Subido por Marcelino Vargas Quea

scribfree.com pump-slurry-selection-typical-warman

Anuncio
Pump selection according "Warman Slurry Pumping Handbook" [1]
1
Input data
Solids flow rate
ms =
65
t/h
2
Specific gravity of solids
Ss =
2.65
-
3
Density of liquid
rL =
1000
4
Average particle size
d50 =
211
kg/m³
mm
5
Solids concentration
Cw
30
%
6
Static discharge head
Zd =
20
m
7
Suction head
Zs =
1
m
8
Pipeline length
L=
100
m
9
Suction equiv. lenght
3
m
5
3.35
m
11
12
Temperature
t=
10
°C
13
Pressure
P=
3
bar
14
Pipe material
-
Pipe nominal diameter
Mat =
dn =
CS
15
6
in
16
Pipe schedule
sch =
STD
-
17
Pipe absolute rugosity
Rabs =
0.1
mm
18
Pump discharge diameter
dp =
100
mm
19
Loss at pipe discharge
Kexit =
1
20
Loss at entrance
Height above sea level
transmission efficiency
Kentr =
HASL =
htrans =
0.5
2700
0.95
21
22
Carbon steel pipe selected
dn =
sch =
di =
Leq_suc =
Number of long rad. 90 elb. N =
Lelbow =
Elbow equiv. length
10
6
in
STD
Pipe_Imp_CS_Dint_dn_sch
di =
154.1
mm
di =
0.154
m
m.a.s.l.
- (See sheet "Belt")
Limiting settlig velocity
d50 =
211
Cv =
13.9
d=
SS =
6
2.65
d50 >= 200 mm
5% <= Cv <= 40%
Pipe area
A=
di =
A=
VL=Slurry_Limit_Deposition_Velocity_JRI_Imp_d50_Cv_dn_Ss
(pi()/4) * di^2
0.154
0.0186
VL =
m
m²
2.32
OK. vp > vL
Pipe equivalent length
Pipe lenght
Slurry velocity
vP =
VP / A
VP =
0.049
m³/s
A=
vP =
0.0186
m²
2.6
m/s
L=
Elbow equivalent lenght
Lelbow =
3.35
Reynolds
N-Elbows equivalent lenght
LN-lbow =
N *Lelbow
N=
5
Lelbow =
3.35
LN-elbows =
16.75
v*d/n
Re =
v=
d=
n=
2.62
0.154
m/s
m
1.7E-06
m/s²
Re =
244,021
100
Number of long rad. 90 elb.
N=
5
Total eqivalent length
L + LN-elbows
Leq =
Relative rugosity
L=
100
Rabs =
0.1
mm
LN-elbows =
16.75
di =
Rrel =
154.08
0.0006
mm
-
Leq =
116.75
Kinematic pressure
hv =
v=
hv =
v^2 / (2*g)
2.62
m/s
0.351
mpc
Correction factor HR to express the head
Pump selection
in water column (pump selection)
Select a pump with following results
QP =
48.9
HR factor
Validity
Ss :
Hw =
28.2
SP =
1.23
1-6
Cw :
1- 70%
In this case a Warman 6/4 D-AH heavy
d50 :
20 - 10000
duty ruber lined pump is selected with
Ss =
2.7
-
Cw =
30
%
mm
d50 =
HR =
HR =
211
Slurry_HR_factor_Ss_Cw_d50
0.89
a 5 vane closed rubber impeller at a
pump speed of
N=
1130
See sheet "Pump
From figure 3.4, the efficiency on water
can be read as
hw =
66
Efficiency on pulp
Ep =
Ew * Er
EW =
0.66
HR = WR =
Ep =
Equivalent water column
Hw =
Hp =
HR =
Hw =
Hp / HR
25.1
0.89
mpc
28.2
mwc equiv.
0.891
0.588
Required NPSH
NPSHr =
2.8
Power
P=
Qp =
48.9
(1/1.02)*Qp*Sp* Hp /( Ep * htrans)
Sp =
1.23
Hp =
25.1
Ep =
htrans =
58.78
0.95
P=
26.51
Selected pump power
From sheet Motors
P=
30
Resume of pump data
Data for pump enquiry
Pulp temperature
Pulp flow rate
Total dynamic head
Solids density
Liquid density
Pulp weight concentration
t=
QP =
TDH =
rs =
10
48.9
25.1
2650
°C
l/s
mpc
rL =
Cw =
1000
30
kg/m3
%
mm
kg/m3
Ss =
2.65
d50 =
FVF =
NPSHa =
211
0
6.63
Calculated data
Pulp Spec. Gravity
Sp =
1.23
-
Pulp volume concentration
Cv =
13.9
%
Pulp kinematic viscosity
Height correction value
Efficincy correction value
Equivalent water height
np =
HR =
HE =
Hw =
1.7E-06
0.89
0.89
28.2
Data from selected pump
Pump type
Motor velocity
Efficiency on water
N=
Ew =
AH 6/4
1130
0.66
Specific gravity of solids
Average particle size
Froth volume factor
Available net press. suc. head
m.p.c.
m/s²
mwc
rpm
-
Efficiency on pulp
Power requirement
Motor power
Required net press. suc. head
Ep =
P=
P=
NPSHr =
0.588
26.51
30
kW
kW
m.p.c.
y Pumping Handbook" [1]
Slurry parameters
Pulp density
rP 
Water absolute viscosity
100
Cw 100  Cw

rs
rL
rp =
mw =
100 / (Cw/rs +(100-Cw)/rL )
Cw =
30
rs =
2.65
t=
mw =
%
t/m3
rL =
1
t/m
rp = Sp
1.23
t/m3
rp =
1230
kg/m³
Pulp viscosity
3
Ratio of absolute viscosities (Thomas)
mp / mf = (1+2.5*Cv 10.05*Cv^2+0.00273*Exp(16.6*Cv))
Cv =
mp / mf =
mp =
Volumetric concentration
Cw
Cv 
S s  1  Cw   Cw
Cv =
mp / mf =
mw =
100 * Cw / (Ss* (1-Cw) +Cw )
Cw =
0.30
-
Ss=
2.65
-
rL =
1
t/m
Cv =
13.9
%
mp =
Pulp kinematic viscosity
3
np =
mp =
rp =
np =
Slurry mass flow rate
ms  mP  Cw
mP =
m s / Cw
ms =
65
t/h
Cw =
mP =
0.3
216.7
t/h
Slurry volume flow rate
QP =
mm
m
mP  s
Cw
mP / rP
mP =
216.7
t/h
rP =
QP =
1.23
176.2
t/m3
m³/h
QP =
48.9
l/s
Friction factor
f=
Pressure loss in expansion
DPexp =
f(Rrel, Re)
%
Rrel =
0.0006
-
K2_q = 30 =
in
Re =
244,021
-
-
f=
hv =
DPexp =
f=
5% <= Cv <= 40%
Pipe_Friction_Factor_Rrel_Re
0.0192
Loss at pipe discharge
Unit pressure los
J=
Deposition_Velocity_JRI_Imp_d50_Cv_dn_Ss
m/s
OK. vp > vL
Exit loss factor
Kexit =
f * (1/d) * hv
f=
d=
hv =
J=
0.019
0.154
0.351
0.044
m
mpc
mpc/ m
Kinematic pressure
hv =
Exit pressure loss
DPexit =
Kexit =
m
Frictional pressure loss
Hf =
m
hv =
DPexit =
Leq * J
Leq =
116.75
m
J=
Hf =
0.044
mpc/m
Loss at entrance to suction pipe
5.12
mpc
Entrance loss factor
Kentr =
Kinematic pressure
hv =
Singular pressure drop
Loss in discharge pipe enlargement
m
m
Pump discharge diameter
dP =
pipe diameter
di =
Gradual expansion (q = 30°)
m
b = dp / di
m
100
mm
154.08
mm
Exit pressure loss
DPentr =
Kentr =
hv =
DPentr =
0.65
Total dynamic head
Zd =
Pipe_Expansion_Theta30gr_beta
K2_q = 30 =
1.271
Zs =
Hf =
DPexp =
DPexit =
DPentr =
Hp =
g=
9.80665
m/s²
Available NPSH
pump with following results
l/s
Atmospheric pressure
patm =
mwc
-
2700
patm =
72,824.8
patm =
6.04
m.p.c.
1
m.p.c.
se a Warman 6/4 D-AH heavy
Static sucction height
r lined pump is selected with
Hsucc =
closed rubber impeller at a
rpm
m.a.s.l.
Pa
Suction pressure loss
Frictional pressure loss
1
re 3.4, the efficiency on water
%
101,325* (1 -2,25577E-5 * H)^5,25588
H=
2
DPf =
Leq * J
Leq_suc =
3
J=
0.044
DPf =
0.13
Loss at entrance of suction pipe
DPentr =
0.18
m
mpc/m
mpc
mpc
2
Total suction pressure loss
DPsuc=
DPf + DPentr
DPf =
0.13
mpc
DPentr =
0.18
mpc
DPsuc=
0.31
mpc
Water saturation pressure
m
3
Psat = Exp(ca / tK + cb + cc * tK + cd * tK ^ 2 + ce * tK ^ 3 + cf * Ln(tK))
t=
tk =
ca =
cb =
10
283.2
-5800.2
-5.5
L/s
cc =
-0.05
-
cd =
4.2E-05
mpc
ce =
-1.4E-08
%
-
cf =
Pw_vap =
6.5
1.228
kPa
kW
Pw_vap =
1228
Pa
Pw_vap =
0.102
m.p.c.
(1/1.02)*Qp*Sp* Hp /( Ep * htrans)
kW
4
NPSHa =
NPSHa =
°C
K
Patm + Hsuc - DPsuc - Pw_vap
6.63
m.p.c.
Rev. cjc. 30.01.2014
1
1
Water absolute viscosity
SaturatedWaterAbsoluteViscosity_t
10
1.3E-03
°C
Pa s
Pulp viscosity
2
Ratio of absolute viscosities (Thomas)
mp / mf = (1+2.5*Cv 10.05*Cv^2+0.00273*Exp(16.6*Cv))
0.1392
1.57
mp / mw * mw
1.57
3
1.3E-03
Pa s
2E-03
Pa s
Pulp kinematic viscosity
4
mp / rp
2.0E-03
Pa s
1229.7
kg/m³
1.7E-06
m/s²
5
6
7
2
Pressure loss in expansion
K2_q = 30 * hv
1.271
0.351
mpc
0.45
mpc
Loss at pipe discharge
Exit loss factor
1
-
Kinematic pressure
0.351
Exit pressure loss
Kexit * hv
mpc
1
0.351
mpc
0.35
mpc
Loss at entrance to suction pipe
Entrance loss factor
0.5
Kinematic pressure
0.351
mpc
Exit pressure loss
Kentr * hv
0.5
0.351
mpc
0.18
mpc
Total dynamic head
20
-1
5.12
0.45
mpc
mpc
0.35
mpc
0.18
mpc
25.1
mpc
3
l 
Q p    S P  H p mpc
s
P
1.02 h p %
kW 
and with transission efficiency
P
4
l 
Q p    S P  H p mpc
s
1.02 h p %htrans 
kW 
3
4
 m3 
Q    TDH Pa 
s
P  
h 
l 
Q    S P  TDH mpc
1
s
P
  
10
h %
g
W 
 m3 
Q    TDH mmwc
s
P  g  
h 
l 
Q p    S P  TDH mpc
s
P
1.02 h %
 m3 
Q    TDH mwc
s
P  g 1000   
h 
l 
Q p    S P  H p mpc
s
P
1.02 h p %
m 
Q   S P  TDH mpc
s
P  g 1000   
h 
kW 
kW 
kW 
3
W 
m 
Q    S P  TDH mpc
 s 
h 
3
g 1000
P

1000
 m3 
Q    S P  TDH mpc
s
P  g  
h 
l 
Q    S P  TDH mpc
g 100
s
P
  
1000
h %
l 
Q    S P  TDH mpc
s
h %
l 
Q p    S P  H p mpc
s
P
1.02 h w  ER %
kW 
 m3 
Q    S P  TDH mpc
s
P  g 100   
h %
g
P

10
kW 
l 
Q p    S P  H p mpc 
s
P
1 .02 h p % 
kW 
kW 
kW 
kW 
kW 
l 
Q p    S P  H w  HR mpc
s
P
1.02 h w  ER %
l 
Q p    S P  H w mpc
s
P
1.02 h w %
kW 
kW 
mpc 
%
kW 
Pump calculation according "Warman Slurry Pumping Handbook"
Slurry parameters
[2]
Slurry density
rP 
Cw
rs
rP =

100
100  Cw
[2] (1-4)
rL
100 / (Cw/rs +(100-Cw)/rL )
Carbon steel pipe selected
dn =
6
in
sch =
STD
di =
Pipe_Imp_CS_Dint_dn_sch
di =
154.08
mm
di =
0.15408
m
Cw =
30
rs =
2.65
rL =
%
t/m3
1
rP =
1.23
t/m
3
t/m
3
Pipe area
A=
di =
A=
(pi()/4) * di^2
0.15408
0.0186
m
m²
Slurry mass flow rate
ms  mP  Cw
mP 
Slurry velocity
vP =
ms
Cw
mP =
m s / Cw
ms =
65
t/h
Cw =
mP =
0.3
216.7
t/h
-
Slurry volume flow rate
VP =
mP / rP
mP =
216.7
t/h
rP =
VP =
1.23
176.2
t/m3
m³/h
VP =
48.9
l/s
Volumetric concentration
Cv 
VP =
0.049
m³/s
A=
vP =
0.0186
m²
2.6
m/s
Limiting settlig velocity
d50 =
211
mm
Cv =
13.9
%
d=
SS =
6
in
2.65
-
d50 >= 200 mm
5% <= Cv <= 40%
cualquier diámetro
VL=Slurry_Limit_Deposition_Velocity_JRI_Imp_d50_Cv_dn_Ss
Cw
S s  1  Cw   Cw
Cv =
VP / A
VL =
2.32
m/s
OK. v > vL
100 * Cw / (Ss* (1-Cw) +Cw )
Cw =
0.30
%
Ss=
2.65
t/m3
rL =
Cv =
1
13.9
t/m3
%
Friction head Hf for the pipeline
Pipe equivalent length
Pipe lenght
L=
100
Number of long rad. 90 elb.
N=
5
Elbow equivalent lenght
Lelbow =
3.35
N-Elbows equivalent lenght
LN-lbow =
N *Lelbow
N=
5
Lelbow =
3.35
LN-elbows =
16.75
Total eqivalent length
L + LN-elbows
Leq =
L=
100
m
Slurry density
r=
1230
Kinematic viscosity
n=
m/r
m=
2.0E-03
r=
1229.7
n=
1.7E-06
kg/m³
Pa s
kg/m³
m/s²
m
m
m
Reynolds
Re =
v=
d=
n=
Re =
Relative rugosity
v*d/n
2.62
0.15408
m/s
m
1.7E-06
244,021
m/s²
LN-elbows =
Leq =
16.75
116.75
Slurry properties
t=
P=
10
3
m
m
°C
bar
Water absolute viscosity
mw =
SaturatedWaterAbsoluteViscosity_t
mw =
1.3E-03
Pa s
Pulp viscosity
Ratio of viscosities (Thomas)
mp / mf = (1+2.5*Cv 10.05*Cv^2+0.00273*Exp(16.6*Cv))
Rabs =
di =
Rrel =
0.1
154.08
0.0006
Friction factor
f=
f(Rrel, Re)
Rrel =
0.0006
Re =
244,021
f=
mm
mm
-
-
Pipe_Friction_Factor_Rrel_Re
f=
0.0192
Kinematic pressure
(r/2) * v^2
hv =
r=
1229.70
-
kg/m³
Cv =
0.1392
v=
2.62
m/s
mp / mf =
hv =
4236.3
Pa
mp =
1.57
mp / mw * mw
mp / mf =
1.57
mw =
1.3E-03
Pa s
mp =
2E-03
Pa s
Unit pressure los
J=
f * (1/d) * hv
f=
0.019
d=
0.15408
hv =
4236.3
J=
528.8
Kinematic pressure
hv =
v^2 / (2*g)
v=
2.62
g=
9.81
hv =
0.351
Pa/m
Pressure loss in expansion
DPexp =
K2_q = 30 * hv
Pressure loss
Hf =
Leq =
J=
Hf =
Hf =
Hf =
Leq * J
116.75
528.8
61,736
6295
6.30
m
Pa /m
Pa
mmwc
mwc
Pressure loss in msc
Hf [msc] = Hf [mwc] / Ss
Hf =
6.30
mwc
Ss =
1.23
kg/m³
Hf =
5.12
msc
Loss in discharge pipe enlargement
Pump discharge diameter
dP =
100
pipe diameter
di =
m/s
m/s²
msc
154.08
mm
mm
K2_q = 30 =
hv =
DPexp =
1.271
0.351
0.45
msc
msc
Loss at pipe discharge
Exit loss factor
Kexit =
1
Kinematic pressure
hv =
0.351
-
msc
Exit pressure loss
DPexit =
Kexit * hv
Kexit =
1
hv =
DPexit =
0.351
msc
0.35
msc
Gradual expansion (q = 30°)
b=
0.65
Pipe_Expansion_Theta30gr_beta
K2_q = 30 =
1.271
Loss at entrance to suction pipe
Entrance loss factor
Kentr =
0.5
-
Kinematic pressure
hv =
0.351
Exit pressure loss
DPentr =
Kentr * hv
Kentr =
hv =
DPentr =
HR factor
msc
msc
Total dynamic head
Zd =
20
-1
5.12
0.45
Validity
1-6
Cw :
1- 70%
d50 :
20 - 10000
msc
0.5
0.351
0.18
Zs =
Hf =
DPexp =
Ss :
Ss =
2.7
-
Cw =
30
%
mm
d50 =
HR =
HR =
211
Slurry_HR_factor_Ss_Cw_d50
0.891
Equivalent water column
Hw =
Hm / HR
msc
msc
DPexit =
0.35
msc
DPentr =
0.18
msc
Hm =
25.09
msc
Correction factor HR to express the head
in water column (pump selection)
Hm =
HR =
Hw =
25.1
0.891
28.2
mwc equiv.
Let
Hw =
28.2
mwc
Pump selection
Select a pump with following results
VP =
48.9
l/s
Hw =
28.2
mwc
Ss =
2.65
-
In this case a Warman 6/4 D-AH heavy
duty ruber lined pump is selected with
a 5 vane closed rubber impeller at a
pump spedd of
N=
1130
rpm
See sheet "Pump
From figure 3.4, the efficiency on water
can be read as
hw =
l 
Q    S P  TDH msc
s
P  
1.02 h m %
with
TDH =
and
h=
P=
Q=
SP =
Hm
hm
kW 
Hm =
Hw * HR
hm =
hw * ER
and
l 
Q   S P  Hw  HRmsc
s
P  
1.02 hwER%
kW 
28.2
66
25.2
mwc
kW
Also, the power can be expresses as
l 
Q    S P  TDH msc
s
P  
1.02  ER h w %
with
%
(1/1.02) * Q * Ss * Hw / hw
48.9
l/s
1.23
-
Hw =
hw =
P=
Index "m": mixture (pulp)
l 
Q   S P  Hmmsc
s
P  
1.02 hm %
kW 
l 
Q   S P  Hwmsc
s
P  
1.02 hw %
66
kW 
where hw is the water equivalent
pump efficiency, read from performance
curve for (Q, and Hw)
kW 
as HR is assumed equal to HR
l 
Q   S P  Hw  HRmsc
s
P  
1.02 hwHR%
l 
Q   S P  Hwmsc
s
P  
1.02 hw %
Power
kW 
kW 
 m3 
  TDH Pa
Q
 s 
P 
h P 
W 
 m3 
  TDH mmwc
Q
 s 
P g 
h P 
P
l 
Q    S P  TDH msc
s
1.02 h %
kW 
 m3 
  TDH Pa
Q
 s 
P
h P 
 m3   N 

Q  TDH 

 s   m 2 
P
h P 
m
Q  TDH  N 
s
P
h P 
 Nm 
Q  TDH 

 s 
P
h P 
J 
Q  TDH  
s
P
h P 
Q  TDH
P
W 
h P 
________________
P
 m3 
  TDH Pa
Q
s 


h P 
l 
Q    S P  TDH msc
s
P  
1.02 h %
W 
 m3 
  TDH mmwc
Q
 s 
P g 
h P 
g 100
P

3600
 m3 
  TDH mwc
Q
 s 
P  g  1000  
h P 
P  g  1000 
 m3 
 S P  TDH msc
Q
s 


W 
h P 
 m3 
  S P  TDH msc
Q
 s 
P g 
h P 
P
kW 
kW 
 m3 
  S P  TDH msc
Q
s 


g  100

1000
kW 
h P %
l 
Q    S P  TDH msc
s
h P %
kW 
g
P

10
l 
Q    S P  TDH msc
s
h P %
kW 
g
P

10
l 
Q    S P  TDH msc
s
h P %
kW 
l 
Q    S P  TDH msc
s
h P %
kW 
P
1

10
g
l 
Q    S P  TDH msc
s
P  
1.02 h P %
 m3 
Q    S P  TDH msc
 h 
h %
 m3 
Q    S P  TDH msc
h
g
P
  
36
h %
 m3 
  S P  TDH msc
Q
 s 
g  1000
P
 
1000
h P 
P  g  100 
kW 
kW 
 m3 
Q    S P  TDH msc
h
P  
3.67 h %
kW
kW 
Rev. cjc. 30.01.2014
Solids flow rate
ms =
65
t/h
Specific gravity of solids
Ss =
2.65
-
Average particle size
d50 =
211
Solids concentration
Cw
30
%
Static discharge head
Zd =
20
m
Suction head
Pipeline length
Number of long rad. 90 elb.
Zs =
L=
N=
1
100
5
m
m
mm
Kinematic pressure
hv =
v^2 / (2*g)
v=
2.62
g=
9.81
hv =
0.351
m/s
m/s²
msc
Unit pressure los
J=
f * (1/d) * hv
f=
d=
hv =
J=
Pressure loss
Hf =
Leq =
J=
Hf =
0.019
0.154
0.4
0.044
Leq * J
116.75
0.044
5.12
m
mwc
mwc/ m
m
msc/m
msc
l 
Q    S P  TDH msc
s
P  
1.02 h %
Pump curves have TDH expressed in mwc.
kW 
l 
Q    S P  TDH msc
s
P  
1.02 h %
g 100
P

3600
To be able to use the pump curve for the
calculated TDH "Hm [msc]", Weir presents
following relation
kW 
 m3 
Q    S P  TDH msc
 h 
h %
 m3 
Q    S P  TDH msc
h
g
P
  
36
h %
 m3 
Q    S P  TDH msc
h
P  
3.67 h %
kW 
kW 
kW 
Hw 
Hm
HR
where HR is always less than 1.
Thus, for the given flow rate, the equivalent water
TDH "Hw" is always larger than the calculated
value Hm [msc]
With the actual flow rate and with the equivalent
water height the efficiency on water can be obtained
from pump curve
3.670978367
1
2
3
4
Warman slurry correction factors HR and ER
Pump power
The power is given by
P
 m3 
  TDH Pa
Q
s 


h 
W 
(Eq. a)
d50 :
With a unit transformation,
l 
Q   S P  H w mpc
s
P  
1.02 hw %
Example calculation of the HR factor
using the function.
The validity range of the input parameters
are:
Ss :
1-6
Cw :
1- 70%
20 - 10000
Let us assuming following data
Ss =
2.7
kW 
where hw is the water equivalent
(Eq. f)
Cw =
d50 =
HR =
HR =
30
211
Slurry_HR_factor_Ss_Cw_d50
0.891
pump efficiency, read from performance
curve and
Hw =
Hm / HR
where "Hm" is the calculated TDH
Hm =
TDH
[mpc]
and "HR" is the corretion factor given by
Figure 2-3
Let, as an example
TDH =
25.1
and with
HR =
0.891
the water equivalent head is
Hw =
28.17
Following data is required
Ss: Specific gravity of solids [- ]
Let also the pulp flow rate be
Q=
48.9
Cw : Weight concentration [%]
d50 = Average particle size [mm]
The HR factor can be read from Figure 2-3
and also can be evaluated using the function
"Slurry_HR_factor" as shown in the example
With this information, the operating point
to be used with the pump performance
curves diagram of the selected pump is
Q=
48.9
Hw =
28.17
In the selected pump diagram, the water
equivalent pump efficency can be
estimated to be
hw =
66
Rev. cjc. 30.01.2014
e calculation of the HR factor
Example of power calculation
dity range of the input parameters
With the help variables calculated, the
power can be calculatres as follows
Q * SP * Hw / (1.02 * hw)
P=
P: Power [kW]
ssuming following data
Q: Pulp flow rate [l/s]
SP : Pulp specific gravity
-
Hw : Water equivalent head [mwc]
%
mm
hw:Water equivalent pump efficiency
Slurry_HR_factor_Ss_Cw_d50
mpc
r equivalent head is
mwc
the pulp flow rate be
l/s
s information, the operating point
ed with the pump performance
iagram of the selected pump is
l/s
mwc
lected pump diagram, the water
nt pump efficency can be
%
Q=
Assume
SP =
48.9
l/s
1.23
-
Hw =
28.17
mwc
hw =
P=
66
25.17
%
kW
H (m)
50
1350 rpm
40
1300 rpm
1200 rpm
30
20
10
0
0
Rev. cjc. 30.01.2014
In this case a Warman 6/4 D-AH heavy
duty ruber lined pump is selected with
a 5 vane closed rubber impeller, with
QP =
48.9
l/s
Hw =
28.2
mwc
At this point,
N=
Ew =
NPSHr =
1130
66
2.8
rpm
%
m
60%
1350 rpm
65%
70%
77.5%
1300 rpm
70%
66 %
1200 rpm
1130 rpm
1100 rpm
1000 rpm
28.2 mwc
2.5 m
3.0m
NPSH 4.5 m
48.9 l/s
20
40
60
80
100
Q (L/s)
120
http://oee.nrcan.gc.ca/regulations/products/14297
Item
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Power (HP) Power (kW)
1
1.5
2
3
4
5
5.5
7.5
10
15
20
25
30
40
50
60
75
100
125
150
175
200
250
300
350
400
450
500
0.75
1.1
1.5
2.2
3
3.7
4
5.5
7.5
11
15
19
22
30
37
45
55
75
90
110
132
150
185
225
260
300
335
375
Corresponds to Table 2 in the CAN/CSA C390-1
Energy Efficiency Standard (Percentage)
Open
Enc
2 Pole
4 Pole
6 Pole
8 Pole
2 Pole
75.5
82.5
80
74
75.5
82.5
84
84
75.5
82.5
84
84
85.5
85.5
84
84
86.5
86.5
86.5
85.5
84
86.5
86.5
86.5
85.5
85.5
87.5
87.5
87.5
87.5
85.5
87.5
87.5
87.5
87.5
87.5
88.5
88.5
88.5
88.5
88.5
89.5
90.2
89.5
89.5
89.5
91
90.2
89.5
90.2
90.2
91
91
90.2
90.2
91
91.7
91.7
90.2
91
91
92.4
92.4
91
91
91.7
93
93
91
91.7
92.4
93
93
91.7
92.4
93
93.6
93.6
92.4
93
93
94.1
93.6
93.6
93
93
94.1
94.1
93.6
93.6
93.6
94.5
94.1
93.6
94.5
93.6
95
94.5
93.6
94.5
94.5
95
94.5
93.6
95
94.5
95
94.5
93.6
95
94.5
95.4
95.4
94.5
95.4
95
95.4
95.4 95.4
95
95.4
95.4 95.4
95.4
95.4 95.4
95.8
95.8 95.4
95.8
95.8 95.4
1
dard (Percentage)
Enclosed
4 Pole
6 Pole
82.5
80
84
85.5
84
86.5
87.5
87.5
87.5
87.5
87.5
87.5
87.5
87.5
89.5
89.5
89.5
89.5
91
90.2
91
90.2
92.4
91.7
92.4
91.7
93
93
93
93
93.6
93.6
94.1
93.6
94.5
94.1
94.5
94.1
95
95
95
95
95
95
95
95
95.4
95
95.4
95
95.4 95.4 95.8 -
8 Pole
74
77
82.5
84
84
85.5
85.5
85.5
88.5
88.5
89.5
89.5
91
91
91.7
91.7
93
93
93.6
93.6
94.1
94.1
94.5
-
http://www.vanmeterinc.com/assets/files/pdf/3.20VBeltsSynchronicBelts.EdHubble.pdf
3 V Narrow
d
h=
4
95
in
%
B Classical
d
h=
4
94
in
%
[1]
http://www.pumpfundamentals.com/slurry/Warman_slurry_pumping.pdf
[2]
Slurry System Handbook
Abulnaga
Descargar