \ = w $ G = = Ac) : \| 1200 w — Newel) l = 1000 Ss 2& 800 & w E t= 400 = < SS 300 300 600 200 200 400 100 100 KF 200 8, : 1 10 100 1,000 10,000 100,000 [Pa a EP SE 10 1 sai TIME Minutes 1 4 Ror 10 “ico une © mt solioas” (ae Seconds 1,000 100 oa 2 30 TIME Minutes too cea 1 4 10 Hours SOURCE: Witold W. Cias, Phase Transformation Kinetics and Hardenability of Medium-Carbon Alloy Steels, Climax Molybdenum Company, Greenwich CT eee 00 ROG sentaa 30 32 = Atlas of Time-Temperature Diagrams Zr 0.37% C - 0.8% Mn - 0.3% Si - 0.7% Cr Steels (Mo Additions) Composition: 0.37% C - 0.85% Mn - 0.37% Si - 0.74% Cr - Composition: 0.37% C - 0.85% Mn - 0.39% Si - 0.73% Cr - 0.02% Mo Austenitized at Acg + 30°C (54°F) for 20 min 0.26% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 1000 AUSTENITIZED AT 820 mnt 1800 C FOR 20 MINUTES 900 AUSTENITIZED AT 810 C FOR 20 MINUTES i j | TM) Iota wu ° ° CTEMPERATURE, F TEMPERATURE, TEMPERATURE, F C TEMPERATURE, 100,000 1,000 ——$———— Minutes Minutes TIME 1 4 10y 30 TIME Composition: 0.37% C - 0.84% Mn - 0.37% Si - 0.74% Cr 0.50% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 AUSTENITIZED AT 805 C FOR 1 20 MINUTES F TEMPERATURE, C TEMPERATURE, 100,000 Seconds 1,000 Minutes 1 4 lo 30 TIME SOURCE: Greenwich CT Witold W. Cias, Austenitic Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Composition: 0.37% C - 0.82% Mn - 0.36% Si - 0.73% Cr 0.76% Mo Austenitized at 795°C (1465°F) for 20 min 006 1800 1600 TEMPERATURE, F C TEMPERATURE, Seconds 1 10 Minutes 100 id 1,000 4 10 30 TIME SOURCE: Hardenability of Medium-Carbon Witold W. Cias, Phase Transformation Kinetics and nwich CT Molybdenum Company, Gree Alloy Steels, Climax Atlas of Time-Temperature Diagrams 272 SAE 4140 Composition: 0.39% C - 0.82% Mn - 0.26% Si - 1.00% Cr - 0.21% Mo Austenitized at Acg + 30°C (54°F) for 20 min TEMPERATURE, F C TEMPERATURE, 100,000 Seconds 1 10 T 100 Minutes 1,000 1 4 10 30 TIME SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT SAE 4150 Composition: 0.53% C - 0.83% Mn - 0.34% Si - 0.92% Cr - 0.21% Mo Austenitized at 845°C (1555°F) 1000 AUSTENITIZED {iit c For 20 Mine | 900 4 Be | 800 {4 L 700 Ji 600 | ia | 1800 tt !| | | | }1600 | a, = 768 ¢ Acy ses | T ; = aie TNSS | 300 }— || -1000 i Ea]UK (NAN sl te 506 Seale 100 HNL STN 90 | H SIAN. @apauanne | | lie U Ss 1 10 766 (685 (685)(677X458) 100 Seconds 1,000 af TIME 10 Minutes ee 2 = 3 e = |i; 7 600 400 Lethe oimH (316)! 265) : | i 0 800 + | i mL | , = tere ets T | 793 ! | > / Neca ; a ite eT] 200 | | 1200 ST w $ 1400 = 719 C =e “LE LEE Net | \ t+. 4 t > aes | a Hj H‘ < (aus zee 32 10,000 100,000 ‘ 1,000 100 Nia 4 ea 10 a 30 SOURCE: Witold W. Wias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT —————_—_—_—————— ee ere woes Atlas of Time-Temperature Diagrams 273 ee 0.36% C - 0.8% Mn - 0.3% Si - 1.5% Cr Steels (Mo Additions) Composition: 0.36% C - 0.82% Mn - 0.37% Si - 1.54% Cr 0.01% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 : - : AUSTENITIZED AT 810 C FOR 20 MINUTES 900 { { \ eh | 1 eae | | jul | 800 i | js i = cy, = © 720 | y a 400 CTEMPERATURE, 1 Sao 200 some 1a = a tat) — 4 s | 7 a tT \cet + + 10 600 e 800 ne = 500 | iy (345)(373X254)(238) 100 228, 1,000 1 eee euw peer 1} 554) 700 & | e $ # (es (202 4 } Ae i 187 10,000 10 A fe IL / \ ||| T] = Nox cTaANe | t a = 200 200 100 ees 4 10 teste (yee i aly SI a j lial 592, my 579) 10 (421)(390)(413) 100 1 30 (348, 400 289 1,000 ero Seconds i Minutes TIME | KY 213 1 10,000 10 100 1 200 191 100,000 1,000 4 10 30 Hours Composition: 0.36% C - 0.85% Mn - 0.37% Si - 1.52% Cr eae Co) te} 0.50% Mo Austenitized at Acg + 30°C (54°F) for 20 mincy 1000 - AUSTENITIZED AT 825 C fe 20 ol | 900 4 } | | 4 4 | i ‘co 800 5 1890 | Veta 4 : 2S a& 500 400 . i Ie | APY deaa= eae 50> 200 = 2 P| a L— oa 100 He 4 = lacy = 795 ¢| lac) = 735 c| |1400 ~ aS ee BE f f2 H aA fj 300 } +++ 1 fro 25 } i ; 2 / | F1000 ©é 606 i | rf 400 585, 633)4 59)1442)(390, 348, 10 { 200 198, IT} 10,000 100,000 100 Minutes TIME 228 L 1,000 1 w | } 100 Seconds S ie ia : 10 *we 2 { we 1 ;fizoo 800 t= iz i SOURCE: | | | 1600 + } te 0 i \ 700 Ss = W600 = = i 4 i] 22 1,000= 1 4 10 30 Hours Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT Composition: 0.35% C - 0.82% Mn - 0.36% Si - 1.51% Cr - 0.84% Mo Austenitized at 830°C (1525°F) for 20 min 1000 1800 900 | 700 i ala ij 1600 Ac3 = 800 ¢| 800 =I = 4 Sa —t ios = ——— == is ay i JAcy = 725 ¢ = Sue AN Me 12001 WwW \ | 800 r Bey = = 579 508X508)(508\468 370 221 32 100 oF Secenes l Minutes TIME = 200 390, i __| 10 F 400 al 599 tt} > = aw 600 we Soe = pj 1000 \ | = a = f C TEMPERATURE, ua) oe 1,000 10 ay if 10,000 100,000 100 1,000 4 10 30 Hours ty of Medium-Carbon SOURCE: Witold W. Cias, Phase Transformation Kinetics and Hardenabili Molybdenum Company, Greenwich CT fi 600 tt 9 Hours 2ul & Jb. 9 1 Pie 1000 4) } 75 1,000 1 Minutes 400 Jett 1 ee 100,000 100 TIME 200) 1400 . 400 600 Hd 1600 <3 = 780 w = i | 800 1000 s 1800 |f | [// Ht ) 572 Seconds 1200 3 | ay ii 7A 75-4—— i fez AUSTENTTIZED AT 810 C FOR 20 MINUTES 900 1400 C = Si 600 1000 | ; | | F21600 lAcy = 780 c| = 500 300 i eet | 700 0.26% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1800 1 | Composition: 0.36% C - 0.86% Mn - 0.38% Si - 1.54% Cr - Alloy Steels, Climax 32 co : 5 i Atlas of Time-Temperature Diagrams 274 0.80% C - 0.7% Mn - 0.5% Si - 6.0% Cr Steels (Mo Additions) Composition: 0.81% C - 0.73% Mn - 0.45% Si - 6.10% Cr - Composition: 0.81% C - 0.76% Mn - 0.50% Si - 6.04% Cr 0.035% Mo Austenitized at 970°C (1780°F) for 20 min 1.05% Mo Austenitized at 970°C (1780°F) for 20 min g TEMPERATURE, F C TEMPERATURE, z C TEMPERATURE, 10 10 Seconds 1 10 Minutes Seconds 1 SOURCE: 1 4 10 Minutes TIME TIME Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum 100 r 1,000 4 10 30 Hours Company, Greenwich CT 1.0% C - 0.7% Mn - 0.5% Si - 6.0% Cr Steels (Mo Additions) Composition: 1.03% C - 0.76% Mn - 0.50% Si - 6.03% Cr - 0.038% Mo Austenitized at 970°C (1780°F) for 20 min Composition: 1.02% C - 0.73% Mn - 0.46% Si - 6.08% Cr - 1.03% Mo Austenitized at 970°C (1780°F) for 20 min 1000 w°° FTEMPERATURE, C TEMPERATURE, TEMPERATURE, C 100,000 1,006 SOURCE: Witold W. Cias, "Martensitic Air-Hardenable High-Chromium-Mol ybdenum Abrasion-Resistant Cast Steels,” AFS Transactions, vol 83, 1975, American Foundrymen’s Society, Des Plaines IL : Atlas of Time-Temperature Diagrams Se ee 275 1.35% C - 0.7% Mn - 0.5% Si - 6.0% Cr Steels (Mo Additions) Composition: M 0.041% Mo A 1.36%Des C - 0.77% 77% sels 0.50% Sij - 5.99% Cr 4 : o Austenitized at 970°C (1780°F) for 20 min 1 T, + 970°C AUSTENITIZED AT 970 C FOR 20 mInuTES | 900 a Boy | ees & =| SSeS oe REC.ec ae Ste “Xe A { | 400 eel 300 Lab 14 200 eet 100 | 900 1400 800 | 1} A| | || 10 Seconds 595)(639)(715){ 100 a 1 TIME - -& 2 | 800 & & | 400 1,000 299 255 0,000 = 100 i10 1 x 102,008 1,000 4 1 a 0 30 1600 T \ one «101of | aor = ete 300 i \ | i 1 a 000 2 goo 1 | De. i ah | R24 710 10 seconds 600 i] 4 t 520 NUN 678) 729) ewvcree— 1 759) 830 = 708 4 2 Zz 329 ay 262 100,000 ¥ 10,000 hkeee eee 100 1,000 1,000 100 10 M inutes 1 TO) 4 10 SS 30 Hours Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT EE SS & = = (AVATAR) Fafa! | | 1200 E | i. Peas < | — & 400} 1400 48 | %S jours SOURCE: | | 1000 ae “ Ac, = 718.¢ ee B00 & J= = AUSTENITIZED AT 970 C I 20 MINUTES = 1800 ] : = 793 1200 AO BOG | 541418 inutes ae |e TO"23-75:90-% 688 DEE - bo NL 0 1 1000 / | i 1800 1600 pes Acy = 720¢ 700 S Z; ©6600 ae Composition: 1.35% C - 0.73% Mn - 0.45% Si - 6.00% C 0.98% Mo Austeniti ° (1780°F) 7) for 20 min : ar ustenitized at 970°C Atlas of Time-Temperature Diagrams 276 0.85% C - 0.7% Mn - 0.5% Si - 12.0% Cr Steels (Mo Additions) Composition: 0.85% C - 0.75% Mn - 0.45% Si - 12.0% Cr - Composition: 0.84% C - 0.72% Mn - 0.44% Si - 12.10% Cr - 0.068% Mo Austenitized at 970°C (1780°F) for 20 min 1.05% Mo Austenitized at 970°C (1780°F) for 20 min = - = AUSTENITIZED AT 970 C FOR 20 MINUTES} |! : SST TES EASES <a 1800 saa) 1600 Op = 813 ¢ 200 [ee © 700 a w ao yy -600 = & 2 é = S = = = Fa a sI0s = oe w o & PD ica arty eg ae 25 aaa espe 0 eG) 1 10 Seconds I) ! Minutes 1 4 10 1400 Sate ( ot! i || 200 } + 100 _ ies a1 107 = N= slag 761 i ye =e ae Be 50 766) 10 1 A Y756 \ 716 Minutes THAME 2 600 5099 200 278 233 100,000 100 1 800 Hil 10,000 10 & w = Fa ; 666 1,000 1200 1000 400 orn 9 (767)784 100 30 Hours a rt ee / Seconds WME peep is iar ot ety 400 1 ii ho - 500 0 100 AUSTENITIZED AT 970 ¢ FOR 20 minutes J1800 , at 100 ¢ 1,000 4 10 30 Hours Composition: 0.85% C - 0.71% Mn - 0.43% Si - 12.10% Cr - 3.07% Mo Austenitized at 970°C 1780°F) for 20 min Noel fp 90 BS. SUS SSE Sirs AUSTENITIZED AT 970 C FOR 20 MINUTES. . | | Ese I Minutes ee 1800 1600 F TEMPERATURE, C TEMPERATURE, SOURCE: . | 1 Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich ’ 0 eee CT 32 a o Atlas of Time-Temperature Diagrams 277 1.35% C - 0.7% Mn - 0.5% Si - 12.0% Cr Steels (Mo Additions) Composition: 1.38% C - 0.74% Mn - 0.46% Si - 11.80% Cr - Composition: 1.36% C - 0.72% Mn - 0.44% Si - 12.0% Cr - 0.078% Mo Austenitized at 970°C (1780°F) for 20 min 1.00% Mo Austenitized at 970°C (1780°F) for 20 min 1000 - * re) 2 Z ¥ ” = < : 5 = F w = 50 3 fe 3 = Py 600 : 500 400 1200 600 1ooe @00 fee Boo es 300 306 69‘ 200 500 (oeSe ee 406 NOON 206 100 ° 1 10 SOSES TIME 100 SE 1 1.000 10,000 EE 106 Se 10 Minutes 1 f 100.000 1,000 ee 10 32 6 eee ers ees i 10 10 a Seconds ine 1 30 ees. TI 10 10.000 106 CoC eee 106 1,000 pe Minutes 1 MOE ee 4 10 32 x Hours Composition: 1.36% C - 0.70% Mn - 0.43% Si - 11.9% Cr - 3.06% Mo Austenitized at 970°C (1780°F) for 20 min 1000 w°° C TEMPERATURE, SOURCE: TEMPERATURE. F Witold W. Cias, "Martensitic Air-Hardenable High-Chromium-Molybdenum Abrasion-Resistant Cast Steels,” AFS Pransactions, vol 83, 1975, American Foundrymen’s Society, Des Plaines IL Sennen nna & & — ae 2= : SI Atlas of Time-Temperature Diagrams 278 0.40% C - 1.4% Mn - 1.5% Si Steels (Mo Additions) Composition: 0.41% C - Ny ee - 1.51% Si - 0.27% Mo Austenitized at Acg + 30°C (54 F) for 20 min Composition: 0.41% C - 1.42% Mn - 1.52% Si - 0.02% Mo Austenitized at Acg + 30°C (54°F) for 20 min AUSTENITIZED AT 860 C FOR 20 MINUTES || | \ aoee i i \ il! Atel AUSTENITIZED ay 885 C FOR 20 an ! i t+ 1800 | 1600 i ti Ac, = 830 c |1600 i 1 | : i i T me nde 1800 | 1 | | dle i 800 i = SI=E=S Fae PE == waesee =e 700 ° wy“ 2 y 600 E g$ wot LNGCIN\VANAWN nN w @ \ Ah -- 400 \! \ |3 300 10 Ge, ot 90 = 100 en Cf ialeeee ee 200 \\ \ NES Aap 649 u 4 iat 345272 270)| 243 266X256 1,000 100 TIME a te is a 800 as= 600 4oc 400 200 200 1,000 4 1 32 100,000 1 100 Minutes 1000 32 10,000 10 uh Seconds 1200 = 600 i 10 1 ° ry & 236 | 0 & 2i se i} 800 2 5 t— | i tiz00 . ;f1000 \ te ty \ 1400 = pte lal | H MIN He { Aci = 708 ¢ hem a = t= EN= t= 1400 100,000 . 2 30 10 10 xt Seconds Minutes TIME 1,000 100 —_—_—_—oOo—_—X 1 4 hae 10 30 Hours Composition: 0.40% C - 1.40% Mn - 1.51% Si - 0.53% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 F TEMPERATURE, CTEMPERATURE, Minutes 1 TIME SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT Composition: 0.40% C - 1.38% Mn - 1.50% Si - 0.80% Mo Austenitized at 890°C (1635°F) for 20 min 1000 1800 900 IL — [acy = 860 ¢ |1600 800 e 700 Ac, + f 2 600 = S 500 re &i = 708 C aioe : oe = 1200 1000 S| 400 EAI l owe 300 = 200 50 47 5 te eet 90t\-— —- 100 1 A ae Pale aS ale mat AL- IE ae 800! “ie & 627 (493 / 627 K519} 100 S econ ds 401 339 1,000 1 ae 200 287 260 10,000 10 Minutes (= 400 Y si 1 = we ——Q’ 673 © 2 SSS oP ees Fee 0 aeIE AE el “* ry 100,000 100 1 32 1,000 4 10 30 Hours SOURCE: Climax Witold W. Cias, Phase Transformation Kinetics and Hardenability of Medium-Carbon Alloy Steels, Molybdenum Company, Greenwich CT ey * zPr 5= = a tos Atlas of Time-Temperature Diagrams 2/7 0.39% C - 0.8% Mn - 1.5% Si - 0.7% Cr Steels (Mo Additions) Composition: 0.40% C - 0.84% Mn - 1.50% Si - 0.74% Cr 0.02% Mo Austenitized at Acg + 30°C (54 F) for 20 min Composition: 0.40% C - 0.84% Mn - 1.50% Si - 0.74% Cr 0.26% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 1000 eye (eo) Oo . - ene 1800 AUSTENITIZED AT 860 C FOR 20 MINUTES 4 T AUSTENITIZED 'AT 870 C FOR 20 MINUTES | H es 900 ry ie 7600 1800 | Acy = 838 ¢ 1600 Ac, = 733.¢ 1400 800 1400 1200 * ° = 1000 & z wi & = re &: ro 00 S Fr - 4 700 2 an; S 10 100 300 400 200 200 100 32 0 rs j}iz00 ==4>4= +50 oe Bs | — = — T 606) 421)( 409 409) 354. 1,000 10 i} ime i ++ +t vata 100 eS 1 pecans 1,000 ' i | 657 10 1 A oo Te = == =} Oh = a \ = 256 ' 235 = i i 10,000 400 lL al ce & 600 (232 Zo0 100,000 1,000 100 Hours TIME Composition: 0.39% C - 0.84% Mn - 1.49% Si - 0.73% Cr 0.52% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 AUSTENITiZED AT 885 C FOR 20 Let SS Z| tA a B °o So TEMPERATURE, F C TEMPERATURE, Minutes TIME SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT Composition: 0.38% C - 0.82% Mn - 1.48% Si - 0.72% Cr - 0.77% Mo Austenitized at 915°C (1680°F) for 20 min OD 1000 Acy = 883 C T =I 4 © w =e ~~ a6 Ss 800 |} aa a ae D ( 600 = 500 S mw 400 w F + |_| ees! + f LoPT “5 = fase ca; coal =e fo a =| Ip 400 POG IL 634 642)( 5 600 yaa) } | 100 = Ee = fe aoe 200 w Y TV Sae f ZA) bas TOOO! 800) a es ANGLE $1400 1200 a= 2=ma 300 ¢ { Vd s e 1600 fem Ac, = 742 a) 488) (468) 429X 405 225 272 351 32 0 100,000 10,000 1,000 100 10 1 tee Minutes TIME 1,000 100 10 1 scant 1 16 i 30 Hour and Hardenability of Medium-Carbon Alloy Steels, Climax SOURCE: Witold W. Cias, Phase Transformation Kinetics CT h Greenwic , Molybdenum Company nl & é ale yee CS 400 re TIME ar | }1000 a i| 914- 1 SES ( 500 600 100,000 ae CK Lot 32 Atlas of Time-Temperature Diagrams 280 0.37% C - 1.5% Mn - 0.3% Si - 0.8% Cr Steels (Mo Additions) Composition: 0.38% C - 1.50% Mn - 0.40% Si - 0.77% Composition: 0.37% C - 1.49% Mn - 0.41% Si - 0.77% Cr . Cr - 0.25% Mo Austenitized at Acg + 30°C (54°F) for 20 min 0.02% for 20 Smin i 02% Mo Austenitized at Acg + 30°C (54°F) 900 | \ | | | Ac, = 796 C | ee ee sesanne | | | 1200 *s °F 3 : sg s iS . 5 rT| } iw g gao =w e - w 600 ee b Ssh iN == f soa AN tj x J\N y a aS 200 47 ze + emf Taal i] 600 400 st $42) (405)(360)( 287X 254) 221 1 1 100,000 10,000 1,000 100 10 10 100 TIME 32 100,000 1,000 1 30 10 4 1 Minutes ee > 200 238, t seconds : +4 i 1} likes | 634, 0 = Sree ete | fro0o ali 300 100 | | }1600 i . Eciiel 1ean) fii ero = PR aE: wa Vi| 3 ; 50 AUSTENITIZED AT 835 C FOR “ as ea i aes | | le 3 | | SI f | ° 2Simro | 1 1 i 800 s= 1000 1800 | AUSTENITIZED ie 825 © FOR 20 Aa eae 10 Minutes TIM E Hours 30 Hours Composition: 0.36% C - 1.47% Mn - 0.41% Si - 0.76% Cr aye fo) fo} ° 0.50% Mo Austenitized at Acg + 30°C (54°F) for 20 min ae AUSTENITIZED AT 825 C TOR 20 Sie 1 IL a 1800 | 1 1 | am i 800 700 | w 600 % 500 et i a 2 * a | aN | —~ igomalacal 7Ni aa NC aT | 300 ‘vo 200 +4 75 ii Tot SENS Seeks 49) 1 | 10 5 21900 | fizoo - 1 f elt a 800 s : = & cs 600 tat | = w © 400 al 608) 99 | (585)(572)(392)(s42) 100 SEBED C ge Rivage = = = 3 2 Nota Ee Cie ted = d—-4- 100 = 709 i }1000 i y | SE {i ALA] eae eae eine 9 ae Pee if bk Ae 0 Ac) ASE ' Ne iN 1600 Ac, = 796 C —— cc =s i | (459)| | ” 1,000 1 10 348 sj 10,000 100,000 100 Minutes 200 260 32 1,000 1 4 10 30 TIME SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT Composition: 0.36% C - 1.46% Mn - 0.42% Si - 0.75% Cr 0.78% Mo Austenitized at 830°C (1525°F) for 20 min 1000 1800 900 aheeal me S wy 2 eet 600 Ly é 500 Lae lgiseeat al || mea 1000 & 50 CUS 90 Nee een ae an en Cdl NEN == 100 aw <1--F+- = / Agia it &s 5 SH ewe: - 2s Set po mecon [as Cvptena| ae fe “I = | 600 f = 00 o7. 620 0 rete L200 st 1 asa 200 703 c : 1600 o—4 400 abo = 801 C Ac I -N 700 = &F Ac al 592)(554)(572)(572) (566) (464 354 294 200 32 10 100 Seconds 1,000 1 aren 10,000 10 Minutes 100,000 100 1 1,000 4 10 30 Hours bon Alloy Steels, Climax SOURCE: Witold W. Cias, Phase Transformation Kinetics and Hardenability of Medium-Car Molybdenum Company, Greenwich CT ae eS ee ee Atlas of Time-Temperature Diagrams 281 0.12% C - 0.85% Mn - 0.3% Si - 1.4% Ni - 0.7% Cr Steels (Mo Additions) Saree: : r 0.12% C - 0.87% Mn - 0.35% Si - 1.44% Ni - Composition: 0.12% C - 0.87% Mn - 0.34% Si - 1.43% Ni - Austenitized at Acg + 30°C (54°F) for 12 min 0.77% Cr - 0.19% Mo Austenitized at Acg + 30°C (54°F) for 12 min AUSTENITIZED AT 840 C FOR 12 MI’ TEMPERATURE, C F TEMPERATURE, TEMPERATURE, F TEMPERATURE, C Seconds ae 2 Minutes 4 10 30 ee Minutes 1 4 10 30 Composition: 0.12% C - 0.85% Mn - 0.33% Si - 1.41% Ni 0.76% Cr - 0.45% Mo Austenitized at Acg + 30°C (54°F) for 12 min woes AUSTENITIZED 500 AT 850 C FOR 12 MINUTES | i j | fice pitrel Apeauarae | | tale 800 : | i mas ! i 1800 1 | Ld H [acy = 820, ! $1600 | . ° 23 = 700 Jac) 2 670 ¢ 500 & = 400 a Ses | a : 600 = a 1400 | L = : se a = fash50’ eN 7 ie ine Net l= a c+ IC NN{ 4 = = i == 4 == Sa n f= F t s2se3S=s=F4 whee 300 — eee | (pas -+—- ae 7 | 4 1_{\_+ fo t +1 | |Wee 357, 281)(266J258 )(264) (251, 225 100 1,000 oo Seconds B00 is érr S 600 ' 100 10 & er 200 1 * 2w j aaa 99 F 1200 10008 1 10 Minutes 202 | 10,000 i | 100 4 yy 192 100,000 ooo 1,000 a i 400 ji 10 30 TIME SOURCE: SO Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT Atlas of Time-Temperature Diagrams 282 0.11% C - 0.85% Mn - 0.4% Si - 1.4%Ni - 0.7% Cr - B Steels (Mo Additions) Composition: 0.11% C - 0.87% Mn - 0.37% Si - 1.45% Ni - Composition: 0.11% C - 0.86% Mn - 0.36% Si - 1.44% Ni - 0.77% Cr - 0.005% B Austenitized at Acg + 30°C (54°F) for 12 0.76% Cr - 0.21% Mo - 0.005% B Austenitized at Acg + 30°C min (54°F) for 12 min 1000 1000 1800 AUSTENITIZED AT 890 C FOR 12 MINUTES Ht 1600 800 700 1200 s J 1000 e ze wi a o = = a we uw 2 we =w S aniei [Ac, = 680 C 7 —N + 1 Pprace ye 50 600 300 Bot | 19 400 200 — 200 100 32 6 a= SE TaN, aai = ea rn De —y— | AN +) Pa 1 10 100 Minutes 4 10 = aie 800 a 1 | 1A} J. 1 ! 600 400 |+t | Tt 3122684266260) , 10 ; 1,000 1 TIME | F100 — 7 1 z ; 1 373 eee: ae se ro Se 9 100,000 —— Rae | { (a 500 1600 1400 . 60 =400 = ie g00 Fr be e Ww Repeat BEOTE | 1400 o | el iat fat 1800 | | AUSTENITIZED AT 890 C “ies 12 err | 900 100 Secors (260 249, 1,000 1 10,000 10 30 Minutes 240, t i 100 1 200 4220) 100,000 - 1,000 4 10 30 TIME Hours Composition: 0.11% C - 0.85% Mn - 0.38% Si - 1.42% Ni - 0.76% Cr - 0.005% B - 0.54% Mo Austenitized at Acg + 30°C (54°F) for 12 min 1000 AUSTENITIZED AT 900 C FOR 12 MINUTES 900 —t t } 1800 | = 800 Acy = 870 C --- 1600 ++ 1400 700 jac) = $80 ¢ 4 ° | fizoo * | ti000 = my 600 4 = Sa re F 3 i 500 -s i 400 1° \ET 300 — oe=a 1253 | ig | 1 99 i +i u H rm \ \ a i ——— IP ee - 800 & a =¥ +—~1-| Lo | {iF 200 600 | + 400 i 100 + | 390 0) Tt 336 10 )(292}302)289)(283 100 Seconds 1,000 iz 200 262 242 10,000 10 Minutes TIME S 276 100,000 160 1 32 n 1,000 4 a chs Hours SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT SS ee ne 32 ‘, = & rra Ss Atlas of Time-Temperature Diagrams 283 0.30% C - 0.7% Mn - 0.4% Si - Ni - Cr - Mo Steels Composition: 0.30% C - 0.69% Mn - 0.38% Si - 1.79% Ni - Composition: 0.30% C - 0.69% Mn - 0.40% Si - 0.20% Ni - 0.78% Cr - 0.24% Mo Austenitized at 870°C (1600°F) for 20 0.99% Cr - 0.43% Mo Austenitized at 870°C (1600°F) for 20 min min 1000 0.3C-1,8NI-0.8C~-0,2Mo (4330) Ta = 870C 900 |ta=20 MINUTES 1800 wil CTEMPERATURE, F TEMPERATURE, aea CTEMPERATURE, TIME TEMPERATURE, F Vis em el TIME Composition: 0.31% C - 0.69% Mn - 0.38% Si - 0.20% Ni 0.79% Cr - 0.57% Mo Austenitized at 870°C (1600°F) for 20 min SI Neate acimeesse TEMPERATURE, F CTEMPERATURE, SECONDS 1 10 MINUTES 100 1,000 —_—eoOoOoO 1 4 10 30 TIME SOURCE: : bon Witold W. Cias, "Phase Transformational Behavior and Mechanical Properties of Medium-Car ; Transactions, vol 78, 1970, American Foundrymen’s Society, Des Plaines IL AFS Wito Steels,” Case Se Cr-Si-Mo-V a Ni-Cr-Mo and Ni- , 2 Atlas of Time-Temperature Diagrams 284 0.40% C - 0.7% Mn - 0.4% Si - 0.8% Ni - 0.7% Cr Steels (Mo Additions) Composition: 0.40% C - 0.73% Mn - 0.40% Si = 0.78% Ni 0.75% Cr - 0.27% Mo Austenitized at Acg + 30°C (54°F) for 20 min Composition: 0.40% C - 0.74% Mn - 0.40% Si - 0.78% Ni 0.75% Cr - 0.03% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 AUSTENITIZED AT 810 C FOR 20 MINUTES 900 w So So C TEMPERATURE, TEMPERATURE, F riety an TEMPERATURE, F C TEMPERATURE, ane Minutes 1 4 10 30 Composition: 0.40% C - 0.72% Mn - 0.40% Si - 0.78% Ni - 0.75% Cr - 0.50% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 900 800 700 oO uy a 25 600 S 500 w a #% uw 3 a = = w a 400 w& 300 200 100 Seconds 1 10 Minutes 100 1,000 1 TIME SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT Atlas of Time-Temperature Diagrams 285 0.38% C - 0.8% Mn - 0.3% Si - 1.4% Ni - 0.7% Cr Steels (Mo Additions) Composition: 0.38% C - 0.85% Mn - 0.33% Si - 1.46% Ni - Composition: 0.38% C - 0.85% Mn - 0.35% Si - 1.45% Ni - 0.74% Cr - 0.01% Mo Austenitized at Acg + 30°C (54°F) for 20 0.73% Cr - 0.24% Mo Austenitized at Acg + 30°C (54°F) for 20 min min 1000 Bes SENTRIZED) AT 820 C POR 20 MINUTES ae | | | 1000 1800 || iain lee mi eet | AUSTENITIZED AT 830 C FOR | 900 | | | b1600 | | 800 1400 me 1200 Z 1000 3 800 700 be) * 5 lea E 2 3 400 3 600 300 400 200 200 100 32 0 100,000 Minutes 1 Se SBD 1,000 et 10 1 30 at 10 100,000 10,000 1,000 100 10 1 + eae 20 MINUTES : en Minutes 1,000 100 1 - 10 30 Composition: 0.38% C - 0.84% Mn - 0.34% Si - 1.46% Ni - 0.73% Cr - 0.48% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 AUSTENITIZED AT 820 C FOR 20 MINUTES 1800 900 ° WJ z 3 wi i | }1600 800 lkcy = 1790 ¢| c) = 690 600 - NT iN 500 | ) | 1eee iNER 400 / Ay 1 eset 50-4 200 90: : iz 15ag== 100 =4 == Rous IP =| 627 617)(595)(585)K575 10 100 — pecores ~ 600 i{}_+ 400 | 9 1 = BOONESFe Se Tes L ie * # & a soe Se 0 | | | f1z00o | }1000 LV ee -- + = i 1400 C) H 7 eae t— i —— \ 300 A455 —— 409 10 200 336 . 1,000 1 299 10,000 100,000 32 100 1,000 —_ Minutes TIME SOURCE: | 700 & Ww | | aL 4 10 30 Hours Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT Composition: 0.38% C - 0.82% Mn - 0.34% Si - 1.46% Ni - 0.75% Cr - 0.78% Mo Austenitized at 830°C (1525°F) for 20 min en 1000 900 Wy i 1600 800 Ac 800 ¢ 1| uj lacy = 700 C Ab 700 ~ 1400 NI 600 1200 |_| {| BSE c 1000 2 Z 500 rm Fa wi 4co {I sae <= == dias a 300 h —— + = go-\b—-—t -t VY NT calle a= 200 595, 603 inca 800 ale 600 Gow —h4 ee== LE a WI = at San ED5a eet ms tos = re ee a = jac #wu & FA = ha s 400 44 a) at 100 x 582)(631 (579) 557 446 355 281, 32 t) Minutes TIME 1,000 100 10 1 Secon? 100,000 10,000 1,000 100 10 1 1 4 10 30 Hours and Hardenability of Medium-Carbon SOURCE: Witold W. Cias, Phase Transformation Kinetics CT Molybdenum Company, Greenwich es Alloy Steels, Climax ce Atlas of Time-Temperature Diagrams 286 0.40% C - 0.7% Mn - 0.4% Si - 2.5% Ni - 0.7% Cr Steels (Mo Additions) Composition: - 0.38% Si - 2.57% Ni - 0.40% C - 0.74% Mn Composition: 0.40% C - 0.73% Mn - 0.38% Si Ree ieee - 0.75% Cr - 0.03% Mo Austenitized at Acg + 30°C (54°F) for 20 0.75% Cr - 0.24% Mo Austenitized at Acg + 30°C (54°F) for 20 min min 1900 AUSTENITIZED AT 790 C FOR 20 MINUTES 1800 900 | 800 T 11 T1600 { ——— 700 ° 2 600 ES 500 & 400 : Ac = 674 1400 c Pa Toba notes ee eet 1200 = 1000 - = ‘ 800 ANG 300 \ 200 }—+— ay = MI JO 642 1 JUL Seconds & 627511 498)(415)( a = 3s :5 = : :rd & 400 271 aks 232 216 200 1,000 10,000 100,000 ear a A ae Minutes Ta z Ss \ = 100 10 ee i = 2 : 600 LI a 6 3 IL a ls lS i 100 & 2 | H | es 0 AUSTENITIZED AT 790 C FOR 20 MINUTES fae ME 32 1,000 Seconds See 1 10 f ‘ ee iehates) Hours Pare 100 _e 1 1,000 SS 4 10 30 Hours Composition: 0.39% C - 0.73% Mn - 0.35% Si - 2.51% Ni 0.75% Cr - 0.49% Mo Austenitized at Acg + 30°C (54°F) for 20 min LESS AUSTENITIZED AT 790 C POR 20 MINUTES w So oS F TEMPERATURE, C TEMPERATURE, Seconds 10 Minutes 100 ni 1,000 4 TIME SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT SSS a a). SSS Atlas of Time-Temperature Diagrams 287 0.40% C - 0.8% Mn - 0.3% Si - 3.5% Ni - 0.8% Cr Steels (Mo Additions) Composition: 0.41% C - 0.76% Mn - 0.32% Si - 3.59% Ni 0.77% Cr - 0.03% Mo Austenitized at Acg + 30°C (54°F) for 20 Composition: 0.41% C - 0.76% Mn - 0.32% Si - 3.59% Ni 0.77% Cr - 0.25% Mo Austenitized at Acg + 30°C (54°F) for 20 min min 1000 AUSTENITIZED AT 775 C FOR, 20 MINUTES | | || 1800 1000 GUY z & HOS a= = 800 | ° Ge Be peoecne 600 eae NESE > = | 5 S 500 4 eee 300 iL 400 200 SF 200 100 a = Ss | _ } 4 10 1200 1} 1000 \| | g00 | x a j- | | .| ||hsSas ea ; S-L444S—+—-— pt |} m3, 651) (640) Sa mies) aes are poll (633)(634)(646) 600 7 Ne2 Se Wf Ge = --y =o oa, pe (636 400 se 640 496, 32 1 10 100 1 10 3 iintes TIME Hours 10,000 100,000 oreo Seconds 30 1,000 100 oo 1 4 1,000 10 30 Hours Composition: 0.40% C - 0.74% Mn - 0.31% Si - 3.56% Ni - 0.77% Cr - 0.50% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 -Sresrrizep AT 765 © POR 20 MINUTES 900 4 1800 | + 4 | | 1600 800 Aeg = 737 C 700 ; s w 1400 at Ac, = 636 © 600 & 1000 & é & o= i! w > = S a @= 1200 500 4 | 400 I 300 goo N | | | 200 pe ee 20, Spe 100 > 600 1 10 = SS SS = 4)8 6 75) = ae aS 2 a = (627)(654 cg )\636 ) (A == ADS = l XZ, — 7 eee ieee a 630 ey) 400 0 503 200 0 32 1 10 100 Secs 1 1,000 10 MEAS 10,000 100,000 100 1,000 ——_————_———_ 1 4 “10 30 TIME SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, & w = & o a T | | BSN 1,000 2 Minutes 1400 (0) 100,000 TIME aaeons { | | 32 1600 | | | { i H H 1 | ww $400 1800 1 | 1_f & w ima ] ' | | pee deg = 742 ¢ 700 { 1200 > | | 800 1400 ° 3 AUSTENITIZED AT 770 C POR 20 MINUTES 900 Greenwich CT =a Atlas of Time-Temperature Diagrams 288 - 0.3% Si - 4.5%, Ni - 0.7% Cr Steels (Mo Additions) 0.40% C - 0.7% Mn Composition: 0.41% C - 0.74% Mn - 0.40% Si - 4.56% Ni 0.75% Cr - 0.03% Mo Austenitized at Acg + 30°C (54°F) for 20 Composition: 0.41% C - 0.73% pt Ae a min min 900 1 800 ee -+ | | AUSTENITIZED AT 780 C FOR 20 MINUTES 1000 | | SIRE | 1000 1800 & 500 3 fs 400 2 1200 = =. cS pape 1000 | | 1 y ion Lt 100 t) 1 WeNe 1 al SS is The = = EAUES 701 677 )(649 K634 X64 XK665) + 30 Seconds 1 tee (638 1,000 559 700 os) Wj 600 « 2 z 2 a4 = 500 = 2 400 600 300 400 200 200. 100 32 0 ‘| = « z a 2 F 21 100,000 10,000 10 1 4 TIME 1 1,000 4 100 Minutes | A, = 100 10 - (54°F) for 20 Hs Set == & rm 5 © coor 300 200 AT TS C POR 20 aaa | oy a - Acg + 800 1400 700 Acq = 630°C ay Ge 600 <4 = AUSTENITIZED 900 | 1 1600 | tf lh Acy = 748 C at 0.75% Cr - 0.26% Mo Austenitized 10 10 100 1,000 10,000 ee SSNS 1 10 le 30 TIME oe 100,000 ae 1 ygpoe 4 10 30 Hours Composition: 0.40% C - 0.73% Mn - 0.41% Si - 4.53% Ni - 0.75% Cr - 0.50% Mo Austenitized at Acg + 30°C (54°F) for 20 AUSTENITIZED AT 755 C FOR 20 MINUTES HT FTEMPERATURE , C TEMPERATURE, 1 10 100 1,000 10 10,000 100 100,000 1,000 Minutes SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT na Se eee Atlas of Time-Temperature Diagrams 289 0.40% Cr - 1.4% Mn - 1.5% Si - 0.7% Cr Steels (Mo Additions) Composition: 0.41% C - 1.44% Mn - 1.50% Si - 0.75% Cr - Composition: 0.40% C - 1.43% Mn - 1.51% Si - 0.76% Cr 0.26% Mo Austenitized at Acg + 30°C (54°F) for 20 min 0.01% Mo Austenitized at Acg + 30°C (54°F) for 20 min 1000 AUSTENITIZED ? AT 845 C FoR 20 MMuTES | | | 960 AGSTESTTIZED AT 250 C POR 20 MIMETES uw ° rs) C TEMPERATURE, TEMPERATURE, F 1 10 100 Second aa 1,000 1 be IM 10,000 10 100,000 100 Fa Mieates 1 TEMPERATURE, F © TEMPERATURE, 32 1,000 4 10 30 = Hours de £ Composition: 0.39% C - 1.41% Mn - 1.49% Si - 0.74% Cr - 0.51% Mo Austenitized at Acg + 30°C (54°F) for 20 min fF TEMPERATURE, C TEMPERATURE, IoC TIME SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT Composition: 0.39% C - 1.39% Mn - 1.48% Si - 0.73% Cr - 0.77% Mo Austenitized at 855°C (1570°F) for 20 min TEMPERATURE, F C TEMPERATURE, 1 10 100 1,000 1 10,000 i0 Mirates 100 1 100,000 1,000 4 TIME SOURCE: n rmation Kinetics and Hardenability of Medium-Carbo Witold W. Cias, Phase Transfo CT Molybdenum Company, Greenwich ee Alloy Steels, Climax Atlas of Time-Temperature Diagrams 290 Ni-Cr-Si-Mo-V Steel Series Composition: 0.33% C - 0.86% Mn - 1.62% Si - 1.80% Ni 0.81% Cr - 0.40% Mo - 0.067% V Austenitized at 870°C Composition: 0.32% C - 0.86% Mn - 1.44% Si - 0.51% Ni 1.01% Cr - 0.49% Mo - 0.071% V Austenitized at 875°C 1000 (5 "35¢-1,651-1.6NI-0 ,8Gr-0,4Mo-V (300M) 900 ile ae A lade 900 } 1 = 20 MINUTES (1600°F) for 20 min | ie SSS al PT TTT lac3=8a0c! TP SBATREN TSN SEN (1607°F) for 20 min 1800 Lee SSS SGUDSGSINEDS ENE Gaba ©¥ qe EST UNVi EL NIB NES CNP . i “ey : ° aa g = 3 S 500 : 3 400 3 [BENIN 2009 5 ae) 800 3 300 400 200 200 100 0 100,000 i 1 1 1 fot TIME 100 i ie Composition: 0.35% C - 0.86% Mn - 1.58% Si - 0.23% Ni 1.50% Cr - 0.58% Mo - 0.071% V Austenitized (1625°F) for 20 min 0.35C-1.5S1-0.2Ni-1.2Cr-0 .6Mo-V geo we 20 uinuTEs = 900C \ t IN SEN N =—— TSS . roe et See | Lt Je oe TN ° | = aS 3 500 400 300 ae Pa — MIMOSs oe an Ay waa ==> 11 ia eee iain ( | ' \ at 885°C 1 1800 Ac3=856C! |1600 ; 1400 = o 3 1200 2 Fs 5 1000 ae = 2 2 4 AO wi 600 Cece a= 20M SSS Ret BOUn> (1652°F) for 20 min xe 1,000 ys 1.21% Cr - 0.58% Mo - 0.037% V Austenitized at 900°C 800 § 3 f= 10 MINUTES 30 Composition: 0.35% C - 0.86% Mn - 1.55% Si - 0.21% Ni - Fr] Le & a 600 400 TIME TIME SOURCE: Witold W. Cias, "Phase Transformational Behavior and Mechanical Properties of MediumCarbon Ni-Cr-Mo ’s Sociaty, Cr-Si-Mo-V Case Steels,” AFS Transactions, vol 78, 1970, American Foundrymen Des Plaines IL ee u rrr . 200 —————— x 2 2 600 px , ‘& 3 (7) rg 1600 800 1400 ae TERS \ yl |+ ae and Ni- eee Atlas of Time-Temperature Diagrams 291 0.40% C - 1.4% Mn - 1.4% Si - 1.4% Ni - 0.8% Cr Steels (Mo Additions) Composition: 0.41% C - 1.42% Mn - 1.42% Si - 1.37% Ni 0.78% Cr - 0.03% Mo Austenitized at Acg + 39°C (54°F) for 20 Composition: 0.41% C - 1.41% Mn - 1.41% Si - 1.36% Ni 0.78% Cr - 0.26% Mo Austenitized at Acg + 30°C (54°F) for 20 min min 1000 cera 900 800 a AT 830 ce ria 20 MINUTES ‘ Nae i Bist 1000 AUSTENITIZED AT are | | 840 C FOR 20 MINUTES | 1800 || 1600 1400 700 S ia 600 5 5 Fd 500 = 400 a *a ° 1200 e “* 5> S % Fa 3S 1000 2& S 800 ~ ~ a er - w 300 600 pas 200 aa 400 100 aie 0 Minutes 1 4 TIME 10 30 Minutes Hours 1 4 100,000 1,000 10 30 TIME Composition: 0.40% C - 1.39% Mn - 1.37% Si - 1.34% Ni - 0.76% Cr - 0.52% Mo Austenitized at Acg + 30°C (54°F) for 20 min AUSTENITIZED AT 835 C FOR 20 MINUTES | | TEMPERATURE, F CTEMPERATURE, Minutes sk 4 10 30 TIME SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT Composition: 0.40% C - 1.37% Mn - 1.38% Si - 1.31% Ni - 0.75% Cr - 0.73% Mo Austenitized at 835°C (1535°F) for 20 min 1800 Ba 900 | 1 1600 Acs = 803 C 800 ig 1400 Ac, = 695 ©. 700 ° w 1200 600 i Ee 500 2 > Nee y 1000 5 800 : Fe eS 400 vt 7 300 i 200 See IS oT 100 600 / EME Ce ie SSS==> | a aA 152) SS Dc 715) uw YW fe = 7 « Fa w& | Seis =p 400 = boots (690X690\698}681) (673, 566) 200 332 2 ty) Minutes TIME 1,000 100 10 1 es 100,000 10,000 1,000 100 10 1 1 4 10 30 Hours ity of Medium-Carbon Alloy Steels, Climax SOURCE: Witold W. Cias, Phase Transformation Kinetics and Hardenabil CT Greenwich Company, um Molybden O° LEI IEEE S $ = i = Atlas of Time-Temperature Diagrams 292 0.40% C - 0.3% Mn - 0.2% Si - 8.0% Ni - 4.0% Co Steels (Mo Additions) Composition: 0.39% C - 0.30% Mn - 0.20% Si - 8.0% Ni - 3.89% Ong : Co Austenitized at Acg + 30°C (54°F) for 20 min 1000 AUSTENITIZED AT 760 C FOR 20 MINUTES 500) |eee 800 } Ole We lI ace L [easel ie eet eer ra \ | ra 1 i e ee ee iin ie e oeel | { Composition: 0.39% C - 0.29% Mn - 0.22% Si - 7.78% Ni ope fo) ro} 0.44% Mo - 3.87% Co Austenitized at Acg + 30°C (54°F) for 20 min 1800 | vee ;tia 1600 IL ene: 5) | }1400 Li ©: a 25 1200 Fa uw ° “F i| fi000 &5 F g - Fs 800 Fd 2 a Fd a @ = = a = ws i g 600 400 t 0 i ; 6a | 10 613)(53e514X450(309) 100 (270) 1,000 i | 200 (240, 10,000 100,000 ane 1,000 eo a Seconds 249) aa Minutes 1 4 TIME 10 32 ; , 100,000 ee 100 1,000 ll SS Seconds 1 10 30 Minutes TIME Hours 1 4 10 30 Hours Composition: 0.39% C - 0.28% Mn - 0.20% Si - 8.04% Ni - 1.00% Mo - 3.90% Co Austenitized at Acg + 30°C (54°F) for 20 min 1000 AUSTENITIZED AT 815 C FOR 20 MINUTES | 900 fe a a | j | 1! Eee a) | t el i | t i 800 ' | — Leia i ! aes ee Pol ' = + o = las ' 600 { | Ee € 500 7 | : Ni wi ia #400 {— 300 +++} r° 75 ¢ | iia ial i --f oo 90: ++ 1 4 SSMS z| = ——— SES ees) 100 TIME 10 Minutes uo | ; wy | i ti000 &S i 22 w 800 Fr 600 Ce ae = -—+—-7 400 (613 iital ie 437, 1,000 1 Acy = 617 cf 1200 ce 634) (606) 620606606) 10 Seconds 1400 He 12 ReR ae 665, 0 = ne - tal Et ie 1 + oS 200 100 | ame NG Woasins 1 ea 1800 tail 2, = : 815 ¢ |2600 I 700 co f | 10,000 l 100 200 | Gas 32 100,000 7 1,000 eroro—o—,TCoo 4 i 10 30 SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich CT Oe Atlas of Time-Temperature Diagrams 293 0.08% C - 1.0% Ni - 12.0% Cr - 2.0% Mo - 0.3% V Steel Composition: 0.08% C - 1.0% Ni - 12.0% Cr - 2.0% Mo - 0.3% V Cooled from 1300°C (2370°F) V Austenitized at 1050°C (1920°F) 1060 a Completion of PEATE —V TINT a Waar aI pessotus cn = zm == 905 C eed 1800 F) <I Y an 1000 5E ov a ico 800 te 700 ° ¢ 600 1000 ¢i 2z 800 r] r] & ra 600 && E r 300 £ oO ry E 5 10,000 1 4 10 % “ _ STISYA NETS PenneniN SCCHICO 1620’ D GNIS , SN OESIN M4 uN ‘a Ny = CMDS fs fs 5 % 500 S £ 400 400 200 200 100 100,000 ° 100 1,000 ed Time | 1600 1200 : Minutes Composition: 0.08% C - 1.0% Ni - 12.0% Cr - 2.0% Mo - 0.3% 5 Z = 7:5 30 Hours Time Howr SOURCE: E.J. Vineberg, et al, "Weldability of Duplex Structure 12Cr-(Mo,W) Steels,” Welding in Energy-Related Projects, Pergamon Press Canada, Ltd., 1984 18Ni200 Maraging Steel Composition: 0.012% C - <0.03% Mn - <0.05% Si - 17.6% Ni 3.1% Mo - 0.10% Al - 8.3% Co - 0.08% Ti Austenitized at 843°C (1550°F) for 20 min °F , TEMPERATURE °C TEMPERATURE, fi TIME SOURCE: Witold W. Cias, "Phase Transformational Kinetics of Four 18% Nickel Maraging Steels on Continuous Cooling,” Climax Molybdenum Company Ltd., as published in Metallurgia and Metal Forming, December 1971 Atlas of Time-Temperature Diagrams 294 18Ni250 Maraging Steel Composition: 0.02% C - 0.09% Mn - 0.09% Si - 17.8% Ni - 0.0021% B - 0.12% Al - 7.9% Co - 0.42% Ti Austenitized at 843°C (1550°F) for 20 min 1000 AUSTENITIZED AT 843 C Lins 20 INU ie ' m | ot|| I LI LH ——Vt | TT II | w°° °F TEMPERATURE, °C TEMPERATURE, == eT boeebe6s Minutes 1 4 10 30 TIME SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum 18Ni300 Maraging Steel Company, Greenwich CT 18Ni350 Maraging Steel Composition: 0.02% C - 0.07% Mn - 0.07% Si - 18.4% Ni - 4.9% Mo - 0.003% B - 0.09% Al - 8.8% Co - 0.66% Ti Austenitized at 843°C (1550°F) for 20 min Composition: 0.008% C - 0.03% Mn - 0.03% Si - 17.4% Ni - 3.7% Mo - 0.17% Al - 12.4% Co - 1.62% Ti Austenitized at 843°C (1550°F) for 20 min 1000 1000 900 soo 709 2 sy GM S 500 FE 499 |—- 300 }- 200 a 100 ean 5 = 10 100 SECONDS S + 2 s 3 3 & = = : 200 10,000 10 MINUTES VU Ol | © 1,000 : & a an r ee : 1 oa & 100,000 100 1 1,000 4 10 HOURS 30 ; TIME r 7 ao SOURCE: Witold W. Cias, "Phase Transformational Kinetics of Four 18% Nickel Maraging Steels on Continuous Cooling,” Climax Molybdenum Company Ltd., as published in Metallurgia and Metal Forming, December 1971 ay 295 Atlas of Time-Temperature Diagrams Carbon-Free Fe - 15.0%Co - 10.0% Mo Alloys Composition: 0.004% C - 0.42% Mn - 0.12% Si - 9.95% Mo - Composition: 0.004% C - 0.41% Mn - 0.15% Si - 9.95% Ni - 15.20% Co Austenitized at 960°C (1760°F) for 20 min 9.99% Mo - 15.30% Co Austenitized at 830°C (1526°F) for 20 min F TEMPERATURE, CTEMPERATURE, TEMPERATURE, F CTEMPERATURE, 100,000 1,000 Minutes if 4 10 Minutes 30 TIME TIME Composition: 0.003% C - 4.78% Mn - 0.21% Si - 10.04% Mo 15.33% Co Austenitized at 840°C (1544°F) for 20 min 1000 y AUSTENITIZED AT 840 C FOR 20 MINUTES , , ! Tent 900 | .- sain es ! | — ate NBN w°° F TEMPERATURE, CTEMPERATURE, Minutes TIME SOURCE: Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum ee Company, Eee Greenwich CT 296 Atlas of Time-Temperature Diagrams Carbon-Free Fe - 15.0% Co - 20.0% Mo Alloys Composition: 0.003% C - 0.47% Mn - 0.13% Si - 20.02% Mo 15.00% Co Austenitized at 955°C (1751°F) for 20 min Composition: 0.004% C - 0.43% Mn - 0.13% Si - 9.95% Ni 20.02% Mo - 15.13% Co Austenitized at 845°C (1553°F) for 20 min 20 SST C FOR “a 845 Eg fe —— ~ 1000 RS STOnE © FOR 20 MINU 20 MI cits 1600 1600 vane 1400 : 12000 + 1000 5 800 Fe ke a : See : Pe 3 = : ee : 600 hae 400 a S o 200 5 oe 32 106,000 x 1,000 10 2 1 pees 30 Minutes TIME 4 1 10 30 ae Composition 0.006% C - 4.93% Mn - 0.23% Si - 20.17% Mo 15.33% Co Austenitized at 875°C (1607°F) for 20 min 1000 AUSTENITIZED AT 875 C FOR 20 MINUTES | {4 em a ae ae TEMPERATURE, C TEMPERATURE, F 100,000 1,000 TIME SOURCE: Minutes 1 4 a 30 Witold W. Cias, Austenite Transformation Kinetics of Ferrous Alloys, Climax Molybdenum Company, Greenwich oe ’ 1c Vanadium Steels CCT Diagrams Atlas of Time-Temperature Diagrams 299 —— ee Mn-V Structural Steels (As Rolled) Composition: 0.04% C - 1.90% Mn - 0.11% Si - 0.021% S 0.019% P - 0.09% V - 0.02% Al - 0.009% N “= 900 rae | + Ke 00 bl iF Jb > s ao + + Ht Jel Temperature ~C Temperature °F all Ly ll ml HH 411{ eee SES 0.5 i De eas SiAS: ISS) Es es 10 Titi 10? Time, secs Deformed and recrystallized at 925°C (1700°F) SOURCE: "Hardenability of Thermomechanically Worked Low Carbon, Mn-Mo-Nb and Mn-Mo-V Steels,” Climax Molybdenum as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-V Structural Steels (As Rolled) Composition: 0.06% C - 1.95% Mn - 0.29% Si - 0.003% S 0.010% P - 0.010% Mo - 0.25% V - 0.037% Al - 0.008% N Austenitized at 110°C (2012°F) for 6 min 800 A ie Saas A+F AH Ms i | 4 F+B B Yd > | N s r F+B * Temperature °F Temperature °C iamieaaiaiih | 1 He 0.5 aia LH 2 SOAS 4+ 10 10? Time, secs SOURCE: B.S.C. Laboratories, Rotherham, England, as published in Atlas of Continuous June 1985 Vanadium Steels, Vanitec, England, Cooling Transformation Diagrams for ee. Atlas of Time-Temperature Diagrams 300 Mn-V Steels (As Rolled) Structural Composition: 0.07% C - 1.94% Mn - 0.30% Si - 0.003% S 0.009% P - 0.010% Mo - 0.14% V - 0.038% Al - 0.007% N Austenitized at 1100°C (2012°F) for 6 min a r 900 Ms Temperature °F Temperature 'C 300 200 ai 0.5 1 2 345 10 10? 10? 10% Time, secs SOURCE: B.S.C. Laboratories, Rotherham, England, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-V Structural Steels (As Rolled) Composition: 0.09% C - 1.48% Mn - 0.25% Si - 0.060% S - 0.014% P - 0.010% Cr - 0.010% Ni - 0.010% Mo - 0.04% V 0.010% Cu - 0.047% Al Austenitized at 950°C (1742°F) 900 800 700 —4—--+-L 1H eat me eonaah 600 S 2 E 500 : & 400 5 & 300 = Ac : Sap 4 SS F a AS eaiberie ae A 1 eat LITE 1600 1500 — 1400 eee 1300 — 1200 ee | si B | ! rr | nevi | 1100 1000 + 900 Lt ral a ‘& oF & | 700 600 500 ae | L 200 100 - tit} r § & 400 300 Ht 200 C.C.T E100 10¢ SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratires, as published in Atlas o f Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams Mn-V 301 Structural Steels (As Rolled) Composition: 0.11% C - 1.23 % Mn - 0.31% Si - 0.018% S - 0.031% P - 0.08% V - 0.005% N Austenitized at 900°C (1625°F) for 5 min 1r T T 1500 5 P il SE ovine es 1400 TAIL 1300 = 1100 oie (EE \ = = x Ly PE MHL 4 MTT a 'C Temperature Temperature °F i b “TT LL teeter I 0.5 CCT 1 PETE ES) 10 10? 103 10+ Time, secs Mn-V Structural Steels (As Rolled) Composition: 0.11% C - 1.23% Mn - 0.31% Si - 0.018% S 0.031% P - 0.08% V - 0.005% N Austenitized at 110°C (2012°CF) for 5 min : 900 eeSSE Ny om Ea SRIOHIEI Saas tien lan RenSe ees IAL el Sh B ae IL z fp ae 4 Ms ‘ rT r 1 Ie \ 2 |e 1 ie Temperature °F Temperature °C 300 } 200 | an 4 LH | +++ 1 HY HL ile =‘. ULE CCTs ss 0.5 1 _L 2 3455 i St 102 10 103 104 Time, secs ntor GmbH, Dortmund, Germany, as published in Atlas of Continuous Cooling Estel Huttenverkaufsko SOURCE: 2 Hoesch n Diagrams for Vanadium Steels, Vanitec, England, June 1985 a Transformatio Atlas of Time-Temperature Diagrams 302 Structural Steels (As Rolled) Mn-V Composition: 0.11% C - 1.40% Mn - 0.55% Si - 0.063% V Austenitized at 790°C (1450°F) Ac3 al | 700 _— -_— i sa ee 1500 t 800 ——+—— 1600 aiil ele ttt —| ep Senora 2 1400 1300 eS Acl 1200 + 600 » 500 HH pep 4 aS .) 1100 1000 | 7 T 900 Z3 800 e 400 700 a 600 ‘“ Rl 200 = 100 + iz Pete 400 lll yiMA 300 200 a C.C.T. OS! 2 325 10? io &§ = so0 ei i ilk g 3Z 103 100 104 SOURCE: Y.J. Park, G.T. Eldis, "Metallurgy of Continuous Annealed Sheet Steel,” TMS-AIME, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-V Structural Steels (As Rolled) Composition: 0.14% C - 1.52% Mn - 0.48% Si - 0.004% S - 0.011% P - 0.071% V Grain size: ASTM 8 Austenitized at 920°C (1688°F) for 10 min 1600 1500 1200 1100 Temperature °C Temperature °F Time, secs SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams Mn-V 303 Structural Steels (As Rolled) Composition: 0.14% C - 1.53% Mn - 0.36% Si - 0.008% § - 0.009% P - 0.06% Cr - 0.03% Ni - 0.01% Mo - 0.04% V - 0.02% Cu - 0.057% Al Austenitized at 930°C (1760°F) Ac3 | ep 800 700) Ser t A cl SS Th Ee ee Zl Saari SBnnie Hy a ll ee a \ ran ai, St ae eee 600 1 HT = Ht sina ay 1600 st fa) 1400 anni SSS SSH H— 1300 LUE 1200 aa 1100 Tees EE oO 2 500 E Ms pe & 400 H E a M 300 I | eile bal mul \ iil js 1 } zz 345 70 & 400 = 200 published in Atlas | fi fe oe! | il I 2 Poti + 100 0.5 coe? + Ss ——T 1 | | 1000 | Baill \ sae 200 iY HH feca.F 1 10? 10 Time, secs SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories, Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-V Structural as of Continuous Cooling Steels (As Roiled) Composition: 0.15% C - 0.90% Mn - 0.40% Si - 0.05% V 0.014% N Grain size: ASTM 11 900 Ac3 ee Temperature °C TI Pett He = tt ee Het Ht 1600 °F Temperature SOURCE: I. Lindberg, "Vanadium Steels,” Vanitec Seminar, Krakow, Poland, 1980, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams 304 88 i Mn-V Structural Steels (As Rolled) Composition: 0.15% C - 1.30% Mn - 0.27% Si - 0.009% S 0.010% P - 0.15% Cr - 0.15% Ni - 0.04% Mo - 0.13% V5 0.19% Cu - 0.02% Al - 0.010% N Austenitized at 900°C (1652°F) 900 Y esOa i a Si T 1600 | ol ir Oo —— 1500 a $= 1400 | HA 1300 1, | 1200 I t 600 P OU e 2 1100 = +} mns ijF 1000 500 v a hes S I<e Ms ‘= | 7 MI=F HH 4444+} ENN ott 200 os LH 100 ie 0.5 l als 2y 345 10 900 800 Cale Z Caos 300 iim \ = LI 10? es A‘ (Gan iy 70 J | - 44! ‘v § ~ § & 600 sie | ttt 1 400 200 a [3 leah C.C.T. 103 100 10* Time, secs SOURCE: F. Capelli, M. Canava, "Welding of HSLA (Microalloyed) Structural Steels," ASM International, Materials Park, OH 1976 Mn-V Structural Steels (As Rolled) Composition: 0.16% C - 1.42% Mn - 0.44% Si - 0.021% S 0.032% P - 0.025% V - 0.003% Ti - 0.002% Nb - 0.042% Al Austenitized at 1350°C (2462°F) 900 Temperature °C ] Tl] TTTTTT. secu Temperature °F SOURCE: Rautaruukki Oy, as published in Atlas of Continuous Cooling Transformat ion Diagrams for Vanadium Steels, ’ Vanitec , England, June 1985 Atlas of Time-Temperature Diagrams 305 —_—_—_—_———_—________ Mn-V Structural Steels (As Rolled) Composition: 0.19% C - 1.44% Mn - 0.37% Si - 0.007% § - 0.011% P - 0.10% Cr - 0.08% Ni - 0.01% Mo - 0.17% V - 0.20% Cu - 0.03% Al - 0.010% N Austenitized at 900°C (1652°F) a [eres THIET Ac3 1600 iE Temperature °C Ses 300 500 200 400 300 = Ss = 200 100 CET. O'S) SOURCE: l 2 3' 455 F. Capelli, M. Cavana, "Welding of HSLA 10 10? 103 is 100 104 (Microalloyed) Structural Steels,” ASM International, Materials Park, OH 1976 Mn-V Structural Steels (As Rolled) Composition: 0.20% C - 1.45% Mn - 0.30% Si - 0.005% S - 0.012% P - 0.11% Cr - 0.10% Ni - 0.02% Mo - 0.08% V - 0.14% Cu - 0.01% Al - 6.010% N Austenitized at 900°C (1652°F) 900 ease ee TW] TT 1600 °F Temperature Temperature °C Time, secs SOURCE: F. Capelli, M. Canava, "Welding of HSLA (Microalloyed) Steels," ASM International, Materials Park, OH 1976 306 Atlas of Time-Temperature Diagrams Mn-V Structural Steels (As Rolled) Composition: 0.20% C - 1.46% Mn - 0.34% Si - 0.008% S - 0.013% P - 0.12% Cr - 0.10% Ni - 0.02% Mo - 0.14% Ve 0.19% Cu - 0.03% Al - 0.012% N Austenitized at 900°C (1652 F) 900 1600 ——TE eri 1500 800 1100 Temperature °F Temperature C SOURCE: F. Capelli, M. Cavana, "Welding of HSLA (Microalloyed) Structural Steels," ASM International, Materials Park, OH 1976 Mn-V Structural Steels (As Rolled) Composition: 0.06% C - 1.97% Mn - 0.37% Si - 0.020% S 0.006% P - 0.45% V - 0.029% Al - 0.009% N Austenitized at 1100°C (2012°F) 900 j Temperature °C TT Temperature °F SOURCE: BSC Laboratories, Rotherham, England as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams Mn-V 307 Structural Steels (As Rolled) Composition: 0.06% C - 2.00% Mn - 0.37% Si - 0.005% $ 0.006% P - 0 - 0.45% V - 0.029% Al - 0.009% N Grain size: ASTM 6-7 Austenitized at 1150°C (2102°F) for 15 min 0) SS 1 A 800 700 Hed 2» i le 600 7 ei Shae if] y 500 Ms € i Neer ral i fl ¥ 4 e 400 Pa pitttt | at +—+} tf Ser es Soot 4 B 300 i acer + : F+iMA ais Feet TTS be la +F = S 3 HHH] : T 1 Temperature °F | + j—|_l_ te} 10? —. titty 103 Time, secs SOURCE: R.C. Cochrane, W.B. Morrison, Met. Tech, 1981, 8 (12), as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-V Structural Steels (As Rolled) Composition: 0.07% C - 1.99% Mn - 0.25% Si - 0.004% S 0.013% P - 0.48% V - 0.038% Al - 0.008% N Austenitized at 1000°C (1832°F) for 5 min 900 Acs | T p——4+——b Tah 1600 4+ 1500 1400 1300 1100 Temperature °F Temperature °C 0.5 1 Ph) 10 10? Time, secs SOURCE: Atlas of Continuous Cooling Hoesch Estel Huttenverkaufskontor GmbH, Dortmund, Germany, as published in Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 ee Atlas of Time-Temperature Diagrams 308 i Mn-V Structural Steels (As Rolled) S Composition: 0.07% C - 1.90% Mn - 0.24% Si - 0.006% 0.010% P - 0.08% Mo - 0.43% V - 0.06% Al - 0.009% N Austenitized at 1150°C (2102°F) 800 fF 700. fF ine’ — = 900 Ile 1500 Ht }titity Tk H— 1400 {i} 13 1300 — 1200 Tit—- 1100 600 u y =s ic & 400 : - MiB M E t 300 200 100 5 ! Ms = & 3 3 TT A+B | / +—- + Ff Lt aie Me 0.5 i 24S 10? 10 SOURCE: A.M. Sage, "Effect of Rolling Schedules on Structure and Properties of 0.45% Vanadium Weldable Steels for X70 Pipelines,” Metals Technology, March 1981, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-V-N Structural Steels (As Rolled) Composition: 0.07% C - 2.79% Mn - 0.18% V - 0.046% Al - 0.005% N Grain size: ASTM 10-6 Austenitized at 1000°C (1832°F) for 15 min 900 aaa 800 HH — 1500 + Temperature °C Temperature °F SOURCE: M. Darbin, P.R. Krahe, Conference and Properties of Low Carbon Steels, " TMS-AIME, ; ; "Processing : in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, Englan d, June 1985 1973, as published i Atlas of Time-Temperature Diagrams 309 Mn-V-N Structural Steels (As Rolled) Composition: 0.16% C - 1.40% Mn - 0.04% Si - 0.012% S 0.004% P - 0.11 V - 0.04% Al - 0.018% N Grain size: ASTM 10.6 Austenitized at 900°C (1652°F) for 10 min | a 2 --_— l g Ac3 Temperature °C Temperature °F SOURCE: "Microalloying 75,” as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-V-N Structural Steels (As Rolled) Composition: 0.17% C - 1.75% Mn - 0.20% Si - 0-0.10% V 0.02% Al - 0.038% N Austenitized above 900°C (1652°F) ee ee SURG ALE 900, aeea i SEE 1600 1500 mere eee a= =I yt ‘ ‘ ee il a | eel ar i Ms i —- So TT oH rae) ie ail b T iL Z | anh oes eee ERaUETE aS pase == eel Co rT 174 il ; a ar he 1400 1300 1200 1100 hit— [ = 7 -— Temperature °F Temperature ‘C + mil —— +1 Hil THI 4 ji} EVIE = t |Base l 2S 3455 | | C.C.T. — —|Base +|0.10% Vanbdi 0.5 [TT eatin Sat SS 10 1 102 Ne 103 10* Time, secs of Continuous Cooling Transformation SOURCE: E.E. Blum et al, Fiz. Metal; Metalloved, 22 (6), 1966 as published in Atlas Vanitec, England, June 1985 Diagrams for Vanadium Steels, 310 etapa ee 2 ee os oe Oe Atlas of Time-Temperature Diagrams eee Structural Steels (As Rolled) Mn-V-N S Composition: 0.17% C - 1.48% Mn - 0.30% Si - 0.021% 0.034% P - 0.035% Cr - 0.075% Ni - 0.02% Mo - 0.15% V 0.04% Cu - 0.028% Al - 0.018% Austenitized at 1320°C (2408°F) 900 al 800 oH ] moan it A 700 = Th | 600 A+F t AFF \ A+FHB | ©) Til ae 3 a AttAt z 400 > 08 are Ilp+F4C : 200 & 11 itt = He tele E ~ | |B {Itt : = 5 | 300 3 in 1 = M rc 1 + alsa Qe 3 ALS id 10? 10 ‘Time, secs SOURCE: B.S.C. Laboratories, Rotherham, England, as published in Atlas of Continuous Cooling Transformation Vanadium Steels, Vanitec, England, June 1985 Mn-V-N Diagrams for Structural Steels (As Rolled) Composition: 0.19% C - 1.55% Mn - 0.32% Si - 0.005% S - 0.013% P - 0.57% Ni - 0.13% V - 0.01% Al - 0.017% N Austenitized at 900°C (1652°F) for 5 min 900 G00 ] Ac3 Se AE eh Toe —— i; Post | sa a. hh ] ee _ —— =e ened we tan cei — I U 2 500 aan 3 Fa a é as. ( = hs ‘x Ms 400 F - <a rT / 200 aii 100 | ap BAS Ht ‘ | ie tt” TH Tr 1 | ret T i DAP 10 102 L_ 1400 oo etmiaen— Fett) L- 1200 i 1100 A en 5 tH = g = \ | 1 I 1500 | | sifiecay THT Os 4H Be \ | : halle 1 i 300 [ enn Nd : es r- 1600 a IE SS RaO — bal caneel | | —_ = 600 TT] ||- & + tt Pe || aeaaanan | | T T | latest Ts 103 Time, secs SOURCE: Hoesch Estel Huttenverkaufskontor GmbH, Dortmund, Germany, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams SIT Ni-V Structural Steels (As Rolled) Composition: 0.15% C - 0.71% Mn - 0.28% Si - 0.005% § 0.007% P - 0.25% Cr - 1.07% Ni - 0.05% Mo - 0.08% V - 0.15% Cu Austenitized at 900°C (1652°F) 900 = 01 I Ac3 _ || SS & al —-——| + 1600 _—— ne 1500 800 aai 1400 Acl Is n= 600 = | + OH! ++ 1 yy 1 iS) fs | — 1000 + aie +4 ft | - +4 | & IL meee | M 200 a feta Sl Sie 300 tit epee a 0 | 300 won 200 C.C.T, | ao ie 102 & 500 + \ Hidatsa la PaaS | | I iat | 100 t g0 §oO eel & WE LL set 900 ri 1 = aR E 400 1300 I 1200 +4 1100 10 100 10¢ Time, secs SOURCE: Blondeau et al, "High Strength Steels for Pipeline Fittings,” 1981, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-V-Ti Structural Steels (As Rolled) Composition: 0.05% C - 1.17% Mn - 0.26% Si - 0.015% § 0.016% P - 0.04% V - 0.01% Ti Austenitized at 1350°C (2462°F) coaen VLE 5.16 | | 800 Pa ‘6 | eal p aoe | ig i child | Fa ace 600 - 1600 l= mT | ‘sir LE - 1300 1200 ain Hee | er cH ++ = 2 500 1 {ts AoO L- 1000 x 90 8 fi 1 2 400 § & 1100 Hn ™ soo |o£un tet 700 E eS 600 300 PN 200 mal 400 rt | 300 200 + 100 aha! Qo | mB aay wld ie a} 102 103 10* Time, secs : Bere aw, M. Sato, ility,” Nippon Steels, 1976, as i such as Weldability, "Vanadii um for the Improvement of Properties , June 1985 Vanadium Steels, Vanitec, England dec ofContinuous Cooling Transformation Diagrams for Atlas of Time-Temperature Diagrams 312 Structural Mn-V-Ti Steels (As Rolled) Composition: 0.06% C - 1.27% Mn - 0.30% Si - 0.080% S - 0.009% P - 0.01% Cr - 0.01% Ni - 0.01% Mo - 0.04% V - 0.01% 6.8 Austenitized at 950°C Cu - 0.045% Al Grain size: ASTM (1742°F) ir 900, = Ac3 ecTTT on | | ] a HUT ft th 1600 yq] 1500 1400 1300 1100 Hi °F Temperature Temperature C 4 G5 Wy 7 10* SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-V-Ti Structural Steels (As Rolled) Composition: 0.10% C - 1.51% Mn - 0.44% Si - 0.008% S$ 0.033% P - 0.05% V - 0.013% Ti - 0.002% Nb - 0.033% Al Austenitized at 1350°C (2462°F) ] soo | as! haat ] | ‘wal 4H =a || |] | TTT ] tl 1 ] || || | aa | oo a4 | { aa1] i] tel | | ALSie ES = oo Temperature °C °F Temperature 100 ritinecett L 0.5 5 LU l Pees Bit Wn 10 | | \| rT |+ {ul | LSS 10 103 + Liil'— 200 a C.C.T. + 100 10* Time, secs SOURCE: Rautaruukki Oy, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels ' Vanitec, England, June 1985 — Se eee eee Atlas of Time-Temperature Diagrams 313 eee Mn-Nb-V Structural Steels (As Rolled) Composition: 0.05% C - 1.82% Mn - 0.39% Si - 0.012% § 0.018% P - 0.06% V - 0.055% Nb - 0.011% Al - 0.011% N Austenitized at 950°C (1742°F) Seis 3 | g J s — =a = = | i Temperature °C 3 °F Temperature g = £ am { fe. o A 7 8 o So > 4 o oO SOURCE: J. Just, J. Motz, Giessereiforschung, 1976, 28 (4), as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-Nb-V Structural Steels (As Rolled) Composition: 0.06% C - 1.21% Mn - 0.25% Si - 0.001% S - 0.015% P - 0.31% Ni - 0.07% V - 0.043% Nb - 0.30% Cu - 0.041% Al - 0.003% N Grain size: ASTM 7 Austenitized (a) at 1050°C (1932°F) (b) 930°C (1706°F) j 900 sap nee ae Tt | see PaTRTAC AT ee 700 | u 3 2 E E eu 500 | ae sem PeaaBalsoo 7 |Ls KRes ~ ee | Ld TT ttt mol + 2 = 400 LI LIF L100 00 ea 1500 — inl — samara! P | Rae ae 900 i LE Hi nil OQ | 0.5 2 3.4 5) 2 e E ge a300 ale: 200 C.C.T. a0 “ ere 00 q > > z 500 } |\ aaacaneSst 3B} ae S eS a | UTE Oe | zg 1200 1100 [| a 1400 1300 {1 TIT | LU TI E ~ oa ) cents + 600 vv il = 102 103 10 1o¢ Cooling Transformation SOURCE: Kawasaki Steel Corporation Research Laboratories, Japan, as published in Atlas of Continuous 1985 Diagrams for Vanadium Steels, Vanitec, England, June Atlas of Time-Temperature Diagrams 314 Mn-Nb-V Structural Steels (As Rolled) Composition: 0.07% C - 1.35% Mn - 0.29% Si - 0.004% S - 0.005% P - 0.08% V - 0.025% Nb - 0.036% Al - 0.006% N Austenitized at 1100°C (2012°F) for 10 min a 900 ay a = TT A 1500 il 1400 1 os 1300 700 1100 600 1000 900 ae °F Temperature °C Temperature 300 s2i¢5 IE c= ats Le+ er= isss eis Bist 2) 2) me LJ: E t t a —— 4|-— 10? 103 10* Time, secs SOURCE: B.S.C. Laboratories, Rotherham, England, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-Nb-V Structural Steels (As Rolled) Composition: 0.08% C - 1.52% Mn - 0.37% Si - 0.007% S - 0.023% P - 0.21% Cr - 0.10% Ni - 0.10% V - 0.05% Nb - 0.34% Cu - 0.02% Al - 0.008% N Austenitized at 1100°C (2012°F) for 3 min Sh SsSe oad pe - annH es = SN oper 700 a sear ee ee eeea Wiles — Fe Fert -— es les a —=— eT a | al | \ Le aaa Alt ea ier | a — IL t i | tT 600 {I}— i100 tL 500 #x 5 | = - | 300 4 200 L 1000 we 900 ¢E 300 i 2 400 1300 TIE 1200 tt U 5» 1500 eh tao 1400 | 1 700 600 3 & § 500 100 ; is no reduction | — — strained 25% dt |000°C Followed by|45?/lat 850P eed id uu dali oe Aneta hanh 0s 1 De 3455 10 aml eal 400 300 200 Ger: 100 102 Time, secs SOURCE: T. Hashimoto, et al., "Thermomechanical Processing of Microalloyed Austenite,” TMS-AIME, Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 1982, as published in fi Atlas of Time-Temperature Diagrams Mn-Nb-V 315 Structural Steels (As Rolled) Composition: 0.06% C - 1.69% Mn - 0.25% Si - 0.001% § 0.015% P - 0.31% Ni - 0.08% V - 0.043% Nb - 0.30% Cu - 0.040% Al - 0.003% N Grain size: ASTM 7.7 Austenitized at 1050°C (1932°F) Temperature °C Temperature °F SOURCE: Kawasaki Steel Corporation Research Laboratories, Japan, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-Nb-V Structural Steels (As Rolled) Composition: 0.06% C - 2.33% Mn - 0.38% Si - 0.008% § - 0.025% P - 0.40% Cr - 0.01% Ni - 0.01% Mo - 0.08% V - 0.048% Nb - 0.01% Cu - 0.035% Al Austenitized at 900°C (1652°F) ss Pat Tn Ac3 CL LTC 0 Temperature °F °C Temperature SOURCE: of Continuous Cooling Sumitomo Metal Industries Ltd., Central Research Laboratories, as published in Atlas et stion Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams 316 Structural Steels (As Rolled) Mn-Nb-V Composition: 0.10% C - 1.53% Mn - 0.35% Si - 0.010% S 0.013% P - 0.01% Mo - 0.07% V - 0.05% Nb - 0.045% Al 0.007% N Austenitized at 1000°C (1832°F) for 2 min 1600 1500 1400 1300 1200 900 800 700 600 LY 1000) Y 2 500 S 2 400 5 & 300 900, 800 3 5 700 600 500 && 200 400 ane 100 200 100 SOURCE: Hoesch Estel Huttenverkaufskontor GmbH, Dortmund, Germany, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-Nb-V Structural Steels (As Rolled) Composition: 0.10% C - 1.48% Mn - 0.36% Si - 0.008% S 0.014% P - 0.019% V - 0.003% Ti - 0.023% Nb - 0.046% Al Austenitized at 1350°C (2462°F) 900 ] | 300 | - Sit Sete fai | 700 = lial soe 5 7 [ +4444 = | | =e | | 300 ++ i 1200 t—- 1000 1300 Ht anil eae it 1100 +—} alii ies aie I | TT | r~ | | |_| PIA te g0 a § a [T/L 700 &§ +4 | 200 t- 15ee i) xs 5 ie | 400 1400 B aie # t— HHT P | ‘| 4) as | tt F 1600 rr | sons 600 t t- 600 500 7 vg 300 100 tad + a eee Leer 7 | 200 C.C.T 100 = 0.5 | 2 3455 10 102 103 104 Time, secs SOURCE: Rautaruukki Oy, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams 317 Mn-Nb-V Structural Steels (As Rolled) Composition: 0.11% C - 1.60% Mn - 0.30% Si - 0.002% § 0.017% P - 0.09% V - 0.005% Ti* - 0.032% Nb - 0.021% Ai Austenitized at 950°C (1742°F) for 5 min * wt% TiN 1600 1500 ~ 1300 1200 1100 Temperature °C Temperature °F SOURCE: Nippon Kokan K.K. Technicai Research Centre, Kawasaki, Japan, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-V-Nb-Ti Structural Steels (As Rolled) Composition: 0.10% C - 1.50% Mn - 0.37% Si - 0.007% S - 0.011% P - 0.022% V - 0.023% Ti - 0.023% Nb - 0.044% Al Austenitized at 1350°C (2462°F) 900 T if Temperature °F Temperature °C 0.5 | 2 3 4 5) 10 102 103 10+ Time, secs SOURCE: Vanitec, Rautaruukki Oy, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, England, June 1985 Atlas of Time-Temperature Diagrams 318 ——e I Mn-Mo-V Structural Steels (As Rolled) Composition: 0.04% C - 1.19% Mn - 0.30% Si - 0.001% S - 0.002% P - 0.02% Cr - 0.02% Ni - 0.33% Mo - 0.09% V - 0.01% Nb - 0.057% Al Austenitized at 960°C (1760°F) 900 °F Temperature Temperature ''C SOURCE: P. Wellner, A. Mukherjee, H. Mayer, "Micro-Alloyed Steel for Casting,” Sulzer Technical Review, 2, 1976, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-Mo-V Structural Steels (As Rolled) Composition: 0.04% C - 1.90% Mn - 0.11% Si - 0.021% § - 900 0.019% P - 0.19% Mo - 0.09% V - 0.02% Al - 0.009% N MT | 800 1 700 | I 1600 LI/- 1500 = ap LIL L- 1400 LLL 1300 iF LIL 1200 +H 1100 Fi v z = ; ea : | LU 500 i) 2 400 e 300 nitameieet mH A T 200 a +++ al Lt T c 5 {. [| L 1000 u4 | = ie L oogo 8§& +t a i 400 {|| rh 700 600 500 300 T 100 [ae sea Ki ee ee i + LIL 0) Ul 102 200 a C:C.1; 100 Time, secs Double deformed condition SOURCE: "Hardenability of Thermomechanically Worked Low Carbon, Mn-Mo-Nb and Mn-Mo-Nb-V Steels,” Climax Molybdenum Report L-176-82, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams 319 ep Mn-Mo-V SaaS SSS Structural Steels (As Rolled) Composition: 0.04% C - 1.90% Mn - 0.11% Si - 0.021% S - 0.019% P - 0.19% Mo - 0.09% V - 0.02% Al - 0.009% N Austenitized at 925°C (1700°F) 900 ——— 800 + 700 600 4 we 5 S LC 500 z s | 2 ® & Sa 2 E ah 200 & Ei 100 OS) St 2 Mn-Mo-V Structural Steels (As Rolled) Composition: 0.04% C - 1.90% Mn - 0.11% Si - 0.021% S 0.019% P - 0.34% Mo - 0.09% V - 0.02% Al - 0.009% N Austenitized at 925°C (1700°F) 900 | 800 li TT im rT 700 TH ttt — 1600 1500 ibe. 1i— 1300 UC 1200 600 = - - 1100 3 I S 800 &E ses Hl ieyal 300 «§ 600 & He 200 100 3 700 rH ae We +H | jj LE yD acy i Li + hoalniatat 1a 10? 400 300 T 103 200 C.C.T 100 10¢ Deformed and recrystallized at 925°C (1700°F) “1 o i = -Mo-Nb-V Steels,”pSClimax : "Hardenability of Thermomechanically Worked Low Carbon, Mn-Mo-Nb and Mn Mo Nb Cooling Transformation Diagrams for Vanadium Steels, a epee Raper L-176-82, as published in Atlas of Continuous Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams 320 Mn-Mo-V Structural Steels (As Rolled) Composition: 0.06% C - 1.96% Mn - 0.32% Si - 0.003% S 0.006% P - 0.18% Mo - 0.22% V - 0.020% Al - 0.005% N Austenitized at 1000°C (1832°F) 900 TT HH | 800 700 1600 + 1400 A Se 1300 ALF 600 y 2 2 | a | L- 1200 - [ 500 Trill A+B | At A+B iaoe Lit] oe Ff 1000 Se IL HHH | HH Sant i a Be | ae! | Des eh 8 =«§ z = & a 300 =f 200 C.C.T. 0.5 we 900 80. 132700 || 600 LH He || 100 1100 — Titi L 200 +4t+— | T | 300 1500 LEE \ Ul 100 ees 4 a5 10 10? 103 10* Time, secs SOURCE:P BSC Laboratories, Rotherham, England, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-Mo-V Structural Steels (As Rolled) Composition: 0.06% C - 1.70% Mn - 0.50% Mo - 0.10% V - 0.020% N Austenitized at 940°C (1724°F) for 5 min 900 aA ng IeSA eea eth | eel | Sa HIea+-FH Be Ht (22 aa - | HTi i6001500 Cc. ae 700 Pas SS 1400 oo ii SS il 1300 1 600 2 2 500 : | Eso Com & 300 i 100 | aH ali LE | 1 | Ht co [Fe i LUT mill | | a | | 1200 1100 el il H 900 p 3 | 800 i PE LT UIE & = 700 ; RB 300 [CAN 200 Hl | Ll 0.5 1 Die SASS 10 10? 103 10* Time, secs SOURCE: Kawasaki Steel Corporation Research Laboratories, Japan, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams Mn-Mo-V 32] Structural Steels (As Rolled) Composition: 0.06% C - 1.46% Mn - 0.14% Si - 0.003% s 0.018% P - 0.20% Cr - 0.02% Ni - 0.25% Mo - 0.03% V - 0.01% Cu - 0.035% Al Austenitized at 930°C (1706°F) 900 Po oT ee TTT ie iaaiial UPR T LL T eee tH 1 T T tH UL sia 2 be 2 a e & E £ Mn-Mo-V Structural Steels (As Rolled) Composition: 0.07% C - 1.52% Mn - 0.47% Si - 0.008% S - 0.004% P - 0.01% Cr - 0.01% Ni - 0.27% Mo - 0.05% V - 0.01% Cu - 0.064% Al Austenitized at 920°C (1688°F) SS ee eee Goer eo ihle 1600 b Y Py 2 e5 5 10? Time, secs. SOURCE: in Atlas of Continuous Cooling Sumitomo Metal Industries Ltd., Central Research Laboratories, as published Pravetorviation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams ee Structural Steels (As Rolled) Mn-Mo-V Composition: 0.07% C - 1.57% Mn - 0.49% Si - 0.008% S - 0.004% P - 0.01% Cr - 0.01% Ni - 0.27% Mo - 0.05% VW - 920°C 0.0005% B - 0.01% Cu - 0.066% Al Austenitized at (1688°F) 900 4 file eid ee LI nil i 800 | in Ac3+900° “Pe cl = mee 700 LI} +H 600 Tar g 500 3 g e 400 1 a I Hy L 300 - 200 }— } tit} 900 300 700 600 500 = § (=§ a 4 —t 100 1600 1500 1400 1300 1200 1100 00 300 et 200 C.G.T: 100 TUE 10¢ 105 108 Time, secs SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-Mo-V Structural Steels (As Rolled) Composition: 0.12% C - 0.83% Mn - 0.30% Si - 0.005% S - 0.004% P - 0.53% Cr - 1.11% Ni - 0.49% Mo - 0.03% V - 0.30% Cu - 0.031% Al Austenitized at 950°C (1742°F) for 20 min 900 300 ae 700 | ae 600 oy 1400 = sera —= it t+ e g | Pale -}—+—}— 1600 SER TT ML Zee 1300 & 1200 1100 s / 500 Moe : EEae B tat T 900 . moe 0 600 s M : 200 rT 100 500 ai th iig + 200 t i 0.5 1 2° 37455 10 10? z C.C.T. 103 100 10+ SOURCE: T. Kunitake, et al., "Toward Improved Ductility and Toughness,” Climax Molybdenum, 1971 as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 a ES SE eS eee Atlas of Time-Temperature Diagrams 323 Mn-Mo-V Structural Steels (As Rolled) Composition: 0.15% C - 1.39% Mn - 0.40% Si - 0.013% S 0.016% P - 0.27% Mo - 0.05% V - 0.018% Al - 0.004% N Austenitized at 930°C (1706°F) for 10 min 900 ay TT b 7 T 1 r 1600 1500 1400 1300 fe + F Cee rs 7 > _— song 4 apeall {4 ff al re B 7 1100 ip 3 Temperature’ C Temperature °F b an iE 0.5 | Qe S45 10 102 103 10* Time, secs Mn-Mo-V Structural Steels (As Rolled) Composition: 0.17% C - 1.54% Mn - 0.44% Si - 0.006% S - 0.012% P - 0.01% Cr - 0.02% Ni - 0.47% Mo - 0.14% V 0.002% Nb - 0.01% Cu - 0.010% Al - 0.006% N Austenitized (a) at 930°C (1706°F) for 75 min (b) at 1350°C (2462°F) for 10s Sees ee i Acl ee a ee ee A eon ates Sed es 1 so 4) ised ere ohcB eo 4 m4 Ms a tee | erect S ees ceteed P of aot ij BUI i ae Temperature °F Temperature °C t= Z —> LI ee TT ata nl Jccr: Belper OS tt BB Bees i 102 103 10 Time, secs SOURCE: Kawasaki Steel Corporation Research Laboratories, Japan, as published in Atlas of Continuous Vanitec, England, June 1985 Diagrams for Vanadium Steels, ee Cooling Transformation Atlas of Time-Temperature Diagrams 324 i Structural Steels (As Rolled) Mn-Mo-V Composition: 0.06% C - 0.82% Mn - 0.26% Si - 0.001% S - 0.015% P - 0.25% Mo - 0.08% V - 0.04% Nb - 0.040% Al 0.003% N Austenitized at 930°C (1706°F) for 10 min 900 6301C]| eal 05 600 . 2 500 =) ir z 2 400 = 300 | ian ot 200 100 TTT 1600 FLITE — AAS I FE — | a5 1 | t Mies 2 t 2 3a5 | iL 900 §& 800 TTTTL 700 z E L600 maa + 1500 1400 jen 1200 1100 1000 i UH TTT Hl 10? +4 | i Bek { hl eee WE | 400 300 ieee sas(am No ll C.C.T rc 100 103 10¢ Time, secs Mn-Mo-Nb-V Structural Steels (As Rolled) Composition: 0.06% C - 1.21% Mn - 0.25% Si - 0.001% § - 0.014% P - 0.25% Mo - 0.08% V - 0.044% Nb - 0.036% Al 0.003% N Grain size: ASTM 7.1 Austenitized (a) at 1050°C (1922°F) for 3s, (b) at 930°C (1706°F) for 10 min 7 Ac3=30 1500 1400 1300 1200 1100 1000 800 700 600 oS 2 500 = 900 & 2 400 50 100 2 800. 700 & 300 1600 | : e oe 500 400 300 200 100 SOURCE: Kawasaki Steel Corporation Research Laboratories, Japan, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 _ Atlas of Time-Temperature Diagrams 325 Mn-Mo-Nb-V Structural Steels (As Rolled) Composition: 0.07% C - 1.49% Mn - 0.26% Si - 0.001% § 0.015% P - 0.25% Mo - 0.08% V - 0.042% Nb - 0.036% Al - 0.003% N Grain size: ASTM 7-8 Austenitized (a) at 1050°C (1911°F) for 3 s (b) at 930°C (1706°F) for 10 min yoo 900 Ac3=19301C °F Temperature C Temperature SOURCE: Kawasaki Steel Corporation Research Laboratories, Japan, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-Mo-Nb-V Structural Steels (As Rolled) Composition: 0.09% C - 1.03% Mn - 0.28% Si - 0.015% S - 0.010% P - 0.01% Cr - 0.01% Ni - 0.31% Mo - 0.10% V - 0.09% Nb - 0.021% Al Austenitized at 960°C (1760°F) bs aT 900 ic 800 A 700 jareinininiil | le 600 || q LeBD F ; alielateatt orn : | | it 2 500 S S iB M aa B 400 f= 300 zl 200 ah 4+— f+ Leet aa al + 1400 1200 1100 | 1000 t 900 |} EE mil 4 + | - 00 L 700 +444 4itt 4 i 0.5 | § & 400 200 ip ie C.C.T. |— DeAts 3§ 300 al | a § ra 600 tig | 100 a ia + == }itt Jeet 1500 I P =i | | 1600 ‘ante ckae | O I LI} 100 WB 15SUS BUN 10 102 103 104 Sulzer Technical Review, 1976, No. 2, as published in Atlas of SOURCE: P. Wellner, et al., "Mirco-Alloyed Steel for Casting,” June 1985 Steels, Vanitec, England, Continuous Cooling Transformation Diagrams for Vanadium Atlas of Time-Temperature Diagrams 326 ee Structural Steels (As Rolled) Mn-Mo-Nb-V Composition: 0.12% C - 1.72% Mn - 0.28% Si - 0.005% S - 0.016% P - 0.20% Mo - 0.06% V - 0.038% Nb - 0.068% Al ox 0.0001% N Grain size: ASTM 8 Austenitized at 910°C (1670°F) 800 700 sera ml | ! | | 5 7 | | fish | aie E 2 400 , tii { TH 300 1200 1100 asada titit — i | wy 1300 — A+P aul oh 1400 | ==+=—+ AOA 600 1500 | | \ 1600 LL Wu Uh We | { TTT TT| TTT Gs 900, | 1000 4 900 § | 800 Pt yee || AE lt ++Ht+tt+ 700 § 600 2 500 ice 200 { ++ + 400 iB 300 1 | 200 rl 100 100 i | ee |e 102 10 103 104 105 Time, secs SOURCE: T. Wada, et al, "High Strength Steels for Pipeline Fittings,” 1981, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-Mo-Nb-V Structural Steels (As Rolled) Composition: 0.14% C - 1.44% Mn - 0;.23% Si - 0.007% § 0.011% P - 0.065% Cr - 0.23% Ni - 0.035% Mo - 0.10% V 0.03% Nb - 0.48% Cu - 0.028% Al - 0.013% N Austenitized at 1320°C (2408°F) 900 TTT BE — Temperature °C Temperature °F 104 Time, secs SOURCE: B.S.C. Laboratories, Rotherham, England, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams 327 Quenched and Tempered Structural Steels Composition: 0.09% C - 0.94% Mn - 0.28% Si - 0.008% S - 0.010% P - 0.10% Cr - 2.54% Ni - 0.64% Mo - 0.04% V - 0.07% Cu - 0.029% Al Austenitized at 930°C (1706°F) 1600 1500 1400 1300 1200 1100 1000 Temperature 'C °F Temperature SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Quenched and Tempered Structural Steels Composition: 0.09% C - 0.59% Mn - 0.57% Si - 0.010% S 0.015% P - 2.00% Cr - 0.56% Mo - 0.37% V - 0.18% Ti - 0.005 % B - 0.41% W Austenitized at 1030°C (1886°F) for 10 min OY (Reaasise Acl 800 ; 3 iE = 1 700 = Se ia if r 600 » i) Fito 5 =) 5 stitch == ees cal & = Velvia {Se es || 4 al {iit + ie 4 [_ °F Temperature AHM (ooo 300 i 200 H te AB {+ in pa +—+4+--44 ru] é. 400 | VAP ttt ieee Ms = f— [| tt 500 1 A ian A [S} tie Ab F =i if | 1p |_ atin 100 ie TT C.C.T. I 0.5 I Lit he BAW 10 102 103 0* Time, secs SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams 328 SS a and Tempered Structural Steels Quenched Composition: 0.09% C - 1.01% Mn - 0.32% Si - 0.009% S - 0.011% P - 0.52% Cr - 1.49% Ni - 0.52% Mo - 0.05% V 0.002% B - 0.25% Cu - 0.055% Al Austenitized at 930°C (1706°F) 900) TT Ac3 ‘aaa inate Li | mente eaeseieeratbea rom a mH | 700 - | sl ie — 1600 ale i ipee + =| | | |He 00 Se — 1400 se Fs 600 :eet! ‘2 & IM | e 300 i. 200 os & ‘ if oS 2 2 BAS it 10? 103 104 Time, secs Quenched and Tempered Structural Steels Composition: 0.09% C - 0.82% Mn - 0.29% Si - 0.013% S 0.019% P - 0.12% Cr - 1.85% Ni - 0.53% Mo - 0.04% V - 0.01% Cu - 0.031% Al Austenitized at 930°C (1706°F) 900 800 AG ily e—— FF OT ib —_ —_ + 7i — + TT ‘aN 1 ih T Lae ae oo ete fen tanen wd oha i HT] Il TL 1500 4 = 5 & LS & E E Time, secs SOURCE: Sumitomo Metal Indu stries Ltd., Central Research Laboratories, as published in Atlas of Continuous Cooling Transformation Diagrams for Va nadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams 329 Quenched and Tempered Structural Steels Composition: 0.10% C - 2.00% Mn - 1.09% Si - 0.005% S 0.012% P - 1.80% Cr - 0.65% Mo - 0.15% V Austenitized at 950°C (1742°F) for 10 min 90 Ac3 4910°C TTT fle 1600 | Lt Acl | 700 S i merinestan acid ite I ‘arpala | 600 1200 = 1100 Aa 2 500 E& 1c {| S) 2 i \ TT HL 400 ne 2 i} = ite 300 °F Temperature rr r 200 100 | | OS. [ea 4 A +t il ff 4 Ht ut LU SLS 4 eee 4 IE | se ; 44) 14 SS ele 102 + C.C.T. LL Nv | 103 10¢ Time, secs Quenched and Tempered Structural Steels Composition: 0.10% C - 0.76% Mn - 0.22% Si - 0.007% S 0.012% P - 0.68% Cr - 0.85% Ni - 0.48% Mo - 0.07% V - 0.001% B - 0.21% Cu Austenitized at 950°C (1742°F) for 15 min a 2 le Se He + Temperature °C Temperature °F as published in Atlas of Continuous Cooling Transformation SOURCE: Central Iron and Steel Research Institute, Beijing, China, 1985 June , England Vanitec, Diagrams for Vanadium Steels, Atlas of Time-Temperature Diagrams 330 and Tempered Structural Steels Quenched Composition: 0.11% C - 0.52% Mn - 0.26% Si - 0.012% S - 0.007% P - 0.56% Cr - 4.92% Ni - 0.53% Mo - 0.08% V - 0.10% Cu - 0.04% Al Austenitized at 880°C (1616°F) for 10 min H— ul 800 Ba 700 |-Act Se oe ee Se LE JUL iit taetstatitmmaene 4 \ l= i 600 +— 1300 ee — | | 5] lian ef (ea TH7t— ae 1100 1000 Y) 2F 4 900 a r 7 TTT 2 2 5 F 2 Seen 5 | | ke SOURCE: = TT TT =P 1600 1500 or Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Quenched and Tempered Structural Steels Composition: 0.11% C - 0.85% Mn - 0.31% Si - 0.009% S$ 0.007% P - 0.51% Cr - 1.30% Ni - 0.48% Mo - 0.03% V 0.002% B - 0.27% Cu - 0.077% Al Austenitized at 930°C (1706°F) 900 Coe 300 f ee all ieS ee cd ei calall! ieee LI as SD | Temperature °C THI ai 1600 ih | ae °F Temperature SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams 331 er Quenched and Tempered Structural Steels Composition: 0.11% C - 0.56% Mn - 0.28% Si - 0.005% S - 0.017% P - 1.08% Cr - 0.04% Ni - 0.31% Mo - 0.22% V - 0.03% Cu - 0.01% Al Austenitized at 980°C (1796°F) 900 [ Ac34904°C SRROII 1 | | 300 Lxet al peo ain oe 700 el ee JTL 1600 [ —-s4-—+ | Litt 1500 Vamnealmealaiaetaitalice 1400 Hi titii— 1300 |_| / +} 600 /L 1200 Tt is Ms ye 1100 1000. 900 g R . 2 700 =& & 300 6m 500 200 400 300 100 200 100 0.5 1 Quenched and Tempered Structural Steels Composition: 0.12% C - 0.75% Mn - 0.06% Si - 0.008% S 0.007% P - 0.57% Cr - 2.62% Ni - 0.48% Mo - 0.05% V 0.002% B - 0.25% Cu - 0.062% Al Austenitized at 900°C (1652°F) 900 Ye z E & T | Lats | £ z &5 in Atlas of Continuous Cooling SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories, as published as Diagrams for Vanadium Steels, Vanitec, England, June 1985 i Atlas of Time-Temperature Diagrams ioy'4 Quenched and Tempered Structural Steels Composition: 0.12% C - 0.73% Mn - 0.37% Si - 0.003% S- 0.008% P - 5.75% Cr - 0.55% Mo - 0.24% V - 0.16% Ti 0.011% B - 0.26% W Austenitized at 970°C (1778°F) for 10 min ee age ne eeee a 4 =e 1500 °F Temperature Temperature °C Quenched and Tempered Structural Steels Composition: 0.12% C - 0.55% Mn - 0.68% Si - 0.010% S 0.012% P - 2.05% Cr - 0.55% Mo - 0.32% V - 0.08% Ti 0.006% B - 0.32% W Austenitized at 1030°C (1886°F) for 10 min Temperature "C °F Temperature SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams Quenched 333 and Tempered Structural Steels Composition: 0.18% C - 0.71% Mn - 0.56% Si - 5.43% Cr - 0.47% Mo - 0.20% V - 0.16% Ti - 0.010% B - 0.19% W Austenitized at 1000°C (1832°F) for 10 min Temperature °C Temperature °F SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Quenched and Tempered Structural Steels Composition: 0.13% C - 1.16% Mn - 0.31% Si - 0.017% S - 0.018% P - 0.23% Cr - 0.01% Ni - 0.27% Mo - 0.05% V - 0.01% Cu - 0.010% Al Austenitized at 920°C (1688°F) 900 700 s oS °F Temperature Temperature C Time, secs SOURCE: in Atlas of Continuous Cooling Sumitomo Metal Industries Ltd., Central Research Laboratories, as published 1985 Transformation Diagrams for Vanadium Steels, Vanitec, England, June Atlas of Time-Temperature Diagrams 334 Quenched and Tempered Structural Steels Composition: 0.13% C - 0.60% Mn - 0.29% Si - 0.016% S 0.010% P - 0.98% Cr - 0.01% Ni - 0.31% Mo - 0.20% V - 0.02% Cu - 0.010% Al Austenitized at 965°C (1769°F) LLLun L al CTMh ” coseT eae 700 | 600 ' 4 | 800 LH fil LLU i i ill aee8 1500 oee 1300 irre | 1100 1000 ae} aaa, {4 3= oo °F Temperature Temperature °C HL |LUI 3 TUTHIN | deewp 200 CHINE TTT 0.5 1 ae 45) 10 10? 103 10* Time, secs SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Quenched and Tempered Structural Steels Composition: 0.14% C - 0.53% Mn - 0.54% Si - 0.006% §S 0.022% P - 1.43% Cr - 0.54% Mo - 0.03% V - 0.006% Ti* Austenitized at 930°C (1706°F) for 10 min * wt% TiN 800 f fase et 4 Ltt oS HASAN pea aL 600 9ft om 5 5 g F 5 400 e é = 300 200 100 0.5 Time, secs SOURCE: Nippon Kokan KK, Technical Research Centre, Kawasaki, Japan, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams Quenched 335 and Tempered Structural Steels Composition: 0.15% C - 0.57% Mn - 0.28% Si - 0.019% S - 0.013% P - 0.63% Cr - 0.91% Ni - 0.61% Mo - 0.30% V - 0.032% Al Austenitized (a) at 950°C (1742°F) (b) at 990°C (1814°F) 900 1600 1500 1400 700 1300 1200 1100 1000 600 S g #0 soo 8 é2 400 800 ips 600 500 700 5 &a 5 300 200 100 100 0.5 | 2, USAT 10 102 10» 10+ Time, secs SOURCE: M.G. Gemill, "Steel Strengthening Mechanisms,” 1969, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Quenched and Tempered Structural Steels Composition: 0.14% C - 0.50% Mn - 0.30% Si - 0.005% S - 0.008% P - 0.38% Cr - 0.03% Ni - 0.55% Mo - 0.27% V - 0.01% Cu - 0.010% Al Austenitized at 930°C (1706°F) sl | TT °F Temperature Temperature °C Time, secs SOURCE: in Atlas of Continuous Cooling Sumitomo Metal Industries Ltd., Central Research Laboratories, as published Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams 336 and Tempered Structural Steels Quenched Composition: 0.15% C - 3.06% Mn - 0.59% Si - 0.005% S 0.020% P - 0.14% Cr - 0.04% Ni - 0.46% Mo - 0.09% V - 0.09% Cu - 0.70% W Austenitized at 900°C (1652°F) for 10 min 7 TI 900) Ac3 aero! == =a =) Temperature "C rr Ms ERS sae aaa =I Sle LL 200 via 0.5 ie 2© Ss ° Temperature al alll ttt ift| 1 2 3/43 10% 10? 10 10* Time, secs Quenched and Tempered Structural Steels Composition: 0.15% C - 0.77% Mn - 0.20% Si - 0.011% S - 0.010% P - 1.27% Cr - 4.25% Ni - 0.45% Mo - 0.10% V - 0.23% Nb Austenitized at 900°C (1652°F) for 10 min 800 = immiiiil fetes HUT = | o Temperature °C (REC co Sse aah 1 as 200 iP s *ee | °F Temperature Se 100 0.5 | ll 10 10? | | iil | 103 | 10+ C.C.T. + 100 105 Time, secs SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 esiseeeneeeee Atlas of Time-Temperature Diagrams 337 Quenched and Tempered Structural Steels Composition: 0.14-0.20% C - 0.60-1.00% Mn - 0.17-0.37% Si - <0.070% S - <0.070% P - <0.25% Cr - <0.25% Ni - 0.05-0.09% V - <0.25% Cu 900 Ses fas 800 Ey cere = me S16 SS SS) 22) soo SSS A Acl ee 700 SBE i 1400 Hit1300 1200 I 1100 | a1 Y t- g 500 aioe = = & 5 1600 LL 1500 ae 6 TTL L 400 Ee 300 200 1000 ee Hil 900 g 800 ss uw | 700 | 600 500 | 3 al 400 300 200 ico 100 C.C.T. OSs m 3AS jo 10? 104 103 SOURCE: Vitkovice Steel Works, Czechoslovakia, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Quenched and Tempered Structural Steels Composition: 0.22% C - 1.45% Mn - 0.30% Si - 0.006% S$ 0.020% P - 0.98% Cr - 0.01% Ni - 0.45% Mo - 0.03% V - 0.01% Cu - 0.044% Al Austenitized at 900°C (1652°F) for 20 min 900 “L 1600 iP Eee Sen iesDOE ee sa ts 600 — 1100 ET OOO + 900 1 800 700 y, 500 q 2 400 E ements I 1400 - 1300 I 1200 300 600 Ke 200 400 - 100 200 a MES 8 5 5 0.5 Time, secs SOURCE: of Continuous Cooling Sumitomo Metal Industries Ltd., Central Research Laboratories, as published in Atlas Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams 338 Quenched and Tempered Structural Steels Composition: 0.23% C - 0.53% Mn - 0.30% Si - 0.018% P - 1.55% Cr - 0.30% Ni - 0.29% Mo - 0.21% V - 0.11% Cu Austenitized at 940°C (1724°F) for 10 min 900 800 ia Ac3 eae |Act ee oo nr se 600 or 1600 ff} HHL Te | | | a A ae tt nal Pall 500 - = ra i + + : y s ~~ Temperature ’C S AL = Quenched \\ 4+ 1500 LL 1400 1300 1200 i 1100 1000 | irene 900 = : Ss8 \| @ a and Tempered °F Temperature Structural Steels Composition: 0.23% C - 0.22% Mn - 0.22% Si - 0.004% S - 0.015% P - 1.70% Cr - 3.60% Ni - 0.53% Mo - 0.12% V Austenitized at 900°C (1652°F) for 10 min Temperature °C Ch itaaeticae sae artic 9 SeRR RaBeijing, OE SOURCE: Central Iron and Steel Research Institute, °F Temperature China, as published in Atlas of of Conti Continuous Cooling Transformation i Atlas of Time-Temperature Diagrams 339 Quenched and Tempered Structural Steels Composition: 0.26% C - 0.75% Mn - 0.26% Si - 0.014% S - 0.010% P - 0.45% Cr - 0.81% Ni - 0.61% Mo - 0.05% V 900 3 ae WL 800 —— H+ ann 1600 ritt— 1500 t- 1400 700 TH titty | {111 1300 F 600 + reel ERI L- 1200 F | ie oO Kt gz 500 H+ + = & a5 11114 HE GREEEI = oO mmSeaG Ht H4 900 2 & 700 & na a 300 200 1000 tt St TH 1 t+ 500 + 400 | 300 100 200 CGT 0.5 10 102 103 100 10 105 Time, secs SOURCE: S. Mohammed, C.D. Lundin, "The Effect of Welding Conditions on Transformation and Properties of the Weld HAZ of Low Alloy Steels for Use in Light Water Reactors,” 63rd AWS Conference, Kansas City, April 1982, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Quenched and Tempered Structural Steels Composition: 0.26% C - 1.67% Mn - 0.30% Si - 0.015% S 0.023% P - 0.05% Cr - 0.03% Ni - 0.11% Mo - 0.06% V - 0.01% Cu - 0.013% Al Austenitized at 920°C (1688°F) for 20 min 900 T IT] 1600 1 500 800 1400 700 1300 600 1100 1200 y 1000 e =| 500 z 400 F i= 900 i cm 200 2S Co ———— " ill lll t | mae 100 LS lhe 0.5 1 231-45) 10 cor.f | fas LJ 10? ee : 700 +& 2 § = 400 300 a p= 103 10* Time, secs SOURCE: in Atlas of Continuous Cooling Sumitomo Metal Industries Ltd., Central Research Laboratories, as published Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams 340 Quenched and Tempered Steels Mn-V Composition: 0.34% C - 1.31% Mn - 0.24% Si - 0.10% Vix 0.018% Al - 0.016% N Austenitized at 925°C (1700°F) for 5 min 900 am ml oh ee eae +H —-+-+4 s Acl I|t af | I | { =a —+— li LN ae dg wae anil Pa eter be ia °F Temperature Hilt 1 S u eet 225 aes == au Mt TT 0.5 es ae = . LY Wah aa =i ‘ [] i = Ss 8 lH a : L LU ! °C Temperature 1500 =a rH == 1600 sel Sa = tee ee Sas S4 Ssoo 10 8 2) 2 a _—| — == 3S rd Time, secs SOURCE: D.L. Sponseller, J.A. Straatman, "Mechanical Working and Steel Processing XIX,” ISS-AIME, 1982, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-V Quenched and Tempered Steels Composition: 0.35% C - 1.62% Mn - 0.47% Si - 0.008% § - 0.001% P - 0.10% Cr - 0.10% Ni - 0.01% Mo - 0.11% V - 0.14% Cu - 0.02% Al Austenitized at 890°C (1634°F) for 10 min aa 900) Stan a |seusieesienn Srl ‘2g 2 500 & 2 400 E CTT demmieeeston clbeeed eeneh ened omed a 00 -s—s Act| octet Sass 600 Y mT 3 anal rn + TPL | Rea [rh dd L600 { ——4+ — + HT == Ht 1500 aan pg = 4 +- 1000 \ ae \ 3 1400 1300 1200 1100 P if a1 qT | ih 900 100 3 = ees 700 600 500 400 300 200 100 200 : é Time, secs SOURCE: Acciaierie E. Ferriere Lombarde Falck, Milan, Italy, as published in Atlas of Continuous Diagrams for Vanadium Steels, Vanitec, England, June 1985 Cooling f ti ooling T Transform ation Atlas of Time-Temperature Diagrams Mn-V Quenched 34] and Tempered Steels Composition: 0.38% C - 1.63% Mn - 0.30% Si - 0.016% S 0.018% P - 0.02% Cr - 0.01% Ni - 0.12% Mo - 0.07% V - 0.01% Cu - 0.021% Al Austenitized at 920°C (1688°F) Ss oo Temperature °C Temperature °F 10* SOURCE: Sumitomo Metal Industries ltd., Central Research Laboratories, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Mn-V Quenched and Tempered Steels Composition: 0.45% C - 1.34% Mn - 1.45% Si - 0.013% S 0.022% P - 0.10% V Austenitized at 900°C (1652°F) for 10 min 900 800 700 °F Temperature Temperature’ C 300 200 Time, secs SOURCE: us Institute, Beijing, China, as published in Atlas of Continuo Research Centra 1 Iron and Steel is, Vanitec, England, June 1985 Diagrams for Vanadium Stee Cooling Transformation Atlas of Time-Temperature Diagrams 342 Cr-V Quenched and Tempered Steels Engineering Composition: 0.43% C - 0.67% Mn - 0.28% Si - 0.10% V - 0.32% Cr °F Temperature Temperature °C SOURCE: A.F. Crawley, M.T. Shehata, "Metallurgy of Continuous Annealed Sheet Steel," TMS-AIME, 1982, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Cr-V-Ti Quenched and Tempered Engineering Steels Composition: 0.38% C - 0.78% Mn - 0.29% Si - 0.030% S - 0.005% P - 0.99% Cr - 0.14% Ni - 0.08% Mo - 0.06% V - 0.021% Ti - 0.20% Cu - 0.022% Al - 0.01% N Austenitized at 875°C (1607°F) for 30 min 900 | goo 700 [4S Ss ie SS Acl a ee 3 ES 600 v g 500 | & E ] 1] SS 9S pe em es epee Pe Page ee eS 44 | nA +5 rn ace Ms alee hee hs dest F r | att ee 1400 1300 1200 1100 1000. 900 ‘ 3 800 ae ea [Bl] 1600 1 i: 700 ee § & 300 | M 1 200 a coal {| 500 400 | 5 | 300 200 100 C.C.T, i Ww 28 34s 102 102 100 ie SOURCE: Institutet for Metallforskning, Sweden, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 _ Atlas of Time-Temperature Diagrams Cr-V-Ti 343 quenched and Tempered Engineering Steels Composition: 0.39% C - 0.76% Mn - 0.28% Si - 0.033% S - 0.007% P - 0.99% Cr - 0.14% Ni - 0.03% Mo - 0.12% V - 0.047% Ti - 0.21% Cu - 0.01% N Austenitized at 875°C (1607°F) for 10 min 900 at ot 700 Ac3 pe Acl ete ee ee eee | + + 600 — se att tet i . ade al HH HH lls Talstshion ey pies ae {LLL 1 400 B Temperature 'C te —- = eeLE aes 500 T Ul WT | eee T Ms Temperature °F +i iit 300 aa! M Eee 200 | 0.5 1 293 GGT, 455 10 10? 10? 10* Time, secs Cr-V-Ti Quenched and Tempered Engineering Steels Composition: 0.40% C - 0.75% Mn - 0.27% Si - 0.034% S - 0.007% P - 0.96% Cr - 0.13% Ni - 0.07% Mo - 0.06% V - 0.035% Ti - 0.20% Cu - 0.01% N Austenitized at 875°C (1607°F) for 30 min 900 800 700 600 °F Temperature Temperature °C Time, secs of Continuous Cooling Transformation Diagrams for SOURCE: Institutet for Metallforskning, Sweden, as published in Atlas 1985 June nd, Engla c, Vanite , Vanadium Steels Atlas of Time-Temperature Diagrams 344 Mn-Mo-V Quenched and Tempered Engineering Steels Composition: 0.30% C - 1.91% Mn - 0.34% Si - 0.009% S - 0.016% P - 0.67% Mo - 0.07% V Austenitized at 900°C (1652°F) for 15 min 900 \ 800 ft | + Acl 700 kate! man | Pees | | ie 600 eee | rt Li + ] piiet—_— 1600 4+ te tr1500 1400 l (ewe SSS. [| a cifseet|[|||IF2° aan ies LL waa - 1000 ill | (ENE ane PU il Fz 400 q i Sqm lie il io) ye zl ] i [| I |——t eae C. Ac3 [Ltt -—-—+- re 900 Z 800 a Hi E 600 500 400 300 300 200 100 200 100 Time, secs Mn-Mo-V Quenched and Tempered Engineering Steels Composition: 0.35% C - 1.51% Mn - 0.28% Si - 0.007% S - 0.015% P - 1.29% Mo - 0.21% V - 0.10% Cu Austenitized at 900°C (1652°F) for 10 min 900 800 > + Ac3 et ee CUM CCTM ami TCT CTT io : 300 | ) a | U ere pu Chai I I [| Til iGauiti F4+P Coe Coe E | IN Ser i Coo ICC ll | | | 900 g = & = 300 | ll IL | Jeenp « Time, secs SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams Mn-Mo-V 345 Quenched and Tempered Engineering Steels Composition: 0.33% C - 2.16% Mn - 0.32% Si - 2.02% Ni - 0.64% Mo - 0.14% V Austenitized at 900°C (1652°F) for 10 min 900 ill 800 Beare =r 700 Sea 1600 eee 1500 il : 5 600 Ci ea aoe } RY 500 TT SCS 1400 ine = 1300 1100 : 300 1S i 200 100 Sabi llH Lt | l 19 102 Sm Ee 0 300 2 800 # 600 nonil 500 lll 400 Ea 200 100 103 10¢ 105 Time, secs SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Cr-Mo-V Quenched and Tempered Engineering Steels Composition:0.32-0.40% C - 4.75-5.50% Cr - 1.10-1.75% Mo - 0.80-1.20% V Austenitized (a) at 1030°C (1886°F) for 15 min (b) at 1100°C (2014°F) for 15 min 900 1600 1500 800 1400 700 1300 1200 600 +H o 2 1100 tTHE 500 z Z 400 1000 900 g L800 5 700 5 Sranniil * K = carbide 600 300 500 200 400 300 200 100 CET. O15 107 108 104 105 100 10° Time, secs SOURCE: K.E. Thelning, "Steel and Its Heat Treatment,” Bofors Handbook, 1978, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams 346 Cr-Mo-V Quenched and Tempered Engineering Steels Composition:0.40% C - 0.60% Mn - 1.00% Si - 0.003% S - 0.010% P - 5.00% Cr - 1.30% Mo - 0.40% V Austenitized at 1000°C (1832°F) for 10 min 900 v ” y 500 v q z 400 5 z z : BE < i 300 200 100 Cr-Mo-V Quenched and Tempered Engineering Steels Composition: 0.40% C - 0.60% Mn - 1.00% Si - 0.003% S - 0.010% P - 5.00% Cr - 1.30% Mo - 0.40% V Austenitized at 980°C (1796°F) for 10 min 900 mmaal L PETE 800 imalatali Teanahaniital tt oH j ett - ttt 1600 eT tis 700 600 =e t» 500 = é 3 S B 400 is i 2 300 200 100 l 10 10? 103 Time, secs SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 eee Atlas of Time-Temperature Diagrams Cr-Mo-V 347 Quenched and Tempered Engineering Steels Composition:9.43% C - 0.90% Mn - 0.32% Si - 0.30% Cr - 0.10% V - 0.03% Nb 0.015% Al - 0.015% N Austenitized at 1100°C (2012°F) for 10 min 900 ; ) = raat : = tes 1600 eat Ac3_| | 800 ete c oS ee [= 700 | aah ‘cheek ‘bs cones eames Spies aa ieee Ba et i eisai +] - Oo g so 5 & 400 | M iat |Austenitised jedi | — — /Austenitised t— 1000 : s Es 5 4 > TT 5 Tetatanal JE BAS cm | 1100°C| =! | 1200 H— 1100 4 at — 0.5 toe = aie L Sieaears Holl Po --t > 1 100 1400 Lt 300 200 ee -- 1 Hitt i= Ee a4 a Wath a B == 5 c= iy }— Ms “ Sine di i iio SS i 600 | 10 SS Seue 102 103 SOURCE: A. von den Steinen, S. Engineer, TEW Berichte, 4 (1), 1978, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Cr-Ni-Mo-V Quenched and Tempered Engineering Steels Composition: 0.24% C - 0.74% Mn - 0.25% Si - 0.016% S - 0.012% P - 0.37% Cr - 0.67% Ni - 0.52% Mo - 0.03 V Austenitized at 860°C (1580°F) for 20 min 900 T 800 T 10 SSS 600 | | SESH | aa Ty = SS = = Palais = | 1300 1100 500 400 Temperature °F Temperature “C 300 200 0.5 cn rece ae denability | 2 ; -Moof Thermomechanically Worked Low Carbon, Mn-Mo-Nb 1s," Climax Molybdenum ; and Mn -MoMo-V Steels, eatiseof Cone ipiious Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams 348 Cr-Ni-Mo-V Quenched and Tempered Engineering Steels Composition: 0.26% C - 0.76% Mn - 0.32% Si - 0.012% S - 0.014% P - 1.08% Cr - 0.72% Ni - 1.25% Mo - 0.31% V Austenitized at 955°C (1751°F) for 20 min 900 a 1600 r 800 1500 1400 700 1300 600 1190 1200 S y S 500 5 e 400 1000 ee 900 800. g 700 = 2 § 600 300 500 400 200 300 100 200 100 | 10 102 103 10* 108 Time, secs Cr-Ni-Mo-V Quenched and Tempered Engineering Steels Composition: 0.27% C - 1.36% Mn - 0.50% Si - 0.006% S - 0.016% P - 0.58% Cr - 0.68% Ni - 0.34% Mo - 0.08% V Austenitized at 900°C (1632°F) for 20 min 900 1600 800 1500 700 1300 1400 et 1200 600 oO e E 1100 1000 500 & a 400 Le 300 900 °5 < s s cad & 500 200 400 300 100 200 100 10 0? 163 104 105 Time, secs SOURCE: "Hardenability of Thermomechanically Worked Low Carbon, Mn-Mo-Nb and Mn-Mo-V Steels,” Climax Molybdenum, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 lace eel clo ed Atlas of Time-Temperature Diagrams 349 ee Cr-Ni-Mo-V Quenched and Tempered Engineering Steels Composition: 0.32% C - 0.40% Mn - 0.40% Si - 1.43% Cr - 3.30% Ni - 0.33% Mo - 0.19% V Austenitized at 850°C (1562°F) for 10 min 900 | 800 | ee | 700 a fr = i ee een Lac Acl | eae 1600 he 1500 (bet ne ada ie 1400 yeeros ae gehesdan = 1300 1200 600 eee {+} +4 1100 1000 500 + 900 A b= 800 HH 600 400 700 Temperature “C =, 300 A-+M 200 Temperature °F 500 400 | ly rate 100 300 200 LLU 10 CGhiit Li 10? 103 10+ 100 105 Time, secs SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Cr-Ni-Mo-V Quenched and Tempered Engineering Steels Composition: 0.33% C - 0.89% Mn - 0.24% Si - 0.009% S - 0.008% P - 1.13% Cr - 0.15% Ni - 1.19% Mo - 0.22% V Austenitized at 995°C (1751°F) for 20 min 900 Ac3 +——- 1600 Lf 444+ 1500 800 Acl 1400 Saaaalalimateat alehl 700 1300 600 1100 1200 1000 500 ral 400 poet °F Temperature Temperature C 300 200 - 100 | Li i CCt: Litt 10 102 103 104 105 Time. secs Commercial heat; 42 inch diameter forging. Austenitized at 955°C (1751°F) for 35 h, air cooled, and tempered by heating at 665°C (1229°F) for 35 h and air cooling SOURCE: "Hardenability of Thermomechanically Worked Low Carbon, Mn-Mo-Nb and Mn-Mo-V Steels,” Climax Molybdenum, Steels, Vanitec, England, June 1985 as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium ee Atlas of Time-Temperature Diagrams 350 Cr-Ni-Mo-V Quenched and Tempered Engineering Steels Composition: 0.33% C - 0.39% Mn - 0.16% Si - 0.005% S - 0.004% P - 1.09% Cr - 3.60% Ni - 0.72% Mo - 0.12% V - 0.002% Ti - 0.013% Nb - 0.09% Cu - 0.009% Al Austenitized at 870°C (1598°F) for 20 min 900 m7 as 800 THT {T +41 J T] | | 1600 Bri ee t 1500 lL SsS os °F Temperature Temperature C 200 100 | 1 10 10? 103 10* 10° Time, secs Commercial heat; samples trepanned from pipe forging SOURCE: "Hardenability of Thermomechanically Worked Low Carbon, Mn-Mo-Nb and Mn-Mo-V Steels,” Climax Molybdenum, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Cr-Ni-Mo-V Quenched and Tempered Engineering Steels Composition: 0.34% C - 0.26% Mn - 0.13% Si - 0.007% S - 0.010% P - 0.61% Cr - 5.10% Ni - 0.53% Mo - 0.09% V Austenitized at 840°C (1544°F) for 10 min _ lib ae 275 ] L001 a 1] en ] SR [TTL 1600 Fo 1500 8 700 600 500 400 Temperature C °F Temperature 300 | 10 10? 103 10* 108 Time, secs SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams Cr-Ni-Mo-V 35] Quenched and Tempered Engineering Steels Composition: 0.34% C - 0.62% Mn - 0.27% Si - 0.010% S$ - 0.006% P - 1.22% Cr - 2.80% Ni - 0.50% Mo - 0.09% V Austenitized at 860°C (1580°F) for 15 min 900 800 700 600 — i] Ack nee 1600 ==s=t+ 4 il ea aan == a Sz Ly L CUE 1500 1 oe Be tt 1300 E 1200 - 1100 1S) » 1000 $00 5 5 & 400 & HT min 900 800 700 300 ve 200 400 100 300 200 Temperature °F 500 C.C.T. 103 10* 100 108 Time, secs Cr-Ni-Mo-V Quenched and Tempered Engineering Steels Composition: 0.37% C - 0.83% Mn - 0.35% Si - 0.006% S - 0.017% P - 0.87% Cr - 1.70% Ni - 1.18% Mo - 0.18% V Austenitized at 860°C (1580°F) for 10 min 900 he 1600 800 700 > s °F Temperature Temperature °C 103 Time. secs Continuous Cooling Transformation SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of d, June 1985 Diagrams for Vanadium Steels, Vanitec, Englan Atlas of Time-Temperature Diagrams Joe Cr-Ni-Mo-V Quenched and Tempered Engineering Steels Composition: 0.38% C - 0.46% Mn -0.26% Si - 0.008% S - 0.019% P - 2.94% Cr - 0.45% Ni - 0.45% Mo - 0.12% V - 0.05% Cu - 0.010% Al Austenitized at 900°C (1652°F) 900 800 ne jes pester t | tt tp cle 5 TE ee a HN a = 700 ee i 1400 tt} ii— See FHF +++ 1100 H- 1000 aie L- 1200 SAIBIBLUES yeasts oO =e 400 2 & (ie aa ~ 200 _ M bB iz 5 100 ze | 10 Hf 10 Sea 600 oe —+ | 500 | Le 400 r- \ 300 200 GiGi: LL 102 wh 300 | Vth FP nea 5 UB 300 1300 SS oe K + 600 L- 1600 i 1500 plait | i [ _ 104 100 105 Time, secs SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Cr-Ni-Mo-V Quenched and Tempered Engineering Steels Composition: 0.39% C - 0.75% Mn - 0.26% Si - 0.033% S - 0.008% P - 0.94% Cr - 0.19% Ni - 0.03% Mo - 0.003% V - 0.007% Ti - 0.21% Cu - 0.01% N Austenitized at 875°C (1607°F) for 30 min 900 | S00 em 7000 Fae [ Sed eee a if alr apna Seat on om == s vA °C ture s Tempera °F Temperature 0.5 1 SAS: 10 10? 103 10* Time, secs SOURCE: Institutet for Metallforskning, Sweden, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 eee Atlas of Time-Temperature Diagrams Cr-Ni-Mo-V 353 Quenched and Tempered Engineering Steels Composition: 0.39% C - 0.77% Mn - 0.39% Si - 0.032% S - 0.006% P - 0.96% Cr - 0.14% Ni - 0.08% Mo - 0.05% V - 0.21% Cu - 0.01% N Austenitized at 875°C (1607°F) for 30 min 900 800 700 600 Temperature °C Temperature °F SOURCE: Institutet for Metallforskning, Sweden, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Cr-Ni-Mo-V Quenched and Tempered Engineering Steels Composition: 0.40% C - 0.83% Mn - 0.33% Si - 0.007% S - 0.011% P - 1.00% Cr - 1.75% Ni - 0.46% Mo - 0.12% V - 0.07% Cu - 0.010% Al Austenitized at 900°C (1652°F) 900 a 800 Soe peste 700 1 600 v oe jase fsa | | perp vet Se SoS esse eae E = | > ke | 1300 1200 1100 1000 a. 900g t | ae E400 : 1600 see = -Ms—t— 300 a H M| | i . | | 14 100 sa 500 400 300 200 | ‘ | 200 i CGI: 100 at 1 10 10? 103 104 105 Time, secs in Atlas of Continuous Cooling SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories, as published Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 eee EE Atlas of Time-Temperature Diagrams 354 Quenched Cr-Ni-Mo-V and Tempered Raging shinee cy i Composition: 0.49% C - 0.78% Mn - 0.26% Si - 0.012% S- oe : ion ao m - 0.50% Ni - 0.96% Mo - 0.09% V Austenitized at 880°C (1616°F) for 20 900 ill 1600 1500 aid TEE a TECH +=EEH HAH =T EPA TE AE 800 < 600 Lit | | is Hn 1200 ela Roe | 1100 oO i FS Salil 5 z 400 B maaan rn 2 Py 900 § goo = oO i ne 3 a | 1000 & F Ms 300 mt | al axel Sas Hill acai 100 Hl | 600 x be = in Hi 200 — | 1 10 102 GG: 103 10* 100 105 Time, secs SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Cr-ivi-Mo-V Quenched and Tempered Engineering Steels Composition: 0.56% C - 0.67% Mn ~ 0.31% Si - 0.023% S - 0.012% P - 0.76% Cr - 1.53% Ni - 0.24% Mo - 0.14% V - 0.06% Cu - 0.010% Al Austenitized at 850°C (1562°F) 900 800 700 600 Temperature °C °F Temperature SOURCE: Sumitomo Metal Industries; Ltd., Central ; Research Laboratories, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams Prestressed 355 Concrete Wires Composition: 0.67% C - 1.39% Mn - 0.75% Si - 0.009% S - 0.015% P - 0.03% Cr - 0.32% Ni - 0.19% V - 0.40% Cu - 0.002% Al - 0.010% Austenitized (a) at 1050°C (1922°F) in 3 min held for 3 min (b) at 1050°C (1922°F) in 3 min held for 3 min with 50% deformation at 850°C (1562°F) 9 b x E & f Prestressed Concrete Wires Composition: 0.69% C - 1.41% Mn - 0.70% Si - 0.009% S 0.030% P - 0.05% Cr - 0.03% Ni - 0.19% V - 0.03% Cu 0.005% Al - 0.007% N Austenitized (a) at 1050°C (1922°F) in 3 min held for 3 min (b) at 1050°C (1922°F) in 3 min held for 3 min with 50% deformation at 850°C (1562°F) t- 1600 te 1500 ull 1400 nm I— | 1300 1200 1100 1000 ee ° L— 900 § S 800 £ B I 700 E ee HL | E 500 400 300 HIE 200 C.C.T. |- 100 Time, secs as published in Atlas of Continuous Cooling Transformation SOURCE: Stahlwerke Peine-Salzgitter AG, Salzgitter, Germany, teels, Vanitec, England, June 1985 Diagrams for Vanadium S Atlas of Time-Temperature Diagrams 356 . Rail Steels - 0.015% S Si 0.40% Mn 1.14% C 0.65% n: Compositio % N Austenitized (a) at 0.024% P - 1.15% Cr - 0.15% V - 0.005 950°C (1742°F) for 15 min (b) at 1300°C (2372 F) for 1 min 900 7 ISS TTT iz IL 1600 [ 800 an 700 | 1500 | 1400 | 1 pense Sate Temperature °F Temperature °C SOURCE: H. Schmedders et al., Thyssen Tech, Ber., (1), as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Rail Steels Composition: 0.73% C - 0.77% Mn - 0.27% Si - 0.010% § - 0.012% P - 1.58% Cr - 0.01% Ni - 0.46% Mo - 0.05% Vv - 0.05% Cu - 0.010% Al Austenitized at 885°C (1625°F) for 20 min Temperature °C °F Temperature 300 200 SOURCE: Sumitomo Metal Industries Ltd., Central Research Laboratories, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Aflas of Time-Temperature Diagrams gO7 Rail Steels Composition: 0.78% C - 1.61% Mn - 0.48% Si - 0.028% § - 0.014% P - 0.16% V - 0.18% Cu - 0.018% Al - 0.018% N Austenitized at 920°C (1688°F) for 8 min 900 800 - RS + eA Ac3 | - ais ae ng a 1600 I 1500 1400 1{tH A ml 700 F —— + = 4 4 _—— | 4 600 a a cele ne x 500 # g i mnie ep +7 { ‘ | B SO) reevn cere teas rl aint al adctah M 200 a 10 titty sa tail HH 1100 |p | B 300 -— 1300 I} i] | 1200 | L at 1000 Tit L mil | 10 mee I + mee 900 80 28 &2 = a 500 Lie 400 tL 300 reales A Ge 100 SOURCE: H.J. Wiester, et al., Stahl und Eisen, 79 (16), 1959, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Spring Steels Composition: 0.27% C - 0.77% Mn - 1.39% Si - 1.64% Cr - 0.20% Ni - 0.56% Mo - 0.07% V Austenitized at 900°C (1652°F) for 20 min 900 rT - Lo WN eet 800 = 700 600 500 400 Temperature “F Temperature "C 300 200 100 1 10 02 103 0¢ 10! Time, secs A commercial heat and casting SOURCE: "Hardenability of Thermomechanically Worked Low Carbon, Mn-Mo-Nb as published in Atlas of Continuous a Cooling Transformation Diagrams for Vanadium E————E——E———————— and Mn-Mo-V Steels,” Climax MOlybdenum, Steels, Vanitec, England, June 1985 cae Atlas of Time-Temperature Diagrams 358 ' Spring Steels - 0.78% Cr Composition: 0.30% C - 0.69% Mn - 1.40% Si 900°C at tized Austeni V 0.04% Mo 1.71% Ni - 0.31% (1652°F) for 20 min 900 800 700 600 500 es £ :& 400 E z é 2 300 200 100 Tanta JIUUBEE l 10 102 103 10* 10° Time, secs A commercial casting Spring Steels Composition: 0.32% C - 0.86% Mn - 1.54% Si - 0.014% S 0.024% P - 1.01% Cr - 0.51% Ni - 0.49% Mo - 0.07% V 0.037% Al - 0.022% N Austenitized at 875°C (1607°F) for 20 min 900 ees Ac3 800 AA 700 iS 2 + aa et ieat earl: a AR eerie Lh ll LSI gl 600 ECL : TL TL 1 se ee } Ss/Ele LLL nan 1600 al 1500 IF 1400 Hh 1300 1200 1100 t+ 1000 500 eB S e 400 ‘o 9005 ~ & 300 600 500 200 400 300 = B 700 5 100 1 10 10? 103 10¢ 105 Time, secs A laboratory induction air melted heat cast into twin keel-b marge molds having 1-1/4x2x6 in legs and a 4x4 x6 in riser. Casti ngs annealed at 925°C (1697°F) for 3 h, furn ace cooled to 540°C (1004°F) and then air cooled SOURCE: ly Worked 3 Low Carbon, Mn -Mo-Nb and Mn-Mo"Hardenability of Thermomechanical ; ”" Clim Steels,” Climax Molybdenum, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels,n-Mo-V Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams 359 Spring Steels Composition: 0.33% C - 0.86% Mn - 1.62% Si - 0.014% S - 0.024% P - 0.81% Cr - 1.80% Ni - 0.40% Mo - 0.07% V - 0.040% Al - 0.020% N Austenitized at 870°C (1598°F) for 20 min 900 800 EH L TT ae! a [| oe a az) [4 °C Temperature @ = = io 66 6o — 100 10 Temperature “F \| \ flea =ee — a 1 Cone} &8 10? nel 103 10* 105 Time, secs A laboratory induction air melted heat cast into twin keel-block molds having 1-1/4x2x6 in legs and a 4x4x6 in riser. Castings annealed at 925°C (1697°F) for 3 h, furnace cooled to 540°C (1004°F) and then air cooled Spring Steels Composition: 0.35% C - 0.86% Mn - 1.55% Si - 0.014% S - 0.023% P - 1.21% Cr - 0.21% Ni - 0.58% Mo - 0.06% V - 0.037% Al - 0.021% N Austenitized at 900°C (1652°F) for 20 min 900 [ 9 1600 1500 1400 1300 1200 1100 1000 2 900 & go «&a& an Si 600 g Py ez & 400 700 300 600 ca 200 400 Re it «§ BE 200 100 Time, secs A laboratory induction air melted heat cast into twin keel-block molds having 1-1/4x2x6 in legs and a 4x4x6 in riser. Castings annealed at 925°C (1697°F) for 3 h, furnace cooled to 540°C (1004°F) and then air cooled Steels,”; Climax Molybdenum, = Moand Mn -Mo-V Worked Low Carbon, Mn-Mo-Nb Steels, Vanitec, England, June 1985 Vanadium for Diagrams on Transformati Cooling ites iaAtins of Continous ond ee i bility i of Thermomechanically Atlas of Time-Temperature Diagrams 360 Spring Steels Composition: 0.35% C - 0.86% Mn - 1.55% Si - 0.014% S 0.024% P - 1.50% Cr - 0.23% Ni - 0.58% Mo - 0.07% V 0.039% Al - 0.022% N Austenitized at 870°C (1598°F) for 20 min 900 800 > Aca e cee = ai | — 1600 [| 1500 L- 1400 - 1300 4 SEUaoe — | =P SSIaNie = ae arse HH+—— Ls ! JE ins | ee 700 ] Serie vib eax aie we He AST | 600 _ +— Pt oO gale 5 = me Ht | 1000 TL 900 ye ees 700 L 600 500 ZB 400 5 i 300 CITA I aie icecae | Cer eS 1 e 10 SE Ea 10? Fe3 5 n 200 eo 1 4 a 100 & va 400 300 | 4 200 1200 1100 ee C 100 ee 103 10¢ 105 Time, secs A laboratory induction air melted heat cast into twin keel-block molds having 1-1/4x2x6 in legs and a 4x4x6 in riser. Castings annealed at 925°C (1697°F) for 3 h, furnace cooled to 540°C (1004°F) and then air cooled SOURCE: "Hardenability of Thermomechanically Worked Low Carbon, Mn-Mo-Nb and Mn-Mo-V Steels,” Climax Molybdenum, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Spring Steels Composition: 0.55% C - 0.50% Mn - 0.87% Si - 0.035% S 0.02% P - 0.10% Cr - 0.10% Ni - 0.55% Mo - 0.22% V Austenitized at 890°C (1634°F) for 20 min 900 EE 800 ei _— aap ae — — iE itt + od _-Coor ETH 500 aaah ay + | 1 Pee —— st hi 1600 _— a 1500 1400 1300 1200 1100 | nu | q a COT | Ms 300 ea | 600 2 _ 7 tH LIM 9 ‘ te er is ———— eo 4 ree & 800 5 ts! | SA Le! 600 500 200 7 pM [ + | ! | il 400 lil 2 300 ee C.C.T. + 100 SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atl i i : as of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams 361 Spring Steels Composition: 0.64% C - 0.73% Mn - 0.82% Si - 0.011% S 0.014% P - 1.26% Cr - 0.05% Ni - 0.16% V - 0.03% Cu - 0.006% Al - 0.012% N Austenitized at 1050°C (1922°F) 7 ie | ]| Cc. Se 900 800 ea eal ie — eo | ae SPH L- 1600 1500 i400 600 °F Temperature °C Temperature 0.5 ! Ee ES) 10 id? 10 10+ Time, secs SOURCE: Stahlwerke Peine-Salzgitter AG, Salzgitter, Germany, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 High-Temperature Creep-Resistant Steels Composition: 0.11% C - 0.53% Mn - 0.35% Si - 0.010% S 0.015% P - 2.28% Cr - 0.04% Ni - 1.00% Mo - 0.20% V - 0.03% Cu - 0.010% Al Austenitized at 1000°C (1832°F) 9 | aaton'd a 700 a Acl aS 3c Eagle SS55 — ae 500 Temperature °F Temperature °C 300 Jae SOURCE: ies, as published in Atlas of Continuous Cooling Sumitomo Metal Industries Ltd., Central Research Laborator England, June 1985 Transformation Diagrams for Vanadium Steels, Vanitec, EEE Ean Atlas of Time-Temperature Diagrams 362 High-Temperature Creep-Resistant Steels Composition: 0.12% C - 0.47% Mn - 0.31% Si - 0.010% S - 0.014% P - 2.16% Cr - 0.16% Ni - 0.88% Mo - 0.17% V - 0.05% Cu - 0.010% Austenitized at 930°C (1706°F) 900 800 S es °F Temperature °C Temperature Time, secs High-Temperature Creep-Resistant Steels Composition: 0.12% C - 0.65% Mn - 0.26% Si - 0.015% S 0.007% P - 1.16% Cr - 0.01% Ni - 1.02% Mo - 0.26% V - 0.02% Cu - 0.010% Al Austenitized at 980°C (1796°F) CO SS]SSS ae Se aa Ss ta ee le as Ea a ed Ac3 j f- 800 We sc 2 ees : el He et 1600 1500 VS L Temperature °C Temperature °F Time, secs SOURCE: in Sumitomo Metal Industries Ltd., Central Research Laboratories, as published Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 ee in Atl i ; Atlas of Continuous Cooling Atlas of Time-Temperature Diagrams i 363 i High-Temperature Creep-Resistant Steels Composition: 0.18% C - 0.53% Mn - 0.26% Si - 0.007% S 0.012% P - 1.00% Cr - 0.96% Mo - 0.19% V Austenitized at 950°C (1742°F) for 10 min 900 P= ae = SE +PTHR 1 t 800 [axer tt ft} b—-—4-— —}—-+ 700 Ie 4 ee ESF | oo 1600 at oe A-FI-P re noe =p 7, 1300 Temperature °C Temperature °F SOURCE: Central Iron and Steel Research Institute, Beijing, China, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 High-Temperature Creep-Resistant Steels Composition: 0.20% C - 0.45% Mn - 1.03% V - 0.-002% N Austenitized (a) at 904°C (1660°F) for 15 min (b) at 1008°C (1848°F) for 15 min 900 800 Temperature °F Temperature °C 300 200 SOURCE: of Continuous Cooling A.C. McGee, M.S. Thesis, University of California, Berkley, June 1982, as published in Atlas feats esination Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams 364 High-Temperature Creep-Resistant Steels Composition: 0.21% C - 0.48% Mn - 0.97% Si - 2.92% Ni - 1.09% V - 0.01% Al Austenitized (a) at 904°C (1660°F) for 15 min (b) at 008°C (1848°F) for 15 min 900 II 1 ] TEL 1600 800 700 600 y 2 em os | 500 3 he E z e & 300 200 100 L 0.5 High-Temperature Creep-Resistant Steels Composition: 0.24% C - 0.45% Mn - 2.92% Ni - 1.09% V - 0.55% Al, Austenitized (a) at 904°C (1660°F) for 15 min (b) at 1008°C (1848°F) for 15 min TTT 900 F 500 A e 400 5 eae | i 600 oO | i 4 800 i mM 1 4 i aii i 300 Ose z & mi 200 ia S 3 — |Austenitibeli ane Ate DDATC 1ODB°C 2 ads a0 1) University of California, Berkeley, SOURCE: A.C. McGee, M.S. Thesis, California, June 1982, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, Engla nd, June 1985 Atlas of Time-Temperature Diagrams 365 Tool and Die Steels Composition: 0.37% C - 0.51% Mn - 1.00% Si - 5.10% Cr - 1.26% Mo - 0.97% V Austenitized (a) at 1080°C (1976°F) (b) 1030°C (1886°F) acu Acl ee aa Ac3 =P 67°C race tae | T teen eee le al 1600 1500 cecitelBe 1400 1300 1200 1100 1000 °C Temperature °F Temperature Time, secs SOURCE: H. Nilsson, O. Sandberg, W. Roberts, "The Influence of Austenisation Temperature and Cooling Rate after Austenisation on the Mechanical Properties of the Hot Work Tool Steels H11 and H13,” Swedish Institute for Metals Research, IM-1675, 1982, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Tool and Die Steels Composition: 0.75% C - 0.31% Mn - 0.22% Si - 0.019% §S 0.025% P - 4.25% Cr - 0.20% Ni - 1.45% V - 17.54% W Austenitized at 1270°C (2318°F) i 900 800 1600 1500 1400 1300 700 1200 1100 600 1000 500 900 800 400 700 Temperature C F Temperature 600 300 500 200 100 103 Time, secs SOURCE: Hutnik (in Polish), No. 8-9, 1981, as published in Atlas of Continuous June 1985 Steels, Vanitec, England, Cooling Transformation Diagrams for Vanadium Atlas of Time-Temperature Diagrams 366 Tool and Die Steels Composition: 0.92% C - 0.31% Mn - 0.35% Si - 0.019% S - 0.025% P - 4.10% Cr - 4.90% Mo - 1.88% V - 6.20% W Austenitized at 1240°C (2264°F) | 1600 | a SE — <== 600) IA H-|K) 2 500 1500 ERIE) 1400 1300 Te HIM OBEEE cer | 1200 L_ ‘oe = L- 1000 w | Dag | O Said ae pres =I ss Sela alate ere ee ee ee 700 Seta Ses iL je ar el ye = Ot mane 1 | i? Rae na 900 & Tr ~ L- 300 § nitea iJ S a5 400 & 5 | LL =I os B Til 500 | | OE SeSe al OSE 2 ee 200 CEE iF 100 | 7 nee ES EN 102 400 L_ 300 “= 100 & 600 te | 200 ae ieee 103 104 105 Time, secs SOURCE: Hutnik (in Polish), No. 8-9, 1981, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Tool and Die Steels Composition: 1.06% C - 4.48% Cr - 0.44% Mo - 2.32% V 10.32% W - 3.92% Co Austenitized at 1210°C (2210°F) 900 a 800 — aa || 700 ASI = mm Y Ie A+IK 1 : | | 1 i cates at 4 | 1 — 1100 TWH || + 1000 u 5 i. S é 400 rt & 900 = 800 = 700 5 3 i a 600 500 400 300 200 300 200 =I § t as 100 C.C.T. | 100 O5 i 108 D Time, secs SOURCE: Hutnik (in Polish), No. 1, 1984, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Atlas of Time-Temperature Diagrams 367 Tool and Die Steels Composition: 1.13% C - 0.51% Mn - 0.50% Si - 0.022% § 0.025% P - 4.02% Cr - 8.80% Mo - 1.24% V - 1.80% W - 7.90% Co Austenitized at 1170°C (2138°F) Taal anes gap aan Sig espera me | + Ti +—| il LAK 1 °C Temperature Temperature °F Time, secs SOURCE: Hutnik (in Polish), No. 1, 1984, as published in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Tool and Die Steels Composition: 2.50% C - 2.00% Cr - 0.60% Ni - 5.20% Mo - 7.20% V Austenitized at 1040°C (1900°F) 900 800 Sas Ac3 700 ee pat T T | I a ee ee eee ee Sa I 1600 _- 1500 a ee - 1400 eet ae ‘SE me Temperature °F Temperature °C Time, secs SOURCE: XIX,” ISS-AIME, J. Dodd, R.B. Gundlach, P.A. Morton, "Mechanical Working and Steel Processing Vanitec, England, June 1985 in Atlas of Continuous Cooling Transformation Diagrams for Vanadium Steels, 1982, as published Atlas of Time-Temperature Diagrams 368 I ——$————— Stainless Steels Composition: 0.20% C - 12.00% Cr - 1.00% Mo - 0.30% Vv Grain size: ASTM 4-5 Austenitized at 1050°C (1920°F) 900 L aes | + T/T} 1600 Toe Ss Temperature °F °C Temperature SOURCE: N.G. Persson, "Alloys for the Eighties," Climax Molybdenum, as published in Atlas of Continuous Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Cooling Stainless Steels Composition: 0.20% C - 0.48% Mn - 0.36% Si - 0.012% S 0.016% P - 12.80% Cr - 0.13% Ni - 0.03% Mo - 0.05% V 0.01% Cu - 0.036% Al Austenitized at 1030°C (1886°F) 900 ii | Acl woo at —— eke Se Piel om tH 600 Fi ni Sea - 1600 se SLE LLL 1400 1300 1200 + 1100 - 1000 | a ] E 500 i &z 400 4 5 & = I : 300 TTR iH 7 4 900 700 § 600 500 mn § F ioe = 200 ese +t i & 400 300 100 ei jae ttt 200 Cera 10 tk 0.5 SOURCE: 1 10 102 103 10¢ Sumitomo Metal Industries Ltd., Central : Research Laboratories, as published in Atlas of Continuous Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 Cooli eer Atlas of Time-Temperature Diagrams ee 369 Stainless Steels Composition: 0.20% C - 0.51% Mn - 0.33% Si - 0.006% § 0.022% P - 11.80% Cr - 0.49% Ni - 1.00% Mo - 0.31% V - 0.03% Cu - 0.010% Al Austenitized at 1030°C (1886°F) °C Temperature Temperature °F Time, secs SOURCE: Cooling Sumitomo Metal Industries ltd., Cerntral Research Laboratories, as published in Atlas of Continuous Transformation Diagrams for Vanadium Steels, Vanitec, England, June 1985 ee. ot Aid, i reer “A hep 7. Pe ~~. Seen ® 400 - ; JT. vote : British Engineering Steels CCT Diagrams Atlas of Time-Temperature Diagrams 373 ee ee ee e Continuous Cooling Transformation Diagrams The established guide to transformation behavior is the isothermal transformation diagram. however, processes, treatment heat Few involve the isothermal holds used to construct these diagrams. Instead, most of the structures are produced in continuous cooling operations. If the rates of cooling are slow, the structures correspond more closely to those indicated in the upper regions of the isothermal diagram. Faster rates of cooling will modify consider- ably the starting temperature and progress of transformation. It follows that some kind of continuous cooling transformation diagram is needed. Although it is possible to superimpose actual cooling curves on a to materials heat treated under plant conditions and indicate the structures which can be produced at the centers of bars of the stated diameters. The CCT rates. Air cooling has been used as the main criterion for developing the diagrams, with supplementary bar diameter scales provided for oil and water quenching. Although air and water are relatively standard fluids, oils can vary widely in their physical characteristics and, hence, their quenching ability. "Oil" has been taken as the standard medium-fast quenching oil. Brine quenching has not been considered for the steels in these diagrams. diagram These diagrams illustrate typical patterns of transformation response of the various steels when cooled in air, oil or water. Cooling curves are not shown because the diagrams are presented in terms of bar diameters. Different cooling curves would apply at the center and surface of a bar, and correspondingly at intermediate positions. These CCT diagrams pertain only to the center of a bar, but the structures at other positions can be inferred. For example, the structure produced upon cooling at some mid- radial position in a large diameter bar will correspond to that produced at the center of a bar of smaller, so-called similar structures being cooling rates. equivalent diameter, produced at similar CET in constructing difficulty major A ormtransf of etation interpr the is diagrams and bainite are ation behavior. Martensite each affected by changes in composition of the parent austenite which may have resulted from any prior ferrite formation or carbide Underat high temperatures. precipitation (due to sudden recalescence and_ cooling liberation of latent heat) can, im some Cases, a result in a reaction being completed at it which at that than higher temperature SOURCE: The hardenability of the steel can be assessed at a glance from the CCT diagram. Low hardenability steels show early transformation, mainly in the upper lefthand side of the diagram, to ferrite and pearlite or bainite. High hardenability steels exhibit curves in the lower righthand side of the diagram, austenite changing predominantly to martensite over a wide range of bar diameters and quenching time-temperature- a modified transformation diagram, transhas been adopted, with diagram formation individual bar diameters represented on the abscissa instead of transformation times. The diagrams following are thus_ directly applicable began. The effects of such complicated behavior are included in the computation of these diagrams, which show the approximate proportions of the major phases obtained by continuous cooling. Using the CCT diagram The structures which can be expected in ascooled bars, whether air cooled or oil or water quenched, are indicated in each CCT diagram. For example, in the diagram for a 0.38% C steel (SAE 1035-1040) Fig. 1, transformation at temperatures above 660°C will produce ferrite and pearlite, whereas between this temperature and the M, temperature, bainite will start to be formed. Below the M, temperature, the structure will be fully martensitic. It is also apparent that with increasing bar diameter, the resulting structures change from martensite through bainite to ferrite and pearlite. More specifically in Fig. 1, in the case of air cooling, martensite is formed in bars smaller than 0.18 mm, bainite at diameters up to about 2 mm, whilst increasing amounts of ferrite and pearlite are formed, with progressively less bainite, at diameters above 2 mm. Similarly, microstructures arising from oil and water quenching can be deduced. Behavior on cooling Referring again to Fig. 1, the cooling of a 10 mm bar in air will be considered. The 10 mm position is located on the scale for air cooled M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 nee TEEEIEEIIIIIIIIEEsEISII INSEE Atlas of Time-Temperature Diagrams 374 900 AIR (OO it at oh and fas 600 ee ON ee 4q++eh nna b TEMPERATURE IRANSFORMATION ¢ tt HU 0.1 0.2 5 0.5 10 10 i 2 20 5 20 “ Se SO 20 100 50 BAR Fig. 1 CCT diagram showing transformation 150 DIAMETER 50 100 SSS 150 200 500 ee 200 300 2000 AIR COOL UE Net 300 200 1000 WATER QUENCH mm for 0.38% C steel (SAE 1035-1040) behavior under different cooling rates bars and the vertical line through this point is followed down from’ the austenitizing temperature. Transformation starts at 700°C with the formation of ferrite, continuing to nearly 50% transformation at 640°C when pearlite begins to form. At 580°C, a trace of bainite is indicated before transformation is complete. If oil quenching of a 10 mm bar is now considered, the 10 mm position should be located on the oil quenched bar diameter scale. Again, following the vertical line down, it is seen that in this case bainite is the first phase to form from austenite at 580°C. At 330°C, after about 40% transformation, the remaining austenite transforms to martensite until the reaction is completed at 150°C. Similarly, diameter when water quenched, a 10 mm bar will transform to martensite starting at 360°C and finishing at 150°C. Examination of the lefthand side of the diagram shows that martensite will form on air cooling with bars up to 0.18 mm diameter, on oil quenching up to 8 mm diameter and on water quenching up to 13 mm diameter. Equivalent diameters The "equivalent diameter" refers to that size of round bar in which the axial temperature falls through a specified range in the same time as the temperature at the slowest cooling position in an irregularly shaped body. A method for calculating equivalent diameters is summarized in British Standard 5046:1974 enabling the CCT diagram to be used to predict the heat treatment behavior of complex shapes. Ruling sections CCT data for direct hardening steels will normally be used to indicate the structure of the steel prior to tempering. The heat treatment details for these materials are specified in BS 970 and related standards where the required tensile and impact toughness properties are given together with the limiting ruling sections. The CCT diagram for a 1-1/2 MnMo steel (605M36) is shown in Fig. 2 with the limiting ruling sections from BS 970 superimposed. In Atlas of Time-Temperature Diagrams 375 addition, the specified minimum levels of ruling sections from BS 970 superimposed. In addition, the specified minimum levels of tensile strength are indicated. It will be seen that bars of 19 mm diameter would be fully hardened by oil quenching. Therefore, after tempering a satisfactory tensile strength could be assured. Slightly larger bars (e.g., 30 mm diameter) containing a proportion of bainite could be tempered to a lower strength level. However, with the larger limiting ruling sections, where the proportion of bainite has increased, tempering to even lower strength found, however, that variations in composition within a specification range can sometimes lead to considerable differences in structure and properties. Moreover, there are critical ranges of bar diameter where slightly slower or faster cooling rates produce a rapid change in the predominating microstructure. In Fig. 1 for example, a very small decrease in bar diameter could change the structure from bainite commencing to form at 580°C, to martensite starting at 360°C. In the critical regions where the slope of the _ bainite boundary is ‘steep, “a ‘steel’ bar Scanwene undergoing transformation to a succession of structures over a wide range of temperature. It can be seen from Fig. 1 that for this particular steel, the most pronounced changes occur when the bar diameters lie within the approximate ranges: levels may be necessary to secure satisfactory impact resistance. Thus, Fig. 2 indicates the as-quenched structures to be expected at the various limiting ruling sections. An assessment of the mechanical properties likely to be achieved in practice can be made by reference to the appropriate specification. 0.2 to 0.7 mm for air cooling 9 to 25 mm for oil quenching 14 to 24 mm for water quenching Sensitivity of the diagrams to changes in composition The CCT diagrams usually refer to a nominal composition within a given specification. It is An examination of the effects of composition variables for steels shows that all these diameters are increased by about 60% if the carbon content is increased by 0.05% within 900) X00 4 Ee e —— — Austenite | | 700 600 500 400 TEMPERATURE PRANSEORAINTION ¢ 20 50 aad 100 1 200 500 1 1000 = OIL QUENCH WATER BAR Fig. 2 6) CCT diagram showing DIAMETER for QUENCH mm 1-1/2 microstructures 2000 — MnMo alloy to be expected steel (SAE after oil- 605M3 quenching at the various ruling sections. Also indicated are tensile strength levels after hardening and tempering Atlas of Time-Temperature Diagrams 376 SSSR ———i_v—=X_w“_—_— the specification. A change in manganese content of the same amount would about one quarter of this effect. Limitations produce of the diagram Continuous cooling transformation is affected by the treatment the steel has received before austenitizing. The austenitizing temperature and soaking time each affect the grain size of the austenite, hence modifying the subsequent transformation characteristics on cooling. The austenitizing composition temperature also affects the of the austenite if the steel contains strong carbide-forming elements and consequently undissolved carbides may be present. Care should be taken, therefore, when adapting the diagrams for austenitizing conditions different from those indicated. For this reason, the diagrams are not readily adapted to surface hardening by induction or flame heating since rapid heating and short thermal cycle times have a drastic effect on the condition of the austenite. The diagrams are not suitable for use in welding situations where heat affected zones RR] can reach temperatures of the order of 1300 to 1350°C for very short times. After such treatment the shape of the diagram would be expected to be modified drastically at the faster cooling rates which are relevant to this situation. However, the actual modification of the transformations depends on heat input, preheat/postheat, etc. Hence, the use of the CCT diagrams in welding situations is limited to the approximate positioning of the M, temperature of the weld heat affected zone for preheat calculations. Another major factor which cannot be illustrated in the diagram, is the effect of agitation in the quenching medium, whether it be air, oil or water. Agitation is obviously dependent on such practical features as bath size and component size and shape. These effects can only be examined experimentally. If, however, actual cooling curves can be obtained for a particular combination of Operating conditions they can be converted into the corresponding bar diameters using the methods described in the Adkins text. Atlas of Time-Temperature Diagrams 377 0.05C (SAE 1005-1006) + Composition: 0.05% C - 0.25% Mn Austenitized at 950°C (1742°F) * Equivalent U.S. grade designation wi { | STARIT | oh 1000 COOLING L = 500 RATE A 20 10 C PER MIN r = x 0.06C (SAE 1005-1006) Composition: 0.06% C - 0.30% Mn Austenitized at 950°C (1742°F) I | | HNVAi ih Hn ro5 2 tile myj=)x \ 800 Ee ener <=, 44 ~S Gra °C aC3 ot eA | RGBQR | —= NTNU ll VA i ae :4 i ara riz IVI = 3 | LS i LALEL ol a | a> 5 HTH re zi = t+ Set Se {+— ee eee COOLING RATE AT 850 C 0 a mm 0.1 BAR DIAMETER}—— [rena are} 0.2 0.5 ———5 1 1 10 a ae SOURCE: (en) ov 20 C PER jaar 2 —— 5 ok 20 2 10 iba 50 50 — a 20 i 50 100 180 200 300 3 ‘a | 100 = 200 a ee a Sue easly MIN 200 4 S00, 500 500 1000 SS 2000 mm AIR: mm OIL an WATER Steels, ASM, M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering 1980 Atlas of Time-Temperature Diagrams 378 0.06C (SAE " 1008) Composition: 0.06% C - 0.50% Mn Austenitized at 950°C (1742°F) a =i ee es Bee SS 10% samc 50% a ae a Se ee SS 5 ee SSS eae — Dae a a SE BO eS eg ED A fear ra el azolin yee nmin a Pro ciel aca ae ae a aaa eee eae Ey Ses Pe el °C 2 eS NS 500 oa eee 7 pa ova 90% A |——_—_ a ie a eR ET Sis Sa ae =a Teel =a sie 100 SS fsa eer | (as eee ee sa 1-1/4 Mn (SAE 1518-1524) Composition: 0.19% C - 1.20% Mn - 0.20% Si - 0.020% P - 0.020% S Grain size: 8-9 Austenitized at 870°C (1598°F) BNE BRRDIWHREEES 100150 100) 130 20 200 300 500) SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 1-1/2 Mn 379 (SAE 1518-1524) Composition: 0.19% C - 1.50% Mn - 0.20% Si - 0.020% P - 0.020% S Grain size: 9 Austenitized at 870°C (1598°F) v| 10% 50% 90% 1000 COOLING S00 RATE 200, 100 A 100 — 1-1/4 Mn (SAE 100 1S0 150) 200 ea 200 - 300 300 : S00 — 500 : mm OIL mm WATER 1525-1527) Composition: 0.28% C - 1.20% Mn - 0.20% Si - 0.020% P - 0.020% S Grain size: 7-8 Austenitized at 870°C (1598°F) 100 ' BAR DIAMETER |; 10 5 20 4 10 2 50 : a0 10 100 + 5 50 20 150 20 pe PER 50 100 — 150 200 n 100 5 —— 4 300 ae an x 200 x 00 10 n MIN 200 1 500 4 4 500 500 1 —l mm OIL ST WATER ! AIR ASM, 1980 SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, Atlas of Time-Temperature Diagrams 380 . ; 1-1/2 Mn (SAE 1526-1527) 0.020% . Composition: 0.28% C - 1.50% Mn - 0.20% Si F) (1580 0.020% $ Grain size: 8 Austenitized at 860°C 900 800} Ae, 700 600 °C 500 400 300 200 100 VOX) S00 =o COOLING 4 S 4 ali} 4 RATE AT i § 10 20) i ie L ait 10 1 700 € J C PER MIN sv 10 200) SOK) 1000 1 1 1 4 at iM) Ot 0 mm 0.1 0.2 OS =it Baca: | Mh 0 N 20 S01) 44 *) IS) ee 30 00 ee Sein 2000 mm 1 AIR CARER 1-3/4 Mn (SAE 1330) Composition: 0.30% C - 1.80% Mn - 0.15% Si - 0.020% P 0.020% S Grain size: 7 Austenitized at 860°C (1580°F) 900 800 FAc, 700 Aq, = 600 V ZEA —— 7 F oe SS ae M 200 100 0 | ees 400 300 ae ; aaa EG Eas ae, ae | — aw Sa Sa at es a 1 90% iz E Z| Zz 500 1 10% = 50% eee 7a a Ap 7 A = ay al [ fal [7 ee a es eee eee ee | en SS] LY ESET Se al ave GE EE a TRA ERG] BS LE aie ee co ee Y : a ieee EE] 1000 S00 20010 pees fipeeee| ee COOLING IRATE SAT 700/C Babee Se eee Been 920 i C PER MIN ee 10 =0 50 11 = 100 100-180 200 ee ee 150 200 00 4H 100-200 500 200 EE mm OIL eee Se 500 : ' H 8 1000-2000 arene neler mm WATER SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 381 1-1/4 Mn (SAE 1536) Composition: 0.36% C - 1.20% Mn - 0.20% Si - 0.020% P 0.020% S Grain size: 8-9 Austenitized at 860°C (1580°F) mm 0.1 1000 500 200 COOLING RATE AT 700 C 2 5) 1 1 10 oe BAR DIAMETER 5S EH 20 a : Ee 30 100 2 ADT Ss 1-1/2 Mn 50 (SAE 50 ee 100 200 { i 150 200 300 ae | x 2mil) EE 500 1000 1 2000 mm 1 _AIR 2m OL mm WATER S00 5 1536-1541) Composition: 0.36% C - 1.50% Mn - 0.20% Si - 0.020% P 0.020% S Grain size: 7-8 Austenitized at 850°C (1562°F) NTT DSDOEOSUTOSOOEa BBeUoesoo SOMOS NAN THIN TESUNQQUTL DANII 0.5 0.2 mm 0 1 Jee 4 nl BAR 5 DIAMETER 2 5 io 500 RATE AT 5 10 n =| 2» 1S i 1 COOLING 50 = 5 = n 100 Se 100 50 ai ie 2 150200 3000 . 200 [ikea 500 500 aoa 1000 2000mm ja 1 aie tern WATER n uous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 SOURCE: M. Atkins, Atlas of Conti a Atlas of Time-Temperature Diagrams 382 1541, 1335-1340) (SAE 1-3/4 Mn 0.25% Si - 0.025% P Composition: 0.38% C - 1.80% Mn - 0.020% § Grain size: 7 Austenitized at 860°C (1580°F) 90% 1000, 3) Wh 100 Us SO Sees eli) ae th10. © PER MIN 20 50 100 COOLING RATE AT 7m © az mm 0.1 BAK DIAMETER} 0.2 0.5 n a $ 1 2 10 te i At) ah n 150) 100 : i 1sQ) eee 4 20) Sipe 30 n n 1X) = ” 1 S 1 1) . 10 1 anes 1 5MK) AK) 20 200 r XK) ! 1000 1 mm cM) ee 500 2000 mm (Ne OIL mm WATER 1-3/4 Mn (SAE 1547, 1345) Composition: 0.46% C - 1.80% Mn - 0.25% Si - 0.020% P 0.015% S Grain size: 6-7 Austenitized at 850°C (1562°F) 900 4 10% 50% 90% Vara, mm 0.1 BAR DIAMETER 0.2 0.5 S00 200 RATE AT 650 C 5 10 2 5 we 20 i SOURCE: ! 1000 COOLING SO 20 0 100 200 500 ——L — ee SS ey 1) ear 100 150 EE 150) 200 200 ie i th WW 500) SX) AIR mm OIL mm WATER M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 hFeseFeseseseF ———— FSMMmmmmms —— SSSSS _—$— Atlas of Time-Temperature Diagrams 1 Mn 383 + S (SAE 1212-12114) Composition: 9.10% C - 1.10% Mn - 0.20% Si - 0.020% P 0.250% S Austenitized at 900°C (1652°F) AT | —rcreeryn 100 | Ss 10) SOX). COOLING 2m) =100 4 RATE AT xm) © 5 4 10 = 50 Ales 2%” 32 10 ‘ ne 200 1 50) J nN N GIPER: 0 —— 20 1 s0 1) 100 —_—___ 1 Mn + S (SAE 100 1 20) 300 180 4 30 SO 1 180 rf 4 5) i 200) a 4 re 4 500) — 1000 =e mm OIL mm WATER 2000 mm 1 AIR pa 1140-1146) Composition: 0.42% C - 1.15% Mn - 0.20% Si - 0.020% P - 0.160% S Austenitized at 850°C (1562°F) 900) ae = a Acy 700 z ai, | ieee ore eee ers of EA | erp IDEN ) ee Ee eee eee pone Fe s oe =n) a A — acall .6 f- le o [ St ° e | eS st = eae a START ai 10% oS | 50% E 90% P. I 500 = i 4 600 z i ii 4 peas —— =e = - | i) eel [ . If ae 400 ip { M, + 300 a if a 200 ie | 100 10), SOO COOLING RATE AT 5 10 \ i i I 24) 100 1 IE SO —_" | 4 0 10 5 —1— —L. C PER MIN 10) 200 4 71) C = 4 0 2 pn BAR DIAMETER 0S ao Pi s et 2 a > =0 10 10 \ fe 20 ee eT SO aint) 2» 1OO 1K) 50 He eh 150 180) n at 2) 2) | :(K) 300 i 5 (4) 500-1000 ene oii 2000 mm BESATR aaven Ollie mm WATER ASM, 1980 Cooling Transformation Diagrams for Engineering Steels, SOURCE: M. Atkins, Atlas of Continuous ——— —————————— Atlas of Time-Temperature Diagrams 384 1-1/2 Mn + S (SAE 1139) Composition: 0.44% C - 1.50% Mn - 0.20% Si - 0.020% P - 0.250% S Austenitized at 850°C (1562°F) 10% 50% 90% a cS) rare al ESE Ra Ree ees ——— aaa ee cea ae 4 mm 0.1 0.2 05 1 1 BAR DIAMETER|> 1 1 i pd 5 it 4 eA 0 20. SO. 1 1 it ~ 20 10 10 LOE § 0 Os DOS 100 50 100. =ll sl 100 150 200 300 2 20) 300 200, (0 500 1000 2000 mm 1 {> 1 AIR mm OIL S00 SI(K) TRE WIATIER. 1-3/4 Si Mn Composition: 0.40% C - 0.85% Mn - 1.75% Si - 0.030% P 0.030% S Grain size: 8-10 Austenitized at 910°C (1670°F) 900 ul Ac 800 { = re >| a Ae is | il 700 -+—-+ [ ae 1 = = | eae lasts hae olnoe Pea, Es aaeaee a gare AEDES ee Nines 600+ °C 50% i 90% as = | = = At i si 4 rere “ed T | Mf I t 3007 r ic = [ il i | i 1 i i 100 i - + 1000 : mm 0.1 BAR DIAMETER § 0.2 5 0.5 eS 10 at Has 5 4 i S|ere iI ee HA C PER MIN | 10 4 20 20 2 | ii eee s 4 2 = 0) 4 i 100 100 =: 100) an 9 mei 5 a] 5 130290300590 go ! 50 20 i sO = L 10 1 : * a ae Ee, COOLING RATE AT 800C ol + | zi i 200 SOURCE: 10% = = i ! STA — —. 2 i =f | = re poree ae | ets so. ee =s $00 “il 1 5 2000, ha eaiteae mm WATER M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 385 2 Si Mn Composition: 0.54% C - 0.85% Mn - 1.90% Si - 0.030% P 0.030% S - 0.10% Cr - 0.02% Mo - 0.16% Ni Grain size: 7-8 Austenitized at 910°C (1670°F) 90) | T eo 800 Ac, = ere x — 700 L a a - 500 c aS Araei =a| 300k M. es = Y mm = i eee ee tee 0.2 1000 BAR DIAMETERE \ 1 = 2 1 at 20 I 500 200 AT Q 10 ~=—-100 50 20 g00°C 20 1 SO 1 1 ae, 2 ee 50 = =f T | RATE se! 7 My 10 COOLING H I | ee OS 4 ae : Ht See 0.1 L = Sep nen aa omen asa _— | Sa ae Een Se Se GRSRESE EAL) EY RC EE, ——— a ie Eee BRET SET zee ETSY BERT EES RES GlEG (TE (EN J A a tt Se loot +—4 i: 4 Et 4 aan = : = 400 90% i. es ie e eeH =ae8 Bev 50% ee ZNZA Lhe a 10% SE SSF Sail { S + ———— fas ~ 7 a p—— = 600 ai ae | Ac yh) leas Eete 100° 150 10 C PER MIN 100 200 ale 5 500 300 $00 1 5 Hy 1000 eal SAM 200 2 Wee 2000 mm 2 ellt mm WATER 2 Si Mn Composition: 0.59% C - 0.85% Mn - 1.90% Si - 0.030% P - 0.030% S Grain size: 7 Austenitized at 910°C (1670°F) 50 b) n 5 50 10 20 4 fl 100 20 —__1_________4. C PER MIN 100 200 150 200300 5 5000 50 ie ee 190150 29030050 SOURCE: M. Atkins, ales es 500 re 2000 mm t_AIR ai ny WATER Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 a nnn Atlas of Time-Temperature Diagrams 386 2 Si Mn . Composition: 0.62% C - 0.85% Mn - 1.90% Si - 0.030% P 0.030% S Grain size: 7-9 Austenitized at 910°C 1670°F BAR miaMereee 10 10 0 20 50 50 100 90150 39030500 150 200300 ae Rea 1/2 Ni 0.55% C - 0.65% Mn - 0.20% Si - 0.025% P - 0.025% S - 0.65% Ni Grain size: fine Austenitized at 830°C (1526°F) 900 800 700 600 °C 500 400 300 200 100 1000 SK) 200 COOLING RATE AT =30 0 10 aa! 20 50 = i 100 {ff 200 Sam 100 1a 150 1s 2 Soe 5, 500 1000 fd 3 es ry 2000 mm ATR. OL WARER SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 eee Atlas of Time-Temperature Diagrams 387 1 Ni Composition: 0.36% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 0.85% Ni Grain size: 7-8 Austenitized at 850°C (1562°F) 90K) 1000 COOLING 500 200 RATE AT 750 C mm OIL 1 Ni Composition: 0.43% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 0.85% Ni Grain size: 7-8 Austenitized at 850°C (1562°F) 900 800 700 10% 50% 90% 600 3 @ 500 as ee fy 400 SRS St LY siriay Sears |a oy 300 100 =——4 —ee (ea) wale - a= =| | 1000S § — _30 Ei SOURCE: M. Atkins, Atlas of Continuous LORETO OOLING RATE AT 750 C a6) ELOD 20 el __100 150 50 100 200 500 1 4 =i nl 500 fin 200 _300 19010 290390590 1000 2000 mm 1 AIR O1L WATER Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 388 1-1/2 Ni Composition: 0.16% C - 0.60% Mn - 0.25% Si - 0.020% P 0.015% S - 0.20% Cr - 0.05% Mo - 1.50% Ni Grain size: 8 Austenitized at 840°C (1544°F) 900 800 Hy T —— 700 — 10 EI SES (peer = Se 7 u i= 400 [ama | — 300 % 50% =a aa =H 600 °C fe START ey + FINISH | = F a 200 a a oO 100 7 t 0 ae COOLING ere RATE AT 750 C Hy 2000 mm AIR BAR DIAMETER: 2 2 10 2 20 a SO 190 el 150 200 300 OE 590 mm WATER 3 Ni Composition: 0.30% C - 0.51% Mn - 0.32% Si - 0.011% P 0.007% S - 0.07% Cr - 3.03% Ni - 0.032% Al - <0.01% Ti Grain size: 7-8 Austenitized at 850°C (1562°F) 900 800 700 600 °C 500 400 300 200 100 ——— CS3 0 mm SS eee erat a ee 0.1 0.2 ja, BAR ae i 0.5 eed) | = = [pena] 2i 0) zn zu > me |pees COLINGIRATESAT700C 10 DIAMETERL 1000-500 or) ee icine |ener Ss a = M) = 10 aa 50 EIS EE bee Dead 100 a “0 500 1000 i ae as Oi, mm WATER SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 eT ré— OOO DDI 389 Atlas of Time-Temperature Diagrams 3-1/2 Ni Composition: 0.10%C - 0.53% Mn - 0.26% Si - 0.007% P 0.005% S - 0.05% Cr - 3.65% Ni - 0.045% Al - 0.07% Cu Grain size: 8 Austenitized at 840°C (1544°F) mS mm 0.1 BAR DIAMETER/. 0. a i ee aie ee 5) i 7 eee oH 30 5) Me eee 100 0) SO 1 100 i [ete i 150 200 100 150 200 EREMUN 200) = A() 5 . 3) SO) 500 1000) =1 1 2000 mm 1_AIR mmOUl PAR WIAER 3-1/2 Ni Composition: 0.33% C - 0.74% Mn - 0.23% Si - 0.031% P 0.027% S - 0.07% Cr - 0.11% Mo - 3.47% Ni Grain size: 8 Austenitized at 840°C (1544°F) 900 800 700 400 300 200 Steels, ASM, 1980 SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering a ———————— Atlas of Time-Temperature Diagrams 390 3-1/2 Ni Composition: 0.40% C - 0.62% Mn - 0.26% Si - 0.007% P 0.005% S - 0.23% Cr - 0.10% Mo - 3.45% Ni Grain size: 8-9 Austenitized at 860°C (1580°F) m2, POS Sane ee aaa ees SE aa iE ae el SSS Lae ee] =” 2 ae mm0.1 0.2 BAR DIAMETER 0s 10 1 2 5 20 10 4 20 50 == et ’ 50 100150200300 150 200300 10 200 500 1000 2000 mm SS eee 500 500 Sem CaNTL mam WATER 5 Ni Composition: 0.10% C - 0.40% Mn - 0.20% Si - 0.020% P - 0.020% S - 4.8% Ni Grain size: 8-9 Austenitized at 800°C (1472°F) 900 800 700 600 rc 500 400 300 ate ieee BET REGO eel erent apne ISRO BE 200 100 1000 cay 0 mm BAR DIAMETER) Bea COOLING FS 500 RATE 20 I AT 600 C aa 0.1 = 200 maolL 300 50) mm WATER SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 39] 9 Ni Composition: 0.09% C - 0.45% Mn - 0.25% Si - 0.010% P 0.012% S - 0.10% Cr - 0.04% Mo - 9.00% Ni - 0.030% Al Grain size: 9 Austenitized at 790°C (1454°F) =H] 10% PH 50% 1 90 a [ee aS a % ay aa rd em | ae 20) es 100 .o || 1000 1) WX) 180) i 150 200 AX) 2) MW) S00, any OIL SOO mm WATER 2000 mm AIR 1/2 Cr (SAE 5015, 4118) Composition: 0.15% C - 0.40% Mn - 0.20% Si - 0.020% P 0.020% S - 0.40% Cr Grain size: 7-8 Austenitized at 900°C (1652°F) 900 800 i+ = ba a6 s an ie c aa aa oe ee = EE eee ae 50% Sel 90% a a SEae ors a = 600 10% See oe SS ae Be ee eas SSS as SS) <a Paria =i ag = Sa 4 ae I= i— es 1 oa | —— 1000 = = 500 200 Se! =CI [| «= 100t—« beet 50 2» 10 5 2 set) © PER MIN att ' 1 nat Le a. a H [I s 2 faee Seree ane See 0 5 ee aie 20 50 1 Sani 50 4 ee 100 See 100200 so ! i een 100 150 200 300 tS ee 150 20 ee 300 ee ies 500 1000-2000 mm 500 SS mm 1_AIR OL mMIWATER SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 392 3/4 Cr (SAE 5117-5120, 4118) Composition: 0.20% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S$ - 0.80% Cr Grain size: 7-8 Austenitized at 900°C (1652°F) 10% 50% ‘90% IN 500 200 ~=—-100 100 150. at s ; 200 =.300 500 4__1__4 ____i____mm WATER 1 Cr Composition: 0.20% C - 0.75% Mn - 0.30% Si - 0.020% P 0.020% S - 0.95% Cr Grain size: 7-9 Austenitized at 900°C (1652°F) 500 200 100 5 » df COOLING RATE AT 800 C PER MIN Exel mm0.1 0.2 05 es e 10 20 41—_____1_ BAR DIAMETER SOURCE: |x‘ 20 0 a 2 A . 50 10) —— ‘50 50“a - ~——-200 500 1000-2000 mm AIR 100150200 1 100 —t ie OE 1S0 2000 500 —1—_1____1______1____mm OIL WATER M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 393 1 Cr (SAE 5130-5132) Composition: 0.30% C - 0.70% Mn - 0.20% Si - 0.020% P 0.020% S - 1.05% Cr Grain size: 9-10 Austenitized at 860°C (1580°F) 500 BAR DIAMETER 200 50 100 4 180-200 300 tt 500 mm SO) 100, 150) 2) 300 4 a EE OIL 500 4 mm WATER 1/2 Cr Composition: 0.38% C - 0.70% Mn - 0.25% Si - 0.020% P 0.020% S - 0.50% Cr Grain size: 8 Austenitized at 830°C (1526°F) ee as Sasi {ere [eae | —— =a Sa Seer l fae B ——— |__| T MI ia a aaa ei aaa aS Eas Py a ee) == Bea 1000 ae COOLING [ae Sa | eee ese) ae ie) eae ET BAR 5 - DIAMETER SOURCE: : 0.5 10 10 1 Ban 5 ee 20 20 — 500 10 ee, sO 50 ed 200 20 RATE AT 750 a! ees 20 50 (ie 100 <=ee\t 100 ee 100-150 — 10 PER MIN 150 hn eee 200 a 200 4 300 300 = ees 200 air 500 fe 500 2000 mm STE OIL. ——_1 mm n mm 500 1000 WATER M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 394 1 Cr (SAE 5140) Composition: 0.39% C - 0.70% Mn - 0.20% Si - 0.020% P 0.020% S - 1.05% Cr Grain size: 7-9 Austenitized at 870°C (1598°F) {= D ——— Sa 100-180-200 1K) he S000 MW) 3) 500 mm OIL mm WATER Si) 1/2 Cr (SAE 5046) Composition: 0.46% C - 0.70% Mn - 0.25% Si - 0.020% P 0.020% S - 0.50% Cr Grain size: 8 Austenitized at 830°C (1526°F) 900 : = i BB | = 600 ie} a= °C 3 500 Sl = 400 = fa = 300 M, : 200 Beara 100 tal jf BSSey a OE a pawn sy 1000500 COOLING 0 mm0.! ee 0.2 0.5 1 RATE eae 2 200-100 AT ee 5 so 750 C C PER Sy Re] 10 | L- 20 ar 50 100 5 2 17 MIN H ee 200 500 1000 eg = 2000 mm AIR BAR DIAMETER SOURCE: 2) 300 M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 395 1 Cr (SAE 5145-5150) Composition: 0.50% C - 0.75% Mn - 0.35% Si - 0.025% P 0.020% S - 1.20% Cr Grain size: 6-8 Austenitized at 850°C (1562°F) 900 800 Acy nie 700 600 °C sof [-—-——_}—] 400k = ee gael Gewese aT J aa aera Saar = aa 0 200 100 —— or ee BS RE PEE ae Ray (ET aes SG So PST eT a ye a }-—_ ++ v4 ov a gee ES ee | mm 0.1 0.2 COOLING RATE AT 750C 0.5 BAR DIAMETER| 100 1so 1/2 Cr (SAE 5060, 5155-5160) Composition: 0.59% C - 0.60% Mn - 0.25% Si - 0.025% P 0.025% S - 0.65% Cr - 0.20% Ni Grain size: 8 Austenitized at 830°C (1526°F) 900 BAR s DIAMETER 100 ee SOURCE: M. Atkins, I 150-200 300 —— 100 ee 150 ey 200300 —_1———_mm WATER Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 396 3/4 Cr Composition: 0.60% C - 0.85% Mn - 0.25% Si - 0.025% P 0.025% S - 0.75% Cr Grain size: 7-9 Austenitized at 845°C (1555°F) BAR DIAMETER |s 10 0 10 0 50 50 ——— 1. 100 n 100 150 200 300 i fe 150-200-300 500 . 500 mm OIL 4 a mm WATER — LL — 13 Cr (SAE 51405-51409) Composition: 0.07% C - 0.50% Mn - 0.40% Si - 0.020% P 0.010% S - 13.0% Cr - 0.20% Ni Grain size: 9-10 Austenitized at 980°C (1796°F) cae Ee <2 e aN rae aa a Ree) ES Baar Paes (EES EEE ee RES aa ee rims ae aol Bees BSSEE SS eared Baza Sears) ES Baa Vises: [asrenai i EE BS aa ee fe a ae ee he ea aes 5 10 n 20 1 100 et 100 50 ar 1SQ at 200 0K) L ae 1) MH) MK) aE 1s0 SS SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation 100 =i 200 500-1000 i 4 = 2000 mm —_1___1_ AIR sa) : oa mm gu WATER Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 13 Cr (SAE 397 51410) 0.12% C - 0.50% Mn - 0.40% Si - 0.020% P - 0.010% S - 12.5% Cr - 0.20% Ni Grain size 8 Austenitized at 980°C (1796°F) 20) ——— 0) 4 100, 100 sal tf Hs0 1 100 150) 200300 SK) 4 tlm 200 300 a oe OIL 500 —_j|_______mm WATER 13 Cr (SAE 51420) Composition: 0.17% C - 0.40% Mn - 0.38% Si - 0.020% P 0.020% S - 12.5% Cr - 0.20% Ni Grain size: 8 Austenitized at 960°C (1760°F) = 10% ZEA ie oe | 90% = VEGA San Sy lA 1000 2) 180 a) 300 MM) S00 mm OIL mm WATER 2000 mm AIR Diagrams for Engineering Steels, ASM, 1980 SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation n ee Neen nnnnnn, TEE EEE nnn Atlas of Time-Temperature Diagrams 398 13 Cr (SAE 51420) Composition: 0.24% C - 0.27% Mn - 0.37% Si - 0.021% P - 0.010% S - 13.8% Cr - 0.06% Mo - 0.32% Ni Grain size: 7 Austenitized at 960°C (1760°F) : o | TO". 5° 4 C00: —t—4 e243 = a : SI a ies] @ a E =] A 1000 at COOLING S00 RATE : | 24) ie et AT x) C | CI L 0.2 0.5 1 2 thea 10 10 20 all) re 13 Cr (SAE 5 10 L =f hs 10) 180) 50) 30 1 4 20 2) 50 100 200 500 1000 —— ie 4 1 1 300 S00 SS Sm Se 100 150 200 3M) 500 ooo = 2000 mm 1_ ATR Ole mm WATER 51420) Composition: 0.32% C - 0.30% Mn - 0.30% Si - 0.020% P 0.010% S - 13.0% Cr - 0.06% Mo - 0.20% Ni Grain size: 10 Austenitized at 960°C (1760°F) 10% 50% 90% 1000, 50), 100, SOURCE: 150 200 M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 399 1/4 Mo (SAE 4012) Composition: 0.17% C - 0.60% Mn - 0.25% Si - 0.020% P 0.020% S - 0.30% Mo Grain size: fine Austenitized at 925°C (1697°F) mm0.1 9.2 eibcelae DIAMETERE 0.5 1 n 10 at 10 2 5 4 = alt) ag 10 4 20 1 501M) —————— 50 eS 0 100-150 200,300 5000 Seley : St) ( 190 13¢ ) 2X) _ =X 30) ye S00 a 5) 1000200) mm wa eI rane mm 2 WATER 1/4 Mo (SAE 4023-4024) Composition: 0.24% C - 0.90% Mn - 0.30% Si - 0.020% P 0.020% S - 0.23% Mo Grain size: fine Austenitized at 900°C (1652°F) 900 Acy 800 10% Ac, 50% 700 190% «on é A} ae Fae "7 400+ - = M i ia25 Ee = Ea Bee 200 100 1000 COOLING 500 RATE A 50 50 SOURCE: 190 190150200300 F 500 Sen OIL 150200300 500 smm WATER M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 400 1/4 Mo Composition: 0.32% C - 0.80% Mn - 0.30% Si - 0.025% P 0.020% S - 0.26% Mo Grain size: fine Austenitized at 830°C (1526°F) BAR DIAMETER- bi eu ay * an » x OL 1/4 Mo (SAE 4037-4042) Composition: 0.40% C - 0.80% Mo - 0.30% Si - 0.025% P 0.020% S - 0.26% Mo Grain size: fine Austenitized at 810°C (1490°F) ARI 10% 50% ‘90% SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 ——___— Xv) erreeE=E_E Atlas of Time-Temperature Diagrams 401 1/4 Mo (SAE 4047) Composition: 0.48% C - 0.80% Mn - 0.25% Si - 0.025% P 0.020% S - 0.26% Mo Grain size: fine Austenitized at 810°C (1490°F) 500 COOLING RATE 0 200 AT 700 C | mm 0.1 0.2 BAR DIAMETER 0.5 1 = 10 2 _— 10 20 50 10 20 = 4 50 ak 100 50 100 180 50 150 200 2 100) 1 x 500 ra 3100 200 200 ——_ 300 1000. 2000 mm AIR Oe mM WATER 1/2 Mo (SAE 4419-4422) Composition: 0.22% C - 0.60% Mn - 0.25% Si - 0.020% P 0.020% S - 0.50% Mo Grain size: fine Austenitized at 850°C (1562°F) \ teas fede ete atts 20 ze PER 10 1 MIN S 1 200 500 0 mm SOURCE: ti. to BAR DIAMETER 0.5 0.2 0.1 10 Ke 14 » 205 10 5 2 | -4 BO 5 0 2m LO 50. 20 n i a 100. ue 3 ai 1000 ee 2000 mm LATE. 500 SIO 000200 0S 0s)> OMe 5 ES rn WATER M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 402 1/2 Mo Composition: 0.38% C - 0.80% Mn - 0.30% Si - 0.025% P 0.021% S - 0.53% Mo Grain size: fine Austenitized at 820°C (1508°F) 900 = [ H 800 Acy = a ART | Sa a =a © | fH 500 aa lI 400 par) Baan al | 900 CL] 10% =| 50% z= rr] 90% bt a 600 : = fea ay fait CP en ae 5274 aaa en ae [ex & aa Miia = mee | = aa Eazy > Mss Beyer I = iE — Led 200} Ba : ae ; a 100 1000 500 =200-—S «100 50 ae ee COOLING RATE AT 700 C 0 0.2 0.5 10 10 I 2 5 20 20 50 50 10 20 100 100 20 «10 5 2 1 H C PER MIN a 50 ao 100 5 ee 200 Ri 3 150200300 150 200 300 Re 500 eae 1000 2000mm AIR ier _ 500 mm WATER 1-1/2 Mn (SAE 1513-1518) Composition: 0.15% C - 1.40% Mn - 0.25% Si - 0.020% P 0.020% S Grain size: 8 Austenitized at 950°C (1742°F) 10% ===} 50% +} 90% ais aaa =a Hem ——e tf 4 ear use (24 Sin ‘- fica -—— Ee ae Lee ene ES ee aes EES t-— PSS t—+4 = ae ia = a ae) =a i ied eer eed vi aes ae Ee a an Samay Pe) | Eleee oe Sen ees cee 2 Saas Ses ae Reraeay =a_ ee) a = Saas fo ae ae ia ae ee] Eas Pe H H 2000 mm AIR 150 0 200 2 180 200 = SOURCE: 300 200 500 — 500 mm —___1_____mm OIL WATER M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 sm Atlas of Time-Temperature Diagrams 403 1-1/2 Mn Mo Composition: 0.27% C - 1.55% Mn - 0.20% Si - 0.025% P 0.025% S - 0.28% Mo Grain size 7-9 Austenitized at 845°C (1555°F) ITI INT S00 COOLING mm 0.1 0.2 0s 1 DIAMETERL BAR § 2 700 C B} 10 20 20 10 C PER MIN 100 200 S0 10) 504) EA a0 20 2000 mm AIR 1) 50) 1-1/2 Mn a AT Jt 2 Ww [ 10 J a 200 RATE 1) 1) 150 ah 150 200 “mm XK) 2K) 300, OIL 500 S00 mm WATER Mo Composition: 0.30% C - 1.55% Mn - 0.20% Si - 0.025% P - 0.025% S - 0.28% Mo Grain size: 7 Austenitized at 845°C (1555°F) 900 10% 90% 200 COOLING RATE AT 700 BE i é 20 10 C PER MIN 2000 mm —1—AIR BAR |. DIAMETER}- SOURCE: M. Atkins, 10 ad 0 20 Mx0 ail a 100 100 150 s 150 2) 2M) x‘ON x (1) St _ 500 st 0) mrOll AM WATER Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 404 1-1/2 Mn Mo Composition: 0.32% C - 1.50% Mn - 0.18% Si ; 0.020% Fs 0.020% S - 0.27% Mo Grain size: 7-8 Austenitized at 845°C (1555°F) aes ee] =a =a 2 ee Gea TE P54 pee baa 50% et SF pe ees ey a a1 aaa =a = =a ee es ee | PEO Raa Be eae] —} — [| SS ann ee ae ER as moess Gs aoe! eae erase SS ae [}_——}- + — —— = — === 225 = = ——— ts ~ [acanes a[earner Sars ipa Ieee aa eae ae 1000 == 500 200 COOLING RATE AT 700 C fara 2000 mm AIR BAR DIAMETER ues ie EE 1-1/2 Mn : eae es 500 mm OIL 5mm WATER Mo Composition: 0.35% C - 1.55% Mn - 0.20% Si - 0.025% P 0.025% S - 0.28% Mo Grain size: 7-8 Austenitized at 845°C (1555°F) 900 10% 90% BAR DIAMETERE S 100 a) 05200 100 SOURCE: M. Atkins, Atlas of Continuous 150) 200 Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 405 1-1/2 Mn Mo Composition: 0.37% C - 1.50% Mn - 0.18% Si - 0.020% P 0.020% S - 0.27% Mo Grain size: 8 Austenitized at 845°C (1555°F) 900 10% 50% g 90% 100-150-200 at 20 ne — 1-1/2 Mn 50 100 eae 150) 200 rey. 300, 4 S00 ie Mo Composition: 0.38% C - 1.50% Mn - 0.25% Si - 0.020% P 0.020% S - 0.45% Mo Grain size: 8 Austenitized at 845°C (1555°F) 900 g °C 8 HUT 8 Mt nn UIT SUT 20 10 20 ee 2 150200 1K) 10) 50 ee 150 200 a] 10 C PER MIN 100) 200 J 500 = =:1000: 2000 mm i__l AIR i00) (01) 50) ar OTE () SK 5) mm WATER Ry for Engineering Steels, ASM, 1980 SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams De ———— a COCOCOCOCSO*~“‘“CSOC*wS”O ee Atlas of Time-Temperature Diagrams 406 1-1/4 Mn Cr Composition: 0.22% C - 1.10% Mn - 0.21% Si - 0.015% P 0.020% S - 0.60% Cr - 0.02% Mo - 0.18% Ni - 0.08% V - 0.30% Cu Grain size: fine Austenitized at 880°C (1616°F) 900 10% 50% 90% 400+ 200 1000 COOLING S00 RATE A 5 au 10 100 ) ay heen 50 200 Use 180 300 ns 20) 4 a 300, 4 500, 500 400 i mm OIL mm WATER 1-1/4 Mn Cr Composition: 0.16% C - 1.15% Mn - 0.25% Si - 0.020% P 0.020% S - 0.95% Cr Grain size: fine Austenitized at 870°C (1598°F) mM TR aiot HUN SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 —_————_ OO OONOEw Atlas of Time-Temperature Diagrams 407 1-1/4 Mn Cr Composition: 0.20% C - 1.25% Mn - 0.25% Si - 0.025% P 0.015% S - 1.15% Cr - 0.02% Mo - 0.15% Ni Grain size: fine Austenitized at 870°C (1598°F) 900 Ase ah 800 = Ac, wi) zip { + ba” | | | Sasa | 5 a 50% 8 uy STS LINN N eeA ae = Bias) Se ee 9 Gee (eySSeS) eee YO pt — AHFt es HTETTPNY a re Gs Sean alee al eee as a ems] aia Pr bg) eG ima See eee Roe a = =a eae SEES Sa en Laas _—————— ee ne = ha Se ae —+— SS ee Ve ee DS eel 20 eee mm 0.1 0.2 0.5 BAR DIAMETER all | ! nee |} ++ a ae es 0 aed | | 100 1000 COOLING ee) 1 el : i i Te 500 200 100 RATE AT 750°C 50 5 50 10 20 ; A 20 10% el = \) E (ea | os | SS 22 100 180 200 aii 5 100 200 $00 SE = OIL 300 f i 20 10 C PER MIN A eee 50 TC | + 3 1 : =a a 590 mm 1000 2000 mm AIR WATER 1-1/2 Si Cr Composition: 0.55% C - 0.75% Mn - 1.50% Si - 0.020% P 0.020% S - 0.70% Cr Grain size: fine Austenitized at 845°C (1555°F) 900 700 600 °C 500 400 300 200 100 a eee 200 Se COOLING RATE AT 750C 0 Ph be BAR DIAMETER SOURCE: M. Atkins, wale 1 2 sit nl 5 20 10 50 100 150 a 100 150 50 100 200 300 ah a 200 mie 390 200 jee 500 i 500 1000 500 2000 mm eR a OL mm WATER Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 408 3-1/2 Si Cr Composition: 0.45% C - 0.60% Mn - 3.40% Si - 0.015% P 0.010% S - 8.50% Cr Grain size: fine Austenitized at 1050°C (1922°F) \ at \\\ NIALL ALI 10% 50% LLC ULE Lee CDEC eng EEE EC o . COGLING ai RATE AT 800 C . oEey 2000 mm ee BAR DIAMETER 2 19 20 ; Ds SE 2 Ea eet eee ee RAT mm OIL aes mm WATER 1-1/2 Ni Mn Composition: 0.16% C - 1.40% Mn - 0.25% Si - 0.020% P 0.015% S - 0.20% Cr - 0.05% Mo - 1.50% Ni Grain size: 7-9 Austenitized at 840°C (1544°F) 900 w 800 wv aa es z "Ss =e 700 it ft 6g= s 10% SEBRRUL 90% 4 MET c] 3 f= PR * > HM:HIN 0 mm 0.1 BAR DIAMETER SOURCE: 0.2 5 0.5 10 10 | n 1000 ji Ss ————— 200 10 rn 0 20 SK) 50 50 ae a 1) 50 ee 100 Se am 20 ee es 150-200 —_—_—- 180 200,300 100 200 eee) 200 4-1 500 1000 = 2000 mm —_1_j_i_ 50) 5) mm 4———,___,__",__mm AIR OIL WATER M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 409 1-3/4 Ni Mo (SAE 4615-4620) Composition: 0.17% C - 0.55% Mn - 0.20% Si - 0.020% P 0.020% S - 0.20% Cr - 0.25% Mo - 1.80% Ni Grain size: 8 Austenitized at 840°C (1544°F) 1000 COOLING 0 mmo! 0.2 a | ; S00 RATE 200 A T 750. C 5 kh = so 10200 500 1 BAR DIAMETER Osage 100, 150) 1000-2000 mm 1 SAR mm OIL 200 PAInRWWATIER 1-3/4 Ni Mo Composition: 0.24% C - 0.55% Mn - 0.20% Si - 0.020% P 0.020% S - 0.20% Cr - 0.25% Mo - 1.80% Ni Grain size: 7-8 Austenitized at 830°C (1526°F) 900 800 Ac, = H 700} Pf 10% aas8 50% pT] 90% =a x ic 500 Panty] A eae bass Hy 300 eB 200 100 SOURCE: M. Atkins, 1000 00 COOLING RATE AT 700C 20 ~©«10 © PER MIN Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 410 i ——————— 1-3/4 Ni Mo Composition: 0.40% C - 0.48% Mn - 0.15% Si - 0.016% P - 0.040% S - 0.15% Cr - 0.25% Mo - 1.75% Ni Grain size: 6-7 Austenitized at 845°C (1555°F) 1 1 1000 S00 COOLING RATE AT 700C S 10 iL 2 1 = x0 20) 5 50 et 20 1 100 > 2) IN) ~ C PER MIN 100 4 200 4 50 4 100 50 10 L ll 2 : x 300 (") xX) : (XK) 4 : S00 4 1000-2000 mm 1 ATR een ONTL mm WATER 3-1/2 Ni Mo (SAE 4815-4820) Composition: 0.18% C - 0.47% Mn - 0.27% Si - 0.009% P 0.010% S - 0.18% Cr - 0.23% Mo - 3.33% Ni Grain size: 8-9 Austenitized at 780°C (1436°F) = ee i? —— 7 [B l= L— soe ee war wa +7 Ea maa =a ——o Ben aaa ee 4 ae aaa ane ot ae Berl aaa PINE Sea ees eS, ean hee lisvge) es ae fe i eee 0.2 BARTER DIAME = nk earn) 1 10 —_—_1_ COOLING oA hee AE 10 M 1000 ee el (Raita »A yi) a) RATE sO ties sO 200 a AT 7) C sgl 0= L 100 ee 100 ree 180 3.0) ee 1S ee :ve ire 300 50) SNe 4K) SO) = et ie mm OIL mm WATER 3 ei "AIR SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 411 5 Ni Mo Composition: 0.10% C - 0.40% Mn - 0.20% Si - 0.020% P 0.020% S - 0.20% Mo - 5.00% Ni Grain size: 9-10 Austenitized at 800°C (1472°F) ¢ | FF] e —— = ——————— 500 = Ge ee ee a Fee ee Caer es ee ee Al Sa ee 400M. 2 as Far 50% 90% INV = = i SS SS Se er] —— ae 2s eet ETS es] ea aS eee at En mas eS eS eee a ee ee 300 Gap iia a AN a Lae 200 Pee Ee ae —e === i+ ee a ee ee RT RE Sars Ras 1s0, 2) 1) 150 300 2K) S00 mm OIL mm WATER 3/4 Ni Cr Composition: 0.15% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 0.63% Cr - 0.05% Mo - 0.85% Ni Grain size: 6 Austenitized at 925°C (1697°F) 900 Ac, 800 ART 0 Re —— ] SSes= p54 SSS ae oan Seer aaa eee 50% PY oe ——— 600 er = ree al ae = =al ae) soot [-— = == ==] NS ae 400; =- Fees = == 300¢ a Bae | FJ ees fiat = Es 4 | MM — = a HCI 5 | et 50 SOURCE: M. Atkins, 50 100 4 10) 150 200 eSGaltaledtd 180 200 300 she 390 500 TEA mm OIL 5) mm WATER Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 412 1 Ni Cr Composition: 0.16% C - 0.80% Mn - 0.20% Si - 0.020% P - 0.020% S - 0.85% Cr - 0.05% Mo - 1.15% Ni Grain size: 6-7 Austenitized at 925°C (1697°F) 900 200 1¢ COOLING S00 RATE 200-100 20 AT 750 C 150-20) 1 150 : 200 10 C PER MIN 50 100 200 $00 1000 4 le 4 4 1 3) S00 300 S00 mm OIL mm WATER 2000 mm =— AIR 1-1/4 Ni Cr Composition: 0.35% C - 0.75% Mn - 0.23% Si - 0.020% P 0.020% S - 0.65% Cr - 1.30% Ni Grain size: 7-9 Austenitized at 850°C (1562°F) 900 °€ 200 EEEa 7 mm OIL mm WATER SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 nn Atlas of Time-Temperature Diagrams 413 1-1/4 Ni Cr Composition: 0.40% C - 0.75% Mn - 0.23% Si - 0.020% P 0.020% S - 0.65% Cr - 1.30% Ni Grain size: 7-8 Austenitized at 850°C (1562°F) 900 800 Spe Ac, I eel Ss 600 SC 500 s | AE BEHLCSEEBERESEOEI BAR DIAMETER SO De mc Oll miWATER 1-1/2 Ni Cr Composition: 0.15% C - 0.75% Mn - 0.25% Si - 0.020% P 0.020% S - 0.95% Cr - 1.45% Ni Grain size: 8 Austenitized at 870°C (1598°F) 900 Ac, 800 Ac, — 700 °C ART | 10% == 50% = 90% i Finis} = 500 ot M. 20) fa ——— ———— _—— oe eee eee ee ae a, (Sa EE 200 ose BAR | Se aa Saas Ss —— et a DIAMETER | | P| dt |s 10 | aes 1000 §500 100 2200 SS anaes ——o0LiNG RATE AT 750 C ~—-50 2% ~©10 5 —EPER MIN cc rt ———EES 5] 20 1, sit 20 SOURCE: = [ = ee 50 > 50 100 n 100 150 200 “TESST 150 200 > «300500 sees 300 [| a a ah 4 : pr 1000 mm 2000 OIL 500), ASM, M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, 1980 Atlas of Time-Temperature Diagrams 414 1-1/2 Ni Cr Composition: 0.14% C - 0.50% Mn - 0.25% Si - 0.020% P - at 0.020% S$ - 1.55% Cr - 1.55% Ni Grain size: 8 Austenitized 870°C (1598°F) 900 10% 50% 90% A aN mm 0.1 0.2 0.5 | 100 S00 COCLING RATE AT 750 C oS 10 20 2 50 10) i 100-180 200-300 ee ee eh 200 1 500 z 500 t mm 1000 2000 mm OIL 2 Ni Cr Composition: 0.16% C - 0.50% Mn - 0.31% Si - 0.013% P 0.014% S - 1.95% Cr - 0.03% Mo - 2.02% Ni - 0.030% Al Grain size: 8 Austenitized at 870°C (1598°F) MIIll SI nt I) SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 415 3-1/4 Ni Cr Composition: 0.12% C - 0.50% Mn - 0.20% Si - 0.020% P 0.020% S - 0.90% Cr - 3.25% Ni Grain size: 8-9 Austenitized at 830°C (1526°F) = _——+ 10% 50% ay es | | — omer = i — | ee] sual ae) st ase — ae ieee oes ee ieee San are a] 90% I Fel LATHE TEA —l HI | 3 Ni Cr Composition: 0.32% C - 0.57% Mn - 0.20% Si - 0.020% P 0.020% S - 1.15% Cr - 3.00% Ni Grain size: 8-9 Austenitized at 840°C (1544°F) VWELEE EGOOEEeoae BEA CHOBE mm SOURCE: M. Atkins, WATER ing Steels, ASM, 1980 Atlas of Continuous Cooling Transformation Diagrams for Engineer Atlas of Time-Temperature Diagrams 416 4 Ni Cr Composition: 0.15% C - 0.40% Mn - 0.15% Si - 0.020% P - 0.020% S - 1.15% Cr - 4.10% Ni Grain size: 8 Austenitized at 810°C (1490°F) LJ x) rs t mm WATER 4 Ni Cr Composition: 0.30% C - 0.50% Mn - 0.20% Si - 0.020% P 0.020% S - 1.25% Cr - 4.10% Ni Grain size: 8 Austenitized at 820°C (1508°F) 900 | | 800 Acy set | | a 1 +—t I= } 700 AG! A | le 600 °C pee Lite aaa ica =a sa Sa an ee Pee SS == bo ! foaee| 500 300k. | ! |! aa =a eee -—P staan 2 ee a a ——— 1 10% = el H eee ——— eee OD = = SS SS SS SS SS a SS Se SES => | rn] 50% a a as De Ee ee Pa ee el Pe a ee ee a ES Geen Mee Ge EES Bg 2 ee Le aS Lae) a eee ee a —eo HH eo Se H Ge meen ETT RC EE Da Se ee ey © ed (See t ee eee he Sala ee ES Be Gy (oe PED re eee as 1000 } |} fie | es a mm 0.1 0.2 0.5 500 200 100 COOLING RATE AT 750C a ee a ee 1 2 5 10 20 50 20 10 5 ! 1000 2000 mm CORER|MIN ee Ea ed 50 100 200 7 2 H H 500 AIR BAR DIAMETER SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 _ Atlas of Time-Temperature Diagrams 417 18 Cr Ni (SAE 51431) Composition: 0.14% C - 0.68% Mn - 0.67% Si - 0.024% P 0.012% S - 17.98% Cr - 0.06% Mo - 2.95% Ni - 0.04% Al - 0.10% Co - 0.10% Cu Grain size: 5-6 Austenitized at 935°C (1715°F) 900 600 £¢ 500 400 300 10% 200 50% 90% 100 1000 S00 200 100 COOLING RATE AT 60) C ——S ‘ n C PER MIN 0 mm0.1 02 0.5 it BAR DIAMETER fs 10 H 10 1 ee i 2 5 10 20 50 i 4 It = 1 aT] 2h4} 1 \ 30 Mw ‘ 1 100150 100 N ———— 180) 200300 1 100200 i 500 tt 1000-2000 mm 4 AIR 500 ! MK) 300) Ss) 1 1 ! mm OIL mm WATER 1/2 Cr Mo Composition: 0.14% C - 0.55% Mn - 0.25% Si - 0.020% P 0.020% S - 0.60% Cr - 0.55% Mo Grain size: 7 Austenitized at 920°C (1688°F) i PZ NII ALLE LN SOURCE: mm OIL mm WATER M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 418 1/2 Cr Mo Composition: 0.20% C - 0.75% Mn - 0.25% Si - 0.020% P 0.020% S - 0.40% Cr - 0.45% Mo Grain size: 7 Austenitized at 900°C (1652°F) ame = = eral S 2 = A : = == 1000 500 200-100 50 COOLING RATE AT 800 C ISS sae 100-150 fi L 100 — 200-300 150) 200 + 4 300 500 1_____mm WATER 3/4 Cr Mo Composition: 0.12% C - 0.45% Mn - 0.30% Si - 0.015% P 0.015% S - 0.85% Cr - 0.60% Mo - 0.16% Ni Grain size: 7 Austenitized at 960°C (1760°F) laltea = =F 90% INTSAT : a = Y : [eae 20 C PER MIN 2000 mm AIR BAR DIAMETER 100 1s0 200300 300 ——1_1.___1____mm SOURCE: WATER M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 419 3/4 Cr Mo Composition: 0.27% C - 0.60% Mn - 0.13% Si - 0.030% P 0.022% S - 0.74% Cr - 0.55% Mo - 0.19% Ni Grain size: 6-7 Austenitized at 875°C (1605°F) 900 100) COOLING | po 2 eet S00 200 RATE AT 800 © 5 10 ee SO 20 MIN 200 50 100 4 = 1s0) 200 4 1S0 1 1 200) Le 300 4 300 1 § 10 C PER 20 1 100 SS 50 —!! 100 1 50 4 100 a 5) se IES mm OIL mm WATER 3/4 Cr Mo (SAE 4161) Composition: 0.60% C - 0.85% Mn - 0.25% Si - 0.020% P 0.020% S - 0.80% Cr - 0.30% Mo Grain size: 10 Austenitized at 850°C (1562°F) N NN hit tote Ui) innananee 3 COOLING RATE AT 750 C mm 150 200 =e est SOURCE: i___mm OIL WATER M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 420 1 Cr Mo Composition: 0.18% C - 0.75% Mn - 0.25% Si - 0.020% P 8-9 Austenitized 0.020% S - 1.00% Cr - 0.20% Mo Grain size: at 860°C (1580°F) 1 Cr Mo Composition: 0.26% C - 0.70% Mn - 0.25% Si - 0.020% P 0.020% S - 1.05% Cr - 0.22% Mo Grain size: 7-9 Austenitized at 850°C (1562°F) 100 SOURCE: 150) 200 200 M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 42] 1 Cr Mo (SAE 4130) Composition: 0.30% C - 0.50% Mn - 0.25% S - 0.020% P 0.020% S - 1.00% Cr - 0.20% Mo Grain size: 8 Austenitized at 850°C (1562°F) mm 0.1 BAR DIAMETER 0.2 0.5 | 1000 500 COOLING RATE AT “50 C $ 10 2 2) 100 ay 5 100 1a TS0 50 4 100 | 200 300 = 180, 200300 ! 200 500 300 2000 mm mm OIL 300 : 1000 —L mm WATER 1 Cr Mo (SAE 4135) Composition: 0.34% C - 0.65% Mn - 0.25% Si - 0.020% P 0.020% S - 1.05% Cr - 0.25% Mo Grain size: 9 Austenitized at 850°C (1562°F) | TATE, LTT 20 ait “C PER 100) 4 100 a 150) 200 1 1S0) 3.00 eae 200 300 10 MIN 4 500 1___mm 500 4 mm OIL WATER Steels, ASM, 1980 SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Atlas of Time-Temperature Diagrams 422 ee EEE EEEEEEEEEEEEEEE EE nn Neen 1 Cr Mo (SAE 4135-4137) Composition: 0.36% C - 0.80% Mn - 0.25% Si - 0.020% P - 0.020% S - 1.00% Cr - 0.20% Mo Grain size: 8-9 Austenitized at 850°C (1562°F) WE 100 1000 S00, 20) i | 100 = : | ag |_| [| 0 mm0.1 0.2 0.5 1 2 5 10 =. so. 1)S(200 500 1000 1 1 a BAR 180 2000 mm 1L_AIR 200300 DIAMETER mm OIL 2) 1 Cr Mo (SAE 4140-4142) Composition: 0.40% C - 0.85% Mn - 0.20% Si - 0.020% P 0.020% S - 1.05% Cr - 0.30% Mo Grain size: 8-9 Austenitized at 870°C (1598°F) 3 : DIAMETER SS s Ma 150 200 5 +1 __1_____,__,___inm WATER SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 ee eee ee EEE Atlas of Time-Temperature Diagrams 423 1 Cr Mo (SAE 4145-4147) Composition: 0.46% C - 0.85% Mn - 0.25% Si - 0.020% P 0.020% S - 1.00% Cr - 0.20% Mo Grain size: 8-9 Austenitized at 850°C (1562°F) 900 700 600 °C Ss 500 ae ==s 4 400 a eS so fi =, : eo a a i 3 SS haa eee 200 i —4 a 100 =: a a [J 1 Cr Mo (SAE 4147-4150) Composition: 0.50% C - 0.85% Mn - 0.25% Si - 0.020% P 0.020% S - 1.00% C - 0.22% Mo Grain size: 8-9 Austenitized at 850°C (1562°F) 900 \ Y\ VAMWe \LN PN NK \i 7 Hu Ze —— ‘Ao N °C | LIT il mn Hl INMT lil za ——————_—1___1___. COOLING SOURCE: M. Atkins, 4 | | B= =a —_—_$—_——$——— 200 I} = RATE 3 3 AT 700 C 1 10 C PER MIN wa iS Al I fananlGPGGseehaNecneeGewOREN Cee Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 3 ro a A 424 Atlas of Time-Temperature Diagrams 1-1/4 Cr Mo (SAE 4137) Composition: 0.37% C - 0.85% Mn - 0.25% Si - 0.020% P0.020% S - 1.15% Cr - 0.20% Mo Grain size: 7-8 Austenitized at 860°C (1580°F) 900 Me © = ES es 400 ) aa] 300k FL Baz = a zoo ae Sry ae Sir wees 1000 } |__|_| = 0 aS 2 mm0.1 0.2 eee Qs. BAR 200 eee ft ~=—«100 50 20 Gi ‘ i ee a hl 5 ea 100-200 1 Se 500 100, es Na 50) WSO) 2K) ee 300 2000 mm eee AllER OL 500 ee eee 1000 ed 200300 sl iit S0) = Jie : 2 ia ee so. 150 1 10 C PER MIN ae 2 > DIAMETER 00 —G60LING RATE AT 750 C —_!_—_-mm WATER 11/4 Cr Mo (SAE 4140-4142) Composition: 0.42% C - 0.85% Mn - 0.25% Si - 0.020% P 0.020% S - 1.15% Cr - 0.20% Mo Grain size: 6 Austenitized at 860°C (1580°F) 900 800}. 700 Ac, 10% eT HSS 600 Baw SS eae eras ona SEN BONS RSs ea a = _— ef eaeeet a fe oa a ee Sea SS aS eS eee [cee eee Ss ae Ss ae es Dee eS eee eee as Sa Se |}... eS SS eee ae | iB fi ee ee Be rd Bea IZ ee ee (es == ia SSS ee ran Ga Bee LS) A Ge eS Lares ee 0 = == = 500 100 90% wane °Cc 500 50% eS ee eaearap eed asi Seni bee BISS [ee = eee a ee 1000 500 =.200:«100-~S COOLING RATE AT 750°C ee aa ee SS ee 50 2 10 ‘C PER MIN ee a en 5 a H ee) SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 425 1-1/4 Cr Mo Composition: 0.15% C - 0.60% Mn - 0.30% Si - 0.030% P 0.030% S - 1.25% Cr - 0.50% Mo Grain size: 6-7 Austenitized at 920°C (1688°F) 300 5 is) = eee }—_f —__] 2 ea ee == = CU IE EE SEE allpreeem preeceere my ey eas ae | Sas 4 hh Ceara pee mm 0.1 0.2 0.5 i] 2 5) 10 20 50 100 200 500 1000 2000 mm AIR BAR 100 DIAMETER 150) 200 mm OIL mm WATER 1-1/4 Cr Mo Composition: 0.35% C - 0.55% Mn - 0.27% Si - 0.031% P 0.022% S - 1.23% Cr - 0.51% Mo - 0.14% Ni Grain size: 7-8 Austenitized at 860°C (1580°F) 900 800k Ac, 700 600 °C 500 = 400 8 a= | Me _—— || =a ih a TS ree ea aS ea eS ape Seal Remar a EEA) 3 I: ES RN oo SOURCE: = 1000 50200siadwsiSC“‘<‘éikOttOS pf ___{ COOLING RATE AT 800 C en See sees | ee et Se C PER MIN ee a a Ee #H > ee H Steels, ASM, 1980 M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Atlas of Time-Temperature Diagrams 426 2-1/4 Cr Mo PComposition: 0.14% C - 0.46% Mn - 0.23% Si = 0.010% 7 size: Grain Ni 0.21% Mo 1.05% Cr 0.010% S - 2.28% Austenitized at 900°C (1652°F) Nt 100 150 200 3 Cr Mo Composition: 0.20% C - 0.50% Mn - 0.25% Si - 0.020% P 0.020% S - 3.10% Cr - 0.52% Mo Grain size: 7-8 Austenitized at 920°C (1688°F) 900 ar Xe, 10% a 50% Poece emeet =| C3 90% aon C= so ee as = 700 — 600 ae) im °C 500 Saas eee be ier Sl aa Saas ——— = | iesan|osec tanfes=— |_| it |} | at ame SO a SSR iy 2 teSek Boies | ea Se ES Re rs Ee Bal a Ss Mo 300 ae Pd AO EE easel GED SSS a aa a] ae Sas!) aie pt peuees—a) a oe ee ==: BSP | A 200 Pp ae =e 100 = See =a Ss aad Par a = eee COOLING RATE AT 800 C S) 10 0 mm 0.1 Oo 0.5 ! 2 20 50 100 200 500 1000 2000 mm AIR BAR DIAMETER SOURCE: 100150 M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 427 3 Cr Mo Composition: 0.28% C - 0.50% Mn - 0.25% Si - 0.020% P 0.020% S - 3.10% Cr - 0.52% Mo Grain size: 7-9 Austenitized at 920°C (1688°F) 900 ae a Ac, a ae Si Sai Se ! eh el FEES t ic mewn T iE 700 °C | is a TE BE Eis iE ie =. : I fe = 10% ee 5 Al 2 ae ae 0% AF hE A I ET] SS ae eee = a f =e | if | | | H = t+— fess —— Sas aa a 4 a = Ss a eat ee as rag es ee ee a a ee | aera 400} M4, 9 (nd ee a =e a ie meee MN Ga Gore Ge ROS I ta Ss Sa Se es SS Saas =, == BESS eo a es as —a 300 300 = ees 200 100, lc =a =] 1000 -—__+—-__.__] hae a 500200 s:«100 COOLING RATE AT 800 C a ee eel 50 100 1 150 50 2 SS 200 ceil erie 100 150 200 5 2 ag es C PER MIN 300 ‘ 300 10 H 500 oii 500 OLL: ——_1______mm WATER 3 Cr Mo Composition: 0.32% C - 0.55% Mn - 0.25% Si - 0.020% P 0.020% S - 3.05% Cr - 0.40% Mo - 0.30% Ni Grain size: 8-9 Austenitized at 900°C (1652°F) £4 Me 10% 50% ut TN 90% AHA 4 z za es 0.2 SOURCE: EE M. Atkins, 0.5 = COOLING RATE AT 750 C ES SS ee ee ! Zz AI 10 20 ‘C PER MIN ee bt) 100 200 ee a 500 1000 FNOTRReonoeneeeiae nec 0 =. 2000 mm Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 ee a Atlas of Time-Temperature Diagrams 428 ; 3-1/4 Cr Mo Pex Composition: 0.17% C - 0.60% Mn - 0.14% Si - 0.020% ed 0.020% S - 3.25% Cr - 0.55% Mo Grain size: 7-8 Austenitiz at 900°C (1652°F) = Be: eS a <= & ea Feeney 10% 50% eal eee Ey a a ears](8 -] 12] a <a (nee =a -—7 90% | — or cea =a = a Saami = me | | a = : a 17 H pe] ~__ COOLING RATE AT 750 C 2000 mm 1_ AIR 3-1/4 Cr Mo Composition: 0.26% C - 0.60% Mn - 0.14% Si - 0.020% P 0.020% S - 3.25% Cr - 0.55% Mo Grain size: 7-8 Austenitized at 900°C (1652°F) 900 =a | eS Ac, ee Ac, 70 : | z eas = “| eS = Be. |Peres eae ea Ce yl 300 a 7 <- aa SS = a] ae aan ae eet Sn eee {+ —___| a) 4 4 ee 90% See a eet ed BEES BES Bed Bes : et Tl Za ae Sew ee ee aa as a I Td — a | 100 H Sea ae, Pe 5 _ 100 sae SOURCE: eat easeraa= 200 0 10% SoS ie ] esi °C AR Esa Pa 5 2 200 500 1000 a Sy 50 100 180 300 500 200 10 H H oo mm OIL M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 429 5 Cr Mo (SAE 51501) Composition: 0.14% C - 0.45% Mn - 0.26% Si - 0.016% P 0.025% S - 4.66% Cr - 0.56% Mo - 0.13% Ni Grain size: 8-9 Austenitized at 920°C (1688°F) { ane SEE | A STARI i | oe, 10% = |= : = Seas ! IIR ANTE fil AMT 20 Ne 50 rel 100 4 200 500 1000 =.2000 mm ee ee ATE BAR DIAMETER mm OIL 50K SS = a mm WATER 5 Cr Mo Composition: 0.28% C - 0.50% Mn - 0.25% Si - 0.020% P 0.020% S - 5.00% Cr - 0.55% Mo Grain size: 6 Austenitized at 920°C (1688°F) 900 Ac, START. 800 49 : =H ee Bea 700 DS Saas 600 a 500 SHS °C 10% 50% 90% SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 ee —— Et ee Atlas of Time-Temperature Diagrams 430 ND 9 Cr Mo Composition: 0.12% C - 0.70% Mn - 0.30% Si - 0.025% P = Austenitized at 0.020% S - 9.0% Cr - 1.00% Mo Grain size: 7-8 1000°C (1832°F) ll Hh .2 = BAR |< DIAMETER) 1 el ote 10 2 1 20 eieay [ 5 50 n 10 ee eet 20 4 100 150 200 So Se ees 180 200 1 50 a 100, 300 500 rl 200 Lee 500 Sel 1000 1 mm OIL mm WATER 2000 mm 1 AIR 1 Cr V (SAE 6150) Composition: 0.50% C - 0.75% Mn - 0.25% Si - 0.025% P - 0.025% S - 0.95% Cr - 0.05% Mo - 0.15% Ni - 0.20% V Grain size: 7 Austenitized at 875°C (1605°F) 90 ¢ 800 Avy = i i | Ac 7 iE if iL =e | IE ees ee ee io SS BAR DIAMETER Sea) [Seen ern] |= mm0.1 aa 9.2 |;s eS 1000 S00,” 200 20 RATE AT 750 C C PER MIN 5 10 10) 200 $y 0 ——_1 2 eA 220 ee 50 100 1 ——l_ ia ee sO. ai Uisteewers eunes 150 eid Pare 200-300 s¢ acy! 500 a | CI Sy ae eae 20 101803200300 50 | 10S ree rl I | COOLING eae 0.5 ae tL 10 10 “li : = ree == cence | BE a a a= = oo Ses bi Ss FAS 10% 50% 90% = — = ae aa eae 7 —Z/AFINISH i =| Gey Ee L = R E [ t Pe a " : ! \= | ; 600 le x r OO | ae | 2 Sete mm OIL mm WATER SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 431 1-1/2 Mn Ni Mo Composition: 0.19% C - 1.60% Mn - 0.20% Si - 0.020% P 0.020% S - 0.25% Mo - 0.55% Ni Grain size: 9 Austenitized at 870°C (1598°F) 10% 50% 90% BAR 100 DIAMETER 100 150 200 — $s0) 200 i x - $00 z 30) mm OIL mm WATER 2 Si Cr Mo Composition: 0.60% C - 0.85% Mn - 1.90% Si - 0.025% P 0.025% S - 0.30% Cr - 0.25% Mo Grain size: fine Austenitized at 910°C (1670°F) 900 200 50 SOURCE: M. Atkins, 20 —___i— ‘C PER MIN Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 ————————— i i a Atlas of Time-Temperature Diagrams 432 1/2 Ni Cr Mo (SAE 8115, 8615-8617) Composition: 0.15% C - 0.80% Mn - 0.20% Si - 0.020% P 8-9 0.020% S - 0.50% Cr - 0.20% Mo - 0.55% Ni Grain size: Austenitized at 830°C (1526°F) 900 NA xi . ait NIN a| iya ¥ S WNWLEDN| 8 50 — mm BAR 0.1 DIAMETER} 0.2 4 3 0.5 4 — 10 1 ! 4 10 —_-__ 2 = 20 : 5 1 10 1 20 4 50 100 L 20 L 100 — 50 1 i 150 200 20 4 C PER MIN 100 1 200 ir 300 4 _1____. 180) 4! 200 300) L 500 - SOO 1 iu 500 1 1000 1 mm OIL mm WATER 2000 mm | _ ATR 22 1/2 Ni Cr Mo (SAE 8622-8627, 8720, 8822) Composition: 0.24% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 0.50% Cr - 0.20% Mo - 0.55% Ni Grain size: 8-9 Austenitized at 830°C (1526°F) 10 20 50 =e 100 200 =} at mm OIL mm WATER SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 433 Atlas of Time-Temperature Diagrams 1/2 Ni Cr Mo (SAE 8625-8630) Composition: 0.30% C - 0.80% Mn - 0.25% Si - 0.020% P 0.020% S - 0.50% Cr - 0.20% Mo - 0.55% Ni Grain size: 6-7 Austenitized at 850°C (1562°F) 900 800 [* | | 1 == Ay = Lh os °C | 400 S a a [———eee a +oF10% ed ee a 50% al an Ge =e ae Ee pe ett 190% P eG (are a GE se ae) a eae (Secees ee Ie Ges eee 2 eA EY a a EIT A OE I GA AS pase Fal eer eA ae area Saas he Aes aes aoa a aL [2 | haar Ss Seen Wyay en SS a a ee Sesewl ee FSP ae ee es ey A ee ee SSSs Se aS }—_}—_ /t 4 | __ Bf —t pee iByes A Ae Se ee ee ee a SS ae Ry Se ee 06 SS a aes ee es ee Se ee ee ae Res RES ee a a ee A merce Baraers pera So pa TT Se ST es espe, Reae Caen meen Keen Ke ‘on SS === as aa | 0 z SS ii aa +-— an (el SR mm 0.! 0.2 SS Ss _ es ee als Saal= eee Sls ae ee ase ca | H i = iE ea 1000 500 200 100 COOLING RATE AT 750C 50 = 20 C PER 10 5 2 i MIN H 4 ae 0.5 1 10 2: 5 20 10 20 50 20 50 100 50 100 150 150. 200 100 300 200 300 200 500 1000 2000 mm AIR 500 mm OIL mm WATER 500 1/2 Ni Cr Mo (SAE 8640-8642, 8740) Composition: 0.41% C - 0.85% Mn - 0.25% Si - 0.020% P 0.020% S - 0.50% Cr - 0.25% Mo - 0.55% Ni Grain size: 8-9 Austenitized at 850°C (1562°F) 900 ‘ ee 2 ee 20 ee a 5 om ee SO 50 a ee 100 - 150 200 300 2”) SOURCE: mm OIL mm WATER M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 nn Atlas of Time-Temperature Diagrams 434 1/2 Ni Cr Mo (SAE 8645-8650) Composition: 0.48% C - 0.75% Mn - 0.34% Si - 0.020% P - 0.010% S - 0.58% Cr - 0.20% Mo - 0.60% Ni Grain size: 8-9 Austenitized at 850°C (1562°F) 900 600 Le 500 400 300} 200 100 20 i ——— © PER MIN : , 022 mm0.1 BAR DIAMETER 0s‘ 10 at jew 2 1 5 0 50 ye 20 10 LS 50 L 20 i501) D 100-150 200300 1 100 L 150 200 os eee 1/2 Ni Cr Mo (SAE eee | 1 aot 500 300 500 ae 4 4 5001000, 2000 —mm mm OIL mm WATER : 8660) Composition: 0.60% C - 0.85% Mn - 0.25% Si - 0.025% P 0.025% S - 0.50% Cr - 0.20% Mo - 0.55% Ni Grain size: 8-9 Austenitized at 845°C (1555°F) 900 800 700 600 Qe: 500 400 300 200 100 20 10 1 at “PER MIN 5 0 mm01 0.2 0s \ 2 — BAR fs 10 DIAMETER}——_- 20 10 20 —— = — 5 10 20 sO 100,200 500 1000-2000 mm Sl: a 1 r as) Cee = aM 50 50 a a 100-150 200-00 —- tk al ATR 500 100 150 200 300 500 —t__ mm OIL —_1— 41 ~ 1 L mm WATER SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 435 3/4 Ni Cr Mo Composition: 0.40% C - 0.65% Mn - 0.25% Si - 0.020% P 0.025% S - 0.75% Cr - 0.25% Mo - 0.85% Ni Grain size: 9-10 Austenitized at 850°C (1562°F) a — 10m) 500 200 100 50 20 t ae eel Glen ea ia ce mm 0.1 BAR 0.2 4 0S 1 5 DIAMETER COOLING 10 2 4 5 1 20 4 10 i 1 20 RATE AT 6350 C 10 —L. so 4 20 I. 1 sO 150 . + 3 1 H C PER MIN l I 100 4 200 1 500 4 50 150 100 10 ===} 200 He am) 300 2 | H a 1000 1 2000 mm AER 300 — 300 $00 —-- mm OIL mm WATER * 1 Ni Cr Mo Composition: 0.36% C - 0.65% Mn - 0.25% Si - 0.020% P 0.020% S - 1.05% Cr - 0.22% Mo - 1.05% Ni Grain size: 7 Austenitized at 850°C (1562°F) 900 ipedeeliellecteal iY FS QS t+ Ate} NO a 300F 200+ 0 20 _ C PER MIN ol mm 0.1 BAR PiAMEAeS 0.2 0.5 ar 5 a 10 10 0 fs 20 a4 2 ST L 50 = 50 4 10 20 100 1 150 1 1 100 50 1 =—«180— 100 n 200 200 00 1 300 a2 S00 300 500 ——— ~ 5001000 -£ 4 mm OIL mm WATER 2000 mm 4I—AIR Diagrams for Engineering Steels, ASM, 1980 SOURCE: M. Atkins, Atl as of Continuous Cooling Transformation Atlas of Time-Temperature Diagrams 436 11/2 Ni Cr Mo Composition: 0.16% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 1.05% Cr - 0.15% Mo - 1.40% Ni Grain size: 8-9 Austenitized at 840°C (1544°F) i= : ‘800 Ac, = = Ac 700; — ar Ba es == a: a ae =a 600 anes a ac ae ae ae ae =a Go ae Pe ae = <—| ee ae a a ae eet a ay a a °C 500 aoe Se SSS Sea brk= en ee es a Gs ae ee Sat Cae Bes ee ar el Pe Seer Er ee = 4100 en el bee te t 1000 ieee Eeaes ee! aes a = iL i SS =a Saas aa ; a) es ae ee Se Saeaae ae ee = ee ee ea tox L 90% et | -— 1 * Ss = = = t+—_A}—_ fe LwA t+ Fey SS Ey Lat“, aca: ae ee 400+ ee Ss . COOLING RATE AT 700 C a a 20 50 100 200 =©500 10 C PER MIN ae a | 2 5) ed mm ee WATER 11/2 Ni Cr Mo Composition: 0.16% C - 0.50% Mn - 0.25% Si - 0.020% P 0.020% S - 1.65% Cr - 0.20% Mo - 1.55% Ni Grain size: 8 Austenitized at 860°C (1580°F) 900 800f Acy Bs : Ac, & pr —_ = esa ES P=a104 * 500 ad Sees s ee _ ERE ES coll NE SSS ae =e SS > ae = SS ee RSSRmasa Ea ane.J aie pe ——_—_—_ DOAS= SAEED ES al RS! eae eee ET ee eee oe eee | Oy a ew ee Te ees a EC L _— 306 ee — 4 a ee = Mw CLE ESOS Bl aaa FS ORS 5 PETS EA ES 7 Hy ne = eee aa — = Ci ae US A |eee ee Iara See Lee ae a |} |__| 0 Sa mm 0.1 0.2 FS 0.5 1000: 500200 100 “COOLING RATE AT 700 ES i ee 2 a =) a a 10 me 150 el ees Dee — 200 50 i 300 +—__1_—_1__1 150-200 — SOURCE: ee 20 100 100 Te zs H 50st © PER MIN 300 100 200 ee ee S00 Se $00 —t_mm 500 —mm Se 1000 2000 i ae ap OIL WATER M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 437 1-1/2 Ni Cr Mo Composition: 0.36% C - 0.70% Mn - 0.25% Si - 0.020% P 0.020% S - 1.50% Cr - 0.25% Mo - 1.50% Ni Grain size: 7-8 Austenitized at 850°C (1562°F) 900 jaa 800 Acy 700 Ac, = -| | I ren si pe x —- | Co T vii | 300+ Sa | A 80% CLASP 90% el 5 ip ee eS ee es ee ee) Se ee ar ae’ 4, - 2S Let a ee Berry es Sl ar = = ae p—_- - 7) ey Gaal amet mm0.1 0.2 LT a a a eT ees) ee Se Saw Se ee =Se es | 2 Pee ce AT ps ‘ee a ae ee, a Se es RATE —! ee ae ee ee | | | SS ct COOLING = aa Fe | ht aE Bess Fe re ee p—f—___f ff = eS ean eae es Sa Se ee ee) f ara SS es Beas SS ee RS = = es aes [a 200+ H = eee es | ee | a 700 C ee ee ee ee 1 - a ee C PER DIAMETER |s 10 10 n 4 MIN 1 2 : ere 2 20 ai) @ | | ee: 10 20 50 100200 500 1000-2000 mm ae BAR ee ee SS L— PREY Re os 10% 4 | Sa 3 = [ | | ] "ae == ee = mani eS] a 500 | = - = asad Ses SE | 3 & 1 an 50 50) n 4 100 100 he «150 200-200 1s0 pS —t_____i—_1—_____-mm 2M) 3M 1 1_AIR 500 500 OIL mm WATER 1-1/2 Ni Cr Mo Composition: 0.40% C - 0.60% Mn - 0.25% Si - 0.020% P 0.020% S - 1.20% Cr - 0.15% Mo - 1.50% Ni Grain size: 7-8 Austenitized at 850°C (1562°F) 900 COOLING RATE AT 700°C eee Ss] BAR DIAMETER} 1980 SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, Atlas of Time-Temperature Diagrams 438 1-1/2 Ni Cr Mo Composition: 0.40% C - 0.60% Mn - 0.25% Si - 0.020% P - 0.020% S - 1.20% Cr - 0.30% Mo - 1.50% Ni Grain size: 7-8 Austenitized at 850°C (1562°F) Hh UT PTO TTT mm0.1 0.2 05 I 2 5 10) 20 50 10)—200 = 1 BAR 300 DIAMETER 500 it 1000-2000 mm 4 500 1 1_ AIR mm OIL mm WATER 1-3/4 Ni Cr Mo Composition: 0.16% C - 0.80% Mn - 0.20% Si - 0.020% P 0.020% S - 1.05% Cr - 0.15% Mo - 1.80% Ni Grain size: 8 Austenitized at 830°C (1526°F) 900 800FAc, [START oan Ac, _— eae SOEa eyES 5S me bead ee lS ea eae °C Fa 500 OO A eee et ian ec alEh 306 Se) a ie) Gets av 100 ees ae es = a 3 i ey eee, = = =a }— 0 (EE TS -—}-—_}-_-—| }—}| Se mm 0.1 + J 1000 | | 500 200 100 50 —C60LING RATE AT 7G i ee DIAMETER |; 20 © PER MIN i tg) 20 50 ee BAR aaailel SS ere a Ee eo aa TS Fs Re a Ss ee es ee 200+ = im a0 ie) | Z| im oe] mae Saas ee 100 200 500) 1000 at 100 150 AIR 200-300 1m a 19:0 2 ——— 2000 mm 500 ams_es, —__1______1_____mm OL WATER SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 439 1-3/4 Ni Cr Mo Composition: 0.41% C - 0.70% Mn - 0.25% Si - 0.020% P 0.020% S - 0.80% Cr - 0.25% Mo - 1.80% Ni Grain size: 7 Austenitized at 850°C (1562°F) ul bs bo y ANE LA QOGUEMOROCEA Goooeooose 2 Ni Cr Mo Composition: 0.17% C - 0.60% Mn - 0.20% Si - 0.020% P 0.020% S - 1.55% Cr - 0.20% Mo - 2.00% Ni Grain size: 8-9 Austenitized at 830°C (1526°F) 900 g00k Ac, ; ie 700 wee : ~| = a es aaa 600 Ss Ss ag = i “4S papa aaaeseraliz| ket Coe | Spam a aaa (ipa [emer] =a ae oS =a == ==: [I A = 200 T 700C mm 0.1 0.2 0.5 1 2 5 10 aii) 50 100 200 500 1000 = 2000 mm AG BAR DIAMETER mm SOURCE: WATER ASM, 1980 M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, Atlas of Time-Temperature Diagrams 440 2 Ni Cr Mo Composition: 0.30% C - 0.48% Mn - 0.25% Si - 0.020% P 0.020% S - 2.00% Cr - 0.40% Mo - 2.00% Ni Grain size: 8-9 Austenitized at 850°C (1562°F) AINA mm0.1 0.2 0.5 es BAR js DIAMETER 10 ai 10 —— 0 a 1 2 ee a 20 ey 5 10 20 so 4 it fis 1 50 1 150 200 300 4 ——s 1 100 «150-200-300 ke i 1 500 — 1 50 er 1200 500 n 500 a 1000-2000 mm 1 n = 1 mm OIL mm WATER AIR 2-1/2 Ni Cr Mo Composition: 0.31% C - 0.60% Mn - 0.25% Si - 0.020% P 0.020% S - 0.65% Cr - 0.55% Mo - 2.55% Ni Grain size 7-8 Austenitized at 830°C (1526°F) K ——— a= Bae es 100 = — eee eet es eel aa! pf a ____ (=| en hee Cel mm 0.1 BAR DIAMETER 5 1 os Siac 10 == | sitar Eee i 20 he20 00-200 one-year COOLING RATE AT 700 C 0 0.2 : 1000 ae Be 5 pea $0 50 - ee 10 100 ee =i 100 150 ai 200 tS a © PER MIN Res $0 Sah 200 eee 1s0) 50 een 20 a — 100 ee 100 PE el 1 st 300 500 SARA 300 S S00 Sa 1 a ) | ae 2 oe one Soe mm WATER SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 EE r rv—v— r Atlas of Time-Temperature Diagrams 2-1/2 Ni Cr Mo Composition: 0.40% C - 0.60% Mn - 0.25% Si - 0.020% P 0.020% S - 0.65% Cr - 0.55% Mo - 2.55% Ni Grain size: 7-8 Austenitized at 830°C (1526°F) 900 < Sy 3 Ni Cr Mo Composition: 0.31% C - 0.55% Mn - 0.25% Si - 0.020% P 0.020% S - 1.05% Cr - 0.28% Mo - 3.00% Ni Grain size 7-9 Austenitized at 830°C (1526°F) 900 800 Ac, 700 Ac, 600 5 ah | c tT = paon Bee ae el (aa pee ee aaa ee | 400 300 10% a 7 s ———— aan ce eS ee eS Gene Se) Re A pe ae 50% ee ia } 4 th 200b (-—} anew 4} —_}-—__ See bees = = ee Sa ae SS Oe aes a ee Se I) a ee 0 aa eel eee I Se ee ee | ee 1000 500 200 COOLING RATE AT 700 C ~=—-100 50 SS as 150 ae SO ne 200 300 SS! 150 20 C PER 20 200 i SOURCE: 90% SG 300 10 ee 100 500 cil 500 2 a {al io a een 200 rn “| MIN a 500 R000 eee! mm be 2000 mm 1I—AIR OIL IE ASM, 1980 M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, Atlas of Time-Temperature Diagrams 442 3 Ni Cr Mo Composition: 0.12% C - 0.53% Mn - 0.28% Si - 0.020% P - 0.010% S - 0.58% Cr - 0.20% Mo - 3.20% Ni Grain size: 12-13 Austenitized at 860°C (1580°F) 800 700 °C 200 BAR DIAMETER ‘ 130 200 200 300 eee ese 300 2. 500 a 1______mm WATER 3-1/2 Ni Cr Mo (SAE 9310) Composition: 0.13% C - 0.50% Mn - 0.20% Si - 0.020% P 0.020% S - 0.85% Cr - 0.18% Mn - 3.40% Ni Grain size: 8-9 Austenitized at 820°C (1508°F) HM 10% \ iii IN AGNI NIN 1000 500 COOLING RATE a mm 0.1 0.2 0.5 | 200 2 5 n 50 C PER 100 100 ee 20 a 50 = 100 an 10 a J 90% ATL AT 700 C Be 50% eS 50 oe 150 200 150 : MIN Sees 100 tt 300 aeee Ee 200 =300 a es 200 FS 500 1000 ls 2000 mm _aAiR 500 500 Ldn mm WATER SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 nc EE UEETTEESE EENEInSEISE Rn Atlas of Time-Temperature Diagrams 443 4 Ni Cr Mo Composition: 0.15% C - 0.40% Mn - 0.25% Si - 0.020% P 0.018% S - 1.15% Cr - 0.20% Mo - 4.10% Ni Grain size: 8 Austenitized at 820°C (1508°F) = 10% = 50% 90% 1000 = 500 COOLING 200 RATE =100 50 20 AT 500°C 10 5 ‘C PER ? ! o E MIN 4 Ni Cr Mo Composition: 0.30% C - 0.60% Mn - 0.25% Si - 0.020% P 0.020% S - 1.25% Cr - 0.30% Mo - 4.10% Ni Grain size: 7 Austenitized at 820°C (1508°F) 900 | 800 a a+ = of eee & Ac, =e “ 500 T a E =— + = ees) Se 200 ee eas | ee | es ee ee Cag en ES ad 7 En ee Pee 4 ee Ss oes [ae (eae (pores ee [eo =a ee en SS a = [ I = a . SSS aa pss —_—— . ai! aaa = SI | ‘a ai{roreres|i ee en a A LL. BAT EYED BET LET ee re e e er Ed RS EN Pa Te BS BS a (ae PEEOS MESZAS P EDEN RATING NETRA BSSONY BS Sr eal ree a ee eee eee al ee eel FIT: ey —— t a 100 aD SESS GETTY CARO aaa ee = ; |__| es ee ee SOURCE: «=—«100s‘50 200 1000 500 COOLING RATE AT 600°C a a 10% ks ED 50% a a 5 10 20 C PER MIN ee ee 2 ee I H for Engineering Steels, ASM, 1980 M. Atkins, Atlas of Continuous Cooling Transformation Diagrams aa Ena Atlas of Time-Temperature Diagrams 444 4 Ni Cr Mo Composition: 0.34% C - 0.50% Mn - 0.20% Si - 0.020% P 0.020% S - 1.80% Cr - 0.35% Mo - 4.00% Ni Grain size: 9 Austenitized at 850°C (1562°F) WaT WT — 1ali asi Pp SLM 150 200 mm WATER 1/2 Cr Mo V Composition: 0.12% C - 0.55% Mn - 0.25% Si - 0.020% P 0.020% S - 0.40% Cr - 0.60% Mo - 0.15% Ni - 0.25% V Grain size 5-6 Austenitized at 920°C (1688°F) 900 Acy 800 Ac, 700 ot = Fe -—4-_ 400 M, eee ——$—_ — —f a Raa Sa a So ta)Geezea ew, a Se Sea ea == e=Sr 200 (a ieee = el an eae Se ees a) aaa ee oe) 0 mm 0.1 BAR DIAMETER , 4 © eet ati! $00 1______mm WATER SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 a Atlas of Time-Temperature Diagrams 445 1 Cr Mo V Composition: 0.22% C - 0.60% Mn - 0.30% Si - 0.020% P 0.020% S - 1.15% Cr - 0.60% Mo - 0.13% Ni - 0.22% V Grain size: 6-7 Austenitized at 960°C (1760°F) 500 200 20 50 : 1o0 : 150) 200 4+—___1 200 200 |__| 300 ______t 500 1000 2000 mm ____j_ ___l___l_ air S00 300 sm) —_t_____mm OIL 1. 1 WATER mm 1-1/4 Cr Mo V Composition: 0.37% C - 0.62% Mn - 0.29% Si - 0.032% P 0.026% S - 1.19% Cr - 0.59% Mo - 0.13% Ni - 0.22% V Grain size: 7-9 Austenitized at 950°C (1742°F) ZZ Soa | ~~ | 20 = 100 SOURCE: PER 10 ee MIN S02) ASM, 1980 M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, LS aa Atlas of Time-Temperature Diagrams 446 2-1/2 Cr Mo V Composition: 0.30% C - 0.60% Mn - 0.25% Si - 0.010% P - 0.015% S - 2.50% Cr - 0.20% Mo - 0.30% Ni - 0.18% V Grain size: 9-10 Austenitized at 900°C (1652°F) 900 800 ISTART] p= J aA 10% 50% 600 °C Ew 6 ure 500 [ee 400 at | — ina a 300 | | 90% en = 200 100 =e 50 eee =e St 50 100 100 1 180 200 3M) 500 se ss aed Ve 1S0'> (200; J 300 mm OIL 500 po hmmm 6WATER 3-1/4 Cr Mo V Composition: 0.39% C - 0.60% Mn - 0.15% Si - 0.020% P - 0.020% S - 3.25% Cr - 0.95% Mo - 0.20% V Grain size: 9-10 Austenitized at 950°C (1742°F) 900 Acy 800 Ac, 700 = START 600 aS °C a Ae aaa ee joer ee es Ee ee a Se be eS Pet gyGasset Roam Yes Cae Re aaa ae ee eee SS ee Ee ee | |__|__| — “COOLING RATE AT aC mm0.1 Ss Se 0.2 ae Os eee ee eS a =—«100— 10 ee a ee 50 ee ee SL ee 100150 ISO PE 20 ee ee So 200-300 200 |] eet eee ee LOS a I ee 100200 Ea a |B a Ph BAR DIAMETER i ee eae C PER MIN 20 : a 2 SSS moe cera a ee OS Fa wey cal ee J en eee eS ee ae 5 =@ St ee ge ee Re ee ee SSS Ss I ee ee a eee [=aaner el oe as aecaer aed 1000 S00 200 0 PA HZ 50%) mis ee ee Be ee ee Be ee a ee See SS SS ES 2S SE BS Be Ree SS oe 10% TF [| i === =F . mal = ie ee eee 3 = | at aaa | all + ed 500 1000 2000 mm tI 500 mm OIL mm WATER SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 ——_—_————————————————— OEE EE Atlas of Time-Temperature Diagrams 1 Cr Al Mo Composition: 0.33% C - 0.65% Mn - 0.30% Si - 0.020% P 0.020% S - 1.15% Cr - 0.20% Mo - 1.00% Al Grain size: fine Austenitized at 900°C (1652°F) 900 800 FAc 700 600 °C ™ FoR ee Baas ined Seni) era Se 2 ea ee | eee iy we com 300 200 100 Plt (ie te Roa COOLING nant (AS | 2 RATE AT 800 C Wife one BAR DIAMETER ‘C PER A MIN eS eS 150. 200 mm OIL mm WATER 1-1/2 Cr Al Mo Composition: 0.31% C - 0.55% Mn - 0.30% Si - 0.020% P 0.020% S - 1.60% Cr - 0.20% Mo - 1.10% Al Grain size: fine Austenitized at 900°C (1652°F) 90) 800 Fic, 700 600 °C a 400 300k aes PES eee Pa M, Ff = 200 ih a eS ae ae gee -—}ae ate a Ee es FS, ars Ear Rn = ie = | = =a =a ed x Ke 500 a 200 COOLING RATE AT 800 C 100 50 5 20 10 C PER MIN — 5 2 W H Steels, ASM, 1980 SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Atlas of Time-Temperature Diagrams 448 1-1/2 Cr Al Mo Composition: 0.39% C - 0.55% Mn - 0.30% Si - 0.020% P0.020% S - 1.60% Cr - 0.20% Mo - 1.10% Al Grain size: fine Austenitized at 900°C (1652°F) 1-1/2 Cr Al Mo Composition: 0.42% C - 0.65% Mn - 0.30% Si - 0.020% P 0.020% S - 1.65% Cr - 0.33% Mo - 1.00% Al Grain size: fine Austenitized at 900°C (1652°F) 20 C PER 10 MIN SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 449 1-1/2 Mn Ni Cr Mo Composition: 0.27% C - 1.35% Mn - 0.24% Si - 0.025% P 0.025% S - 0.45% Cr - 0.20% Mo - 0.75% Ni Grain size: 7 Austenitized at 850°C (1562°F) rn 50 100 150 —__ 100 1-1/2 Mn 200 300 300 st —__.___ ~ , 150 mm OIL 200, Ni Cr Mo Composition: 0.33% C - 1.35% Mn - 0.24% Si - 0.025% P 0.025% S - 0.45% Cr - 0.20% Mo - 0.75% Ni Grain size: 7 Austenitized at 850°C (1562°F) A MIA ee are , ", Eas) [=] a EY ey, SSE ae aa (a aaa = mm 0.1 BAR DIAMETER 0.2 SS p= eae 0.5 oie se epee 5 — 10 10 1 ee 2 § 20 10 50 == att) i 0 10 C PER MIN 100 200 ee aes Se 5 50) 100 20 100 50 (eerie 180 & a 150 200 4 2” 300 Seer 300 ne 1 sno 500 S00 1000 =i = mm OIL mm WATER: 2000 mm 1_AIR SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Atlas of Time-Temperature Diagrams 450 1-1/2 Mn Ni Cr Mo Composition: 0.37% C - 1.35% Mn - 0.24% Si - 0.025% P - 0.025% S - 0.45% Cr - 0.20% Mo - 0.75% Ni Grain size: 7 Austenitized at 850°C (1562°F) 1000 S00 200 COOLING RATE AT 700-C 100 sO) 150 20) =! 1-1/2 Mn 200 30 —__|—_ = 3K) : 300 SUK) mm OIL mm WATER Ni Cr Mo Composition: 0.38% C - 1.40% Mn - 0.25% Si - 0.030% P 0.030% S - 0.50% Cr - 0.20% Mo - 0.75% Ni Grain size: 7-8 Austenitized at 850°C (1562°F) a 150 150 200 ete 200 SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 nS a en ee ee Atlas of Time-Temperature Diagrams 451 1-1/2 Mn Ni Cr Mo Composition: 0.43% C - 1.35% Mn - 0.24% Si - 0.025% P 0.025% S - 0.45% Cr - 0.20% Mo - 0.75% Ni Grain size: 6-7 Austenitized at 850°C (1562°F) NE 10% y [| ———— Ps UN oe 90% 20 COOLING RATE AT 700 C Sas SS SS oe aes C PER MI a mm WATER 12 Cr Mo V (SAE 51420 mod) Composition: 0.20% C - 0.70% Mn - 0.25% Si - 0.030% P 0.030% S - 12.00% Cr - 1.00% Mo - 0.65% Ni - 0.30% V Grain size: 7-9 Austenitized at 1000°C (1832°F) 900 PAs °€ BAR 5 DIAMETER 0 »” — —— 10 20 50 100 150 200-300 5) $A mm SO 100 150) 2) 300 50) OIL mm WATER SOURCE: M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, ASM, 1980 Other Steels I-T Diagrams Atlas of Time-Temperature Diagrams 455 8640 & 8740 Composition: 0.42% C - 0.89% Mn - 0.30% Si - 0.018% P 0.015% S - 0.58% Ni - 0.52% Cr - 0.24% Mo Grain size: 8-9 Austenitized at 900°C (1650°F) 700 600 500 Temperature CHardness Rockwell Time, seconds SOURCE: Battelle Memorial Institute for Inco AMS 6416 (300-M) Composition: 0.43% C - 0.83% Mn - 1.55% Si - 0.021% P - 0.009% S - 1.84% Ni - 0.91% Cr - 0.40% Mo - 0.12% V Grain size: 5-7 Austenitized at 850°C (1575°F) Temperature CHardness Rockwell Time, seconds SOURCE: Bethlehem Steel Corp. Atlas of Time-Temperature Diagrams 456 AMS 6418 Composition: 0.22% C - 1.30% Mn - 1.36% Si - 1.88% Ni - 0.22% Cr - 0.38% Mo Austenitized at 870°C (1600°F) C F 800 1400 700 1200 600 1000 500 2 = 5 = 400 S 800 3 c 300 =: 600 z= 3 = 200 | 400 * Aerospace Materials Specification 100 |— 200 Te 0 OP Bw 10? 10° 104 10° 10° Time, seconds SOURCE: Crucible Steel Company AMS 6428 and 6434 Composition: 0.32% C - 0.72% Mn - 0.19% Si - 0.012% P 0.021% S - 1.70% Ni - 0.82% Cr - 0.31% Mo - 0.12% Cu - 0.17% V Grain size: 7-8 Austenitized at 900°C (1650°F) 1400 700 1200 1000 £ 3 aSo—} E 400 A+FHC 800 JESSIE ee a 32 ¥ao F+C ss Mo ea ate mie = ee 300 |.800 rat| = = 3 « ee at hea 200 + 400 1 Min o5 1 2 #5 10 1 Hour 10? 10? Time, seconds SOURCE: Battelle Memorial Institute for Inco ae) es 1 Day 104 105 1 Week 108 Atlas of Time-Temperature Diagrams 457 L6 Tool Steel Composition: 0.72% C - 0.35% Mn - 0.23% Si - 0.018% P 0.010% S - 1.75% Ni - 0.94% Cr Grain size: 9 Austenitized at 830°C (1525°F) 1400 1200 1000 Ss ao Temperature Time, seconds SOURCE: Carpenter Technology Corp. L6 Tool Steel Composition: 0.75% C - 0.70% Mn - 0.25% Si - 1.35% Ni 0.75% Cr - 0.30% Mo - 0.15% V Austenitized at 845°C (1550°F) 700 Temperature CHardness Rockwell Ly eer Ce oT 10? 10° Time, seconds SOURCE: Crucible Steel Company 104 105 10° Atlas of Time-Temperature Diagrams 458 Al10 Tool Steel Cc omposition: 1.36% C - 1.84% Mn - 1.14% Si - 1.81% Ni 0.15% Cr - 1.41% Mo - 0.38% Graphite Austenitized at 795°C (1460°F) 1400 1200 1000 400 Temperature CHardness Rockwell Time, seconds SOURCE: Timken Roller Bearing Company 2315 Composition: 0.19% C - 0.57% Mn - 0.22% Si - 0.015% P 0.023% S - 3.60% Ni - 0.09% Cr - 0.05% Mo Grain size: 5-6 Austenitized at 900°C (1650°F) 700 3 C Rockwell Hardness SOURCE: Inco Atlas of Time-Temperature Diagrams 459 2340 Composition: 0.40% C - 0.89% Mn - 0.31% Si - 0.021% P 0.011% S - 3.34% Ni - 0.11% Cr Grain size: 8 Austenitized at 815°C (1500°F) °F Temperature Grain Size=8 Martensite Range sit Austenitized se Se ST ikon @ 1Oom2s ll SPtiO> ae <5 tO Be 8 40> Time - (Seconds) SOURCE: A.R.Troiano, "The Transformation and Retention of Austenite in SAE 5140, 2340, and T1340 Steels of Comparable Hardenability,” Transactions of the ASM, Vol 41, 1949, pp 1093-1112 9% Nickel Low Carbon Steel Composition: 0.10% C - 0.77% Mn - 0.28% Si - 8.56% Ni 0.05% Cr - 0.02% Mo Grain size: 9-10 Austenitized at 800°C (1475°F) AUSTENITIZED 30MIN AT 1475°F AS QUENCHED HARDNESS 41.0 RC. GRAIN SIZE 9-10 ANALYSIS Si —0.28% Ni —856% <2°F TEMPERATURE RAPID BAINITE REACTION REGION OF INCOMPLETE REACTION TIME IN SECONDS SOURCE: C.W. Marschall, R.F. Hehemann, A.R. Troiano, "The Characteristics of 9% Nickel Low Carbon Steel,” Transactions of the ASM, Vol 55, 1962, pp 135-148 460 Atlas of Time-Temperature Diagrams 3120 Steel Composition: 0.21% C - 0.61% Mn - 0.24% Si - 0.017% P - 0.016% S - 1.35% Ni - 0.67% Cr - 0.02% Mo - 0.04% Cu Grain size: 80% 7-8, 20% 4-5 Austenitized at 900°C (1650°F) 700 600 a So—) 2 Temperature 300 Rockwell CHardness 200 * Calcula Time, seconds SOURCE: Battelle Memorial Institute for Inco 3190 Steel Composition: 0.91% C - 0.65% Mn - 0.23% Si - 0.013% P - 0.026% S - 1.35% Ni - 0.60% Cr - 0.03% Cu Grain size: 5-7 Austenitized at 900°C (1650°F) 800 700 600 500 § E 400 : 3 = = 300 3 3 « 200 100 0 SOURCE: Battelle Memorial Institute for Inco Atlas of Time-Temperature Diagrams 461 3240 Steel Composition: 0.48% C - 0.52% Mn - 0.29% Si - 0.025% P 0.021% S - 1.76% Ni - 1.19% Cr - 0.05% Mo - 0.06% Cu Grain size: 6-7 Auatenitized at 900°C (1650°F) c F 1400 is 700 hey oor i = Bom eee Se a OI ” SSMiIEIINE =| 33 1000 500 A+F+C ae ee 4 S = E 400 800 % xo 2 @ 47 = goo | £00 3 $ = [—4 200 |- 400 100 | 299 58 0 QS SOURCE: 1 2 = 5) 10 10? 10° 10¢ 10° 10° Battelle Memorial Institute for Inco 3330 Steel Composition: 0.29% C - 0.21% Mn - 0.06% Si - 0.026% P 0.017% S - 3.25% Ni - 1.45% Cr Grain size: 7 Austenitized at 845°C (1550°F) 1200 1000 s ao 400 Temperature CHardness Rockwell 200 | 400 150, 1942, pp 283-288 SOURCE: B.M. Loring, "The S-Curve of a Chromium-Nickel Steels,” Transactions of the AIME, Vol Atlas of Time-Temperature Diagrams 462 Krupp 0.15C Steel Composition: 0.15% C - 0.45% Mn - 0.20% Si - 0.013% P 0.020% S - 4.03% Ni - 1.54% Cr - 0.03% Mo Grain size: 7-9 Austenitized at 900°C (1650°F) F- 30 Mins, Auslenitized 1650 ———— t Bela I6OO Cc ih | Fe Grain Size 7-9 800 — — —|— 1400 | eae ee 1200 ¥ 700 A+F A27 A+F+C 42 3832237 5 |\4 eyo 5 ig looof & ey fF ath a & 600 >~ ial 12 500 Os 4\ 800 400 36 th 600 CMM Re 43-44 Quenched Hardness 200 400 Zoe 2) a ee Mra oO 200 (nero uC Sao oe = ‘Qiao |Gs se aes 6 & Oo nO — 100 ator Time -Seconds SOURCE: A.R. Troiano, J.E. DeMoss, "Transformations in Krupp-Type Carburizing Steels,” Transactions of the ASM, Vol 39, 1947, pp 788-800 Krupp 0.90C Steel Composition: 0.89% C - 0.39% Mn - 0.19% Si - 4.00% Ni - 1.58% Cr Grain size: 7-8 Austenitized at 800°C (1475°F) ee eee ee ee ee y | -|900 1600 _—1_ Analysis cSMn 089 039 Si O19 Austenitized 1475F -30Mins-——} : Grain Size 7-8 Creal OS: Ni 400 800 1400 A\' = Austenite Plus Undssolved Carbides 700 A (200 S| 62 6 63. 62 60 62 62 & 58 40 33.3! be Slee |es0 58 32 e!45 5 800 5I 4 4 ae al Ss 31 4 500 36 [34 = 40 +400 600 63 46300 As Quenched Hardness Rc 62-63. 400 = 200 Martensite loriensile RiRonge gf ¢ My Slightly Below \inus 11OFee ee 200 | 10 2 E : ¢ 6 So] Sz al er lagal cal oo : oe 2s Time -Seconds 104 2.5 aaval 102 g | it a ia Sous —j——— Yael % i 10° 2. 5 100 io® SOURCE: A.R. Troiano, J.E. DeMoss, "Transformations in Krupp-Type Carburizing Steels,” Transactions of the ASM, Vol 39, 1947, pp 788-800 Atlas of Time-Temperature Diagrams 463 4330 Steel Composition: 0.33% C - 0.69% Mn - 0.41% Si - 0.043% P 0.028% S - 1.41% Ni - 0.72% Cr - 0.28% Mo Grain size: 7-8 Austenitized at 905°C (1660°F) 700 600 1000 2 500 32 z- 37 : = a2 43 5 : 45 300 3 200 100 10° SOURCE: C.T. Eddy et al., "Time-Temperature Transformation Curves for Use in the Heat-Treatment Transactions of the AIME, Vol 162, 1945, pp 250-267 of Cast Steel,” 4330 Mod. (Si + V) Steel Composition: 0.34% C - 0.98% Mn - 1.37% Si - 0.015% P 0.005% S - 1.82% Ni - 0.95% Cr - 0.42% Mo - 0.14% V Grain size: 4 Austenitized at 900°C (1650°F) 700 600 400 Temperature 300 Rockwell CHardness 200 |— 400 100 Time, seconds SOURCE: Frankford Arsenal, Report R-1627, April 1962 Atlas of Time-Temperature Diagrams 464 4630 Steel Composition: 0.32% C - 0.74% Mn - 0.31% Si - 0.015% P - 0.014% S - 1.70% Ni - 0.12% Cr - 0.23% Mo Grain size: 8 Austenitized at 845°C (1550°F) 600 onSoSo > =}—) Temperature 300 |CHardness Rockwell 200 “Calculated Temperat + Time, seconds SOURCE: R.M. Parke, A.J. Herzig, "Hardenability of Molybdenum S.A.E. Steels,” Metals and Alloys, Vol 11, 1940, pp 6-13 4695 Steel Composition: 0.95% C - 0.58% Mn - 0.24% Si - 1.79% Ni 0.25% Mo Grain size: 50% 5-6, 50% 2-3 Austenitized at 925°C (1700°F) 1400 700 600 500 400 Temperature 300 600 CHardness Rockwell 200 400 100 200 Time, seconds SOURCE: A.R. Troiano for Inco 465 Atlas of Time-Temperature Diagrams SAE EX-1 Steel Composition: 0.17% C - 0.49% Mn - 0.29% Si - 0.010% P 0.015% S - 5.07% Ni - 0.18% Cr - 0.24% Mo - 0.10% Cu Grain size: 5-6 Austenitized at 925°C (1700°F) OE Til7 ELH : ue 700 i Ac, i omen ae oes =Cle = = 1000 cm _ Are 800 400 Temperature 600 CHardness Rockwell * Calculated Temperature 200 05 SOURCE: 1 2 5 10 10? 10° 104 10° Inco SAE EX-2 Steel Composition: 0.69% C - 0.42% Mn - 0.80% Ni - 0.20% Cr 0.13% Mo Grain size: 8 Austenitized at 830°C (1525°F) 700 araaseaaee 600 / AoKts a —Jo \ 3 800 Temperature 300 XN AHL 7 600 200 4 Time, seconds SOURCE: Inco 10° 466 Atlas of Time-Temperature Diagrams 8695 Steel Composition: 0.95% C - 0.82% Mn - 0.23% Si - 0.56% Ni 0.52% Cr - 0.19% Mo Grain size: 10% 3-4, 90% 6-7 Austenitized at 925°C (1700°F) 1400 700 1200 600 1000 400 Temperature 300 200 |- 400 Time, seconds SOURCE: A.R. Troiano for Inco 9310 Steel Composition: 0.11% C - 0.70% Mn - 3.19% Ni - 1.26% Cr - 0.11% Mo Grain size: 7 Austenitized at 845°C (1550°F) Temperature, F (c) Hardness, Re L-T Diagram Time,s | 2 SOURCE: Metal Progress, Vol 114, mid-June 5 10 10° 1978, p 149 10? 10* 10° 10° Atlas of Time-Temperature Diagrams 467 9315 Steel Composition: 0.17% C - 0.59% Mn - 0.30% Si - 3.18% Ni 1.12% Cr - 0.13% Mo Grain size: 7-8 Austenitized at 925°C (1700°F) Cc F 800 1400 700 1200 600 1000 500 A+F+C 2 2 os s = 400 800 Ends 7 i s = 300 = g 600 z 2 200 | 400 100 | 299 0 Time, seconds SOURCE: R.F. Hehemann, A.R. Troiano for Inco 9395 Steel Composition: 0.95% C - 0.60% Mn - 0.22% Si - 3.27% Ni 1.23% Cr - 0.13% Mo Grain size: 10% 5-6, 90% 7-8 Austenitized at 925°C (1700°F) C F 800 |1400 700 |1200 600 1000 500 |- 2 800 a E 400 ;- g 2 = 3 : o soo |. 600 = = 200 | 400 100 |— 200 0 L Time, seconds SOURCE: A.R. Troiano for Inco i —— Atlas of Time-Temperature Diagrams 468 ee 6F4 Tool Steel Composition: 0.22% C - 0.50% Mn - 0.30% Si - 0.016% P 0.026% S - 2.80% Ni - 2.95% Mo Grain size: 5 Austenitized at 1035°C (1900°F) c F A 800 alee Miscnlia a SaSaln: a 1400 JL A, A | tI 700 1200 600 A 1000 +—+- 500 s NE s 5 E 400 - 800 = SI to tget 600 300 t 4 y / ain. 50% | / | SSS Lo = F+C =a) | eet ee (ee i ai) 7,8 = Ns a 3 = ** Estimated Temperatura $ [4 200 ae * Classification in Metals Handbook, Am. Soc. Metals, 8th ed., Vol. |, 1961, p. 638 100 el 1 Hour 1 Day Q 1 Week] 45 | 10° 104 105 10° Time, seconds SOURCE: Heppenstall Company 6F5 Tool Steel Composition: 0.55% C - 0.90% Mn - 1.00% Si - 2.75% Ni 0.40% Cr - 0.45% Mo - 0.13% V Austenitized at 870°C (1600°F) 700 600 500 2 = = — 5 400 8 c eg = o 300 = = Ss = 200 | 400 “lr | “Classification in Metals Handbook, Am. Soc. Metals, 8th ed., Vol. |, 1961, p. 638 = 100 | 200 60 OH 1 2 8 0 10? 10° Time, seconds SOURCE: _—_— Latrobe Steel Company —...khkhv_—_C.RON SVS —s"'Terr— a 104 105 10° Atlas of Time-Temperature Diagrams 469 2-3/4 Nickel Forging Steel Composition: 0.29% C - 0.77% Mn - 0.23% Si - 0.34% P 0.31% S - 2.72% Ni - 0.04% Cr - 0.05% Mo Grain size: 6-8 Austenitized at 845°C (1550°F) F 1400 |} 700 1200 600 1000 500 Temperature 300 CHardness Rockwell 200 400 200 Time, seconds SOURCE: Battelle Memorial Institute for Inco 2-1/2 Nickel Saw Steel Composition: 0.76% C - 0.41% Mn - 0.20% Si - 0.012% P 0.023% S - 2.50% Ni - 0.13% Cr - 0.08% Mo - 0.12% Cu Grain size: 9 Austenitized at 755°C (1382°F) 700 600 500 400 Temperature 10° Time, seconds SOURCE: Heal and Mykura, Metal Treatment and Drop Forging, Vol 17, 1950 Atlas of Time-Temperature Diagrams 470 VCM Nitriding Steel Composition: 0.32% C - 0.76% Mn - 0.014% P - 0.018% S - 0.70% Ni - 1.06% Cr - 1.01% Mo Grain size: 7-8 Austenitized at 900°C (1650°F) C F 800 1400 Soe = 700 1200 600 1000 = 500 2 3 5 800 al sacle ze400 2 4} ‘ +--+ ad 4} ” = = = 4 os |__| 600 300 Bainite Reaction Ends / | 4_| | hy 4-4 telat = z 3 [-4 Bev 200 | 400 100 — 200 eae ak 1 Min 0 05 1 2 5 10 10? 10° 104 105 10° Time, seconds SOURCE: A.R. Troiano for Inco 2-1/2Ni-1/2Mo-V Turbine Rotor Steel Composition: 0.34% C - 0.71% Mn - 0.22% Si - 0.039% P - 0.028% S - 2.52% Ni - 0.14% Cr - 0.42% Mo - 0.02% V Grain size: 6-7 Austenitized at 900°C (1650°F) c F 1400 700 1200 600 1000 500 2 eS Pe a: Z a = 300 = ° 600 S Zz : 200 | 400 100 200 0 Time, seconds SOURCE: Battelle Memorial Institute for Inco Atlas of Time-Temperature Diagrams 471 5-1/4Ni-1/4Mo-V Composition: 0.23% C - 0.52% Mn - 0.25% Si - 5.35% Ni - 0.20% Cr - 0.27% Mo - 0.08% V Grain size: 8 Austenitized at 900°C (1650°F) for 16 h; cooled at 40°C (100°F)/h; reaustenitized at 785°C (1450°F) for 16h 700 600 naSo= r=) So Temperature 300 200 100 05 1 2 5 10 10? 10° 104 10° 10° Time, seconds SOURCE: Yeo and Beasley, U.S. Patent 2,992,148, July 11, 1961 Ni-Cr-Mo-V-Cu-B Composition: 0.15% C - 0.92% Mn - 0.26% Si - 0.014% P 0.020% S - 0.88% Ni - 0.50% Cr - 0.46% Mo - 0.32% Cu - 0.06% V - 0.003% B Grain size: 6-7 Austenitized at 915°C (1675°F) 700 Temperature Time, seconds SOURCE: Vessels,” Welding Journal, W.D. Doty, "Properties and Characteristics of a Quenched and Tempered Steel for Pressure Vol 34, 1955, pp 4258-4118 472 Atlas of Time-Temperature Diagrams 3-1/4Ni-Cr-Mo Composition: 0.33% C - 0.57% Mn - 0.23% Si - 0.005% P 0.007% S - 3.26% Ni - 0.85% Cr - 0.09% Mo Grain size: 9 Austenitized at 835°C (1535°F) 700 onsc— Temperature 200 100 SOURCE: Inco 3Ni-Cr-Mo-V Composition: 0.32% C - 0.51% Mn - 0.19% Si - 0.013% P - 0.009% S - 3.02% Ni - 1.37% Cr - 0.48% Mo - 0.18% V Grain size: 9 Austenitized at 835°C (1535°F) 1400 700 1200 600 1000 500 § is 59 800 aa ES OE ST) A PS 58 E 400 & 2 = 300 5 = 600 © :3 co 200 f- 400 100 | 200 0 59 ey EO! tp 10? 103 Time, seconds SOURCE: Inco 104 105 10° Atlas of Time-Temperature Diagrams 473 4-1/4Ni-1-1/2Cr-1/10Mo Composition: 0.35% C - 0.44% Mn - 0.14% Si - 0.016% P 0.008% S - 4.23% Ni - 1.43% Cr - 0.13% Mo Grain size: 9 Austenitized at 820°C (1510°F) 1400 700 1200 1000 Temperature 8 — 300 |.600 ° z é 200 | 400 100 | 200 0 05 SOURCE: Inco 4-1/4Ni-1-1/2Cr-1/3Mo Composition: 0.33% C - 0.51% Mn - 0.17% Si - 0.013% P 0.009% S - 4.16% Ni - 1.44% Cr - 0.31% Mo Grain size: 9 Austenitized at 820°C (1510°F) Ci OF 800 1400 700 1200 57 600 35 1000 2 500 § l5 - 80 800 300 |.809 a 200 |- 400 100 F 200 60 0 Time, seconds SOURCE: Inco Atlas of Time-Temperature Diagrams 474 5% Nickel Steel, 0.50% C 5% Nickel Steel, 0.80% C Composition: 0.51% C - 0.23% Mn - 0.17% Si - 0.006% P - Composition: 0.79% C - 0.23% Mn - 0.22% Si - 0.007% P - 0.017% S - 5.26% Ni Austenitized at 1000°C (1830°F) for 15 0.015% S - 5.25% Ni Austenitized at 1000°C (1830°F) for 15 min min fray ARSE Ge OS eae ‘ © 500;—\ @w © r w 5 5 3 400 re) ao a w a (2 & 300 is Ms 2 200 100 10 10° 10° 10* {0° 10° 10% IOv WOtetOe Time, seconds 10% 10" 6° 1G" Time, seconds 5% Nickel Steel, 1.2% C 7-1/2% Nickel Steel, 0.25% C Composition: 1.26% C - 0.21% Mn - 0.23% Si - 0.009% P 0.019% S - 5.30% Ni Austenitized at 1000°C (1830°F) for 15 0.011% S - 7.61% Ni Austenitized at 1000°C (1830°F) for 15 Composition: 0.29% C - 0.15% Mn - 0.13% Si - 0.010% P min - mae, E © E 3 =} 3 a] e XQ Bainite 5 RK as 1.26%C 5.30%Ni 10 102 103 10% 10° 10® 107 Time, seconds iO 102 10° 10* 10° 10® 107 Time, seconds SOURCE: J.P. Sheehan, C.A. Julien, A.R. Troiano, "The Transformation Characteristics of Ten Selected Nickel Steels,” Transactions of the ASM, Vol 41, 1949, pp 1165-1184 Atlas of Time-Temperature Diagrams 475 7-1/2% Nickel Steel, 0.50% C Composition: 0.48% C - 0.22% Mn - 0.16% Si - 0.006% P 0.16% S - 7.61% Ni Austenitized at 1000°C (1830°F) for 15 min 7-1/2% Nickel Steel, 0.80% C Composition: 0.79% C - 0.21% Mn - 0.22% Si - 0.008% P 0.016% S - 7.53% Ni Austenitized at 1000°C (1830°F) for 15 min ie) ‘v O 2 E 2 5 2 5 3. & wo oad O.77%C 10.01% Ni i 10> 10> 10?" 10° Time, seconds 1I7%C 10.37% Ni 10°10? iO, 102 40> 107" 10° 10°10 4 Time, seconds 7-1/2% Nickel Steel, 1.2% C 10% Nickel Steel, 0.50% C Composition: 1.18% C - 0.22% Mn - 0.22% Si - 0.008% P 0.016% S - 7.64% Ni Austenitized at 1000°C (1830°F) for 15 Composition: 0.51% C - 0.21% Mn - 0.16% Si - 0.005% P 0.016% S - 10.11% Ni Austenitized at 1000°C (1830°F) for 15 min min © e 2 p=] & o 5 _— ia .2) © ® a e ° fd e 0.48%C 7.61% Ni iO... Time, SOURCE: seconds 10% 10° 10; tOr O° 105 Time, seconds J.P. Sheehan, C.A. Julien, A.R. Troiano, "The Transformation Characteristics of Ten Selected Nickel Steels,” Transactions of the ASM, Vol 41, 1949, pp 1165-1184 Atlas of Time-Temperature Diagrams 476 10% Nickel, 0.80% C Composition: 0.77% C - 0.20% Mn - 0.22% Si - 0.006% P 0.019% S - 10.01% Ni Austenitized at 1000°C (1830°F) for 15 10% Nickel Steel, 1.2% C Composition: 1.17% C - 0.21% Mn - 0.22% Si - 0.009% P0.019% S - 10.30% Ni Austenitized at 1000°C (1830°F) for 15 min min Temperature °C Temperature°C 10 ©«102 103 10% 105 108 107 10° "1o*” Time, seconds 10> "10* 10> 10° 10” Time, seconds SOURCE: J.P. Sheehan, C.A. Julien, A.R. Troiano, "The Transformation Characteristics of Ten Selected Nickel Steels,” Transactions of the ASM, Vol 41, 1949, pp 1165-1184 850 800 Fe-1V-0.2C Steel 750 Composition: 0.19% C - 0.92% V Austenitizing temperature not reported 700 650 5 10 5SOO© eS900 aS 850 < Fe-1V-1AI-0.2C Steel 80 Composition: 0.21% C - 0.96% V - 0.97% Al Austenitizing = temperature not reported W 75 Ke Fe-1V-1.5Ni-0.2C Steel Composition: 0.20% C - 1.46% Ni - 0.96% V Austenitizing temperature not reported 10 SOURCE: TIME,s 50 100 P.R.Wilyman, R.W.K. Honeycombe, "Relation Between Gamma-Alpha Transformation Kinetics and Mechanical Properties of Vanadium Steels,” Metal Science, Vol 16, June 1982, pp 295-303 Atlas of Time-Temperature Diagrams Fe-0.19C-1.81Mo 477 Steel Fe-4Mo-0.4C Composition: 0.19% C - <0.002% Mn - 0.004% Si - 0.006% P - Steel Composition: 0.43% C - 4.0% Mo Austenitized at 1150°C 0.002% S - 1.81% Mo Austenitizing temperature and grain size (2100°F) not reported 800 pes = = uw ©) = Ferrite + Carbide w 700 a a re x < 2 Pa . a (10% Pearlite) = Austenite ud = 20 32 . w 600 99 (10% Pearlite) ~N FE-4M0-0.4C 2 510 10? 10? 10‘ LOG. TIME (minutes) / 2 ) 4 Log Reaction Time 5 (sec) 6 SOURCE: W.T. Reynolds, Jr., F.Z. Li, C.K. Shui, HI. Aaronson, "The Incomplete Transformation Phenomenon in FeC-Mo Alloys,” Metallurgical Transactions, Vol 21A, ASM, June 1990, p 1433 Fe-4Mo-1.0C Steel SOURCE: F.G. Berry, R.W.K. Honeycombe, "The Isothermal Decomposition of Austenite in Fe-Mo-C Alloys,” Metallurgical Transactions, Vol 1, ASM, December 1970, pp 3279-3286 Fe-2.3Mo-0.22C Steel Composition: 1.0% C - 4.0% Mo (2100°F) Austenitized at 1150°C Composition: 0.22% C - 2.3% Mo (2100°F) Austenitized at 1150°C 900 Proeutectoid Ferrite Austenite eee : : ; _ 800 = 700 30 --Carbide Line uw =w Ferrite + Carbide - 700 Ww a fi (15% Pearlite) = = ra a = 600 = is——___89 (10% Pearlite) < c-¢ _ q a. = 600 = ‘ 2 47 = uw = = Bainite 500 2 510 FE-2MO- 0.2C 439-Mg (Calc) FE-4MO-1C 107 10% ~— 10° LOG. TIME (minutes) 2 510 107 10° ~~ «10° LOG. TIME (minutes) SOURCE: F.G. Berry, R.W.K. Honeycombe, "The Isothermal Decomposition of Austenite in Fe-Mo-C Alloys,” Metallurgical Transactions, Vol 1, ASM, December 1970, pp 3279-3286 eee EIEN EEE SEES EEE Atlas of Time-Temperature Diagrams 478 Fe-C-Mo nl nn a Steels Compositions: ~0.15%C A = 0.14% C - <0.003% Mn - 0.0009% Si - 0.002% P - 0.002% S - <0.005% Ni - <0.004% Cr - 2.29% Mo - <0.002% Cu - <10 ppm N - 168 ppm O D = 0.15% C - <0.002% Mn - 0.001% Si - 0.001% P - 0.006% S 2.55% Mo G = 0.17% C - 0.002% Mn - 0.003% Si - 0.002% P - 0.004% S 0.030% Ni - 0.002% Cr - 2.94% Mo - 0.007% Co - 0.004% Cu 0.002% Al - 0.003% V - 0.004 N = 0.15% C - 3.40% Mo L = 0.15% C - 3.67% Mo O = 0.14% C - 3.98% Mo Compositions: ia B = 0.19% C - 2.30% Mo E=0.19% C-2.56% Mo H = 0.19% C - 2.98% Mo M = 0.17% C - 3.76% Mo P = 0.20% C- 4.00% Mo R = 0.18% C - 4.25% Mo « 625 3 § 600 & 575 § 550 675 Compositions: C = 0.24% C - 2.31% Mo F = 0.24% C - 2.56% Mo I = 0.26% C - 2.94% Mo K =0.25% C - 3.19% Mo N=0 .24% C - 3.76% Mo Q=0 .23% C - 4.00% Mo S=0. 24% C - 4.28% Mo ae ° ge Base @ PSE ‘Toy ° Austenitized at 1300°C (2370°F) SOURCE: G.J. Shiflet, H.I. Aaronson, "Growth Time, sec. and Overall Transformation Kinetics Above the Bay Temperature in Fe-C-Mo Alloys, Metallurgical Transactions A, Vol 21A, ASM, June 1990, p 1413 Fe-7.6Ni-0.48C Steel Composition: 0.48% C - <0.01% Mn - 0.011% Si - 0.003% P 0.004% S - 7.64% Ni - <0.01% Cr - <0.01% Al Austenitized at 1000°C (1830°F) for 15 min Fe-0.61C Steel Composition: 0.61% C - 0.01% Mn - 0.014% Si - 0.003% P 0.005% S - <0.01% Ni - <0.01% Cr - <0.01% Al Austenitized at 1000°C (1830°F) for 15 min t— Aci Fe-0.61C 600) Fe-76Ni-0.48C Austenitized Austenitized at 1000°C for 15min at 1000°C for 1S min 7 + 500} } (°C) Temperature ©& (°C) Temperature Time (min) Time (min) SOURCE: M. Umemoto, T. Furuhara, I. Tamura, "Effects of Austenitizing Temperature on the Kinetics of Bainite Reaction at Constant Austenite Grain Size in Fe-C and Fe-Ni-C Alloys,” Acta Metallurgia, Vol 34, No. 11, 1986, pp 2235-2245 — SSS ___ Atlas of Time-Temperature Diagrams 479 Fe-0.13C-2.99Cr Steel Composition: 0.18% C - 0.002% Mn - 0.001% Si - 0.001% P 0.006% S - 2.99% Cr Grain size: 2-1 Austenitized at 1300°C (2370°F) for 15 min 700 °C 600 Temperature Log time SOURCE: H. Goldenstein, H.I. Aaronson, "Overall Reaction Kinetics and Morphology of Austenite Decomposition Between the Upper Nose and the M, of a Hypoeutectoid Fe-C-Cr Alloy,” Metallurgical Transactions A, Vol 21A, June 1990, p 1465 Low Carbon 2.4-4.15% Composition: 0.16% C - <0.02% Ni - 2.40% Cr - <0.02% Mo - Cr Steels Composition: 0.17% C - <0.02% Ni - 3.16% Cr - <0.02% Mo <0.001% B Austenitized at 1000°C (1830°F) for 15 min <0.001% B Austenitized at 1000°C (1830°F) for 15 min 850 a 800 750- t /7 700 fe [ Vas pearlite start x2) ik a =, q : i- alloy 650 alloy C2 C1 pearlite finish pearlite finish 850 f (c) fam 3 F—A 804°C 800 = ; 750 === alloy C4 _---~ 700 pearlite finish ee OY ok a o oO(e) eae TIME, s Composition: 0.14% C - <0.02% Ni - 3.83% Cr - <0.02% Mo <0.001% B Austenitized at 1000°C (1830°F) for 15 min Composition: 0.15% C - <0.02% Ni - 4.15% Cr - <0.02% Mo <0.001% B Austenitized at 100°C (1830°F) for 15 min SOURCE: D.J. Swinden, J.H. Woodhead, "Kinetics of the Nucleation and Growth of Proeutectoid Ferrite in Some Iron-CarbonChromium Alloys,” Journal of The Iron and Steel Institute, Vol 209, November 1971, pp 883-899 480 Atlas of Time-Temperature Diagrams a eee 8 ee Fe-10Cr Steel Composition: Fe - 0.003-0.007% C - 9.6% Cr Austenitized at 1050°C (1920°F) for 10 min L % equiaxed e equiaxed a e O - < equiaxed a Widmanstatten Jo ferrite us ; and a equiaxed Widmanstatten a ferrite E ¢ = wi = bainitic fog -—- ferrite Ms martensite 10 10 LOG. TIME . seconds. 10 LOG. TIME , seconds. TTT diagram determined by isothermal dilatometry SOURCE: J.V. Bee, R.W.K. Honeycombe, 10 TTT diagram determined by optical metallography "The Isothermal Decomposition of Austenite in a High Purity Iron-Chromium Binary Alloy,” Metallurgical Transactions A, Vol 9A, April 1978, 587-593 Fe-C-Cr Steel Composition: Fe - 0.19% C - 4.5% Cr 800 A S Composition: Fe - 0.22% C - 10.6% Cr 800 99% at+¥+ carbide 700 ferrite / carbide aA+¥8+ L _ 700 5 = <q 600 E 600 ty a rm ra WW 500 wi500) / | ferrite / carbide carbide w austenite = ; austenite fod = bainite Ms 400 martensite 10 10 martensite 10 10 10 10 LOG. TIME , seconds. SOURCE: 10 LOG. 10 10 10 TIME , seconds. J.V. Bee, P.R. Howell, R.W.K. Honeycombe, "Isothermal Transformations in Iron-Chromium-Carbon Alloys,” Metallurgical Transactions A, Vol 10A, September & ae 1979, pp 1207-1212 —_—_—_———s en ssn _ Atlas of Time-Temperature Diagrams 481 Fe-Cr-C Steels Composition: Fe - 0.1% C - 13.0% Cr Austenitized at 1000°C (1830°F) for 1h ill 00 ee Ac! WV ba. Ac |ie a | LL e-FT1| °C TEMPERATURE °C TEMPERATURE TIME Influence of cobalt on the TTT curves of 0.1% C - 13.0% Cr Steel SOURCE: pp 11-22 1959, L. Habraken, D. Coutsouradis, "Cobalt in Steels. What Improvements May Be Expected,” Cobalt, No. 2, March ee ee Atlas of Time-Temperature Diagrams 482 HSLA Steel Composition: 0.11% C - 1.51% Mn - 0.34% Si - 0.003% S 0.029% Nb Grain size: 9 SAE 1513 + Nb (Cb) Compoosition: 0.12% C - 1.23% Mn - 0.23% Si - 0.03% Al (with and without 0.036% Nb) 1000 UNALLOYED Austenite 800 oO ° = 600 2 2 3 $ 400 E AUSTENITE BAINITE FERRITE _ PEARLITE oe = 200 TEMPERATURE, C 0 10° 10! 102 Time 103 104% in sec 1 10 102 10> 104% TIME, seconds Effect of 0.036% Nb on transformation SOURCE: W.M. Hof, M.K. Graf, H.-G. Hillenbrand, B. Hoh, P.A. Peters, "New High-Strength Large-Diameter Pipe Steels,” HSLA Steels: Metallurgy and Applications, ASM, 1986, pp 467 SOURCE: F. de Kazinsky, A. Axnas, Properties of Niobium-Treated Mild Annaler, Vol 147, No. 408, 1963 P. Pachleitner, "Some Steels,” Jernkantorets Croloy 1-1/4 Croloy 2-1/4 Composition: 0.10% C - 0.38% Mn - 0.62% Si - 0.013% P - Composition: 0.10% C - 0.42% Mn - 0.25% Si - 0.018% P 0.013% S - 0.27% Ni - 2.16% Cr - 0.96% Mo Grain size: 5-6 Austenitized at 1015°C (1860°F) for 45 min 0.012% S - 0.17% Ni - 1.15% Cr - 0.48% Mo - 0.10% Cu Grain size: 4-6 Austenitized at 1015°C (1860°F) for 40 min Cera Ar, 1510 F__ Ac, 1480 F— 1500 no} is] ae 1400 F 8 7 = x< wo iS} %1) = WwW Cc 2 oO = 345 3328£> me ~ _8s 8 jyts}5) Temperature, 381 Vickers hardness, load 5Kg (DPH) 1 SOURCE: 10 100 1000 Time, seconds 10,000 100,000 Intermediate Croloy Steels, Babcock & Wilcox 100 1000 Time, seconds 10,000 100,000 Atlas of Time-Temperature Diagrams 483 Croloy 3M Croloy 5 Composition: 0.12% C - 0.40% Mn - 0.26% Si - 0.017% P - Composition: 0.12% C - 0.46% Mn - 0.35% Si - 0.012% P 0.016% S - 0.20% Ni - 4.79% Cr - 0.54% Mo Grain size: 3-6 Austenitized at 1015°C (1860°F) for 40 min 0.016% S - 0.34% Ni - 2.95% Cr - 0.94% Mo Grain size: 4-6 Austenitized at 1015°C (1860°F) for 40 min (Ac3 1620 F) - Ac, 1505 F > e 2 ca fe a at 8 g S * o o i a a 2 S Ars 1445 F ~ a0 rd oO 9s oOo Ms Located at 865F sien eoaas Eee > 10 100 1000 —«:10,000 100,000 Time, seconds SOURCE: Intermediate Croloy Steels, Babcock & Wilcox Croloy 7 Croloy 9M Composition: 0.12% C - 0.53% Mn - 0.55% Si - 0.015% P 0.036% S - 0.07% Ni - 7.50% Cr - 0.45% Mo Grain size: 4-5 Austenitized at 1015°C (1860°F) for 40 min Composition: 0.12% C - 0.50% Mn - 0.45% Si - 0.013% P 0.017% S - 0.28% Ni - 8.40% Cr - 0.96% Mo Grain size: 4-5 Austenitized at 1015°C (1860°F) for 40 min = ae a Ac, 1515 F A Ar; 1430 F => ac 5 52] ne) uw 8 ve 22 a J a a rd iS Efe c fs oO = ¥ i= oO UD i § :2a Partial Austenite ——Transformation a transformation ends @ i= o Ps o < £ ra 2 g 2 g= o 500 1 Day 1 Month 100 1000 10,000 100,000 1,000,000 Time, seconds SOURCE: co) Intermediate Croloy Steels, Babcock & Wilcox 100 1000 10,000 Time, seconds 100,000 1,000,000 Atlas of Time-Temperature Diagrams 484 2-1/4Cr-1Mo Steel Composition: 0.10% C - 0.42% Mn - 0.25% Si - 0.018% P 0.013% S - 0.27% Ni - 2.16% Cr - 0.96% Mo Grain size: 5-6 Austenitized at 1015°C (1860°F) for 45 min 1600 Ac3 1600 F Acy 1480 F 1400 —— Ar3 1510F Ary 1330 F___. AUSTENITE + ee FERRITE + CARBIDE 1200 1000 TEMPERATURE, F 800 600 100 SOURCE: J.L. Schanck, "Isothermal Transformation Diagram for Chromium-Molybdenum Treatment,” Industrial Heating, 1969 Alloy Steels Facilitate Their Heat 0.2% Carbon Steel Composition: 0.2% C - 0.6% Mn - 1.0% Ni - 1.0% Cr - 0.4% Mo Austenitized at 900°C (1650°F) HARDNESS, HV10 e 239 e e e e e 335 324 330 289 252 e 178 e180 ® 178 e 180 ° 191 e 187 200 HVI0 Boece 1300 FINISH ISOTHERMAL TRANSFORMATION TEMPERATURE, C 0.5 1 ISOTHERMAL SOURCE: TRANSFORMATION ISOTHERMAL F TEMPERATURE, 2 4 8 TRANSFORMATION 16 TIME, hr 32 Douglas V. Doane, "Softening High Hardenability Steels for Machining and Cold Forming,” Journal of Heat Treating, Vol 6, No., 2, 1988, pp 97-109 a Atlas of Time-Temperature Diagrams 485 —————— en PS 32 Steel PS 55 Steel Composition: 0.22% C - 0.79% Mn - 0.32% Si - 0.87% Ni 0.52% Cr - 0.47% Mo Dashed lines show start and finish of Composition: 0.16% C - 0.81% Mn - 0.19% Si - 1.80% Ni 0.48% Cr - 0.66% Mo Dashed lines show start and finish of transformation after a 925°C (1700°F) austenitize. The solid transformation after a 925°C (1700°F) austenitize. The solid lines indicate completion of transformation after austeniti zation lines indicate completion of transformation after austenitization at 720°C (1330°F) at 720°C (1330°F) 680 700 660 680 wh 660 ui- = 640 s 4205 S = 2206 a a a 2 1000 SS SS ee ee 1 10 TIME AT TEMPERATURE SOURCE: F 10,000 ee Ee 1 2 4 TEMPERATURE, F 580 100,000 Seconds 100 0.5 1150 - 600 FINISH 100 640 wi 620 Fd azes 600 w E \, &+a0/C CTEMPERATURE, 620 oO 8 100 1000 1000 Minutes ne 2 IME A 16 Hours TEMPERATURE 10,000 10 100,000 100 0.5 1 2 1000 4 8 16 1050 Seconds Minutes Hours Douglas V. Doane, "Softening High Hardenability Steels for Machining and Cold Forming,” Journal of Heat Treating, Vol 6, No., 2, 1988, pp 97-109 3% Mo Low Carbon Tool Steels Composition: 0.22% C - 0.50% Mn - 0.30% Si - 0.016% P - Composition: 0.24% C - 0.63% Mn - 0.30% Si - 0.016% P - 0.026% S - 2.80% Ni - 2.95% Mo Austenitized at 1035°C 0.027% S - 2.95% Mo Austenitized at 1035°C (1900°F) for2h (1900°F) for 2h 1600 1400}-A, C 22 °F urefo)fe) lJ Mn 00 Steel Si Ni Mo 30 280 295 Austenitized - |QOO°F -2Hrs. 1200 bee tenitized - v Grain Size- ASTM *4 $1000 S Grain Size - ASTM *5 a 5800 @ [o)fe} Temperati Ms H [oD](eo)(e} MIONZOSONIN [EZ Seconds 209 5) ON ZO SONI 25 Minutes 510820 Hours Sallie. PSotD-2050' Seconds 9150100240 1 Time SmlORZOSON Minutes Time EC NES 10 20 50 100240 Hours Composition: 0.10% C - 0.50% Mn - 0.26% Si - 0.017% P 0.025% S - 2.95% Mo Austenitized at 1010°C (1850°F) for 2 h IgOO, TT] 1600} 1400) uu. 21200 £1000; 3J = 800 Austenitized - 1850 °F - 2Hrs. Grain Size-ASTM * 5 5 10 2080 Seconds SOURCE: | Minutes. 10 2030 Time R.B. Corbett, J.A. Succop, A. Feduska, "Alpha-Molybdenum 1954, pp 1599-1618 Steel C Mn Si Mo 1050 —26=209 Hot-Work 10 20 Hours 50100240 Die Steels,” Transactions of the ASM, Vol 46, Atlas of Time-Temperature Diagrams 486 Non-Superhardening Steel Composition: 0.43% C - 1.58% Mn - 0.42% Si - 0.022% P - 0.042% S - 0.24% Ni - 0.27% Cr - 0.12% Mo - 0.18% Co - 0.033% Sn - 0.005% Al Austenitized at 860°C (1580°F) for 10 min Superhardening TEMPERATURE, °C Steel Composition: 0.42% C - 1.75% Mn - 0.36% Si - 0.031% P - 0.029% S - 0.24% Ni - 0.28% Cr - 0.12% Mo - 0.17% Co 0.020% Sn - 0.11% Al Austenitized at 860°C (1580°F) for 10 Y+O+Fe3C min 1 10 ‘ior 10° 10° TIME, Ss SOURCE: K. Sachs, B. Ralph, J. Slater, "Transformation Kinetics of Superhardening Steel,” Heat Treatment ’79, proceedings of an international conference organized by the Heat Treatment Committee of The Metals Society, in association with the Heat Treating Division of the American Society for Metals, Birmingham, England, 22-24 May 1979, 141-146 D-6ac High Strength Steel Composition: 0.45% C - 0.80% Mn - 0.25% Si - 0.55% Ni 1.15% Cr - 1.0% Mo - 0.05% V Austenitized at 900°C (1650°F) lO min I min 5 min | day | hr 1400 1200 Austenite | 4 1000 Temperature 600 oat 50% transformed + 400 lO 10? lo? 104 Time, sec SOURCE: Atlas of Isothermal Transformation and Cooling Transformation Diagrams, ASM, 1977 105 Atlas of Time-Temperature Diagrams 487 Deep Hardening Steels Composition: 0.65% C - 0.79% Mn - 0.35% Si - 1.27% Ni - Composition: 0.60% C - 0.37% Mn - 0.24% Si - 3.22% Ni - +/- 5°F, Mg ~100°F +/- 5°F, My -70°F 1.00% Cr - 0.29% aMo Austenitized at 870°C (1600°F) M, 445 2.14% Cr - 0.07% Mo Austenitized at 870°C (1600°F) M, 395 760 650 °F Temperature °C Temperature °F Temperature °C Temperature RE / 0.01 | 0.1 Time - Hours | 0.1 Time - Hours 0.0) 10 24 10 5ee ea ae 7 Ea ee 1 a 24 Composition: 0.35% C - 0.69% Mn - 0.24% Si - 3.25% Ni 1.32% Cr - 0.48% Mo - 0.27% V Austenitized at 900°C (1650°F) M, ~600°F, Mg -450°F °C Temperature °F Temperature 0.01 SOURCE: 678-876 0.1 I Time — Hours 10 24 Transactions of the ASM, Vol 41, 1949, pp Gerrit DeVries, "An End-Quenched Bar for Deep Hardening Steels,” a EE a ————E a 1 Atlas of Time-Temperature Diagrams 488 Ni-Cr-Mo Steel Composition: 0.32% C - 0.58% Mn - 0.30% Si - 0.032% P - 0.020% S - 2.35% Ni- 0.75% Cr - 0.52% Mo - 0.11% V Austenitized at 845°C (1550°F) for 1h Austenitized 1550°F -1Hr. Grain —> ———— Size 7-8 + — ——— Analysis si) C 0.32 AtF+C Mn 0.58 Si 0.30 Ni 2.35 °F Temperature 1 Gr 10.75 Mo 600 As-Quenched | 10 102 Hardness 0.52 Rc 58-59 103 104 10° 10& Time - Seconds SOURCE: Edward A. Loria, "Isothermal Transformation of Austenite in a Nickel-Chromium-Molybdenum Steel,” Transactions of the ASM, Vol 44, 1952, 870-876 Alloy Steels Composition: 0.59% C - 0.96% Mn - 0.28% Si - 0.032% P - Composition: 0.86% C - 0.66% Mn - 0.38% Si - 0.040% P - 0.022% S - 1.06% Cr - 0.54% Mo - 0.12% V Austenitized at 0.024% S - 2.47% Ni - 1.21% Cr - 0.50% Mo Austenitized at 900°C (1650°F) for 845°C (1550°F) for 1h 1h 1600 Austenitized Austenitized ISSOFGroin Size 7-8 I650F -1 Hr AX: Austenite Plus 08 Anolysis ¢ 059 1200 Undissolved Corbides ~ °° uw 2 2 2 1000 ,e) ,e)fe) v a [S 8 fe °F. Temperature 800 600 | 10 10# 105 Time - Seconds SOURCE: 10% 10° 10s te | 10 10? 108 Time - Seconds 10* 10 1o* Edward A. Loria, "Isothermal Transformation of Austenite in Two Alloy Steels,” Transactions of the ASM, Vol 41, 1949, pp 1248-1260 —————_—————————————————————————————————————————————————————————— Le Atlas of Time-Temperature Diagrams 489 Alloy Steels Composition: 0.60% C - 0.60% Mn - 0.30% Si - 0.035% P - 0.024% S - 2.75% Composition: 0.42% C - 0.67% Mn - 0.31% Si - 0.030% P 0.022% S - 2.71% Ni - 1.00% Cr - 0.48% Mo Austenitized at Ni - 1.25% Cr - 0.50% Mo - 0.12%V Austenitized at 845°C (1550°F) Austenitized (550°F Grain Size 7-8 845°C (1550°F) Austenitized 1550°F Grain Size 6-7 -1 Hr. ive oe ° -1 Hr. d Analysis » Cc 0.42 & Mn 0.67 2 1000}—Si 0.3! Ss Ni 2.71 E Cr iS Temperature °F 10 102 103 10% 105 10° 1.00 Mo 0.48 | 10 107 Time - Seconds SOURCE: 103 104 105 10 Time - Seconds Edward A. Loria, "Kinetics of the Austenite Transformation in Certain Alloy Steels,” Transactions of the ASM, Vol 43, 1951, pp 718-733 65Nb Steel Composition: 0.66% C - 0.15% Mn - 0.18% Si - 4.02% Cr 2.04% Mo - 1.02% V - 0.26% Nb - 2.99% W Austenitized 1160°C (2120°F) at SAE 1075 Composition: 0.75% C - 0.57% Mn - 0.17% Si - 0.013% P 0.015% S - 0.012% Ni - 0.014% Cr Austenitized at 800°C (1475°F) 1%o pearlite = Sa Bes l a 99% pecriite wesI SRT ai 99% bainite 600 W%ebainite % 3 500 Fd 2 5 & i 0 05 10 Time. 4 10 5 s. SOURCE: Cui Kun, Hu Zhenhua, Zhao Juhua, "Microstructure, Mechanical Properties and Heat Treatment of New Matrix Steel 65Cr4W3Mo2VNb with High Strength and Toughness,” Journal of Heat Treating, Vol 1, No. 4, ASM, 1980, pp 37-46 SOURCE: Hardness, A. Omsen, "Relationships Between Structure, and Toughness of Untempered and Tempered 0.7C Bainites,” Journal of The Iron and Steel Institute, Vol 209, February 1971, pp 131-137 ee EEEEEEEEESSESSESEEEEE Atlas of Time-Temperature Diagrams 490 Eutectoid Composition: 0.76% C - 0.61% Mn - 0.25% Si - 0.02% P 0.02% S - 0.017% Cr - 0.006% Mo - 0.003-0.01% Al Austenitized at 1010°C (1850°F) for 30 min Steels Composition: 0.75% C - 0.61% Mn - 0.27% Si - 0.02% P - _ 0.02% S - 0.004% Cr - 0.10% Mo - 0.003-0.01% Al Austenitized at 1010°C (1850°F) for 30 min re) oOo Ce w Ww ec et : « = e = ras <q q ax = a ro rs TIME, SECONDS TIME, SECONDS Composition: 0.76% C - 0.82% Mn - 0.25% Si - 0.02% P 0.02% S - 0.60% Cr - 0.16% Mo - 0.003-0.01% Al Austenitized Composition: 0.76% C - 0.6% Mn - 0.27% Si - 0.02% P - 0.02% S - 0.58% Cr - 0.30% Mo - 0.003-0.01% Al Austenitized at at 1010°C (1850°F) for 30 min 1010°C (1850°F) 2 P ww we 5 s bE < ba + a é_q « uw - - a = = TIME, SECONDS TIME, SECONOS SOURCE: Y.J. Park, F.B. Fletcher, "Effects of Manganese, Chromium, and Molybdenum on the Isothermal Transformation of Austenite in Eutectoid Steels,” Journal of Heat Treating, Vol 4, No. 3, ASM, 1986, 247-252 OO Atlas of Time-Temperature Diagrams 49] ST 3.5% Chromium Magnet Steel Composition: 0.93% C - 0.50% Mn - 0.26% Si - 0.01% P 0.02% S - 0.16% Ni - 3.65% Cr Austenitized at 830°C (1525°F) for 10 min 1400 800 ae ’ Analysis © 0:93 Cr 3.65 °F Temperature 600 Mn 0.50 Ms52435°R —— Ni Si — © 0.16 0.26 400 Austenitized I525°F - |OMin. Prior Condition - Normalized 1600 °F | Seconds Minutes Time SOURCE: W.L. Hodapp, E.A. Loria, "Effect of Cooling Rate from Mg Temperature to Room Temperature on Magnetic Properties of 3.5% Chromium Magnet Steel,” Transactions of the ASM, Vol 52, ASM, 1960, 404-421 SAE 51100 Steel Composition: 0.97% C - 0.39% Mn - 0.25% Si - 0.020% P 0.013% S - 1.04% Cr Grain size: 7 Austenitized at 980°C (1800°F) for 1h 1000 900 800 700 600 wn °° °F TEMPERATURE— 400 200 100 1 10 key 10> 104 10° 10 TIME — SECONDS SOURCE: F. Borik, R.D. Chapman, "The Effect of Microstructure on the Fatigue Strength of a High Carbon of the ASM, Vol 53, ASM, 1961, 447-463 Steel,” Transactions Atlas of Time-Temperature Diagrams 492 1.0% C High-Chromium Composition: 1.04% C - 0.18% Mn - 0.35% Si - <0.01% P - Composition: 1.02% C - 0.33% Mn - 0.35% Si - 0.020% P - <0.01% S - 4.0% Cr Grain size: >1 Austenitized at 1200°C (2190°F) 0.012% S - 2.9% Cr Grain size: >1 Austenitized at 1200°C (2190°F) °C. 800 °F ] a= “Ae, °c 800 5 : é = Steels °F va ENE 1400 la + 1400 Easy 700 pecs ~¥-FesC Y-Fe,C | 700 ——|--——-——+ 1200 —j}—— ats 600 600 1 1290 |- op = oes ay NEAL a > 1000 aq Ww = = = 500 © 500 a = my S a i WJ A 400 1 10:59 bE a ae cas = g 800 os B | + [cXene) Ara 400 = 600 300 300 | -—-| |__|} | (see 200 400 200 an 100 a= Ar"=95°C. = 600 —— ° ae = z a¢ = “Fs2 zg I 4 3 i é ¢) 4 3} 400 & = | TIME —-SECONDS TIME —-SECONDS Composition: 1.05% C - 0.31% Mn - 0.35% Si - 0.017% P - Composition: 1.02% C - 0.33% Mn - 0.35% Si - 0.016% P - 0.012% S - 5.7% Cr Grain size: >1 Austenitized at 1200°C (2190°F) 0.011% S - 8.8% Cr Grain size: >1 Austenitized at 1200°C ec (2190°F) °F 800 ai eG) ABE °F 800 = 1400 1400 700 700 1200 1200 600 600 WwW uy = 1000 = 500 a wi S00 ! > = A a: 400 1000 a =Jz a 5 Ee 800 800 400 Sy -- End 300 = — > = Y-a of rapid (or Y>Q+C) 200 - ae ae 400 10 200 400 §° [el Es ees 5, 600 300 == AE 100 600 > reaction 10 4 100 10 $ 10 6 10 TIME - SECONDS 7 10 10° 8 TIME -SECONDS SOURCE: Taylor Lyman, Alexander R. Troiano, "Isothermal Transformation of Austenite in One Per Cent Carbon, HighChromium Steels,” Transactions of the AIME, Vol 162, 1945, 196-222 se eeeeeeeeSSSSSSSSS—S———SsSsSSsSsS—S—S—S—SsSsSsSss Atlas of Time-Temperature Diagrams 493 Hypereutectoid Carbon Steels 900 850 800 Composition: 1.20% C - 0.91% Mn - 0.23% Si <0.003% P - 0.002% S Grain size: 1 Temperoture °C — Pearlite 1000 900 800 Composition: 1.48% C - 0.90% Mn - 0.24% Si 0.002% P - 0.0039% S Grain size: 1 Temperature °C — a je)je) Pearlite 10° 10! er Reaction Composition: 1.72% C - 0.90% Mn - 0.25% Si <0.003% P - <0.003% S Grain size: 1 10° Time 10 10° 10* 10° — Seconds re) 1386 5 5 a & @ = 700 _— —_—s— Vile 10° Sl 10! 10% 10° Reaction Time — Seconds SOURCE: R.W. Heckel, H.W. Paxton, "On The Morphology of Proeutectoid Cementite,” Transactions of the ASM, Vol 53, ASM, 1961, pp 539-554 Atlas of Time-Temperature Diagrams 494 403/410 Stainless Steels Composition: 0.06% C - 12.8% Cr Austenitized at 980°C Composition: 0.10% C - 12.4% Cr Austenitized at 980°C (1800°F) for 1h (1800°F) for 1h Temperature °F °F Temperature (a) 0.06 C-12.8 Cr 1 | 2 4 8 15 Seconds 3060 2 | 4 8 15 30602 | Minutes 4 8 i5 3060 | Hours 1 2 | 4 8 15 Seconds 30602 Time 4 8 15 3060 Minutes 2 4 8 15 30 60 | Hours Time Composition: 0.12% C - 12.38% Cr Austenitized at 980°C (1800°F) for 1h 1600 1400 @ 1200 2 2 1000 2 aE 2 800 ei 200 As-Quenched ' 46.5 41151601 4 2 Ba oO nl e2 | Seconds Rc fee 15 | 60 8 S02 | Minutes | ee 15 160 87°30 Hours | Time SOURCE: R.L. Rickett, W.F. White, C.S. Walton, J.C. Butler, "Isothermal Transformation, Hardening, and Tempering of 12% Chromium Steel,” Transactions of the ASM, Vol 44, ASM, 1952, 138-175 a ———— Ss. j»j§»@VEV Atlas of Time-Temperature Diagrams 495 403 Stainless Steel Composition: 0.15% C - 1.00% max Mn - 0.50% max Si - 0.04% max P - 0.03% max S - 11.50-13.00% Cr Austenitized at 980°C (1800°F) a Austenite tt plus 15% Ferrite - mes ( icicle = igsSR GRSACenicoasc : ate a fi eee s CET a eemererrre TTT TTT 200 ta2 3 456 60 $20 30 4560 m2 34568610 18 20 31 4560 w2 345660 15 20 W 45 60 TIME SOURCE: Data Sheet, Crucible Steel Co. of America, October 1948 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, ASM, 1977 416 Stainless Steel Composition: 0.12% C - 0.79% Mn - 0.74% Si - 0.017% P 0.190% S - 0.25% Ni - 12.82% Cr - 0.05% Mo - 0.037% N - 0.08% Zr Grain size: 7-9 Austenitized at 980°C (1800°F) 1600 wt cs us a AUSTENITE 1400 (3-5% t ma ~ FERRITE) 155 S az 170 rd Ww a 1200 = pal SE FREE MACHINING 200 0.087zr oe 0.1 1000 \ SOURCE: 7) we 35a 10° TIME-SECONDS 1977 Atlas of Isothermal Transformation and Cooling Transformation Diagrams, ASM, 10% Atlas of Time-Temperature Diagrams 496 440A Stainless Steel Composition: 0.62% C - 0.30% Mn - 0.17% Si - 16.59% Cr Austenitized at 870°C (1600°F) 1550 1500 >1450 S oO(=) 1350 TT CCAIR TI eee ere CONT CCI ere PHT CHtHSCCEE CIEE COT AA 1300 deg.F. Temperature, 1250 200. 6) -15:* 30! 60-2. eee 4 Is 30 tiatiee 60 8 renee I5 30 440B Stainless Steel Composition: 0.93% C - 0.49% Mn - 0.43% Si - 18.40% Cr - 0.55% Mo Austenitized at 870°C aus 1550 1500 eee eee aaa = 1400 SIRHUStHISTSTS- sain fGGnia 360 BIRILAMIIESLGILfi a S© Temperature IS ue 30 60 5 stiches 3 60 2 4 I5 30 cue SOURCE: Peter Payson, "The Annealing of Steel,” Iron Age, Vol 152, 1943 as published in Atlas of Isothermal Teanarorniation and Cooling Transformation Diagrams, ASM, 1977 Atlas of Time-Temperature Diagrams 497 0.1% C - 13.0% Cr Steels Composition: 0.11% C - 0.49% Mn - 0.10% Si - 0.016% P 0.013% S - 0.48% Ni - 12.80% Cr Austenitized at 1000°C (1830°F) for 1h psreiietion mOOETA 05 at Heo Tau Th a mol TUTE TTA | UTE ioe SU Nate cating Composition: 0.12% C - 0.49% Mn - 0.09% Si - 0.024% P 0.012% S - 0.46% Ni - 12.50% Cr - 0.45% Co Austenitized at 1000°C (1830°F) for 1h 900 Steel 2. : Q5%Co 3 eee TTL TT ire tre me PCH Poe SSE $ 400 Pe 3 300 1 102 Seconds 10 1 10 Minutes 1 10 10 100 1000 10 109 a ae ues i 752 | Se & 200 i_ tT oi Era lkae HT|LT Nese ; EaTUT = 100 eens UA 0 LC 1 10 seconds 10000 100 902 1 10 Minutes 100 1 1000 10 572 2 ees 392 é Tet ees 7 105 10000 100 Hours —— Time —— ——e Time ———e Composition: 0.13% C - 0.50% Mn - 0.45% Si - 0.034% P 0.010% S - 0.52% Ni - 13.2% Cr - 0.99% Co Austenitized at Composition: 0.13% C - 0.52% Mn - 0.22% Si - 0.023% P 0.008% S - 0.48% Ni - 12.8% Cr - 1.87% Co Austenitized at 1000°C (1830°F) for 1h 1000°C (1830°F) for 1h Steel 3 goo|_| 1%Co Steel 4: 2%60 res2 200at CIRCE TT 1472 roots HEHE Pett 1292 500 TTT TTY 100CoC 0 LUTE TET TY Temperature in °C iecveaer ck cas Minutes —— Time ——e cial Behan se & as in Temperature °C 32 a L 10 Seconds ] Minutes —— 90 Time ——e Alloyed SOURCE: P. Nicolaides, D. Coutsouradis, L. Habraken, "Influence of Cobalt on the Transformation of a Chromium 702-705 1959, August 215, Vol AIME, of Society Metallurgical the of Austenite,” Transactions Se ee nnn ene eee ene EEE EEEEEEEEEEEESIEREEEEEEEE 498 Atlas of Time-Temperature Diagrams 0.1% C - 13.0% Cr Steels Composition: 0.138% C - 0.49% Mn - 0.15% Si - 0.012% P 0.010% S - 0.51% Ni - 12.4% Cr - 4.9% Co Austenitized at Composition: 0.10% C - 0.48% Mn - 0.55% Si - 0.024% P 0.011% S - 0.51% Ni - 13.3% Cr - 8.0% Co Austenitized at 1000°C (1830°F) for 1h 1000°C (1830°F) for 1h wool[see §2 shG0 | [rtontnaton 172i |y55 “Ce eae A et [IIr292 400SatimatinMll Salica (Gail aes : (AE ince TA pe Bi Ne = 400 3 300 Ht AH 4-4 752 = matt Sroot (UIT |UM 1 TUT TT TT TN gs 10 zecees Minutes 10 eA ees FSICCHE TT 752 tt 2S SESS: Seo Be a ea J 10 1 : Dilly ASM ee WG Se ; LTT ences nmi Ape BE aT ; COMIC CnC 70 100. Ci 1000 40000 Seconds Teor 1 10 — Time ——e Minutes Hours —— eB CC 32 100 1000 +a aemiG Heurs Time ——& Composition: 0.13% C - 0.42% Mn - 0.33% Si - 0.025% P 0.012% S - 0.49% Ni - 13.5% Cr - 11.9% Co Austenitized at 1000°C (1830°F) for 1h COC 4]eats : aa ja ao Set at tC TIECCTH re -—t-— a) == [aia =a NN § os °C erature in me Temp e& 0 eee 10 Seconds 1 (aT 1 Minutes —— a ee 10 32 f sta, Te 900 1000 fe 10000 Time ——e SOURCE: P. Nicolaides, D. Coutsouradis, L. Habraken, "Influence of Cobalt on the Transformation of a Chromium Alloyed Austenite,” Transactions of the Metallurgical Society of AIME, Vol 215, August —_—_——— = 1959, 702-705 SS 10000 ate scaal Atlas of Time-Temperature Diagrams 430 Stainless 499 Steel 442 Stainless Composition: 0.09% C - 0.40% Mn - 0.33% Si - 0.34% Ni 3 f ; Steel 0.17% C : =O:0.56% Mn -- 0.46% 0. Si - 0.35% Nii - 20.96% Cr - 0.04% 17.20% - 0.06%foxMotec - 0.010% Al - 0.03% N Austenitized at TOORSC Cr (GDINPP) Mo o - 0.013% 0.013% Al - 0.12% enili 12% NA ustenitized at 1260°C eo (2300°F) for 2 5 min 2000 Leas | 600 As |e i al Glee Bia n =s ; le bear lotic e 400 | ht 40a ka = fel ihe ea C | A F+40%ArC V, Siva gees <q 1800 or oto® Teas = |11 - Pp 2 a & 120 © 1000 a | Baud 2 2a = l——T_| Vs F+(50%A4C areoe ‘v 1200 sept Lt 1 1000 & 800 600 eS Seconds 400 Minutes Hours Time eo 4 SO ISSO GO FT Seconds TCO 2074s GinlS 30) GO 24 CO ES 167152350160 OT Minutes CC SGCY_Y Hours Time 446 Stainless Steel Composition: 0.24% C - 0.46% Mn - 0.42% Si - 0.26% Ni - 24.85% Cr - 0.02% Mo - 0.010% Al - 0.17% N Austenitized at 1260°C (2300°F) for 5 min ww ° ao 5 Pearlite-+93Rb 12} ry Pp S] 5 | 2 1400 mS E wv = Raaa SE al fes| A2) pe 800 1 2 4 8 15 Seconds 3060 2 4 86 15 Minutes 30 60 2 4 8 15 3060 Hours Time SOURCE: 17 to 25% A.E. Nehrenberg, Peter Lillys, "High Temperature Transformations in Ferritic Stainless Steels Containing Chromium,” Transactions of the ASM, Vol 46, ASM, 1954, 1176-1213 nn Atlas of Time-Temperature Diagrams 500 M2 Tool Steel Composition: 0.81% C - 0.24% Mn - 0.26% Si - 0.016% P 0.007% S - 4.10% Cr - 4.69% Mo - 1.64% V - 5.95% W ie s© Metallograpric || _ © Determmnations,|| Q % Martensite: § Time, Hours SOURCE: Paul Gordon, Morris Cohen, Robert S. Rose, "The Kinetics of Austenite Decomposition in High Speed Steel,” Transactions of the ASM, Vol 31, ASM, March 1943, 161-217 M2 Mod Tool Steel Composition: 0.83% C - 0.32% Mn - 0.25% Si - 3.89% Cr 4.30% Mo - 1.30% V - 5.79% W Austenitized at 1220°C (2225°F) Soced Tee] S70de:5-4-4-1 High 1400 |Austenitizing Temp. :2225F | Critical (Ac) -- :1520% 1200 |Prion Condition: Anneated HAS Pe TTT Hl eo 2 TOC ‘ ine& geo TCI colt? a : PEE rTECEECEC HEEL a S opie STHLLAIRTRRU AGRE <ORLBIE S90 spin of eee atte att tt710 | 20% || inDainIMnIit itnneon teHT 64Fe| oceans Solan =Bien Ses ~ 2 46 0020 #6) 2 460 2 7imeé-~ minutes SOURCE: 4560 2 460 © 68 P. Payson, J.L. Klein, "The Hardening of Tool Steels," Transactions of the ASM, Vol. 31, ASM, 1943, 218-256 _ Atlas of Time-Temperature Diagrams 2 e OS e I e M10 Tool Steel Composition: 0.85% C - 4.00% Cr - 8.00% Mo - 1.90% V Austenitized at 1220°C (2225°F) wep LETT SSH | ec HTT TTT Pre TS al TUTTI TT @ naa Fiance : PARAM CTHTHett AEH EE TEMPERATURE F mirsnsimimararaitsietmesQiQiUHiO/AEE ty T IME SOURCE: Data Sheet, Crucible Steel Co. of America, December 1947 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, ASM, 1977 T1 Tool Steel Composition: 0.72% C - 0.27% Mn - 0.39% Si - 4.09% Cr - 1.25% V - 18.59% W Austenitized at 1285°C (2350°F) 1400 7200 Grade: 18-4-1 High Speed Austenitizing Temp.: 2350F Critical (AC;) --- : 1845 F Prior Condition: Annealed || 7000 xX s 800 2$e) Ks 8 600 8 400 200 9 Lit9g'%b 124610 20 602 Seconds 461 2045602 Time-Minutes = 4610 2 4560 Hours SOURCE: P. Payson, J.L. Klein, "The Hardening of Tool Steels,” Transactions of the ASM, Vol 31, ASM, March 1943, pp 218-256 501 Atlas of Time-Temperature Diagrams 502 T2 Tool Steel Composition: 0.85% C - 4.00% Cr - 0.75% Mo - 2.10% V - 18.50% W Austenitized at 1285°C (2350°F) TTT CATE HAIL StMOBRPRIOTBL coal fie CECT al aa Ts CIAO ay PCIE ey SPICES Eee be 3 PCIE aa CIAO H AIA ee ce ies Co BS COTTA i | F inn Hi?" AISAAERAAIAE ee pie Cribs TTT TeePERE U1PRE PE A 1 EEES TEMPERATURE Ir Bide aaeeesee 200 TIME SOURCE: Data Sheet, Crucible Steel Co. of America, December Cooling Transformation Diagrams, ASM, 1977 1947 as published in Atlas of Isothermal Transformation and T4 Tool Steels Composition: 0.72% C - 0.23% Mn - 0.43% Si - 4.04% Cr 4.72% Co - 1.24% V - 18.38% W Austenitized at 1285°C (2350°F) 1400 SCRE iaal RE TTT BREA STOSHaHALLs mest tarball 1200 [-Srede: 18-4-1+5Co High Speed pe ee 1000 fanee SEL | SAE ae MTOGamiaUOIRInroa }- Prior Gondihen Anncoed | MGeERARnintaae Ca eee Si 043 ell 800 EOE FSR EC Uae ECan a eeaal prone Be ATCC S 600 Bl we ae Le cae eee enamine 0% HATE ures 400 tpagiNniNg O1 MartonsilUT wolfe ECCT eae eval Became 2 1g Seconds SOURCE: 20 Tet t 49560 2 46 etree 10 20 4560 7ime~ Minutes 1 ! 2 ee 60% COI | {| [40% ae How P. Payson, J.L. Klein, "The Hardening of Tool Steels,” Transactions of the ASM, Vol 31, ASM, March 1943, 218-256 Atlas of Time-Temperature Diagrams 503 T7 Tool Steel Composition: 0.73% C - 4.00% Cr - 2.00% V - 14.00% w Austenitized at 1285°C (2359°F) iE Tot NEHESHaHathStSn MTU. ARE atTTT ArH Aut sIAITISTOATAARUAIACHRRAIATIIIE ARE F TEMPERATURE ELEN Ua MMTLAR PTT bal SIMIEZd Seat wa? 345680 BRO 30 4860 bet Pee TTL 345680 62 30 450 we TIME 348660 Bf 30 4 OO SOURCE: Data Sheet, Crucible Steel Co. of America, February 1948 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, ASM, 1977 T8 Tool Steel Composition: 0.80% C - 4.00% Cr - 0.75% Mo - 5.00% Co - 2.00% V - 14.00% W Austenitized at 1285°C (2350°F) PLETE TT TTT err | SUT RRHGIMITiiees AORERT REYES PT TT eT PCr CPCI CECCEEEC HIE CECE CIC See ST eiala GE Sa aE Eee ele erae aE a HUE gtaeeSLETTG en pes EGET BORAGE EGE HINT ttt TEMPERATURE F SEELEY IEE Asie tea nears a SLGHHaLPP ALCL RTPRERTSTLALD AEE Hp sesonne tate tres] a ||| [rors || |ae hatla aichoerant TIME SOURCE: Data Sheet, Crucible Steel Co. of America, September 1946 as published in Atlas of Isothermal Transformation Cooling Transformation Diagrams, ASM, 1977 and Atlas of Time-Temperature Diagrams 504 H11 Tool Steel Composition: 0.40% C - 1.05% Si - 5.00% Cr - 1.35% Mo - 0.35% V Austenitized at 1010°C (1850°F) LI SAE EE a a cet OFMARTENSITE] ||PE ud BEGINNING b #3486800 68 BH) B® SOURCE: Data Sheet, Crucible Steel Co. of America, December 1947 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, ASM, 1977 H12 Tool Steel Composition: 0.32% C - 0.35% Mn - 0.95% Si - 4.86% Cr - 1.45% Mo - 1.29% W Austenitized at 1010°C (1850°F) Grace: Cr-Mo-W Hot Work | Austerntizing Temperature: 1850 F Critical (Ac,) ~Wo Ei Prior Condition: Annealed Temperature, F 1 SOURCE: 218-256 2 46 10 20 460 2 46 0 2 Seconds Time~Minutes P. Payson, J.L. Klein, "The Hardening of Tool Steels,” Transactions of the ASM, Vol 31, ASM, March, 1943, pp Atlas of Time-Temperature Diagrams H13 Tool Steel Composition: 0.40% C - 1.05% Si -- 5.00% Cr - 1.35% Mo 4 ‘ 5. 1.10% V Austenitized at 1010°C (1850°F) eae ea SOUR Cn as SOURCE: of Isothermal Nat Transformation ee eatin and i fe Data Sheet, Crucible Steel Co. of America, February 1949 as published in Atlas of Isoth EE 505 506 Atlas of Time-Temperature Diagrams H14 Tool Steel Composition: 0.40% C - 1.15% Si - 5.25% Cr - 4.25% W Austenitized at 1040°C (1950°F) }400 CUE TT aT ETE TTTT AN Hie IUGR a SERGI Le LJ 100 5 BS TUTTE E SHER ELL AP TTT LAT | [|eecinmins ormanrensive 111 | LLTT TIT UE | oot Cre a ETT TT TTT TT d Bataan (| Wwe? 345660 680 BW 6 we? 3486810 620 30 4860 wf 346660 620 30 4 @ TIME SOURCE: Data Sheet, Crucible Steel Co. of America, April 1948 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, ASM, 1977 H16 Tool Steel Composition: 0.54% C - 0.62% Mn - 0.93% Si - 7.83% Cr 6.90% W Austenitized at 900°C (1650°F) BELTS R mA eae ANAS HECIEIGU SEC a0Ie WH a AIAIUAIBIBALELLSKBUROLSY UNNI : ee TT OETA SE B: sb SALTISaEL TEC PNTANSITIAT ie COCCI Tr TP 5 1300 1200 8 I5 0 Be onde 60 2 4 5 Vie. 30 60 2 4 8 I 8 Hours SOURCE: Peter Payson, "The Annealing of Steel,” Iron Age, Vol 152, 1943 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, ASM, 1977 Atlas of Time-Temperature Diagrams Bn ee 507 H21 Tool Steel Composition: 0.28% C - 3.25% Cr - 0.25% V - 9.00% W Austenitized at 1150°C (2100°F) F TEMPERATURE ies ae es wer hoe SSim (1e SE || =r Pe Se ee 9 )a eee ae him a iS ai Bim iB 6 te? 3466 8O Bt © OO twe2®@ ae ee ae a aCe ee ee a ee ee ES ER nS A Ee ce Et SiS ik a ea "Sa RY BE +] Fe a fe | 3498680 © TIME SOURCE: Data Sheet, Crucible Steel Co. of America, March Transformation Diagrams, ASM, 1977 1948 as published in Atlas of Isothermal Transformation and Cooling D2 Tool Steel Composition: 1.50% C - 11.50% Cr - 0.80% Mo - 0.20% V Austenitized at 980°C (1800°F) TEMPERATURE F ' hae Se ee een eres 348660 620 310 06 met 346660 6f0 30 43 00 TIME of Isothermal Transformation and SOURCE: Data Sheet, Crucible Steel Co. of America, February 1949 as published in Atlas Cooling Transformation Diagrams, ASM, 1977 Atlas of Time-Temperature Diagrams 508 D4 Tool Steel Composition: 2.25% C - 11.50% Cr - 0.80% Mo - 0.20% V Austenitized at 980°C (1800°F) HHITSTRGTSEBLIEEE UTE He 4 HHT Tt PUTT aLeese cma ae = SHIRE UeIeR Ribas EE Ae eee SOUTER so ETT © seo TUTTE TTT c re FTI TT TTY Goo TUT TTTTTT eer | pee SS bsSe TN LT | [ecchonne cruamersre| |] LUT UTTEE rr tT i eee 1100 = ail — + — be2@ 3466 860 BH 1 60 Wee [ee SOURCE: Data Sheet, Crucible Steel Co. of America, December 1947 as published in Atlas of Isothermal Transformation Cooling Transformation Diagrams, ASM, 1977 A2 Tool Steel Composition: 0.97% C - 0.48% Mn - 0.40% Si - 4.58% Cr - 1.04% Mo - 0.25% V Austenitized at 1010°C (1850°F) 7400 \— Grade: 5% Cr Air A Hardening Hl C---| Austenitizing Temp.:1850 %F l NI 1200 }- Gritical (AC) -»- - 1460 °F Prior Conaition: Annealed || Ni ; | Le | CIEIEPITTE: S. 1000 Te 9s 0 2 & 3 600 iS 400 HT a Hatta ek Taba | lial lla a Ht 00 95 Ffas 9Patt tea i} 2 46 10 20 4560 2 Seconds SOURCE: 218-256 aa Time- Minutes ea 4 6 10 20 4560 Hours P. Payson, J.L. Klein, "The Hardening of Tool Steels,” Transactions of the ASM, Vol 31, ASM, March 1943, pp and Atlas of Time-Temperature Diagrams 509 O1 Tool Steel Composition: 0.85% C - 1.18% Mn - 0.26% Si - 0.50% Cr 0.44% W Austenitized at 795°C (1450°F) 1400 1200 Grede: Ci! ited | eerie eee GREGLALL | Termp.: 1000 |1499 °F 0, Critical (Ac;) Temp: : 1370 °F Prior. Condition: \ Annesled N 600 Temperature, & oh)% 1 2 46 170 2 458 2 Seconds SOURCE: 46 10 20 4560 Time-Minutes 2 46 10 P. Payson, J.L. Klein, "The Hardening of Tool Steels,” Transactions of the ASM, Vol 31, ASM, March 1943, 218-256 O2 Tool Steel Composition: 0.87% C - 1.78% Mn - 0.29% Si - 0.027% P 0.010% S - 0.15% Ni - 0.20% Cr - 0.03% Mo Austenitized at 795°C (1450°F) oG mae 600 TURE TEMPERA TIME -SECONOS SOURCE: 20 4560 Hours Carpenter Technology Corp. 510 Atlas of Time-Temperature Diagrams S1 Tool Steel Composition: 0.50% C - 1.25% Cr - 0.20% V - 2.75% W Austenitized at 955°C (1750°F) TUTTE aaa nus ben Se TeRe aay elec rin a * 100 99 HH a 700 D600 W550 4o0|_|9k sole eta 200l_loy ' het? Ta ACC sort _|| Ce TTT tele | Id sok dommers tLe oba || EETdeed A i op CARS 84866060 68 48 00 weet Hirai aC ABME LLert Joo |] TIME SOURCE: Data Sheet, Crucible Steel Co. of America, December 1947 as published in Atlas of Isothermal Transformation Cooling Transformation Diagrams, ASM, 1977 S2 Tool Steel Composition: 0.50% C - 0.35% Mn - 1.0% Si - 0.018% P 0.013% S - 0.19% Ni - 0.11% Cr - 0.50% Mo Grain size: 8 Austenitized at 845°C (1550°F) aeAustenitizing Temp. 1550°F Ba TEMPERATURE OAY 1 TIME -SECONDS SOURCE: Carpenter Technology Corp. and Atlas of Time-Temperature Diagrams a oll S5 Tool Steel Composition: 0.60% C - 0.75% Mn - 1.90% Si - 0.25% Cr 0.30% Mo Austenitized at 909°C (1650°F) PULTE TTT 5B 8 mUGEE (400 Et tft a ia 0B anit HARE SEIU SUSU ae NT _$CUTdeeTEE Neb TTT HVA? SEAT ALAULALEVAR STENT HIRE ai ah Set Pia F TEMPERATURE 4936860 60 © 46 6 mat? 348660 B80 1 OO SOURCE: Data Sheet, Crucible Steel Co. of America, February 1949 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, ASM, 1977 P2 Tool Steel Composition: 0.07% (max) C - 0.55% Ni - 1.35% Cr - 0.20% Mo Austenitized at 845°C (1550°F) L i F c a u SOURCE: PEELE EESTI HPI TE CEE ETT el an TTS HapetLe aoe SSL @anrs ttt | | || inimiaMiIMIAMIRIRAAMIMII SOREL eee BIEEE ITEMPLIST aeSee ifSUOMI ATLAVGHORUELELU SIRE ST decal eked lheLL SPETTTTETTT TTT WEE Sere reise ear TET EPEAT a Tun: Data Sheet, Crucible Steel Co. of America, February 1948 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, ASM, 1977 Atlas of Time-Temperature Diagrams 512 P2 (Carburized Case) Tool Steel Composition: 0.07% (max) C* - 0.55% Ni - 1.35% Cr - 0. 20% Mo Austenitized at 845°C (1550°F) * before carburizing ST TT TT TO HHH RAR SRIGnG LE Se HA TTT eT e TOPPER LL A eT St LITTERS er rE eT E CC LUN TNT @ otTTS TT TT MTT TTT TT CTT TAU SET eee as PE Rigi ee || eet| Beier: Meenas t és CECT ah Ce tt Hig dbrenoe au Uouerrre ee 0i le rear ei oi TIME “SOURCE: Data Sheet, Crucible Steel Co. of America, February 1948 as published in Atlas of Isothermal Transformation Cooling Transformation Diagrams, ASM, 1977 and P4 Tool Steel Composition: 0.14% C - 0.41% Mn - 0.21% Si - 0.19% Ni - 5.12% Cr - 0.51% Mo Austenitized at 900°C (1650°F) PTT TTT Tee Sa || | RECESS Siti ts Hl CET TIPRSS So PPS sant IME EERE EEE Les a ee EE IAIARIE Hata FTEMPERATURE CE + tea2 are ee na INIRIIE SECONOS 3 456 60 B80 BW 496 tee 3456610 BHO 30 6 Me TIME Le 348368680 9320 31 4 60 SOURCE: "L.F. Bowne, Jr., "The Use of Direct Transformation Data in Determining Preheat and Postheat Requirements for Arc Welding Deep Hardening Steels and Weld Deposits,” Welding Jounral, Vol 25, April 1946, pp 2348-241s as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, ASM, 1977 Atlas of Time-Temperature Diagrams 513 ———— a P20 Tool Steel Composition: 0.30% C - 0.75% Mn - 0.50% Si - 0.80% Cr 0.25% Mo Austenitized at 845°C (1550°F) i ec HEL AT i) TEMPERATURE F SOURCE: Data Sheet, Crucible Steel Co. of America, February 1949 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, ASM, 1977 L1 Tool Steel Composition: 1.01% C - 0.50% Mn - 0.30% Si - 1.21% Cr Austenitized at 815°C (1500°F) + ttt | Grade: C-Cr Too! Austenitizing Temp.: 500% Critical (AC;) -+- = 1385 °F Prior Conortion: Annealed Temperature, Beginnun 1 SOURCE: 2 Bea 46 10 20 4560 Seconds 2 bed coir med od) 46 10 20 460 2 46 10 Time-Minutes Hours 20 460 P. Payson, J.L. Kelin, "The Hardening of Tool Steels,” Transactions of the ASM, Vol 31, ASM, March 1943, 218-256 Atlas of Time-Temperature Diagrams 514 L2 Tool Steel Composition: 0.45% C - 0.70% Mn - 1.00% Cr - 0.20% V Austenitized at 900°C (1650°F) 400 1200 ae ap SUCCINIC c HHA fl AT TT © solTITTLE TC ooo gHi AVDA HELE cee SPYRE ETT go BENNING oFmann veal RTT Ned CA BUA SUERESUSUSULAUEHERIAS ACCT ~ Ise sea pL i ere TT | ebiee “EEE $68 TIME SOURCE: Data Sheet, Crucible Steel Co. of America, December 1947 as published in Atlas of Isothermal Transformation Cooling Transformation Diagrams, ASM, 1977 and F2 Tool Steel Composition: 1.32% C - 0.28% Mn - 0.50% Si - 0.22% Cr - 3.51% W Austenitized at 845°C (1550°F) LT Le eet 22% LE | all, | CA Ag Grade: Tungsten Fast Finishing Rea se psc au Temperature :1550 °F Ea ? ae : y RissEN Vea Seale Deen aden: : Annealed eee eat re TCUEREE TRH : See § ASCH MS CUCM UUM MEIGS AR CRUE 111 COSINE 1 2 46 1 Seconds SOURCE: &4 eit 2 460 246 10 2 Time- Minutes 460 2 46 0 2 Hours 4560 P. Payson, J.L. Klein, "The Hardening of Tool Steels,” Transactions of the ASM, Vol 31, ASM, March 1943, 218-256 Atlas of Time-Temperature Diagrams W1 Tool Steel Composition: 0.95% C - 0.25% Mn - 0.20% Si Grain size: 8-3/4 or finer Austenitized at 790°C (1450°F) Bamtile TET Sts ge ee a BEDE! ae TTT Se Tila Brat PTET ET R Hee HEHEHE IC SUMTARILE i Saianiit THREE PHL PME TH a eel TS Stain Ba SHEEN AA aa RAS2 eo TIME SOURCE: Data Sheet, Crucible Steel Co. of America, December 1947 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, ASM, 1977 W1 Tool Steel Composition: 1.14% C - 0.22% Mn - 0.16% Si Austenitized at 790°C (1450°F) Pett a ace PSEC Grade: Extra Too! Austenitizing Ternp.: 1450°F Gritical (AC;)) ~~ :I3GO% Prior Condition: Annealed D8 i Temperature, °F ja fe / | iree Se 1B - a ge=Fe S&SSDs t 1 SOURCE: 2 100% 4610 2 Seconds Ge 1. & a See Wy. aes3 SSS Sie Et ee 460 2 46 10 2 460 Time- Minutes 2 pe D5 Ree 1943, 218-256 P. Payson, J.L. Klein, "The Hardening of Tool Steels,” Transactions of the ASM, Vol 31, ASM, March Atlas of Time-Temperature Diagrams 516 W2 Tool Steel Composition: 0.95% C - 0.20% V Grain size: 9-1/2 Austenitized at 795°C (1450°F) RUE afanasaseraieceeeoeeGTOM obit rE eesaiate fi PH Giana a 8 Oo Taine naita Ha A Hi HATE MILainieetninees isos DS Ni PEEL 200 Tod me es| PU Dee TT ete1 6 20 ry TIME W4 Tool Steel Composition: 1.05-1.15% C - 0.30% Mn - 0.50% Si - 0.25% Cr Grain size: 8-3/4 or finer Austenitized at 795°C (1450°F) ae sistaSALah SY rs SOURCE: NY Data Sheet, Crucible Steel Co. of America, December 1947 as published in Atlas of Isothermal Transformation and Cooling Transformation Diagrams, ASM, 1977 Atlas of Time-Temperature Diagrams 517 a Fe-Ni-Cr ee eee eee Steels Composition: 0.10% C - 0.40% Mn - 0.30% Si - <0.005% P - <0.015% S - 4.00% Ni - 17.0% Cr - 0.005% N No.! Alloy First detectable amount (%) Temperature 10? Time (tt!) (min) Composition: 0.11%C - 0.38% Mn - 0.33% Si - <0.005% P <0.015% S - 7.25% Ni - 15.6% Cr - 0.005% N No.2 Alloy (°C) Temperature / 10 10? Time (ttl) (min) SOURCE: Yunoshin Imai, Masao Izumiyama, "Relationship Between the Solid Phase Equilibrium and the Isothermal Martensite Tohoku University, Transformation in Fe-Ni-Cr and Fe-Ni-Mn Alloys,” The Research Institute for Iron, Steel and Other Metals, Sendai, 1960, pp 170-176 eS Atlas of Time-Temperature Diagrams 518 Fe-Ni-Mn Steels Composition: 0.016% C - 3.62% Mn - 0.04% Si - 23.2% Ni - 0.001% N - 0.015% O Austenitized at 1150°C (2100°F) for 5 min -80 -100 ALLOY A (23.2 Ni, 3.62 Mn) =20 -140 -160 (°C) TEMPERATURE -1go- FIRST DETECTABLE AMOUNT OF MARTENSITE (ABOUT 0.2%) 10 sO 100 500 TIME (SECONDS) 1000 5000 SOURCE: C.H. Shih, B.L. Averbach, Morris Cohen, "Some Characteristics of the Isothermal Martensitic Transformation,” Transactions of the AIME, Vol 203, January 1955, pp 183-187 Composition: 0.05% C - 3.73% Mn - 22.94% Ni - 0.015% N Austenitized at 940°C (1725°F) for 2h C DEGREES 5 10 ISOTHERMAL SOURCE: HOLDING SO 100 TIME (t+!) MIN. 500 1000 R.E. Cech, J.H. Hollomon, "Rate of Formation of Isothermal Martensite in Fe-Ni-Mn Alloy,” Transactions of AIME, Vol 197, May 1953, 685-689 a Atlas of Time-Temperature Diagrams 519 Ni-Al-Ti-Cb Steel Composition: 0.010% C - 0.08% Mn - 0.08% Si - 24.9% Ni 0.26% Al - 1.58% Ti - 0.15% Cb (Nb) Austenitized at 815°C (1500°F) for 1h ANNEALED FOR IHOUR AT I5S00°F SOURCE: R.B.G. Yeo, "Isothermal Martensite Transformation in Iron-Base Alloys of Low Carbon Content,” Transactions of the AIME, Vol 224, December 1962, pp 1222-1227 Alnico Steels Composition: 0.025% C - 14.90% Ni - 34.75% Co - 3.55% Cu 7.00% Al - 0% Ti Composition: 0.017% C - 14.92% Ni - 34.25% Co - 3.20% Cu 7.00% Al - 2.10 Ti Composition: 0.005% C - 14.92% Ni - 34.50% Co - 2.88% Cu 7.07% Al - 3.85% Ti Composition: 0.014% C - 14.76% Ni - 34.50% Co - 3.05% Cu 7.10% Al - 6.25% Ti TEMPERATURE, °C Note: the dotted line shows the onset of the alpha-gamma precipitation in Alnico VIII containing 5% Ti; the solid lines are for alpha-gamma initiation of precipitation in the experimental alloys TIME, minutes SOURCE: G. Vallier, C. Bronner, R. Peffen, "Study of the Effect of Titanium on Alnico Alloys Containing 34% Cobalt,” Cobalt, No. 34, March 1967, pp 10-17 Neen ie ee Sa eee a EE Atlas of Time-Temperature Diagrams 520 a Ticonal Lr Steels 1200 Ticonal 600 Composition: 13.6% Ni - 24.0% Co - 3.0% Cu - 7.85% Al | | ]1 ' sie Austenitized at 1300°C (2370°F) for 30 min j Wate ey ee Vig are n20 Te Mn / : Ticonal 800 oy Composition: 13.75% Ni - 23.7% Co - 2.9% Cu - 8.0% Al - 1.8% ui : Nb Austenitized at 1300°C (2370°F) for 30 min a Ticonal 1500 r 2 rs = ara aie Nt eal ea | are mia og) || eer ~O+ —— ++ oy a HH | ——+ } AN i | | ioa ue | : 7 ai |) 800, and the heavy solid line is for Ticonal 1500 T itiaaat | a Mas 920 \ aclaa eee ace es pena para mera eset Ti Austenitized at 1250°C (2280°F) for 30 min Note: Dotted line is for Ticonal 600, thin solid line is for Ticonal | i anemia Lae ~ ‘ =S Lagi ee ‘ o\ 1000 = Composition: 14.3% Ni - 34.1% Co - 3.6% Cu - 7.55% Al - 5.3% l/l / i i | 1080 an c |i HT at om : is 114 iC 5 anal 1 ener le ee 2 sete 2) Dn WHOS TIME, minutes WM WO 20 30 00 Ticonal 600 Si-Mod. Composition: 13.45% Ni - 24.7% Co - 3.0% Cu - 7.95% Al 0.8% Nb + (dashed line) 0% Si; (light line) 0.2% Si; (heavy line) 0.4% Si 1200 120 1080 AS 1040 TEMPERATURE, $20 1 2 Ge Sipe 7e 10. 0 TIME, WON WM WO ao 30 KO 1000 minutes SOURCE: E. Planchard, C. Bronner, J. Sauze, "Contribution to the Study of the Kinetics of the Alpha-Gamma in Alnico Alloys,” Cobalt, No. 28, September 1965, pp 132-141 ————_“—_..006«€w@€€ Transformation 1000 Additional Steels l-T and CCT Diagrams Atlas of Time-Temperature Diagrams 523 Low-Carbon Low-Alloy High-Strength Steels Composition: 0.12% C - 0.83% Mn - 0.30% Si - 0.004% P - 0.005% S - 0.30% Cu - 1.11% Ni - 0.53% Cr - 0.49% Mo 0.03% V - 0.031% sol. Al Austenitized at 1200°C (2192°F) for 5 min oo 900+ Austenitized a 1200°C Ac - = 826°C oe oe Rees a rs 900; poe Austenitized 800} © T SS at 1200°C “0 0.7F°=F = “_XoSi=) ei °0.1F 600 SRR 280°C/m CR in 85°C/mi n\ /min \\ Vv \ va uroSoO Ferrite Gree 15°C —S ur Temperature (°C (‘C) Temperature Martensite \ i ———— 4 1) @Lse, 2007. ® — een 1 2 + n 8 26 S100 @ ®@ © 2 4 6810? Cooling time from 2 Ac3 | B® SS ® B 4 68105 (sec) 4 2 + Be | 200; 6 8108 100 1 2 CL ei 4 6810? 2 Time (sec 4 68103 2 Composition: 0.22% C - 0.83% Mn - 0.24% Si - 0.007% P - 0.011% S - 0.30% Cu - 1.06% Ni - 0.54% Cr - 0.51% Mo 0.029% sol. Al Austenitized at 1200°C (2192°F) for 5 min sal A ans ig tenitized itized a at 1200°C Ac3 805°C ACT Ee ~~ 100 7 o ‘e600 | ie bi. = 500- 15°C/min Bainite ’ i v = Ms ’ 6400s 2 55h —— ze 300 Martensite 4 A> =a = 4 as 2007 , =< ql 2 qucecked N55, 100. 1 : 2 46810 Austenitized Oo ~ 600 : ©. ww 4 6810 NS 2 282 = 2 x y 4 68108 w faa 2 4 6 810 at 1200°C Austenite ie 50B_ S © 500¢ p °00B 9608 ovo A iS 400} OM Martensite 1) 1 SS 2 4 ee 6 810 2S 2 4 4 . 6 8102 2 Time (sec) Se 4 6 810° ee 2 4 J 6 8104 SOURCE: Yasuya Ohmori, Hiroo Ohtani, Tatsuro Kunitake, "The Bainite in Low Carbon Low Alloy High Strength Steels,” Transactions ISIJ, Vol 11, 1971, pp 250-259 go mse, ee 4 6 810! 524 Atlas of Time-Temperature Diagrams Low Carbon Low Alloy High Strength Steels Composition: 0.22% C - 0.85% Mn - 0.24% Si - 0.008% P 0.012% S - 0.30% Cu - 1.05% Ni - 0.54% Cr - 0.51% Mo 0.02% V - 0.024% sol. Al Austenitized at 1200°C (2192°F) for 5 min T |ie ie ! 900} Austenitized at 1200°C 800 ——e > Ac3 820°C ee S Oe. | Austenite x = : | | ; 3300°C/min ° 600+ a © 500} 4 A5°C/min 5 400;--=---\-- | 300 -=-—acamem 4 = ee 200Ee. 7 ox | quenched 8) ; 100 1 ee 2 4 Austenitized ee oe 6810 2 4 —Lt 6810? 2 4 + ~ 68103 2 4 6 810! at 1200°C ©2F ©0.2F Austenite e1B : ©0.2B e5B e10B Ferrite elF o4B (°C) Temperature 1 2 4 € 810 2 4 6 810? 2 4 6 8103 2 4 6 8104 SOURCE: Yasuya Ohmori, Hiroo Ohtani, Tatsuro Kunitake, "The Bainite in Low Carbon Low Alloy High Strength Steels,” : Transactions ISIJ, Vol 11, 1971, pp 250-259 ——_——— SSS Atlas of Time-Temperature Diagrams 525 2.6Ni-0.4Mo Steel Composition: 0.30% C - 0.52% Mn - 0.18% Si - <0.02% P - 0.021% S - 2.64% Ni - <0.05% Cr - 0.37% Mo - <0.015% Al Grain size: 5 Austenitized at 870°C (1600°F) for 45 min Temperature -=--clsothermal Stort o——+ Cooling Start 100 ——* Cooling Stop Cooling Start (Predicted) 10° 10' 10? 10° 10% 10° 10° Time - Seconds 3.6Ni-0.5Mo Steel Composition: 0.30% C - 0.41% Mn - 0.28% Si - <0.02% P - 0.014% S - 3.64% Ni - <0.05% Cr - 0.47% Mo - 0.058% Al Grain size: 6 Austenitized at 870°C (1600°F) for 45 min Temperature Cooling Start (Predicted) Cooling Rates °F/ HR, 10° SOURCE: 10! 10? 10% Time - Seconds 104 10° 10® Steels," Transactions of the ASM, Vol 50, W.C. Hagel, M.N. Ruoff, "Transformation Structures in Hypoeutectoid Alloy 1958, pp 184-207 ns Atlas of Time-Temperature Diagrams 526 1Cr-1Mo-0.2V Steel Composition: 0.26% C - 0.72% Mn - 0.72% Mn - 0.29% Si <0.02% P - 0.025% S - 0.11% Ni - 1.01% Cr - 1.04% Mo 0.23% V - <0.015% Al Grain size: 6 Austenitized at 955°C (1750°F) for 45 min a aed g ane q g A 3 - =E Bos S <O= -o Isothermal Start o—w<- Cooling Start a—- Cooling Stop seeeeeeeeCooling Start roan (Predicted) 10° 10! 10? 10° 10° 10° 10* Time - Seconds 2Ni-1.3Cr-0.5Mo Steel Composition: 0.33% C - 0.52% Mn - 0.11% Si - <0.02% P - 0.014% S - 2.02% Ni - 1.34% Cr - 0.47% Mo - 0.09% V 0.040% Al Grain size: 6 Austenitized at 870°C (1600°F) for 45 a 5 io) ®a E a = <- --0-lsothermal Start -—~< Cooling Start 9—2-Cooling Stop Cooling Start (Predicted) 10° 10! 102 108 104% 10° 10% Time -Seconds SOURCE: W.C. Hagel, M.N. Ruoff, "Transformation Structures in Hypoeutectoid Alloy Steels,” Transactions of the ASM, Vol 50, 1958, pp 184-207 2 a TT SS Atlas of Time-Temperature Diagrams 527 3Ni-2Cr-0.7Mo Steel Composition: 0.26% C - 0.41% Mn - 0.22% Si - <0.02% P 0.024% S - 2.91 Ni - 1.98% Cr - 0.69% Mo - <0.015% Al Grain size: 5 Austenitized at 870°C (1600°F) for 45 min Temperature rere Isothermal Start ~o—< Cooling Start Cooling Start (Predicted) ; 10° 10! 102 103 10% 10° 10° Time - Seconds SOURCE: W.C. Hagel, M.N. Ruoff, "Transformation Structures in Hypoeutectoid Alloy Steels,” Transactions of the ASM, Vol 50, 1958, pp 184-207 aaa ee EEEEEaEeeen Atlas of Time-Temperature Diagrams 528 3-1/2NiCrMoV Turbine Disk Steel Composition: 0.3% C - 0.3% Mn - 3.64% Ni - 1.63% Cr - 0.49% Mo - 0.08% V Austenitized at 840°C (1545°F) ----Ferrite less than 1% All samples heated to 843°C and then held 24 hrs before Isothermal hold C TEMPERATURE, 107 10° 10° TIME, seconds IT Soilewss i Se RAED eae eae . |oD *! 00 3 800 ee SERRE o - rm or 18 8 8 Austenitizing Temperature 843°C N \ 2222°C/hr 722°C/hr ASTM 9.5 \ ; \ \222°C/hr 56°C/hr \ \ 22°C/hr 6° C/hr >) B Ee : s < ti a 400 “ WwW > M, = 300 s a ; A B, 200 100 CCT M, 10° : 10° 10° 4 10° 10° TIME, seconds SOURCE: R.L. Bodnar, K.A. Taylor, K.S. Albano, S.A. Heim, "Improving the Toughness of 3-1/2NiCrMoV Steam Turbine Disk Forgings,” Transactions of the ASME, Vol 111, January 1989, pp 61-70 aL Atlas of Time-Temperature Diagrams 529 AISI S7 Tool Steel Composition: 0.50% C - 0.71% Mn - 0.30% Si - 3.20% Cr 1.32% Mo Austenitized at 940°C (1725°F) ©. Mn Si _Cr_ _Mo --50 71.30 3.20 1.32 I6e00L_ Austenitized at I725F Rb 92 99 101 105 te iW « a = z w oa = a tt Py = a lw = Re 49 54 10 20 hr 10°sec IT 1800 1700 1600 1500 1400 1300 1200 w © 1100 uJ & 1000 — < a 300 a. s 800 WwW F 700 \ 600 500 \ 400 300 7 100 || 63 62 | | \| «GIS S65 $251548 45 47 10 CCT SOURCE: Bethlehem Steel Corporation TIME, seconds Hardness HRC Atlas of Time-Temperature Diagrams 530 Duracut Chipper Knife Steel Composition: 0.51% C - 0.34% Mn - 0.40% Si - 0.32% Ni - 4.8% Cr - 1.99% Mo Grain size: 9.5 Austenitized at 1010°C (1850°F) HV 222 232 250 290 1400 1300) 1000) Samples Austenitized at IBSOF ASTM ie 5 9.5 Ma = .40Si 34 TEMPERATURE F, 10 10 104 IT 10° 10° TIME , seconds Ps ASTM Grain Size No.9 Critical Temperatures on Heating (F) Paste! Vpoh dh! Z SOF/hr F o fe)ie) 8 TEMPERATURE, (0) 10 CCT SOURCE: 100 103 104 108 TIME, seconds Bethlehem Steel Corporation Sse a 10 Atlas of Time-Temperature Diagrams OO 1010 Steel Composition: 0.12% C - 0.50% Mn - 0.16% Si - 0.004% P 0.010% S - 0.0005% N Grain size: 9.9 Austenitized at 925°C (1700°F) for 15 min = F Temperature, ae toe | baal | 7.6 A-austenite M; F-ferrite P-pearlite M, 852 F (calculated) Ac, 1,342 F Not determined 7.0 94 90 6.4 6.0. Austenitized, 1,700 F - 15 min Neo cooling Grain size, ASTM No. 9.9 B-bainite Ac3 1,578 F 0.12 C, 0.50 Mn, 0.004 P, 0.010 S, 0.16 Si, 0.0005 N 0.1 l 10 100 1,000 10,000 100,000 Time, Sec 1010 Mo Steel Composition: 0.11% C - 0.50% Mn - 0.22% Si - 0.002% P - 0.007% S - 0.56% Mo - 0.003% Al - 0.002% N Grain size: 9.8 Austenitized at 925°C (1700°F) for 15 min s S a as e A\ eWE E S M N Sh Temperature, F 228 |226 216 214 199 192 1B9 A-austenite M, 740 F Austenitized, 1,700 F - 15 min F-ferrite Ms 935 F Grain size, ASTM No. 9.8 L53e 9.2 1S5 8.5 117 112 NY110 8.0 7.2 Net \ Ac, 1,358 F P-pearlite Ac3 1,636 F B-bainite 0.11 C, 0.50 Mn, 0.002 P, 0.007 S, 0.22 Si, 0.56 Mo, 0.002 N, 0.003 Al 0.1 1 10 100 104 6.0 \ \ 1,000 10,000 100,000 Time, Sec SOURCE: Jones & Laughlin Steel Corporation, C.F. zurLippe, John D. Grozier, "Continuous as published in Metal Progress, February 1969 Cooling Transformation Diagrams," 532 Atlas of Time-Temperature Diagrams 1010 Mo-B Steel Composition: 0.10% C - 0.52% Mn - 0.21% Si - 0.002% P - 0.005% S - 0.0068% B - 0.050% Al - 0.0007% N Grain size: 10.4 Austenitized at 925°C (1700°F) for 15 min ees as eae Paes ex Pee Temperature, F 344) 307 282 225 215 199 203 | 192 185 113/111 \ A-austenite My 730 F Austenitized, 1,700 F - 15 min F-ferrite Ms 924 F Grain size, ASTM No. 10.4 P-pearlite Ac, 1,346 F B-bainite Ac; 1,638 F 0.10 C, 0.52 Mn, 0.002 P, 0.005 S, 0.21 Si, 0.55 Mo, 0.0007 N, 0.0063 B, 0.050 Al Bold-faced numbers-are ASTM grain sizes: others are dph hardnesses 01 l 10 100 Time, Sec 1,000 10,000 SOURCE: Jones & Laughlin Steel Corporation, C.F. zurLippe, John D. Grozier, "Continuous as published in Metal Progress, February 1969 Cooling Transformation 1036 Steel Composition: 0.37% C - 1.45% Mn - 0.25% Si Grain size: 7 Austenitized at 845°C (1550°F) 1500 1400 1300 1036 0.37 C, 1.45 Mn, 0.25 Si Austenitized, 1550 F Grain size No. 7 Aca=1470 F Aci -1350 F ; ; | 1200 Cooling curves 1100 Z 4 from 1550 F q ae as cn | : ig S A+F+ at indicated distances from quenched end = 900 5 ™ 800 700 kes ae cap) A+F+ NUN i A- austenite 400 [M=martensite 2 5 10 — pearlite SOURCE: — 900 |—bainite 600 N 20 50 Cooling Time, Sec Bethlehem Steel Corporation as published in Metal Progress 100 109 6.93/68 ‘. 64 200 500 100,000 Diagrams,” Atlas of Time-Temperature Diagrams 10B36 Steel Composition: 0.36% C - 1.45% Mn - 0.25% Si Grain size: 7-1/2 Austenitized at 845°C (1550°F) 10B36 0.36 C, 1.45 Mn, 0.25 Si Austenitized, 1550 F Grain size No. 71/2 Acs=1470 F Aci =1355 F Nie iS &s x ZZ from 1550 F \|at indicated distances fro IX \ “4 F Temperature, A- austenite 400 [M—martensite 2 4) 1/16 1/8 3/16 10 20 50 Cooling Time, Sec 1/4 100 200 SOURCE: Bethlehem Steel Corporation as published in Metal Progress ee 500 EEEEEEEESEEEEEEEEEEEEEEEESEEEEEEEE Atlas of Time-Temperature Diagrams 534 SAE 1038 Steel Composition: 0.38% C - 0.70% Mn - 0.25% Si - 0.015% P 0.030% S - 0.063% Al - 0.003% N Grain size: 8 Austenitized at 870°C (1600°F) 486 415 340 Austenitized, 1,600 F Grain size, ASTM No. 8 Composition: 0.38% C - 0.70% Mn - 0.25% Si - 0.015% P 0.030% S - 0.063% Al - 0.003% N Grain size: 5 Austenitized at 1095°C (2000°F) Temperature, F — JaSoOo SNe A—austenite F — ferrite P—pearlite Ac: = 1,308 F B—bainite Acs = 1,398 F 0.38 C, 0.70 Mn, 0.015 P, 0.030 S, 0.25 Si, 0.063 Al, 0.003 N Solid cooling curves are for bars of indicated diameters (in.). Italic numbers are dph hardnesses, bold face numbers ASTM grain size. 1 10 100 8.0 Austenitized, 2,000 F Grain size, ASTM No. 5 1,000 Time, Sec SOURCE: 8.5 Jones & Laughlin Steel Corporation as published in Metal Progress eee 10,000 Atlas of Time-Temperature Diagrams SAE 1040 Steel Composition: 0.39% C - 0.72% Mn - 0.23% Si - 0.010% P 0.018% S Grain size: 7-8 1,600 AIS! 1040 0.39 C, 0.72 Mn, 0.23 Si, 0.018 S, 0.010 P Ac,=1,342 F Ac.= 1,446 F , 1,400 Grain size, ASTM No. 7-8 F-ferrite P-pearlite 1,200 uw 1,000 Ay 3 e = CTemperature, 800 600 ‘a 16.300 7,300 4,100 2,300 *\ | $50 M Hardness 200 1,200 Oph Rockwell a 634 “57 @ 373-287-284 «242 =6C 38C 28C 28 C2) Cooling Time, Sec. SAE 1541 Steel Composition: 0.89% C - 1.56% Mn - 0.21% Si - 0.010% P 0.024% S Grain size: 8 0.39 C, 1.56 Mn, 0.21 Si, 10P 0.024 S, 0.010 Ac,=1,321 F Ac,=1,450 F Grain size, ASTM No. 8 F ferrite P-pearlite B-bainite M-martensite te C Temperature, F Temperature, 2.980 1,720 Hardness Oph Rockwell SOURCE: 900 550° 250 2.5 F/min e 646 C 58 259 C 24 Bethlehem Steel Corporation as published in Metal Progress 264 C25} 232210 B98 B94 220 B 96 Atlas of Time-Temperature Diagrams 536 SAE 15B41 Steel Composition: 0.42% C - 1.61% Mn - 0.29% Si - 0.006% P 0.019% S - 0.004% B Grain size: 7-8 1,600 AIS! 15B41 0.42 C, 1.61 Mn, 0.29 Si, 0.006 P, 0.019 S, 0.004 B ’ hi —_ — —— — AC =F Aci= 1433 F Grain size, ASTM No. 7-8 F-ferrite P-pearlite B-bainite EX 398 Fle - M_martensite ee Lan i. Toe Peri | Temperature, C Temperature, F al 600 1 400 Hardness Oph Rockwell 200 689 C60 1 695 C60 698 CeO 10 649 |C58 308 C31 275 °| 258 VCr24) CV26. 10’ 262 C24 220 B99 10’ 220 «6B 6 10° 10° Cooling Time, Sec. SOURCE: Bethlehem Steel Corporation as published in Metal Progress VAN-80 HSLA Steel Composition: 0.18% C - 1.28% Mn - 0.40% Si - 0.004% P - 0.012% S - 0.09% V - 0.07% Al - 0.018% N Grain size: 10.6 Austenitized at 900°C (1650°F) os SESE fee eles ee | SY en SOND wl a ae es Temperature, F 600 400 A-austenite F ferrite P—pearlite B-bainite 200 Ms=770 F Ac \=1,333 F Ac371,610 F Austenitized, 1,650 F for 10 min Grain size, ASTM No. 10.6 0.18 C, 1.28 Mn, 0.004 P, 0.012 S, 0.40 Si, 0.09 V, 0.07 Al, 0.018 N Italic numbers are Rockwell hardnesses, bold face numbers ASTM grain size (ferrite). 1 SOURCE: 10 100 Time, Sec Jones & Laughlin Steel Corporation as published in Metal Progress 1,000 10,000 Atlas of Time-Temperature Diagrams 537 SAE 3140 Steel Composition: 0.41% C - 0.86% Mn - 0.26% Si - 1.28% Ni 0.71% Cr Grain size: 7 Austenitized at 845°C (1550°F) (using interrupted Jominy Method) ai — is —— ] 0.41 C, 0.86 Mn, 0.26 Si, 1.28 Ni, 0.71 Cr 1400 1/16 1/8 3/16 3/8 1/2 Austenitized at 1550 eal Grain size No, 7 Acs = 1430 F As Acy = 1350F + KS ie Cooling curves from 1550 F at indicated distances x- from quenched end : 1000 4 “se \h Y 2 = E | | 800 \p +A 4 A Nw NK AAS : ee \ eee A—austenite ete . S 1 N 10% s 16 5 =< i : SIS | 2 = F+P+B+M+A M—martensite 1 75% ‘ M+A F —ferrite a (| ai NG 200 \eo A 50% I, < 50%. aig8| 20 50 100 \\ \75% SX 500 200 1000 Cooling Time, Sec SAE 4024 Steel Composition: 0.24% C - 0.88% Mn - 0.33% Si - 0.23% Mo Grain size: 8 Austenitized at 925°C (1700°F) (using interrupted Jominy Method) 0.24 C, 0.88 Mn, 0.33 Si, 0.23 Mo Austenitized at 1700 F Grain Size No. 8 Ac; = 1520 F Ac, = 1380 F 1600 1/16 In. 1/8 3/16 1/4 1400 —_}— 1200 Cooling curves from 1700 F at indicated distances 4 from quenched end Ss SsSs Temperature, F ooSsSs 600 400 A —austenite F —ferrite P —pearlite B—bainite M—martensite Ye 17234 If11/223 1 5 SOURCE: 10 5 20 Cooling Time, Sec Bethlehem Steel Corporation as published in Metal Progress 100 200 500 =) 1000 Atlas of Time-Temperature Diagrams 538 SAE 4047 Steel Composition: 0.51% C - 0.81% Mn - 0.25% Si - 0.26% Mo Grain size: 8 Austenitized at 845°C (1550°F) (using interrupted Jominy Method) 1600 0.51 C, 0.81 Mn, 0.25 Si, 0.26 Mo Austenitized at 1550 F Grain size No. 8 Ac;= 1450 F 1400 Ac; = 1370 F iw a EF bs Biwe \k Temperature, F ooSsi 600 400 A —austenite F —ferrite P—pearlite B—bainite M—martensite 2 SOURCE: 50 Cooling Time, Sec Bethlehem Steel Corporation as published in Metal Progress et = 539 Atlas of Time-Temperature Diagrams SAE 4130 Steel Composition: 0.31% C - 0.47% Mn - 0.34% Si - 0.021% P 0.019% S - 0.26% Ni - 0.92% Cr - 0.17% Mo (using interrupted Jominy Method) = ncros at 300 Diameters Martensite RS$ bs a G2 as aaa 1300 a a peres paeae 1400 | St Pease! ———|— 1500 1200 \ 1100 ce¢ | Martensite and Ferrite \\ 1000 é 900 Cf gst try ee eex 600 JOT 789, YIVENY, -UZ KUILUOP UO SUONJERS AMIGOS JOf SIAIND BusjOo7 So GINJCSIOWS 70. oma) Set Ct ar 500 Se SI SY 400 Sine 300 e.8 rR 200 SN 100 Partial Continuous-Cooling Transformation Diagram for SAE , X-4/30 Sans 21% 134, 8 0OW, POO? 1 Or 092, Ni026, Mo O17 S 08 COS S _—~Be =iS Seconas , J. +1 i teh 10) 15 20 SOURCE: Curtiss-Wright Corporation as published in Metal Progress 50 718 100 200 500 9 Atlas of Time-Temperature Diagrams 540 SAE 4140 Steel Composition: 0.37% C - 0.77% Mn - 0.98% Cr - 0.21% Mo Grain size: 7-8 Austenitized at 845°C (1550°F) | BAN 179;C Austenite@ (Unstable) «aS at | | : We a J as, BHN229_____|, BUN 731__ tion 900 iS |\—— S Ls yy Rae SHIN 285 5 _ ~ y | 0-29 ee ) 201BE sees eeea 7 eer 5} O), 087% 400 O77 O98 22 | Austenitizing Temp. 50° F —+———— Austenite Grain Size: | “tes b BAN ce nae Thies: ‘ | GHdi 4 | 99% martensite ot 425% Time, Seconds SOURCE: U.S. Steel Corporation as published in Metal Progress 1000 er Saree se ] | 10000 es | | 7apy 10Q000 300 5 0gys Atlas of Time-Temperature Diagrams SAE 54] 4140 Composition: 0.44% C - 1.04% Mn - 0.29% Si - 1.13% Cr - 0.15% Mo Grain size: 9 Austenitized at 845°C (1550°F) (using interrupted Jominy Method) 1600 0.44 C, 1.04 Mn, 0.29 Si, 1.13 Cr, 0.15 Mo 1400 1/8\n. 3/16 1200 1/4 3/8 1/2 3/4 Austenitized at 1550 F Grain size No. 9 Ac)=1460 F Ac, = 1380 F 1 = + Cooling curves from 1550 F at indicated distances from quenched end 1000 5 ~ 800 600 A —austenite F —ferrite P—pearlite B—bainite M—martensite 400 200 Cooling Time, Sec SAE 43BV14 Composition: 0.12% C - 0.57% Mn - 0.29% Si - 1.86% Ni 0.47% Cr - 0.18% Mo - 0.07% V - 0.0014% B Grain size: 9 Austenitized at 925°C (1700°F) (using interrupted Jominy Method) 1600 WEES SS 0.12 C, 0.57 Mn, 0.29 Si, 1.86 Ni, 0.47 Cr, 0.18 Mo, 0.07 V, 0.0014 B | 83/16 1/8 [3/82 \h 1400 | Austenitized at 1700 F Grain size No. 9 jee Aci 1520 F LN 1370 F Cooling curves from 1700 F at indicated distances from quenched end 1200 Fe, ; 1000 Temperatur 800 60 Sk A—austenite Sge3 98% 400 }__— F—ferrite N B—bainite M—martensite ‘ SSA SO NS 20 1/16 1 SOURCE: 2 . by 10 20 50 Cooling Time, Sec Bethlehem Steel Corporation as published in Metal Progress . SS WSS 1/8 3/16~91%3/8 1/2 *3/4 ig} 100 500 1/4 200 11/2 1000 Atlas of Time-Temperature Diagrams 542 SAE 4315 Steel Composition: 0.16% C - 0.70% Mn - 0.42% Si - 0.008% P 0.029% S - 1.84% Ni - 0.78% Cr - 0.35% Mo (using interrupted Jominy Method) 1200 | ¢ | z : 0 | he Pie as cig | ta : iN age MAA . bas NY N\A \\ / ETAL Martensité, Fern, \ Jemperature, F Q)S 500 200 me asd 100 Mi ; 5 OES — 184 MO 055 ae a | re Du Blickwede (Curtiss-Wright Corp, Propetler bean | PABTIAL GONTINUOUS-COOLING TRANSFORMATION DIAGRAM / SOURCE: 5 10 20 40 6080100 Time, Seconas Curtiss-Wright Corporation as published in Metal Progress 200 Test Jominy Bar End-Quench Stations Respective for Cooling Curves on Atlas of Time-Temperature Diagrams 543 SAE 4330 Steel Composition: 0.26% C - 0.60% Mn - 0.39% Si - 0.008% P 0.007% S - 1.77% Ni - 0.70% Cr - 0.32% Mo (using interrupted Jominy Method) 1500 ANE 1400 {\ 1200 /\ NMC ake ee ‘ | IAEA \ \ \ Martensrte and Ferrite al ea WD ee SR Temperature, Ea 7114 C 026 Mn Q60 N172, Moose 200 |} 8 0.39 poo Go ia —— ||e — 7 as£ 20 TRANSFORMATION 40 7ime, Seconds Curtiss-Wright Corporation as published in Metal Progress 0 $0 8ie) a CONTINUOUS-COOLING /0 “ma - —— PARTIAL os S Ro44 |i s§ Qo07 100 SOURCE: wreiva) f 7 SAE 4330 60 80 100 DIAGRAM 200 Atlas of Time-Temperature Diagrams 544 SAE 4340 Steel Composition: 0.41% C - 0.87% Mn - 0.28% Si - 1.83% Ni - 0.72% Cr - 0.20% Mo Grain size: 7 Austenitized at 845°C (1550°F) (using interrupted Jominy Method) 1600 0.41 C, 0.87 Mn, 0.28 Si, 1,83 Ni, 0.72 Cr, 0.20 Mo Austenitized at 1550 F Grain size No. 7 | Acy=1390 F Ac; = 1330 F 1400 1200 Cooling curves from 1550 F at indicated distances from quenched end 1000 COA INES FTemperature, oSsSs 600 SATIN, \ aN Nea Y: “Bama SS SS 100 200 Les 200 20 50 \ \\ 500 1000 Cooling Time, Sec SAE 4340+Si Steel Composition: 0.43% C - 0.83% Mn - 1.55% Si - 1.84% Ni 0.91% Cr - 0.40% Mn - 0.12% V - 0.083% Al Grain size: 8 Austenitized at 845°C (1550°F) (using interrupted Jominy Method) 0.43 C, 0.83 Mn, 1.55 Si, 1.84 Ni, = Se IN 4 0.91 Cr, 0.40 Mo, 0.12 V, 0.083 Al SS Austenitized at 1550 F zee Grain size No. 8 Ac;=1480 F Ac, = 1400 F . 3/8 1/2 3/4 1 11/2 23 1200 Cooling curves from 1550 F at indicated distances 1000 ca \\ va quenched end ‘ BOTAN .x en Temperature, F coSs= EEN “S REGS A i ‘J —austenite 400 1% XN] Ny M+A Potente ; -F+B+A aN B—bainite : ake N M—martensite [4] A <i \ a NK 3 558 20 50 Cooling Time, Sec SOURCE: Bethlehem Steel Corporation as published in Metal Progress 3/16 1/4 3/8 / 100 200 1/2 / 3/41 11/2 / 500 1000 Atlas of Time-Temperature Diagrams SAE 545 4640 Steel Composition: 0.42% C - 0.71% Mn - 0.28% Si - 1.77% Ni 0.24% Mo Grain size: 9 Austenitized at 845°C (1550°F) (using interrupted Jominy Method) 1600 -~ 17 C, 0.71 Mn, 0.28 Si, Ni, 0.24 Mo Austenitized at 1550 F Grain size No. 9 Acs =1400 F Aci =1320 F 1400 1200 Cooling curves from 1550 F at indicated distances from quenched end 3 FTemperature, coSsSo 600 400 A—austenite F—ferrite P—pearlite B—bainite M—martensite Cooling Time, Sec SAE 4815 Steel Composition: 0.14% C - 0.45% Mn - 0.22% Si - 3.42% Ni - 0.21% Mo Grain size: 9 Austenitized at 925°C (1700°F) (using interrupted Jominy Method) 0.14 C, 0.45 Mn, 0.22 Si, 3.42 Ni, 0.21 Mo Austenitized at 1700 F Grain size No. 9 Ac, = 1470 F Ac, = 1350 F 1400 oe | ‘EASES ONE \ NY Cooling curves from 1700 F at indicated distances from quenched end 000 Temperature, F 800 600 A—austenite 400 F—ferrite B—bainite M—martensite 20 50 Cooling Time, Sec SOURCE: Bethlehem Steel Corporation as published in Metal Progress 100 200 500 1000 546 Atlas of Time-Temperature Diagrams SAE 5140 Steel Composition: 0.42% C - 0.87% Mn - 0.25% Si - 0.89% Cr Grain size: 8 Austenitized at 845°C (1550°F) (using interrupted Jominy Method) 1600 0.42 C, 0.87 Mn, 0.25 Si, 0.89 Cr 1400 Austenitized at 1550 F Grain size No. 8 | Ac, = 1480 F Ac, = 1380 F 1200 =. W 0% ye Transformed f rm Cooling curves from 1550 F at indicated distances from quenched end \ 1000 Temperature, F coSsi) 600 M+A A—austenite F—ferrite 400 P—pearlite B—bainite M—martensite Cooling Time, Sec SAE 5160 Steel Composition: 0.63% C - 0.86% Mn - 0.23% Si - 0.83% Cr Grain size: 7-1/2 Austenitized at 845°C (1550°F) (using interrupted Jominy Method) 1600 0.63 C, 0.86 Mn, 0.23 Si, 0.83 Cr Austenitized, 1550 F Grain size No. 7 1/2 1/8 3/16 1/4 3/8 Ac, = 1440 F Ac, = 1390 F 1/2 Transformed 1/16 In Ss 1200 Cooling curves from 1550 F at indicated distances from quenched end 1000 2 iS5 800 | 600 M+A ~ Transformed A—austenite F—ferrite P—pearlite B—bainite M—martensite 400 50% \99N N3p 8 \y afte 1213/4 111/2 SS 1/16 1 2 5 10 20 50 Cooling Time, Sec SOURCE: Bethlehem Steel Corporation as published in Metal Progress 100 200 500 1000 Atlas of Time-Temperature Diagrams SAE 547 52100 Steel Composition: 1.06% C - 0.33% Mn - 0.32% Si - 1.44% Cr Grain size: 9 Austenitized at 845°C (1550°F) (using interrupted Jominy Method) ~ 1600 1.06 C, 0.33 Mn, 0.32 i;1.44 Cr 1400 Wein. A 1/8 3/16 1/8] 3/8 1/238 Austenitized at 1550 F Grain size No. 9 SS | 111/223 Ac, = 1440 F Ac, = 1390 F 1200 Cooling curves from 1550 F XK} at indicated distances from quenched end iy) i i 1000 = ! = $ J t = I ~ 800 : \\ F+A A 600 E \ A A—austenite 400 F—ferrite \ P—pearlite \ B—bainite martensite M—martensit nC I2NNIAAN3 3/8 3/4 11/2 7” 200 1 2 5 10 20 5 Cooling Time, Sec 100 200 SOURCE: Bethlehem Steel Corporation as published in Metal Progress ee 500 1000 Atlas of Time-Temperature Diagrams 548 SAE 6115 Steel Composition: 0.16% C - 0.85% Mn - 0.34% Si - 0.009% P 0.019% S - 0.92% Cr - 0.15% V Grain size: 6 (using interrupted Jominy Method) 1500 ON LUA LL A ez AVA \\I —— TRON LAL be HCN ANI - AA VA LTT A ON AS NN 3 : \AAARAA ik a7 HCA ‘esate, ae a \\WAN ‘ { /000 ol NI ST HCA S ture, °F S ee bi ; < varitteven. Ban C WV e TINEA K NN en et N 7empera 600 2 a meal \,2085 ANN SSaaanit a. | NUNN AKA eae NING, , Sen eae RNNO ) 500 Ro 350pee “RB. 260fae 200 NNW NA AL 2 Partial Gontinuous- coglinglaa Diagram for &. Ae C Ol S$ 0019 /00 Mn O85 P 0.009 V Ols ’ O34 i 092 INS8 See a : =. Sue ‘ SSS SASS , Shepherd Fracture Grain &12e:6 CA. Liedholm, / Time, Seconds 4 &G A.l. Rush, WC. Coons 8 10 SOURCE: Curtiss-Wright Corporation as published in Metal Progress —_————— ee _____.:.:.0C0CC End-Quench Test Bar Jominy for Stations Respective Curves Cooling on 500 1000 SSS Atlas of Time-Temperature Diagrams 549 SAE 6135 Steel Composition: 0.67% Mn - 0.45% Si - 0.98% Cr - 0.23% V Grain size: 8-1/2 (using interrupted Jominy Method) 1500 1200 ae Marte. site plus <4 \ Ferriteme \ \| i aoe \\ Martensite— ‘plus Ferrite and Pear ité__ Ternperature, °F | 1%" ag rtensite plus —— \ Ferrite, Bainite and Pearlite—————| Ge 400 Martensite ———}- 300 Le 200 = Transformation Diagram for 6135 Stee} (O62 mn, 045&1,O98 CN 023 V) + During Continuous Cooling Grain Size 8%, Micros 500 Dia CA Liedhoim 100 / SOURCE: ie 10 20 50 Time, SECOnOSs Curtiss-Wright Corporation as published in Metal Progress 100 Cooling Jormny Stations Respective for Curves Test End-Quench Bar on 200 550 Atlas of Time-Temperature Diagrams SAE 8620 Steel Composition: 0.17% C - 0.82% Mn - 0.31% Si - 0.52% Ni 0.50% Cr - 0.20% Mo Grain size: 9 Austenitized at 925°C (1700°F) (using interrupted Jominy Method) a —__ N } ee 1/16In,1/8 3/16 1/4 3/8 0.17 C, 0.82 Mn, 0.31 Si, 0.52 Ni, 0.50 Cr, 0.20 Mo 11/2823 | Austenitized at 1700 F Grain size No. 9 Ac, = 1520 F Ac, = 1370 F 1400 1200 1000 ‘ | Cooling curves from 1700 F at indicated distances from quenched end F Temperature coSsSs 600 4 id 1 SOURCE: A—austenite F—ferrite B—bainite M—martensite 2 5 10 Bethlehem Steel Corporation as published in Metal Progress eS Atlas of Time-Temperature Diagrams 551 SAE 8620 Steel Composition: 0.21% C - 0.71% Mn - 0.30% Si - 0.002% P 0.006% S - 0.63% Ni - 0.49% Cr - 0.17% Mo - 0.014% Cu - 0.014% Al Grain size: 10.6 Austenitized at 925°C (1700°F) for 15 min \ ee \ \ \ X15 we pos \ 445 580 |302 297 274 231 230 Mr=568 F M,=808 F Ac)=1,363 F Ac3=1,560 F 197 178 Austenitized, 1,700 F for 15 min Grain size, ASTM No. 10.6 Composition: 0.21% C - 0.71% Mn - 0.30% Si - 0.002% P - 0.006% S - 0.63% Ni - 0.49% Cr - 0.17% Mo - 0.014% Cu 0.014% Al Grain size: 4.8 Austenitized 1065°C (1950°F) for 15 min F Temperature, eS SA ~ X 7 | Hoa Sek 600 400 ee ee 474 A-austenite 200 452 v eee \ \ 371_34) Zit 242 I TAR Mp=542 F F-ferrite Ms2/98 F P—pearlite Ac 1=1,363 F Austenitized, 1,950 F for 15 min B-bainite M-martensite Ac3=1,560 F Grain size, ASTM No. 4.8 0.21 C, 0.71 Mn, 0.002P, 0.006 S, 0.30 Si,0.63 Ni, 0.49 Cr, 0.17 Mo, 0.014 Cu, 0.014 Al Italic numbers are dph hardnesses, bold face numbers ASTM grain size (ferrite). l 10 100 Time, Sec SOURCE: Jones & Laughlin Steel Corporation as published in Metal Progress eee 1,000 10,000 Atlas of Time-Temperature Diagrams 562 SAE 8630 Steel Composition: 0.31% C - 0.94% Mn - 0.26% Si - 0.009% P 0.023% S - 0.59% Ni - 0.53% Cr - 0.21% Mo (using interrupted Jominy Method) 1500 1400 1300 sah nt we \ Martansitle i ui | 4 A \I ANG ) Ty” Reaas we | ae ot ca. pee eae f “ae 1200 Hah Nae 1100 Martensite and Ferrite 7000 900 S re § = NK BS 3 s g S 800 S= R 700 'S S % S i g > 600 § S S 500 11: ap) VYg* 8& 14 400 L & 8 x ce) a 300 & 8 S 200 |— Transformation Diagram for far NE8630 (AM& 6355) 700 pees aS During Continuous Cooling C031 MNOS Ni O59 Mo Oe) S$ 0023 P 0009 8 026 & Cr 053 CAL—— A. Bush DJS Blickwede ae eee SOURCE: Curtiss-Wright Corporation as published in Metal Progress Atlas of Time-Temperature Diagrams 553 SAE 8640 Steel Composition: 0.37% C - 0.87% Mn - 0.25% Si - 0.56% Ni 0.44% Cr - 0.18% Mo Grain size: 7 Austenitied at 845°C (1550°F) (using interrupted Jominy Method) 1600 0.37 C, 0.87 Mn, 0.25 Si, 0.56 Ni, 0.44 Cr, 0.18 Mo 1400 Austenitized at 1550 F Grain size No. 7 Ac, = 1460 F Ac, = 1370 F 1200 Cooling curves from 1550 F at indicated distances from quenched end = SsSs \ Qn K F Temperature, coSsSo 600 ‘ ~yTranstormed 95% A—austenite F—ferrite 400 P—pearlite B—bainite M—martensite 1 2 5 10 100 200 500 1000 SAE 86B40 Steel Composition: 0.44% C - 0.88% Mn - 0.34% Si - 0.49% Ni 0.65% Cr - 0.14% Mo, B Grain size: 7-1/2 Austenitized at 845°C (1550°F) (using interrupted Jominy Method) 0.44 C, 0.88 Mn, 0.34 Si, 0.49 Ni, 0.65 Cr, 0.14 Mo, B 1400 BS N Austenitized at 1550 F Grain size No. 7 1/2 Ac, = 1550 F Ac, = 1350 F 1200 Cooling curves from 1550 F at indicated distances from quenched end 3 F Temperature, ooc=}Ss 600 A—austenite 400 F—ferrite B—bainite M—martensite SOURCE: Bethlehem Steel Corporation as published in Metal Progress Atlas of Time-Temperature Diagrams 554 SAE 9260 Steel Composition: 0.57% C - 0.91% Mn - 1.95% Si Grain size: 7 Austenitized at 870°C (1600°F) (using interrupted Jominy Method) 1600 aa 0.57 C, 0.91 Mn, 1.95 Si 1400 1/16In. 1/8 |3/16 1/4 3/8 Y2— 3/4 1/2 = 3 ig FLA 1%| 25% 5 1200 - : FPEA : 8, 99% 5 aoe ; 4 from quenched end A Ve Temperature, F 600 A ZZ : ~ \ 3 A—austenite 400 }———— Ferrite : P—nearlte B—bainite M—martensite Cooling curves from 1600 F at indicated distances \ sy @ d 1000 Austenitized at 1600 F Grain size No. 7 Ac, = 1480 F Ac, = 1420 F ESTES. M-A LN 5% —s 1/8 Transformed AS 25% \ 99% AS W16 . _e 3/16 1/4 SS 3/8 1/2° 3/4 11/2 200 i 2 5 10 20 50 100 200 500 1000 Cooling Time, Sec SOURCE: Bethlehem Steel Corporation as published in Metal Progress SAE 9840 Steel Composition: 0.43% C - 0.84% Mn - 0.25% Si - 1.00% Ni 0.81% Cr - 0.23% Mo Grain size: 7 Austenitized at 845°C (1550°F) 5 CaS \ ve 1600 io Minutes C-T Diagram * ALS... 9840 C-0.43 Mn-0.84 Si-0.25 Ni-1.00 Cr-0.81 Mo-0.23 A, 1360°F Ay |1430°F Austenitized at |I550°F Grain Size 7 bee Cooling Curves at Indicated Temperature °F Distances From Quenched End \ M+ 8B +Fp+A \ A- Austenite M- Martensite Fp- Paraferrite B - Bainite a (fo “I ae ey GreyGy (hile) T - 816 i6| 100 200 ealMMe ZO SON Cooling Time From 50 6 a 1550°F - Seconds SOURCE: D.J. Blickwede, R.C. Hess, "On the Cooling Transformations in Some 0.40% Carbon Constructional Alloy Steels,” Transactions of the ASM, Vol 49, 1957, pp 427-448 Atlas of Time-Temperature Diagrams 555 AISI 01 Tool Steel Composition: 0.87% C - 1.21% Mn - 0.28% Si - 0.52% Cr 0.58% W Grain size: 9-1/2 Austenitized at 855°C (1475°F) (using interrupted Jominy Method) 0.87 C, 1.21 Mn, 0.28 Si, 0.52 Cr, 0.58 W 1400 }— —— Austenitized at 1475 mal Grain size No. 9 1/2 Ac, = 1450 F Ao, = 1390 F 1200 _, Cooling curves from 1475F at indicated distances from quenched end 1000 F Temperature, coSoSs ransformed 600 A—austenite F—ferrite 400 H/-_ _ P— perlite B—bainite M—martensite 1/16 —~1/8 200 1 2 AISI 5 10 20 50 Cooling Time, Sec 100 200 500 1000 S5 Tool Steel Composition: 0.62% C - 0.72% Mn - 1.72% Si - 0.46% Mo Grain size: 9 Austenitized at 855°C (1575°F) (using interrupted Jominy Method) 1600 0.62 C, 0.72 Mn, 1.72 Si, 0.46 Mo Austenitized at 1575 F Grain size No. 9 Ac, = 1520 F Ac, = 1460 F ee 1/16 In. 1200 Cooling curves from 1575 F indicate distances from quenched end 4 1000 } —s b 25% 5 sformed | ~ 800 600 400 200 A—austenite F—ferrite P—pearlite B—bainite M—martensite ta 2 NS 1/4 3/8 1/2 3/4 1 11/2 | 5 10 20 50 Cooling Time, Sec SOURCE: Bethlehem Steel Corporation as published in Metal Progress 100 200 500 1000 Atlas of Time-Temperature Diagrams 556 Fe - 3.8Mn - 0.7Si Steel Composition: 0.038% C - 3.83% Mn - 0.72% Si - 0.005% P - 0.019% S - 0.04% Ni - 0.02% Cr - <0.005% Mo - 0.04% Cu - 0.080% Al - <0.005% Nb - <0.005% Ti Austenitized at 900°C (1650°F) for 15 min TIME Fe - 2.9Mn TO COOL 10 FROM 900°C, s - 0.7Si Steel Composition: 0.037% C - 2.90% Mn - 0.73% Si - 0.009% P - 0.016% S - 0.02% Ni - 0.04% Cr - <0.005% Mo - 0.03% Cu 0.033% Al - <0.005% Nb - <0.005% Ti Austenitized at 900°C (1650°F) for 15 min 900 800 700 g g 400 8 8 TEMPERATURE °C , nae. 01 1 10 107 TIME TO COOL FROM 900°C, re 10° s 10° SOURCE: A. Brownrigg, "Structure and Properties of Low-Carbon Bainitic Fe-Mn-Si Alloys,” Metals Science, Vol 9, 1975, pp 313-318 Atlas of Time-Temperature Diagrams 557 Mn-Mo-Si-Cr Steels Composition: 0.061% C - 1.0% Mn - 1.0% Si Grain size: 9.5 Austenitized at 955°C (1750°F) for 10 min Ferrite e ee \ ~ ~ Se a Oo tigen, Oe —— —_—s — ——— 50% 15% es S _ 90 Bo 90 sie a NN Peorlite ‘ 10 (°F) TEMPERATURE TIME (sec.) Composition: 0.08% C - 1.17% Mn - 0.70% Si - 0.62% Mo Grain size: 10.5 Austenitized at 955°C (1750°F) for 10 min 100 fe} ad, (°F) TEMPERATURE / X/\\\ Bainite + Martensite yy \ 50 °o ! x Se TIME (sec.) ve 10,000 SOURCE: S.S. Hansen, "Optimization of Structure and Properties of As-Hot-Rolled Dual-Phase Steels,” Mechanical Working & Steel Processing XIX, proceedings of the 23rd Mechanical Working & Steel Processing Conference, Pittsburgh, 28-29 October, 1981, AIME, 1982, pp 1-22 Atlas of Time-Temperature Diagrams tale} Mn-Mo-Si-Cr Steels Composition: 0.061% C - 1.13% Mn - 0.77% Si - 0.28% Cr 0.30% Mo Grain size: 10 Austenitized at 955°C (1750°F) 10 min T Ta M LA ERAITE FERQT S00 NER a = acy o . mea on BN c a © ’ = cc .c z Pe= a 000, — = ™ x fi Ge CH aS ae SOS — Se — ae args = \\c°92 90 1M, (coc) 50% 75% 92 4 92 Pag A ial ean BAIN ~E + WAR-ENSE =— _ Hi | _ 4 \ i ‘ eat ean tfc seh tt 10 190 TIME = 3 1,000 10,900 .a0c) SOURCE: S.S. Hansen, "Optimization of Structure and Properties of As-Hot-Rolled Dual-Phase Steels,” Mechanical Working & Steel Processing XIX, proceedings of the 23rd Mechanical Working & Steel Processing Conference, Pittsburgh, 28-29 October, 1981, AIME, 1982, pp 1-22 Hot-Rolled Dual Phase Steel Composition: 0.06% C - 1.19% Mn - 0.87% Si - 0.38% Mo 0.064% Al Austenitized at 960°C (1760°F) for 20 min AUSTENITIZED Austenite Polygonal 20 MIN. Ferrite 1800 Pearlite Bainitic Martensite 960 C (1760 F) ————————— Ferrite Martensite Enriched of. Avg. C Content 1600 from CarbonAustenite a \\{_—~ Ba mi ry Ss eS 1400 ee aw Window ws Coiling js o eS 5 i [4 [o4 = 99 4 800 = = . 600 400 200 32 1 10 100 1,000 10,000 100,000 Seconds TIME SOURCE: TO COOL FROM 960 C (1760 F) Structure and Properties of Dual Phase Steels, R.A. Knot, T.W. Morris, eds., AIME, 1979 sss SSS Atlas of Time-Temperature Diagrams 559 C-Mn Steels Composition: 0.12% C - 1.33% Mn - 0.28% Si - 0.011% P - Composition: 0.11% C - 1.58% Mn - 0.28% Si - 0.013% P 0.009% S Austenitized at 1200°C (2192°F) for 10 min 0.009% S Austenitized at 1200°C (2192°F) for 10 min —— dilatometry --- metallography 200 —--— calculated 1 10 100 1000 1 10 100 1000 Composition: 0.11% C - 1.73% Mn - 0.29% Si - 0.009% P - Composition: 0.11% C - 1.99% Mn - 0.29% Si - 0.012% P - 0.010% S Austenitized at 1200°C (2192°F) for 10 min 0.009% S Austenitized at 1200°C (2192°F) for 10 min 900 c =) Ss S 164) 8 °TEMPERATURE, 8 Fs 10 100 TIME, $s 1000 TIME, s PF polygonal ferrite B bainite M; transformation start temperature of martensite Eg AF pearlite acicular ferrite [ee Mznd pseudopearlite Mg transformation start temperature of martensite second phase SOURCE: Continuous martensite second phase Jye-Long Lee, Shyi-Chin Wang, Gwo-Hwa Cheng, "Transformation Processes and Products for C-Mn Steels during Cooling,” Materials Science and Technology, Vol 5, July 1989, pp 674-681 Iron-Manganese-Nickel Steel Composition: 0.11% C - 3.00% Mn - 0.16% Si - 1.70% Ni - 0.25% Mo Temperature °C 10 100 1000 10,000 Log Time -Seconds Alloys,” SOURCE: Irvin R. Kramer, Stewart L. Toleman, Walter T. Haswell, "Iron-Manganese and Iron-Manganese-Nickel 1260-1294 pp 1950, 42, Vol ASM, the of Transactions Atlas of Time-Temperature Diagrams 560 HSLA ASTM A710 Composition: 0.05% C - 0.50% Mn - 0.28% Si - 0.88% Ni 0 .71% Cr - 0.20% Mo - 1.12% Cu - 0.035% Nb Steels ASTM A710 Mod. Composition: 0.06% C - 1.45% Mn - 0.35% Si - 0.97% Ni 0.72% Cr - 0.42% Mo - 1.25% Cu - 0.040% Nb 1000 1000 °C +c TEMPERATURE, TEMPERATURE, 100 DPH: 10° 250 225 211 203 10° 193 178 10° TIME, 169 168 10° 166 165 400 164 VHN®« 343 2 276 270 dios 255 250 241 224 10° TIME, Seconds HSLA 80/10 Composition: 0.05% - 1.00% Mn - 0.34% Si - 1.77% Ni - 0.72% Cr - 0.50% Mo - 1.25% Cu - 0.040% Nb Seconds HSLA 100 Composition: 0.06% C - 0.83% Mn - 0.37% Si - 3.48% Ni 0.58% Cr - 0.59% Mo - 1.66% Cu - 0.28% Nb 1000 1000 900 s00P 700 k "Cc 600 soo 400 TEMPERATURE, TEMPERATURE, °C 360 355 349 TIME, Seconds 0.24C-Mn-Mo-V Composition: 0.24% C - 1.67% Mn - 0.39% Si - 0.14% Ni 01.17% Cr - 0.22% Mo - 0.11% V TIME, Seconds 0.35C-Mn-Mo-V Composition: 0.35% C - 1.40% Mn - 0.76% Si - 0.06% Ni - 0.07% Cr - 0.19% Mo - 0.14% V 1100 1100 1000 C) (DEGREES TEMPERATURE (DEGREES TEMPERATURE C) TIME (SECONDS) TIME (SECONDS) SOURCE: S.W. Thompson, G. Krauss, "Structure and Properties of Continuously Cooled Bainitic Ferrite-Austenite-Martensite Microstructures,” 3lst Mechanical Working and Steel Processing Conference Proceedings, ISS of AIME, 1990, pp 467-481 Atlas of Time-Temperature Diagrams Cu-Ni-Mo-Cb 561 Steel 12.0% Cr - 1.0% Mo-V Steel Composition: 0.14% C - 0.98% Mn - 0.35% Si - 0.009% P - Composition: 0.20% C - 0.47% Mn - 0.24% Si - 0.026% P - 0.012% S - 1.21% Ni - 0.32% Cr - 0.40% Mo - 0.63% Cu 0.032% Al - 0.014% N - 0.02% Cb 0.009% S - 0.39% Ni - 11.59% Cr - 0.98% Mo - 0.002% Al 0.28% V - 0.0323% N 1000 —————————— austenitizing temperature 920 OC 300 rood fe 900 holding time 8 sin; grain size ASTM 9 Ac3 = 870 °C Aci b = 820 °C 800 _ Acy = 725 °C o00 3 3 700 ge 600 p 600 2 5 500 2 e g Ss A 400 Soe a . t Coa F+C austenitizing temperature 1050 °C holding time 8 min grain size ASTM 4-5 500 ‘) § se 300 300 200 200 100 100 1 seconds 101 102 103 104 105 1 seconds cooling time between 800 and 500 °C 101 102 103 104 105 cooling time between 800 and 500 °C eee 10 F Ss 100 5 1 5 reduced wall thickness S (1-5) [mm], air cooling 10 100 reduced wall thickness S (1 - 3) [mm], air cooling SOURCE: Gerhard P. Kalwa, Klaus Haarmann, Klaus J. Janssen, "Experience with Ferritic and Martensitic Steel Tubes and Piping in Nuclear and Non-Nuclear Applications,” proceedings of Topical Conference on Ferritic Alloys for Use in Nuclear Energy Technologies, J.W. Davis, D.J. Michel, eds., AIME, 1984, pp 235-244 1-1/4Cr-1/2Mo Composition: 0.15% C - 0.65% Mn - 0.58% Si - 0.009% P 0.005% S - 1.40% Cr - 0.59% Mo - 0.027% sol. Al Steel Plate Composition: 0.16% C - 0.58% Mn - 0.53% Si - 0.009% P 0.005% S - 1.41% Cr - 0.59% Mo - 0.062% sol. Al - 0.0003% B Ac3 893 “°C Ferrite (°C) Temperature (°C) Temperature Cooling SOURCE: Seiichi Watanabe, time from 950°C (sec) Cooling Jun Furusawa, Mutsuo Nakanishi, Hiroo Ohtani, "The Development Vol 1, No. 4, 1980, pp 61-67 Al-B Treated 1-1/4Cr-1/2Mo Steel Plate,” Journal of Heat Treating, time from 950°C of Normalized (sec) and Tempered Atlas of Time-Temperature Diagrams 562 Mn-Mo-V-N Steel Composition: 0.15% C - 1.49% Mn - 0.39% Si - 0.018% P 0.015% S - 0.50% Mo - 0.16% V - 0.14% N Austenitized at 950°C (1740°F) for 1h 1 100 Time 1000 sec SOURCE: Zhang Xiu-mu, Ke Guo-qing, Xia Dien-pei, "Microstructure and Mechanical Properties of HSLA Mn-Mo-V-N HSLA Steels: Metallurgy and Applications, J.M. Gray et al, eds., ASM, 1986 CrMoZr Steel,” Structural Steel Composition: 0.17% C - 0.84% Mn - 0.54% Si - 0.019% P 0.011% S - 0.89% Cr - 0.40% Mo - 0.031% Al - 0.09% Zr Austenitized at 950°C 1000 ee (1740°F) for 30 min ee ESSN ST CELINA NIN TANETI TT SINK GRSRT AINALTT See VTL TTI COCA NCS AECL CCHS NLR LL CCPICONINANKE ATCT CTIA TSS TTS et S~ Se | 800 | —; Cute 600 TEMPERATURE (°C) TIME. (SEC) SOURCE: J. Degenkolbe, B. Musgen, "Experiences with Quenched and Tempered CrMoZr-Alloyed Structural Steels,” The Metallurg Companies, Dusseldorf, 1970, pp 51-60 —— ee —_ EERE ey Atlas of Time-Temperature Diagrams 2-1/4Cr-1Mo 563 Steel Composition: 0.09% C - 0.44% Mn - 0.26% Si - 0.008% P 0.010% S - 2.25% Cr - 0.99% Mo Grain size: 5.5 Austenitized at 920°C (1690°F) for 10 min F TEMPERATURE, TYPICAL CURVE FOR NORMALIZED 7/8-IN.-DIA BAR 101 102 103 TIME, SEC 104 105 SOURCE: T. Kunitake, "Continuous Cooling Transformation Structures in a Low Carbon 2-1/4Cr-1Mo Steel,” published in Reactor Steel Studies, Cr-Mo Steels Research in Japan, ed. Kanji Ono, UCLA-34P177-9/USLA-ENG-7177, November 1971 2-1/4Cr-1Mo Steel Composition: 0.11% C - 0.41% Mn - 0.43% Si - 0.012% P 0.012% S - 0.25% Ni - 2.10% Cr - 1.02% Mo FTemperature, C Temperature, Minutes Alloy Steels and Their Mechanical SOURCE: L.J. Habraken, M. Economopoulos, "Bainitic Microstructures in Low-Carbon 1967, pp 69-106 Company, Molybdenum Climax Steels, in y Properties,” Transformation and Hardenabilit Atlas of Time-Temperature Diagrams 564 1Cr-0.5Mo Stuctural Steel Composition: 0.19% C - 0.60% Mn - 0.30% Si 0.023% P 0.021% S - 1.07% Cr - 0.48% Mo - 0.047% Al F Temperature, CTemperature, Minutes 1Cr-0.5Mo-B Structural Steel Composition: 0.19% C - 0.62% Mn - 0.36% Si - 0.022% P 0.025% S - 1.03% Cr - 0.49% Mo - 0.006% B - 0.041 Al 800 ah 700 7 i 600 Lealco}Oo — > SoCc FTemperature, CTemperature, 300 200 100 Seconds 1 Minutes Hours SOURCE: L.J. Habraken, M. Economopoulos, "Bainitic Microstructures in Low-Carbon Alloy Steels and Their Mechanical Properties,” Transformation and Hardenability in Steels, Climax Molybdenum Company, 1967, pp 69-106 565 Atlas of Time-Temperature Diagrams 2.7Ni-0.9Cr-0.25Mo-B Structural Steel Composition: 0.19% C - 0.57% Mn - 0.35% Si - 0.018% P 0.009% S - 2.72% Ni - 0.87% Cr - 0.25% Mo - 0.10% V 0.0017% B 1600 | | a 1400 F 1200 f oO 1000 gS : : s 5 400 = 300 1 | | ea Seconds 1 a 400 tee a 10? oe 10! Hours 0.32% Ultrahigh-Strength C - 0.138% Mn - 0.15% 104 eee ee 1 ONi-4Co 7 10? Oe ee 2800 min |2 2 1 ee 10! is e > lbs HN a Ny Nd fe a 600 al Se oie g I \ M aa | \ at 200 ee B w 10? —————————————————— 107! 1 Steel Si - 0.090% P - 0.005% S - 9.05% Ni - 4.07% Co 1600 800 4—_} + ______, iL att | 1 1400 st =} 4 4 4 1200 + °o § Lo Ne | Vi 8= 5 IL Minutes ; 3 |} 400 317] nae rs] =600 a& 200 10° 10° 10? 10? Seconds 1 1000 | 5 7 ; il 300 zt 100 a | = 200 1 ay 10? Hours 10= SOURCE: L.J. Habraken, M. Economopoulos, "Bainitic Microstructures in Low-Carbon Properties,” Transformation and Hardenability in Steels, Climax Molybdenum Company, 1 Alloy Steels and Their Mechanical 1967, pp 69-106 Atlas of Time-Temperature Diagrams 566 HY-80 Steel Composition: 0.15% C - 0.32% Mn - 0.31% Si - 2.72% Ni 1.52% Cr - 0.41% Mo Austenitized at 890°C (1635°F) AUSTENITIZING TEMPERATURE 890°C °C Temperature 461 1 10 Time, SOURCE: 7) 100 83 1000 28 3°C/MIN 10000 seconds B.L. Bramfitt, J.G. Speer, "A Perspective on the Morphology of Bainite,” Metallurgical Transactions A, Vol 21A, ASM, April 1990, pp 817-829 Composition: 0.19% C - 0.30% Mn - 0.04% Si - 0.007% P 0.005% S - 3.30% Ni - 1.78% Cr - 0.50% Mo - 0.004% Al Austenitized at 838°C (1540°F) cy 810°C (1490°F) Ac, 690°C (1274°F) 1200 °F Temperature °C Temperature 1 10 100 1000 10000 Time, seconds SOURCE: B.L. Bramfitt, J.G. Speer, "The Microstructure of Continuously Cooled Bainite,” 31st Mechanical Working and Steel Processing Proceedings, ISS of AIME, 1990, 443-453 —_—_——_ nw TT Atlas of Time-Temperature Diagrams 567 Low C MnNiMoB Steel Composition: 0.015% C - 1.99% Mn - 0.31% Si - 0.006% P 0.004% S - 1.00% Ni - <0.01% Cr - 0.29% Mo - 0.017% Al - 0.002% B Austenitized at 920°C (1690°F) °C Temperature 1 °F Temperature 10 100 1000 10000 Time, seconds SOURCE: B.L. Bramfitt, J.G. Speer, "The Microstructure of Continuously Cooled Bainite,” 31st Mechanical Working and Steel Processing Proceedings, ISS of AIME, 1990, pp 443-453 EE e ee e Atlas of Time-Temperature Diagrams 568 HY-180 Steel Composition: 0.1% C - 0.1% Mn - 0.05% Si - 10.0% Ni - 8.0% Co - 2.0% Cr - 1.0% Mo i800 1400 1300 re 1200 ry 1100 3 1000 Piatt ae y + Carbide 8 wo e 800 nae Y + Carbide + a (Boinite) Pa M, - 630 F Carbide + a (Martensite) $0029 50 100 500 Time, 1000 2000 3000 seconds Steel cooled from 980°C (1800°F) Y + Carbide FTempercture, y + Carbide + a (Boinite) Tima, seconds Steel cooled from 1315°C (2400°F) SOURCE: T.B. Cos, A.H. Rosenstein, "Transformations, Microstructures, and Properties of Continuously Cooled 10Ni-2Cr-1Mo-8Co Steel,” Report 3221 (AD 872858), Naval Ship Research and Development Laboratory, Annapolis MD, July 1970 a eeeeFeeeeSSSSSSSSSsSSSSSSSSSeeSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSssseeeee Atlas of Time-Temperature Diagrams 569 V-Mo-Ti Steel Composition: 0.18% C - 0.81% Mn - 0.26% Si - 0.40% Ni - Composition: 0.20% C - 0.70% Mn - 0.29% Si - 0.10% Ni - 0.49% Cr - 0.17% Mo - 0.056% Al - 66 ppm N Austenitized at 850°C (1560°F) for 10 min 0.59% Cr - 0.09% Mo - 0.07% V - 0.021% Al - 0.34% Ti - 150 ppm N Austenitized at 850°C (1560°F) for 10 min C “18 Si 26 Mn “81 Cr 49 Ni 40 Mo ‘7 Al 056 N 66 ppm Si 2:9 Son = 3h pm Mn (Cr eet ee oo =27-40 °C |TEMPERATURE ——=- Ni ; A -021 -034 N 150 ppm pm °C TEMPERATURE / (mm) 10 Diameter (mm) 10 Hy (30kg toad) 420 H, (30kg toad) 396 “Cs'(750-300°C) 922 “Cs "(750-300°C) 922 Diameter TIMEJs —— SOURCE: g Steel,” Journal of Heat Treating, Vol Stephen Preston, "Influence of Vanadium on the Hardenability of a Carburizin 8, Springer-Verlag, 1990, pp 93-99 ee Atlas of Time-Temperature Diagrams 570 Rail Steel Composition: 0.77% C - 0.95% Mn - 0.22% Si - 0.014% P - 0.017% S - 0.10% Cr 1_ (2°34 8°67 8 R101 Ses NS °C Temperature 10 100 Time, Sec. SOURCE: B.L. Bramfitt, "Accelerated Cooling of Rail,” presented at the ISS-AIME 32nd Mechanical Working and Steel Conference, Cincinnati, October 1990, to be published in the proceedings ONi Steel Composition: 0.033% C - 0.57% Mn - 0.22% Si - 0.006% P 0.007% S - 8.63% Ni - 0.13% Cr - 0.02% Mo - 0.032% Al - 0.0083% Ng Austenitized at 900°C (1650°F) SOURCE: Petr Pahuta, Zalenek Janik, Ludmila Hyspecka, Karel Mazanec, "Structure of 9Ni and 9NiMo Steels for Cryogenic Applications,” Transactions ISIJ, Vol 26, 1986, pp 649-654 Atlas of Time-Temperature Diagrams ONi-Mo 971 Steel Composition: 0.095% C - 0.48% Mn - 0.27% Si - 0.008% P 0.008% S - 9.30% Ni - 0.17% Cr - 0.51% Mo - 0.045% Al 0.008% Ng Austenitized at 790°C (1455(°F) 600 400; Tel 2G) 200; ths4 SOURCE: Petr Pahuta, Zalenek Janik, Ludmila Hyspecka, Karel Mazanec, "Structure of 9Ni and 9NiMo Steels for Cryogenic Applications,” Transactions ISIJ, Vol 26, ISIJ International, 1986, p 649 15Mo3 Steel 13CrMo Composition: 0.16% C - 0.60% Mn - 0.26% Si - 0.015% P0.009% S - 0.31% Mo - 0.03% V - 0.004% Al - 0.009% N 4 4 Steel Composition: 0.11% C - 0.56% Mn - 0.30% Si - 0.015% P 0.015% S - 0.07% Ni - 0.84% Cr - 0.48% Mo - 0.01% V - 0.002% Al - 0.011% N 1 ae —Austenitigng 930°C 8 min oe ARES ne CReMMCMucine es & = a PERE 2 es Peiges 10CrMo a aus: a raldoaie ote AH eae a aoa ee OL ; Pe Mes res) ebie Sale MCA \e\ heel at To sn 9 10 Steel Composition: 0.10% C - 0.49% Mn - 0.24% Si - 0.013% P - 0.013% S - 2.43% Cr - 1.06% Mo - 0.01% V - 0.012% N X12CrMo 7 Steel Composition: 0.08% C - 0.58% Mn - 0.68% Si - 0.019% P - 0.007% S - 0.29% Ni - 6.31% Cr - 0.51% Mo - 0.04% V 0.003% Al - 0.015% N Fea HaaCgeMak WME. laneITaa Se we ee ThE HARB SOURCE: g Part 1: Chromium-Molybdenum R. Petri et al, "During Cooling Creep-Resistant Tube Steels After Austenitisin Steels,” Arch. Eisenhuttenwes., Vol 51, No. 8, 1980, pp 355-360 Atlas of Time-Temperature Diagrams 572 X12CrMo 8Cr-2Mo Steel Composition: 0.19% C- 0.46% Mn - 0.34% Si - 0.019% P - 9 1 Steel Composition: 0.09% C - 0.30% Mn - 0.62% Si - 0.022% P 0.008% S - 0.14% Ni - 9.29% Cr - 1.01% Mo - 0.04% V - 0.013% S - 0.09% Ni - 7.83% Cr - 2.02% Mo - 0.01% V - 0.009% Al - 0.018% N 0.005% Al - 0.013% N =] ~Austenitisng ..970°C 8min_| 100 | 7] —austenitising 71050 10min | aeEee ay Sax ope BSEVa ees 2a Witavse = Seo vl Fe 2 E300 =. ‘00 : AVREtaee s Vere Se irte aap ele SOURCE: R. Petri et al, "During Cooling Creep-Resistant Tube Steels After Austenitising Part 1: Chromium-Molybdenum Steels," Arch. Eisenhuttenwes., Vol 51, No. 8, 1980, pp 355-360 X20CrMoV121 Steel 12Cr-1Mo-1W-V-Nb Steel Composition (approx.): 0.1% C - 0.5% Mn- 0.25% Si - 12.0% Cr Composition: 0.20% C - 0.47% Mn - 0.24% Si - 0.026% P 0.009% S - 0.39% Ni - 11.49% Cr - 0.98% Mo - 0.28% V - - 1.0% Mo - 0.28% V - 0.06% Nb - 1.0% W 0.002% Al - 0.0323% N Grain size: 4-5 Austenitized at 1050°C 1920(°F) 1000 Austenitising temperature 1050°C Holdtime Ac yb 2 820C 8min; ASTM grainsize 4-5 A 800 (°C) TEMPERATURE o £ © 600 iS is a 10 E 2 400 5 10? 5 10° 5 COOLING TIME FROM Ac, (sec) 10° 5 10° 200 10. seconds 10? 10° 10 cooling time between . bar(or bloom) diameter,D 10 20 . Plate (or strip) thickness, S _ Pipe: reduced wall thickness: $(1-3) 10 2 4060 100 4 and 500°C 400 1000 aircooling a) 100 AOD 4 6 10 20 40 100 200 20 40 10 800°C ca: SOURCE: J.W. Schinkel, P.L.F. Rademakers, B.R. Drenth, C.P. Scheepens, "Heat Treatment, Aging Effects, and Microstructure of 12 Pct Cr Steels,” Journal of Heat Treating, Vol 3, No. 3, ASM, June 1984, pp 237-248 SOURCE: K. Yoshikawa, et al. "Development of 12Cr-1Mo-1W-V-Nb Steel for Elevated Temperature Applications,” High Temperature Alloys, Their Exploitable Potential, J.B. Marriott et al., eds, Elsevier Applied Science, 1987, pp 247-256 ——_—_—_—<—_—_—_—_—_—_$_—$—$—$—_—$—_———_—_—_$_ $$$ Atlas of Time-Temperature Diagrams 18-0-1 Steel Composition: 0.54% C - 0.44% Mn - 0.33% Si - 0.023% P 0.023% S - 4.02% Cr - 0.42% Mo - 1.24% V - 7.44% W Austenitized at 1260°C nl 8 AA oS TIN Ae Ht eae CONSORT ELI Hert PTR are eee °c T, Ap Ts 6-5-2 Steel Composition: 0.51% C - 0.40% Mn - 0.41% Si - 0.023% P 0.030% S - 3.94% Cr - 2.45% Mo - 1.24% V - 1.50% W Austenitized at 1250°C (2280°F) sr GS SS ER WG AY Sk ~ = $4 A GE CS wasnene ett anwsiva\mesm—at ASIAN Te EatIau at NIT A A A ries SSH ” COA at at ith YA A ee td fe eo ESSE a oqteszore |_|| ACS Peer | SOON (OESIes al L] TU Seal acl ABS et T,s 2-9-2 Steel Composition: 0.52% C - 0.42% Mn - 0.47% Si - 0.028% P 0.030% S - 3.97% Cr - 3.15% Mo -1.15% V - 0.99% W Austenitized at 1240°C (2265°F) Die PoE lOy eNO N Teepe . IN Sea aa ae Ge GAIA URGLIE Yisc LJ] [ ncsyeozore || a PTT Aergeoserel I Te Tse CM ine ET DK TGE oto NAPSot CATA aa | ia eal CN e! erae e a Siet n e S l eat : HN - ta i | SOURCE: Jerzy Pacyna, Tadeusz Paluszkiewicz, Stanislaw Gorczyca, "Effect of Molybdenum on the Kinetics of Phase Transformation of Undercooled Austenite in High-Speed Steels Under Continuous Cooling,” Steel Research, Vol 59, No. 1, 1988, pp 34-41 Atlas of Time-Temperature Diagrams 574 1524MoV Steel Composition: 0.22% C - 1.54% Mn - 0.35% Si -0.014% P 0.036% S - 0.11% Mo - 0.11% V - 0.011%N hy ACNE cc au Pt RS Nisa VeHiECLUAS __ AAR SS a rane mea Pare semi WA le}Meo bhr tt elegy GaSe RSiele 8o °C Temperature, SUS EISOuRS eee 10 100 °F Temperature, ees 103 104 SOURCE: K.J. Grassl et al, Thesis in Progress, Advanced Steel Processing and Products Research Center, Colorado School of Mines, 1988 3.5NiCrMoV Rotor Steel Composition: 0.25% C - 0.40% Mn - <0.10% Si - 3.50% Ni 1.50% Cr - 0.50% Mo - 0.10% V Grain size: 10 Austenitized at 840°C (1545°F) Austenitized at 840°C ASTM Grain Size 10 (10,.m) °C Temperature, Coollag Rete, °C/mis 430 Section Size, mm 100 Time, sec R.L. Bodnar, K.A. Taylor, Structure/Property Relationships in Medium-Carbon Bainitic Steels for Thick Sections, 31st Mechanical Working and Steel Processing Conference Proceedings, ISS of AIME, 1990 — ——————————aaa__ Atlas of Time-Temperature Diagrams 975 a Cr-Mo-V Rotor Steel Composition: 0.32% C - 0.74% Mn - 0.25% Si - 0.037% P 0.036% S - 0.34% Ni - 1.04% Cr - 1.20% Mo - 0.24% V | 820 1600 © Trons. Starts Be‘ oT rans. Stops Stop : Carbides 1400 > Ferrite + Peorlite WL 2120.0 sd = 2 1000 ov Qa S 2 800 600 |--~ 400 \ “Structure |- 208 80M \ 100B 1008 1008 t.F 5F 998 95B SOF S5F 6OF_ 30P 35P 40P 20B 10B B: Boinite, F: Ferrite, M: Mortensite, P: Pearlite 200 0.01 0.1 | Time, 10 o 100 hours SOURCE: F.E. Werner, T.W. Eichelberger, E.K. Hann, "The Effect of Austenitizing, Tempering and Microstructure on the Properties of a Cr-Mo-V Steel, Transactions of the ASM, Vol 52, 1960, pp 376-403 B.S. En 12 Steel Composition: 0.43% C - 0.95% Mn - 0.21% Si - 0.018% P 0.024% S - 0.93% Ni - 0.15% Cr - 0.04% Mo Grain size: 6 Austenitized at 845°C (1550°F) 700 600 500 r = distance from axis b = radius of bar r/b = 0 (center) r/b = 0.5 (MR - mid-radius) r/b = 0.8 (sub surface) eens a 2 a o = 300 = BAR DIAMETER, in. SOURCE: of The Iron and W. Steven, G. Vol 174, Mayer, "Continuous-Cooling Transformation Diagrams of Steels,” Journal Steel Institute, Vol 174, May 1953, pp 33-45 Atlas of Time-Temperature Diagrams 576 BS En 16 Steel Composition: 0.33% C - 1.48% Mn - 0.18% Si- 0.028% P - 0.028% S - 0.26% Ni - 0.16% Cr - 0.27% Mo Grain size: 7 Austenitized at 845°C (1550°F) “C, TEMPERATURE, r = distance from axis b = radius of bar b = 0 (center) b = 0.5 (MR - mid-radius) b = 0.8 (sub surface) 3 4 BAR DIAMETER, in. BS En 17 Steel Composition: 0.38% C - 1.49% Mn - 0.25% Si - 0.036% P 0.028% S - 0.24% Ni - 0.10% Cr - 0.41% Mo Grain size: 8 Austenitized at 845°C (1550°F) 600 500 _ 400 Y us ie4 i — Pp Ww JOOFMs, ¥ ox, us — 4 BAR DIAMETER, in. SOURCE: W. Steven, G. Vol 174, Mayer, "Continuous-Cooling Transformation Diagrams of Steels,” Journal of The Iron and Steel Institute, Vol 174, May 1953, pp 33-45 Atlas of Time-Temperature Diagrams BS En 577 19 Steel Composition: 0.44% C - 0.60% Mn - 0.22% Si - 0.023% P - 0.023% S - 0.24% Ni - 1.19% Cr - 0.37% Mo Grain size: 6 Austenitized at 850°C (1560°F) Ww Oo O °C. TEMPERATURE, /o=O Ce | 5) A r = distance from axis 3 2 4 3 5 4 6 5 b= radius of bar r/b = 0 (center) 6 r/b =0.5 (MR - mid-radius) r/b = 0.8 (sub surface) 2 l ue 3 4 6 5 BAR DIAMETER, in 7 BS En 23 Steel Composition: 0.32% C - 0.61% Mn - 0.28% Si - 0.018% P 0.013% S - 3.22% Ni - 0.63% Cr - 0.22% Mo Grain size: 7 Austenitized at 835°C (1535°F) Ww OO Mis °C, TEMPERATURE, mw Wa) Rae A wn TeO5 3 2 | ‘IO-8 2 3 BAR SOURCE: 5 | "/b=O 4 4 6 5 5 6 6 7 DIAMETER, in. Journal of The Iron and W. Steven, G. Vol 174, Mayer, "Continuous-Cooling Transformation Diagrams of Steels,” Steel Institute, Vol 174, May 1953, pp 33-45 Atlas of Time-Temperature Diagrams 578 BS En 26 Steel Composition: 0.38% C - 0.56% Mn - 0.15% Si - 0.011% P 0.005% S - 2.42% Ni - 0.74% Cr - 0.46% Mo Grain size: 8 Austenitized at 835°C (1535°F) “C. TEMPERATURE, " teOS 2 / Moe l 3 2 4 3 4 5 5 6 r/b = 0 (center) 6 6 distance from axis radius of bar 1/b = 0.5 (MR - mid-radits) 7 r/b = 0.8 (sub surface) BAR DIAMETER, in. BS En 111 Steel Composition: 0.35% C - 0.65% Mn - 0.13% Si - 0.035% P 0.032% S - 1.27% Ni - 0.55% Cr Grain size 7 Austenitized at 845°C (1550°F) °C. TEMPERATURE, Te= O-S | 2 3 4 3 hy O-8 BAR DIAMETER, in. SOURCE: W. Steven, G. Vol 174, Mayer, "Continuous-Cooling Transformation Diagrams of Steels,” Journal of The Iron and Steel Institute, Vol 174, May 1953, pp 33-45 _ Atlas of Time-Temperature Diagrams 579 BS En 160 Steel Composition: 0.41% C - 0.48% Mn - 0.13% Si - 0.016% P 0.043% S - 1.75% Ni - 0.17% Cr - 0.22% Mo Grain size: 6-7 Austenitized at 845°C (1550°F) 700 600 O%o 10% 4 SOO Wa : Q 2 50% 75°%o ee 100% r = distance from axis b = radius of bar j 400 ° & = = r/b = 0 (center) r/b = 0.5 (MR - mid-radius) r/b = 0.8 (sub surface) = 300 ze 200 =O W005 h=0'8 3 4 BAR DIAMETER, in. SOURCE: W. Steven, G. Vol 174, Mayer, "Continuous-Cooling Transformation Diagrams of Steels,” Journal of The Iron and Steel Institute, Vol 174, May 1953, pp 33-45 42Cr Mo4 Steel Composition: 0.41% C - 0.66% Mn - 0.25% Si -0.008% P - 0.024% S - 0.31% Ni - 1.03% Cr - 0.17% Mo - 0.28% Cu 0.01% V Austenitized at 850°C (1560°F) for 1h a Ae | alee (<0) blood o| a |ibe TTEMPERATURE 200 Different Heat Treated SOURCE: L. Issler, A. Kumar, H. Weiss, "Application of Fracture Concepts to Steel 42 Cr Mo 4 in Congress on Fracture, 1984, pp Conditions,” Advances in Fracture Research, S.R. Valluri, et al., Eds., Vol 2, International 1497-1505 Atlas of Time-Temperature Diagrams Natural Cooling CCTs 0.27C-1.17 Mn-0.31Si-0.48Cr-0.0013B Steel Composition: 0.27% C - 1.17% Mn - 0.31% Si - 0.48% Cr - 0.0013B Temp Temp °C °c 900 900 idee 800 800} 700 } 700 600 600 500 ale 500 MS ie 300 — a300 ts RON imiY Ss Ne aki. TINA ees | Riise. .anckk wae CN | SNE = Name “NBN deck bh tA Diameter mm | 200 | [ncaa cd ea 100 Hardness HV s es | | ae |e Hats (Het Sasi esos 1 10) 102 10 s A A | 50 75 100_| 100 BMP MMma Ete ioe Tee Soi ees 1 10! 102 Time Time Oil quenching, 0.8 R Water quenching, 0.8 R Temp Temp 900 WG 900 °c SiR nlisa NSN SENSES SB27M12CB NaaSI NST NAL =| ia ED ACNE Ne NG ia 600 NLA Tet ele rite SIR od Bey Nese Nes ee ss fea MAYAN MA GUE valet Me LETT _heamite TNT cool Diameter mm 200 Hardness HV 525 ee 0 Ee pe 1 10! e2 wei Lo “as 365 =a | a8 | EP eevee cee 102 103 s Ses 1° s 200 ll Ss SBN aS el aero Hordness HV oe ee ss en (ae SC 0 He \ ee att 425 321 27% | 215 | 10! HHS 102 Time Water quenching, center 103s fine Oil quenching, center SOURCE: K-E Thelning, "New Aspects on the Appraisal of the Cooling Process During Hardening of Steel," proceedings of the 2nd International Congress on Heat Treatment of Materials of IFHT, 1st Conference on Metallurgical Coatings of AIV, Florence 20-24 September 1982, Associazione Italiana di Metallurgia, pp 17-26 eee sss Atlas of Time-Temperature Diagrams 581 Welding CCTs Weld Zone CCTs Grain refined HAZ Weld metal SOURCE: H. Peetz, Doctoral dissertation, Technical University of Braunschweig, 1979 1200 1100 1000 Grain coarsened HAZ 900 steel ANb4 oO 800 ; w = austenitised 1220°C, 50s austenite grain size 160m 700 EF equiaxed ferrite \B: WF Widmanstatten mes 600 2 pointe pearlite < \ fj 500 a 5 ba 400 M of ’ M martensite is Onxvs5 Rs Bee be = < 300 200} 100L W o dilatometry e thermal analysis * quant. metallography --- estimated 2 pe a 1 \ ra a -X oe a 10 (c) 102 TIME, s 103 104 10 TIME TO COOL FROM 1000°C, s Composition: 0.094% C - 1.32% Mn - 0.3% Si Austenitized at Composition: 0.18% C - 1.3% Mn - 0.27% Si Austenitized at 1250°C (2380°F) for 5 min 1220°C (2230°F) SOURCE: SOURCE: P.L. Harrison, M.N. Watson, R.A. Farrar, Weld Metallurgy and Fabrication, Vol 49, 1981 a a A. Brownrigg, R. Boelen, "The Effect of Nb on Hardenability of C-Mn-Si-Al Steels,” ITW Doc. IIW-1976- MTC, 1976 ee EEEEEEEEEEEERERSEEEE 582 Atlas of Time-Temperature Diagrams C-Mn Weld Metals Composition: 0.06% C - 0.56% Mn - 0.41% Si - 0.023% P 0.008% S - 0.05% Ni - 0.01% Mo - 71 ppm N - 411 ppm O Grain size: 5-8 Austenitized at 1400°C (2550°F) Austenitised 10sec 1400°C 1200 Grain size: ASTM 5:8 1100 1000F 900 25% b= transformation 800 > £ 700 2 600 5 500 4— 97-5% transformation [4 400) 300 Cooling 200F rat s00-s00°C. ‘ & roof * gamers, GE Gel) fl fle! © Dilatometry == Estimated 0 c IS g 8 8 Oo} |g S el el AL } 1 10 Time. sec 102 10? SOURCE: Peter Harrison, Roy Farrar, "Microstructural Development and Toughness of C-Mn and C-Mn-Ni Weld Metals, Part 1 - Microstructural Development,” Metal Construction, Vol 19, No. 7, July 1987, pp 392R-399R eeeeeeesesesesesesesesesesesesasasonson Atlas of Time-Temperature Diagrams 583 C-Mn Weld Metals Composition: 0.07% C - 1.35% Mn - 0.52% Si - 0.022% P 0.005% S - 0.05% Ni - 0.01% Mo - 94 ppm N - 352 ppm O Grain size: 5-8 Austenitized at 1400°C (2550°F) Austenitised 10sec 1400°C Grain size: ASTM 5:8 800 Analysis, wt % 0 07C 0:52Si 135Mn Austenitised 10sec 1400°C (ASTM 58) 700 oO a 8 2 600 25% 4— oO ° 975% =5 4 ° transformation x transformation E S00 = a iS ©a 300 Cooling r 800 "SO ore pau CmEt (o} & E 90 *, 5 cr a os * xa 3 H3 70 =) v = Martensite Polygonal ferrite ° x e 50 Se o-%0 of xSass xXx oe ; _ ye) 8 >, 0% : ¥ 30 Lath ferrite J 3 SN 10 Ne 7 Acicular Ferrite opie) : n° -S-— | Xa +7 ~= ferrite Commute TeSteex 1000 300 100 30 10 3 1 (03) (1) (3) (10) (30) (100) (300) Cooling rate 800-500°C, °C/sec (Cooling time 800-500°C, sec) SOURCE: Peter Harrison, Roy Farrar, "Microstructural Development and Toughness of C-Mn and C-Mn-Ni Weld Metals, Part 1 - Microstructural Development,” Metal Construction, Vol 19, No. 7, July 1987, pp 392R-399R a SOURCE: Peter Harrison, Roy Farrar, "Microstructural Development and Toughness of C-Mn and C-Mn-Ni Weld Metals, Part 2 - Toughness, Metal Construction,” Metal Construction, Vol 19, No. 8, August 1987, pp 447R-450R 584 Atlas of Time-Temperature Diagrams C-Mn Weld Metals Composition: 0.07% C - 2.12% Mn - 0.33% Si - 0.023% P - 0.008% S - 0.06% Ni - 0.01% Mo - 81 ppm N - 317 ppm O Grain size: 5-7 Austenitized at 1400°C (2550°F) Austenitised 10sec 1400°C \\ Grain size: ASTM 5:7 Analysis, wt % 0:07C 0:33Si 2:12 Mn : Austenitised 10 sec 1400°C (ASTM 5:7) 80) ss gs 32 °C Temperature, i =)(2) 8 °C Temperature, “es Cooling rate E . a = =i - ilatometr: 100} @ Guentitetive metailography 0 — — Estimated 0 1 EEL S 5 . & y a = a 10 Time sec 0 2 u 5 Acicular | ferrite Martensite at u 10 3 10° x . v 3 2 i LS) = 7) 2 3) = $ Lath ferrite oe 3 (0) 07Conae ond sideplates Ss) = = , oman, 1000 300 100 30 10 3 (0:3) CH) (3) (10) (30) (100) Cooling rate 800- 500°C, °C/sec (Cooling time 800-500°C, sec) SOURCE: Peter Harrison, Roy Farrar, "Microstructural Development and Toughness of C-Mn and C-Mn-Ni Weld Metals, Part 1 - Microstructural Development,” Metal Construction, Vol 19, No. 7, July 1987, pp 392R-399R a SOURCE: Peter Harrison, Roy Farrar, "Microstructural Development and Toughness of C-Mn and C-Mn-Ni Weld Metals, Part 2 - Toughness, Metal Construction,” Metal Construction, Vol 19, No. 8, August 1987, pp 447R-450R a EES SS Atlas of Time-Temperature Diagrams 585 C-Mn-Ni Weld Metals Composition: 0.05% C - 0.98% Mn - 0.33% Si - 0.017% P - 0.011% S - 0.06% Ni - 0.06% Mo - 45 ppm N - 446 ppm O Grain size: 5-4 Austenitized at 1400°C (2550°F) Austenitised 10sec 1400°C v Grain size: ASTM 5:4 ' to : VF SPe 25% 1—t— transformation 8 transformation} ATLL os. om s= CAF d aa: °C Temperature, 200} 100 Cooling rate 800- 500°C 8 © Dilatometry Dopo 0 = —€Estimated 0 a 1 sf g g 3 8818 SP) HSS) | : + Cease 18 Ey § le PS I be 12 fellelle| 2 Sal isa 10 3 10 4 of C-Mn and C-Mn-Ni Weld Metals, Part 1 SOURCE: Peter Harrison, Roy Farrar, "Microstructural Development and Toughness 392R-399R pp 1987, July - Microstructural Development,” Metal Construction, Vol 19, No. 7, Oe EEE eee Atlas of Time-Temperature Diagrams 586 C-Mn-Ni Weld Metals Composition: 0.04% C - 1.20% Mn - 0.41% Si - 0.024% P 0.014% S - 1.10% Ni - 0.07% Mo - 120 ppm N - 430 ppm O Grain size: 5-5 Austenitized at 1400°C (2550°F) Analysis, wt%0-04C 0 41S: 1:20Mn 1:10 Ni Austenitised 10 sec 1400°C (ASTM S'S) Austenitised 10sec 1400°C Grain size:ASTM 5:5 800 600 25% 4__=transformation 97.5% f—transformation| 500 Temperature,°C 400 °C Temperature, 300 Cooling rate 800-500°C “© Dilatometry ®@ Quantitative A 90 Polygonal metallography ferrite a7 i = Estimated oe te Microstructure, % Lath ferrite 10 1000 300 100 30 10 3 (03) (1) (3) (10) (30) (100) 1 (300) Cooling rate 800- 500°C, °C/sec (Cooling time 800- 500°C, sec ) SOURCE: Peter Harrison, Roy Farrar, "Microstructural Development and Toughness of C-Mn and C-Mn-Ni Weld Metals, Part 1 - Microstructural Development,” Metal Construction, Vol 19, No. 7, July 1987, pp 392R-399 a SOURCE: Peter Harrison, Roy Farrar, "Microstructural Development and Toughness of C-Mn and C-Mn-Ni Weld Metals, Part 2 - Toughness, Metal Construction,” Metal Construction, Vol 19, No. 8, August 1987, pp 447R-450R eeeeeSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSee Atlas of Time-Temperature Diagrams 587 C-Mn-Ni Weld Metals Composition: 0.05% C - 1.18% Mn - 0.38% Si - 0.022% P 0.010% S - 2.52% Ni - 0.08% Mo - 178 ppm N - 482 ppm O Grain size: 5-O Austenitized at 1400°C (2550°F) Austenitised 10sec 1400°C Grain size: ASTM 5:0 Analysis, wt% O:-0SC Austenitised 0:38Si 1:18Mn 2-52Ni 10 sec 1400°C (ASTM 5:0) °C Temperature, °C Temperature, Cooling rate 800 -500°C 5 eis Martensite © Dilatometry @ Quantitative metallography = Estimated @ Microstructure, % Lath ferrite S 5 9 on < O Potygonal ferrite Bes y::) 1000 (0:3) 300 (1) 100 (3) + om oe -_—t., Oee Ferrite ea sideplates eo 30 (10) 10 (30) 3 (100) 1 (300) Cooling rate 800-500°C, °C/sec (Cooling time 800-S00°C, sec) SOURCE: Peter Harrison, Roy Farrar, "Microstructural Development and Toughness of C-Mn and C-Mn-Ni Weld Metals, Part 1 - Microstructural Development,” Metal Construction, Vol 19, No. 7, July 1987, pp 392R-399R a SOURCE: Peter Harrison, Roy Farrar, "Microstructural Development and Toughness of C-Mn and C-Mn-Ni Weld Metals, Part 2 - Toughness, Metal Construction,” Metal Construction, Vol 19, No. 8, August 1987, pp 447R-450R ceEEEE EEEEEEEEE SnESEESSEEE Atlas of Time-Temperature Diagrams 588 C-Mn-Ni Weld Metals Composition: 0.04% C - 1.29% Mn - 0.38% Si - 0.030% P 0.017% S - 3.58% Ni - 0.08% Mo - 141 ppm N - 432 ppm O Grain size: 4-8 Austenitized at 1400°C (2550°F) Austenitised 10sec 1400°C Grain size: ASTM 4:8 1200 1100 1000 900 800 700 25% }__4_ transformation 600 Y 500 Ais] aw 7 °C Temperature, 200} a bt \_} 2 Cooling rate 800 -500°C © Dilatometry 100f-e Quantitative metallography 0 =Estimated SOURCE: Peter Harrison, Roy Farrar, "Microstructural Development and Toughness of C-Mn and C-Mn-Ni Weld Metals, Part 1 - Microstructural Development,” Metal Construction, Vol 19, Vol 19, No. 7, July 1987, pp 392R-399R a eEEEEEESEEE SEEN ee Atlas of Time-Temperature Diagrams 589 Ti-Oxide Bearing Steel Composition: 0.079% C - 1.39% Mn - 0.20% Si - 0.0007% P 0.0007% S - 0.002% Al - 0.012% Ti - 0.0015% N - 0.0017% oO Heating temperature 1400°C (2550°F) iO (C) Temp. ee D 100 ian WD Bw 08 24 56 9.9 30 375 125 54 30 10 re 5) elOrmere Sere XID COED ® 41 Os Time wy 90 161 223 630 4tg75(S) 33 19 05 C/S pa? 13 be Et04 ae? (sec) Composition: 0.092% C - 1.42% Mn - 0.20% Si - 0.0010% P - 0.0008% S - 0.020% Al - 0.0015% N - 0.0020% O Heating temperature 1400°C (2550°F) Ye 2a 500 oe — \ aes ee ee 87 ‘ 400 UNO ob Nycuame PEN 7 VES‘ AUN 2.8 \p\ : B a IFPI\\ M ae ie 300 200 2) G05) 100 1 2 5 59248) C224) C189) C7) Ges) 16 68 104164 3140 65 104 188 44 29 97 46 29 10 2 183 BIO Time @ 161 53 Gs) Gap Hv 324 610 dtgy7s(S) 093 049 Css joe & (sec) SOURCE: Koichi Yamamoto, et al, "A Newly Developed Ti-Oxide Bearing Steel Having High HAZ Toughness,” Residual and Unspecified Elements in Steel, ASTM STP 1042, A.S. Melilli, E.G. Nisbett, Eds., ASTM, 1989, 266-284 a a Atlas of Time-Temperature Diagrams 590 Si-Mn Steel Composition: 0.09% C - 0.81% Mn - 0.11% Si - 0.017% P 0.013% S - 0.11% Cu - 0.0050% N - 0.014% O (Carbon equivalent calculation 0.230%) Austenitized at 1350°C (2460°F) Ac3:874°C °C Temperature, Cooling time from Ac3, sec Si-Mn-Ti-B Steel Composition: 0.11% C - 1.16% Mn - 0.29% Si - 0.013% P 0.011% S - 0.08% Mo - 0.10% Cu - 0.043% Ti - 0.0034% B 0.0057% N - 0.020% O (Carbon equivalent calculation 0.335%) Austenitized at 1350°C (2460°F) LN o—< ll ron SEs ee Aci: 708°C °C Temperature, bh 200 SY \ Ge Ge) 1 5 10 1S zd Ris) FadRo%Hs0) (G4) 5S 104 5 103 Ss 104 Cooling time from Ac3, sec SOURCE: Yoshinori Ito, Mutsuo Nakanishi, Yu-ichi Komizo, "Effects of Oxygen on Low Carbon Steel Weld Metal,” Metal Construction, Vol 14, No. 9, September 1982, pp 472-478 Sennen a Atlas of Time-Temperature Diagrams 591 T1 Steel Composition: 0.15% C - 1.00% Mn - 0.23% Si - 0.014% P 0.023% S - 0.94% Ni - 0.53% Cr - 0.45% Mo - 0.34% Cu - 0.004% Ti - 0.0014% B - 0.05% V - 0.008% Sn Grain size: 7 Austenitized at 1090°C (2000°F) 5 °F TEMPERATURE, 10 TIME SECONDS SOURCE: E.F. Nippes, W.F. Savage, R.J. Allio, "Studies of the Weld Heat-Affected Zone of T-1 Steel,” Welding Research Supplement, Vol 36, December 1957, pp 531s-540s SAE 1320 Steel Composition: 0.24% C - 1.59% Mn - 0.23% Si - 0.024% P 0.019% S COOLING 1 800 COOLING RATE 23) 4 1 S 2 RATE 3 4 ames (In-Situ transformation —————— * =—e==—= Simulated a S «cooling temperatures curves transformation 2 cooling temperatures curves : IC TEMPERATURE, °C TEMPERATURE, HV 0: % MARTENSITE : 474 456 429 330 292 100 88 63 20 8 O fe 1 2 5 10 TIME TO COOL 20 FROM es HV 10: ee 50 100 1000°C, seconds ‘IN-SITU’ 474 456 429 330 292 SIMULATED 478 466 460 371 268 % MARTENSITE : ‘IN-SITU’ SIMULATED 100 100 88 100 63 92 20 26 8 3 50 100 200 1000°C, seconds 0 200 500 jhe 1 2 ee 5 10 TIME 20 TO COOL FROM SOURCE: R.H. Phillip, "‘In Situ’ Determination of Transformation Temperatures in the Weld Heat-Affected Zone,” Welding Research Supplement, Vol 62, January 1983, pp 12s-18s S500 Atlas of Time-Temperature Diagrams 592 Influence of Heating Rate during Austenitization SAE 4340 Steel Composition: 0.42% C - 0.78% Mn - 1.79% Ni - 0.80% Cr 0.33% Mo Grain size: 7-8 Austenitized at 845°C (1550°F) SAE 1050 Steel Composition: 0.50% C - 0.91% Mn Grain size: 7-8 Austenitized at 910°C (1670°F) AIS! 4340 Steel Induction- Furnace- Heated Heated eet ttt 4ie he - 600 AISI 1050 Steel Induction: Heated 5 pea eam witemineon a Furnace- reated S ° 480 5 te o 260 pps 3]5 s s ) re) =) © 2 05 | 2 5 10 2050 I02 oO ® g|o 3/3 SE) cs Ss\e5 w/o} = —|r| — alk 103 2 Pt 150 c|< s{= 0|O —(|m () a w PT} er a vn ° 105 05 1 2 Time, Seconds 5 102050102 103 104% 105 Time, Seconds SOURCE: Joseph P. Libsch, Wen-Pin Chuang, William J. Murphy, "The Effect of Alloying Elements on the Transformation Characteristics of Induction-Heated Steels,” Transactions of the ASM, Vol 42, 1950, pp 121-149 ——S——_ eee OE eee _—_——— ee eee eer oo oeSSS SS Atlas of Time-Temperature Diagrams 593 SAE 4142 Steel Composition: 0.40% C - 0.70% Mn - 0.31% Si - 0.010% P 0.026% S - 0.16% Ni - 1.11% Cr - 0.16% Mo - 0.15% Cu 880 860 IT heating diagram _ 840h S ws ea Heating rate = 1020°C (1870°F)/s c 800 Acy w S= 760 Seu i =} 5 PREP tHeEHitt : 10? 10° ” TIME ts) IT cooling diagram 800 BY a HV Experimental data (solid lines): Heating rate = 130°C (265°F)/s Austenitized at 950°C (1740°F) for 6 s Cooling rate = 130°C (265°F)/s 600 a a 246 280 290 S w 400 289 310 345 370 o 386 = Conventional data (dashed lines): Austenitized at 860°C (1580°F) 10 min < = ™ 200 NOTE: Hardness numbers are (left column) for the rapid heating diagram, and (right column) for the conventional diagram 0 ° : a CT heating diagram Co Ps a. = ws = TIME ¢s) Rapid Heat Treatment of Two Alloy SOURCE: M. Melander, J. Nicolov, "Heating and Cooling Transformation Diagrams for the 32-38 1985, June 1, No. 4, Vol Treating, Heat of Journal Steels, rr nnn EEE Atlas of Time-Temperature Diagrams 594 SAE 52100 Steel Composition: 0.99% C - 0.37% Mn - 0.24% Si - 0.011% P 0.022% S - 0.07% Ni - 1.50% Cr - 0.01% Mo - 0.11% Cu CU IT heating diagram Heating rate: 970°C (1780°F)/s °C) TEMPERATURE « TIME ‘s) IT cooling diagram Experimental data (solid lines): my HY Heating rate = 100°C (212°F)/s 203 ae Austenitized at 950°C (1740°F) for 6 s Cooling rate = 130°C (265°F)/s Conventional data (dashed lines) Austenitized at 860°C (1580°F) for 10 min 254 4CO rial 360 336 a 44 515 2 w = < rs & 509 615 700 NOTE: Hardness numbers are (left column) for the rapid heating diagram, and (right column) for the conventional diagram St~ =a RGR &2see CT heating diagram «°C» TEMPERATURE© — oxperim. H VA o—— Calculation ad cya TIME ¢s) SOURCE: M. Melander, J. Nicolov, "Heating and Cooling Transformation Diagrams for the Rapid Heat Treatment of Two Alloy Steels, Journal of Heat Treating, Vol 4, No. 1, June 1985, pp 32-38 i Atlas of Time-Temperature Diagrams 595 Influence of Applied Pressure on Transformation 0.44 C Steel 0.82 C Steel Composition: 0.44% C - 0.50% Mn - 0.18% Si - 0.42% Ni 0.22% Cr Grain size: 1-3 Austenitized at 980°C (1800°F) PERCENT = Ae, ° <I0 @ 10-30 450-60 Composition: 0.82% C - 0.50% Mn - 0.18% Si - 0.42% Ni 0.22% Cr Grain size: 1-3 Austenitized at 1095°C (2000°F) TRANSFORMED PERCENT TRANSFORMED 4 60-90 GC >30 oO <10 @10-30 430-60 460-90 0 >90 orm 24 kbar Ae, 30 kbo FTEMPERATURE , FYEMPERATURE , IT IT SOURCE: T.G. Nilan, "Morphology and Kinetics of Austenite Decomposition at High Pressure,” Transactions of The Metallurgical Society of AIME, Vol 239, June 1967, pp 898-909 : 0.44 C Steel TTT diagrams of 0.4 C - 0.24 Mo Steel at one atmosphere an at 24 kbar, and comparison with TTT curve of 0.4 C steel at 24 kbar 800 700 600 500 400 Temperature, F Temperature, C 200 athe LA SS 1 10 + 400 102 Time, seconds in Steels, Climax SOURCE: T.G. Nilan, "Austenite Decomposition at High Pressure,” Transformation and Hardenability Molybdenum Company, pp 57-67 n,n, nn a Atlas of Time-Temperature Diagrams 596 Ni-Cr Steel Composition: 0.30% C - 0.27% Mn - 0.019% P - 0.019% S - 3.50% Ni - 1.25% Cr Austenitized at 870°C (1600°F) 900 os uv cara Seiiieet ac ' panes E/N anes © es SoRene ool —+—J Lt oes “A ae ee TEMPERATURE FAHRENHEIT DEGREES - TEMPERATURE FAHRENHEIT DEGREES - py EW Gite Via ft|__| aaa aa eS + 4 Baahs CU eS awa TPS oye eye Ree LOS Sn ee Ae eee Sa Rieti a aie (SS Bnae SSeS Bo ae a a Pa plea es Se Bane 2 Se Seas 2 SS eS Pea ibe ies eek i ° nel ee SS ee ESE ° ° ° o Tim€ ° - SECOWOS ° FROM 1,000 TIME - SECONDS FROM 925°F. 925°F IT diagram at various stress levels CCT diagram at various stress levels SOURCE: L.S. Birks, "Characteristics of the Bainite Transformation in a Ni-Cr Steel,” Transactions of the AIME, JOM, (formerly Journal of Metals) a publication of the Minerals, Metals & Materials Society, Vol 206, August 1956, p 989 SSS sssssncnsssnsssnsesssssenscesnossueuneessase=: Atlas of Time-Temperature Diagrams 597 Influence of Plastic Deformation on Transformation SAE 4337 Steel Composition: 0.36% C - 1.45% Ni - 1.1% Cr - 0.27% Mo Heated Fe-0.2C-5Cr Steel (1020°F) in 30 s, held for 20 s, deformed by 0-30% tensile elgonation, heated to 600-700°C (1112-1292°F), held for times the 4337 steel Composition: 0.23% C - 5.1% Cr Austenitized at 1150°C (2100°F) for 15 min, and then processed in the same manner as to 1080°C (1976°F) in 2 min, held 30 min, quenched to 550°C up to 3 h, quench 800 @ re) res re ve) ° s 600 <> a Ss Fe —5Cr—02C a8 a 40% ° aa ° deformation SSS. ree uw a TEMPERATURE °C , = 500 = a 0% 0 10% ® 20% 4 30% Effect of increasing tensile deformation at 550°C (1020°F) on Effect of different degrees of deformation at 550°C (1120°F) on the onset of transformation Percentages are for applied tensile deformation the onset of transformation Percentages are for applied tensile deformation Fe-0.2C-1V Steel Composition: 0.18% C - 1.09% V Austenitized at 1150°C (2100°F) for 15 min 800 ’ ~ uloO TEMPERATURE S Fe—1V—0:2C a K x oa 0% transformed undeformed e 100% transformed undeformed TIME,s 1 - The Ferrite SOURCE: D.J. Walker, R.W.K. Honeycombe, "Effects of Deformation on the Decomposition of Austenite: Part Reaction,” Metal Science, October 1978, p 445 a Atlas of Time-Temperature Diagrams 598 Low Alloy Steel Composition: 0.57% C - 0.82% Mn - 0.30% Si - 0.016% P 0.019% S - 1.16% Ni - 1.07% Cr - 0.26% Mo Austenitized at 925°C (1700°F) 1200 NOT DEFORMED DEFORMED 50% AT 1500°F — — DEFORMED 50% AT EACH 600 10 peng 102 104 TIME - SECONDS Beginning of isothermal transformation for undeformed austenite and for austenite deformed 50% at 815°C (1500°F) and at each transformation temperature SOURCE: R.A. Grange, J.B. Mitchell, "Strengthening Low-Alloy Steels by Deforming Austenite, ASM 1, No. 1, February 1961, p 41 Metals Engineering Q, Vol Carbon Steel C-Mn Steel Composition: 0.105% C - 0.0035% Si - 0.0015% P - 0.003% S 0.0005% O Austenitized at 950°C (1740°F) for 5 min, deformed (0-0.21 strain), then cooled at various rates Composition: 0.105% C - 1.53% Mn - 0.0035% Si - 0.0015% P 0.0017% S - 0.0001% O Austenitized at 950°C (1740°F) for 5 min, deformed (0-0.21 strain), then cooled at various rates 900 oe o o ~oo %pearlite_a» @ Oo as Yopearlite lit 5G 10 0 °C TEMPERATURE, Ge 10 0 C-steel O strain - 0-01 TIME TO TRANSFORMATION, s C-Mn steel O strain = 01 "I TIME 10 TO TRANSFORMATION, 100 s SOURCE: R. Priestner, M.S. Biring, "Transformation of Low-Carbon Austenite after Small Plastic Strains,” Metal Science Journal, Vol 7, 1973, pp 60-64 1000 Atlas of Time-Temperature Diagrams 599 Nb Steel Composition: 0.10% C - 1.54% Mn - 0.0035% Si - 0.0015% P 0.0012% S - 0.04% Nb - 0.0003% O 900 Nese 6 RD ore ui & 700 i Ae Oo? 60 = soot a : ¢ a “So WwW o—_ (ora 800 Paes “4s %pearlite 3 (ope Eee) a Ay (Oa fe or)ON Se ees 10 ke) Q 400 ty) “E 200 E Q > 900 ” 5 E o~o No 600 oers) fe)25s 200. 300 a ee @- Xo i=) oo > 200) eiain = : 100 oO strain = 0 Oo 0-01 0-1 1 TIME 10 TO TRANSFORMATION, 100 1000 s 0-01 fe 0)!9 SEES Nb-AHT steel =n0- 17.5 TIME TO 0-1 1 ee aie 10 100 TRANSFORMATION, s ae 2° 1000 Austenitized at 950°C (1740°F), deformed (0-0.21 strain), then Austenitized at 1150°C (2100°F) for 15 min, deformed (0-0.21 cooled at various rates strain), then cooled at various rates Strains,” Metal Science SOURCE: R. Priestner, M.S. Biring, "Transformation of Low-Carbon Austenite after Small Plastic Journal, Vol 7, 1973, pp 60-64 a Atlas of Time-Temperature Diagrams 600 Low-Carbon Bainitic Steel Composition: 0.08% C - 1.57% Mn - 0.28% Si - 0. 011% P - 0.002% S - 0.07% V - 0.03% Nb - 0.018% Ti - 0.042% sol. Al 0.0038% N Ac3 890°C eas Sees Negri 2 Ss - Te 1000 °C 25% 00) as a 3 C1 NG ee 850°C Pearlite 500 50% Bainite © © = 400 i.) Re 300 200 ] Hv 222 203 (a) (b) 10 100 Time 1000 10000 (sec) CCT diagram after hot deformation from 1100°C (2012°F), hot deformation sequence to right of transformation curves Composition: 0.02% C - 1.60% Mn - 0.16% Si - 0.043% Nb - 0.017% Ti - 0.0018% B - 0.0020% N 900 Ac3 900°C 800 pa Ac1 750°C 00 1050 °C > = » 1000 °C 25% 600 s E500 Bainite 850°C 2 — 50% 400 300 200 ] 10 100 Time 1000 10000 (sec) CCT diagram after hot deformation from 1050°C (1922°F), hot deformation sequence to right of transformation curves SOURCE: H. Ohtani, S. Okaguchi, Y. Fujishiro, Y. Ohmori, "Morphology and Properties of Low-Carbon Bainite,” Metallurgical Transactions A, Vol 21A, ASM, April 1990, pp 877-888 ee ee ee ee ee ee Atlas of Time-Temperature Diagrams og! 0.1C-0.24Mn-B Steel Composition: 0.10% C - 0.87% Mn - 0.33% Si - 0.24% Mo 0.002% B - 0.005% N - 0.048% Zr Austenitized at 982°C (1800°F) CTEMPERATURE, A Polygonal Ferrite Start X Polygonal Ferrite /Pearlite Finish O Bainite Start O Ba