Subido por Jhan Carlos Alania Aldana

407923473-Cubicacion-Estimacion-de-Resrvas-Min

Anuncio
Cubicación
Estimación de Recursos y Reservas
Minerales
Definición
“Recurso Mineral” es una concentración u ocurrencia de interés
económico intrínseco dentro y fuera de la corteza terrestre en
forma y cantidad tal como para demostrar que hay perspectiva
razonable para una eventual extracción económica.
Los Recursos Minerales se subdividen, según confianza
geológica ascendente, en categorías de:
A. Inferidos,
B. Indicados y
C. Medidos.
El término “Recurso Mineral” abarca la mineralización que ha
sido identificada y estimada a través de la exploración y
muestreo y dentro de la cual las Reservas de Mena pueden
definirse tomando en cuenta y aplicando factores técnicos,
económicos, legales, ambientales, sociales y gubernamentales.
Una “Reserva Mineral” es la parte económicamente explotable
de un Recurso Mineral Medido o Indicado.
Incluye dilución de materiales y tolerancias por pérdidas que se
puedan producir cuando se extraiga el material. Se han
realizado las evaluaciones apropiadas, que pueden incluir
estudios de factibilidad e incluyen la consideración de y
modificación por factores razonablemente asumidos de
extracción, metalúrgicos, económicos, de mercados, legales,
ambientales, sociales y gubernamentales. Estas evaluaciones
demuestran en la fecha en que se reporta que podría justificarse
razonablemente la extracción.
Las Reservas de Mena se subdividen en orden creciente de
confianza en: Reservas Probables Minerales y Reservas
Probadas Minerales.
CLASIFICACIÓN DE RECURSOS Y RESERVAS

Reserva Minera : es aquella porción del Recurso medido o
indicado, económicamente extraíble de acuerdo a un
escenario productivo, medioambiental, económico y
financiero derivado de un plan minero.
 Las Reservas Mineras deben incluir material de dilución, material no
identificado como mineral.
 Las Reservas Mineras se sub-categorizan en Reservas Probadas
y Reservas Probables.
 Reservas Probable: es aquella porción del recurso indicado,
eventualmente medido, económicamente extraíble. Esta Reserva
incluye el material diluyente, y pérdidas de explotación. Se incluyen
estudios de factibilidad, mineros, metalúrgicos, ambientales,
económicos.
 Reservas Probadas: es aquella porción del recurso medido,
económicamente extraíble. Esta Reserva incluye el material
diluyente, y pérdidas de explotación. Se incluyen estudios de
factibilidad, mineros, metalúrgicos, ambientales, económicos,
legales y factores regulatorios ambientales.
El Código establece una relación directa entre el Recurso
Medido y la Reserva Probada y entre Recurso MedidoIndicado y la Reserva Probable.
• El Recurso Indicado debe convertirse primero en Recurso Medido; para
posteriormente, este puede se convertido en Reserva Probada.
Estimación de Reservas
Determinada las Leyes Medias, el siguiente paso es estimar los
Recursos o Reservas. Conocer, determinar y caracterizar la
geología del prospecto y el modelo de yacimiento
Delimitar el cuerpo Mineral
Métodos para estimar Reservas
• Existen dos grupos de métodos : Geométricos o Clásicos.
•
Geoestadísticos.
• Los métodos Geoestadísticos ofrecen mayor presicion e información
más completa. Para poder aplicarlos se deberán cumplir ciertos
requisitos:
 Conocimientos Geoestadísticos y manejo de Sofware adecuados.
 Número elevado de datos (sondeos) en distintas direcciones para el
cálculo del semivariograma.
 Debe existir una variable regionalizada x ej. Ley que permite obtener
el modelo del variograma.
Métodos Clásicos o Geométricos
• Método de los Perfiles
• Metodología: cortes verticales, delimitando la mineralización. Se
determinan superficies de los perfiles y del bloque en perfiles.
Método de los Triángulos
(Área Incluída)
• Usos: en depósitos con poca variaciones de Ley y potencia.
• Metodología: se unen los sondeos, formando un mallado triangular.
Cada triángulo es la base de un prisma, donde la potencia, ley y
densidad son constantes.
Método de triángulos: semiperimetro
S=lado+lado2+lado3
2
A= √ S (S-lado1)(S-lado2)(S-lado3)
e=espesor1+espesor2+espesor3
3
Vol= e xA
S=lado+lado2+lado3
2
S=235+254+213 = 351m
2
A= √ S (S-lado1)(S-lado2)(S-lado3)
A= √ 351(351-235)(351-254)(351-213)
A= 23,345.7 m2
e=espesor1+espesor2+espesor3
3
e = 23.6 m
Vol= A x e = 550,958.5 m3
Concentracion proemdio
c=44.5+33.6+39.9 = 39.3 %
3
Reserva = c x V
Reserva = 39.3 x 550958.5 = 216526.7 m3
Método de los Polígonos
(Área Extendida)
• Usos: en depósitos con poca variaciones de Ley y potencia. El
método no delimita el depósito.
• Metodología: se construyen los polígonos, dejando en su centro un
sondeo. Se forman prismas poligonales.
Método de Bloques
• Usos : en depósitos en una fase de investigación avanzada o de
preexplotación. Para yac. metálicos de tipo masivos, potencialmente
explotables a cielo abierto. Mineralizaciones de tipo tabulares y de
poca potencia.
• Metodología : el depósito se discretiza con paralelepípedos iguales
lo que da lugar a una división del mismo en bloques. Cada bloque
debe tener toda la información (leyes, Vls, ubicación espacial etc.)
• Las dimensiones del bloque dependen:





Variabilidad de las Leyes.
Continuidad geológica de la mineralización.
Tamaño y espaciamiento de las muestras.
Capacidades de los equipos mineros.
Taludes de diseño de la explotación.
Métodos de Bloques
• El método se utiliza fundamentalmente para describir la distribución
espacial de valores numéricos.
• Existen dos métodos para establecer bloques: a) 1 sondeo por
bloque b) cuatro sondeos por bloque.
1.- La veta diana tiene un rumbo Este- Oeste.
Calcular el tonelaje y leyes totales de cobre,
plomo, zinc y plata en un bloque de mineral
limitado por dos galerías horizontales ( una
inferior a la cota y otra superior a las cota ) y
por dos chimeneas laterales
Se cuenta con los siguientes datos
Distancia de galería superior : 100 metros
Distancia de galería inferior : 100 metros
Distancia de chimeneas : 50 metros
Peso especifico de mineral: 3.1
Códig
Elementos
VM
o
Ag
ITEM muest Cu % Pb % Zn %
US $
Oz/TM
ra
1
6910
1,34 1,18 0,06 0,22 52,19
2
6911
2,02 2,54 0,01 0,24 85,39
3
6912
2,49 2,08 0,01 1,52 104,71
4
6913
0,95 1,33 0,49 0,42 51,71
5
6914
2,60 2,39 0,06 0,12 98,88
6
6915
2,15 3,45 0,15 0,17 100,47
7
6916
1,75 5,71 0,12 0,22 114,84
8
6917
2,34 0,88 0,07 0,09 74,79
9
6918
2,71 1,03 0,14 0,22 88,83
10
6919
1,89 1,93 2,47 3,29 140,64
11
6920
1,97 2,99 4,14 1,48 162,90
12
6921
2,47 3,29 7,42 4,50 257,58
13
6922
1.1 1,48 3,64 2,99
14
6923
1.43 4,50 5,27 3,14
15
6924
2.32 2,99 4,50 3,29
16
6925
0,01 0,08 2,99 2,54 69,97
Cubicación - Estimación de Recursos y
Reservas Minerales
METODO GEOESTADISTICO
Métodos Geoestadísticos
• Krigeado :se utiliza para estimar el valor de una variable
regionalizada a partir de factores de ponderación. Este valor se
caracteriza por ser el mejor estimador lineal e insesgado de la
variable.
• Mejor: los factores de ponderación se determinan de tal forma que
la varianza de estimación sea mínima.
• Lineal : es una combinación lineal de la información.
• Insesgado : en promedio el error es nulo, no hay sesgo en los
errores.
• Existen dos tipos de Krigeados : Puntual
•
Bloques
Secuencias en un estudio Geoestadístico para
estimar Reservas
Krigeado Puntual
• Los factores de ponderación, para obtener el valor de la variable, se
calculan a partir de un sistema de ecuaciones, en donde las incógnitas
para resolver el sistema se obtienen a partir del variograma modelizado.
• Ejemplo: Un conjunto de 4 muestras de un yacimiento de cinc, cuyas
leyes son: X1 8,2% - X2 ,9,6%- X3 ,13,15%- X4 ,6,3%. El variograma a
considerar se ajusta a un modelo esférico con alcance 250 m; C0 17 y C
66. Calcular utilizando el krigeado el valor de X0.
• K1 Y1.1 + K2 Y1.2 + K3 Y1.3 + K4Y1.4 + µ = Y0.1
• K1 Y2.1 + K2 Y2.2 + K3 Y2.3 + K4Y24 + µ = Y0.2
• K1 Y31 + K2 Y3.2 + K3 Y3.3 + K4Y3.4 + µ = Y0.3
• K1 Y4.1 + K2 Y4.2 + K3 Y4.3 + K4Y4.4 + µ = Y0.4
• K1 + K2 + K3 + K4 = 1
• Calculando los Yi-j del Modelo Esférico con la ecuación:
• Y(H9) = C0 + C [ 1,5(h/a) – 0,5(h/a)3 ] para h < a
• Y(H9) = C0 + C para h > a
• De esta forma se obtienen los valores Yi-j y sustituyéndolos en las
ecuaciones de krigeado, se obtendría un sistema de 5 ecuaciones con
5 incógnitas.
• K1 = 0,393 + K2 = 0,022 + K3 = 0,329 + K4 = 0,256 = 1
• Por lo tanto el valor de la variable Ley de Zinc para el punto X0 será:
• Z (X0) = 0,393 . 8,2 + 0,022 . 9,6 + 0,329 . 13,1 + 0,256 . 6,4 = 9,38 %
Krigeado de Bloques
 El valor obtenido se lo asigna a un Bloque, no a un punto.
 Tener en cuenta que el valor medio de una Función Aleatoria, en un
bloque, es el valor medio de todas las variables aleatorias, dentro
del bloque.
Función Aleatoria: admite la incertidumbre, por lo tanto van a ser un conjunto de
variables, que tienen una localización espacial y cuya dependencia se rigen por
algún mecanismo probabilístico.
 Para determinar el valor del bloque es necesario discretizar el área
en un conjunto de puntos de 2x2; 3x3; 4x4, obteniéndose a
continuación la media entre los diferentes valores.
 Este hecho lleva a resolver decenas o centenares de miles de
ecuaciones, lo que sería imposible sin el uso de la informática
Ejemplo: se muestra un bloque a estimar discretizado con 4 puntos. El
resto del esquema se establecen las estimaciones por Krigeado
Puntual de los 4 puntos discretizados. Los valores obtenidos tienen los
correspondientes resultados de la varianza de estimación.
• Los valores que se obtienen con el krigeado, llevan los
correspondientes valores de la varianza de estimación,
lo que permite hacer un estudio de la bondad de
estimación.
• Estos valores pueden ser interpolados y confeccionar un
mapa de isovarianzas.
• Annels (1991), propone establecer diferentes tipos de
reservas en base a los valores de varianza del krigeado.
•
•
•
•
Varianza
0-0,0075
0,0075-0,0135
>0,0135-
Categoría
Reservas probables
Reservas posibles
Reservas inferidas
• El resultado se puede proporcionar por bloques o bien
por isolíneas a partir de los bloques.
• Para el cálculo de reserva de cada bloque, se deberá
multiplicar su superficie x potencia x densidad.
• Las reservas totales se pueden determinar:
• Estimando el tonelaje y el error de estimación.
• Estimando la ley media y el error de estimación.
Bibliografía
• Bustillo Revuelta, M. y López Jimeno, C., 1997: Manual de evaluación
y diseño de explotaciones mineras. Madrid. ISBN 84-921708-2-4 .
• ANNELS, A. E. (1991). Mineral deposit evaluation. A practical
approach. Ed. Chapman & Hall, London.
• TULCANAZA,E. (1992). Técnicas geoestadísticas y criterios técnicoeconómicos para la estimación y evaluación de yacimientos mineros..
E.Tulcanaza, Santiago, Chile.
• E. García Orche. Madrid 1999. Manual de Evaluación de Yacimientos.
• “Estimación de Reservas”- Curso dictado por Roberto Oyarzun.
• Código para la Certificación de Prospectos de Exploración (realizado
por Comité de Recursos Mineros del I.IM.Ch)
Categorizaciones de Recursos y Reservas
• Existen varios tipos de clasificaciones de Reservas :
 Probadas – Probables – Posibles
 Medidas – Indicadas – Inferidas
 A – B – C1 – C2
Independiente del nombre lo importante es la Confianza en la
bondad de Estimación
Elementos utilizados en la categorización de Recursos y Reservas
1) Distancias entre muestras y bloques
2) Número de muestras
3) La varianza del krigeado
• 1) La distancia está dada por el radio de búsqueda, el cual debe
estar en relación con el alcance. La distancia geométrica está
vinculada con la variabilidad.
• X ejemplo : DIST < ½ del alcance
•
DIST < ½ -1 alcance
•
DIST > 1 alcance
R. Medidos
R. Indicados
R. Inferidos
• 2) El número de muestras a considerar y su distribución.
• X ejemplo: si el n° de muestras ideal por bloque fueran 16,
podríamos fijar categorías:
•
> 10 muestras
R. Medidos
•
10 - 4 muestras
R. Indicados
•
< a 4 muestras
R. Inferidos
• 3) Por la Varianza de estimación del kriging.
•
• x ejemplo : si X B = valor medio del bloque.
•
Y2 B = Varianza del bloque.
•
Y B = √ Y2 B desvío de los valores del bloque.
• Y B / X B x 100 (coeficiente de variación del krigeado)
• Y B < al 25% de X B
• Y B > al 25% de X B
• Y B > al 40% de X B
medidas
indicadas
inferidas
• Estos % pueden variar, tratándose de diferentes materiales, o bien
si son bloques de diferente tamaño.
 Los brasileños lo hacen con 2YB (dos desvíos standart), y a esto lo
llaman ERKRIDAME = error del krigeado de la media.
• 2 x Y B / X B x 100
• Y B < al 20% de X B
• Y B > 20 a 50% de X B
• Y B > al 50% de X B
medidas
indicadas
inferidas
 Royle (1977) clasifica las reservas en base a la varianza del
krigeado y el valor propio estimado en relación a la ley crítica. Por
cada bloque se puede estimar la probabilidad del que el valor real
este por encima de la ley de Corte.
• Ejemplo (Royle)
• D= VKB - LCB
•
•
•
•
YB
VKB= valor krig.bloque.(3,12 gr/tn)
LCB = ley de corte. (3 gr/tn)
Y2B = Varianza del Krig. (0,04 gr/tn)
YB = Desvío (0,02 gr/tn)
• D =3,12 - 3,00 = 0,625
•
0,02
• Entrando a la tabla de probabilidad de una distribución normal normal, la
probabilidad de que la Ley sea menor es de 0,26 % , por lo tanto la
Probabilidad que sea > será 1 – 0,266 = 0,73
73 %
Krigeado Indicador
•
•
Se utiliza en el análisis de las reservas, en explotaciones de alto valor
económico.
Es un método no paramétrico en que los valores obtenidos son convertidos
a valores entre 0 y 1, dependiendo de su relación con la Ley de corte.
•
•
•
Tomemos un ejemplo:
Bloque A : 6%-5%-6%-6% = ley media 5%
Bloque B : 1%-2%-1%-19%= ley media 5%
•
Si la ley mínima es 5%, ambos bloques son explotables. Al bloque A le
asignamos un valor = 1; y al B= 0,25.
•
Una vez que la leyes han sido transformadas, se puede construir un
Variograma Experimental y ajustarlo a un Modelo y realizar el Krigeado de
bloques.
•
El valor que saliese de cada bloque representa el % recuperable de
mineralización
Código para la Certificación de Prospectos de
Exploración (realizado por Comité de Recursos
Mineros del I.IM.Ch)
 Estas normas fueron adoptadas por países como Australia, Canadá, Reino
Unido, Sudáfrica, con una alta trayectoria en Minería.
 En Primer Término se introduce la figura Persona Competente Calificada,
inscripta en un registro profesional. Tener en cuente que la estimación de
Recursos / Reservas es un trabajo en equipo.
 Recurso inferido: las estimaciones de tn y ley están afectadas en precisión
y exactitud, por muestreos fragmentarios, limitados y extrapolaciones
geológicas.
 Recurso Indicado: las estimaciones de tn, ley densidades, características
geológicas y geometalúrgicas han sido caracterizadas con un razonable
nivel de confianza. (x ej DS < al 7% anual para el CU)
• Recurso medido : las estimaciones de tn, ley densidades, características
geológicas y geometalúrgicas han sido caracterizadas con un significativo
nivel de confianza.(x ej DS < al 7% trimestral)
Cubicación - Estimación de Recursos y
Reservas Minerales
LEY DE CORTE
LEY DE CORTE
La ley de corte es la mínima ley explotable que debe tener un bloque
mineralizado para ser considerado como reserva mineral.
Es la ley de utilización mas baja que brinda a la operación minera una
utilidad mínima.
Es la ley de mineral donde la operación no reporta ni utilidades ni perdidas.
Descargar