Circuito RL “Respuesta forzada” 𝑉𝑅 + 𝑉𝐿 = 𝐸 … (0) 𝑖(𝑡) 𝑅 + 𝐿 𝑑𝑖 =𝐸 𝑑𝑡 𝑖(𝑡) 479.8 + 0.1 𝐷→ t<0 No hay C.I 𝑑𝑖 = 1.44𝑉 𝑑𝑡 𝑑 𝑑𝑡 𝑖(𝑡)[𝑅 + 𝐿𝐷] = 𝐸 … (1) 𝑖(𝑡)[479.8 + 0.1𝐷] = 1.44 t=0 4.5 𝑉 𝐼= = 6.52𝑚𝐴 690 𝛺 *Solución ec. Dif. No Homogénea 𝑖(𝑡) = 𝑖ℎ 𝑒 𝐷𝑡 + 𝑖𝑝 … (2) *D=? 479.86 + 0.1𝐷 = 0 𝑉 = (6.52 𝑚𝐴)(220𝛺) = 1.375𝑉 𝑉 = (6.52 𝑚𝐴)(470𝛺) = 3.06𝑉 ∴𝐷=− 𝑅 479.86𝛺 = − = 4798.6 𝐿 0.1ℎ *𝑖𝑝 =? 𝐷 = 0 𝑑𝑒 … (1) 𝑖𝑝 = (479.86 + 0) = 𝐸 ∴ 𝑖𝑝 = 𝐸 1.375 = = 2.86𝑚𝐴 𝑅 479.86 ∗ 𝑖ℎ =? 𝑡 = 0 𝑖(0) = 0 𝑉𝐿 (0) = 0 𝑉220 = 1.375 𝑉𝑅 (0) = { 𝑉470= 3.06𝑉 𝑉330= 0 𝑖𝐿 (0) = 0 t>0 𝑖(0) = 𝑖ℎ 𝑒 0 + 𝑖𝑝 ∴ 0 = 𝑖 + =− 𝐸 𝐸 → 𝑖ℎ = − 𝑅 𝑅 1.375 = −2.86𝑚𝐴 479.86 *Sustituyendo en … (2) 𝐸 𝑅 𝐸 𝑖(𝑡) = − 𝑒 − 𝐿 𝑡 + 𝑅 𝑅 𝑖(𝑡) = −2.86𝑚𝐴 𝑒 −4798.6𝑡 + 2.86𝑚𝐴 𝑉𝑅 = R[i(t)] = − 𝐸 𝑅 𝑅 𝐸 𝐸 𝑅 𝑒 − 𝐿 𝑡 + = [1 − 𝑒 − 𝐿 𝑡 ] = 𝑅 𝑅 2.86𝑚𝐴[1 − 𝑒 −4798.6𝑡 ] *Sustituyendo en … (0) 𝑅 𝐼= 4.5 𝑉 = 6.52𝑚𝐴 690 𝛺 𝑉220 = (6.52 𝑚𝐴)(220𝛺) = 1.375𝑉 𝑖(0) = 6.52𝑚𝐴 𝑍𝑡ℎ = 479.86𝛺 𝑉𝐿 = 𝐸𝑒 − 𝐿 𝑡 = 1.44𝑒 −4798.6𝑡 𝑉𝑅 (𝑡) = 𝑅[𝑖(𝑡)] 𝑅 𝑅 𝐸 𝑉𝑅 (𝑡) = 𝑅 ( ) (1 − 𝑒 − 𝐿 𝑡 ) = 𝐸(1 − 𝑒 − 𝐿 𝑡 ) 𝑅 𝑉𝑅 (𝑡) = 1.44(1 − 𝑒 −4798.6𝑡 ) Circuito RC “Respuesta forzada” 𝑖(𝑡) = 𝐶 𝑅𝐶 𝑑𝑉 𝑑𝑣 = 0.1 𝑑𝑡 𝑑𝑡 𝑑𝑣(𝑡) + 𝑣(𝑡) = 𝐸 𝑑𝑡 𝐷→ 𝑑 𝑑𝑡 𝑅𝐶𝐷𝑣(𝑡) + 𝑣(𝑡) = 𝐸 𝑣(𝑡) + 𝑅𝐶 t<0 No hay C.I t=0 𝑑𝑣(𝑡) =𝐸 𝑑𝑡 𝑣(𝑡) + 𝑅𝐶𝐷 = 𝐸 𝑣(𝑡) [𝑅𝐶𝐷 + 1] = 𝐸 *Solución ec. Dif. No Homogénea 𝑣(𝑡) = 𝑉ℎ 𝑒 𝐷𝑡 + 𝑉𝑝 1 * 𝐷 =? 𝑅𝐶𝐷 + 1 = 0 ∴ 𝐷 = − 𝑅𝐶 = −0.097 *𝑉𝑝 =? 𝐷=0 𝑉𝑝 (𝑅𝐶𝐷 + 1) = 0.986 ∴ 𝑉𝑝 = 𝐸 = 0.986𝑉 ∗ 𝑉ℎ =? 𝑡 = 0 𝑣(0) = 0 𝑣(0) = 𝑉ℎ 𝑒 0 + 𝑉𝑝 ∴ 0 = 𝑉ℎ + 𝑉𝑝 (4.5𝑉)(132𝛺) = 0.986𝑉 470𝛺 + 132𝛺 𝑉330 = 𝑉𝑅𝑒𝑞= 𝑖330 (0) = 𝑖𝐶 (0) = 𝑉330 0.986𝑉 = = 2.98𝑚𝐴 330𝛺 330𝛺 t>0 𝑉ℎ = −𝐸 = −0.986𝑉 1 1 𝑉𝑐 (𝑡) = −𝐸𝑒 −𝑅𝐶𝑡 + 𝐸 = 𝐸 (1 − 𝑒 −𝑅𝐶𝑡 ) = 0.986(1 − 𝑒 −0.097𝑡 ) 1 𝑉𝑅 (𝑡) = 𝐸 − 𝑉𝑐 (𝑡) = 𝐸 + 𝐸𝑒 −𝑅𝐶𝑡 − 𝐸 1 = 𝐸𝑒 −𝑅𝐶 𝑡 = 0.986𝑒 −0.097𝑡 𝑅𝑡ℎ = 103.05𝛺 𝑉𝑡ℎ = 0.986𝑉 𝑉𝑅 + 𝑉𝐶 = 𝐸 … (0) 𝑖(𝑡) 𝑅 + 𝑖(𝑡) 103.05 + 1 ∫ 𝑖(𝑡)𝑑𝑡 = 𝐸 𝐶 1 ∫ 𝑖(𝑡)𝑑𝑡 = 0.986𝑉 0.1