UNIVERSIDAD DE EL SALVADOR FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA DE INGENIERÍA INDUSTRIAL MATEMATICA III CICLO I 2020 EVALUACIÓN: Tarea de resolución de ejercicios 2. PROFESOR: Ing. Ricardo Alfaro. ALUMNO: Jonathan José Reyes Vásquez. GRUPO: 1. CARNET: RV19022 Ciudad Universitaria, 18 de mayo de 2020 Tarea de Resolución de ejercicios 2 1) 𝐸𝑙𝑎𝑏𝑜𝑟𝑒 𝑙𝑎 𝑔𝑟á𝑓𝑖𝑐𝑎 𝑑𝑒𝑙 𝑠𝑖𝑔𝑢𝑖𝑒𝑛𝑡𝑒 𝑝𝑙𝑎𝑛𝑜: 𝑥 − 2𝑦 − 4𝑧 = 8 𝑇𝑟𝑎𝑧𝑎𝑠: 𝑇𝑟𝑎𝑧𝑎 𝑝𝑙𝑎𝑛𝑜 𝑥𝑦 (𝑧 = 0) 𝑥 − 2𝑦 = 8 𝑆𝑖𝑒𝑛𝑑𝑜 𝑥 = 0 0 − 2𝑦 = 8 → 𝑦 = −4 𝑆𝑖𝑒𝑛𝑑𝑜 𝑦 = 0 𝑥 − 2(0) = 8 → 𝑥 = 8 𝐿𝑜𝑠 𝑝𝑢𝑛𝑡𝑜𝑠 𝑠𝑜𝑛 (0, −4, 0) 𝑦 (8, 0, 0). 𝑇𝑟𝑎𝑧𝑎 𝑝𝑙𝑎𝑛𝑜 𝑥𝑧 (𝑦 = 0) 𝑥 − 4𝑧 = 8 𝑆𝑖𝑒𝑛𝑑𝑜 𝑥 = 0 0 − 4𝑧 = 8 → 𝑧 = −2 𝑆𝑖𝑒𝑛𝑑𝑜 𝑧 = 0 𝑥 − 4(0) = 8 → 𝑥 = 8 𝐿𝑜𝑠 𝑝𝑢𝑛𝑡𝑜𝑠 𝑠𝑜𝑛 (0,0, −2) 𝑦 (8, 0, 0). 𝑇𝑟𝑎𝑧𝑎 𝑝𝑙𝑎𝑛𝑜 𝑦𝑧 (𝑦 = 0) −2𝑦 − 4𝑧 = 8 𝑆𝑖𝑒𝑛𝑑𝑜 𝑦 = 0 −2(0) − 4𝑧 = 8 → 𝑧 = −2 𝑆𝑖𝑒𝑛𝑑𝑜 𝑧 = 0 − 2𝑦 − 4(0) = 8 → 𝑦 = −4 𝐿𝑜𝑠 𝑝𝑢𝑛𝑡𝑜𝑠 𝑠𝑜𝑛 (0,0, −2) 𝑦 (0, 0, −8). 𝑈𝑛𝑎 𝑣𝑒𝑧 𝑡𝑒𝑛𝑖𝑑𝑜 𝑙𝑜𝑠 𝑝𝑢𝑛𝑡𝑜𝑠 𝑒𝑛 𝑐𝑜𝑚ú𝑛, 𝑠𝑒 𝑝𝑟𝑜𝑐𝑒𝑑𝑒 𝑎 𝑔𝑟𝑎𝑓𝑖𝑐𝑎𝑟: 𝐴(0, −4,0) 𝐵(8,0,0) 𝐶(0,0, −2) 2) 𝐶𝑎𝑙𝑐𝑢𝑙𝑒 𝑙𝑎 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑖𝑎 𝑑𝑒𝑙 𝑝𝑢𝑛𝑡𝑜 𝑃(1,1,1) 𝑎𝑙 𝑝𝑙𝑎𝑛𝑜 𝑑𝑒𝑙 𝑒𝑗𝑒𝑟𝑐𝑖𝑐𝑖𝑜 𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝐷= 𝐷= |𝑎𝑥𝑜 + 𝑏𝑦𝑜 + 𝑐𝑧𝑜 + 𝑑| √𝑎2 + 𝑏 2 + 𝑐 2 → < 𝑎, 𝑏, 𝑐 > = < 1, −2, −4 > ; 𝑑 = −8 ; 𝑃(𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 ) |(1)(1) + (−2)(1) + (−4)(1) + (−8)| √12 + (−2)2 + (−4)2 𝐷= |−13| √21 = |1 − 2 − 4 − 8| √1 + 4 + 16 = 2.8368 …. 𝐷 = 2.84 𝑢𝑙 3) 𝐸𝑙𝑎𝑏𝑜𝑟𝑒 𝑙𝑎 𝑔𝑟á𝑓𝑖𝑐𝑎 𝑑𝑒 𝑙𝑎 𝑠𝑖𝑔𝑢𝑖𝑒𝑛𝑡𝑒 𝑠𝑢𝑝𝑒𝑟𝑓𝑖𝑐𝑖𝑒 𝑐𝑖𝑙í𝑛𝑑𝑟𝑖𝑐𝑎 𝑧 = 𝐿𝑛 (𝑦) Curva generatriz en el plano yz y las rectas directrices se encuentran en el eje x. 4) 𝐺𝑟𝑎𝑓𝑖𝑞𝑢𝑒 𝑙𝑎 𝑠𝑖𝑔𝑢𝑖𝑒𝑛𝑡𝑒 𝑐𝑢á𝑑𝑟𝑖𝑐𝑎: 𝑧 = 𝑇𝑟𝑎𝑧𝑎 𝑐𝑜𝑛 𝑒𝑙 𝑝𝑙𝑎𝑛𝑜 𝑥𝑧: 𝑧 = 𝑥2 𝑦2 − 9 4 𝑥2 → 𝐶𝑢𝑎𝑛𝑑𝑜 𝑧 = 1 9 1(9) = 𝑥 2 → 𝑥 = 3 𝑦 𝑥 = −3 𝑇𝑟𝑎𝑧𝑎 𝑐𝑜𝑛 𝑒𝑙 𝑝𝑙𝑎𝑛𝑜 𝑦𝑧: 𝑧 = − 𝑦2 → 𝐶𝑢𝑎𝑛𝑑𝑜 𝑧 = −1 4 (−1)(−4) = 𝑦 2 → 𝑦 = 2 𝑦 𝑦 = −2 𝐶𝑜𝑟𝑡𝑒 𝑒𝑛 𝑙𝑜𝑠 𝑒𝑥𝑡𝑟𝑒𝑚𝑜𝑠 𝑑𝑒 𝑙𝑎 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎: 𝐶𝑢𝑎𝑛𝑑𝑜 𝑥 = ±3 𝑧= (±3)2 𝑦 2 𝑦2 − →𝑧 =1− 9 4 4 𝑧−1=− 𝑦2 → 𝑉𝑒𝑟𝑡𝑖𝑐𝑒 𝑡𝑟𝑎𝑠𝑙𝑎𝑑𝑎𝑑𝑜 (±3, 0, 1) 4 𝑃𝑢𝑛𝑡𝑜𝑠 𝑑𝑒 𝑐𝑜𝑟𝑡𝑒 𝑒𝑛 𝑙𝑎 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎 𝑑𝑒 𝑙𝑎 𝑖𝑧𝑞𝑢𝑖𝑒𝑟𝑑𝑎 (3, (√2)(2), −1) 𝑦 (3, (−√2)(2), −1) → (3,2√2, −1) 𝑦 (3, −2√2, −1) 𝑃𝑢𝑛𝑡𝑜𝑠 𝑑𝑒 𝑐𝑜𝑟𝑡𝑒 𝑒𝑛 𝑙𝑎 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎 𝑑𝑒 𝑙𝑎 𝑑𝑒𝑟𝑒𝑐ℎ𝑎 (−3, (√2)(2), −1) 𝑦 (−3, (−√2)(2), −1) → (−3,2√2, −1) 𝑦 (−3, −2√2, −1) Grafica: 5) 𝐺𝑟𝑎𝑓𝑖𝑞𝑢𝑒 𝑒𝑙 𝑠𝑖𝑔𝑢𝑖𝑒𝑛𝑡𝑒 𝑠ó𝑙𝑖𝑑𝑜: 𝑥 = 𝑦 2 + 𝑧² 𝑦 𝑒𝑙 𝑝𝑟𝑖𝑚𝑒𝑟 𝑜𝑐𝑡𝑎𝑛𝑡𝑒. 𝐿𝑎 𝑓𝑢𝑛𝑐𝑖𝑜𝑛 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎 𝑢𝑛 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑜𝑖𝑑𝑒 𝑒𝑙𝑖𝑝𝑡𝑖𝑐𝑜 𝑒𝑛 𝑒𝑙 𝑒𝑗𝑒 𝑥, 𝑝𝑎𝑟𝑎 𝑔𝑟𝑎𝑓𝑖𝑐𝑎𝑟𝑙𝑜 𝑠𝑒 𝑐𝑜𝑙𝑜𝑐𝑎𝑟𝑎 𝑒𝑙 𝑒𝑗𝑒 𝑑𝑒 𝑐𝑜𝑟𝑡𝑒 𝑒𝑛 𝑥 = 9 (𝑜 𝑐𝑢𝑎𝑛𝑑𝑜 𝑦 = 𝑧 = 3 ). 𝑄𝑢𝑒𝑑𝑎𝑛𝑑𝑜: 9 = 𝑦 2 + 𝑧 2 𝑞𝑢𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎 𝑢𝑛 𝑐𝑖𝑟𝑐𝑢𝑙𝑜 𝑑𝑒 𝑟 = 3 𝐿𝑢𝑒𝑔𝑜 𝑠𝑒 𝑡𝑟𝑎𝑧𝑎𝑛 𝑙𝑎𝑠 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎𝑠 𝑒𝑛 𝑙𝑜𝑠 𝑒𝑗𝑒𝑠 𝑥𝑦 𝑦 𝑥𝑧 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑎𝑚𝑒𝑛𝑡𝑒: 𝐶𝑜𝑚𝑜 𝑒𝑠 𝑒𝑛 𝑒𝑙 𝑝𝑟𝑖𝑚𝑒𝑟 𝑜𝑐𝑡𝑎𝑛𝑡𝑒 𝑑𝑜𝑛𝑑𝑒 𝑙𝑜𝑠 3 𝑒𝑗𝑒𝑠 𝑠𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑜𝑠 𝑞𝑢𝑒𝑑𝑎𝑟í𝑎: 1 +𝑦 𝑫𝒐𝒎𝒊𝒏𝒊𝒐: 𝑃𝑎𝑟𝑎 𝑞𝑢𝑒 𝑛𝑜 𝑞𝑢𝑒𝑑𝑒 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑑𝑎 𝑙𝑎 𝑓𝑢𝑛𝑐𝑖ó𝑛 𝑒𝑠 𝑥 2 + 𝑦 ≠ 0 ó 𝑥 2 ≠ −𝑦 𝑃𝑜𝑟 𝑙𝑜 𝑡𝑎𝑛𝑡𝑜 𝑒𝑙 𝑑𝑜𝑚𝑖𝑛𝑖𝑜 𝑞𝑢𝑒𝑑𝑎𝑟í𝑎: 6) 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑒𝑙 𝑑𝑜𝑚𝑖𝑛𝑖𝑜, 𝑟𝑎𝑛𝑔𝑜 𝑦 𝑔𝑟𝑎𝑓𝑖𝑞𝑢𝑒 𝑙𝑎 𝑠𝑖𝑔𝑢𝑖𝑒𝑛𝑡𝑒 𝑓𝑢𝑛𝑐𝑖ó𝑛: 𝑓(𝑥, 𝑦) = 𝑥2 𝐷𝑓 = {(𝑥, 𝑦) ∈ 𝑹𝟐 /𝑥 2 + 𝑦 2 ≠ 0} 𝑹𝒂𝒏𝒈𝒐: 𝑦𝑎 𝑞𝑢𝑒 𝑐𝑜𝑛𝑜𝑐𝑒𝑚𝑜𝑠 𝑒𝑙 𝑑𝑜𝑚𝑖𝑛𝑖𝑜 𝑠𝑒 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑟𝑎𝑛 𝑣𝑎𝑟𝑎𝑖𝑎𝑏𝑙𝑒𝑠 𝑐𝑒𝑟𝑐𝑎𝑛𝑎𝑠 𝑎 𝑐𝑒𝑟𝑜 𝑐𝑜𝑛 𝑙𝑖𝑚𝑖𝑡𝑒𝑠 𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑒𝑠 𝑝𝑎𝑟𝑎 𝑖𝑛𝑑𝑖𝑐𝑎𝑟 𝑙𝑎 𝑡𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑎 𝑑𝑒 𝑙𝑎 𝑓𝑢𝑛𝑐𝑖𝑜𝑛: 1 = −∞ (𝑥,𝑦)→(0,0)− 𝑥 2 + 𝑦 lim 1 = +∞ (𝑥,𝑦)→(0,0)+ 𝑥 2 + 𝑦 lim 𝑆𝑖𝑛 𝑒𝑚𝑏𝑎𝑟𝑔𝑜 𝑎𝑙 𝑒𝑣𝑎𝑙𝑢𝑎𝑟 𝑑𝑖𝑟𝑒𝑐𝑡𝑎𝑚𝑒𝑛𝑡𝑒 𝑒𝑙 𝑙𝑖𝑚𝑖𝑡𝑒 𝑒𝑛 𝑒𝑙 𝑑𝑜𝑚𝑖𝑛𝑖𝑜: lim (𝑥,𝑦)→(0,0) 𝑥 2 1 =∄ +𝑦 𝑇𝑎𝑙 𝑞𝑢𝑒 𝑎𝑙 𝑒𝑣𝑎𝑙𝑢𝑎𝑟𝑙𝑎 𝑒𝑛 0 𝑝𝑒𝑟𝑡𝑒𝑛𝑒𝑐𝑒 𝑎𝑙 𝑐𝑜𝑛𝑗𝑢𝑛𝑡𝑜 𝑑𝑒𝑙 𝑣𝑎𝑐í𝑜. 𝐶𝑜𝑛 𝑒𝑠𝑡𝑜 𝑠𝑒 𝑝𝑢𝑒𝑑𝑒 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑟 𝑒𝑙 𝑟𝑎𝑛𝑔𝑜 𝑞𝑢𝑒 𝑝𝑢𝑒𝑑𝑒𝑛 𝑠𝑒𝑟 𝑡𝑜𝑑𝑜𝑠 𝑙𝑜𝑠 𝑟𝑒𝑎𝑙𝑒𝑠 𝑠𝑖𝑒𝑚𝑝𝑟𝑒 𝑦 𝑐𝑢𝑎𝑛𝑑𝑜 𝑙𝑎 𝑓𝑢𝑛𝑐𝑖𝑜𝑛 𝑠𝑒𝑎 𝑑𝑖𝑓𝑒𝑟𝑒𝑛𝑡𝑒 𝑑𝑒 𝑐𝑒𝑟𝑜. 𝑅𝑎𝑛𝑔𝑜: ] − ∞, 0[ 𝑈 ] 0, +∞[ ó {𝑅𝑓(𝑥, 𝑦) ∈ 𝑹 / 𝑓(𝑥, 𝑦) ≠ 0} 𝑮𝒓𝒂𝒇𝒊𝒄𝒂: 𝑃𝑎𝑟𝑎 𝑒𝑙𝑙𝑜 𝑒𝑠 𝑛𝑒𝑐𝑒𝑠𝑎𝑟𝑖𝑜 𝑣𝑒𝑟 𝑙𝑎𝑠 𝑡𝑟𝑎𝑧𝑎𝑠 𝑑𝑒 𝑙𝑜𝑠 𝑒𝑗𝑒𝑠. 𝑇𝑟𝑎𝑧𝑎 𝑥𝑧 (𝑦 = 0) 𝑧= 1 𝑥2 𝑇𝑟𝑎𝑧𝑎 𝑦𝑧 (𝑥 = 0) 𝑇𝑟𝑎𝑧𝑎 𝑥𝑦 (𝑧 ≠ 0) 𝐶𝑜𝑚𝑜 𝑦𝑎 𝑠𝑒 𝑠𝑎𝑏𝑒 𝑞𝑢𝑒 𝑞𝑢𝑒𝑑𝑎 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑑𝑎 𝑎 𝑐𝑒𝑟𝑜, 𝑠𝑒 𝑡𝑜𝑚𝑎𝑟𝑎𝑛 𝑣𝑎𝑙𝑜𝑟𝑒𝑠 𝑑𝑒 − 4 𝑦 4. ±4 = 1 𝑥2 + 𝑦 𝑆𝑖𝑒𝑛𝑑𝑜 𝑧 = 4 4(𝑥 2 + 𝑦) = 1 → 4𝑥 2 + 4𝑦 = 1 1 − 4𝑥 2 2 4𝑦 = 1 − 4𝑥 → 𝑦 = 4 𝑆𝑖𝑒𝑛𝑑𝑜 𝑧 = −4 −4(𝑥 2 + 𝑦) = 1 → −4𝑥 2 − 4𝑦 = 1 1 + 4𝑥 2 2 −4𝑦 = 1 + 4𝑥 → 𝑦 = − ( ) 4 𝑇𝑒𝑛𝑖𝑒𝑛𝑑𝑜 𝑡𝑜𝑑𝑎𝑠 𝑙𝑎𝑠 𝑔𝑟𝑎𝑓𝑖𝑐𝑎𝑠 𝑒𝑛 𝑅 3 : 7) 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑒𝑙 𝑑𝑜𝑚𝑖𝑛𝑖𝑜, 𝑟𝑎𝑛𝑔𝑜 𝑦 𝑔𝑟𝑎𝑓𝑖𝑞𝑢𝑒 𝑙𝑎 𝑠𝑖𝑔𝑢𝑖𝑒𝑛𝑡𝑒 𝑓𝑢𝑛𝑐𝑖ó𝑛: 𝑓(𝑥, 𝑦) = 𝑠𝑒𝑛(𝑥 + 𝑦) 𝑫𝒐𝒎𝒊𝒏𝒊𝒐: 𝐶𝑜𝑚𝑜 𝑛𝑜 𝑒𝑥𝑖𝑠𝑡𝑒𝑛 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑐𝑖𝑜𝑛𝑒𝑠 𝑝𝑎𝑟𝑎 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑖𝑜𝑛 𝑠𝑜𝑛 𝑡𝑜𝑑𝑜𝑠 𝑙𝑜𝑠 𝑟𝑒𝑎𝑙𝑒𝑠: 𝐷𝑓 = {(𝑥, 𝑦) ∈ 𝑹𝟐 } 𝑹𝒂𝒏𝒈𝒐: 𝐷𝑒𝑏𝑖𝑑𝑜 𝑎 𝑞𝑢𝑒 𝑓(𝑥, 𝑦) 𝑒𝑠 𝑢𝑛𝑎 𝑓𝑢𝑛𝑐𝑖𝑜𝑛 𝑠𝑒𝑛𝑜, 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 𝑠𝑢 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑 𝑞𝑢𝑒 𝑒𝑠 𝑑𝑒 − 1 𝑎 1. 𝑅𝑎𝑛𝑔𝑜: [−1 , 1 ] ó {𝑅𝑓(𝑥, 𝑦) ∈ 𝑹/−1 ≤ 𝑓(𝑥, 𝑦) ≤ +1} 𝑮𝒓𝒂𝒇𝒊𝒄𝒂: 𝐸𝑠 𝑛𝑒𝑐𝑒𝑠𝑎𝑟𝑖𝑜 𝑐𝑜𝑛𝑜𝑐𝑒𝑟 𝑠𝑢𝑠 𝑡𝑟𝑎𝑧𝑎𝑠 𝑧 = 𝑠𝑒𝑛(𝑥 + 𝑦) 𝑇𝑟𝑎𝑧𝑎 𝑥𝑧 (𝑦 = 0) 𝑧 = 𝑠𝑒𝑛(𝑥) 𝑇𝑟𝑎𝑧𝑎 𝑦𝑧 (𝑥 = 0) 𝑧 = 𝑠𝑒𝑛(𝑦) 𝑇𝑟𝑎𝑧𝑎 𝑥𝑦 (𝑧 = 0) 0 = 𝑠𝑒𝑛(𝑥 + 𝑦) → 𝑎𝑟𝑐𝑠𝑒𝑛(0) = 𝑥 + 𝑦 → −𝑥 = 𝑦 𝐺𝑟𝑎𝑓𝑖𝑐𝑎𝑛𝑑𝑜 𝑙𝑎𝑠 𝑡𝑟𝑎𝑧𝑎𝑠 𝑒𝑛 𝑒𝑙 𝑒𝑠𝑝𝑎𝑐𝑖𝑜: 8) 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑙𝑎𝑠 𝑝𝑟𝑖𝑚𝑒𝑟𝑎𝑠 𝑑𝑒𝑟𝑖𝑣𝑎𝑑𝑎𝑠 𝑝𝑎𝑟𝑐𝑖𝑎𝑙𝑒𝑠 𝑝𝑎𝑟𝑎 𝑓(𝑥, 𝑦) = 𝑒 2𝑥−𝑦 − 𝑙𝑛(𝑥 + 𝑦) 1 𝑥+𝑦 1 𝑓′𝑦 = −𝑒 2𝑥−𝑦 − 𝑥+𝑦 𝑓′𝑥 = 2𝑒 2𝑥−𝑦 − 9) 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑙𝑎𝑠 𝑠𝑒𝑔𝑢𝑛𝑑𝑎𝑠 𝑑𝑒𝑟𝑖𝑣𝑎𝑑𝑎𝑠 𝑝𝑎𝑟𝑐𝑖𝑎𝑙𝑒𝑠 𝑝𝑎𝑟𝑎 𝑦 𝑓(𝑥, 𝑦) = 𝑥²𝑦² − 𝐿𝑛 [𝑆𝑒𝑛 ( )] 𝑥 𝑓′𝑥 = 2𝑥𝑦 2 −