18 Célula - SILADIN Oriente

Anuncio
Teoría celular.
Célula. Morfología celular.
Índice.
1. Introducción.
2. ¿Cuáles son las estructuras celulares comunes, presentes en una célula
animal y vegetal?
3. ¿Qué factores influyen en la forma y tamaño celular? ¿Cómo influye cada
uno de ellos?
4. ¿Cuál es la importancia de la teoría celular?
1. Introducción
Los seres humanos iniciamos la vida como un solo óvulo recién fecundado que
contiene, como toda célula con núcleo, todas las instrucciones necesarias para su
futuro crecimiento y desarrollo. El término <<célula>> fue aplicado por primera vez
por Robert Hooke, un científico inglés del siglo XVII, que comparó la estructura
interna de un trozo de corcho con las celdas de los monjes de un monasterio (del
latín cella, celda).
La célula es la unidad fundamental de la vida. Es la estructura más pequeña del
cuerpo, capaz de realizar todos los procesos que definen la vida: respiración,
movimiento, digestión y reproducción, aunque no todas las células pueden realizar
todas estas funciones. La mayoría de las células son invisibles para el ojo
humano. Hasta el óvulo femenino, la célula más grande del cuerpo, no es más
grande que el punto situado al final de esta frase. El tamaño y la forma varían con
las funciones celulares.
Y este, precisamente es el tema que desea tratar este trabajo, además los tipos de
células que existen, procariontes y eucariontes; las diferencias y semejanzas que
entre ellos existen. Así también los dos tipos de células eucariontes animal y
vegetal.
Y finalmente las teorías que se han formulado alrededor de la célula.
UNAM, CCH. Plantel Oriente.Área de Ciencias Experimentales.BIOLOGÍA I, 1ª UNIDAD.
Teoría celular.
2. ¿Cuáles son las estructuras celulares comunes, presentes en una célula
animal y vegetal?
Célula animal y Célula Vegetal.
Las estructuras celulares comunes para las células animal y vegetal son:
Membrana Plasmática:
Características: La membrana constaría de una bicapa de lípidos en la cual las
proteínas se hallarían "sumergidas", asomando hacia uno, otro o ambos lados.
Funciones: La membrana plasmática efectúa el control cualitativo y cuantitativo de
la entrada y salida de sustancias. Como consecuencia de la captación selectiva de
nutrientes, y de la excreción de desechos que lleva a cabo, la membrana
plasmática contribuye a determinar la composición del citoplasma.
Es una membrana semipermeable o de permeabilidad selectiva. Esto significa que
permite el paso de solventes y de solutos de tamaño pequeño, pero no es
atravesada por solutos de tamaños mayores.
Aparato de Golgi o Dictiosoma:
Características: Se presenta como un apilamiento de sacos aplanados, con bordes
dilatados, y vesículas y vacuolas ubicadas cerca de esos bordes. Todas estas
estructuras están compuestas por membranas.
En células vegetales, hay numerosas estructuras separadas y dispersas en el
citoplasma, que equivalen al aparato de Golgi, y que reciben el nombre de
dictiosomas. El tamaño, la distribución dentro de la célula y otras características,
como el número de sacos apilados de este sistema, varían de acuerdo al estado
metabólico de la célula.
UNAM, CCH. Plantel Oriente.Área de Ciencias Experimentales.BIOLOGÍA I, 1ª UNIDAD.
Teoría celular.
Funciones: El aparato de golgi se encarga de:

Circulación intracelular de sustancias;

Síntesis de algunos hidratos de carbono de alto peso molecular: celulosa, polisacáridos complejos;

Conjugación entre proteínas e hidratos de carbono para formar glucoproteínas de secreción;

Concentración condensación y empaquetamiento de la sustancia de secreción dentro de una
vesicular limitada por una membrana.

Concertación y empaquetamiento de enzimas hidrolíticas dentro de una vesícula limitada por una
membrana. El aparato golgi arma de esta manera a los lisosomas primarios que permanecerán en
el citoplasma de la célula.

Formación del acrosoma: durante la maduración de las espermátidas a espermatozoides, varias
vesículas del aparato de golgi se fusionan dando una vesícula mayor, que se va extendiendo y
formando un casquete alrededor del polo anterior del núcleo. Este casquete se denomina
acrosoma y contiene diversas enzimas hidrolíticas que facilitarán la aproximación al óvulo,
atravesando las células que lo rodean;

Formación del fragmoplasto en la división de células vegetales: los dictiosomas se agrupan
alrededor de microtúbulos en la zona ecuatorial de la célula y constituyen el fragmoplasto; éste se
transforma luego en la placa celular, la cual establece la división entre las dos células hijas.
Vacuola:
Características: Son vesículas de diámetros diversos, limitadas por una unidad de
membranas. En general, su función es la de almacenamiento.
En las células vegetales, por lo común, hay una única vacuola que ocupa el 8090% del volumen celular. La membrana que la limita se denomina tonoplasto y es
semipermeable. El contenido de la vacuola está integrado por agua y altas
concentraciones de sales inorgánicas, azúcares y otras sustancias. El citoplasma
y el núcleo quedan comprimidos por esta vacuola contra la membrana plasmática
y la pared celular. En esa fina capa periférica se observan los movimientos
citoplasmáticos, como la ciclosis.
Funciones: La vacuola contribuye a controlar la turgencia de la célula vegetal, ya
que la presión que ejerce sobre el tonoplasto se transmite al citoplasma y
mantiene a la membrana plasmática adherida contra la pared celular.
UNAM, CCH. Plantel Oriente.Área de Ciencias Experimentales.BIOLOGÍA I, 1ª UNIDAD.
Teoría celular.
Mitocondria:
Características: Las mitocondrias presentan diversas morfología, pero por lo
general son aproximadamente cilíndricas u ovoides; hay también esféricas y en
forma de Y. Su tamaño también es variable, pero habitualmente presentan un solo
tamaño.
La mitocondria es un organelo limitado por dos membranas: una externa, lisa,
separada por un espacio o cámara externa de la membrana interna, plagada hacia
adentro formando proyecciones llamadas crestas. La membrana interna con sus
crestas delimita una cámara interna ocupada por la matriz mitocondrial.
Las crestas presentan, a su vez, proyecciones en forma de hongo, que se
denominan partículas elementales o conjuntos respiratorios.
Las mitocondrias son organelos semiautónomos y autoduplicables. En la matriz se
encuentra ADN de tipo procarionte el cual codifica la estructura de algunas
proteínas mitocondriales. En la misma mitocondria se realiza la síntesis de esas
proteínas, sobre ribosomas de tipo procarionte, si bien la mayoría de las proteínas
mitocondriales es de síntesis citoplasmática.
Funciones: En la mitocondria se realizan oxidaciones de moléculas orgánicas,
utilizando O2 como último concepto de electrones, con el objeto de obtener
energía química para otros procesos celulares.
En la matriz mitocondrial son oxidados el ácido pirúvico, los ácidos grasos y
algunos aminoácidos.
Los electrones que provienen de estas oxidaciones son transferidos hasta el
último aceptor a través de una serie de coenzimas y citocromos llamados
colectivamente cadena respiratoria. Los componentes de la cadena respiratoria
están asociados a la membrana interna mitocondrial.
UNAM, CCH. Plantel Oriente.Área de Ciencias Experimentales.BIOLOGÍA I, 1ª UNIDAD.
Teoría celular.
La transferencia de electrones hasta el O2 está acoplada en varios puntos a la
reacción de formación de ATP: los elementos necesarios para este proceso,
llamado fosforilación oxidativa, se encuentran ligados a los conjuntos respiratorios
de las membranas de las crestas mitocondriales.
Retículo Endoplasmático Liso o Agranular:
Características: Se presenta como una serie de casos o bolsas aplanadas y
túbulos membranosos, cuya localización y extensión es variable, y depende de la
actividad metabólica particular de la célula.
Al Microscopio Electrónico se observa que cada bolsa o túbulo está constituido por
una unidad de membrana que limita la cavidad; ésta puede ser prácticamente
virtual o mostrarse ocupada por material que está circulando por el retículo. La
membrana que constituye casos y túbulos es bastante semejante en composición
química, ultraestructural y dimensiones a la membrana plasmática, pero presenta
asociadas una gran cantidad de enzimas para sus funciones específicas.
Funciones:

Circulación intracelular de sustancias que no se liberan al hialoplasma;

Síntesis de lípidos: esteroides, fosfolípidos, triglicérido;

Detroxificación de ciertas drogas, es decir, anulación de sus efectos farmacologícos por
modificaciones en su estructura química. Por ejemplo, la administración de barbitúricos hace que
se desarrolle considerablemente el R.E.L. de los hepatocitos, encargados de desdoblar esos
fármacos.

En células musculares estriados recibe el nombre de retículo sarcoplásmico y presenta una
disposición muy particular, ligada con la coordinación de la contracción de la fibra muscular.
UNAM, CCH. Plantel Oriente.Área de Ciencias Experimentales.BIOLOGÍA I, 1ª UNIDAD.
Teoría celular.
Retículo Endoplasmático Rugoso o Granular:
Características: Presenta una imagen semejante a la del R.E.L, es decir bolsas
aplanadas y túbulos membranosos interconectados, pero se diferencia del anterior
en que sus membranas están cubiertas en su superficie externa por ribosomas y
polisomas. Los ribosomas y polisomas están adheridos a la membrana por su
subunidad mayor.
La extensión y distribución mayor del R.E.R. es variables y depende de la
actividad metabólica particular de la célula.
El R.E.R. también es llamado ergastoplasma o sustancia basófila; en las células
nerviosas se lo denomina sustancias tigroide o corpúsculos de Nissl.
Funciones:

Circulación intracelular de sustancias que no se liberan al citoplasma;

Síntesis de proteínas: esta función es llevada a cabo en los ribosomas adosados a sus
membranas. Las proteínas formadas entran a los sacos membranosos, y siguen circulando por el
sistema vacuolar citoplasmático. Las proteínas que se producen en el R.E.G. son de dos tipos:
o
Enzimas hidrolíticas que van a formar parte de los lisosomas.
o
Proteínas de secresión, a las que también el aparato de Golgi proveerá de una membrana para su
salida de la célula.

El R.E.R. está muy desarrollado en aquellas células con gran actividad secretora de proteínas,
como los plasmocitos que fabrican anticuerpos, las células pancreáticas que fabrican enzimas
digestivas, plasmáticas, etc.
Lisosoma:
Características: Se presentan como vesículas esféricas u ovales, limitadas por una
unidad de membrana. Sus tamaños son muy variables, y pueden tener diámetros
muy grandes.
UNAM, CCH. Plantel Oriente.Área de Ciencias Experimentales.BIOLOGÍA I, 1ª UNIDAD.
Teoría celular.
En el interior de estos organelos se encuentran enzimas hidrolíticas o hidrolasas,
es decir, con capacidad para catalizar la degradación o digestión de diversas
sustancias. Entre otras enzimas lisosomales se pueden citar:

Fosfatasas: interviene en la hidrólisis de fosfatos de moléculas orgánicas;

Lipasas y fosfolipasas: intervienen en la hidrólisis de lípidos y fosfolípidos;

Glucosidasas: intervienen en la hidrólosis de polisacáridos simples y complejos;

Catepsinas y otras proteasas; intervienen en la hidrólisis de proteínas;

Nucleasas: intervienen en la hidrólisis de ácidos nucleicos.
Las hidrolasas lisosomales sólo actúan en presencia de las sustancias a digerir.
La membrana del lisosoma es normalmente estable pero, si es dañada, las
enzimas que se liberan pueden degradar a todos los componentes celulares.
Funciones: Los lisosomas intervienen en la digestión intercelular. Las sustancias a
digerir pueden provenir de la misma célular o pueden ser incorporadas desde el
exterior por fago o pinocitosis.
En el primer caso, el proceso se denomina autofagia, y por él una célula puede
desdoblar organelos de su propio citoplasma, encerrados en vacuolas.
En el caso de macromoléculas exógenas, el proceso de digestión por lisosomas
consiste, en general, en los siguientes pasos:

Entrada de la sustancia a la célula por endocitosis, con lo cual la sustancia queda incluida dentro
de una vacuola endocítica;

Contacto y fusión entre las membranas de una vacuola fagocítica y un lisosoma primario. Al
ponerse en contacto el contenido enzimático lisosomal con la sustancia a digerir comienza la
hidrólisis de la misma: la vacuola se denomina, en este momento, lisosoma secundario o vacuola
digestiva;

A medida que transcurre la hidrólisis, los productos solubles atraviesan la membrana del lisosoma
secundario y son aprovechados en el citoplasma;

Las sustancias no digeribles pueden acumularse en los lisosomas como cuerpos residuales, o bien
pueden formar una vesícula de eliminación que vuelca los productos de desecho en el exterior de
la célula por exocitosis.
UNAM, CCH. Plantel Oriente.Área de Ciencias Experimentales.BIOLOGÍA I, 1ª UNIDAD.
Teoría celular.
Ribosoma:
Características: Los ribosomas se presentan como cuerpos esféricos o elípticos,
sin membrana limitante. Son gránulos compuestos por ARN ribosomal y proteínas.
Cada ribosoma está constituido por dos subunidades, llamadas: mayor y menor. El
tamaño de las subunidades se establece, en general, en función de la velocidad
con la cual sedimentan en un campo centrífugo. La unidad que expresa esa
velocidad es el Svedberg, y depende no sólo del tamaño de la partícula sino
tambíen de su forma y densidad, y del medio en que está suspendida.
Las dos subunidades están normalmente separadas y se unen entre sí con un
filamento de ARN mensajero cuando empiezan a funcionar activamente en la
síntesis de proteínas. El ARN mensajero es una molécula lineal de longitud
variable, sobre la cual se unen varios ribosomas, constituyendo un polirribosoma o
polisoma.
Funciones: La función de los ribosomas es la síntesis de proteínas. Este es el
proceso mediante el cual el mensaje contenido en el ADN nuclear, que ha sido
previamente transcrito en un ARN mensajero, es traducido en el citoplasma,
juntamente con los ribosomas y los ARN de transferencia que transportan a los
aminoácidos, para formar las proteínas celulares y de secreción.
Las proteínas celulares se sintetizan en diferentes lugares según su destino final:

Las proteínas enzimáticas del lisosoma y las proteínas de secreción, como ya se ha citado, son
construidas sobre polisomas adheridos a membranas del retículo endoplásmico granular.

Las proteínas de uso de la misma célula y que no quedan encerradas en una vacuola son
sintetizadas en polisomas libres en el citoplasma. En realidad, los ribosomas y polisomas no se
encuentran suspendidos o flotando en la matriz citoplasmática, sino que se hallan sujetos en la
trama del sistema microtrabecular.
UNAM, CCH. Plantel Oriente.Área de Ciencias Experimentales.BIOLOGÍA I, 1ª UNIDAD.
Teoría celular.
Citoplasma (Hialioplasma):
Característica: Es un gel casi líquido, que durante mucho tiempo fue considerado
como una matriz sin estructura; sin embrago, estudios más recientes han revelado
que posee un sistema de fibras que constituyen un citoesqueleto, en el cual están
suspendidos los organelos y las formaciones intracelulares identificables
microscópicamente.
La matriz citoplasmática está compuesta por agua, iones inorgánicos y moléculas
orgánicas pequeñas, macromoléculas y enzimas solubles, y las proteínas que
constituyen el citoesqueleto.
Funciones: En el hialoplasma se realizan, entre otras, las reacciones bioquímicas
de la glucólisis y las fermentaciones, y la activación de los aminoácidos para la
síntesis de proteínas. En cuanto a su papel estructural, en algunas células se
observa que la capa más externa del hialoplasma es más rígida o gelificada;
recibe el nombre de ectoplasma y, en general, carece de organelos. Esta zona
posee la propiedad de presentar cambios reversibles gel  sol. Estas
transformaciones parecen estar ligadas a ciertos movimientos citoplasmáticos
como, por ejemplo, la ciclosis en muchas células vegetales, o la emisión de
pseudópodos características de la locomoción ameboide.
Núcleo:
Características: El núcleo es el organelo más sobresaliente de la célula eucarionte
animal y vegetal. Puede presentar formas regulares o irregulares. Su tamaño es
variable, pero en general está relacionado con el tamaño de la célula.
El número de núcleos por célula también es variable: es uno en la mayoría de las
células; pueden ser dos, como en algunos hepatocitos, o muchos, como en los
osteoclastos y las fibras musculares estriadas.
UNAM, CCH. Plantel Oriente.Área de Ciencias Experimentales.BIOLOGÍA I, 1ª UNIDAD.
Teoría celular.
El núcleo puede presentar en la célula diferentes localizaciones, pero en general
su posición es fija y característica para una célula dada.
El núcleo presenta una organización típica durante la interfase del ciclo vital de la
célula. En esta etapa está constituido por:

Una envoltura nuclear, que lo limita y separa del citoplasma;

Jugo nuclear, carioplasma o nucleoplasma, un coloide en el cual se hallan suspendidos:

La cromatina, donde se halla el material genético o hereditario;

Y el o los nucleolos, lugar de armado de los ribosomas citoplasmáticos.
Cuando la célula entra en división, el núcleo pierde esta organización; la envoltura
nuclear se fragmenta, con lo cual no hay barrera que impida el contacto entre el
hialoplasma y el nucleoplasma; el nucleolo desaparece, y la cromatina se
condensa y forma los cuerpos compactos denominados cromosomas.
Funciones: Debido al hecho de que contienen la cromatina, el núcleo resulta el
depósito de prácticamente toda la información genética de la célula, y por los tanto
es el centro de control de la actividad celular.
3. ¿Qué factores influyen en la forma y tamaño celular? ¿cómo influye cada
uno de ellos?
Existen células de diferentes formas, por ejemplo: estrelladas (neuronas), con
forma de esfera o bastones (bacterias), disco bicóncavas (eritrocito), etc. Pero
mantienen su forma dependiendo de donde se encuentren dentro del organismo y
la función que desempeñen.
Hay células de formas y tamaños muy variados. Algunas de las células
bacterianas más pequeñas tienen forma cilíndrica de menos de una micra (1 micra
es igual a una millonésima de metro). En el extremo opuesto se encuentran las
células nerviosas, corpúsculos de forma compleja con numerosas prolongaciones
delgadas que pueden alcanzar varios metros de longitud (las del cuello de la jirafa
constituyen un ejemplo espectacular). Casi todas las células vegetales tienen
UNAM, CCH. Plantel Oriente.Área de Ciencias Experimentales.BIOLOGÍA I, 1ª UNIDAD.
Teoría celular.
entre 20 y 30 micras de longitud, forma poligonal y pared celular rígida. Las células
de los tejidos animales suelen ser compactas, entre 10 y 20 micras de diámetro y
con una membrana superficial deformable y casi siempre muy plegada.
Sin embargo, la forma celular también varía por otros factores:
Tensión Superficial: Las moléculas que se encuentran en la superficie de un
líquido son atraídas hacia el seno del mismo por las moléculas interiores. La
fuerza resultante que actúa en un plano tangente a la superficie, por unidad de
longitud, se denomina tensión superficial.
La tendencia de un líquido a introducirse dentro de poros diminutos y pequeñas
aberturas recibe el nombre de capilaridad. La capilaridad se explica tomando en
cuenta la cohesión de las moléculas y su adhesión con otras clases de moléculas.
El agua es el principal componente inorgánico de los seres vivos y constituye
aproximadamente desde un 60 hasta un 95% de la materia global de los mismos.
Esto la hace imprescindible para la vida en el Planeta Azul. Y tiene unas
características físicas y químicas únicas que la hacen aún más preciada.
También podemos observar que el agua tiene elevada tensión superficial. La
tensión superficial de un líquido es la resistencia que opone a la penetración de
cuerpos en él. El agua tiene máxima tensión superficial de entre los líquidos.
Acción Mecánica: Es la presión mecánica que ejercen las células próximas, en un
espacio limitado y con gran número de células, estas se comprimen entre sí,
modificando su forma.
Viscosidad del Protoplasma: Influyen en este parámetro las sales disueltas y las
sustancias contaminantes.
PROTOPLASMA: Disolución acuosa de azúcares, proteínas, grasas y sales minerales que
constituyen el contenido de las células.
VISCOSIDAD: pegajoso.
UNAM, CCH. Plantel Oriente.Área de Ciencias Experimentales.BIOLOGÍA I, 1ª UNIDAD.
Teoría celular.
La célula viva ya no es más el protoplasma que fluctúa entre sol y gel. Hemos de
pensar en el interior celular como un medio de elevada viscosidad, en el que el
movimiento de las moléculas se halla fuertemente restringido, en el que el agua
contribuye a la ordenación del complejo entramado microtubular al que quedan
asociados orgánulos, membranas y macromoléculas "solubles".
Rigidez de la membrana Plasmática: La membrana plasmática como delimitante
externo de la célula, es la responsable de la forma celular, dependiendo de su
rigidez es la forma que va adoptando la célula, ya que frente a factores externos
permitirá o no, un cambio en la forma celular.
La Pared Celular: Como es el caso de la célula vegetal, la rigidez de la pared
celular, le otorga una forma geométrica a la misma, ya que esta al no tener
flexibilidad, obliga a la membrana plasmática a adoptar su forma regular.
El tamaño celular varía según el organismo al cual corresponda la célula, por
ejemplo organismos superiores pluricelulares, como linfocitos, eritrocitos, células
musculares o nerviosas, con independencia del tamaño o de que sea una entidad
autónoma o una parte de un organismo, todas las células tienen ciertos elementos
estructurales comunes. Todas están encerradas por algún tipo de envuelta externa
semipermeable que protege un interior fluido rico en agua, llamado citoplasma, y
todas contienen material genético en forma de ADN (ácido desoxirribonucleico).
Complete el siguiente cuadro comparativo entre células procariontes y
eucariontes.
UNAM, CCH. Plantel Oriente.Área de Ciencias Experimentales.BIOLOGÍA I, 1ª UNIDAD.
Teoría celular.
CÉLULA EUCARIONTE
CÉLULA PROCARIONTE
1. Tamaño
Entre 0.5 y 5 µm de diámetro.
CÉLULA ANIMAL
CÉLULA VEGETAL
Entre 5.0 µm y hasta 75 mm. (Como es Entre 10 µm y 100 µm.
el caso del óvulo de avestruz)
2. Envoltura No posee envoltura nuclear, el ADN se Posee una envoltura nuclear definida Posee envoltura nuclear definida, al
Nuclear
encuentra disperso en el citoplasma.
que contiene el DNA. Esta membrana igual que la célula eucarionte animal.
tiene muchos poros para dejar entrar o
salir cosas.
3. Nucleolos
No posee nucleolos.
Posee nucleolo más denso, para la Algunas veces posee más de uno.
síntesis de subunidades de ribosomas.
4.
El ADN se organiza en un solo Posee más de 1 cromosomas, en Posee más de 1 cromosomas, en
Cromosomas cromosoma.
células
de
animales
superiores
se células vegetales se presenta en
presenta en pares y su número depende pares y su número es fijo para cada
de la especie a cual corresponda.
UNAM, CCH. Plantel Oriente.Área de Ciencias Experimentales.BIOLOGÍA I, 1ª UNIDAD.
especie.
Teoría celular.
CÉLULA EUCARIONTE
CÉLULA PROCARIONTE
5.
CÉLULA ANIMAL
Pared Posee una pared celular rígida, protege No posee una pared celular.
Celular
frente
a
osmótico.
daños
e
hinchamiento
Está
constituida
CÉLULA VEGETAL
Posee
una
compuesta
por
pared
de
celular
celulosa,
rígida
lo
que
determina las formas geométricas
polisacáridos. Se encuentra por dentro
que
de la cápsula o vaina y por fuera de la
vegetales,
membrana plasmática, y también es
observado en las células de la
segregada por la misma célula
cubierta de las cebollas.
6.
-Ribosomas (partículas formadas por -Aparato de Golgi
-Aparato de Golgi
Organoides
proteínas
-Vacuolas grandes
y
ácidos
sintetizan proteínas).
nucleicos
que -Vacuolas pequeñas
encontramos
como
-Ribosomas
-Ribosomas
-Lisosomas
-Lisosomas
-Los Retículos endoplasmáticos liso y -Retículo
el
los
rugoso
-Mitocondrias
-Mitocondrias
-Centríolos
-Cloroplastos
tejidos
hexagonal
endoplasmáticos
rugoso
UNAM, CCH. Plantel Oriente.Área de Ciencias Experimentales.BIOLOGÍA I, 1ª UNIDAD.
en
liso
y
Teoría celular.
CÉLULA EUCARIONTE
CÉLULA PROCARIONTE
una
membrana
CÉLULA ANIMAL
7.
Posee
Membrana
formada por una doble capa de lípidos y permite
Plasmática
de
proteínas,
la
cual
plasmática, Posee
tiene
una
membrana
entrada
unos componentes
o
mediante
CÉLULA VEGETAL
plasmática, Posee una membrana plasmática. Su
salida
de forma se adapta a la rigidez de la
multitud
de pared celular.
pliegues hacia el interior denominados transportadores específicos. Así mismo
mesosomas.
Rodea
manteniendo
la
a
la
célula tiene muchos receptores de señales.
individualidad.
Hay No está relacionada con la producción
muchos transportadores para meter o de energía.
sacar
moléculas.
Además
tiene
la
función de producir energía creando un
gradiente de concentración para que
cuando se deshaga usar esa energía.
Para crear este gradiente se usa
energía procedente de nutrientes o del
sol.
UNAM, CCH. Plantel Oriente.Área de Ciencias Experimentales.BIOLOGÍA I, 1ª UNIDAD.
Teoría celular.
4. ¿Cuál es la importancia de la teoría celular?
El desarrollo de la teoría celular es una ilustración de la interacción entre hechos e
ideas. Los avances técnicos han permitido ir descifrando poco a poco los más
intrincados problemas biológicos, hasta llegar a facilitar en nuestros días una
visión precisa y de gran complejidad de los organismos vivos y en particular de la
célula.
Si retrocedemos al menos unos trescientos años, Robert Hooke, al describir las
"células", y Antonie van Leeuwenhoek, al observar por vez primera los
microorganismos y otras formas celulares, con sus microscopios rudimentarios,
ponían al alcance del hombre valiosos medios de observación que al ser
perfeccionados mas tarde, servirían para dar pasos de gigantes al asentamiento
de los conocimientos de la célula
Durante el período inicial de desarrollo de la teoría celular, los científicos
acumularon hechos relativos a las células, con la ayuda de microscopios simples.
El período medio de desarrollo de la teoría celular comprendió no solo la
observación, sino también los intentos de los científicos para llegar a
generalizaciones a partir de sus descubrimientos.
En 1839 ocurrieron dos hechos sobresalientes en conexión con este tema:
Purkinje, en Bohemia, acuña el término "protoplasma" para significar el contenido
vivo de la célula, y los alemanes Schleiden y Schwann presentan la idea de que
todos los seres vivos están formados por células, provocando así el nacimiento de
lo que mas tarde habría de llamarse "teoría celular", en la que se define un hecho
trascendental: la célula es la unidad fundamental no solo por lo que respecta a su
función, sino también en cuanto a su estructura.
UNAM, CCH. Plantel Oriente.Área de Ciencias Experimentales.BIOLOGÍA I, 1ª UNIDAD.
Teoría celular.
Este período terminó con el enunciado de la teoría celular cuyos postulados
pueden resumirse:

Todos los animales y vegetales están constituidos por células.

La célula es la unidad básica de estructura y función en un organismo multicelular.

La división celular da origen a la continuidad genética entre células progenitoras y sus
descendientes.

La vida del organismo depende del funcionamiento y control de todas sus células.
La teoría celular, que inicialmente se acogió con bastantes reservas, produjo un
marco apropiado para el progreso posterior de la biología celular, al presentar a
los biólogos algo uniforme y coherente en donde fundamentar sus estudios de la
célula aislados y comparativos. Ofreció una esperanzadora seguridad de que las
variaciones sugeridas por la teoría de la evolución, tenían un tronco común y que
este estaba constituido por la organización celular de los sistemas vivientes.
Desde entonces la teoría celular se ha ido desarrollando y expandiendo, dando un
explicación lógica sobre como pueden haber evolucionado los organismos
multicelulares a partir de formas unicelulares.
Los procesos de fermentación, respiración, fotosíntesis y duplicación de
cromosomas son actividades que tienen lugar en el interior de las células, estos se
llevan a cabo tanto en células de organismos unicelulares o multicelulares. Con la
teoría de la evolución y la teoría genética, la teoría celular forma parte de la
estructura conceptual de todas las Ciencias Biológicas.
Esta idea revolucionaria constituye uno de los pilares fundamentales sobre los que
se apoya la Biología moderna, y sirvió para desplazar en gran medida el centro de
gravedad de las investigaciones hacia el terreno microscópico. Pronto se
descubrieron el núcleo, los cromosomas, el aparato de Golgi y otros orgánulos
celulares, y la introducción en Biología del microscopio electrónico reveló
innumerables detalles de las ultraestructura celular, poniendo aún en más de
manifiesto esa unidad existente entre todos los seres vivos, a pesar de la aparente
diversidad. Los hallazgos conseguidos por este procedimiento, junto con los
UNAM, CCH. Plantel Oriente.Área de Ciencias Experimentales.BIOLOGÍA I, 1ª UNIDAD.
Teoría celular.
descubrimientos iniciados a finales del siglo XIX sobre la relación existente entre la
estructura y la función de los orgánulos celulares, resultaron en parte de la unión
de técnicas histológicas, citológicas y químicas, cuyo resultado fue la aparición de
la histoquímica y de la citoquímica. Al descubrirse que la base material de la
herencia son los cromosomas y que la molécula portadora de la información que
se transmite de una generación a otra es el ADN, se establecieron las bases de la
citogenética. En la actualidad son tantos los campos de la Biología que han
enriquecido a la citología, y han sido tan importantes y transcendentales las
repercusiones de estos conocimientos a todos los niveles de organización, que la
célula ha pasado a ser el centro de la atención de muchos investigadores y a
constituir por sí sóla un capítulo importante entre las ciencias biológicas, al que por
mérito propio se llama "Biología celular".
5. Bibliografía
Enciclopedia Encarta 2000.
Enciclopedia Salvat del Estudiante.
Enciclopedia Multimedia Planeta DeAgostini.
¿Qué quieres saber de la ciencia? Editorial Océano.
Actualizaciones en Biología. Castro R. Andel M. Y Rivolta G. 1983.
De Internet:
http://www.monografías.com
http://www.lafacu.com
UNAM, CCH. Plantel Oriente.Área de Ciencias Experimentales.BIOLOGÍA I, 1ª UNIDAD.
Descargar