INTRODUCCION Con la denominación de genética forense se define el uso de ciertas técnicas empleadas en genética para la identificación de los individuos en base al análisis del ADN. El hecho de utilizar el análisis de ADN para identificar a una persona sigue un razonamiento sencillo. Cada ser humano es diferente; dos personas pueden ser más o menos parecidas, sobre todo entre familiares cercanos, pero nunca son idénticos, salvo en el caso de los gemelos univitelinos. Esta diferenciación entre las personas se debe a que existen millones de combinaciones posibles de ADN entre un óvulo y un espermatozoide, debido a la recombinación genética que se produce en la meiosis. Pero a pesar de ello, los genes de todos los seres humanos son poco variables y constituyen un gran porcentaje de la información contenida en la molécula de ADN; la información restante, incluye sectores que pueden exhibir un cierto grado de variabilidad entre los individuos, en consecuencia: “todos los seres humanos tenemos sectores del ADN en común y otros que no lo son”. El llamado Análisis de ADN es un conjunto de técnicas utilizadas para detectar sectores en la cadena de ADN que son variables en la población. Estas regiones son denominadas regiones polimórficas o polimorfismos. El término polimorfismo expresa la variabilidad que existe dentro de un fragmento de ADN, es decir, el número de alelos que hay en un locus. Como regla general cuantos más alelos haya, mayor polimorfismo, y por tanto mayor poder de identificación. Al analizar un determinado número de regiones polimórficas la probabilidad de que dos individuos sean genéticamente iguales es prácticamente nula, excepto en los gemelos univitelinos. El uso del ADN en la investigación criminal o en la identificación de personas desaparecidas, ha sido objeto de un gran número de series cinematográficas de gran audiencia que crean expectativas poco realistas sobre las posibilidades de estas pruebas. En este sentido, los especialistas forenses hablan ya del efecto CSI (Crime SceneInvestigation): la concepción de que la ciencia forense es infalible e inmediata, lo que puede generar una visión distorsionada de la prueba en jueces, fiscales y, especialmente, jurados de los tribunales de justicia. La parte positiva del efecto CSI tiene que ver con el creciente interés de los jóvenes por los temas forenses y el incremento exponencial en el número matriculados en este tipo de cursos de especialización. ORIGEN La genética forense no surge como tal, sino que evoluciona a partir de otra rama conocida como hemogenética forense; nace a principios del siglo XX, cuando Karl Landsteiner describe el sistema ABO de los hematíes y Von Durgen y Hirschfeld descubren su transmisión hereditaria. El objetivo de esta ciencia era la identificación genética en crímenes y casos de paternidad. Inicialmente, las investigaciones se centraban en el estudio de antígenos eritrocitarios (sistema ABO, Rh, MN), proteínas séricas y enzimas eritrocitarias. Con el estudio de dichos marcadores podía incluirse o excluirse una persona como posible sospechoso por poseer una combinación genética igual o diferente a la del vestigio biológico hallado en el lugar de los hechos. Pero fue a mediados de siglo cuando gracias al descubrimiento del ADN y de su estructura y al posterior avance en las técnicas de análisis de dicha molécula la Hemogenética Forense evolucionó considerablemente hasta el punto de que hoy en día puede hablarse de una nueva subespecialidad dentro de la Medicina Forense: la Genética Forense, puesto que en la actualidad no solo se emplean marcadores sanguíneos sino también muchos otros. Aunque la ciencia poseía las herramientas necesarias para el estudio del ADN, su aplicación en la resolución de casos judiciales no se produjo hasta 1985. Esta subespecialidad se centra básicamente en tres áreas: Investigación de la paternidad: Impugnación por parte del supuesto padre o reclamación por parte de la madre y/o del hijo. Criminalística: Asesinato y delitos sexuales (violación sexual). Se analizan restos orgánicos humanos (sangre, pelo, saliva, esperma, piel). Identificación: Restos cadavéricos (por ejemplo, los restos del zar Nicolás II de Rusia y su familia) o personas desaparecidas (como sucedió en Argentina con los niños desaparecidos durante la dictadura militar). ÁCIDO DESOXIRRIBONUCLEICO El ácido desoxirribonucleico (ADN), es un ácido nucleico que contiene instrucciones genéticas usadas en el desarrollo y funcionamiento de todos los organismos vivos conocidos y algunos virus, y es responsable de su transmisión hereditaria. El papel principal de la molécula de ADN es el almacenamiento a largo plazo de información. Los segmentos de ADN que llevan esta información genética son llamados genes, pero las otras secuencias de ADN tienen propósitos estructurales o toman parte en la regulación del uso de esta información genética. El ADN es un polímero de nucleótidos, es decir, un polinucleótido. Un polímero es un compuesto formado por muchas unidades simples conectadas entre sí, como si fuera un largo tren formado por vagones. En el ADN, cada vagón es un nucleótido, y cada nucleótido, a su vez, está formado por un azúcar (la desoxirribosa), una base nitrogenada (que puede ser adenina→A, timina→T, citosina→C o guanina→G) y un grupo fosfato que actúa como enganche de cada vagón con el siguiente. Lo que distingue a un vagón (nucleótido) de otro es, entonces, la base nitrogenada, y por ello la secuencia del ADN se especifica nombrando sólo la secuencia de sus bases. Las secuencias de ADN que constituyen la unidad fundamental, física y funcional de la herencia se denominan genes. Cada gen contiene una parte que se transcribe a ARN y otra que se encarga de definir cuándo y dónde deben expresarse. La información contenida en los genes (genética) se emplea para generar ARN y proteínas, que son los componentes básicos de las células, los "ladrillos" que se utilizan para la construcción de los orgánulos u organelos celulares, entre otras funciones. Dentro de las células, el ADN está organizado en estructuras llamadas cromosomas que, durante el ciclo celular, se duplican antes de que la célula se divida. El material genético completo de una dotación cromosómica se denomina genoma y, con pequeñas variaciones, es característico de cada especie. Situación del ADN dentro de una célula. COMPONENTES ESTRUCTURA DE SOPORTE: La estructura de soporte de una hebra de ADN está formada por unidades alternas de grupos fosfato y azúcar. El azúcar en el ADN es una pentosa, concretamente, la desoxirribosa. Ácido fosfórico: El grupo fosfato (PO43-) une el carbono 5' del azúcar de un nucleósido con el carbono 3' del siguiente. Su fórmula química es H3PO4. Cada nucleótido puede contener uno (monofosfato: AMP), dos (difosfato: ADP) o tres (trifosfato: ATP) grupos de ácido fosfórico, aunque como monómeros constituyentes de los ácidos nucleicos sólo aparecen en forma de nucleósidos monofosfato. Desoxirribosa: Es un monosacárido de 5 átomos de carbono (una pentosa) derivado de la ribosa, que forma parte de la estructura de nucleótidos del ADN. Su fórmula es C 5H10O4. Una de las principales diferencias entre el ADN y el ARN es el azúcar, pues en el ARN la 2-desoxirribosa del ADN es reemplazada por una pentosa alternativa, la ribosa. Bases nitrogenadas: Las cuatro bases nitrogenadas mayoritarias que se encuentran en el ADN son la adenina (A), la citosina (C), la guanina (G) y la timina (T). Cada una de estas cuatro bases está unida al armazón de azúcar-fosfato a través del azúcar para formar el nucleótido completo (base-azúcar-fosfato). Las bases son compuestos heterocíclicos y aromáticos con dos o más átomos de nitrógeno, y, dentro de las bases mayoritarias, se clasifican en dos grupos: las bases púricas o purinas (adenina y guanina), derivadas de la purina y formadas por dos anillos unidos entre sí, y las bases pirimidínicas o bases pirimídicas o pirimidinas (citosina y timina), derivadas de la pirimidina y con un solo anillo timina: En el código genético se representa con la letra T. Es un derivado pirimidínico con un grupo oxo en las posiciones 2 y 4, y un grupo metil en la posición 5. Forma el nucleósido timidina (siempre desoxitimidina, ya que sólo aparece en el ADN) y el nucleótido timidilato o timidina monofosfato (dTMP). 2, 4-dioxo, 5-metilpirimidina. Citosina: En el código genético se representa con la letra C. Es un derivado pirimidínico, con un grupo amino en posición 4 y un grupo oxo en posición 2. Forma el nucleósido citidina (desoxicitidina en el ADN) y el nucleótido citidilato o (desoxi) citidina monofosfato (dCMP en el ADN, CMP en el ARN). 2-oxo, 4-aminopirimidina. Adenina: En el código genético se representa con la letra A. Es un derivado de la purina con un grupo amino en la posición 6. Forma el nucleósido adenosina (desoxiadenosina en el ADN) y el nucleótido adenilato o (desoxi) adenosina monofosfato (dAMP, AMP). 6-aminopurina. Guanina: En el código genético se representa con la letra G. Es un derivado púrico con un grupo oxo en la posición 6 y un grupo amino en la posición 2. Forma el nucleósido (desoxi) guanosina y el nucleótido guanilato o (desoxi) guanosina monofosfato (dGMP, GMP). 6-oxo, 2-aminopurina. TIPOS DE ADN EN LOS QUE SE ESTUDIAN LOS MARCADORES GENÉTICOS ADN nuclear Siempre que sea posible se realizará el análisis de polimorfismos de este ADN, pues son los que más información nos darán en cuanto a la identidad de la muestra. Se encuentra en el núcleo, y se hereda mitad de la madre y mitad del padre, con excepción del ADN presente en el cromosoma Y masculino, que sólo se hereda por línea paterna. Las características más importantes del ADN nuclear para identificación humana son: 1. Es único para cada persona, excepto en el caso de los gemelos univitelinos. 2. Permite establecer relaciones entre hermanos, primos, abuelos nietos, y otro grados de parentesco, porque como veremos, otros tipos de ADN sólo nos permitirán establecer relaciones de paternidad (cromosoma Y) y de maternidad (ADN mitocondrial). 3. Sirve para determinar el sexo de la persona de la que proviene una muestra porque se puede establecer la presencia de XX o XY en el par 23. 4. Posee un enorme potencial de estudio, por la gran cantidad de ADN no codificante y las regiones tipo STR y SNP. Uno de los fragmentos de ADN nuclear más estudiados es la amelogenina. Se trata de un marcador muy útil porque nos informa sobre el sexo del individuo al que pertenece la muestra. La amelogenina es un locus localizado en una región homóloga de los cromosomas sexuales. Existe una diferencia de 6 pares de bases entre el tamaño del alelo presente en el cromosoma X y el Y, que se debe a una pequeña deleción en el cromosoma X. El resultado de la amplificación por PCR de este locus en un ADN femenino (XX) será de una única banda, mientras que si el ADN es masculino (XY), el resultado serán dos bandas de distinto tamaño. No obstante, hay que tener en cuenta que, aunque ocurre con muy baja frecuencia, se ha detectado la existencia de deleciones en esta región del cromosoma Y, de tal forma que una muestra masculina podría asignarse erróneamente como femenina. En este caso, el análisis de marcadores específicos del cromosoma Y permitirían una correcta asignación del sexo. El inconveniente que presenta el estudio de marcadores concretos del cromosoma Y, es que se heredan sin cambios significativos en una misma familia de padre a hijo, de modo que nos permiten identificar a un varón de la familia pero tendremos que estudiar otros marcadores para distinguir entre abuelo, padre, hijo, etc. Después de una extracción de ADN en muestras que se encuentran en muy mal estado de conservación, se obtienen fragmentos de sólo 100-200 nucleótidos debido a su estado de degradación (rotura), con el agravante de que muchas veces estas muestras van acompañadas de ADN bacteriano. Por el contrario las muestras de tejido fresco proporcionan fragmentos de ADN de más de 10.000 nucleótidos. Pero existen situaciones en las que es recomendable el análisis de otros tipos de polimorfismos como son los polimorfismos de ADN mitocondrial y polimorfismos ligados al cromosoma Y. ADN mitocondrial Existen numerosas mitocondrias en cada célula (entre 250 y 1000 según el tipo celular, las necesidades metabólicas y el tipo funcional) y varias copias de ADN mitocondrial en cada mitocondria, es decir, existen mayor cantidad de copias de ADNmt que de ADN nuclear por célula, de forma que hay una sola copia de ADN nuclear en una célula mientras que puede haber miles de copias de ADNmt. Este hecho hace que en muestras forenses muy críticas (con escasa cantidad de ADN o con ADN en mal estado) tenga más éxito el análisis de ANDmt que el de ADN nuclear. Sin embargo, el ADNmt presenta una peculiaridad, se hereda única e íntegramente de la madre, sin que exista ninguna combinación con el material del padre. Por este motivo se dice que es un genoma haploide. La causa de que no exista mezcla con el material del padre es la siguiente: las mitocondrias del espermatozoide se localizan en el cuello (entre la cabeza y la cola), con el fin de aportar la energía que esta célula necesita para mover la cola y desplazarse en busca del óvulo. Al producirse la fecundación solo penetra en la célula femenina la cabeza del espermatozoide (con el ADN nuclear) quedando fuera la cola y el cuello, y con él todas las mitocondrias. Esto hace que el padre no aporte dicho material a su descendencia. Las características básicas que lo hacen útil en investigación forense y antropológica son: 1. El elevado número de copias por célula que hace alguna de ellas resista las condiciones adversas sin ser degradada. 2. Su pequeño tamaño. Esto facilita la conservación en el tiempo a pesar de que las condiciones no sean apropiadas: al ser más pequeño que el ADN nuclear la probabilidad de verse afectado es menor. Estas 2 características garantizan las estabilidad postmortal y una mayor resistencia que el nuclear. Pero también tiene desventajas o puntos débiles como: 1. No es específico de cada persona, sino que se asocia a todas las personas que proceden de la misma madre, abuela materna, etc. 2. Sólo es útil cuando se trata de hacer estudios por vía materna, de modo que permite identificar a cualquier persona (hombre o mujer) frente a su madre, no frente a su padre. 3. Presenta gran dificultad técnica por lo que restringe su uso a laboratorios especializados. Este tipo de ADN se utiliza sobre todo en los casos siguientes: 1. Cuando existe una gran degradación de las muestras por las malas condiciones de conservación en que permanecieron hasta que fueron encontradas en lugar del crimen o por la antigüedad que tienen. En este caso el ADN mitocondrial se encontrará en mejor estado que el nuclear debido a su mayor número de copias por célula. Tal es el caso de restos óseos y dientes antiguos o sometidos a condiciones extremas. 2. Cuando la cantidad de muestra de que se dispone es mínima (pelos sin bulbo por ejemplo). Un pelo con bulbo caduco o un fragmento de pelo contendrá una cantidad de ADN nuclear tan escasa que en principio los análisis de estas muestras mediante ADN nuclear resultará negativo. 3. En la identificación de restos biológicos y el establecimiento de una relación familiar cuando no se dispone de los progenitores y no queda más remedio que realizar una comparación con familiares más lejanos. Si se trata de familiares vía materna tendrán exactamente el mismo ADN mitocondrial aunque se trate de familiares lejanos. Un estudio de ADN nuclear en estos casos sería poco informativo ya que cuanto más alejada sea su relación familiar, menos alelos compartirán. 4. Cuando existe un sospechoso en un hecho delictivo pero se dispone de muestra de la cual no se conoce su procedencia, se puede recurrir al estudio del ADN mitocondrial de un familiar relacionado matrilinialmente para excluirlo. Polimorfismos del cromosoma Y El cromosoma Y sólo existe en varones y todos los individuos varones emparentados por línea paterna comparten el cromosoma Y (casi en su totalidad) pues se hereda directamente de padres a hijos sin mezclarse con ningún material procedente de la madre. Por tanto, sólo es posible identificar linajes paternos mediante el estudio de su cromosoma Y, mientras que no es posible identificar individuos. Respecto a los polimorfismos del cromosoma Y se analizan microsatélites (STRs). Los principales problemas derivan de las características hereditarias del cromosoma Y: 1. No es único de cada persona, sino que es común para todos los pertenecientes a un linaje paterno común. 2. Sólo se puede aplicar a los hombres de modo que en un estudio de paternidad, como por ejemplo, no sirve para determinar si un hombre es padre de una mujer. 3. Existen varios casos especiales en los cuales el análisis de los polimorfismos del cromosoma Y son de gran utilidad: 4. Casos de paternidad: 5. Casos de paternidad en los que no se dispone de material biológico de la madre. Nos bastará con disponer de la muestra del padre y compararla con la del presunto hijo para comprobar si ambas presentan idénticos polimorfismos Y. 6. En casos complejos en los que falta el padre, pero tenemos por ejemplo al abuelo. 7. Casos de mezclas en agresiones sexuales: 8. Agresiones en las que el semen del sospechoso varón se encuentra mezclado con células de una víctima mujer: los polimorfismos del cromosoma Y son detectados de forma más sensible en el ADN de un individuo a pesar de que éste se encuentre inmerso en una gran cantidad de ADN femenino. Con marcadores nucleares esto no ocurre pues se detecta antes el material femenino sobre todo si la cantidad de células epiteliales femeninas es muy superior al número de espermatozoides. Además, el uso de polimorfismos de ADN del cromosoma Y nos permite incluir o excluir a un sospechoso cómodamente. 9. Delitos en los que el agresor es un individuo azoospérmico: los individuos azoospérmicos tienen ausencia de espermatozoides en el eyaculado. Los espermatozoides son la mayor fuente de ADN en las muestras de semen, por lo que un individuo azoospérmico tiene mucho menos ADN seminal para el análisis. La cantidad de ADN por mililitro (mL) en el eyaculado de un individuo espérmico es aproximadamente de 450 microgramos (μgr) en los espermatozoides y de 30 μgr en los leucocitos y células epiteliales. Por ello, en un individuo azoospérmico, el contenido de ADN es aproximadamente de sólo el 6.3% del contenido en un individuo espérmico. Por las mismas razones que en el caso anterior, es posible la detección de ADN de las células epiteliales y los leucocitos en eyaculados de individuos vasectomizados aunque se encuentre mezclado con ADN de la víctima. 1. Agresiones sexuales múltiples: el uso de los microsatélites del cromosoma Y en estos casos permite determinar el número mínimo de agresores. 2. Otros tipos de mezclas: En mezclas de sangre-sangre, o de sangre-saliva, o de sangre-pelos, el cromosoma Y es una herramienta de trabajo que puede aportar valiosa información. 3. Como herramienta de «screening»: 4. En casos de agresión sexual: los polimorfismos Y pueden servir para relacionar rápidamente estos casos (bases de datos) y excluir sospechosos de manera rápida antes de profundizar en marcadores autosómicos. 5. En grandes catástrofes: Cuando en una catástrofe aparece un gran número de cadáveres puede ser interesante clasificarlos según sus polimorfismos Y para poder discriminar qué cadáveres tendremos que cotejar con cada familia antes de realizar los estudios de ADN nuclear autosómico. Esto resulta muy útil cuando, por ejemplo, los familiares vivos que se usan como muestras de referencia son los hermanos de las víctimas. Para terminar este apartado diremos que tanto el ADNmt como los polimorfismos del cromosoma Y tienen mucho menos poder de discriminación que el ADN nuclear autosómico utilizado habitualmente. Ninguno de estos tipos de ADN identifica individuos, sino líneas familiares maternas y paternas. 6. Técnicas para analizar los polimorfismos del ADN extraído 7. En un principio la manera de estudiar dichos marcadores se hizo por medio de la técnica llamada hibridación con sondas o Southern blot. 8. El tipo de sondas que se utilizan en esta técnica pueden ser de dos tipos: 9. Sondas Uni-locus (SLP): La técnica permite detectar loci minisatélites únicos. son específicas para una región de un determinado cromosoma. Se unen a secuencias largas de nucleótidos y presentan mayor variabilidad que las sondas multi-locus. Como resultado se observan una o dos bandas por individuo, según sea homocigoto o heterocigoto. El patrón de bandas obtenido con estas sondas se denomina perfil unilocus de ADN o “DNA profiling”. Se utiliza principalmente en investigaciones de paternidad porque identifica loci minisatélites muy informativos. 10. Sondas Multi-locus (MLP): permiten identificar simultáneamente muchas regiones hipervariables. Son sondas de 10 a 15 nucleótidos que se repiten múltiples veces y tras el revelado se observan de 10 a 20 bandas por persona. Este patrón de múltiples bandas es característico de cada individuo, constituye algo así como su “huella dactilar de ADN” y se conoce como huella genética multilocus o “DNA fingerprint”. Las sondas multi y uni-locus presentan una serie de ventajas e inconvenientes según: Información aportada: las sondas multi-locus tienen una mayor capacidad discriminativa al aparecer múltiples bandas. No obstante, las uni-locus son más específicas ya que el fragmento de ADN con el que hibridan es de mayor tamaño. Por consiguiente, para analizar 7 o 8 loci, se deberían utilizar 7 o 8 sondas unilocus, mientras que con una sola sonda multi-locus podría hibridar de un solo paso esas 7 o 8 regiones hipervariables. Cantidad y calidad del ADN: cuando se usan sondas multi-locus se requiere aproximadamente un microgramo de ADN sin degradar mientras que en el caso de las uni-locus se necesita menos de 100 mg y este ADN no necesariamente debe estar en perfecto estado, siempre y cuando el fragmento complementario a la sonda esté intacto. Especificidad entre especies: las sondas multi-locus permiten su uso sobre el ADN humano y de cientos de animales superiores, mientras que las uni-locus son exclusivas de ADN humano. Aunque las SLP han sido y son bastante útiles en estudios de paternidad no puede decirse lo mismo de su aplicación a la Criminalística ya que presenta una serie de inconvenientes como son: La cantidad de ADN que se necesita está entre 20 y 100 mg, cantidad difícil de conseguir en casos de criminalística en los que los indicios biológicos encontrados son mínimos. En cuanto a la calidad del ADN, es muy difícil encontrar en buen estado toda la cantidad de ADN que se necesita para un análisis con sondas mono-locus. El tiempo requerido para este tipo de análisis es de dos o tres días, debido a la necesidad de tener que utilizar más de una SLP. El hecho de que se requieran cantidades elevadas de ADN hace que normalmente, con el primer análisis se consume la totalidad de la muestra, con lo que se dificulta un contraste de pruebas o una posterior revisión del caso. Todas estas limitaciones se superaron tras la aparición de una técnica muy útil, la reacción en cadena de la polimerasa (PCR: Polymerase Chain Reaction). GEN Un gen es una secuencia ordenada de nucleótidos en la molécula de ADN (o ARN, en el caso de algunos virus) que contiene la información necesaria para la síntesis de una macromolécula con función celular específica, habitualmente proteínas pero también ARNm, ARNr y ARNt. Esta función puede estar vinculada con el desarrollo o funcionamiento de una función fisiológica. El gen es considerado la unidad de almacenamiento de información genética y unidad de la herencia, pues transmite esa información a la descendencia. Los genes se disponen, pues, a lo largo de ambas cromátidas de los cromosomas y ocupan, en el cromosoma, una posición determinada llamada locus. El conjunto de genes de una especie, y por tanto de los cromosomas que los componen, se denomina genoma. Los genes están localizados en los cromosomas en el núcleo celular. TIPOS DE GENES Formas faciales: PRDM16, PAX3, TP63, C5orf50 y COL17A1. LA CIENCIA FORENSE La palabra forense proviene del latin forensis, "perteneciente o relativo al foro". Las Ciencias Forenses son todas aquellas ciencias (Derecho, Medicina, Psicología, Biología, Química, Ingeniería, etc.) o especialidades científicas cuyos principios, métodos, y técnicas se aplican a la Justicia, en cualquiera de sus aspectos, buscando el bien de la sociedad y la seguridad de los ciudadanos y el estado. Es la aplicación de prácticas científicas dentro del proceso legal. Esencialmente esto se traduce en investigadores altamente especializados o criminalistas, que localizan evidencias que sólo proporcionan prueba concluyente al ser sometidas a pruebas en laboratorios. Las Ciencias Forenses son un campo de la ciencia dedicada a la recopilación metódica y el análisis de las pruebas para establecer los hechos que se pueden presentar en un procedimiento legal. Las ciencias forenses las definimos como el conjunto de disciplinas cuyo objeto común es el de la materialización de la prueba a efectos judiciales mediante una metodología científica. Cualquier ciencia se convierte en forense en el momento que sirve al procedimiento judicial Estas disciplinas contribuyen a la procuración y administración de la justicia por medio de la identificación, ubicación, fijación, levantamiento, embalaje, etiquetado, traslado, estudio y análisis del “material sensible significativo” hallado en el lugar de los hechos, relacionado o no con el hecho que se investiga, cumpliendo puntualmente con la cadena de custodia, sea en averiguaciones previas o en juicios de carácter penal o civil. En materia de prevención de accidentes o de delitos, la Ciencia Forense puede ir más allá al fundamentar la propuesta de medidas de prevención en los resultados de las investigaciones. Simonin resume que la ciencia forense es el estudio de la aplicación de la ciencia a los fines del derecho. La Ciencia Forense no se circunscribe al estudio de la muerte o de la violencia que la produjo, sino que bajo el método científico y los avances tecnológicos de las disciplinas investiga todo el material sensible significativo que rodea a los hechos en la comisión de delitos o desarrollo de accidentes, con la finalidad de articular indicios y autores, y aportar pruebas definidas que pudieran relacionarse con el hecho que se investiga. Lo anterior permite demostrar la existencia o no de hechos delictivos ante la autoridad correspondiente ─Agente del Ministerio Público, Fiscal del Sistema de Justicia Penal Acusatorio o Juez de Control─ para fincar responsabilidades al presunto o presuntos responsables. Con base en lo anterior, el ámbito de competencia del licenciado en Ciencia Forense se circunscribe a la investigación del ilícito para que la autoridad correspondiente lo califique como un acto delictivo o no delictivo. Éste en referencia a la conducta de un individuo que afecta a la sociedad, en contra de las normas protectoras de la paz, convivencia y seguridad jurídica; porque implica un daño o porque pone en peligro la vida, la integridad corporal o las posesiones de los individuos o de la sociedad. Se prevee que el egresado de la licenciatura que se propone sea un investigador profesional y científico que coadyuve a la impartición de justicia y al combate de la impunidad en la sociedad mexicana, con una visión integral del trabajo que desarrolla la autoridad judicial en el contexto de la Ciencia Forense. Identificación de Evidencia de ADN Existen pocas células suficientes para obtener ADN útil por lo tanto se debe ser muy cuidadoso en su recolección. Es importante recordar que el hecho de no poder ver las manchas no significa que no sean suficientes para un análisis. Dichas muestras pueden colocar a un individuo en la escena del crimen, en una casa, o en un cuarto en el que el sospechoso declaró no haber estado; puede refutar una declaración de auto-defensa y poner un arma en la mano del sospechoso; puede dar infinidad de pistas clave para la resolución de un caso. La siguiente es una tabla de identificación de ítems donde se encuentra evidencia comúnmente, su posible ubicación y la fuente biológica conteniendo las células. Evidencia Posible Ubicación de laFuente de ADN Evidencia Bate de baseball o armaEn el extremo del mango Transpiración; piel; sangre; similar tejido. Sombrero; máscara En el interior Transpiración; pelo; caspa. Anteojos Partes de nariz u orejas; lente Transpiración; piel Tejido facial; algodón superficie Mucosidad; sangre; transpiración; semen; cera del oído. Ropa sucia superficie Sangre; transpiración; semen Escarbadientes puntas Saliva Cigarrillo fumado Colilla de cigarrillo Saliva Estampilla o sobre Área lamida Saliva Cinta; ligadura Por dentro/fuera Piel; transpiración Botella; lata; o vidrio Lados; boca Saliva; transpiración Preservativo usado Superficie interna y externa Semen; células vaginales o rectales Sábana, frazada o cubresuperficie Transpiración; pelo; semen; almohada orina; saliva Balas superficie Sangre, tejido Marca de mordedura Piel de una persona o ropa Saliva Uñas, o fragmentos de uñas raspaduras Sangre; transpiración; tejido INDIVIDUALIZACIÓN DE LAS MUESTRAS BIOLÓGICAS En una primera fase se deberá aislar la molécula completa, posteriormente sólo estudiaremos ciertas regiones de ella, concretamente las zonas más polimórficas. La analítica de ADN se realiza en cuatro fases: Extracción de ADN: consiste en separar la molécula de ADN del resto de componentes celulares. La duración de este proceso depende del tipo de resto biológico que se analice, por ejemplo en las muestras de sangre o de saliva el proceso de extracción es más rápido que a partir de un resto óseo o dentario donde el ADN es menos accesible. Cuantificación de ADN: se realiza para saber qué cantidad de ADN se ha logrado aislar y en qué estado se encuentra (completo o roto). Amplificación de ADN: consiste en copiar muchas veces el fragmento concreto de ADN que queremos estudiar para obtener una cantidad adecuada que nos permita su detección, esto se lleva a cabo por PCR. Detección del producto amplificado o tipaje: esta es la fase final del análisis y nos permite caracterizar y clasificar los fragmentos de ADN estudiados en cada muestra para diferenciar unas de otras. CRIMINALÍSTICA Desde siempre el delito ha venido acompañado de la necesidad de investigarlo, de aclararlo, de buscar y de castigar al culpable. Se puede definir criminalística como la ciencia aplicada que estudia científicamente los indicios y las evidencias con el objeto de convertirlos en pruebas para permitir la identificación de las víctimas y de los delincuentes y esclarecer las circunstancias de un presunto delito. Muestras dubitadas e indubitadas Las muestras con las que se trabaja en criminalística se pueden clasificar en dos tipos: Muestras dubitadas o evidencias: son restos biológicos de procedencia desconocida, es decir, no se sabe a quién pertenecen (por ejemplo las muestras recogidas en la escena del delito o de un cadáver sin identificar). Los tipos de muestras dubitadas más frecuentemente analizadas por técnicas genético moleculares son: sangre (habitualmente en forma de mancha), semen (lavados vaginales o manchas sobre prendas de la víctima), saliva (colillas de cigarrillo, chicles, sobres y sellos), pelos, uñas, tejidos blandos, restos óseos y dentarios (estos últimos relacionados fundamentalmente con la identificación de cadáveres). Muestras indubitadas o de referencia: son restos biológicos de procedencia conocida, es decir, se sabe a quién pertenecen (por ejemplo la sangre tomada de un cadáver identificado, o las muestras tomadas a familiares de un desaparecido). El tipo de muestras indubitadas más habituales son sangre y saliva (frotis bucal). Para la genética forense, son de interés los denominados indicios biológicos que son los que contiene ADN, y por ello se definen como “toda sustancia líquida o sólida que provenga directamente del cuerpo humano o que haya estado en contacto con el mismo, y en cuya superficie o interior pueda haber restos de células”. Algunos ejemplos de indicios biológicos obtenidos en la escena del crimen son: sangre, semen, pelos, saliva, tejidos blandos, huesos y dientes, orinas, heces, sudor, etc. En cuanto a los indicios no biológicos, algunos ejemplos son: fibras y tejidos, restos de pólvora y material de disparos, restos de tierra, semillas, plantas y hierbas, tinta pintura, madera, material de engrase, etc. Análisis de muestras biológicas Sangre: se puede encontrar bien en estado líquido o en forma de mancha. La sangre líquida bien conservada no ofrece ningún tipo de problema, pero es frecuente que al laboratorio llegue sangre putrefacta bien porque se ha estropeado durante el transporte o bien porque pertenece a un cadáver en el cual se ha iniciado la descomposición. Para evitar el primer problema es conveniente realizar una mancha sobre una gasa antes de proceder al transporte de la muestra y para el segundo hay que tratar de buscar otra muestra para el análisis, bien sea un tejido blando, uñas, o un resto óseo, dependiendo del estado de conservación del cuerpo. Por el contrario, la sangre en forma de mancha se conserva más fácilmente y puede analizarse tras varios años si las condiciones de secado fueron adecuadas. Quizás las manchas sobre cueros, maderas tratadas, restos vegetales y tierras sean de las más críticas pues estos materiales tienen diferentes grados de absorción y en ellos se encuentran presentes gran cantidad de inhibidores de la PCR como los taninos, que impiden que la reacción funcione. Para detectar muestras de sangre en la escena de una agresión, se utilizan una serie de métodos como: colorimetría (detección mediante oxidasas), cristalografía, quimioluminiscencia (mediante luminol), inmunocromatografía, etc. Saliva: estas muestras no suelen presentar problemas en la analítica de ADN. Suelen llegar al laboratorio en forma de mancha, sobre filtros de cigarrillo, sellos, chicles o prendas o bien en otros soportes como vasos, botellas o huesos de fruta. Se detectan mediante alfa-amilasa. Esperma: se recoge en los casos de agresiones sexuales. El principal problema es que además de los espermatozoides del agresor se suele encontrar las células del epitelio vaginal de la víctima. Por ello, a la hora de analizar estas muestras aparece una mezcla de perfiles genéticos, pero como el perfil genético de la víctima si lo conocemos podemos determinar cuál es el del agresor. Pelos: estas muestras requieren un análisis microscópico previo a la analítica molecular con el fin de determinar el tipo de análisis que es posible en ellos (estudios de ADN nuclear o de ADN mitocondrial) además de otras características importantes. Con el análisis microscópico se determinan, entre otros, los siguientes puntos: - Si se trata de pelos de origen animal o humano. - Si se trata de pelos completos (con bulbo) o de fragmentos de pelos (sin bulbo). En el caso de fragmentos de pelos los estudios a realizar son los de ADN mitocondrial como veremos en el siguiente apartado. En el caso de los pelos con bulbo se puede determinar en qué fase vital se encuentra éste. En los pelos con bulbo telogénico (en fase de caída) se suele realizar análisis de ADN mitocondrial y en los pelos con raíz anagénica (en fase de crecimiento) se puede realizar un análisis de ADN nuclear. Tejidos: las muestras suelen estar relacionadas sobre todo con la identificación de cadáveres en los que han comenzado los procesos de putrefacción. Los mejores resultados se obtienen con músculo esquelético tomado de las zonas que se estén más preservadas de la putrefacción. Huesos y dientes: estas muestras se obtienen de los cadáveres ya esqueletizados y son las más problemáticas en cuanto a identificación genética. Los huesos largos (fémur o húmero) y los molares (muelas) son las muestras que ofrecen mejores resultados. La extracción de ADN a partir de este tipo de restos es más larga y costosa que en los casos anteriores. Exclusión e inclusión Una vez que se ha estudiado todo lo anterior y se han obtenidos los resultados de ADN de las muestras y se tienen supuestos sospechosos, hay que decidir si el sospechoso es el verdadero autor del crimen o sin embargo se ha inculpado a la persona equivocada. Para ello se definen dos conceptos: Exclusión e inclusión. En las muestras tomadas del supuesto criminal como en las muestras recogidas en la escena del crimen se han analizado una serie de loci polimórficos, los mismos en los dos casos: Si al analizar los loci de ambos, tanto en la muestra problema como en el sospechoso aparecen los mimos alelos, se habla de inclusión, pero esta inclusión nunca es del 100% ya que se está trabajando con probabilidades. Estas probabilidades hacen referencia a las frecuencias de los alelos en la población. Así, para obtener este valor hay que multiplicar la frecuencia de que los dos alelos del locus 1 se den en la población, por la frecuencia de que los alelos del locus 2 se encuentren en la población, y así sucesivamente hasta multiplicar todas las frecuencias de los loci polimórficos analizados. Este valor será un número muy pequeño, por lo que para dar el resultado final se hace una conversión. Por convenio, está establecido que si tras hacer la conversión se obtiene una probabilidad del 99.73% y todos los alelos de todos los loci coinciden, se estará en lo cierto con una probabilidad altísima si se inculpa al presunto sospechoso como verdadero sospechoso. Si por el contrario, al analizar los loci de ambos, hay algún alelo en el que la muestra problema y sospechoso no coinciden, aunque sólo sea uno, se habla de exclusión, y en este caso sí es del 100%, es decir, que se tiene certeza absoluta cuando se rechaza al supuesto sospechoso como verdadero autor y por tanto hay que seguir buscando al verdadero sospechoso. Análisis de polimorfismos de ADN mediante PCR El análisis de polimorfismos de ADN mediante la reacción en cadena de la polimerasa (PCR) solucionó muchos problemas y actualmente la mayoría de los vestigios biológicos de interés criminal se analizan utilizando esta técnica. La PCR es una técnica de amplificación in vitro de pequeños segmentos de ADN con la que a partir de una cadena única se pueden hacer millones de copias, de modo que el producto amplificado puede ser fácilmente analizado, incluso sin recurrir al uso de sondas. Básicamente la PCR consiste en una serie de ciclos que se realizan automáticamente en un termociclador (baño termostático que proporciona temperaturas muy exactas a gran velocidad). Cada ciclo consta de tres etapas: desnaturalización, acoplamiento (“annealing”) de los cebadores(“primers”) y extensión, esto es creación de una cadena complementaria de ADN con una polimerasa termoestable (Taq polimerasa). ANEXOS ¿Para qué sirve el ADN en la investigación forense? El ADN se ha convertido en una de las herramientas más precisas para la identificación de individuos y es utilizado por miles de laboratorios fundamentalmente en: (1) La identificación de vestigios biológicos de interés en la investigación criminal de muy diversos delitos. (2) La identificación de restos humanos y personas desaparecidas. (3) La investigación biológica de la paternidad y otras relaciones de parentesco. ¿Qué es un perfil genético? Un «perfil genético» no es más que un patrón de fragmentos cortos de ADN ordenados de acuerdo a su tamaño que son característicos de cada individuo. Dicho patrón es fácilmente convertible en un sencillo código numérico muy fácil de almacenar y comparar con un alto poder de discriminación. La mayoría de los perfiles de ADN que se obtienen en los laboratorios forenses se basan en el estudio simultáneo de un conjunto de 10 a 17 regiones cortas del ADN nuclear, denominadas Short Tándem Repeats (STRs), que están distribuidas en los distintos cromosomas humanos y que presentan una alta variabilidad de tamaño entre los distintos individuos. Se trata de pequeñas regiones de 100-500 nucleótidos compuestas por una unidad de 4-5 nucleótidos que se repite en tándem "n" veces. El número de veces que se repite esta unidad de secuencia presenta una gran variabilidad entre los individuos de una población. Como estos perfiles tienen una procedencia compartida al 50% por el padre y la madre, se pueden utilizar también en la investigación biológica de la paternidad. ¿Cuántas clases de ADN se utilizan en el ámbito forense? Además de este ADN autosómico heredado al 50% de nuestros progenitores, otros dos tipos de ADN humano tienen gran interés en las investigaciones forenses. El ADN mitocondrial (mtADN) es un pequeño genoma localizado dentro de las mitocondrias que es heredado por vía materna. Todos los miembros de un mismo grupo familiar que compartan esta línea tendrán el mismo mtADN. Dado que la variabilidad genética de su secuencia es menor que la del genoma nuclear, el perfil genético que se obtiene presenta un poder discriminación mucho más limitado. Por otro lado, su mayor ventaja es que se encuentra en un gran número de copias en cada célula (hay entre 100 y 1000 copias de mtADN por una de genoma nuclear) y, por tanto, se puede detectar en muchos casos en los que no es posible la obtención de ADN nuclear (p.ej: tallos de pelos, restos óseos antiguos,...). El estudio del ADN del cromosoma Y, implica que todos los miembros varones de un grupo familiar que compartan la línea paterna tienen el mismo holotipo de cromosoma Y. El análisis de sus regiones STR (Y-STR) permite obtener un patrón genético específico del varón, lo que resulta muy útil en la identificación genética de restos de semen y otros fluidos biológicos en los casos de agresiones sexuales a mujeres. ¿Cuáles son los pasos del análisis y las técnicas moleculares empleadas? Tras la recogida de las muestras y el envío al laboratorio, los genetistas forenses proceden a la obtención de los perfiles genéticos de las muestras debitadas (sangre, semen, saliva, orina, pelos, tejidos, restos celulares en objetos usados o tocados) y las muestras de referencia (normalmente una toma bucal mediante hisopo o una muestra de sangre) utilizando los siguientes procedimientos: Extracción y purificación del ADN. Cuantificación del ADN humano obtenido para asegurar así la obtención de perfiles de alta calidad y reproducibilidad. Amplificación y marcaje fluorescente de las regiones variables de ADN de interés (STR, mtDNA, Y-STR) utilizando la reacción en cadena de la polimerasa (PCR). Separación por electroforesis y detección de los segmentos de ADN marcados generados mediante PCR. Comparación de los perfiles genéticos obtenidos e interpretación de los resultados ¿Qué son las bases de datos de ADN forense? De especial importancia son las bases de datos de ADN con fines de investigación criminal, en las que los perfiles de ADN anónimos obtenidos de vestigios biológicos de la escena del delito pueden ser comparados de forma sistemática entre sí, así como con los obtenidos de individuos que son sospechosos o condenados en una causa penal, ofreciendo una herramienta muy eficaz de identificación humana con una alta potencialidad para reducir el índice de criminalidad de determinados delitos sin autor conocido y, especialmente, aquellos en los que existe una alta reincidencia. La utilización de estas bases de datos cobra también una vital importancia en los procesos de identificación de desaparecidos en conflictos bélicos o en grandes catástrofes que afectan a un gran número de víctimas cuyo estado de conservación puede limitar, o incluso imposibilitar, la identificación de los cuerpos por los métodos forenses convencionales. Los perfiles genéticos obtenidos pueden ser comparados de forma sistemática con un índice de perfiles de referencia de familiares (saliva o sangre), u obtenidos de muestras ante-mortem de las víctimas (Cepillos de dientes, peines,...). ¿Qué fiabilidad tiene una prueba de ADN? En la tabla se recoge la probabilidad de coincidencia al azar promedio (Random Match probability) entre individuos no relacionados genéticamente dependiendo del tipo de ADN estudiado. Obviamente, cuanto más baja es la probabilidad de encontrar otro perfil igual entre individuos no relacionados genéticamente, mayor es el poder de discriminación. Recuérdese que tanto mtADN como Cromosoma Y permiten diferenciar realmente linajes maternos y paternos, respectivamente. ¿Quién realiza la prueba en nuestro país? En España existen en la actualidad alrededor de 20 laboratorios acreditados para la realización de análisis de ADN en el ámbito judicial. La mayoría son laboratorios públicos pertenecientes a diversas instituciones del ámbito estatal (Comisaría general de Policía Científica, Servicio de Criminalística de la Guardia Civil, Instituto Nacional de Toxicología y Ciencias Forenses) o autonómico (Unidad de Policía Científica de la Ertzaintza y División de Policía Científica de los Mossos de Esquadra). Todos estos laboratorios contribuyen mandando sus resultados a la Base de Datos Nacional de Perfiles de ADN, en la que en la actualidad hay alrededor de 200.000 perfiles genéticos registrados, y se utiliza el sistema informático CODIS del Departamento de Justicia de EEUU. Figura. Perfil genético de 15 marcadores STR Autosómicos y el marcador de sexo Amelogenina (AMG). BIBLIOGRAFIA http://www.sebbm.es/ES/divulgacion-ciencia-para-todos_10/adn-forense--investigacioncriminal-y-busqueda-de-desaparecidos_604 http://www.unicauca.edu.co/biotecnologia/ediciones/vol2/Art27.pdf http://es.wikipedia.org/wiki/Gen%C3%A9tica_Forense http://cdigital.udem.edu.co/TESIS/CD-ROM26512007/08.Capitulo3.pdf http://www.definicionabc.com/ciencia/adn.php#ixzz2BTuU6pzU http://www.portalplanetasedna.com.ar/genoma.htm http://cienciaforense.com/pages/toxicologia/aplicacionforesenadn.htm http://guzmancarlosalberto.blogspot.com/2011/06/el-adn-en-su-aplicacion-forense.html http://www.bimodi.com/blog/pruebas-de-adn-en-la-medicina-forense