Subido por Favio Andre Flores Palomino

Illustration of Crane Loads

Anuncio
Structural Engineering
Crane Loads
6 Crane Loads.
𝐶𝑜𝑙𝑢𝑚𝑛
𝑉
𝑉
𝐻
𝐻
𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛
➢ 𝑳𝒐𝒂𝒅𝒔 𝒓𝒆𝒔𝒖𝒍𝒕𝒊𝒏𝒈 𝒅𝒖𝒆 𝒕𝒐 𝑪𝒓𝒂𝒏𝒆
+25% 𝑜𝑓 𝑊ℎ𝑒𝑒𝑙 𝐿𝑜𝑎𝑑 𝑑𝑢𝑒 𝑡𝑜 𝐼𝑚𝑝𝑎𝑐𝑡
1) 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 → 𝑂𝑤𝑛 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐶𝑟𝑎𝑛𝑒 𝐵𝑟𝑖𝑑𝑔𝑒 + 𝐶𝑟𝑎𝑛𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
2) 𝐻𝑍 𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑆ℎ𝑜𝑐𝑘 → 10% 𝑜𝑓 𝑊ℎ𝑒𝑒𝑙 𝐿𝑜𝑎𝑑 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐼𝑚𝑝𝑎𝑐𝑡
(𝑑𝑢𝑒 𝑡𝑜 𝐻𝑍 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑇𝑟𝑜𝑙𝑙𝑒𝑦)
3) 𝐵𝑟𝑎𝑘𝑖𝑛𝑔 𝐹𝑜𝑟𝑐𝑒 →
1
𝑜𝑓 𝑊ℎ𝑒𝑒𝑙 𝐿𝑜𝑎𝑑 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐼𝑚𝑝𝑎𝑐𝑡
7
𝑅𝑒𝑠𝑖𝑠𝑡𝑒𝑑 𝑏𝑦
𝑀𝑎𝑖𝑛 𝑆𝑦𝑠𝑡𝑒𝑚
𝑅𝑒𝑠𝑖𝑠𝑡𝑒𝑑 𝑏𝑦 𝑉𝐿 𝐵𝑟𝑎𝑐𝑖𝑛𝑔
6 Crane Loads.
0.5 m
1) 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
B−1
B
0.5 m
6 Crane Loads.
1) 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
𝑂. 𝑊 𝑜𝑓 𝐵𝑟𝑖𝑑𝑔𝑒
0.2 → 0.3 𝑡/𝑚
𝐶𝑟𝑎𝑛𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝐹𝑜𝑟 𝑡ℎ𝑖𝑠 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑟𝑜𝑙𝑙𝑒𝑦, 𝐿𝑜𝑎𝑑 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝐶𝑇𝐺 ′ 𝑠
𝑎𝑛𝑑 𝑡ℎ𝑖𝑠 𝑖𝑠 𝑛𝑜𝑡 𝑡ℎ𝑒 𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒 𝑤𝑒 𝑠𝑒𝑒𝑘.
6 Crane Loads.
1) 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
𝑂. 𝑊 𝑜𝑓 𝐵𝑟𝑖𝑑𝑔𝑒
0.2 → 0.3 𝑡/𝑚
0.9 m
𝐶𝑟𝑎𝑛𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑀𝑖𝑛. 𝐿𝑜𝑎𝑑𝑠 𝑜𝑛 𝐿𝑒𝑓𝑡 𝐶𝑇𝐺
𝑀𝑎𝑥. 𝐿𝑜𝑎𝑑𝑠 𝑜𝑛 𝑅𝑖𝑔ℎ𝑡 𝐶𝑇𝐺
6 Crane Loads.
1) 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
𝑂. 𝑊 𝑜𝑓 𝐵𝑟𝑖𝑑𝑔𝑒
0.2 → 0.3 𝑡/𝑚
0.9 m
𝐶𝑟𝑎𝑛𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑀𝑖𝑛. 𝐿𝑜𝑎𝑑𝑠 𝑜𝑛 𝑅𝑖𝑔ℎ𝑡 𝐶𝑇𝐺
𝑀𝑎𝑥. 𝐿𝑜𝑎𝑑𝑠 𝑜𝑛 𝐿𝑒𝑓𝑡 𝐶𝑇𝐺
𝐶𝑟𝑎𝑛𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑂. 𝑊 𝑜𝑓 𝐵𝑟𝑖𝑑𝑔𝑒
0.2 → 0.3 𝑡/𝑚
0.9 m
𝑅𝑚𝑎𝑥.
B−1
𝑅𝑚𝑖𝑛.
6 Crane Loads.
S
1) 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
S
𝐴
𝐴
6 Crane Loads.
S
1) 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
𝐴
S
𝑃𝑚𝑎𝑥.
𝐿𝑒𝑡 ′ 𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑖𝑠 𝐵𝑟𝑎𝑐𝑘𝑒𝑡
𝑃𝑚𝑎𝑥.
𝐴
𝑊𝑒 𝑛𝑒𝑒𝑑 𝑡𝑜 𝑝𝑙𝑎𝑐𝑒 𝑊ℎ𝑒𝑒𝑙 𝐿𝑜𝑎𝑑𝑠 𝑖𝑛 𝑜𝑟𝑑𝑒𝑟 𝑡𝑜
𝑔𝑒𝑡 𝑡ℎ𝑒 𝑚𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑛 𝐵𝑟𝑎𝑐𝑘𝑒𝑡
𝑃𝑚𝑎𝑥. =
𝑅𝑚𝑎𝑥.
2
𝑃𝑚𝑖𝑛. =
𝑅𝑚𝑖𝑛.
2
6 Crane Loads.
1) 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
S
𝐴
S
𝑃𝑚𝑎𝑥.
𝑃𝑚𝑎𝑥.
𝐿𝑒𝑡 ′ 𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑖𝑠 𝐵𝑟𝑎𝑐𝑘𝑒𝑡
𝐴
𝑉𝐷𝐿
𝑫𝑳
𝑉𝐷𝐿 𝑙𝑒𝑓𝑡
𝑉𝐷𝐿 𝑟𝑖𝑔ℎ𝑡
𝑉𝐷𝐿 = 𝑉𝐷𝐿 𝑙𝑒𝑓𝑡 + 𝑉𝐷𝐿 𝑟𝑖𝑔ℎ𝑡 =
0.2 × 𝑆
×2
2
𝑡𝑜𝑛
𝑉𝑚𝑎𝑥 = 𝑉𝐷𝐿 + 1.25 𝑉𝐿𝐿
𝑃𝑚𝑎𝑥. =
𝑅𝑚𝑎𝑥.
2
𝑃𝑚𝑖𝑛. =
𝑅𝑚𝑖𝑛.
2
𝑉𝐿𝐿
𝑳𝑳
𝑉𝑚𝑖𝑛 = 𝑉𝐷𝐿 + 1.25 𝑉𝐿𝐿
𝑉𝐿𝐿 𝑙𝑒𝑓𝑡 = 0
𝑉𝐿𝐿 = 𝑉𝐿𝐿 𝑙𝑒𝑓𝑡 + 𝑉𝐿𝐿 𝑟𝑖𝑔ℎ𝑡
𝑉𝐿𝐿 𝑟𝑖𝑔ℎ𝑡
𝑉𝐼𝑚𝑝𝑎𝑐𝑡 = 𝑉𝐿𝐿 × 0.25
𝑉𝐿𝐿+𝐼𝑚𝑝𝑎𝑐𝑡 = 1.25𝑉𝐿𝐿
𝐷𝑢𝑒 𝑡𝑜 𝑃𝑚𝑖𝑛.
6 Crane Loads.
1) 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
𝑽𝒎𝒂𝒙
𝑽𝒎𝒊𝒏
𝑉𝑚𝑎𝑥 = 𝑉𝐷𝐿 + 1.25 𝑉𝐿𝐿
𝑉𝑚𝑖𝑛 = 𝑉𝐷𝐿 + 1.25 𝑉𝐿𝐿
𝐷𝑢𝑒 𝑡𝑜 𝑃𝑚𝑖𝑛.
6 Crane Loads.
2) 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
𝑊ℎ𝑒𝑒𝑙
1 𝑚𝑚 𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒
𝐶𝑟𝑎𝑛𝑒 𝑅𝑎𝑖𝑙
𝐻𝑚𝑎𝑥
𝐶𝑇𝐺
➢ 𝐷𝑢𝑒 𝑡𝑜 𝐻𝑍 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑇𝑟𝑜𝑙𝑙𝑒𝑦
➢ 1 𝑚𝑚 𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑊ℎ𝑒𝑒𝑙 𝑎𝑛𝑑 𝑅𝑎𝑖𝑙
𝐶𝑜𝑙𝑢𝑚𝑛
𝐵𝑟𝑎𝑐𝑘𝑒𝑡
𝐻𝑍 𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑆ℎ𝑜𝑐𝑘 𝑖𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑
𝐻𝑚𝑎𝑥 = 0.1 𝑉𝐿𝐿
𝐷𝑢𝑒 𝑡𝑜 𝑃𝑚𝑎𝑥.
𝐻𝑚𝑖𝑛 = 0.1 𝑉𝐿𝐿
𝐷𝑢𝑒 𝑡𝑜 𝑃𝑚𝑖𝑛.
𝑾𝒊𝒕𝒉𝒐𝒖𝒕 𝑰𝒎𝒑𝒂𝒄𝒕
6 Crane Loads.
2) 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
𝑽𝒎𝒂𝒙
𝑽𝒎𝒊𝒏
𝑯𝒎𝒂𝒙
𝑯𝒎𝒊𝒏
𝑉𝑚𝑎𝑥 = 𝑉𝐷𝐿 + 1.25 𝑉𝐿𝐿
𝐻𝑚𝑎𝑥 = 0.1 𝑉𝐿𝐿
𝐷𝑢𝑒 𝑡𝑜 𝑃𝑚𝑎𝑥.
𝑉𝑚𝑖𝑛 = 𝑉𝐷𝐿 + 1.25 𝑉𝐿𝐿
𝐻𝑚𝑖𝑛 = 0.1 𝑉𝐿𝐿
𝐷𝑢𝑒 𝑡𝑜 𝑃𝑚𝑖𝑛.
𝐷𝑢𝑒 𝑡𝑜 𝑃𝑚𝑖𝑛.
6 Crane Loads.
𝐶𝑎𝑠𝑒𝑠 𝑜𝑓 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝐹𝑜𝑟 𝐶𝑟𝑎𝑛𝑒
𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝐶𝑎𝑠𝑒𝑠
𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝐶𝑎𝑠𝑒𝑠
𝑉𝐿 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑂𝑛𝑙𝑦
𝑉𝐿 + 𝐻𝑍 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
𝟑
𝟏
𝑽𝒎𝒂𝒙
𝑽𝒎𝒊𝒏
𝟒
𝑽𝒎𝒂𝒙
𝑽𝒎𝒊𝒏
𝑽𝒎𝒂𝒙
𝑯𝒎𝒊𝒏
𝑯𝒎𝒂𝒙
𝑽𝒎𝒊𝒏
𝑯𝒎𝒊𝒏
𝑯𝒎𝒂𝒙
𝑪𝑹 𝑽𝑳 𝑳𝒆𝒇𝒕
𝑪𝑹 𝑯𝒁𝟏 𝑳𝒆𝒇𝒕
𝑪𝑹 𝑯𝒁𝟐 𝑳𝒆𝒇𝒕
𝟐
𝟓
𝟔
𝑽𝒎𝒊𝒏
𝑽𝒎𝒂𝒙
𝑽𝒎𝒊𝒏
𝑽𝒎𝒂𝒙
𝑯𝒎𝒊𝒏
𝑪𝑹 𝑽𝑳 𝑹𝒊𝒈𝒉𝒕
𝑯𝒎𝒂𝒙
𝑪𝑹 𝑯𝒁𝟏 𝑹𝒊𝒈𝒉𝒕
𝑽𝒎𝒊𝒏
𝑽𝒎𝒂𝒙
𝑯𝒎𝒊𝒏
𝑯𝒎𝒂𝒙
𝑪𝑹 𝑯𝒁𝟐 𝑹𝒊𝒈𝒉𝒕
6 Crane Loads.
𝑆𝑢𝑚𝑚𝑎𝑟𝑦 𝑜𝑓 𝐶𝑟𝑎𝑛𝑒 𝐿𝑜𝑎𝑑𝑠
1) 𝑆𝑜𝑙𝑣𝑒 𝐶𝑟𝑎𝑛𝑒 𝐵𝑟𝑖𝑑𝑔𝑒 𝑎𝑛𝑑 𝑔𝑒𝑡 𝑅𝑚𝑎𝑥. , 𝑅𝑚𝑖𝑛.
2) 𝐴𝑠𝑠𝑖𝑔𝑛 𝑅𝑚𝑎𝑥 𝑜𝑛 𝐶𝑇𝐺 𝑎𝑠 𝑡𝑤𝑜 𝑊ℎ𝑒𝑒𝑙 𝐿𝑜𝑎𝑑𝑠 𝑃𝑚𝑎𝑥 .
𝐺𝑒𝑡 𝑉𝐷𝐿 , 𝑉𝐿𝐿+𝐼𝑚𝑝𝑎𝑐𝑡
𝐺𝑒𝑡 𝑉𝑚𝑎𝑥
𝑉𝐷𝐿 = 𝑉𝐷𝐿 𝑙𝑒𝑓𝑡 + 𝑉𝐷𝐿 𝑟𝑖𝑔ℎ𝑡 =
𝑊ℎ𝑒𝑟𝑒 𝑃𝑚𝑎𝑥 =
0.2 × 𝑆
×2
2
𝑅𝑚𝑎𝑥
2
𝑡𝑜𝑛
𝑉𝐿𝐿+𝐼𝑚𝑝𝑎𝑐𝑡 = 1.25 𝑉𝐿𝐿
𝑉𝑚𝑎𝑥 = 𝑉𝐷𝐿 + 1.25 𝑉𝐿𝐿
𝑈𝑠𝑖𝑛𝑔 𝑃𝑚𝑖𝑛 𝑅𝑒𝑝𝑒𝑎𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑡𝑒𝑝𝑠 𝑡𝑜 𝑔𝑒𝑡 𝑉𝑚𝑖𝑛
3) 𝐺𝑒𝑡 𝐻𝑍 𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑆ℎ𝑜𝑐𝑘
𝐻𝑚𝑎𝑥 = 0.1 𝑉𝐿𝐿
𝐷𝑢𝑒 𝑡𝑜 𝑃𝑚𝑎𝑥.
4) 𝐷𝑒𝑓𝑖𝑛𝑒 𝑎𝑛𝑑 𝐴𝑠𝑠𝑖𝑔𝑛 6 𝑐𝑟𝑎𝑛𝑒 𝑙𝑜𝑎𝑑 𝑐𝑎𝑠𝑒𝑠
𝐻𝑚𝑖𝑛 = 0.1 𝑉𝐿𝐿
𝐷𝑢𝑒 𝑡𝑜 𝑃𝑚𝑖𝑛.
𝑾𝒊𝒕𝒉𝒐𝒖𝒕 𝑰𝒎𝒑𝒂𝒄𝒕
6 Crane Loads.
𝑆𝑢𝑚𝑚𝑎𝑟𝑦 𝑜𝑓 𝐶𝑟𝑎𝑛𝑒 𝐿𝑜𝑎𝑑𝑠
𝐼𝑛𝑠𝑡𝑒𝑎𝑑 𝑜𝑓 𝑆𝑜𝑙𝑣𝑖𝑛𝑔 𝐶𝑟𝑎𝑛𝑒 𝐵𝑟𝑖𝑑𝑔𝑒 𝑡𝑜 𝑔𝑒𝑡 𝑃𝑚𝑎𝑥 , 𝑃𝑚𝑖𝑛
𝐶𝑟𝑎𝑛𝑒 𝑡𝑎𝑏𝑙𝑒𝑠 𝑐𝑎𝑛 𝑏𝑒 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑔𝑒𝑡 𝑡ℎ𝑒𝑠𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠:
𝐺𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡: 𝐶𝑟𝑎𝑛𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 10 𝑡𝑜𝑛
𝑆𝑝𝑎𝑛 = 20 𝑚
𝑃𝑚𝑎𝑥 = 7450 𝐾𝑔 = 7.45 𝑡𝑜𝑛
𝑃𝑚𝑖𝑛 = 2000 𝐾𝑔 = 2 𝑡𝑜𝑛
𝐹𝑜𝑙𝑙𝑜𝑤 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑡𝑒𝑝𝑠 𝑡𝑜 𝑔𝑒𝑡 𝑉, 𝐻
𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑇𝑎𝑏𝑙𝑒
𝑡𝑜 𝑔𝑒𝑡 𝑊ℎ𝑒𝑒𝑙 𝑆𝑝𝑎𝑐𝑖𝑛𝑔
𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑 𝐶𝑟𝑎𝑛𝑒 𝑇𝑎𝑏𝑙𝑒𝑠 𝐻𝑒𝑟𝑒
6 Crane Loads.
𝑊ℎ𝑎𝑡 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑡ℎ𝑖𝑟𝑑 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡?
𝐵𝑟𝑎𝑘𝑖𝑛𝑔 𝐹𝑜𝑟𝑐𝑒
𝐵𝑟𝑎𝑘𝑖𝑛𝑔 𝐹𝑜𝑟𝑐𝑒 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑤ℎ𝑒𝑒𝑙 =
𝑃𝑚𝑎𝑥
7
𝐶𝑜𝑙𝑢𝑚𝑛
𝑅𝑒𝑠𝑖𝑠𝑡𝑒𝑑 𝑏𝑦 𝑆𝑡𝑟𝑢𝑡 𝑢𝑠𝑒𝑑 𝑎𝑡 𝐶𝑇𝐺 𝐿𝑒𝑣𝑒𝑙
Descargar