Subido por nickanye007

fórmulas importantes

Anuncio
Fórmulas de Integración
∫ 0 𝑑𝑥 = 𝐶
∫ 𝑘𝑑𝑥 = 𝑘𝑥 𝐶
∫ 𝑘𝑓 (𝑥) 𝑑𝑥 = 𝑘 ∫ 𝑓 (x)𝑑𝑥
∫[ 𝑓(𝑥) ± 𝑔 (𝑥) ] 𝑑𝑥 = ∫[ 𝑓(𝑥)𝑑𝑥 ± 𝑓 𝑔 (𝑥) 𝑑𝑥
∫ 𝑥 𝑛 𝑑𝑥 =
𝑥 𝑛+1
𝑛+1
+C,𝑛± − 1
∫ cos 𝑥𝑑𝑥 = 𝑠𝑒𝑛𝑥 + 𝐶
∫ 𝑠𝑒𝑛𝑥𝑑𝑥 = - cos 𝑥 + 𝐶
∫ 𝑠𝑒𝑐 2 𝑥𝑑𝑥 = tan 𝑥 + 𝐶
∫ 𝑠𝑒𝑐 𝑥 𝑡𝑎𝑛 𝑥𝑑𝑥 = 𝑠𝑒𝑐 𝑥 + 𝐶
∫ 𝑐𝑠𝑒 2 𝑥𝑑𝑥 = - cot 𝑥 + 𝐶
∫ 𝑐𝑠𝑒 𝑥 𝑐𝑜𝑡 𝑥𝑑𝑥 = - 𝑐𝑠𝑐 x + 𝐶
∫ 𝑡𝑎𝑛 𝑢𝑑𝑢 = 𝐼𝑛|𝑠𝑒𝑐 𝑢| + 𝐶
∫ cot 𝑢𝑑𝑢 = 𝐼𝑛|𝑠𝑒𝑛𝑢| + 𝐶
∫ 𝑠𝑒𝑐 𝑢𝑑𝑢 = 𝐼𝑛|𝑠𝑒𝑐 𝑢 + 𝑡𝑎𝑛 𝑢| + 𝐶
∫ csc 𝑢𝑑𝑢 = 𝐼𝑛|𝑐𝑠𝑐 u + 𝑐𝑜𝑡 u| +𝐶
∫ 𝑢𝑑𝑢 = 𝑢𝑣 - ∫ 𝑣𝑑𝑢
1
∫ 𝑢𝑛 𝑑𝑢 = 𝑛+1 𝑢𝑛+1 + C, n ± 1
∫
𝑑𝑢
𝑢
== 𝐼𝑛|u|+ C
∫ 𝑒 ′′ = 𝑒 ′′ + 𝐶 ′′
∫ 𝑎′′ 𝑑𝑢 =
1
𝐼𝑛 𝑎
𝑎′′ + 𝐶
1
∫ 𝑥 𝑑𝑥 = 𝐼𝑛 + 𝐶
𝑑𝑢
𝑢
∫ √𝑎2−𝑢2 = 𝑠𝑒𝑛−1 𝑎 + 𝐶
𝑑𝑢
𝑢
∫ √𝑎2−𝑢2 = 𝑡𝑎𝑛−1 𝑎 + 𝐶
𝑑𝑢
𝑢
∫ √𝑎2−𝑢2 = 𝑠𝑒𝑐 −1 𝑎 + 𝐶
𝑑𝑢
1 𝑢+𝑎
∫ √𝑎2−𝑢2 = 𝑎|𝑢−𝑎| + 𝐶
𝑑𝑢
1
𝑢−𝑎
∫ 𝑢2 −𝑎2 = 2𝑎 𝐼𝑛 |𝑢+𝑎| + 𝐶
Integrales Trascendentes
1
𝑑𝑥
∫ 𝑥 𝑑𝑥 = ( 𝑥 ) = 𝐼𝑛 |𝑥| + 𝐶
𝑑𝑥
∫ 𝑥 𝐼𝑛 𝑎 = 𝑙𝑜𝑔 𝑎𝑥 + 𝐶
𝑎𝑥
𝑑 ∫ 𝑎 𝑥 𝑑𝑥 = 𝐼𝑛 𝑎 + 𝐶
∫ 𝑒 𝑥 𝑑𝑥 = 𝑒 𝑥 + 𝐶
Integrales de Funciones Trigonométricas Inversas
∫ 𝑠𝑒𝑛−1 𝑢𝑑𝑢 = 𝑢𝑠𝑒𝑛 −1 u + √1 − 𝑢2 + 𝐶
∫ 𝑐𝑜𝑠 −1 𝑢𝑑𝑢 = u 𝑐𝑜𝑠 −1 u - √1 − 𝑢2 + 𝐶
1
∫ 𝑡𝑎𝑛−1 𝑢𝑑𝑢 = u - 2 𝐼𝑛 ( 1+ 𝑢2 + 𝐶
∫ 𝑠𝑒𝑐 −1 𝑢𝑑𝑢 = 𝑢 𝑠𝑒𝑐 −1 – 𝐼𝑛 |𝑢|+ √𝑢2 + 1 + 𝐶
∫ 𝑐𝑠𝑐 −1 𝑢𝑑𝑢 = 𝑢 𝑐𝑠𝑐 −1 u - 𝑖𝑛|𝑢 + √𝑢2 – 1 | + 𝐶
1
∫ 𝑐𝑜𝑡 −1 𝑢𝑑𝑢 = u 𝑐𝑜𝑡 −1 u + 2 𝐼𝑛( 1 + 𝑢2 ) + 𝐶
Integrales de Funciones Hiperbólicas
Inversas:
∫√
𝑑𝑢
𝑢2 ± 𝑎 2
= In ( u + √𝑢2 ± 𝑎2 ) + 𝐶
1 𝐼𝑛 𝑎 + √𝑎2 ± 𝑢2
𝑑𝑢
∫ 𝑢 √𝑎2± 𝑢2 = 𝑎
∫
𝑑𝑢
𝑎 2 − 𝑢2
(𝑢)
1
+ 𝐶
𝑎+𝑢
= 2𝑎 𝐼𝑛 |𝑎−𝑢| + 𝐶
Directas
∫ 𝑠𝑒𝑛 ℎ𝑥𝑑𝑥 = 𝑐𝑜𝑠ℎ 𝑥 + 𝐶
∫ cosh 𝑥𝑑𝑥 = 𝑠𝑒𝑛ℎ𝑥 + 𝐶
∫ 𝑡𝑎𝑛ℎ 𝑥𝑑𝑥 = 𝐼𝑛|𝑐𝑜𝑠ℎ x| + 𝐶
∫ 𝑐𝑜𝑡ℎ 𝑥𝑑𝑥 = 𝐼𝑛 |𝑠𝑒𝑛ℎ𝑥| + 𝐶
∫ 𝑠𝑒𝑐 ℎ𝑥𝑑𝑥 =𝑡𝑎𝑛−1 |𝑠𝑒𝑛ℎ𝑥| + 𝐶
𝑥
∫ 𝑐𝑠𝑐 ℎ𝑥𝑑𝑥 = 𝐼𝑛|𝑡𝑎𝑛ℎ 2|+ 𝐶
∫ 𝑠𝑒𝑐 ℎ𝑥 tanh 𝑥𝑑𝑥 = sec hx + 𝐶
1
𝑥
∫ 𝑠𝑒𝑛ℎ2 𝑥𝑑𝑥 = 4 senh2x - 2 + 𝐶
∫ 𝑠𝑒𝑐 ℎ2 𝑥𝑑𝑥 = 𝑡𝑎𝑛ℎ 𝑥 + 𝐶
∫ 𝑐𝑠𝑐 ℎ2 𝑥𝑑𝑥= - 𝑐𝑜𝑡ℎ + 𝐶
∫ 𝑐𝑠𝑐 ℎ𝑥 coth 𝑥 = 𝑐𝑠𝑐 ℎ𝑥 + 𝐶
Integración Por Sustitución Trigonométrica
Si la Integral Contiene
Se Sustituye
Utiliza la Identidad
√𝑎2 − 𝑢2
u = asen θ
1 - 𝑠𝑒𝑛2 = 𝑐𝑜𝑠 2 θ
√𝑎2 − 𝑢2
u = a tan θ
1 + 𝑡𝑎𝑛2 θ 𝑠𝑒𝑐 2 θ
√𝑢2 − 𝑎2
u = a 𝑠𝑒𝑐 θ
𝑠𝑒𝑐 2 – 1 = 𝑡𝑎𝑛2 θ
Formulas de Derivación
u= 𝑓 (𝑥), 𝑣 = 𝑔(𝑥), 𝐶 𝑒𝑠 𝑢𝑛𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 𝐷, 𝐶 = 0
𝑑
𝑑𝑥
𝑑
𝑑𝑥
𝑑
𝑑𝑥
𝑑
𝑑𝑥
[𝑘𝑥] = 𝑘
[𝑘𝑓(𝑥)] = 𝑘𝑓 (𝑥)
[𝑓(𝑥) ± 𝑔(𝑥)] = 𝑓′(𝑥) ± 𝑔′(𝑥)
[𝑥 ′′ ] = 𝑛𝑥
𝐷, (𝑢 + 𝑣) = 𝐷, 𝑢+𝐷, 𝑣
𝐷, (𝑢𝑣) = 𝑢𝐷, 𝑣 + 𝑣𝐷, 𝑢
𝑢
𝐷, 𝑣 =
𝑣𝐷,𝑢−𝑢𝐷,𝑣
𝑣 2
𝐷, 𝑓(𝑔)𝑥)) = 𝑓'(𝑔(𝑥))𝑔'(𝑥)
𝐷, 𝑢𝑛 = 𝑛𝑢𝑛−1 D,u
𝐷,𝑒 𝑢 =𝑒 𝑢 D, u
𝐷, 𝑎𝑢 = 𝑎𝑢 𝐼𝑛𝑎𝐷, 𝑢
1
𝐷, In |u|= 𝑢 𝐷, 𝑢
1
𝐷, 𝑙𝑜𝑔𝑎 |u|= 𝑢 𝐼𝑛 𝑎 𝐷, 𝑢
𝐷, 𝑠𝑒𝑛𝑢 = 𝑐𝑜𝑠𝑢𝐷, 𝑢
𝐷, 𝑐𝑜𝑠𝑢= -𝑠𝑒𝑛𝑢𝐷, 𝑢
𝐷, 𝑡𝑎𝑛𝑢= 𝑠𝑒𝑐 2 𝑢𝐷, 𝑢
𝐷, 𝑐𝑜𝑡𝑢= -𝑐𝑠𝑐 2 𝑢𝐷, 𝑢
𝐷, 𝑠𝑒𝑐𝑢= 𝑠𝑒𝑐𝑢 𝑡𝑎𝑛𝑢𝐷, 𝑢
𝐷, 𝑐𝑠𝑐𝑢= -𝑐𝑠𝑐𝑢 𝑐𝑜𝑡𝑢𝐷, 𝑢
1
1) 𝐷,𝑠𝑒𝑛−1 u= √1−𝑢2 𝐷, 𝑢
−1
2) 𝐷, 𝑐𝑜𝑠 −1 u= 1−𝑢2 𝐷, 𝑢
1
3) 𝐷, 𝑡𝑎𝑛−1 u = 1+𝑢2 𝐷, 𝑢
4) 𝐷, 𝑠𝑒𝑐 −1 u =
1
𝑢√𝑢2
𝐷, 𝑢
1
5) 𝐷𝑥 (𝑐𝑜𝑡)−1 u = - 1+𝑢2 . u'
6) 𝐷𝑥 (𝑐𝑠𝑐)−1 u = -
Identidades Básicas
1
𝑆𝑒𝑛𝑥 = 𝑐𝑠𝑐 𝑥
1
𝐶𝑜𝑠 𝑥 = 𝑠𝑒𝑐 𝑥
1
𝑆𝑐𝑐 𝑥 = 𝑐𝑜𝑠 𝑥
𝑠𝑒𝑛𝑥
𝑇𝑎𝑛 𝑥 = 𝑐𝑜𝑠 𝑥
𝑐𝑜𝑠 𝑥
𝐶𝑜𝑡 𝑥 = 𝑠𝑒𝑛𝑥
𝐶𝑠𝑐 𝑥 =
1
𝑠𝑒𝑛𝑥
1
𝑢√𝑢2 −1
. u'
𝑠𝑒𝑛2 θ 𝑐𝑜𝑠 2 = 1
𝑠𝑒𝑛2 θ= 1 - 𝑐𝑜𝑠 2 θ
𝑐𝑜𝑠 2 θ= 1 - 𝑠𝑒𝑛2 θ
1 + 𝑡𝑎𝑛2 θ 𝑠𝑒𝑐 2 θ => 𝑡𝑎𝑛2 θ = 𝑠𝑒𝑐 2 θ – 1
1 + 𝑐𝑜𝑡 2 θ = 𝑐𝑠𝑐 2 θ=> 𝑐𝑜𝑡 2 θ = 𝑐𝑠𝑐 2 θ – 1
𝑆𝑒𝑛2𝑥= 2𝑠𝑒𝑛𝑥𝑐𝑜𝑠 𝑥
Cos2 θ = 2 𝑠𝑒𝑛2 θ – 1
Cos 2 θ = 1 – 2 𝑐𝑜𝑠 2 θ
2𝑡𝑎𝑛θ
Tan 2 θ = 1+𝑡𝑎𝑛2 θ
2 𝑐𝑜𝑠 2 θ = 1- cos 2 θ
𝑐𝑜𝑠 2 θ =
1 − 𝑐𝑜𝑠 2 θ
2
Identidades Trigonométricas y Funciones
Sen θ =
Cos θ =
𝐶.𝑂
𝐻
𝐶.𝐴
𝐻
𝐶.𝑂
Tan θ = 𝐶.𝐴
𝐻
Csc θ = 𝐶.𝑂
𝐻
Sec θ = 𝑆.𝐴
𝐶.𝐴
Cot θ = 𝐶.𝑂
1
𝑠𝑒𝑛θ
= csc θ
Sen θ =
1
𝑐𝑜𝑠 θ
1
𝑐𝑠𝑐 θ
= sec θ
1
Cos θ = 𝑠𝑒𝑐 θ
1
Tan θ = 𝑐𝑜𝑡 θ
Descargar