Indice SISTEMAS DE CLASIFICACION DE SUELOS CLASIFICACION DE SUELOS USCS PROPIEDADES DE LOS SUELOS APTITUD RELATIVA PARA DIVERSAS APLICACIONES CLASIFICACION DE SUELOS AASHTO EJEMPLOS DE APLICACIONES EJEMPLO Indice 1 CLASIFICACION DE SUELOS Objetivos : Establecer un lenguaje común y relacionar propiedades con determinados grupos de suelos. Se considera el suelo como material. Los principales sistemas de clasificación son : - Sistema Unificado de Clasificación de Suelos USCS - American Association of State Highway Officials AASTHO Sistemas de Clasificación de Suelos - Sistema Británico ( BS) - FAA Criterios : Granulometría, Límites de Atterberg y Contenido de materia orgánica. CLASIFICACION DE SUELOS USCS % que pasa # nº 200 > 50% SI NO Suelo Fino Obtener LL - IP Carta de Plasticidad SISTEMA USCS : Para partículas de tamaño menor a 3” y obras civiles en general. Nomenclatura : G Grava Gravel S Arena Sand M Limo Silty - Mo C Arcilla Clay O Orgánico Organic Suelo Grueso (SG) SI SI CL - CH CL - ML SI NO ML - OL MH - OH NO Arena Grava % nº 200 < 5% % #nº200 >12% % nº 200 < 5% %nº200>12% ¿Punto sobre línea A? %SG que pasa # nº 4 > 50% SI NO Obtener IP - LL Simbolo Doble Obtener Cu - Cc Obtener IP - LL SC -SM SC - SW SM - SW SC - SP SM - SP SW - SP GC - GM NO Simbolo Doble Obtener Cu - Cc GC - GW GW - GP GM - GW GC - GP GM - GP 2 LIMITES DE ATTERBERG Carta de Plasticidad Lí U ne a Indice de plasticidad 70 60 50 CH L ín ea A CL 40 30 MH o OH 20 10 ML o OL 7 4 0 10 20 30 40 50 60 70 80 90 100 110 120 Límite Líquido Línea A = 0,73 ( LL - 20 ) Línea U = 0,90 ( LL - 8 ) 3 Den om in ac ion es tip icas de los de los grupos de suelos. G ravas bien graduad as ,m ez clas de grava y aren as con poc os finos o sin ellos . G ravas m al g rad uad as ,m ez clas de aren a y grava con poc os finos o sin ellos . G ravas lim os as m al graduad as m ez clas de g ravas ,aren a y lim o. G ravas arcillosas , m ez clas m al graduad as de gravas ,aren a y arcilla. A ren as bien graduad as , aren as con grava con poc os finos o sin ellos. A ren as m al g rad uad as , aren as con grava con poc os finos o sin ellos. A ren as lim os as ,m ez clas de aren a y lim o m al grad u ad as . A ren as arcillosas ,m ez clas de aren a y arcilla m al graduad as . Lim os in org ánicos y arenas m u y finas polvo de roca, arenas finas arcillosas o lim os as con lig era plas tic id ad A rcilla s in orgánicas de baja a m ed ia plasticidad , arcillas con grava, arcillas aren os as , arcillas lim os as , arc illas m ag ras Lim os orgánicos y arcillas lim os as orgánicas de baja plas tic id ad . Lim os inorg ánicos, su elos finos aren os os o lim os os con m ica o diatom eas, lim os elá sticos A rcillas inorgánicas de elevada plas tic id ad , arcillas gras as A rcillas orgánicas de plas ticidad m ed ia a alta Tu rba y otros suelos inorgánicos G W PROP IE DADE S MAS IM P ORTA NTES Perm eab ilid ad Resistencia Com presibilid ad Facilidad de en es tado al corte en es tado en es tado tratam ien to com pac tado com p acto y com pac to en ob ra. saturad o excelente y saturado. Perm eable Excelen te Despres iable Excelente G P Muy perm eable B uen a Despres iable Buen a G M B uen a Despres iable Buen a G S Sem iperm eable a im perm eable. Im perm eable B uen a a reg ular Muy baja Buen a S W Perm eable Excelen te Desprec iable Excelen te Sim bolo del grupo S P Perm eable B uen a Muy baja Reg ular S M S em ip erm eable a im perm eable. Im perm eable Buen a Baja Reg ular B uen a a reg ular Baja Buen a S em ip erm eable a im perm eable. Reg ular Med ia Reg ular Im perm eable Reg ular Med ia S em ip erm eable a im perm eable. Sem iperm eable a im perm eable. Defic ien te Med ia Buen a a Reg ular Reg ular Reg ular a defic ien te elevada Deficiente CH Im perm eable Defic ien te elevada Deficiente OH Im perm eable Defic ien te elevada Deficiente Pt - - - SC ML CL OL MH - 4 CLASIFICACION DE SUELOS Sistema AASHTO SISTEMA AASHTO : Se basa en determinaciones de laboratorio de Granulometría, Límite, Líquido e Indice de Plasticidad. Es un método realizado principalmente para Obras Viales. Restricción para los finos: %malla nº 200 > 35% => Fino La evaluación se complementa mediante el IG : Ed.1973 IG = 0,2 a + 0,005 ac + 0,01 bd IG máx = 20 a = % que pasa nº 200 ( 35 - 75 ) b = % que pasa nº 200 ( 15 - 55 ) c = % LL ( 40 - 60 ) d = % IP ( 10 - 30 ) M áximo 20 20 Mínimo 40 40 0 0 0 0 ASTM D 3282 - 73 (78) Ed.1978 IG = ( F - 35 ) ( 0,2 + 0,005 ( LL - 40)) + 0,01 ( F - 15 ) ( IP - 10 ) IG puede ser > 20 CLASIFICACION DE SUELOS Sistema AASHTO Consideraciones : • El IG se informa en números enteros y si es negativo se hace igual a 0. • Permite determinar la calidad relativa de suelos de terraplenes, subrasantes, subbases y bases. • Se clasifica al primer suelo que cumpla las condiciones de izquierda a derecha en la tabla. • El valor del IG debe ir siempre en paréntesis después del símbolo de grupo. • Cuando el suelo es NP o el LL no puede ser determinado, el IG es cero. • Si un suelo es altamente orgánico, se debe clasificar como A- 8 por inspección visual y diferencia en humedades. Nomenclatura : Suelos con 35% o menos de finos: A - 1 => Gravas y Arenas A - 2 => Gravas limosas o arcillosas Arenas limosas o arcillosas A - 3 => Arenas finas Suelos con más de 35% de finos: AAAA- 4 =>Suelos limosos 5 => Suelos limosos 6 => Suelos arcillosos 7 => Suelos arcillosos 5 CLASIFICACION DE SUELOS Sistema AASHTO Clasif. General Grupos Subgrupos % que pasa tamiz : Nº 10 Nº 40 Nº 200 Caract. Bajo Nº 40 LL IP IG Tipo de material Terreno fundación Limos y Arcillas ( 35% pasa malla nº 200 ) Materiales Granulares ( 35% o menos pasa la malla nº 200) A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-7-5/A-7-6 50 máx 30 máx 50 máx 15 máx 25 máx 51 mín 10 máx 35 máx 35 máx 35 máx 35 máx 36 mín 40 máx 41 mín 40 máx 41 mín 6 máx 6 máx NP 10 máx 10 máx 11 mín 11 mín 0 0 0 0 0 4 máx 4 máx Gravas y Arenas Arena fina Gravas y arenas limosas y arcillosas Excelente Excelente Excelente a bueno 36 mín 36 mín 40 máx 41 mín 40 máx 41 mín 10 máx 10 máx 11 mín 11 mín 8 máx 12 máx 16 máx 20 máx Suelos Limosos Suelos arcillosos Regular a malo El índice de Plasticidad del subgrupo A - 7 - 5 es menor o igual a ( LL - 30 ) El índice de Plasticidad del subgrupo A - 7 - 6 es mayor a ( LL - 30 ) Ejemplo de aplicaciones SELECCIÓN DEL TIPO DE MÁQUINA EN FUNCIÓN DEL TIPO DE SUELO SEGÚN LA CLASIFICACIÓN AASHTO ( Dujisin y Rutland, 1974 ) A-1-a A-1-b Rodillo Liso Rodillo Neumático Rodillo Pata de Cabra Pisón impacto Rodillo vibratorio 1 2 5 2 1 2 2 5 2 1 A-3 2 2 5 1 1 A-2-4 A-2-5 A-2-6 A-2-7 1 1 4 2 1 1 1 4 2 1 1 1 3 2 3 Clasificación del comportamiento del equipo : 2 1 2 4 4 A-4 A-5 A-6 A-7 2 2 2 4 3 3 2 1 4 3 3 2 1 4 5 4 3 1 4 5 1 Excelente 2 Bueno 3 Regular 4 Deficiente 5 Inadecuado 6 Ejemplo : Clasificación de Suelos Clasifique los siguientes suelos según los métodos USCS y AASHTO Tamiz % que pasa A 100 82 72 64 52 47 29 27 37 12 2” 1” 3/4 ” 1/2 ” nº4 n º 10 n º 40 n º 200 LL % LP % Solución : A B C 100 97 85 67 57 22 100 91 86 58 22 35 23 D 100 80 62 50 32 14 2 1 NP NP E F 100 98 92 88 60 13 100 98 92 52 26 10 28 22 % malla 200< 50% => Granular % malla 4 < 50% => Grava IP = 25 LL = 37 => CL GC ( CL ) A - 2 - 6( ) D GW A - 1 -a (0) B % malla 200 > 50% => Fino IP = 35 LL = 57 => CH CH A - 7 - 6 (9) E CH A - 7 - 6( ) C % malla 200 > 50% => Granular % malla 4 > 50% => Arena IP = 12 LL = 35 => SC ( CL) SC ( CL ) A - 2 - 6( ) F SP -SM(ML) A - 1 -b (0) Distribución de esfuerzos en una masa de suelos LEY DE TERZAGHI FENOMENOS PRODUCIDOS POR EL ESFUERZO DISTRIBUCIÓN DE PRESIONES BOUSSINESQ EJEMPLO Indice 7 ESFUERZOS EN UNA MASA DE SUELOS ( Ley de Terzaghi ) Los Esfuerzos en una masa de suelo son tensiones producidas por el propio peso del terreno y por las cargas exteriores aplicadas al mismo. La masa de suelo recibe cargas en sentido vertical y horizontal Se define : - Caso Geostático - Caso no geostático ( Boussinesq ) Consideraciones para el caso Geostático - Superficie infinita horizontal - Naturaleza del suelo no variable horizontalmente - No existencia de sobrecarga de dimensiones finitas ESFUERZOS EN UNA MASA DE SUELOS N.T. Suelo Homogéneo : v = ·z Z N.T. Suelo Estratificado : Z1 v = i ·z i Z2 Z3 1 2 3 Suelo con densidad variable : v = dz Ko = ‘ v’ N.T. Z v H = K * v 8 LEY DE TERZAGHI u Ni N S s = Presión neutra o intersticial = Fuerza normal intergranular = Fuerza normal total = Elemento de área del suelo = Área de contacto entre partículas N Equilibrio : S N = u ( S - s ) + Ni i = - u ( 1 - s / S ) Ni donde i = presión intergranular = presión total s / S = 0 => i = - u ’ = - u ó u = ’ + u Las cargas aplicadas son resistidas en conjunto por el suelo y el agua. Ni u s LEY DE TERZAGHI Suelo Sumergido : v = v ‘ + u v a nivel x - x => u a nivel x - x => v = w (hw - z ) + sat · z u = hw ·w v‘ a nivel x- x => v‘ = - u = z( sat - w) Se define b = Peso específico Sumergido b = sat - w = buoyante v‘ = b·z Hw x x H z Basado en el Principio de Arquímides 9 FENOMENOS GEOTECNICOS POR EFECTO DE ESFUERZOS EN LA MASA SIFONAMIENTO : Aumento de la presión intersticial por modificación del gradiente hidráulico hasta su valor crítico, en que la tensión efectiva es cercana al valor nulo. NF original h NF final A mayor modificación del gradiente hidráulico, habrá mayor presión intersticial. Este es el fenómeno que provoca las arenas movedizas. LICUEFACCIÓN : Es un aumento del grado de saturación del suelo, por reacomodación de partículas debido a sismos, en suelos arenosos, uniformes, finos, sueltos, saturados y sujetos a cargas. SOLUCIONES : Compactar Estabilizar Extraer el agua No construir u = densidad. agua ·h u = Gradiente Hidráulico alto v = v‘ = 0 DISTRIBUCIÓN DE PRESIONES Ejemplo 0m Densidad natural = 1,6 T/m3 Ko = 0,5 4m NF 5m Densidad natural = 1,7 gr/cm3 W sat = 23,5 % W = 5% Ko = 0,6 Dens. seca = 1,75 kg/dm3 W sat 0 20% Ko = 0,7 W = 10% 8m 13 m Para la situación de la figura, dibuje diagramas de tensión: • Vertical • Horizontal • Neutras 10 DISTRIBUCIÓN DE PRESIONES 0,00 - 4,00 m v = 1,6 * 4 u = 0 T/m2 v’ = 6,4 + 0 h’ = 6,4·0,5 h = 3,2 + 0 5,00 - 8,00 m v = 8,10 + ( t/(1+W))·3= 14,10 u =3 v’ = 11,10 T/m2 h’ = 11,10 · 0,6 = 6,66 T/m2 h = 6,66 + 3 = 9,66 T/m2 = 6,4 T/m2 = 6,4 T/m2 = 3,2 T/m 2 = 3,2 T/m2 4,00 - 5,00 m v = 6,4 + 1,7 ·1 = 8,10 T/m 2 u = 0 v’ = 8,10 ·0 = 8,10 T/m2 h’ = 8,10 · 0,6 = 4,86 T/m2 h = 4,86 T/m2 0m 4m 5m 8m 13 m T.Vertical P.Intersticial 6,40 8,00 - 13,00 m v = 14,10+( d (1+w sat))·5=24,6 u = 3 + 5·1 = 8 T/m 2 v’ = 24,6 - 8 = 16,6 T/m2 h’ = 16,6 · 0,7 = 11,62 T/m 2 h = 11,62 + 8·1 = 19,62 T/m2 T.efectiva vert. 6,40 8,10 8,10 14,10 24,60 3,00 3,20 4,86 11,10 8,00 T.Horizontal 16,60 Hoja de Calculo T.efectiva horiz. 3,20 4,86 6,66 9,66 11,62 19,62 SOBRECARGAS EN UNA MASA DE SUELO ( BOUSSINESQ ) Se refiere a la distribución de tensiones en el suelo debido a las cargas aplicadas en la superficie. La forma de estudiar esta distribución depende de las características del suelo : Estratos Homogéneos : Modelo del Semiespacio Elástico infinito, lineal, isótropo y homogéneo ( Teoría de Boussinesq ). Para estratos Heterogéneos existen varios modelos : - Modelo de capa elástica sobre base rígida - Modelo del semiespacio elástico heterogéneo con variación lineal del Módulo Elástico. - Modelos de Frolich - Sistemas multicapas 11 TEORIA DE BOUSSINESQ La distribución de los esfuerzos depende de : • El espesor y uniformidad de la masa de suelo • Tamaño y forma del área cargada • Propiedades de esfuerzo - deformación del suelo LIMITACIONES : - El suelo es un conjunto de partículas, y la teoría lo analiza como un medio elástico continuo. - El suelo posee condiciones variables : • • • • • Contracción y Expansión por cambios de humedad Cambios de volumen durante la aplicación de cargas Suelo siempre está sujeto a carga y cambios por depositación y variación del contenido de agua Cambios son función del tiempo Condiciones de esfuerzo - deformación son problemas tridimensionales, y se analizan como bidimensionales Supuestos para la aplicación de la Teoría de Boussinesq : • El esfuerzo es proporcional a la deformación • El suelo es homogéneo elástico e isótropo MODELO DE BOUSSINESQ Metodo: Analítico Gráfico Q ZAPATA CIRCULAR : z = qo (1- 1 / (1 + (R/ Z) ² ) 1,5 ) qo = Q / R² ZAPATA RECTANGULAR : R Z z = 3·z ³ / 2 R5 cos =z/R R = ( r ² + z ² ) 0,5 r = ( x²+ y ² )0,5 De los gráficos : A mayor z, menor influencia de los esfuerzos por sobrecarga Los esfuerzos verticales son mayores a los horizontales La carga rectangular de longitud infinita ejerce mayor presión que la uniforme circular a igual profundidad. • • • P z r Tensión en z La tensión vertical bajo cargas se analiza en la esquina 12 SOBRECARGAS SOBRE UNA MASA DE SUELO ( BOUSSINESQ ) Esfuerzos verticales producidos por una carga uniforme sobre una superficie circular. x r z A SOBRECARGAS SOBRE UNA MASA DE SUELO ( BOUSSINESQ ) Esfuerzos bajo una carga uniformemente repartida sobre una superficie circular Esfuerzo vertical Esfuerzo horizontal Esfuerzo vertical 13 SOBRECARGAS SOBRE UNA MASA DE SUELO ( BOUSSINESQ ) Horizontal Vertical Esfuerzos principales bajo una carga rectangular de longitud infinita SOBRECARGAS SOBRE UNA MASA DE SUELO ( BOUSSINESQ ) Ábaco para la determinación de esfuerzos verticales bajo las esquinas de una superficie rectangular con carga uniforme en un material elástico e isótropo. nz mz Presión uniforme z A Para el punto A : v = qs x=f(m,n) Según Newmark, 1942. 14 Ejemplo : Sobrepresiones Ejemplo 1 Se tiene un suelo con densidad 1,7 T/m3 y Ko = 0,5 cargado con qs = 25 T/m2 sobre una superficie circular de 6m de diámetro. Calcular los esfuerzos vertical y horizontal a 3m de profundidad. Sol : v ( T/m2) H ( T/m2 ) iniciales * z = 5,1 Ko * * z = 2,55 Incrementos de Fig. 8.4 Fig. 8.5b 0,64*0,25 = 16,0 0,10*0,50 = 2,50 finales 21,10 T/m2 5,05 T/m2 Ejemplo 2 Dado el esquema de carga representado en la figura, calcular los incrementos de tensión vertical a una profundidad de 3m bajo el punto A A. Caso de carga m n coef. inc.tensión 1,5m I 1,5 2 0,223 1,115 1,5m II 2 0,5 0,135 - 0,675 3m Qs=5t/m2 III 1,5 0,5 0,131 - 0,655 IV 0,5 0,5 0,085 0,425 0,210 T/m2 4,5m A A II A IV A I III Ejemplo : Sobrepresiones Ejemplo 3 Para la situación de la figura, calcular las tensiones efectivas verticales y horizontales, antes y después de colocar la carga producida por la zapata. Suponer que el suelo soporta 1,5 kg/cm2 a 3m de profundidad. Analice o redimencione. Antes de la carga : v’ = 1,75 · 3 = 5,25 T/m2 H = Ko * v’ = 2,625 T/m2 Q = 800 ton d = 6m 3m Dens. seca = 1,75 kg/dm3 Ko = 0,50 Después de la carga : qo = 800 * 4 / * 6 ² = 28,3 T/m2 z = 28,3 ( 1 - 1 / ( 1 + ( 3/3 )²)³/² ) = 18,3 T/m2 ( sólo zapata ) t = suelo + zapata = 5,25 + 18,3 = 23,55 T/m2 t = 2,36 kg/cm2 > 1,5 kg/cm2 => z = 3 = Q/R² * ( 1 - 1 / ( 1+(R/Z)² ) ³/² ) Por tanteo : R z ‘ 5,25 0,841 4,85 0,925 4,70 0,974 => R = 4,70m => d = 9,40m 15 Ejemplo : Sobrepresiones Ejemplo 4 Determine la sobrepresión bajo el centro de la zapata central de la figura , a una profundidad de 5m. Q1 Q2 Q1 = 45 ton/m2 Q2 = 66,67 ton/m2 Q3 = 83,33 ton /m2 Q3 A 4m 3m 3m 3m 4m I Al fraccionar el sistema en figuras elementales, se tiene : B Luego, al sumar y restar superficies : Sup. I II III n m factor 1,70 0,50 0,135 0,90 0,50 - 0,116 0,30 0,40 0,048 1,70 0,30 0,088 0,40 0,30 - 0,077 Qi 45 45 66,67 83,33 83,33 xi 2 2 4 2 2 Identificación en el campo C II G E H F A M III K J L I b total 12,15 La sobrepresión bajo - 10,44 el centro de la zapata 12,80 central, a z = 5m es de 14,67 16,35 T/m2 - 12,83 16,35 T/m2 SIMBOLO Nombres típicos po co fino o si n fi no Grava limp ia Amplia gama de tamaños y cantidades GW apreciables de todos los tamaños intermedios Predominio de un tamaño o un tipo de tamaños Gravas con finos (can tid ad ap reci abl e de fin os ) Aren a limp ia (con p oco s fi no s o sin e llo s) Fracción fina no plástica (para la identificación GP GM GC SW SP Ar enas c on finos ver el grupo CL mas abajo Arenas mal graduadas, arenas con grava con pocos finos o sin ellos SM Arena limosas, mezclas de arena y limo mal graduadas ver el grupo ML mas abajo) Finos plásticos (para la identificación Arenas bien graduadas, arenas con grava con pocos finos o sin ellos con ausencia de algunos tamaños intermedios Finos plásticos (para la identificación Gravas arcillosas, mezclas mal graduadas de grava, arena y arcilla apreciables de todos los tamaños intermedios Predominio de un tamaño o un tipo de tamaños Gravas limosas, mezclas mal graduadas de grava, arena y arcilla ver el grupo CL mas abajo) Amplia gama de tamaños y cantidades Gravas mal graduadas, mezclas de grava y arena con pocos finos o sin ellos ver el grupo ML mas abajo) Finos plásticos (para la identificación Gravas bien graduadas, mezclas de grava y arena con pocos finos o sin ellos con ausencia de algunos tamaños intermedios (cantid ad ap reci abl e de fin os ) Gr av a más de la mitad de la frac ción gruesa es r etenida por el tamiz nº 4 Arena más de la mitad de la fracc ión gr uesa pas a por el tamiz nº 4 Su elos de grano grueso. Mas d e la mitad del materia l es re tenido por el t amiz nº 20 0 Excluyendo las partículas mayores de 3" y basando las fracciones en pesos estimados DEL GRUPO SC Arenas arcillosas, mezclas mal graduadas de arenas y arcillas - La abertura del tamiz n º 200 corresponde aproximadamente al tama ño de la menor part ícula apreciable a simple vista) - Para la clasificació n visual puede suponerse quela abertura del tamiz nº4 equivale a medio cm 16 Información necesaria para la identificación de suelos Criterios de clasificación en el laboratorio Cu = D60/D10 aproximados de grava y arena, tamaño máximo angulosidad estado superficial y dureza de los granos finos; el nombre local o geológico y cualquier otra información o descripción pertinente y el símbolo entre paréntesis. Para los suelos inalterados agréguese información sobre estratificación, compacidad cementación, condiciones de humedad y características de drenaje. Ejemplo Arena limosa con grava ; aproximadamente un 20% de partículas de grava angulosa de 1,5 cms de tamaño máximo; arena gruesa a fina, con partículas redondeadas o subangulosas; alrededor de 15% de finos no plásticos, con baja resistencia en estado seco compacta y mayor de 4 2 Cc = (D30) /(D10*D60) entre 1 y 3 No satisfacen todos los requisitos granulométricos de las GW Limites de Atterberg por debajo de Por encima de la línea " A", la línea "A" o IP menor de 4 con Ip entre 4 y 7: casos Limites Atterberg por encima de la linea "A"" con Ip mayor de 7 limites que requieren el uso de símbolos dobles Cu = D60/D10 mayor de 6 2 entre 1 y 3 Cc = (D30) /(D10*D60) No satisfacen todos los requisitos granulométricos de las SW Limites de Atterberg por debajo de Por encima de la línea "A" la línea "A" o IP menor de 5 con Ip entre 4 y 7: casos Limites Atterberg por debajo limites que requieren el la linea "A"" con Ip mayor de 7 empleo de símbolos dobles menor de 50 Limos y arcillas limite líquido Métodos de identificación para la fracción que pasa por el tamiz Nº 40 Resistencia Dilatancia Tenacidad en estado (reacción (consistencia seco (a la a la cerca del límite disgregación agitación) plástico) Nula a Rápida Nula ligera ML a lenta Media Nula a Media CL a alta Ligera muy lenta Lenta Ligera OL ligera Lenta Ligera MH a media a nula a media Alta a Nula Alta CH muy alta Media Nula a Ligera OH a alta muy lenta a media mayor de 50 a media Limos y arcillas limite líquido Suelos de grano fin o. Mas d e la mitad d el material pasa por el tamiz nº 200 húmeda in situ; arena aluvial; (SM) Determínense los porcentajes de grav a y arena a par tir de la curva granulométric a Según el porc entaje de finos (fracc ión que pas a por el tamiz nº 200 los s uelos gruesos s e c lasific an c omo sigue: Menos del 5% G W, GP, SW, SP Mas del 12 % GM, GC, SM, SC 5% al 12% Cas os limites que requieren el empleo de s ímbolos dobles Dese el nombre típico, indíquese los porcentajes Suelos altamente orgánicos Fácilmente identificables por su color, olor, sensación esponjosa y frecuentemente por su textura fibrosa Pt 17 Dese el nombre típico, indíquese el grado y carácter de la plasticidad; la cantidad y el tamaño máximo de las part ículas gruesas; color del suelo húmedo, olor si lo tuviere, nombre local y geológico; cualquier otra información descriptiva pertinente y el símbolo entre paréntesis Para los suelos inalterados agréguese información sobre estructura, estratificación, consistencia tanto en estado inalterado como remoldeado condiciones de humedad y drenaje Ejemplo: Limo arcilloso, marrón; ligeramente plástico porcentaje reducido de arena fina, numerosos agujeros verticales de raíces; firme y seco in situ; loes; (ML) Línea A = 0,73 ( LL - 20 ) Línea U = 0,90 ( LL - 8 ) L U ín ea Indice de plasticidad 70 60 50 CH ne Lí aA CL 40 30 MH o OH 20 10 ML o OL 7 4 0 10 20 30 40 50 60 70 80 90 100 110 120 Límite Líquido Utilice la curva granulométrica para identificar las fracciones de suelo indicadas en la c olumna de identificación en el campo 18 19 20