Probabilis/c Graphical Models Ac/ng Decision Making Maximum Expected U/lity Daphne Koller Simple mp Decision Making g A simple p decision making g situation D: • A set of possible actions Val(A)={a1,…,aK} • A sett of f states t t V Val(X) l(X) = {{x1,…,xN} • A distribution P(X ( | A)) • A utility function U(X, A) Daphne Koller Expected p Utility y • Want to choose action a that maximizes the expected utility Daphne Koller Simple mp Influence f Diagram g m m0 m1 m2 0.5 0.3 0.2 Market Found U m0 m1 m2 f0 0 0 0 f1 -7 5 20 Daphne Koller More Complex p Influence Diagram g Difficulty Intelligence Study Grade VG L tt Letter Job VQ VS Daphne Koller Information f m Edges g m0 m1 m2 0.5 0.3 0.2 Market s0 Survey Decision rule δ at action node A is a CPD: P(A | Parents(A)) m0 m1 m2 s1 0.6 0.3 04 0 3 0.4 0.3 0.1 0.4 f0 0 0 0 f1 -7 5 20 s2 0.1 03 0.3 0.5 Found U m0 m1 m2 Daphne Koller Expected p Utility y with Information • Want to choose the decision rule δA that maximizes the expected utility Daphne Koller Finding F g MEU Decision Rules Market Survey Found U Daphne Koller Finding F g MEU Decision Rules Market Survey s0 m0 m1 m2 0.5 0.3 0.2 m0 m1 m2 s1 0.6 0.3 0.3 0.4 0.1 0.4 s0 s1 s2 f0 0 0 0 s2 0.1 0.3 0.5 f1 -1.25 1 25 1.15 2.1 m0 m1 m2 f0 0 0 0 f1 -7 5 20 Found U Daphne Koller More Generally y Daphne Koller MEU Algorithm g m Summary mm y • To compute MEU & optimize decision at A: – Treat A as random variable with arbitrary CPD – Introduce utility y factor with scope p PaU – Eliminate all variables except A, Z (A’s parents) to produce factor μ(A, μ(A Z) – For each z, set: Daphne Koller Decision Making g under Uncertainty y • MEU principle provides rigorous foundation • PGMs PGM provide id structured t t d representation t ti f for probabilities, actions, and utilities • PGM inference methods (VE) can be used for – Finding the optimal strategy – Determining overall value of the decision situation • Efficient methods also exist for: – Multiple p utility y components p – Multiple decisions Daphne Koller Probabilis"c Graphical Models Ac"ng Decision Making U"lity Func"ons Daphne Koller Utilities and Preferences f 0.2 $4mil p 0.25 $3mil 0.75 $0 f 0.8 $0 ≈ Daphne Koller Utility y = Payoff? y ff 0.8 $4mil p 1 $3mil 0 $0 f 0.2 $0 ≈ Daphne Koller St. Petersburg g Paradox • Fair coin is tossed repeatedly p y until it comes up heads, say on the nth toss • Payoff = $2n Daphne Koller U U($500) D= UD 0 400 500 $0 with prob. 1-p $1000 with prob prob. p 1000 $ reward Certainty C t i t equivalent i l t insurance/risk premium Daphne Koller Typical yp Utility y Curve U $ Daphne Koller Multi-Attribute Utilities • All attributes affecting g preferences p must be integrated into one utility function • Human H llife f – Micromorts – QALY (quality-adjusted life year) Daphne Koller Example: mp Prenatal diagnosis g U1(T) + U2(K) + U3(D,L) + U4(L,F) Testing g Down’s ’ syndrome Knowledge g Loss of f fetus Future pregnancy Daphne Koller Summary mm y • Our utility function determines our preferences about b t decisions d isi s that th t involve i l uncertainty t i t • Utility generally depends on multiple factors – Money, M time, ti chances h of f death, d th … • Relationship is usually nonlinear – Shape Sh of f utility tilit curve d determines t i attitude ttit d tto risk i k • Multi-attribute utilities can help decompose high dimensional function into tractable pieces high-dimensional Daphne Koller Probabilis0c Graphical Models Ac0ng Decision Making Value of Perfect Informa0on Daphne Koller Value of f Information f m • VPI(A | X) is the value of observing X before choosing an action at A • D = original influence diagram • DX → A = influence diagram with edge X → A Daphne Koller Finding F g MEU Decision Rules Market Survey Found U Daphne Koller Value of f Information f m • Theorem: – VPI(A | X) ≥ 0 – VPI(A | X) = 0 if and only if the optimal decision rule for D is still optimal for DX → A Daphne Koller Value of f Information f m Example mp s1 s2 s3 0.1 0.2 0.7 f0 s1 s2 s3 f1 . 0.9 0.1 0.6 0.4 0.1 0.9 State1 State2 s1 s2 s3 0.4 0.5 0.1 Funding1 Company p y Funding2 V δ*(C | S2) = P(c2))=11 if S2 = s3 P(c1)=1 otherwise EU(D[c E (D[ 1]) = 0.72 . EU(D[c2]) = 0.33 MEU(DS1 → C) = 0.743 Daphne Koller Value of f Information f m Example mp s1 s2 s3 0.5 0.3 0.2 f0 s1 s2 s3 f1 . 0.9 0.1 0.6 0.4 0.1 0.9 State1 State2 s1 s2 s3 0.4 0.5 0.1 Funding1 Company p y Funding2 V δ*(C | S2) = P(c2))=11 if S2 = s2,s3 P(c1)=1 otherwise EU(D[c E (D[ 1]) = 0.35 . EU(D[c2]) = 0.33 MEU(DS2 → C) = 0.43 Daphne Koller Value of f Information f m Example mp s1 s2 s3 0.5 0.3 0.2 State1 State2 s1 s2 s3 0.4 0.5 0.1 f0 f1 Funding1 Company Funding2 1 p y .7 s 0.3 0.7 s2 0.2 0.8 s3 0.01 0.99 V δ*(C | S2) = P(c2))=11 if S2 = s2,s3 P(c1)=1 otherwise EU(D[c E (D[ 1]) = 0.788 . EU(D[c2]) = 0.779 MEU(DS1 → C) = 0.8142 Daphne Koller Summary mm y • Influence diagrams provide clear and coherent h t semantics ti f for th the value l of f making an observation – Difference between values of two IDs • Information is valuable if and only if it induces a change in action in at least one context t t Daphne Koller