Pump selection according "Warman Slurry Pumping Handbook" [1] 1 Input data Solids flow rate ms = 65 t/h 2 Specific gravity of solids Ss = 2.65 - 3 Density of liquid rL = 1000 4 Average particle size d50 = 211 kg/m³ mm 5 Solids concentration Cw 30 % 6 Static discharge head Zd = 20 m 7 Suction head Zs = 1 m 8 Pipeline length L= 100 m 9 Suction equiv. lenght 3 m 5 3.35 m 11 12 Temperature t= 10 °C 13 Pressure P= 3 bar 14 Pipe material - Pipe nominal diameter Mat = dn = CS 15 6 in 16 Pipe schedule sch = STD - 17 Pipe absolute rugosity Rabs = 0.1 mm 18 Pump discharge diameter dp = 100 mm 19 Loss at pipe discharge Kexit = 1 20 Loss at entrance Height above sea level transmission efficiency Kentr = HASL = htrans = 0.5 2700 0.95 21 22 Carbon steel pipe selected dn = sch = di = Leq_suc = Number of long rad. 90 elb. N = Lelbow = Elbow equiv. length 10 6 in STD Pipe_Imp_CS_Dint_dn_sch di = 154.1 mm di = 0.154 m m.a.s.l. - (See sheet "Belt") Limiting settlig velocity d50 = 211 Cv = 13.9 d= SS = 6 2.65 d50 >= 200 mm 5% <= Cv <= 40% Pipe area A= di = A= VL=Slurry_Limit_Deposition_Velocity_JRI_Imp_d50_Cv_dn_Ss (pi()/4) * di^2 0.154 0.0186 VL = m m² 2.32 OK. vp > vL Pipe equivalent length Pipe lenght Slurry velocity vP = VP / A VP = 0.049 m³/s A= vP = 0.0186 m² 2.6 m/s L= Elbow equivalent lenght Lelbow = 3.35 Reynolds N-Elbows equivalent lenght LN-lbow = N *Lelbow N= 5 Lelbow = 3.35 LN-elbows = 16.75 v*d/n Re = v= d= n= 2.62 0.154 m/s m 1.7E-06 m/s² Re = 244,021 100 Number of long rad. 90 elb. N= 5 Total eqivalent length L + LN-elbows Leq = Relative rugosity L= 100 Rabs = 0.1 mm LN-elbows = 16.75 di = Rrel = 154.08 0.0006 mm - Leq = 116.75 Kinematic pressure hv = v= hv = v^2 / (2*g) 2.62 m/s 0.351 mpc Correction factor HR to express the head Pump selection in water column (pump selection) Select a pump with following results QP = 48.9 HR factor Validity Ss : Hw = 28.2 SP = 1.23 1-6 Cw : 1- 70% In this case a Warman 6/4 D-AH heavy d50 : 20 - 10000 duty ruber lined pump is selected with Ss = 2.7 - Cw = 30 % mm d50 = HR = HR = 211 Slurry_HR_factor_Ss_Cw_d50 0.89 a 5 vane closed rubber impeller at a pump speed of N= 1130 See sheet "Pump From figure 3.4, the efficiency on water can be read as hw = 66 Efficiency on pulp Ep = Ew * Er EW = 0.66 HR = WR = Ep = Equivalent water column Hw = Hp = HR = Hw = Hp / HR 25.1 0.89 mpc 28.2 mwc equiv. 0.891 0.588 Required NPSH NPSHr = 2.8 Power P= Qp = 48.9 (1/1.02)*Qp*Sp* Hp /( Ep * htrans) Sp = 1.23 Hp = 25.1 Ep = htrans = 58.78 0.95 P= 26.51 Selected pump power From sheet Motors P= 30 Resume of pump data Data for pump enquiry Pulp temperature Pulp flow rate Total dynamic head Solids density Liquid density Pulp weight concentration t= QP = TDH = rs = 10 48.9 25.1 2650 °C l/s mpc rL = Cw = 1000 30 kg/m3 % mm kg/m3 Ss = 2.65 d50 = FVF = NPSHa = 211 0 6.63 Calculated data Pulp Spec. Gravity Sp = 1.23 - Pulp volume concentration Cv = 13.9 % Pulp kinematic viscosity Height correction value Efficincy correction value Equivalent water height np = HR = HE = Hw = 1.7E-06 0.89 0.89 28.2 Data from selected pump Pump type Motor velocity Efficiency on water N= Ew = AH 6/4 1130 0.66 Specific gravity of solids Average particle size Froth volume factor Available net press. suc. head m.p.c. m/s² mwc rpm - Efficiency on pulp Power requirement Motor power Required net press. suc. head Ep = P= P= NPSHr = 0.588 26.51 30 kW kW m.p.c. y Pumping Handbook" [1] Slurry parameters Pulp density rP Water absolute viscosity 100 Cw 100 Cw rs rL rp = mw = 100 / (Cw/rs +(100-Cw)/rL ) Cw = 30 rs = 2.65 t= mw = % t/m3 rL = 1 t/m rp = Sp 1.23 t/m3 rp = 1230 kg/m³ Pulp viscosity 3 Ratio of absolute viscosities (Thomas) mp / mf = (1+2.5*Cv 10.05*Cv^2+0.00273*Exp(16.6*Cv)) Cv = mp / mf = mp = Volumetric concentration Cw Cv S s 1 Cw Cw Cv = mp / mf = mw = 100 * Cw / (Ss* (1-Cw) +Cw ) Cw = 0.30 - Ss= 2.65 - rL = 1 t/m Cv = 13.9 % mp = Pulp kinematic viscosity 3 np = mp = rp = np = Slurry mass flow rate ms mP Cw mP = m s / Cw ms = 65 t/h Cw = mP = 0.3 216.7 t/h Slurry volume flow rate QP = mm m mP s Cw mP / rP mP = 216.7 t/h rP = QP = 1.23 176.2 t/m3 m³/h QP = 48.9 l/s Friction factor f= Pressure loss in expansion DPexp = f(Rrel, Re) % Rrel = 0.0006 - K2_q = 30 = in Re = 244,021 - - f= hv = DPexp = f= 5% <= Cv <= 40% Pipe_Friction_Factor_Rrel_Re 0.0192 Loss at pipe discharge Unit pressure los J= Deposition_Velocity_JRI_Imp_d50_Cv_dn_Ss m/s OK. vp > vL Exit loss factor Kexit = f * (1/d) * hv f= d= hv = J= 0.019 0.154 0.351 0.044 m mpc mpc/ m Kinematic pressure hv = Exit pressure loss DPexit = Kexit = m Frictional pressure loss Hf = m hv = DPexit = Leq * J Leq = 116.75 m J= Hf = 0.044 mpc/m Loss at entrance to suction pipe 5.12 mpc Entrance loss factor Kentr = Kinematic pressure hv = Singular pressure drop Loss in discharge pipe enlargement m m Pump discharge diameter dP = pipe diameter di = Gradual expansion (q = 30°) m b = dp / di m 100 mm 154.08 mm Exit pressure loss DPentr = Kentr = hv = DPentr = 0.65 Total dynamic head Zd = Pipe_Expansion_Theta30gr_beta K2_q = 30 = 1.271 Zs = Hf = DPexp = DPexit = DPentr = Hp = g= 9.80665 m/s² Available NPSH pump with following results l/s Atmospheric pressure patm = mwc - 2700 patm = 72,824.8 patm = 6.04 m.p.c. 1 m.p.c. se a Warman 6/4 D-AH heavy Static sucction height r lined pump is selected with Hsucc = closed rubber impeller at a rpm m.a.s.l. Pa Suction pressure loss Frictional pressure loss 1 re 3.4, the efficiency on water % 101,325* (1 -2,25577E-5 * H)^5,25588 H= 2 DPf = Leq * J Leq_suc = 3 J= 0.044 DPf = 0.13 Loss at entrance of suction pipe DPentr = 0.18 m mpc/m mpc mpc 2 Total suction pressure loss DPsuc= DPf + DPentr DPf = 0.13 mpc DPentr = 0.18 mpc DPsuc= 0.31 mpc Water saturation pressure m 3 Psat = Exp(ca / tK + cb + cc * tK + cd * tK ^ 2 + ce * tK ^ 3 + cf * Ln(tK)) t= tk = ca = cb = 10 283.2 -5800.2 -5.5 L/s cc = -0.05 - cd = 4.2E-05 mpc ce = -1.4E-08 % - cf = Pw_vap = 6.5 1.228 kPa kW Pw_vap = 1228 Pa Pw_vap = 0.102 m.p.c. (1/1.02)*Qp*Sp* Hp /( Ep * htrans) kW 4 NPSHa = NPSHa = °C K Patm + Hsuc - DPsuc - Pw_vap 6.63 m.p.c. Rev. cjc. 30.01.2014 1 1 Water absolute viscosity SaturatedWaterAbsoluteViscosity_t 10 1.3E-03 °C Pa s Pulp viscosity 2 Ratio of absolute viscosities (Thomas) mp / mf = (1+2.5*Cv 10.05*Cv^2+0.00273*Exp(16.6*Cv)) 0.1392 1.57 mp / mw * mw 1.57 3 1.3E-03 Pa s 2E-03 Pa s Pulp kinematic viscosity 4 mp / rp 2.0E-03 Pa s 1229.7 kg/m³ 1.7E-06 m/s² 5 6 7 2 Pressure loss in expansion K2_q = 30 * hv 1.271 0.351 mpc 0.45 mpc Loss at pipe discharge Exit loss factor 1 - Kinematic pressure 0.351 Exit pressure loss Kexit * hv mpc 1 0.351 mpc 0.35 mpc Loss at entrance to suction pipe Entrance loss factor 0.5 Kinematic pressure 0.351 mpc Exit pressure loss Kentr * hv 0.5 0.351 mpc 0.18 mpc Total dynamic head 20 -1 5.12 0.45 mpc mpc 0.35 mpc 0.18 mpc 25.1 mpc 3 l Q p S P H p mpc s P 1.02 h p % kW and with transission efficiency P 4 l Q p S P H p mpc s 1.02 h p %htrans kW 3 4 m3 Q TDH Pa s P h l Q S P TDH mpc 1 s P 10 h % g W m3 Q TDH mmwc s P g h l Q p S P TDH mpc s P 1.02 h % m3 Q TDH mwc s P g 1000 h l Q p S P H p mpc s P 1.02 h p % m Q S P TDH mpc s P g 1000 h kW kW kW 3 W m Q S P TDH mpc s h 3 g 1000 P 1000 m3 Q S P TDH mpc s P g h l Q S P TDH mpc g 100 s P 1000 h % l Q S P TDH mpc s h % l Q p S P H p mpc s P 1.02 h w ER % kW m3 Q S P TDH mpc s P g 100 h % g P 10 kW l Q p S P H p mpc s P 1 .02 h p % kW kW kW kW kW l Q p S P H w HR mpc s P 1.02 h w ER % l Q p S P H w mpc s P 1.02 h w % kW kW mpc % kW Pump calculation according "Warman Slurry Pumping Handbook" Slurry parameters [2] Slurry density rP Cw rs rP = 100 100 Cw [2] (1-4) rL 100 / (Cw/rs +(100-Cw)/rL ) Carbon steel pipe selected dn = 6 in sch = STD di = Pipe_Imp_CS_Dint_dn_sch di = 154.08 mm di = 0.15408 m Cw = 30 rs = 2.65 rL = % t/m3 1 rP = 1.23 t/m 3 t/m 3 Pipe area A= di = A= (pi()/4) * di^2 0.15408 0.0186 m m² Slurry mass flow rate ms mP Cw mP Slurry velocity vP = ms Cw mP = m s / Cw ms = 65 t/h Cw = mP = 0.3 216.7 t/h - Slurry volume flow rate VP = mP / rP mP = 216.7 t/h rP = VP = 1.23 176.2 t/m3 m³/h VP = 48.9 l/s Volumetric concentration Cv VP = 0.049 m³/s A= vP = 0.0186 m² 2.6 m/s Limiting settlig velocity d50 = 211 mm Cv = 13.9 % d= SS = 6 in 2.65 - d50 >= 200 mm 5% <= Cv <= 40% cualquier diámetro VL=Slurry_Limit_Deposition_Velocity_JRI_Imp_d50_Cv_dn_Ss Cw S s 1 Cw Cw Cv = VP / A VL = 2.32 m/s OK. v > vL 100 * Cw / (Ss* (1-Cw) +Cw ) Cw = 0.30 % Ss= 2.65 t/m3 rL = Cv = 1 13.9 t/m3 % Friction head Hf for the pipeline Pipe equivalent length Pipe lenght L= 100 Number of long rad. 90 elb. N= 5 Elbow equivalent lenght Lelbow = 3.35 N-Elbows equivalent lenght LN-lbow = N *Lelbow N= 5 Lelbow = 3.35 LN-elbows = 16.75 Total eqivalent length L + LN-elbows Leq = L= 100 m Slurry density r= 1230 Kinematic viscosity n= m/r m= 2.0E-03 r= 1229.7 n= 1.7E-06 kg/m³ Pa s kg/m³ m/s² m m m Reynolds Re = v= d= n= Re = Relative rugosity v*d/n 2.62 0.15408 m/s m 1.7E-06 244,021 m/s² LN-elbows = Leq = 16.75 116.75 Slurry properties t= P= 10 3 m m °C bar Water absolute viscosity mw = SaturatedWaterAbsoluteViscosity_t mw = 1.3E-03 Pa s Pulp viscosity Ratio of viscosities (Thomas) mp / mf = (1+2.5*Cv 10.05*Cv^2+0.00273*Exp(16.6*Cv)) Rabs = di = Rrel = 0.1 154.08 0.0006 Friction factor f= f(Rrel, Re) Rrel = 0.0006 Re = 244,021 f= mm mm - - Pipe_Friction_Factor_Rrel_Re f= 0.0192 Kinematic pressure (r/2) * v^2 hv = r= 1229.70 - kg/m³ Cv = 0.1392 v= 2.62 m/s mp / mf = hv = 4236.3 Pa mp = 1.57 mp / mw * mw mp / mf = 1.57 mw = 1.3E-03 Pa s mp = 2E-03 Pa s Unit pressure los J= f * (1/d) * hv f= 0.019 d= 0.15408 hv = 4236.3 J= 528.8 Kinematic pressure hv = v^2 / (2*g) v= 2.62 g= 9.81 hv = 0.351 Pa/m Pressure loss in expansion DPexp = K2_q = 30 * hv Pressure loss Hf = Leq = J= Hf = Hf = Hf = Leq * J 116.75 528.8 61,736 6295 6.30 m Pa /m Pa mmwc mwc Pressure loss in msc Hf [msc] = Hf [mwc] / Ss Hf = 6.30 mwc Ss = 1.23 kg/m³ Hf = 5.12 msc Loss in discharge pipe enlargement Pump discharge diameter dP = 100 pipe diameter di = m/s m/s² msc 154.08 mm mm K2_q = 30 = hv = DPexp = 1.271 0.351 0.45 msc msc Loss at pipe discharge Exit loss factor Kexit = 1 Kinematic pressure hv = 0.351 - msc Exit pressure loss DPexit = Kexit * hv Kexit = 1 hv = DPexit = 0.351 msc 0.35 msc Gradual expansion (q = 30°) b= 0.65 Pipe_Expansion_Theta30gr_beta K2_q = 30 = 1.271 Loss at entrance to suction pipe Entrance loss factor Kentr = 0.5 - Kinematic pressure hv = 0.351 Exit pressure loss DPentr = Kentr * hv Kentr = hv = DPentr = HR factor msc msc Total dynamic head Zd = 20 -1 5.12 0.45 Validity 1-6 Cw : 1- 70% d50 : 20 - 10000 msc 0.5 0.351 0.18 Zs = Hf = DPexp = Ss : Ss = 2.7 - Cw = 30 % mm d50 = HR = HR = 211 Slurry_HR_factor_Ss_Cw_d50 0.891 Equivalent water column Hw = Hm / HR msc msc DPexit = 0.35 msc DPentr = 0.18 msc Hm = 25.09 msc Correction factor HR to express the head in water column (pump selection) Hm = HR = Hw = 25.1 0.891 28.2 mwc equiv. Let Hw = 28.2 mwc Pump selection Select a pump with following results VP = 48.9 l/s Hw = 28.2 mwc Ss = 2.65 - In this case a Warman 6/4 D-AH heavy duty ruber lined pump is selected with a 5 vane closed rubber impeller at a pump spedd of N= 1130 rpm See sheet "Pump From figure 3.4, the efficiency on water can be read as hw = l Q S P TDH msc s P 1.02 h m % with TDH = and h= P= Q= SP = Hm hm kW Hm = Hw * HR hm = hw * ER and l Q S P Hw HRmsc s P 1.02 hwER% kW 28.2 66 25.2 mwc kW Also, the power can be expresses as l Q S P TDH msc s P 1.02 ER h w % with % (1/1.02) * Q * Ss * Hw / hw 48.9 l/s 1.23 - Hw = hw = P= Index "m": mixture (pulp) l Q S P Hmmsc s P 1.02 hm % kW l Q S P Hwmsc s P 1.02 hw % 66 kW where hw is the water equivalent pump efficiency, read from performance curve for (Q, and Hw) kW as HR is assumed equal to HR l Q S P Hw HRmsc s P 1.02 hwHR% l Q S P Hwmsc s P 1.02 hw % Power kW kW m3 TDH Pa Q s P h P W m3 TDH mmwc Q s P g h P P l Q S P TDH msc s 1.02 h % kW m3 TDH Pa Q s P h P m3 N Q TDH s m 2 P h P m Q TDH N s P h P Nm Q TDH s P h P J Q TDH s P h P Q TDH P W h P ________________ P m3 TDH Pa Q s h P l Q S P TDH msc s P 1.02 h % W m3 TDH mmwc Q s P g h P g 100 P 3600 m3 TDH mwc Q s P g 1000 h P P g 1000 m3 S P TDH msc Q s W h P m3 S P TDH msc Q s P g h P P kW kW m3 S P TDH msc Q s g 100 1000 kW h P % l Q S P TDH msc s h P % kW g P 10 l Q S P TDH msc s h P % kW g P 10 l Q S P TDH msc s h P % kW l Q S P TDH msc s h P % kW P 1 10 g l Q S P TDH msc s P 1.02 h P % m3 Q S P TDH msc h h % m3 Q S P TDH msc h g P 36 h % m3 S P TDH msc Q s g 1000 P 1000 h P P g 100 kW kW m3 Q S P TDH msc h P 3.67 h % kW kW Rev. cjc. 30.01.2014 Solids flow rate ms = 65 t/h Specific gravity of solids Ss = 2.65 - Average particle size d50 = 211 Solids concentration Cw 30 % Static discharge head Zd = 20 m Suction head Pipeline length Number of long rad. 90 elb. Zs = L= N= 1 100 5 m m mm Kinematic pressure hv = v^2 / (2*g) v= 2.62 g= 9.81 hv = 0.351 m/s m/s² msc Unit pressure los J= f * (1/d) * hv f= d= hv = J= Pressure loss Hf = Leq = J= Hf = 0.019 0.154 0.4 0.044 Leq * J 116.75 0.044 5.12 m mwc mwc/ m m msc/m msc l Q S P TDH msc s P 1.02 h % Pump curves have TDH expressed in mwc. kW l Q S P TDH msc s P 1.02 h % g 100 P 3600 To be able to use the pump curve for the calculated TDH "Hm [msc]", Weir presents following relation kW m3 Q S P TDH msc h h % m3 Q S P TDH msc h g P 36 h % m3 Q S P TDH msc h P 3.67 h % kW kW kW Hw Hm HR where HR is always less than 1. Thus, for the given flow rate, the equivalent water TDH "Hw" is always larger than the calculated value Hm [msc] With the actual flow rate and with the equivalent water height the efficiency on water can be obtained from pump curve 3.670978367 1 2 3 4 Warman slurry correction factors HR and ER Pump power The power is given by P m3 TDH Pa Q s h W (Eq. a) d50 : With a unit transformation, l Q S P H w mpc s P 1.02 hw % Example calculation of the HR factor using the function. The validity range of the input parameters are: Ss : 1-6 Cw : 1- 70% 20 - 10000 Let us assuming following data Ss = 2.7 kW where hw is the water equivalent (Eq. f) Cw = d50 = HR = HR = 30 211 Slurry_HR_factor_Ss_Cw_d50 0.891 pump efficiency, read from performance curve and Hw = Hm / HR where "Hm" is the calculated TDH Hm = TDH [mpc] and "HR" is the corretion factor given by Figure 2-3 Let, as an example TDH = 25.1 and with HR = 0.891 the water equivalent head is Hw = 28.17 Following data is required Ss: Specific gravity of solids [- ] Let also the pulp flow rate be Q= 48.9 Cw : Weight concentration [%] d50 = Average particle size [mm] The HR factor can be read from Figure 2-3 and also can be evaluated using the function "Slurry_HR_factor" as shown in the example With this information, the operating point to be used with the pump performance curves diagram of the selected pump is Q= 48.9 Hw = 28.17 In the selected pump diagram, the water equivalent pump efficency can be estimated to be hw = 66 Rev. cjc. 30.01.2014 e calculation of the HR factor Example of power calculation dity range of the input parameters With the help variables calculated, the power can be calculatres as follows Q * SP * Hw / (1.02 * hw) P= P: Power [kW] ssuming following data Q: Pulp flow rate [l/s] SP : Pulp specific gravity - Hw : Water equivalent head [mwc] % mm hw:Water equivalent pump efficiency Slurry_HR_factor_Ss_Cw_d50 mpc r equivalent head is mwc the pulp flow rate be l/s s information, the operating point ed with the pump performance iagram of the selected pump is l/s mwc lected pump diagram, the water nt pump efficency can be % Q= Assume SP = 48.9 l/s 1.23 - Hw = 28.17 mwc hw = P= 66 25.17 % kW H (m) 50 1350 rpm 40 1300 rpm 1200 rpm 30 20 10 0 0 Rev. cjc. 30.01.2014 In this case a Warman 6/4 D-AH heavy duty ruber lined pump is selected with a 5 vane closed rubber impeller, with QP = 48.9 l/s Hw = 28.2 mwc At this point, N= Ew = NPSHr = 1130 66 2.8 rpm % m 60% 1350 rpm 65% 70% 77.5% 1300 rpm 70% 66 % 1200 rpm 1130 rpm 1100 rpm 1000 rpm 28.2 mwc 2.5 m 3.0m NPSH 4.5 m 48.9 l/s 20 40 60 80 100 Q (L/s) 120 http://oee.nrcan.gc.ca/regulations/products/14297 Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Power (HP) Power (kW) 1 1.5 2 3 4 5 5.5 7.5 10 15 20 25 30 40 50 60 75 100 125 150 175 200 250 300 350 400 450 500 0.75 1.1 1.5 2.2 3 3.7 4 5.5 7.5 11 15 19 22 30 37 45 55 75 90 110 132 150 185 225 260 300 335 375 Corresponds to Table 2 in the CAN/CSA C390-1 Energy Efficiency Standard (Percentage) Open Enc 2 Pole 4 Pole 6 Pole 8 Pole 2 Pole 75.5 82.5 80 74 75.5 82.5 84 84 75.5 82.5 84 84 85.5 85.5 84 84 86.5 86.5 86.5 85.5 84 86.5 86.5 86.5 85.5 85.5 87.5 87.5 87.5 87.5 85.5 87.5 87.5 87.5 87.5 87.5 88.5 88.5 88.5 88.5 88.5 89.5 90.2 89.5 89.5 89.5 91 90.2 89.5 90.2 90.2 91 91 90.2 90.2 91 91.7 91.7 90.2 91 91 92.4 92.4 91 91 91.7 93 93 91 91.7 92.4 93 93 91.7 92.4 93 93.6 93.6 92.4 93 93 94.1 93.6 93.6 93 93 94.1 94.1 93.6 93.6 93.6 94.5 94.1 93.6 94.5 93.6 95 94.5 93.6 94.5 94.5 95 94.5 93.6 95 94.5 95 94.5 93.6 95 94.5 95.4 95.4 94.5 95.4 95 95.4 95.4 95.4 95 95.4 95.4 95.4 95.4 95.4 95.4 95.8 95.8 95.4 95.8 95.8 95.4 1 dard (Percentage) Enclosed 4 Pole 6 Pole 82.5 80 84 85.5 84 86.5 87.5 87.5 87.5 87.5 87.5 87.5 87.5 87.5 89.5 89.5 89.5 89.5 91 90.2 91 90.2 92.4 91.7 92.4 91.7 93 93 93 93 93.6 93.6 94.1 93.6 94.5 94.1 94.5 94.1 95 95 95 95 95 95 95 95 95.4 95 95.4 95 95.4 95.4 95.8 - 8 Pole 74 77 82.5 84 84 85.5 85.5 85.5 88.5 88.5 89.5 89.5 91 91 91.7 91.7 93 93 93.6 93.6 94.1 94.1 94.5 - http://www.vanmeterinc.com/assets/files/pdf/3.20VBeltsSynchronicBelts.EdHubble.pdf 3 V Narrow d h= 4 95 in % B Classical d h= 4 94 in % [1] http://www.pumpfundamentals.com/slurry/Warman_slurry_pumping.pdf [2] Slurry System Handbook Abulnaga