Subido por luis_godoy_rojas

1978WestinghousePowerSemiconductorUsersManualandDataBook.179556255

Anuncio
Westinghouse Power Semiconductor
User's Manual and Data Book
Assemblies/Rectifiers/Thyristors/Transistors
@
POWER SEMICONDUCTOR
USER'S MANUAL
AND
DATA BOOK
Editor: Woodson J. Savage III
WESTINGHOUSE ELECTRIC CORPORATION
SEMICONDUCTOR DIVISION
YOUNGWOOD, PENNSYLVANIA 15697
ACKNOWLEDGEMENTS
This book is the result of the efforts of a number of dedicated individuals. Contributing authors include:
J.D.
R.L.
R.F.
P.J.
J.F.
Balenovich
Bonkowski
Chick
DeIPalazzo
Donlon
T.B. Geary
W.H. Karstaedt
R.J. Lambie
K.G. Longenecker
M. Morozowich
W.S. Przybocki
D.E. Rieth
G. M. Sherbondy
J.E. Steiner
K.S. Tarneja
It is hoped that the @Power Semiconductor User's Manual and Data Book will enable anyone using power
semiconductors to do so more effectively. Any suggestions on how future editions of this book can be improved to better serve your needs will be greatly appreciated.
Westinghouse Electric Corporation
Semiconductor Division
Youngwood,Pa.15697
January 1978
COPYRIGHT@ 1978 BY
WESTINGHOUSE ELECTRIC CORPORATION
All Rights Reserved
Information furnished in this book is believed to be accurate and reliable. However, Westinghouse can assume
no responsibility for its use, nor any infringements of patents, or other rights of third parties which may result
from its use. No license is granted by implication or other use under any patent or patent rights of
Westinghouse.
®
POWER SEMICONDUCTOR
USER'S MANUAL
Authors
R.S. Harm
H.R. Emerick
W.J. Savage
WESTI NGHOUSE ELECTRI C CORPORATION
SEMICONDUCTOR DIVISION
YOUNGWOOD, PENNSYLVANIA 15697
@ POWER SEMICONDUCTOR
USER'S MANUAL
TABLE OF CONTENTS
CHAPTER 1
1.
2.
3.
4.
5.
INTRODUCTION
Purpose.................................................................... 9
Power Semiconductor Overview ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9
@Power Semiconductor Product Line ...........•............................ 10
Importance of Power Semiconductors •....•............•..................... 11
Manufacturer/OEM/End User Relationship ................................... 12
CHAPTER 2
SELECTING THE PROPER POWER SEMICONDUCTOR FOR YOUR APPLICATION
1.
2.
3.
4.
Basic Semiconductor Parameters Defined .................................... 15
Confusing Terminology - Manufacturer Versus User Interpretation ..........• 18
How To Use The Westinghouse Data Book ................................... 19
Know Your Application Requirements .......................................• 19
CHAPTER 3
1.
2.
3.
4.
5.
6.
CHAPTER 4
1.
2.
3.
4.
5.
6.
7.
8.
9.
SEMICONDUCTOR PROCUREMENT
Spend Semiconductor Dollars Wisely ....•................................... 27
Evaluating A Power Semiconductor Supplier ................................. 28
Buyer's Checklist .•......................................................... 31
Entering An Order ...•...................................................... 31
In-Process Order Information ....•........................................... 32
Shipping Methods and Insurance ...........•................................ 38
STANDARD OPERATING PROCEDURES
FOR THE POWER SEMICONDUCTOR USER
Receiving ..•.................•.............................................. 41
Incoming Inspection ........................................................ 41
Claims ..........•............•............................................. 41
Installation, Mounting, and Cooling Considerations ........................... 42
Operating Power Semiconductor Equipment ................................. 43
Preventative Maintenance .......•............•.............................. 46
Trouble Shooting and Servicing ............................................. 47
Identification and Replacement .............................................. 52
Safety .........................•............................................ 55
7
CHAPTER 5
RELIABILITY
1. Understanding Semiconductor Reliability .................................... 57
2. Quality Control ............................................................. 63
3. Responsibilities .....................................•....................... 65
CHAPTER 6
1.
2.
3.
4.
APPENDIX
MANUFACTURING @ POWER
SEMI CONDUCTORS
Facilities ................................................................... 67
Product Breakthroughs ......•............................................... 68
Key Manufacturing Innovations .............................................. 72
Technology Leadership ..................................................... 75
SEMICONDUCTOR GLOSSARY
Begins on page ............•..............•.................................... 77
INDEX
Begins on page ................................................................ 79
Jill'
1
INTRODUCTION
1. PURPOSE
The purpose of this book is to enable persons in any job function (Le. Purchasing, Design, Production,
Engineering, Plant operation and maintenance, Quality Control, Marketing, etc.) to deal with power semi conductors more effectively, regardless of his or her technical background or experience level. Every effort has
been made to present this material ina straightforward, easy-to-use format so that the reader can readily apply
many of these practical suggestions and ideas directly to his or her job. The reader should note that, although
Westinghouse forms and procedures are highlighted in the User's Manual, the information being presented is
generally applicable to any manufacturer of power semiconductors.
The term "user" in this book refers to both the Original Equipment Manufacturer (OEM) who manufactures equipment utilizing power semiconductors and the End User who purchases, uses, and maintains this
equipment.
Engineering terms and other "jargon" perculiar to power semiconductors are used only when needed in
the User's Manual and are usually defined within the text or in the appendix. Note: No effort is made in this book
to "educate" the reader on how a power semiconductor "operates" in a circuit or how a power semiconductor
"works". There are many fine texts on these subjects for those persons interested in these engineering and
physics phenomena.
The User's Manual and Data Book is actually two books in one! A brief description of howthesetwo books
are organized:
The User's Manual is arranged in a somewhat natural sequence of events-Selecting the Proper Power
Semiconductor, Semiconductor Procurement, Incoming Inspection, Testing, Device Installation, Equipment
Operation, Preventative Maintenance, Troubleshooting, Replacements, Safety, Reliability and Quality Control
plus a special section on the manufacture of @ Power Semiconductors. Sections can be read independently
or in any desired sequence depending upon the reader's interest and need.
The Data Book offers detailed specifications on the complete line of Westinghouse Power Semiconductors. The General section includes a master cross reference type number index by JEDEC 1N, 2N, and 3N part
numbers and industry alpha and numeric part numbers. Using this index, the reader can rapidly locate any
power semiconductor part number for which Westinghouse offers an exact or suggested replacement along
with the page number of the data sheet for the recommended Westinghouse device. I n addition, this section
contains the@Selling Policy, Warranty I nformation, Delivery Lead Time Guide Lines, Military/Hi-Rei Product
Capabilities, General Application Data Sheets, a Quick Service Directory listing key contacts for special
assistance, and a complete listing of@Semiconductor Sales Offices and Authorized@Semiconductor Distributors. The remaining four product sections-Assemblies, Rectifiers Thyristors (SCR's and RBDT), and
Transistors each are subdivided into their respective major product subgroups. Easy-ta-use Product Capability Graphs and Product Selector Guides are provided at the beginning of each product section to enable the
reader to quickly locate technical data for any given product.
2. POWER SEMICONDUCTOR OVERVIEW
Westinghouse is a world leader in the manufacture of high power semiconductors. In 1952, Westi nghouse
introduced the first silicon rectifier; in 1957, the first high voltage rectifier stack assemblies were introduced; in
1958, silicon transistors were added, followed by a line of SCR's in 1959. Fromthis infancy, the semiconductor
market has mushroomed into virtually every industrial, military, and consumer market. These markets include
steel mill drives, space vehicles, and calculators, to name just a few. Even though Westinghouse was a pioneer
in many areas of semiconductor development and currently holds basic patents used today by almost every
semiconductor manufacturer, the strategic decision was made to concentrate efforts in the power segment (1
ampere and above) of the semiconductor spectrum (see figure 1.1) with primary emphasis on the 40 ampere
and above market.
The semiconductor industry's business spectrum is not as homogeneous as one might expect. Each of
these power segments represent different technologies, industries, applications, and markets. One popular
9
Industry/Applications Spectrum
-----Power Semiconductors--------
o
1 Amp
40 Amp
100 Amp
3000 Amp
Figure 1.1 Semiconductor Business Spectrum
misconception about the semiconductor industry involves pricing. Integrated circuits, for example, have
generally exhibited tremendous price declines-often tenfold or more. People usually assume that since integrated circuits exhibit this type of falling price phenomenon so should all other semiconductors. A little
analysis wi II show why this theory does not hold. I ntegrated circuit prices, as well as all discrete product prices,
fluctuate with volume-not with time as many people mistakenly observe. Integrated circuits serve very high
volume markets and are made and tested with highly automated equipment. The power semiconductor market
(especially the higher power areas), by comparison, is a much smaller, lower volume market serving primarily
industry and military needs. These products are more custom made and tested to a customer's specification
than to common generic type number. Historically, power semiconductor prices did show modest declines as
new products were brought on the market initially at premium prices so the semiconductor manufacturers
could attempt to recoup the substantial R&D expenses necessary to develop these products. Now, however,
many new products-especially higher current and/or voltage extensions of existing products are priced more
consistent with prevailing market prices. Today, many power semiconductor types are in the mature stage of
their product life cycles. As a result, there are less cost reduction possi bilities to offsetthe ever increasing inflation caused by higher material, labor, and factory expense costs. Therefore, price trends on many power
semiconductors now and in the future will be upward instead of downward.
3. @ POWER SEMICONDUCTOR PRODUCT LINE
Westinghouse offers a comprehensive line of power semiconductors including rectifiers, thyristorsSCR's (silicon controlled rectifiers) and RBDT (reverse blocking diode thyristor), transistors, and assemblies.
• General Purpose Rectifiers
1-2200 Amperes
Up to 4KV
• Fast Recovery Rectifiers
6-1400 Amperes
Up to 3.2 KV
.2-5JLS
• Phase Control SCR's
10-1400 Amperes
Up to 3 KV
10
40-900 Amperes
Up to 2.2KV
• Fast Switching SCR's
10-80,us
• Reverse Blocking Diode Thyristor (RBDT)
22-80 Amperes
Up to 1 KV
2,000-4,000A/,us
• General Purpose Transistors
.5-15 Amperes
3D-150V
• High S.O.A. Transistors
1.5-25 Amperes
30-250V
• High Power Switching Transistors
50 Amperes
400-500V
Many of these products are available in a variety of packages including axial lead mount, diamond mount,
flat base, stud less, stud mount, and disc mount. All of these products are available mounted on air, oil, or water
cooled heat sinks in a variety of circuit configurations; these assemblies offer average current ratings from .5
amperes to 10,000 amperes or more with voltage capabilities as high as 688 KV for some high voltage stack
designs.
The @ Data Book covers the vast majority of products and assemblies currently available; however, increased current ratings, voltage ratings, and/or improved turn-off and reverse recovery times will continueto
evolve as a result 6f new product developments and improved production yields. Therefore, the reader is encouraged to contact a Westinghouse sales representative regarding any application(s) that might fall into
any of these "fringe" areas.
4. IMPORTANCE OF POWER SEMICONDUCTORS
Power semiconductors have grown from laboratory curiosities to brute-force industrial components
which have become competitive necessities in the marketplace. The potential advantages of solid-state power
electronics over electromechanical equipment are well known: increased reliability and service life, reduced
size and maintenance. In some cases, there is a sizeable cost advantage, while in other cases the performance
capabilities can be achieved in no other way. Table 1.1 shows a complete matrix of industrial applications that
can use Westinghouse Power Semiconductors (See page 13).
At least three current trends indicate that power semiconductors will become even more important to the
user:
1. The growing shortage of oil and gas and the growing environmental concern will stimulate the utilization of clean electrical power in countless new areas now predominantly served by other forms of energy.
2. Efficiency in the manipulation and control of electrical power will have increasing priority as the rising
cost of power forces the abandonment of techniques which are "short-term cheap but long-term wasteful."
3. The evolution of present applications and the creation of new applications will cause increasing
demands for speed, precision, and reliability in power control that can be satisfied by no other technology.
For these reasons, power semiconductors are penetrating many new application areas and outmoding
many traditional design approaches. Product engineering departments accustomed to well established
design procedures involving Ward-Leonard drives, relay logic, or selenium rectifiers are faced with extinction overnight if they cannot adapt to the higher levels of complexity and analytical sophistication made possible and made necessary by solid-state electronics. While many technologies evolve over a period of decadesleaving adequate reaction time for business planning-this is not usually the case with power electronics.
Solid state technology typically moves from an insignificant share of a market to a dominant share in a period
of only 2 to 4 years. The universal S-curve showing the capture of a market by a product which takes advantage
of power electron ics is shown in Figure 1.2. Thus, a company which does not keep up-to-date in this new
technology can easily lose a secure market position because of inadequate reaction time.
11
" of Annual Market
1~
ICompetitive •
Necessity
Laboratory
2~
Curio.~i;.;.otY~_---I
Time
Maximum Time Allowable
To Defend Your Share of the Market
(Typically 2-4 Years)
Figure 1.2 Universal s-curve showing market penetration by a product which
takes advantage of power electronics.
5. MANUFACTURER IOEMI END USER RELATIONSHIP
Historically, this relationship has tended to be split into two independent relationships: (1) The semiconductor manufacturer and the customer, the original equipment manufacturer (OEM). (2) The OEM and the
customer, the end user., With the growth and acceptance of power semiconductors into virtually every market
segment, as well as the emergence of trends brought on by energy, environmental, and safety considerations,
Semiconductor
Manufacturer
I
OEM
....
l..
I~
\
End User
Figure 1.3 Semiconductor M/ianufacturer, OEM, En,d User Relationship.
12
the manufacturer, OEM, and end user relationship has become much more dynamic and comprehensive
(shown by the diagram in Figure 1.3). The semiconductor manufacturer has come to recognize that both the
OEM and the end user are "Users" of power semiconductors, whether directly or indirectly. The end user is
really the ulti mate customer-the one who purchases, uses, and maintains the equipment that was built and
sold by the OEM who, in turn, purchased power semiconductors from the component manufacturer. The end
user wants reliable, efficient, easy-to-maintain equipment that will meet the necessary environmental and
safety standards while providing maximum performance at minimum cost. Not until the semiconductor
manufacturer, the OEM, and the end user collectively work together can a semiconductor be produced and a
piece of equipment be designed that will fulfill all of the end user's needs. This is a shared relationship that, if
properly performed, will be mutually rewarding for all concerned.
....,.
,
ftl:"urlUD
1==
, ...... EQUIPMENT
Fusion Energy Research
.v.
uc ear Fission
,Oil
Supplies
(uFfs~wer
Wind
TRANSPORTATION SYSTEMS
Electric Vehicle
: Stairway
Mass rranslt
People Movers
INDUSTRIA<. CONTROLS
AC Motor Controls
AC Motor starters
1\lr
conveyor
gr~lIe Il Holst
DC Io1otor Control
EI~
~~h~~c:~~~M)
Elec trlc SDace Heatlnll
. Fumace
Heating Il Melting
Lin rruckS
_l,ilIhting.
Machine T()ol
Off Road Vehicles
!'
•
Off~~If;~~ Oil Wen
. ,,_.....
Aircr,
Alum num Heauctlon
Anod izing
Arc eaters
latte
'gers
ompUler
onSU/ll8r
ielE ctrlC Heating
lac tron
~eam.weldil1g
=
Radio &
lreatment
,ArC
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
est
..,~
•
_.·
Inauctlon Heating
Ulser
Military
MIning I"'Ower Qlntars
rv
•
•
•
•
•
•
·
General HIgh HIgh .....
RBDT I'urpo8e SOA Swltcltlng Modu....
·• · ·
•
•
·•
•
•
•
•
•
•
•
·
!
•
•
•
•
•
-".
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
..•
•
•
•
•
•
. !.
•
•
•
•
•
•
•
..•
· ·
•
•
·• ·•
•
·• ·• ••
•
·• ·•• ·•• ••
·
•
•
•
•
•
•
·•• •• •
•
•
·• •
•
•
•
·•• •
•
•
•
•
•
power Factor
Pum & I"'lpellne
IOlie State
ilee MIIIRrive~.
Vele ng, capaCitor Discharge
Ville InJl.
,
•
•
•
•
•
•
F••t
Ph...
Fut
Recove'Y Control Swltchlnll
'.
•
•
•
•
•
•
•
•
•
•
•
•
·
•
•
•
•
..•
•
•
·•
•
•
•
•
•
•
•
•
•
..
•
•
•
DIec
DlIC
H.Y.
StIIc:U
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
It
•
•
•
•
•
•
•
•
•
·••
•
•
•
•
•
•
•
•
•
•
•
•
..•• ...•
•
•
•
Table 1.1 APPLICATIONS FOR@POWER SEMICONDUCTORS
•
•
•
· ·
..
•
-
It
..•
•
•
•
•
·
•
•
•
•
•
•
•
·•
•
o.
13
•
•
•
•
•
.!
•
•
Air
•
•
•
•
•
·
LIquid
~:.':.'
· · ·•• ·•
·• ·•
•
•
•
•
•
•
•
•
•
--_....
•
•
•
•
•
•
•
•
•
•
•
14
2
SELECTING THE PROPER POWER
SEMICONDUCTOR FOR YOUR APPLICATION
1. BASIC SEMICONDUCTOR PARAMETERS DEFINED
The pri mary tool for selecting the proper semiconductor to meet a given requirement is the technical data
sheet. In order to use the data sheets effectively, one must first understand the significance of some of the more
important parameters used in rating these semiconductors. The following apply to all types of semiconductors:
TJIMAX) -Maximum allowable junction temperature. This is a very critical parameter upon which all device
ratings are based. Typically, most SCR's have an upper operating junction temperature limit of 1250 C(with
some high temperature series up to 150°C capability); most transistors have an upper operating junction
temperature limit in the range of 150°C to 175°C; and most rectifiers have an upper operating junction
temperature limit in the range of 175°C to 20OOC. If these respective values are exceeded, the device
becomes vulnerable to rapid failure. Of course, proper derating below these maximum limits is necessary
in the actual application to assure reliable performance.
TciMAX I-Maximum allowable case temperature. Since the user of semiconductors has no way of actually
measuring the junction temperature inside of a device package, the case temperature becomes a practical, useful value which can be measured and monitored. As a result, data sheets usually showthe current
carrying capability of a device as a function of its case temperature. The case temperature is directly
, related to the junction temperature by the device characteristic, R8JC (thermal impedance).
RaJc -Thermal impedance, junction to case. RaJc is measured in degrees centigrade per watt and is
determined by the device construction and materials used. This parameter indicates the ability of the
device to transfer heat away from the junction and out through the device case-the lower the value, the
better.
Other basic device parameters by family type that are essential for the semiconductor user to know in the
selection effort are as follows:
Family
Type
InpuV
Control
RECTIFIERS
NONE
SCR's
I GT (6)
(1)
(2)
IF (av) V RRM
I
T(av),
Overload
Losses
Output
(1)V RRM (2)
(5)
TRANSISTORS
B
(6)
I FSM
(3)
(4)
V TM , 'RRM
(5) di/dt, (7) dv/dt, (8)
I TSM
ton, (9) t q (10)
(4)
V BE (SAT),
t rr
SOA, (7) ton, (8)
VCE (SAT),
I C, (1) V CE (2)
(6)
V (3) I
(4)
FM, RRM
(3)
I
Other Special
(5)
' CEO
NONE
t
off,
(9) h FE (10)
Table 2.1 BASIC SEMICONDUCTOR DEVICE PARAMETERS
The following expansion of the items in the table explain their importance:
RECTIFIERS
(1) IF(avl-Maximum full cycle average forward current (measured with an average reading meter) at
15
a
specified case temperature. This is the maximum amount of current that can be controlled or rectified by
any given device.
(2) V RRM -Maximum repetitive peak reverse voltage. This is the maximum allowable voltage that a device
will block in the reverse direction. An associated parameter, V RSM ,defines the device capability to
withstand non-.repetitive reverse voltage peaks of less than-.five millisecond duration. This parameter
typically ranges from zero to 25% above the repetitive values.
(3) V FM -Maximum forward voltage drop at a specified forward current and device case temperature. The
large majority of the losses in a rectifier are due to the forward voltage drop. Therefore, low forward
drops are very desirable in high power devices because less power is dissipated (P=VfM X IFlav)'
(4) IUM -Maximum reverse leakage current at V RRM
. Low reverse leakage currents are desirable forthe
same reason as a low VFM ,less power (watts) to be dissipated (P=VRRM X I RRM ).
(5) I FSM -Maximum one-half cycle (60H z ) peak surge current (under load). Ability to withstand current
surges in excess of the rated operating current extends the application capability of a rectifier. This
characteristic is non-repetitive in nature and, by definition, may occur only 100times within the life ofthe
device. An associated parameter, 12 t, is used to coordinate sub-cycle fuse clearing time with sub-cycle
fault rating of a rectifier.
(6) trr -Maxi mum reverse recovery time relates to the time required forthe reverse current spike to dissipate
after a rectifier stops conducting forward current. This characteristic is especially important on a class of
rectifiers called "fast recovery" devices. Because all rectifiers are essentially "self-operated" switches,
they have finite switching times. This characteristic becomes important when one wishes to rectify (or
switch) at high frequencies.
seR's
(1) IT (av) -Maximum allowable average forward current at a specified conduction angle and case
temperature. If a conduction angle of 1800 is specified, this parameter wouid bethe same as IF (av ) in a rectifier. However, unlike a rectifier, the conduction angle of an SCR can be controlled from 0 to 1800 (typicalIy, a data sheet lists five or six of these angles). The conduction angle defines that part of the sine wave during which the device is conducting current.
(2) V RR M -Maximum repetitive reverse blocking voltage. The same comments apply here as for V RRM of a
rectifier. The SCR in addition to having reverse blocking capability will also block voltage in the forward
direction. V DRM is the designation for the maximum value of repetitive forward blocking voltage. Most
SCR designs are symmetrical in nature-that is, the forward and reverse repetitive blocking voltage
capabilities for a given device are equal (V DRM =V RRM ). Both repetitive voltage ratings (V UM
V DRM ) have corresponding non-repetitive voltage ratings, V RSM and V DSM
(3) V TM -Maximum forward voltage drop at a specified forward current and device case temperature. The
same comments apply here as for V FM in a rectifier.
(4) IUM -Maximum reverse leakage current at VRRM . Again, as with a rectifier, low leakage currents,
IUM , are desirable as less power will be dissipated in the blocking (off-state) mode. In addition, as an
SCR has repetitive forward voltage capability, V DR M ,it also has a forward leakage current, I DR M
(5) I TSM -Maximum peak surge current for a given number of cycles at 60Hz. As with a rectifier, this
characteristic is by definition non-repetitive and may occur only 100 times within the life of the device. In
addition, following this current surge, the repetitive forward blocking voltage, V DRM ,is not guaranteed.
This subject is treated in more detail in the @ Thyristor Surge Suppression Ratings Application Data
Sheet in the General section ofthe Data Book. An associated parameter, 12 t, is used forfuse coordination.
(6) IGT -Minimum DC gate current to trigger (turn-on) an SCR at stated conditions of temperature and
forward blocking voltage. This characteristic specifies the absolute minimum amount of current that must
be provided from a logic source to switch an SCR from blocking voltage (off-state) to conducting current
(on-state). For more information, see the SCR Gate Turn-on Characteristics Application Data Sheet in the
General section of the Data Book.
(7) di/dt-Maximum rate of rise of peak current allowable with respect to time during SCR turn-on. Because
an SCR requires a finite time to turn on, only a very small area of the junction is conducting current at the
instant the deyice is triggered on. If the current is building up very quickly, it must all go through this very
small area. When the specified di/dt limit is exceeded, the device can develop a hot spot which can destroy
the unit. This is generally not a problem in60H z phase control applications but becomes a problem in DC
switching applications (e.g. inverters) or in capacitor discharge circuits. When comparing di/dt ratings of
different manufacturers be sure the ratings are both repetitive or non repetitive and that the ratings are based on the same set of test conditions.
16
(8) dv/dt-Minimum rate of rise of peak voltage with respect to time which will cause switching from the offstate to the on-state. When the dv/dt limit is exceeded, the potential danger exists of turning the SCR back
on when it should remain off. As with di/dt this is generally only a problem in square wave or stepfuilction
applications. Review all test conditions when comparing dv/dt ratings of different manufacturers-dv/dt
can be expressed as either a linear or an exponential function.
(9) ton -Time required for the forward current to reach 90 percent of its final (or maximum) value when
switching from the off-state to the on-state under specified conditions. Switching times are important for
two reasons-they affect the upper frequency at which the device may be operated and to some degree
they determine the system efficiency. When considering frequency of operation (or i n pulse applications,
the desired pulse width), it becomes simply a matter of whether or not the device can be turned on and off
fast enough to satisfy the requirements. Power losses when switching from blocking voltage to conducting current can be a significant consideration for determining system efficiency.
(10) tq. -Turn-off time relates to the time required for an SCR to switch from conducting current to blocking
forward voltage. Turn-off ti me is important for essentially the same reasons as turn-on time. Turn-off ti me
is not critical in most 60 cycle phase control applications; however, a special class of SCR's called "fast
switching" devices are used in inverters, choppers, and other high frequency circuits. In these types of
applications, the designer must be careful to select a device offering the optimum combination of current
handli ng capability, voltage blocking capability, and turn-off time capability. Due tothe wide variety of fast
switching applications, data sheet turn-off conditions do not necessarily reflect actual circuit operating
conditions. Contact ® if help is needed in selecting the proper device.
TRANSISTORS
(1) Ic -Collector current. In most applications, this is the current that is manipulated to perform some desired
function. In a series regulator, for example, the collector current can be increased or decreased by base
current control, depending upon what the load requires.
(2) VCE -Collector-to-emitter voltage. This is similar to V RRM
in rectifiers and SCR's in that it represents
the device blocking capability in the off-state. There are many related designations: Vc EO ,Vc ES '
V CER ,etc. They differ only in the third subscription letter which indicates the condition of the base: 0open, R-resistor, S-shorted, etc.
(3) V CE (SAT)
-Collector-emitter saturation voltage. When driving the base of a transistor, a point is reached where increased base current no longer results in decreased collector-emitter voltage. This is saturation. VCE (SAT) is a measure of the voltage across that junction under saturation and is comparable to
forward voltage drop in rectifiers and SCR's. VCE (SAT) and Ic lead to power losses in the transistor during saturated operation and therefore, are important considerations.
(4) VB E (SA T\ -Base-emitter saturation voltage. The same general comments apply here as for
V CEI SA T) except the comments now refer to a base-emitter rather than a collector-emitter condition.
High V Be (SAT) or large variations in VBE (SAT) will cause corresponding changes in VCEISATl
(5) I Ceo -Collector-to-emitter leakage current with the base open. This is usually the pri mary leakage loss
in a transistor. This characteristic is comparable to I RRM
in rectifiers or SCR's. While low values of
leakage are desirable to minimize power losses, low leakage is not necessarily synonymous with reliability.
(6) IB -Base current. The function of the base current ina transistor is similar to that of the gate current in an
SCA. However, in a transistor, current must be provided into the base as long as the transistor is to be kept
on, whereas, the SCR only requires an initial pulse of current to turn it on.
(7) SOA-Safe Operating Area. SOA is a voltage-current plot which describes an area in which the transistor
can operate safely. A time limit is given for the collector voltage and collector current that can occur
simultaneously in the transistor. Forward bias SOA ratings require the base-emitter to be forward-biased
throughout the time that the peak power condition exists and is usually measured in a resistive circuit. A
related term is forward current stability, denoted by the symbol I SB . Safe operation of a transistor during
inductive switching when a transistor in series with an inductor is turning off necessitates consideration of
additional characteristics. The inductance will keep current flowing for some period of time. During this
time, the voltage is increasing across the transistor creating a Vxl product or power dissipation. Because
the base-emitter is reverse-biased, the transistor cannot dissi pate as much power. The energy that a transistor can support is denoted by the abbreviation E SB . Inductive switching ratings can be used as a guide
to compare transistor capabilities, but actual capabilities must be verified in the actual circuit.
(8) & (9) ton & toff -Turn-on time and turn-off time. These are important parameters in transistors for essentially the same reasons given in the SCR remarks.
17
(10) hF£ -DC current gain under.specified conditions of collector current and collector-emitter voltage.
This transistor characteristic is the ratio of DC collector current to DC base current. This amplification
factor determines the amount of output (I e ) that is generated by a given input (I B ). For example, if hfE
is 20 at I B =1 ampere, then Ie is 20 amperes.
2. CONFUSING TERMINOLOGY-MANUFACTURER VERSUS USER
INTERPRETATION
Many users and designers have either been lucky or have learned the hard way howto properly interpret a
semiconductor manufacturer's data sheet. Unfortunately, many conventional semiconductor terms and
definitions can have double meanings, depending upon whether they are being interpreted from the manufac-·
turer's or the user/designer's point of view. What a semiconductor manufacturer might define as a maximum
(minimum) value on a data sheet could well be a minimum (maxi mum) value for the designer and user. A few
examples utilizing SCR terminology will illustrate this dilemma:
Data Sheet
Terminology
User or Designer's
Interpretation Might Be
Semiconductor Mfgr's
Actual Meaning
(1) MaximumlGT=150
ma
Does this mean that no
more than 150 ma is
needed to turn-on
these SCR's?
All SCR's supplied will
have gate currents less
than or equal to 150 mao
User must supply more
than 150 ma to assure
proper SCR turn-on. In
fact, 3 to 5 ti mes as Max.
IGT is desirable for
SCR turn-on in certain
applications.
Here, a value defined as
maximum by the
manufacturer is for the
user or designer, an absolute minimum design
limit.
(2) Maximum blocking
or off-state voltage
V DIM ,VRRM
=1200
volts.
Does this mean that
some devices received
will block or support
less than 1200 volts?
All devices supplied will
support at least 1200
volts; however, this
limit cannot be exceeded in the application.
In this case,the
manufacturer's maximum is also, the
deSigner's or user's
maximum limit.
(3) Minimum di/dt - 200
Alp.s
Does this mean that
200 A/p.s can be exceeded ina given
application? .
All devices supplied
will withstand a rate of
current rise (di/dt) of at
least
20 0 AI p. s ;
however, this limit cannot be exceeded in the
application.
Here, the manufacturer's minimum value
becomes the user's or
designer's maximum
design limit.
(4) Typical turn
time t q =40p.s
Can this typical turnoff time be relied on in a
given application?
This 40p.s turn-off time
only represents an
average value for the
product family and is
not a guaranteed limit.
Typical values should
not be relied upon by
the designer or user as
guaranteed values.
off
Table 2.2 Confusing Data Sheet Terminology
18
Remarks
Realistically, data sheets should be written from the user and designer's view point rather than the
manufacturer's device-oriented point of view-however, since most users and designers have been "weaned"
on this existing terminology, a change in philosophy would create only more confusion. To help those who
have yet to conquer data sheet terminology, the following suggestions are offered:
The safest way to interpret a maximum or minimum data sheet limit is to recognize that (1) they both represent worst case designer or user conditions, (2) they both are guaranteed by the semiconductor manufacturer.
As for "typical" values, don't rely on them as maximum or mini mum design limits in an application. If a "worst
case" limit rather than a "typical" value is needed for a particular application, have the semiconductor
manufacturer guarantee the design limit needed either by actual testing or written certification. If still in doubt
about how to interpret a given data sheet parameter, call the semiconductor manufacturer for clarification.
3. HOW TO USE THE WESTINGHOUSE DATA BOOK
There are four easy ways to locate technical data in the Westinghouse Data Book:
Device Type Number Search
(1) IF ONLY THE PRODUCT TYPE NUMBER IS KNOWN:
Go to the Master Cross Reference Type Number Index in the GENERAL section of the Data Book. Using
this JEDEC and alpha/numeric industry index, the reader can rapidly locate any power semiconductor
product type number for which Westinghouse offers an exact or suggested replacement along with the page
number of the recommended Westinghouse product data.
(2) IF BOTH THE PRODUCT FAMILY AND THE PRODUCT TYPE NUMBER ARE KNOWN:
Go the the alpha/numeric Product Type Number index at the beginning of the approprate generic
PRODUCT section (Assemblies, Rectifier, Thyristor-SCR's and RBDT, or Transistors). Using this index, the
reader can turn directly to the page location of a given product type number.
General Application Search
(3) IF A SPECIFIC PRODUCT APPLICATION REQUIREMENT IS KNOWN:
Go to the appropriate PRODUCT section (Assemblies, Rectifier, Thyristor-SCR's and RBDT, or Transistors), look under the appropriate product subgroup (Le. General Purpose or Fast Recovery for Rectifiers).
and scan the Product Capability Graphs and Product Selector Guides. These graphs and guides are presented
in order of increasing average current so the reader can quickly locate a suitable Westinghouse product type
and corresponding page number data location.
(4) IF BOTH A SPECIFIC PRODUCT APPLICATION REQUIREMENT AND THE DESIRED PRODUCT
PACKAGE IS KNOWN:
Go to the @ Data Book Table of Contents forthe location of the appropriate PRODUCT section, product
subgroup, and package type. The page number shown marks the beginning of the desired data section; the
data for a given package type is listed in order of increasing average current rating to simplify the reader's
search.
4. KNOW YOUR APPLICATION REQUIREMENTS
Many applications using general purpose rectifiers or transistors and phase control SCR's require the user
only to consider such basic parameters as current, voltage, and temperature when developing a new design,
working on a conversion or an equipment upgrade, or looking for a replacement device. However, there can be
many secondary parameters which can adversely affect desired equipment operation-especially if devices
are used in series and/or parallel combinations. Most fast recovery rectifiers, high power switchi ng transistors,
and fast switching SCR's require close scrutiny by the user on essentially all device parameters to assure
proper equipment operation.
To assist the user in selecting the proper power semiconductor for a given application, Westinghouse has
developed a series of Appl ication Checklist/Work Sheets in the following areas: (1) General Purpose and Fast
Recovery Rectifiers (2) Phase Control SCR's (3) Fast Switching SCR's (4) Power Transistors (5) Assemblies.
To use a particular form, simply make a xerox copy and fill it out. With your application requirements down on
paper in a logical order, it will be easier to locate a suitable device by self-selection or by calling or writing the
semiconductor manufacturer for a device recommendation.
19
P.S. Even if you have already selected a device yourself, it might be worthwhile getting a confirmation from the
manufacturer.
To assist the user in searching for replacement devices, a ha:ndy Device Identification Checklist has been
developed. A copy of this form is presented on page 54.
20
@ GENERAL PURPOSE AND FAST RECOVERY
RECTIFIER APPLICATION CHECKLIST
(Make copy for each use)
1. APPLICATION: _ _ _ _ _ _ _ _ _ _ _ _ __
o LEAD MOUNT
1
STANDARD POLARITY
OR
o REVERSE POLARITY
0
o STUD MOUNT o DISC MOUNT
2. CIRCUIT:
o OTHER
Sketch circuit
(showing all
component values
including
inductences) or
attech drawing
o NO PREFERENCE
• Special size, weight, or other restrictions _ _ _ _ _ __
3. CIRCUIT VOLTAGE:
FOR APPLICATIONS REQUIRING FAST RECOVERY CHARACTERISTICS, COMPLETE THE FOLLOWING SECTION -
• Maximum reverse voltage across
rectifier
v
• Maximum expected transient
voltage
7. RECOVERY CHARACTERISTICS: (If required, sketch waveform(s) on back of page)
___v
• Maximum reverse recovery time allowable, t r r - - - -
• Desired voltage safety factor
• Recovery time, to _ __
• Preferred rectifier device voltage
rating
___
v
• Recovery time, t b _ _ __
• Other _ _ _ _ _ _ _ __
• Maximum overshoot current, IR(REC}---./!,A
4. CIRCUIT CURRENT: (sketch waveform(s) on back of page)
• Peak current, IFM _ _ _
A
A
• Average forward current"
• Pulse width, tp _ __
• Rate of current fall,d;R/dt ~
- Waveform and frequency
--"-
- Duty cycle
• Waveform _ _ _ __
___
A
• Overload peak current (waveform)
• Maximum junction temperature ~
---"
- Duty cycle
- Pulse width
- Resume operation following
overload
DYES
• Peak surge current (waveform)
oNO
_ _ _A_
TIME
- Pu lse width
', ___011\ i
~EC)
~R(REC)-:r-I~~' .. -
- Number of cycles
• Other _ _ _ _ _ _ __
*If paralleling is required, state method of current sharing __
5. THERMAL:
8. PROJECT REQUIREMENTS: Quotetlon Due Date _ _ __
• Cooling Medium (check one) o AIR -
0
• Quantity Required__
Natural Convection, altitude _ _ feetor
o Forced' _ _ _ LFM _ _ _ CFM**
**Duct cross-sectional area _ _
Person Requesting Information
• Timeteble _ _ _ __
Name _ _ _ _ _ _ __
Long-range Potential _ _
Phone _ _ _ _ _ _ X __
• Other Remarks _ _ _
Job Function - - - - - Company _ _ _ _ _ __
o WATER - _ _ _ GPM flow rate
Address _ _ _ _ _ _ __
o OIL (Immersed) - Type _ _ Manufacturer _ _ __
o Special screen ing and/or
h igll reliability test requirements are attached.
o Also quote on this
app licat ion
using @ assemblies.
o OTHER _ _ _ _ _ _ _ __
• Cooling medium maximum temperature, 'C _ __
• If heat sink Is known, specify R9sA _ _ _ 'CIW.
• Other thermal considerations
City _ _ _ _ _ Stete_
Bldg. _ _ _ __ Zip __
Please complete a copy of this form foreach different application.
Forward this form to Westinghouse Electric Corporation,
Semiconductor Division, Attention: Sales Department,
Youngwood, Pa. 15697 for complete quotation. If you need faster
service, please call (412) 925-7272 for a quote.
6. MECHANICAL:
• Desired package type (check one) -
21
@ PHASE CONTROL SCRAPPLICATION CHECKLIST
(Make copy for each use)
6. THERMAL:
1. APPLICATION:
• Cooling Medium (check one) -
[] AIR - [] Natural Convection, altitude_ _feet or
[] Forced ___ LFM _ _ _ CFM * *
2. CIRCUIT:
Sketch circu it
(showing all
component values
including
inductances) or
attach drawing
**Duct cross-sectional area _ __
o Water - _ _ _ GPM flow rate
o OIL (immersed) - Type _ _ _ Manufacturer
o OTHER-
3. CIRCUIT VOLTAGE:
• Cooling medium maximum temperature, 'C _ __
• Maximum peak forward and/or reverse voltage across SCR
___v
• Maximum expectad transient
voltage
___v
• If heat sink is known, specify Re SA _ _ _ ooIW.
• Other thermal considerations _ _ _ _ _ _ _ _ __
• Desired voltage safety factor
7. MECHANICAL:
___v_
• Preferred SCR voltage rating
• Desired package type (check one) -
• Other _ _ _ _ _ _ _ _ __
o STUD MOUNT
4. CIRCUIT CURRENT: (sketch waveform(s) on baCk of page)
o DISC MOUNT
• Maximum continuous SCRcurrent"DOC, oAVERAGE, or oRMS
___
A
o INTEGRAL HEAT SINK
• Phase - 014>.03<1>, 061/>, or oOTHER _ _ _ _ _ __
o FLAT BASE
• Conduction angle - oSlne or
oSquare, degrees
o OTHER _ _ _ _ _ __
o NO PREFERENCE
• Current waveform, frequency, and duty cycle _ _ _ __
• SpeCial size, weight, or other restrictions _ _ _ _ __
• Overload peak current (waveform)
--"-
- Duty Cycle
8. PROJECT REQUIREMENTS: Quotation Due Date - - -
- Pulse Width
- Resume Operation Following
Overload
DYES
oNO
• Quantity Required__
Person Requesting Information
• Timetable _ _ _ __
Name
Long-range Potential _ _
Phone _ _ _ _ _ _ X __
• Other Remarks _ _ _
Job Function - - - - - -
_ _ _A_
• Peak surge current (waveform)
- Pulse Width
- Number of Cycles
Company _ _ _ _ _ __
- Assymetry (LIR ratiO)
Addr~s
• Other _ _ _ _ _ _ _ _ __
o Special screening and/or
high reliability t~t requirements are attached.
o Also quote on this
application
using @ aasemblies.
"If paralleling is required, state method
of current sharing:
5. GATE DRIVE AVAILABLE:
• IG2---------~A
• tGR
u,
• IGT (maXI 2500
I
I
I
I
--~--'l~--------_t
I
I
I
I
I
I
,
Bldg. - - - - - - Zip_
Please complete a copy ofthls form for each differentapplication.
Forward this form to Westinghouse ElectriC Corporation,
Semiconductor Division, Attention: Sales Department,
Youngwood, Pa. 15697 for complete quotation. If you need faster
service, please call (412) 925-7272 for a quote.
I
I
I
I
State __
• tGP _ _ _ _ _ _~u=.
tGS _ _ _ _ _ _--''''"..
ma
------
IGT(maxI,.. __
-----
•
• Forward gate source voltage _ _ _ _ _ _ _ _ _ _-'-v
'G2
City
_ _ _ _ _ _ __
I
22
@ FAST SWITCHING SCR APPLICATION CHECKLIST
(Make copy for each use)
1. APPLICATION:
5. SWITCHING:
•
2. CIRCUIT:
[J
Soft Commutation or
Hard Commutation
[J
• Maximum available tum-off time, tq-lAs@TJ _ _ _ DC
Sketch circu it
(showing all
component
values
Including
Inductances)
or attach
drawing
vi",.
• Reapplied dv/dt
• Maximum operating frequency _ _ _ or duty cycle ___%_
•. GATE DRIVE AVAILABLE:
• IG2 _ _ _ _ _ _ _0..1.
• tGR
•
tGP _ _ _ _ _ _ _-"fJ.=S
II-S •
tGS ________ ....!:fJ.=S
ma
• IGT (maXI @ 25 DC
3. CIRCUIT VOLTAGE:
• Peak forward blocking voltage, VO RM
• Peak reverse blocking voltage, V RRM
• Maximum expected transient voltage
___v
___v
___v
• Forward gate sou rcevoltage _ _ _ _ _ _ _ _ _ _-'-v
7. THERMAL:
• Cooling Medium (check one) [J
• Desired voltage safety factor
___v
• Preferred SCR voltage rating
AIR -
[J
Natural Convection, altitude _ _ feetor
[J
Forced
_ _ _ LFM
_ _ _ CFM
**
• Other _ _ _ _ _ _ _ _ _ _ _ __
* * Duct cross-sectional area _ __
~=,(1!j~ xgt-~E~~:r
VDRM
MINIMUM CIRCUIT TlJRN-llfF T I 7 f
REAPPLIED dvldt
[J
[J
\
[J
WATER - _ _ _ GPM flow rate
OIL (immersed)- Type _ _ _ Menufacturer
OTHER - ______________________________
• Cooling medium maximum temperature, DC _ __
• If heat sink is known, specify R eSA _ _ _ DC/W.
• Other thermal considerations _ _ _ _ _ _ _ _ ___
•• MECHANICAL:
r--
• Desired package type (check one) tp ----+/Y""JJ:-IR (REC)
to-l
i [...."tb
[J
STUD MOUNT
[J
DISC MOUNT
[J
INTEGRAL HEAT SINK
[J
FLAT BASE
4. CIRCUIT CURRENT": (if required, sketch waveform(s)
on back of page)
Worst Ceae Pullewldth CondlUona
• Maximum peak current, I TM
- Pulsewidth, tp
_ _ _A_
---"'-'
- Waveshape
OTHER - - - - - - - - - -
[J
NO PREFERENCE
• Special size, weight, or other restrictions _ _ _ _ __
9. PROJECT REQUIREMENTS: Quotation Due Date _ __
• In itial rate of current rise, d i /dt
• Rate of current fall, diR/dt
• Reverse recovered charge,QRR
- Max, overshoot current I R(RECI
[J
• Quantity Required__
Person Requesting Information
• Timetable ______
Name
Long-range Potential _ _
Phone _______ X __
• Other Remarks _ _ _
Job Function - - - - - - -
_ _ _A_
- Recovery time, ta
Company _ _ _ _ _ _ __
- Recovery time t b
Address ___________
• Peak surge current (waveform)
___
A
[J Special screen ing and/or
high reliability test requlrements are attached.
[J
Also quote on this
application
using @ assemblies.
- Pu Isewidth
- Number of cycles
- Assymetry (L/R ratio)
City - - - - - State Bldg. - - - - - - - Zip_
Please complete a copy ofthis form foreach different application.
Forward this form to Westinghouse Electric Corporation, Semiconductor Division, Attention: Sales Department, Youngwood, Pa.
15697 for complete quotation. If you need faster service, please
call (412) 925-7272 for a quote.
• Other _ _ _ _ _ _ _ _ _ _ _ __
'If paralleling is required, state method of current
sharing:
23
@ TRANSISTOR APPLICATION CHECKLIST
(Make copy for each use)
• Turn-off storage time, t,
1. APPLICATION:
2. CIRCUIT:
Sketch circuit
(show all
component
values
including
inductances)
or attach
drawing
• Turn-off fall time, tf
--_1.1._,
• Maximum junction temperature
___oc_
6. THERMAL:
• Cooling Medium (check one) o AIR - 0 Natural Convection,altitude _ _ feetor
oForced _ _ LFM _ _ CFM**
3. CIRCUIT VOLTAGE:
** Duct cross-sectional area _ __
v
• Source voltage
• Maximum circuitvottageacross transistor
o clamped or
0
o WATER - _ _ _ GPM flow rate
___v
o OIL (immersed) - Type _ _ _ Manufacturer _ _ __
unclamped
• Maximum expected transient voltage
oOTHER- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
___
v
• Cooling medium maximum temperature,·C _ __
• Maximum emitter base reverse
• If heat sink is known, specify Re SA _ _ _ ·CIW.
___v
voltage during operation
• Other thermal considerations ______________
• Desired voltage safety factor
• Preferred transistor voltage rating
___
v
7. MECHANICAL:
• Other
• Desired package type (check one) o DIAMOND MOUNT (TO-66/TO-3)
4. CIRCUIT CURRENT: (Include load line sketch w/unclamped
o STUD MOUNT
inductances specified)
o DISC MOUNT
_ _ _A_
• Maximum collector current'
o OTHER
• Collector current duty cycle __% and Irequency _ _ Hz
o NO PREFERENCE
• Current gain
• Special size, weight, or other restrictions _ _ _ _ __
• Other
'11 paralleling is required, state method of current sharing __
5. SWITCHING:
8. PROGRAM REQUIREMENTS: Quotation Due Date_ __
• Quantity Required__
Person Requesting Information
• Timetable
Name
Long-range Potential _ _
Phone _ _ _ _ _ _ X __
• Other Remarks _ _ _
Job Function - - - - - Company _________
Address _ _ _ _ _ _ __
90o;;--Zo
o Special screening and/or
high reliability test requirements are attached.
o Also quote on this
application
using @ assemblies.
10'.
t
,
TURN ON TIME
• Maximum base current, I a{ON)
• Maximum base current, I a {OFF)
• Turn-off base supply voltage
TURN OFF TIME
City
Bldg.
State __
Zip - -
Please comp lete a copy of th is form 10 reach different application.
Forward this form to Westinghouse Electric Corporation,
Semiconductor Division, Attention: Sales Department,
Youngwood, Pa. 15697 for complete quotation. If you need faster
service, please call (412) 925-7272 lor a quote.
A
___
A
___v_
• Turn-on delay time, td
• Turn-on rise time, tr
24
@ASSEMBLY APPLICATION CHECKLIST
(Make copy for each use)
1. APPLICATION: _ _ _ _ _ _ _ _ _ _ _ _ _ __
o WATER - _ _ _ GPM flow rate
o OIL (immersed) - Type _ _ _ Manufacturer
OOTHER- _ _ _ _ _ _ _ _ _ _ _ _ _ __
• Cooling medium maximum temperature, DC _ __
2. CIRCUIT:
Sketch circuit
(showing all
component
values includ ing
inductances) or
attach drawing
• Other thermal considerations _ _ _ _ _ _ _ _ __
6. MECHANICAL:
• Special semiconductor device package requirements
oYESo NO
3. CIRCUIT VOLTAGE:
If YES, specify desired package type _ _ _ _ _ _ __
• Maximum forward and/or reverse voltage across
• List any size, weight, mounting, or other requirements _
assembly
---y-
___
v
• Maximum expected transient voltage
• Desired voltage safety factor
___v
• Preferred assembly voltage rating
7. PROJECT REQUIREMENTS: Quotation Due Date _ __
• Other
• Quantity Required__
4. CIRCUIT CURRENT: (sketch waveform(s) on back of page)
• Timetable
A
• Maximumoutputcurrent*-
Long-range Potential _ _
oAVG., 0 RMS, or 0 PEAK
• Other Remarks _ _ _
- Waveform and frequency
Person Requesting Information
Name _ _ _ _ _ _ _ __
Phone _ _ _ _ _ _ X __
Job Function
Company _ _ _ _ _ __
- Duty cycle
• Overload peak current (waveform)
___
A
Address _ _ _ _ _ _ __
%
o Special screening and/or City
State __
high reliability test re-----quirements are attached.
Bldg. _ _ _ _ _ _ Zip __
- Duty cycle
- Pulse width
- Resume operation following overload
DYES
• Peak surge current (waveform)
oNO
___
A
- Pulse width
Please complete a copy ofthis form foreach different application.
Forward this form to Westinghouse Electric Corporation,
Semiconductor Division, Attention: Sales Department,
Youngwood, Pa. 15697 for complete quotation. If you need faster
service, please Clili (412) 925-7272 for a quote.
- Number of cycles
• Transformer KVA and percent impedance
• Other _ _ _ _ _ _ _ _ _ _ _ __
'Ifparalleling is required ,state method of
currentsharing:
5. THERMAL:
• Cooling Medium (check one) o AIR - 0 Natural Convection, altitude _ _ feetor
o Forced _ _ _ LFM ___ CFM
*'*
**Duct cross-sectional area _ _-
25
MONEY
" Opportunity
Costs"
Wise Semiconductor Procurement Means Good Resource Management and That Involves Everyonel
26
3
SEMICONDUCTOR PROCUREMENT
1. SPEND SEMICONDUCTOR DOLLARS WISELY.
Each user must consider several facets of device and supplier capability in order to make intelligent
procurement decisions concerni ng power semiconductors. Suggestions for eval uation of the "total" value of a
power semiconductor supplier are provided in Section 2. Section 1 deals briefly with other suggestions for
consideration prior to selecting a device and placing an order: (1) "total" cost, including costs over and above
the price of the device and (2) engineering-related financial considerations, such as efficiency, reliability, and
device availability versus electrical capability.
Total Cost. The price of a power semiconductor is certainLy one of the major items for consideration prior
to selection of a device to satisfy the user's needs. However, a user must also consider other costs in order to
optimize "total" cost. Packaging, transportation, insurance charges, and hardware requirements associated
with a device are easily measurable, although often disregarded. Other total cost considerations are not
measured as easily, but can prove to be very significant alternatives. For example, blanket contracts, blanket
orders, letters of intent, and other types of purchase agreements are generally vehicles used to obtain lower
device prices, however, these agreements help to reduce other cost factors. When a power semiconductor
manufacturer has advance knowledge of on-going user requirements, better planning is possible. The net
resu It is improved reproducibility, reduced delivery lead time which helps to mini mize user safety stock, and
better on-time shipping performance.
.
Often when a user buys several different semiconductor type numbers in the same product family, a
savings can be obtained by ordering only the best rated unit (current, voltage, etc.) for all needs, thus qualifying for a larger volume price discount. Combining purchases for device types of different voltage ratings is
usually the most practical way to achieve a higher volume price discount (this is especially true for the lower
voltage ratings of a given product type); sometimes combining various current ratings of the same package
type will also result in savings. If in doubt, ask the manufacturer to review your semiconductor procurement list
and reco mmend the most economical purchase option. The manufacturer will be glad to help since it is easier
to fill one large order for a single device type than many small orders for different part numbers. In addition, the
user saves ti me and money in i ncomi ng inspection, inventory costs, improved delivery performance, and standardization of parts.
Another frequently overlooked cost factor relates to special handling. Costly set-up charges can be avoided and better price stability and shorter delivery lead times can be realized if the user limits the number of
releases and maximizes release quantities for each device. A d.ecision to enter an order through an authorized
distributor to avoid the generally higher minimum release of a manufacturer can often be a reduction in total
cost even though the individual device price may be higher; however, beware of counterfeit rebranded devices.
Deal only with authorized distributors. Trying to save a few dollars on a unit price basis can add significantly to
total costs if the devices are determi ned to be defective at a later date. Extra i nspecti on steps, such as a req u i rement for government source inspection, also can cause delayed shipments and increased costs because of
delays incurred while waiting for arrival of inspectors.
Engineering Related Financial Considerations. Efficiency of equipment, cost of maintenance, reliability.
and the cost of auxi Iiary and protective circuitry are significant items for review in order to obtai n a true picture
of the cost of a particular power semiconductor. It is often difficult to determine a dollar value for each of these
factors, but each item must be considered. nonetheless, ifan intelligent procurement decision isto be made.
In a field of rapid technological improvement such as power semiconductors, new devices are introduced
at frequent intervals. Asingle new device often replaces two or more existing device types and/or procurement
of new completely tested assemblies of devices on heat sinks (where semiconductor purchase dollars may
rise, but total equipment costs decline) is often more economical for the user than handling individual parts.
Review of the latest available devices is, therefore, an essential ingredient in wise power semiconductor
procurement.
The user must also determine the optimum trade-off between electrical parameters as these parameters
relate to the ability of the device manufacturer to reproduce devices consistently. For example, selection of a
fast switching SCR often requires trade-offs among blocking voltage. current rating, and turn-off time to
assure availability in large quantities.
27
Adequate safety factors on device ratings are another significant cost-related design consideration.
Manufacturers of power semiconductors normally warrant products to meet specific electrical parameters.
The designer must apply safety factors to assure the integrity~of the application, but application of excessive
safety factors can be costly.
Power semiconductor manufacturers spend considerable time and rrloneyto develop device families with
useful, user-acceptable, ratings. When possible, users should attemptto incorporate these "standard" devices
into applications to assure themselves of the best price and product availability. Special electrical test requirements and/or mechanical modifications normally add to cost and delivery lead times.
2. EVALUATING A POWER SEMICONDUCTOR SUPPl.IER
,
.
The traditional method for evaluating the value of a supplier-price, delivery, service (P,D,S)-is a gross
oversimplification of the measurement criteria. The P,D,S rule could cause one to "short change" oneself and
prevent the company from realizing the total value of capabilities and services offered by truly good suppliers.
Eighteen key items to be used for comparing suppliers have peen identified and discussed below under four
major categories-General Support, Pre-Order Period, Order Period, and Post-Order Period (see Table 3.1).
Each of the categories (or each of the individual items) must be weighted according to the needs or requirements of each user organization. That user must then eval uate each available supplierfor the most important categories (or items). The manufacturer(s) scoring the, highest total rating represents the best "total
value" supplier to the user.
This method for evalution is presented as a tool to aid in the selection of a supplier. The method is not
simply a means of reducingthevalues ofasuppliertoa numerical score; the purpose isto identify and quantify
the key areas where potential power semiconductor supplier(s) can represent real value to a user.
GENERAL SUPPORT
-Sales coverage
-Distributor support
-Technological leadership
-Product reproducibility:
PRE-ORDER PERIOD
-Technical information support
-Application engineering assistance
-Sample/prototype service
-Quotation response
,
-Competitive price and delivery
ORDER PERIOD
-Order acknowledgement
-Customer information service
-On-ti me shipments
-Advance warning of shipping delays
-Condition of shipments
POST-ORDER PERIOD
-Reliability
-Settlement of claims
-Warranty
-Replacement of obsolete device types
Table 3.1 Supplier Evaluation Checklist
28
GENERAL SUPPORT
Sales coverage is the primary link between a power semiconductor manufacturer and the user. A good
factory salesperson or manufacturer's representative is a problem solver, not merely an "order taker". A good
salesperson is knowledgeable about the total product offering and service capability of the manufacturer and
can therefore resolve pre-order, order, or post-order problems or obtain anwers to questions that might arise
during these periods.
Distributor support is an important factor in complete service support. Authorized distributors supply
local, reliable service for production as well as emergency requirements by providing ample inventories and
many value-added features. In addition, these distributors offer a broad spectrum of complimentary products.
Technological leadership assures the user that product which is purchased is manufactured with modern
techniques and exhibits state-of-the-art electrical parameters and mechanical configurations. Power
semiconductor manufacturers invest millions of dollars annually to keep products and processes up-ta-date.
New generations of devices or redesigned, upgraded versions of existing products can drastically affect the
competitive market position of the user. New power semiconductors can lower or at least maintain equipment
costs, offer improved energy utilization, support a cleaner, quieter environment, provide greater system
reliability, reduce equipment size and weight, provide increased safety to equipment operators and
employees, and can offer new and expanded operating capabilities. Since successful users must incorporate
new technologies in equipment in order to remain competitive, they must be extremely conscious of the
technological leadership qualities of their power semiconductors suppliers.
Product reproducibility is an often overlooked, but extremely important term for evaluation of power
semiconductor manufacturers. Many design engineers have experienced the unfortunate situation of designing a system which incorporates a new state-of-the-art device sample produced under laboratory conditions
and then be unable to obtain the device in sufficient volume and/or at a reasonable price. The yield-dependent
nature of power semiconductor production dictates the necessity for a manufacturer to maintain a wellcontrolled production process in order to provide adequate quantities at acceptable price levels. A total value
power semiconductor supplier must combine those controls with a full understanding of user requirementsdevice specifications, required quantities, production timetables.
PRE-ORDER PERIOD
Technical in'ormatlon support includes such items as product data sheets, application data sheets,
seminars, technical papers, application handbooks, product newsletters, price lists, cross reference guides,
and other semiconductor information. These written communications are the user's most reliable and most
comprehensive source of information regarding a given manufacturer's products, services, and capabilities.
The completeness and accuracy of the material presented, its perti nence to the user's application, and the rate
of response in supplying the requested information are all important factors in providing meaningful, technical
information.
Application engineering assistance can be a valuable resource if properly used. While application
engineers cannot be expected to design a customer's circuit, they can help a customer avoid misapplication of
devices or can assist in solving many different product-related application problems. Frequently, special
ratings and other data can be generated for particular customer applications. Failed semiconductors can be
examined to determine the cause of failure so that corrective action(s) can be taken. Good application
assistance means easy access to engineers who possess a high level of expertise and a willingness to help
solve a problem for the customer.
Sample/prototype service relates to the semiconductor manufacturer's willi ngness to provide samples for
qualification for new designs as well as for second source approval. The delivery of the sample(s) must be
prompt, with test data when appropriate. Prompt sales follow-up to assure satisfactory performance in the
application is required for "total-value" service.
Quotation response refers to such items as speed, accuracy, and completeness of quotation information.
Good performance at this phase of a negotiation is essential to prevent serious errors in the order processing
and post-order periods.
Competitive price and delivery are treated as a single entity because both items usually must fall within
some pre-determined maximum allowable user limit in order to be considered as a valid quotation. The price
quoted must fairly reflect the product and services being provided by the semiconductor manufacturer. The
delivery time quoted must be realistic; and when a fast delivery is required, the delivery time quoted must truly
reflect a best effort from the manufacturer.
ORDER PERIOD
Order acknowledgement must be prompt and accurate to assure timely shipment. Delays atthis point are
29
totally unnecessary and are completely avoidable if the items in the General Support and Pre-Order Periods
.
have been treated properly by the power semiconductor manufacturer.
Customer Information service reduces user cost when provided promptly in a complete and accurate
r:nanne.r. Little or no effort on the part of the user should be required to determinethestatus of most orders.
On-time shipments are a true measure of the stated capability of a power semiconductor manufacturer.
Historical on-ti me shipment performance becomes a benchmark for determination of supplier "believability"
in all facets of service. Willingness to recognize and discuss reasons for missed delivery promises is another
item to consider when evaluating a power semiconductor supplier.
. Advance warning of shipping delays is essential if a user is to have time to adjust equipment production
schedu les to accommodate the delay. Major causes of late semiconductor deliveries are usually the result of
shifts in production yields, testcorrelation problems, production and/or equipment through-put limitations,
and/or out-of-spec incoming material component parts. Knowledge of an impending delay must be
transmitted to the user immediately.
Condition of shipments when received at the user's plant, to a great extent, depends upon how the product
was packaged for shipment and the quality control procedures observed prior to and during shipment. Experienced packers using specially designed cartons and packing material for power semiconductors can
make the difference as to whether or not a shipment of product will survive the trip from supplier to user.
However, condition of shipments is also a function of the freight carrier employed to move the product and the
types of carriers available from the supplier's facility to the user's facility is an important conSideration.
POST-ORDER PERIOD
Reliability generally refers to long term product performance - actual field service experience. Reliability
is a shared responsibility among the semiconductor manufacturer, the original equipment manufacturer, and
the end user and is often regarded as the single most important item by all three groups.
Settlement of claims is often not considered as being very important; however, one only needs to have a
single bad experience to really appreciate its value. Settlement of claims includes such things as shipment
shortages, incorrect pricing and invoicing, rejected material, transportation charges, customer rework orders;
and cancellation charges. There can be a wide discrepancy among various semiconductor manufacturers as
to how promptly, effiCiently, and fairly such claims are handled.
/
Warranty is like insurance - no one ever needs it until it is too late. If nothing else, a warranty is at least an
indication of the confidence a manufacturer has in the products and services provided. A warranty should
define the extent of coverage and the time span of the guarantee. The size of a semiconductor manufacturer
and more importantly, the ability to financially hand Ie a large clai m must be consi dered - especially on certai n
jobs where a high percentage of the equipment cost is due to the power semiconductors.
Replacement of obsolete device types is a continuous problem forthe user - both the original equipment
manufacturer and the end user of the equipment. Although a fairly high degree of standardization exists within
the power semiconductor industry, new designs are evolving constantly, often with slightly different
mechanical dimensions and configurations and more often with improved electrical ratings. A "total value"
manufacturer provides information and, whenever possible, product as replacement for old or obsolete
designs. Since the end user of equipment is usually attempting to procure a few spare parts to get equipment
back into operation, it is important for the OEM to maintain a small inventory of replacement semiconductors
to support renewal parts business or to support orders for old equipment designs without expensive and
lengthy engineering redesign. The ability of the power semiconductor manufacturer to support those needs is
another significant criteria for selecting a supplier.
Several precautions must be taken when evaluating suppliers using this or any other method. The person
(s) responsible for evaluating suppliers must recognize that within the organization different departmental
functions (purchasing, engineering, production, maintenance, general management, research and development, etc.) will place a different degree of importance on each of the items under consideraton. Therefore, an
attempt should be made to at least subjectively provide a composite weighting for each of the items that
reflects the needs of the total organization. One should also recognize that the type of product or services being sought (commodity-type device versus special device type) as well astheamount of business to be placed
(quantity required, lead time, second source requirements) can significantly alter the choice of suppliers.
Thus, the best supplier choice under one set of conditions may not be the best choice under a different set of
conditions. Finally, nothing is really ever stagnant. User needs change ... Supplier's products, services, and
capab iI ities also change over time. Therefore, a user must periodically (every 18 months to 2 years) re-eval uate
.or review the situation to determine whether or not the existing lineup of suppliers is still the besttotal value.
30
3. BUYER'S CHECKLIST
PRE-ORDER
Having selected the product required for a given application and having chosen the supplier, the following
checklist will help to make the buyer's job easier and to minimize errors and delays:
• If a new customer, establish credit with the supplier prior to placing the purchase order.
• Identify the required device by describing with a single term, either drawing number pll,Js revision, JEDEC
number, or manufacturer part number.
• Establish total quantity required.
• Optimize total cost and delivery by conSidering available purchase agreements, minimum releases,
authorized distributors, hardware, packaging and data requirements, standard catalog items versus
specials.
• Specify requested shipping date or in-plant date.
• Provide complete and accurate "Ship To" and "Bill To" information.
• Specify shipping method (consider cost, transmit time, traceability, insurance cost.)
• Reference negotiation number or quotation number, if applicable.
• Specify tax exemption status.
• Send purchase order directly to manufacturer or authorized distributor.
ORDER
• Proofread acknowledgment.
• Contact supplier directly concerning order status.
POST-ORDER
• Contact the Returned Material Coordinator at the manufacturer concerning administrative errors, such as
discrepancies on packing lists or invoices.
• Contact the Returned Material Coordinator at the manufacturer for authorization and specific return instructions prior to returning any material.
4. ENTERING AN ORDER
After selecting a device and a supplier, speed and accuracy are primary factors to consider when placing a
purchase order. If a power semiconductor manufacturer can translate the information on the purchase order
into factory working language quickly and accurately, the user has a much greater chance to receive the required parts in a timely manner. Chances for production line shutdowns and/or decreased production rates
due to parts shortages are greatly reduced.
A concise, but complete, description of the following information on each purchase order will mini mize
supplier translation time and enhance translation accuracy. Remember that too much information can create
as many translation errors as too little information.
1. "Ship To" address. Be sure to include company name, street, plant, department or building number, if
applicable, city, state, and zip code.
2. "Charge To" or "Bill To" address. Provide the same information as in (1) above.
3. Purchase order number in a conspicuous location.
4. Note any special marks required on order acknowledgements. packing lists, or invoices.
5. Tax information concerning exemption from state and local taxes. Taxes must be charged ifexemption
information does not appear on the purchase order or if an exemption certificate, resale certificate. or direct
pay permit is not on file with the supplier. Remember that state taxes are based on the "Ship To" address.
6. Description of parts required. In order of preference the best method for part description is (1) user part
number or drawing number; specifying most recent revision, (2) JEDEC number, (3) manufacturer part
number. Only one of the methods should be used for a single item on a purchase order. Use of more than one
method of description (e.g. XYZ Corp. part number 378A94 Revision Cor 1N1203) requires order entry personnel to cross check to assure that both descriptions identify exactly the same device. Avoid listing deviations
to the device specified on the purchase order. If a JEDEC or supplier part number does not adequately
31
describe the required part, agree upon the deviations and assign a part number prior to entering the purchase
order.
7. Quantity of parts required.
8. Unit price of parts required.
9. Special charges. List charges for environmental testing, special tooling, and/or service charges as
separate items if pre-order quotation specified them in that manner.
10. Shipment method preferred. Remember that "best way" or "cheapest way" for the supplier may not be
the best or cheapest method for the user.
11. Requested shipping date or in-plant date. Be certain to explain which date is being specified.
12. Negotiation or quotation number. If the supplier has assigned a numbertothe pre-order discussions, it
is always good practice to repeat the number on the purchase order.
13. Special insurance charges, if applicable.
If accurate information is supplied in each of the categories above, entering the order and shipping
product will be handled more smoothly. However, the user must consciously make an effort to reducethetime
required to transmit an order to the supplier, while minimizing the possibility of interpretation and transmission errors. The best solution is obviously to eliminate extra steps in the order entry process. Time delays and
the possibility of errors are automatically inserted when a purchase order is routed through a sales office or
through some other intermediate mail stop. Transmission of order information via wire or telephone introduces additional possibilities for interpretation and transmission errors and legally, a manufacturer cannot
begin work on an order without the confirming order document. Therefore, for most accurate and efficient
order processing, a user should send the purchase-order directly to the manufacturer or authorized distributor,
when possible.
5. IN-PROCESS ORDER INFORMATION
Significant time intervals occur between the time a user generates a purchase order and the timethe user
receives the parts against that order. During that period of time it becomes the responsibility of the power
semiconductor manufacturer or authorized distributor to keep the user advised of the status of the purchase
order. Presentation of order status information by the manufacturer minimizes the ti me and expense that the
user must incur to determine "what's happening."
Order Acknowledgement. The first step the supplier must take is to properly acknowledge receipt of a
purchase order and advise the user of a shipping schedule. Although the manufacturer generally checks for
accuracy, the user, upon receipt of the acknowledgement, should compare the information to the original
order to determine if the order entry process was correct. Many production, shipping, receiving, and incoming
inspection problems can be avoided by careful review of documents at this stage of the order.
Order Status. Information to the user does not stop at the order acknowledgement stage. In order to
reduce expediting time and expense the manufacturer must continually reconfirm shipping schedules and
provide advance warning for shipping delays that may occur. .
The manufacturer must also establish a contact point at the factory so that schedule changes and/or
questions that do arise can be handled quickly and effectively. The responsible salesperson is a good contact
point, however, travel schedules often make that individual difficult to reach and a designated contact at the
supplier is most often more convenient for the user.
Invoicing. The invoiCing process differs slightly from supplier to supplier, however, a few key items must
be presented:
• Invoices must be traceable to the original purchase order of the user. User purchase order number, device
type, and unit price are normally considered critical criteria.
• Specific payment terms and address to which payment is to be remitted .
• Delineation of charges not specifically covered by the original purchase order such as transportation
charges, insurance charges, special handling fees, etc.
• Date of invoice and date of shipment. These dates normally coincide, however, deviations do occur and
must be presented clearly in order to prevent problems with terms of payment.
Test Data. User specifications sometimes specifically require the manufacturer to serialize devices and
record test results on a sample basis or for 100% of the devices shipped. Additional requirements, such as a
mercury exclusion clause or a certificate of compliance, are often specified. The manufacturer must present
such information clearly and include the data with each sh ipment to reduce receiving and incomi ng inspection
delays at the user's facility.
32
@ Order Acknowledgement. After a purchase order has been entered at the factory, a computergenerated order acknowledgement (yellow) for each item is sent to the customer.
(A sample acknowledgement is shown in Figure 3.1). f?; terms and conditions of sale are printed on the
reverse side of the form. Orders generally are acknowledged within twenty-four hours after receipt at the factory.
( 1)
( 2)
( 3)
( 4)
( 5)
( 6)
( 7)
( 8)
( 9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
Date that order was entered at the factory by ®.
Customer purchase order number.
"Charge To" address.
"Ship To" address.
Special remarks required on shipping or invoice documents.
Shipment method if specified on purchase order.
Item number.
Quantity for specified item.
Product type, part number.
Unit price.
Total value of specified item.
Administrative notes.
Requested ship date.
@ scheduled ship date.
Customer Services Representative responsible for this order.
® telephone number.
Any inquiries conceming an open purchase order should be directed to the designated Customer Services Representative at the factory.
@ Purchase Order Status Report. ~ publ ishes an open purchase order status report to each customer
on a weekly basis. The report has been designed to reduce expediting time and expense by providing timely
order information and is mailed each Friday (with an identical copy to the responsible ® sales representative).
A sample of the order status report appears in Figure 3.2.
(1) Customer purchase order number.
(2) Quantity of parts on open order on the date of the report.
(3) JEDEC number, ® type, or customer drawing number and revision as specified on the purchase
order.
(4) Date that the order was entered at the ® factory and the requested ship date.
(5) Original ® scheduled ship date and advance warning for revised schedule date, if required.
(6) Quantity of parts shipped by item since previous report, date of shipment, and shipment method.
(7) Pertinent product and/or planning information.
(8) Name of Customer Services Representative responsible for these orders. Any inquiries concerning an
open purchase order should be directed to the designated Customer Services Representative.
In addition to the order status information, this report enables each customer to quickly identify any errors
which may have occurred in the order entry process. Early detection of such errors can reduce postshipment problems.
Each ® authorized distributor receives a copy of the order status report for purchase orders which they
have placed with the factory so that the ultimate customer can receive quick order status information about
® power semiconductors whether the order is placed directly with ® or through an authorized ® distributor.
33
W8&tinghouse EIKtric Corporation
ACKNOWLEDGEMEN';"
. ORDER IS ACCEPTED SUB,lECT TO THE
CONDITIONS OF SALE NOTED ON THE REVIllE
IZ~~~~~~~~~~~~~__~r-____~~~S~I~~O~F~TH~I~S~k)~RM~.____~________~
i.'"=
II
.
ccar.
rwrr 1
. ~.X!Z
, 1268; IflU S'f.
~
(';\4
\;!J
CIIlCAGO. lLLD'OlS 68609
c
pm
ccu.
, 1234
lam
r.t\
\!J
ft.
: C'IIlClGO. lLLDOlS 60609
o
CD3
75
COV'T. SOO1lCl DSPICTICil DQ'D.
@
12" AT lWD.
...
. ,
,';;",'"''
(6. ..,..
.
~<.
.
,J'
WESTINGHOUSE CUSTOMER.
~ECEipT
THIS FORM IS, ISSUED ..td':CKNi:iirIlDGE
OF THe' A8QVESTED ORDER AND TO
PROVIDE YOU WITH A COpy OIiPUR WRITEUP WHICH INCLUD
RICE" HIPPING PROMISES,
PRODUCT DESCRIPTIO!;,!S AND OT~ATA .... " /
.
IF -ANY PART OF OCl'NTERPRETATION APPEARS TO
INCORRECT
1M', DIATE CLARIFICAT!2tI, FROM THE~'PERSON WHO
BELOW. (PHONE 41
25-7272)
~1'
1.,'-
t;;\ Pl!ASE OBTAIN
\!I
THANK YOU FOR TH
,
®
WILLSIiIP
CON'T ON PAGE_
R QUESTIONABLE,
NAME IS SHOWN
11116
U976H
Figure 3.1 @ Order Acknowledgement
34
1"(.&0A1li
'0
."
'0-02-123
'l-Ol-l~S
1113294
'1-01-155
'7-06-J.43
1.S4tHi
'lSJ.006'007AO
,~.,.
,,,-'r:"
,
.". ,..
SBlIICONDUC'lOR PLAN'l
IIIPOllrAN'l R1lIlINDIIR:
8IR1'.rIK1R l1I/IC. 23
'lBRI1 DBC. 31
n.aaP.UJr~
,
I
"
.,
CURRENT OPEN PURCHASE ORDER STATUS
xrz
CORP.
•
1234 IlAIN S'l.
CHICAGO, ILLINOIS
60609
Westinghouse Electric Corporation
Semiconductor Division
Youngwood, Pennsylvania 15697
PREPARED BY BOB BAftBELS
CUSTOMER SERVICE REPRESENTATIVE
PHONE 412-295-7272
L
TWX
51o-.t68-2840
DATE OF REPORT
FORM l03A
®
10/2'/76
Figure 3.2 @ Current Open Order Status Report
@ Packing List. The sample packing list in Figure 3.3 accompanies each shipment of @ power
Semiconductors, This document serves as the shipping label and provides the following information.
( 1) Shipping date.
( 2) Customer purchase order number,
( 3) "Ship To" address.
( 4) "Charge To" address.
( 5) Special remarks required on shipping or invoice documents.
( 6) Shipment method if specified on purchase order.
( 7) Freight charges.
( 8) Gross shipping weight.
( 9) Carrier.
(10) Item number.
(11) Quantity of specified item in this shipment.
(12) Product type, part number.
(13) Administrative notes.
(14) Certificate of Compliance signed by a @ Quality Investigator.
Note: A Certificate of Compliance accompanies each shipment. No special request for this information is
necessary!
35
westinghouse Electric Corporation
CD
SHIPPING DATE
28 OC'I '76
SHIPMENT NUMlER
721t8
1A
@3
00v 'T.SOURCBDfSPlC'llClfUQ'D.
AT YWD.
WESTINGHOUSE CUSTOMER RECEIVING NOTE:
PLEASE EXAMINE THIS SHIPMENT IMMEDIATE~Y TO BE
SURE THERE ARE NO DISCREPANCIES. WESTINGHOUSE
WILL NOT BE RESPONSIBLE FOR SHORTAGES OR OTHER
RECEIVING CLAIMS WHICH ARE ENTERED AFTER 30
DAYS FROM DATE OF SHIPMENT.
IF THIS SHIPMENT SHOWS ANY EVIDENCE OF CARRIER
DAMAGE, YOU SHOULD IMMEDIATELY FILE A CLAIM
AGAINST THE CARRIER. WESTINGHOUSE DOES NOT
ACCEPT RESPONSIBILITY FOR FILING. DAMAGE CLAIMS
OF THIS NATURE.
Figure 3.3 @ Packing List
36
@ Invoice. Three copies of each invoice are sent to the customer at the time of shipment. A sample invoice is shown in Figure 3.4.
INVOICE
®
fORM 33275C
westinghouse Electric Corporation·
.ACCOUNTS
REMIT TO P.O. BOX 146, PITTSBURGH, PA., 15230
~ECEIVABLE ·4
DUNS 4· 174-2040
:J
INVOICE NO. & DATE
+
EB-57364
81-01-155
SEE ITBHS
CHARGED TO
I
006870
I
10/28/76
SHIPPED TO
PAGE 1
XYZ C<BP.
• XYZ CORP.
CD 1234 MUN ST.
f4\ 1268 MAIN
\..:!..J PlANT 1
CHICAGO. ILLINOIS 60609
ST.
CHICAGO, ILLINOIS 60609
TERMS: N Net Within 30 Days
~
i
I
I ®CD
1A 1000
i
1N5406
CUST PART
SRPD COLL UPS
@
iii
I
ARIZONA
CALIFORNIA
DIST. OF COLUMBIA
PiiNi;;SYlviiiiA' N. Y.
~n.EERr:r.:it~fZT~~TEl~U~E~L~i f:s0J:6'ij8~li~\"~,~ ~m~~ APPUCAlI! REQUIREMENTS OF SECTIONS 6, 7 AND 12 Of THE fAIR LABOR STANDARDS ACT. AS AMEND£D, ANDOF RfGUlAl'IONS ANI) OIDDS
NOTICE, '.'CE(5) HEREON. FOLLOWING OUR COMPANY POlICY, IMY Ie IASID UPON PRICE{S} IN EffECT AT nME OF SHIPMENT, THSIfFORf MAY NOT BETHE SAME AS THE !'RICErsl ON raUl OlDER.
THE $All! OF TtlIS AtTICLl DOES NOT CONVEY AHY LICENSE. EXPlESS4,Y OR IMPLIED, UNDlIIIttHt PAT!NT CLAIMS ON CIRCUfTS 01 SYSTEMS, Olt ON ANY COMIINATION Of THIS ARTICLE WITH OTHER DEVtCES 01 ElfMINTI,.
IIETUItNfD GOODS WlLLNor. ACaPTED UNLESS 1'1101 AUTHORIZATION AND SHIPPING ADDRESS HAVE I!!N SECURED fROM LOCAL WESTINGHOUSE SALES OFfICE.
Figure 3.4 @ Invoice
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
Customer purchase order number and date that order was entered at the factory by @
Invoice number and date of shipment.
"Charge To" address.
"Ship To" address.
Terms of sale.
Item(s) included in this shipment.
Quantity shipped against specified item.
Part number.
37
(9) Product type.
(10) Unit price.
(11) Total value shipped agai nst specified item.
(12) Shipment method.
(13) Gross shipping weight.
(14) Total value of items shipped on this invoice.
(15) Transportation charges, if applicable. (Note:
(16) Total value of invoice.
(17) Address to which payment must be sent.
®
sales policy is freight collect.)
@ Test Data. The documents in Figure 3.5 illustrate the ® method used to present test data when requested by the user. It should be noted that a Certificate of Com pi iance appears on the ® packing list and accompanies each shipment. Therefore, no special request for this information is necessary.
---
Test # FromCQve' Page
Page~
XVI<. M
tG>T
;-1'-
-,~",'---;f-':C"",,:--+-"'~--'-;+"'~'~:=-:+'7~;'+--r---+---+----1
"u~
u/(
'/.7
" Zv
,~,
Symbol
G'i'
--+--I--+---+--t---t--I-- f--
Spec,QI
EJ
o
o
Te.t.
0
E1 He(lumlea~
X-Ray
lOO%Elact"cal
Group AlCoS!
S~ec
0
Cerro/rcal" of Compl'Mce
DOIller
Bum-In
0
0
[3
8
0
GronLeak
Group S!Cust Sp« HI Temp Baka
0
0
PhYS,e8lo,m
Temp Cycle
Group Cleu.t Spec
M<lrclJ'YEXClus'onCert,ftcaj'on
;:~~r::~:~:-rl1t~~-~~-:7o~-sra;-~~-,~:~,t-~~~':"-u~~-:;:-~~~:-~'~-o,,:-m,,-o",-uctor-"O-o",-!sar.,"
~ -=,~"o'm""
'1m 1M
~"""""~ ::~3'~~'~;~:;:;;~:~;~:'~:~~~:~~":'"~'~:;::;::;:'.";;7~:::;:.m;:;;::~;:':.::~"::
QUel'tYln\te.tjg.tor--.!~Da!a~7
Figure 3.5 Standard @ Test Data Documents
6. SHIPPING METHODS AND INSURANCE
Power semiconductors vary in size and weight from a small axial lead rectifier (.1 oz.) to large assemblies
,of devices on heatsinks (50 Ibs.) This wide spectrum of sizes and weights enables the supplier to use several
different types of shipping methods to transport the devices. However, these methods differ widely in cost,
speed, size and weight limits, geographic coverage, traceability, and available insurance coverage. Since most
power semiconductors are shipped on an f.o.b., point of shipment, freight collect basis, the supplier normally
honors any specified routing from the user. If the user does not specify a preferred shi pping method, the
supplier will pick the most economical carrier who provides good service to the shipping facility. Remember,
however, that "Best Way" or "Cheapest Way" to the supplier may not be best or cheapest to the user; all services are not available between.all points. Therefore, it is a good practice to specify a particular shipment
method on all purchase orders.
38
A brief description of the most common methods for shipping power semiconductors is given below. See
Table 3.2 for a comparison of these methods relative to geographic coverage, size and weight Ii mits, insurance,
etc.
UPS
This carrier is probably the most popular for small parcel shipments. Transport is handled via truck and/or
air (UPS Blue Label), depending upon distance. UPS limits shipments to 50 pounds per carton and 100 pounds
per day to a single location.
PARCEL POST
Parcel Post is a branch of the U.S. Postal Service. The service is available to any domestic location with
postal service. Packages are transported via truck and/or air. Weight is limited to 50 pounds per carton.
AIR PARCEL POST
Same as Parcel Post except with guaranteed air service. Rates are slightly higher than Parcel Post.
TRUCK
This method is the most economical for shipments over 100 pounds. Trucking firms are licensed to pick up
and to deliver to specific states. Care must be taken when routi ng shipments to assure that the specified carrier
can/will deliver to the desired destination. Transfers from one trucking firm to another are common.
AIR FREIGHT
Air shipments can be made via air freight forwarders or via conventional air lines cargo. Air freight
forwarder~, such as Emery, use any number of airline carriers and, therefore, can route packages quickly to
almost any location. Some ai r forwarders, such as Federal Express, use their own fleet of aircraft to provide the
same services. The forwarders are usually more expensive than conventional air lines cargo; however, specific
airlines serve limited areas because of federal route restrictions and usually restrict service to scheduled
flights of their own airline. Time is the big factor favoring air freight; most carriers offer next-day service to any
served location for specific fee.
BUS
This method is seldom used, but is required when quick deliveries from other carriers is not available to
remote areas.
Method
Weight Limits
Geographic Coverage
from
Youngwood. Pa.
Traceability
Insurance
t-requency of Service
From@Factory
In Youngwood. Pa.
UPS
50 Ibs./carton. 100 Ibs.
to a single location per
day.
Contlnentsl U.S.
Must be traced from
point of shipment.
Takes from 1 to 3
weeks.
Automatic
$50.
Available up to $5.000
maximum.
1 pickup per day.
UPS Blue
50 Ibs./carton. 100 Ibs.
to a single location per
day.
California. Oregon.
Washington. Georgia.
Florida.
Must be traced from
point of shipment.
Takes from 1 to 3
weeks.
Automatic
$50.
Available up to $5.000
maximum.
1 pickup per day.
Parcel Post!Air
Parcel Post
50 Ibs./carton.
Worldwide.
Can only trace i nsured cartons. Takes
from 4 to 8 weeks.
None automatic.
Check Postal Service
for rates.
2 pickups per day.
Truck
None.
Contlnentsl U.S.
Can be traced from
either direction. Takes
less than 1 week.
Depends on commodity rate. No extra
available.
On demand.
Air Freight
None.
Worldwide.
Can be traced from
either direction. Takes
less than 1 week.
Full value coverage
possible.
3 pickups per day.
Bus
50 Ibs./carton.
Continentsl U.S.
Must be traced from Automatic $50.00.
point of shipment.
lAvailable up to
$250.00 maximum.
Table 3.2 Comparison of shipping methods for power semiconductors.
39
Must deliver to terminal.
Receiving
Incoming Inspection
Installation
Cleaning
Trouble Shooting
Identification and Replacement
40
4
STANDARD OPERATING PROCEDURES FOR THE
POWER SEMICONDUCTOR USER.
1. RECEIVING
Most users have a fixed procedure for receiving shipments of power semiconductors. If a procedure does
not exist, one should be established as quickly as possible to avoid receipt of damaged goods into inventory.
An important item to remember is to examine each shipment carefully forevidence of rough handling and container damage. Most power semiconductor manufacturers ship on an f.o.b. point of shipment basis and,
therefore, responsibility for the material is transferred at time of shipment. Users must note package damage
when signing for a shipment and file a claim against the carrier. Accepting a damaged shipment without noting
this fact when signing for the shipment practically eliminates the possibility of a successful claim at a later
date.
2. INCOMING INSPECTION
After material has been accepted from the carrier, each shipment normally is examined for administrative,
physical, and/or electrical discrepancies. Suggested inspection criteria include:
(1)
(2)
(3)
(4)
Match packing list with purchase order to assure compliance.
Validate quantity.
Visually inspect parts for physical damage and proper marking.
Sample check critical mechanical dimensions, if applicable.
Extensive electrical testing normally is not necessary since the manufacturer has fully tested product prior
to shipment. If some electrical testing is desired, the tests should be conducted on a sample basis at room
temperature (25°C). Caution is advised when testing electrical parameters because devices can be damaged
and/or inaccurate data obtained by:
(1) Exceeding maximum operating temperatures with poor test procedures and/or improperly calibrated
equipment.
(2) Poor test methods or inexperienced personnel.
(3) Use of different test circuits and/or conditions than used by the manufacturer.
3. CLAIMS
Administrative errors, such as discrepancies on packing lists or invoices, can best be treated by contacting the Returned Material Coordinator at the supplier.
Any decision to return product must be properly authorized in advance. Contact the Returned Material
Coord inator at the manufacturer for authorization and specific return instructions. Product should be returned
in the original shipping container, when possible. Receipt of unauthorized returns at the manufacturer's location often results in delay of resolution of invoices as well as potential loss of material and loss of time required
to retest and reship. The minimum information requested prior to authorization includes:
(1) SPECIFIC REASON FOR REJECTION AND RETURN ("does not work" or "failed" is not an adequate
explanation).
(2) Quantity and description (part number) of product.
41
(3)
(4)
(5)
(6)
(7)
Original
Original
Original
Material
Detailed
order number.
ship date.
invoice number.
and financial disposition requested.
replacement instr.uctions, if applicable.
4. INSTALLATION, MOUNTING, AND COOLING CONSIDERATIONS
Before installing power semiconductors, it is important to understand why so much emphasis is placed on
using proper mounting techniques. 1n order to obtain maximum efficiency and greater reliability in the use of
power se miconductors, it is imperative that the heat developed by power dissipation at the j unction be removed as fast as possible. There are usually three distinct obstacles in the path of this heat transfer: (a) interface
and material between the semiconductor element and the semiconductor device mounting surface (b) interface between the device mounting surface and the heat sink (c) transfer of heat through the heat sink tothe ambient, which might be natural convection air, forced air, oil, or water. These "obstacles" are referred to as thermal resistances: (a) R6JC Junction-to-Case(b) ROcs-Case-ta-Sink (c) ROsA-Sink-ta-Ambient.Thisthermai
transfer is depicted using an electrical analog in Figure 4.1.
,
Figure 4.1 Conventional thermal circuit using an electrical analog.
The junction-to-case thermal resistance is generally a function of device construction and design and is
determined by the semiconductor manufactu rer. Except for disc mount devices which require the userto apply
the correct mounting force to assure the proper R6Jc, the user has no control over R6JC once a device has been
selected. The user's only option then is to select semiconductors that offer low junction-ta-case thermal
resistances. The other two thermal resistances, however, are quite variable, and the user must carefully consider the various methods and techniques available to insure long life and efficiency.
Primary considerations in obtaining a low case-ta-sink thermal resistance are the degree of flatness and
surface finish of the device and heat sink mating surfaces, the use of a thermal joint compound, and the proper
amount of force (torque) applied. A complete discussion of these considerations and others are presented in
the Westinghouse application data sheet "Mounting Power Semiconductors" in the General section of the
Data Book. Every user is encouraged to read this application data sheet as it offers many practical suggestions
on mounting and remounting all types of power semiconductors - stud mount, disc mount, flat base, etc. A
couple of suggestions are worth highlighting: Use a torque wrench to insure proper mounting force. Usethermal jOint compounds sparingly - it only takes a thin film between the device and heat sink mounting interface
42
- most people apply too much compound! Remember, when using insulating hardware, that the case-ta-sink
thermal resistances will increase about tenfold!
The final obstacle in the heat removal path is the sink-ta-ambient thermal resistance. The semiconductor
user can minimize this value by choosing the proper heat sink and most effective cooling method. Asemiconductor can be no better than its heat sink! A wide range of heat sink materials, configurations, sizes, and
finishes are available that will meet almost any space, cost, and"heat dissipation requirement.
The most cost effective and popular air cooled heat sinks are made from aluminum extrusion. For natural
convection air, aluminum heat sinks can be black anodized or painted black to optimize their ratings. For example, painting heat sinks black improves natural convection ratings by as much as 25% compared to unpainted heat sinks of equivalent size. For higher output current at less cost, forced convection is the answer.
Forced air can frequently allow the user to more than double the output current of a given device/heat sink
assembly over natural convection rating capability. Why buy more semiconductors than are really needed to
do the job? A few fans and some baffling may provide a substantial savings in system design costs. Use forced
air in lieu of natural convection air when possible.
Water cooling is the most efficient type of cooling in general use today. I n order to optimize the thermal efficiency of a water-cooled heat sink, pure copper heat si nks should be used. Copper alloys, bronze, aluminum,
etc. generally have much lower thermal conductivities and thus are not as efficient. Figure 4.2 shows 1000
ampere SCR's mounted on comparable air cooled and water cooled heat sinks. The water cooled assembly
offers from 1.5 to 4 times more output current than the air cooled assembly, weighs only one-third as much, occupies about 40% of the space, and costs about the same. Therefore, when heat sinks are compared, water
cooling (if available) is usually the most economical choice; forced convection air is next; and natural convection air is last.
Figure 4.2 1,OOOA Disc SCR's mounted on comparable water cooled and air cooled heat sinks.
A final consideration when installing power semiconductors is to place them where the surrounding ambient temperature is as low as possible. Do not mount semiconductors near or above transformers or other
heat generating components in a cabinet and avoid "dead air" pockets. Mount semiconductors heatsinksvertically so as to take advantage of the natural chimney-effect or up-draft of,air flow. When using forced air or
water to cool various components in a cabinet, make sure the cooli ng mediu m reaches the power semiconductors first. Good installation practices when mounting and cooling power semiconductors will insure good
operating performance and long life.
5. OPERATING POWER SEMICONDUCTOR EQUIPMENT
There is still a tendency to consider the "state-of-the-art" in the design, manufacture, and application of
power semiconductors as something new, mysterious, and glamorous. Not so! Industry has long been using
43
silicon power semiconductors and a vast knowledge in the use of these devices has evolved. Along with this
knowledge has come a new "state-of-the-art" for using and maintaining semiconductor equipment. The
emphasis placed on selecting, purchasing, and installing devices is part of it, but of equal importance is the
proper use and maintenance of equipment employing power semiconductors.
Protect power semiconductors from excessive heat. Semiconductors are composed of materials having
different rates of thermal expansion. Therefore, both short and long term temperature excursions not only i mpair the electrical characteristics of these devices, but also set up internal mechanical stresses at each of the
material interfaces. These combined effects of high temperature excursions can ultimately lead to device
malfunction and destruction. The maximum temperature limits of various materials used in semiconductors
vary from 1500C for soft solder to 13000 C for silicon. Once these materials are combined into a fabricated
device, however, electrical deterioration begins at lower temperatures.
For example, forward and reverse blocking capability of a junction begins to decrease and leakage
currents increase when allowable maximum junction temperatures are exceeded. (These temperatures are
generally between 125°C and 200°C, far below the maximum temperature limit of silicon itself.)
Periodic monitoring of ambient temperatures, cooling fan operation, cooling water temperatures, and
case temperatures of the semiconductors themselves will pinpoint many malfunctions before they cause
catastrophiC failures. Because of the importance of preventing high temperatures from developing, this
monitoring must be emphasized in the operating procedures for the equipment operator .
. Avoid overloading eqUipment. Avoid overloading the semiconductor, which in effect, means protect against
overload ing the-equipment that the semiconductors are feeding and/or controlling. For example, overloading
a motor operated with semiconductor controls puts a direct overload on the semiconductors. Even if this
overload is only for a short time,.the semiconductor's useful life can be shortened. Controls are designed to include motor overloads and the maximum values of overload should never be exceeded. Continued short term
overloads above the control specifications can cause undetectable additive damage resulting in random, often
unexplainable semiconductor failures.:
Operator induced overload conditions that could result in excessive semiconductor currents include
high on/off duty cycle or jogging for high production needs, rapid reversing, motor jam, and long acceleration
time. Some mechanical problems that can cause motor overloads are high equipmenttemperature dueto lack
of cooling, wiring or bearing failure due to improper installation or maintenance, phase failure dueto blown
fuses or loose connections, phase imbalance, overvoltage, transient overvoltage and contaminants or dirty environment.
Table 4.1 shows various motor stress conditions and the common protection. This table can be used to
determine adverse load conditions and the type of protection that should be used. In properly designed
system, overload conditions are considered and provisions are made to accommodate the overloads. The user
or operator has an obligation to operate the equipment within the design ratings. The table shows the equipment user and designer methods to prevent overloading a motor, and hopefully, to avoid the situation that
would cause semiconductor failure or reduce semiconductor life.
Protect power semiconductors from transient overloads. Silicon semiconductors are inherently long life
devices if they are adequately protected against surge currents and transient voltage spikes. The protection
against failure due to these phenomena are relatively simple and normally this protection is designed into the
circuit. In industrial plant environments, most voltage transients in semiconductor circuits arise from three
major causes:
Switching is the most common source. Whenever current is switched on or off in an inductive circuit, a
transient voltage is generated at the switch terminals. Transformers and motor windings are highly inductive
components, and the circuit wiring itself is inductive. Surges caused by lightning contri bute to switching transients. These transients can originate in remote circuits and still feed back to the semiconductor circuit
through the supply line. Protection of semiconductors from such transients is pri marily a matter of attenuating
the surge to a level the semiconductor can tolerate.
Commutation transients are associated with the reverse recovery characteristic of a rectifier junction.
Since, in normal use, a semiconductor is continually switching from a conducting state to a non-conducting
state, there are rapid changes of current (high di/dt). For this reason, and especially where fast switching rectifiers are used, it is imperative to keep circuit inductance at a minimum. Here again, suitable suppression
networks should be designed into the circuit.
Regenerative surges in inductive or dynamic loads is the third major source of reverse voltage transients.
Such loads include motors, lifting magnets, solenoids, relays, and many other devices involving stored inductive energy in the form of high induced voltage. Suppression of these transient voltages usually requires
protective devices with high energy storage capacity.
.
44
Semiconductor
Pro"'lem
Molar Curnnt
Variance
Common
Semlconductar
Proteclon
CUrnntor
Voltage V....nce
OVerload
Operators Choice
Increases threa phase current
approaching 200%.
Increases semiconductor current, eventual motor burnout can cause surge on
semiconductors.
Thermal overload on semiconductors and motors. Design forsemiconductor current overload.
Motor Jam
Load Blockage
High operating time at locked
rotor current to 600%.
I ncreases semiconductor current, eventual motor burnout can cause surge on
semiconductors.
Thermal overload on semiconductors and motors. Designforsemiconductor current overload.
High On/Off
Duty Cycle
Jogging for
High Production
Needs
Increases semiconductor current, eventual motor burnout can cause surge on
semiconductors.
Thermal overload on semiconductors and motors. Designforsemiconductor current overload.
Rapid Reversing
Production Needs
Increases semiconductor current, eventual motor burnout can cause surge on
semiconductors.
Thermal overload on semiconductors and motors. Design for semiconductor current overload.
Long
Acceleration
Time
High inertia slow
starting loads
Increases semiconductor current, eventual motor burnout can cause surge on
semiconductors.
Thermal overload on semiconductors and motors. Design for semiconductor current overload.
Increases semiconductor current, eventual motor burnout can cause surge on
semiconductors.
Thermal overload on semlconductors and motors. Design for
semiconductor current overload.
High operating time at locked
rotor current to 600%.
High operating time at locked
rotor current to 600%.
High operating time
at locked rotor
cu rrent to 600%
High Equipment
Temperature.
High ambient
temperatures.
Lack of cooling.
No increase but can cause
wiring and insulation failure.
Motor Wiring
or Bearing
Failure.
Overcurrent, Improper Installation or
Maintenance.
Locked rotorcurrentt0600%.
Increases semiconductor current, eventual motor burnout can cause surge on
semiconductors.
Thermal overload on semiconductors and motors. Design for
semiconductor current overload.
Phase Failure
Blown Fuse, Loose
Cpnnectlon
Decrease in current until
motor core reaches saturatlon and current increases.
Increases semiconductor current,
eventual motor burnout can cause surge
on semiconductors.
Thermal overload Phase failure relay.
Unbalanced single
phase loads on same
line, poorly regulated
service.
Decrease in one phase and increase in the other two
phases of current.
Increases semiconductor current, eventual motor burnout can cause surge on
semiconductors.
Thermal overload Phase failure relay.
Slight voltage increase
decreases current. Large increase may saturate core and
increase current.
Decrease or Increase semiconductor
current.
Overvoltage relay.
High transient voltages across semiconductor when semiconductor is in the off
position.
Capacitor-Resi stor
Voltraps, MOV, etc.
~
C1I
Callie
Phase Unbalance
Com_ta
Operation at thermal overload conditions can reduce semiconductor
life.
Depending on the design up to 600%
Increases in semiconductor currents
are possible resulting in reduced life
or shorted semiconductorI'
Surge currents can also reduce
semiconductor lifetime and cause
semiconductor failures.
High ambient temperatures produce
the same results as high currents i.e.,
reduced life and failed semiconductors.
Never operate semiconductors
without proper cooling.
Increase of currents can cause
semiconductor failure and reduced
life.
OVervoltage
High source
Transient
OVervoltage
Lightning, opening Inductive switches etc.
Underload
Operators choice
Decrease in motor current.
Decrease in semiconductor current.
None
Light load increases semiconductor
life.
Contaminants
Dirty environment
Causes corona
Causes corona
Clean room filters
Clean equipment periodically even
with filtars.
Slight average current increases.
Networks,
Short duration high transients can
cause semiconductor failure.
Corona carbonizes dirt and causes
eventual semiconductor shorts.
Table 4.1 Motor Overloads and Their Effects on Semiconductors
Some of the common devices used for transient protection are capacitors, zener'diodes; freewheeling
diodes,@Voltraps, and varistors (MOV/ZNR).
.
Protect power semiconductor circuits from current overloads. The power semiconductor'circuit must be
protected from heavy current loads caused by short circuits or other component breakddiNhs; Several
methods are available for this type of protection.
/
Fuses - Semiconductor fuses protect against overloads and, when properly applied, remove the
semiconductor from the power source when an overload occurs. However, the result is downtime and higher
operating costs. Therefore, fusing is generally limited to applications where the power source can damage
components before slower breakers remove the power.
Mechanical breakers - Magnetically operated breakers provide an inexpensive means of Ii miting cur~ent.
This type of breaker operates !:lest under short circuit conditions and offers speedy, low-cost restarting and
relatively fast circuit interruption.
Thermal breakers - These employ heating elements to operate bimetallic contact actuators. This type of
breaker offers reasonable protection for wires and good protecti on for components with high thermal capacity. Their ability to protect semiconductors is, however, limited.
"
Overrated semiconductors - Semiconductors with current ratings high enough to accommodate anticipated current overloads is another method of protection. This approach allows the.cost 9f fuse~, wiring, and
mounting to be put into the semiconductor. It also allows mini mal protection, so safety considerations reqUire
a conventional circuit breaker to disable the circuit in extreme malfunctions. .
.
Combinations - Combining circuit breakers with fuses, oversized semiconductors,or curr~nt feedback
circuits are frequently applied techniques. Another approach is using special branch protection. For example,
each leg of a single phase bridge might be separately protected instead of using asinglefuseor breakerforthe
entire converter; a motor armature circuit can be protected by a breaker, while the mains are fused. This
arrangement prevents overstressing a motor while the semiconductor devices are operating at high current
peaks that are within fuse limits..
.
..
"
Keep power semiconductors clean. Semiconductors and semiconductor equipment mustbe ke.pt clean.
Why? Because on high power semiconductors, the glass or ceramic seal on the semiconductor package csn
be a source of trouble when dirt accumulates. Even when good engineering practices are followed in the
positioning of components and support material to reduce or eliminate excess voltage stress and voltage
gradients, these gradients can change with moisture, dirt, pressure, temperature and aging. With a clean
system, high transients can initiate corona which will then be extinguished upon return to normal voltage.
However, with any accumulation of moisture or dirt on the insulating glass or ceramic suiface, the corona will
remain when the voltage returns to normal, and can cause extensive damage tothecircuit. Evensemiconductors without a visible layer of contaminants maybe covered with conductive particleS that can cause corona.
Therefore, periodic cleaning is advisable. The time between cleanings could be lengthened by the proper use
of filters, but filters will noteliminatethe need for cleaning. Agood maintenance progratnisessentialto proper
operation of semiconductors.
"
6. PREVENTATIVE MAINTENANCE
The key to successful and efficient operation of high power semiconductors is·a .good, well .. planned
maintenance program. Routine maintenance of semiconductor equipment involves putting into actual practice the good operating procedures listed in section 5 with emphasis placed on (a) temperature build-up, (b)
dirt accumulation, and (c) loose mounting and/or connections. A regular schedule should be followed for
checking and eliminating these conditions.
(a) Temperature build-up may be caused by excess ambient temperature, poor or blocked air circulation,
failure of cooling devices, such as fans or water ci rculati ng equi pment, dirty heatsi nks, and air filters, or equipment overloading. Since temperature build-up is usually gradual, it should be constantly m6Mtbred with
strategically placed thermocouples. A suggested method of affixing a thermocouple to asemiconductor baseor heat sink is to drill a small shallow hole, fit the thermocouple into it, and then peen the surface around the
hole to secure it. Equipment designed for forced air cooling or water cooling should never be energized
without proper air or water flow.
(b) Dirt accumUlation on the glass or ceramic surfaces of semiconductor packages must be1leriQdically
and thoroughly removed. WMn cleani ng semiconductors, the safest cleaning method consislent with desired
46
results should be used. Solvents can be hazardous and should be used with care. Even a solvent that is considered non-toxic can kill or injure when used with improper ventilation. One oft he safest methods of cleaning
Is by wiping with clean cloths. Often due to space limitations, the areas that need to be cleaned cannot be
properly reached and, therefore, a liquid cleaner must be used. Table 4.2 lists solvents that could be used as
cleaners.
Attacks
Rubber
InsulaUon
Precautions
Rinse with distilled water, dry thoroughly
80lnnt
Hazard
HUllrd
Hazard
Electrically
Conductive
water. tap
None
None
None
Ves
None
Water. distilled
Water/detergent
Mathyl alcohol
None
None
High
None
None
High
None
None
High
No
None
Dry thoroughly
Ves
No
None
Slight
Rinse with distilled water, dry thoroughly
Avoid skin contact, use ventilation
Elhylalcohol
Isopropyl alcohol
Paint thinner
(mlneNlsplrilB)
High
High
High
High
No
Slight
High
High
No
Slight
Can cause internal damage; ingestion can
cause blindness
Mix with distilled water to reduce hazards
Low
Low
Low
No
FIN
Explosion
Toxicity
Use proper ventilation; Ii mit exposure to
rubber
Acetone
High
Moderate
Low
No
Slight
Slight
Perchlofoethylene
(dry-cl_nlng
IOlvent)
Low
Low
Moderate
No
Slight
Trichloroethylene
Low
Low
Moderate
No
Slight
Limit exposure to prevent rubber degeneration
Use short exposure to prevent rubber damage;
irritates eyes and causes headaches; heating
causes fumes
Use adequate ventilation; limit exposure time
to prevent rubber damage
Freon
Mailier XL-l00
Low
Low
Low
Low
Low
Low
No
No
Slight
Slight
Use adequate ventilation; limit exposure time
Use adequate ventilation; limit exposure time
Low
Low
Low
No
Slight
Use adequate ventilation; limit exposure time
Miller Stephenson
MS-180
Table 4.2 Semiconductor Cleaning Solvent Characteristics
The safest method of cleaning semiconductors, as shown in Table 4.2, is to use a detergent wash and then
flush with distilled water. The system must be completely dry before the reapplication of power. Regular tap
water can contain many conductive impurities and should not be used as a final rinse.
Methyl, Ethyl, or Isopropyl alcohol could be used for cleaning, but they can attack sleevings and insulations. Before using alcohol or any solvent, its use should be checked on a small sample of sleeving and insulation to determine if they are attacked. Since time of exposure to a solvent determines any adverse effects,
the time of exposure during the test should be the same as the time expected during actual cleaning. Any
elongation, softening or actual decomposition could eliminate the use of the solvent. A temporary softening
may not be detrimental. Remember that alcohol is toxic and should be used with care.
Follow all safety precautions when using any solvents. Read the labels on all the chemicals. Do not mix
solvents (or any chemicals) unless recommended. The information regarding solvents, their fire, explosion
and toxicity hazards, etc., are believed to be accurate, but it cannot be guaranteed. This information is given as
a general recommendation for information only.
(c) Along with scheduled periodic cleaning, a systematiC checking of mounting and terminal connection
tightness should be specified. If a loosely mounted device is discovered, it should be removed, both mounting
surfaces thoroughly cleaned, thermal compound reapplied, and then remounted with the specified torque.
7. TROUBLE SHOOTING AND SERVICING
Properly protected semiconductor devices incorporated in well-designed circuits should last for the life of
the equipment. Semiconductors should not be a major problem for the maintenance engineer. However, experience shows that up to a 10-15% failure rate can occur during equipment lifetime, due chiefly to misuse,
misapplication, or neglect of the equipment and overloads caused by natural forces, such as lightning.
Therefore, to operate efficiently, the maintenance department must have the proper tools and equipment. Most
47
of these essential items are elementary and relatively inexpensive when compared to the wide array of measuring devices and instrumentation availabl~ for the study of power semiconductors and associated circuitry.
Suggested equipment for moderate service work:
1.
2.
3.
4.
5.
. 6.
7.
Volt-ohmmeter (voltmeter)
Clamp-on ammeter
Probe-type temperature indicator
SCA/Rectifier blocking voltage test circuit (see Figure 4.3)
Transistor blocking voltage and gain test circuits (see Figures 4.4 and 4.5)
Torque wrench and complete standard tool kit
Oscilloscope
An oscilloscope is used for viewing the current and voltage waveshapes within asemiconductorcircuit. Eventually, all technicians become familiar with a "scope". It is the most important and useful tool available to the
troubleshooter.
Equipment Breakdowns and Malfunctions. What shou Id maintenance personnel look for when equipment
breaks down? Are there visual signs to indicate why a semiconductor failed? As with any other type of equipment, there is much that can be learned from one's own senses and experience. With electronics, heat is still
the number one symptom of impending failure. So be alert for charred or discolored components-that is a
sign that too much current flows or has flowed through the component, and if it has not failed, it soon will.
Although the trouble could be limited to the failed component, it is possible that some other component is at
fault through fai lu re or misadjustment. A thorough knowledge of the theory of operation of the equipment will
be invaluable in tracking down real causes of component failure.
Voltage related failu res, on the other hand, are a b it more d ifficu Itto locate because there is usually no outward sign of failure. However, this type of failure is, more often than not, catastrophic, and shorted devices
result. Shorted devices are much easier found than downgrades or control malfunctions. One of the most
destructive causes of failed semiconductor components is Iightning storms. The electrical forces generated by
nature are enormous, so watch for equipment malfunctions during and just after an electrical storm. The
maintenance engineer should also monitor closely any equipment that is pushed to its operating limit, thereby
increasing the possibility of failures.
As a general procedure for checking out a suspect semiconductor, the following sequence of test checks
should be performed:
(1) Look at the suspect device(s) [with the system power off]using a volt-oh mmeter-check for shorts.
(2) If no short exists, apply power (reduce power, if possible) and using a voltmeter or scope, check to see
if the suspect device is blocking voltage.
(3) If the unit is blocking voltage, the user should then check to see whether or not any current is flowing.
This current flow can be measured with a Clamp-on ammeter, voltmeter in conjunction with a current shunt or
resistor that is in series with the suspect unit, or a scope.
(4) Finally, the suspect unit should be checked along with the other power semiconductor components in
the circu it to confi rm that the devices are all operati ng with in thei r maxi mu m allowable case temperature. This
mli)(imum allowable case temperature can be determined from the manufacturer'S technical data sheet by
knowing the device's circuit configuration and actual current magnitude and waveform. A probe-type
temperature indicator can be used for making case temperature measurements.
If the suspect device(s) fail any of the above test checks, the system power should be turned off and the
suspect devices removed from the circu it for fu rther test and eva Iuation. I n some instances, the devices can be
tested without the need of removal, test, reinstallation, and down ti me. However, the user should make certain
that the measurement being taken is that of the device under test by disconnecting one power lead (also gate
lead in case of SCR) for circuit isolation. Disc devices, because of their double-sided mounting, may be difficult to isolate and may have to be removed from the circuit. In this case, the disc device must be clamped vvjth
sufficient force (approximately 200 Ibs.) to get a valid reading.
Rectifler/SeR Testing
Volt-ohmmeter-An ohmmeter can be used to check rectifier polarity or as a quick check to determine
whether an SCR or rectifier (diode) has failed open or short. Note: An ohmmeter is not a valid tester for measur48
ing blocking voltage capability. If an SCR anode-cathode measurement shows a short in either direction or if
the gate-cathode measurement shows a short in both directions, then the SCR is a short. For an SCR to be
open, the anode-cathode measurement as well as the gate-cathode measurement must show an infinite
resistance in both directions. Likewise, a rectifier must show zero resistance in both directions for a short and
infinite resistance in both directions for an open. A rectifier normally shows low resistance in the forward direction and high resistance when the ohmmeter probes are reversed. Thus, the ohmmeter can be a check for rectifier polarity. An open failure on a @ high power SCR or rectifier is a rare event due to compression bonded
encapsulation (CaE) device construction.
SCR/Rectifier Blocking Voltage Test Circuit-The following test circuit (Figure 4.3) describes a simple
blocking voltage tester that is capable of testing devices up to 1800 volts and can be built for about $1 00.00. The
(cathodel
J3
Q
*
I
VRiiM
device
under
I test
V M2
BILL OF MATERIALS
S1- Switch ON-OFF -SPST
S2 - Switch N.O. Push Button SPST
F1- Fuse 1.5 A. 120V
11- Trans. PC 8302 - Variac
T2- Trans. T-21P89 Thordarson
01.02 - Diodes @ 1N5054
R1- Res. 1.0ll. PreciSion Non Inductive
R2- Res. 220 K.a.. 2Watt Carbon
R3- Res. 1K.n.. 10 Watt Carbon
JI. J3 - Banana Jack (Red) Johnson
J2. J4 - Banana Jack (Black) Johnson
M1-Meter 0'5 Milliamp D.C. (2.n.)
M2 - Voltmeter
WARNING:
ALL TEST POINTS. J1 TO J4
HAVE HAZARDOUS VOLTAGES
PRESENT DURING TEST.
SYMBOLS
lcathode
~ Anode
RECTIFIER
Gate
i
Cathode
Anode
SCR
Figure 4.3 SCR/Rectifier Blocking Voltage Test Circuit
safety switch S2 must be depressed to allow voltage application and the variac controls the amount of voltage
to the device under test. After each device is tested, the variac setting should be returned to zero so as not to
risk damag ing a subseq uent device under test that might have a lower voltage rati ng. Never exceed the device's
rated voltage when testing. Since this test is conducted at room (ambient) temperature, the measured maximum allowable leakage limit should not exceed one-half the maximum junction temperature leakage current
value listed on the manufacturer's technical data sheet. When testing an SCR, the gate lead must be left open
(Note: Some non-Westinghouse devices may require a gate bias termination to meet rating). V!tIM (reverse
voltage) is measured when SCR cathode is connected to J3 and SCR anode is connected to J4; VORM (forward
voltage) is measured when SCR anode and cathode terminals are reversed. The voltage is read indirectly by
M2 voltmeter (VRRM = 3.14 X DC meter reading). IRRM or IORM leakage current is monitored directly with a
scope across J2 and J1 or indirectly by M1 milliamp meter across 02 (IRRM or I ORM ~ 3.14 X average leakage
over full cycle meter reading). For rectifiers (diodes), the VR \\M (reverse blocking voltage) is tested the same
as an SCA. Since most rectifiers are available in standard or reverse polarity, be sureto check the polarity symbol device marking to identify the anode and cathode.
Transistor Testing
The following simple test circuits can be used for a quick check of transistor parameters but are not
recommended for classifying devices. Other, more accurate, measuring equipment that has a pulsed duty cycle should be used for incoming inspection. A good curve tracer such as the Tektronix 576 will measure gain,
49
~urrents, and voltages at a pulsed duty cycle. Other, less accurate, measuring instruments, some in kit form,
esn be obtained from electronic supply stores for use in troubleshooting a circuit.
Volt-ohmmeter-The only valid ohmmeter measurements on transistors are short or open determinations.
A shorted transistor will show a short (resistance approaches zero) in both directions across the base-emitter,
collector-emitter orcollector-baseterminals. This test is accomplished by removing the transistor from the circuit and first measuring the resistance in one direction and then reversing the ohmmeter probes across theterminals. A good transistor will show a low resistance (conduction) in one direction and a high resistance when
the probes are reversed. If any ofthe three tests (i.e., collector-base, collector-emmitter, or base-emmitter) are
faulty, then the transistor is faulty. A faulty transistor will have either a low resistance in both directions
(shorted) or a high resistance (open).
Note: This ohmmeter test is correct when it indica~es a shorted or open transistor, but when it shows a
good transistor, it may not be correct because of the low voltages used in the ohmmeter test. Further tests must
be made to determine the condition of the transistor.
Transistor Blocking Voltage Test Circuit-The voltage capability of a transistor is measured using the circuit in Figure 4.4. The transistor is connected in one of the three desired modes (i.e., VeE' Vca or VEl). The
v
Figure 4.4 Transistor Blocking Voltage Test Circuit
current meter shou Id be capable of 1 ma to 10 ma, the voltmeter and power supply to hundreds of volts and the
load resistors shou Id Iimit the current to about 10 ma if the transistor shorts. The voltage is set to the data sheet
limits and the current is read. Any current reading within data sheet limit would indicate a good transistor. If a
data sheet is not available then set VeE and Vca to the circuit voltage using 10 ma maximum as an acceptable
current. When measuring V Ea ,if no data sheet is available, set the voltage at 4 volts and use 10 ma as a maximum acceptable current.
Transistor Gain Test Circuit-Gain measurements should be made on a curve tracer or a high current
pulsed test set. A D.C. gain measurement can be made if precautions are taken to limit the power dissipation
and a heat sink is used. The case temperature should be monitored. A resistor to drop about 2 volts is used in
the base as shown in Figure 4.5. The base voltage is slowly increased until the desired collector current is
v
Figure 4.5 Transistor Gain Test Circuit
50
-=-4V
reached. The collector and base currents are then read. The collector-emitter voltage of 4 volts is usually used.
This test is a continuous power test and should be done as quickly as possible to limit internal junction
temperature. The gain (h FE ) is calculated as follows: hFE = leila
Common Causes of Power Semiconductor Failure. Most of the advice given thus far deals with the proper
installation and operation of power semiconductors. However, in the event all of this advice was not followed
or accidentally missed, the knowledgeable maintenance person has a good jump on discovering the reason a
particular device has failed by pursuing the following checklists.
Many power semiconductor failures are the result of improper mounting and electrical application. The
first step in evaluating any failure should be to assure that good engineering practices have been used in both
mechanical as well as the electrical application of the semiconductor. Faulty mechnical practices often
result in eventual electrical failures.
the
MECHANICAL CHECKLIST
1.
2.
3.
4.
5.
6.
7.
Torque-are semiconductors torqued properly?
Flatness-are mounting surfaces flat and free of defects?
Thermal Compound-is thermal compound used properly?
Stress-is there any undue stress placed on the semiconductors?
Insulation-are the terminals or case contaminated causing electrical conductive paths?
Heat Sink-is it large enough and is it clean and efficient?
Other pertinent mechanical details.
Torque-torque wrenches must be used, and the maximum torque rating must not be exceeded. Some
semiconductors can be mechanically damaged by too much torque or thermally damaged by too little.
Flatness-heat sink must be flat, free of burrs and ridges, with holes and edges chamfered. These defects
could prevent the proper seating of the semiconductor, resulting in thermal or mechanical damage.
Thermal Compound-should always be used according to the manufacturer's instructions. Either too little ortoo much compound could result in poor thermal impedance. When applying thermal compound, be certain that the threads remain dry. Lubricated torque specs mean that the mating surfaces are lubricated. Apply
thermal compound to both sides of insulating washers, when used.
Stress-semiconductor should not be used as a support for heavy electrical leads. Lead stress can cause
mechanical seal cracks resulting in hermeticity problems. Mechanical stess can also be transmitted to the
junction causing cracks in the element or solders, resulting in failures.
Insulation-insulation between semiconductor terminals or terminals and case is often very small. When
operating the semiconductors in moist or contaminated areas where voltage creepage can become a problem,
additional protection should be used against such electrical conductive paths.
Heat Sink--should be large enough for proper heat transfer. Undersize heat sinks often cause junction
temperature to exceed maximum ratings. All types of corrosion and oils should be removed with solvents or
emery cloth to insure the lowest possible thermal impedance between mounting surface and heat sink.
ELECTRICAL CHECKLIST
1.
2.
3.
4.
5.
6.
7.
Overcurrent-is current exceeding maximum ratings?
Overvoltage-are maximum voltage ratings exceeded?
Surge Current-is there a possibility of a fault that could cause a one-time.surge?
Transient Voltage-are transient suppressors used?
Power-is the semiconductor operated within rated power?
Testing-is the testing damaging the semiconductor?
Specs-is the semiconductor operated within the data sheet?
Overcurrent and overvoltage-absolute maximum ratings should never be exceeded under worst case
operating conditions. For reliable operation with a minimum number of failures, current, voltage and
temperature should be derated. Usually the greater the derating, the more reliable the semiconductor
becomes. The semiconductor manufacturer should be contacted for assistance in derating specific semiconductors. Load, component, and environmental variations (especially temperature) should be investigated as
probable causes of voltage or current problems.
Surge-surge current is a fault rating that the semiconductor may see under a fault condition. This fault
could happen perhaps only once in the lifetime of the equipment. Surge currents and in-rush currents should
51
.be limited to semiconductor capability or, semiconductors with greater capability should be chosen. Since the
thermal time constant of the elementis small, even a very sl10rt surge current can damage a semiconductor.
The surge can cause a 10ca1ized (hotspot) junction temperature to' be exceeded even though the case
temperature is cool. These localized hot spots can result in degraded or shorted semiconductors.
Transient Voltage-should never exceed maximum rated voltages. These transients can cause a semiconductor to conduct when it should be in a nonconducting period, causing catastrophic failure. Transients that
exceed the maximum rated voltage can cause a ~Iowdowngrading of the semiconductor spec. Transient
protection should be used if occasional or constant transients are suspected.
Power-check power rating for current, voltage and temperatu re of operation. Power, voltage and current
must be derated with an increase In temperature. Never exceed junction temperature even though case
temperature is within spec.
Testing-never insert or remove a semicond.uctor from a test circuit with the power on. Never exceed maximum ratings. when testing. Always use proper, calibrated test .equipment.
Specification-special characteristics of a semiconductor can be specified to reduce or avoid failures.
Burn-in and other hi-rei testing is available to reduce. failures.
.
If after a thorough mechanical and electrical investigation, the user is unable to determine the cause of
·failure, he should contact the. original equipment man\Jfacturer (OEM) for assistance. Any unusual operating
or mechanical conditions found in the above investigation, along with a history of use, should be given to the
OEM for review.
HISTORY OF USE CHECKLIST
1.
2.
3.
4.
5.
6.
When was the semiconductor purchased?
What is the date code?
.
How many were purchased?
How many failed?
How many were installed In equipment?
Other history.
The history of the semiconductor's use helps in failure analysis. Was the semiconductor used previously,
how much, and with what failure rate? What is the failure rate with the present group? What is the date code?
Have other components been changed? What were the operating conditions at the ti me of failure? These types
. of questions 'help isolate a problem and result in an accurate fail ure analysis.
At this point, ifthe OEM is unable to determine the probable cause of failure for the user, the OEM can have
the semiconductor manufacturer perform a failure analysis. Analysis of the failed semiconductor, along with
the information collected above, should aid In a prompt and accurate diagnosis of the cause of the failure.
Semiconductor reliability is a shared responsibility among the semiconductor manufacturer, the circuit
and equipment aesign engineer, and the end userof the equipment. The manufacturer must design and build a
reliable semiconductor, the engineer must use good engineering practices when designing the equipment,
and the user must operate the equipment within its ratings and see that it is running properly and that its environment is .clean. If these conditions are met, high power semIconductors will be reliable.
8. IDENTIFICATION AND REPLACEMENT
Many semiconductors are identified by a JEDEC number. JEDEC numbers for rectifiers begin with a "1 N"
prefix (i.e. 1N4001, 1N1206A, etc.) whereas SCR's and transistors begin with a "2N" prefix (i.e. 2N681 , 2N3055,
etc.). A JEDEC numberisan attempt by the industry (Joint Electronic Device Engineering Council) tostandardize electrical and mechanical parameters so that products of one manufacturer will be interchangeable with
those of another manufacturer. The user should, however, be careful when making a direct JEDEC substitu. tlon of another manufacturer because the JEDEC registered parameters do not always cover all of the critical
parameters. As a result, manufacturers using completely different manufacturing processes often sell devices
to meet the same JEDEC number. While this may not pose a problem in most general purpose and phase control applications, the user must recognize that various manufacturer's devices marked with the same JEDEC
number can exhibit completely different secondary characteristics and safety margins. An engineer may have
unknowingly designed his, circuit around a particular JEDEC type number from a manufacturer with process A
52
and a big safety factor (i.e. 6 ampere rated device that really has a 12 ampere actual capability). Everything
works fine until the user chooses a replacement JEDEC from another manufacturer ... then the new devices
keep failing in the circuit. Therefore, to be safe, all JEDEC substitutions should be evaluated thoroughly before
use.
Most power semiconductors (especially those rated over the 40 to 100 ampere range) are marketed under
their respective manufacturer's part number. Even though each manufacturer uses its own device
nomenclature, the mechanical packages and electrical ratings are reasonably well-standardized throughout
the industry. Therefore, second sourcing and device substitution is not difficult providing the user has a good
cross reference guide and the technical data sheets forthe devices being evaluated. The Westinghouse Master
Cross Reference Type Number Index is located in the General section of this User's Manual and Data Book.
Using this JEDEC and alpha/numeric industry index, the user can rapidly locate any power semiconductor
product type number for which Westinghouse offers an exact or suggested replacement along with the page
number of the corresponding Westinghouse technical data sheets. As with ANY cross reference guide, the
user MUST determine the ultimate substitution acceptability by reviewing the detailed electrical and
mechanical characteristic of the devices being considered. This comparison will assure that the manufacturer's suggested replacement will perform properly in the given application.
In the event that the device type number being sought is either unknown (marking is obliterated) or not
listed in the@Master Cross Reference Type Number Index, a copy ofthe Replacement Device Identification
Checklist should be completed. Chances are Westinghouse can help identify the part and provide a direct or
equivalent replacement. Si mply call the nearest authorized@distributor or local sales representative for a fast
response and prompt delivery. See page 54 for checklist.
Replacement. Be sure to orderthe exact part number-if in doubt, include the entire device marking on your
order. The most likely place to get "off the shelf" delivery of an exact replacement is directly from the equipment manufacturer. The OEM normally carries an ample supply of renewal parts to service its equipment
market. In the event a replacement cannot be obtained from the OEM, the user should contact a local industrial or electronic distri butor that handles power semiconductors. A user should only buy a given manufacturer's type number from the manufacturer's authorized distributor outlet or directly from the manufacturer's
factory. To do otherwise, the user could receive inferior and/or counterfeit devices from an unknown source.
Play it safe ... deal only with a manufacturer or an authorized distributor.
The maintenance engineer must be thoroughly familiar with equipment service manuals, with the power
semiconductors and their technical data sheets, and with the various tools and instruments available for
testing and replacing semiconductors. It is wise to carry spare semiconductor components in stock in case of
equipment breakdown-especially for critical pieces of equipment.
Many phase control appl ications-i .e. weldi ng, battery chargers, DC motor controls, and general purpose
power supplies can utilize rectifiers, SCR's and/or transistors with fairly broad parameters so long as the
device selected has an adequate current and voltage rating and fits mechanically. The user must be extremely
carefu I in selecting a replacement semiconductor when general purpose or phase control devices are used in
series and/or parallel combination, when fast recovery rectifiers and fast switching SCR's are used in inverters,
choppers, etc. or when semiconductor devices are marked with special (non-catalog) part numbers. Specially
selected, tested, and/or matched units may be requi red for the semiconductor to operate properly in the equ ipment. Failure to use the correct semiconductor device could result in device failures, equipment damage, and
plant downtime.
When selecting a device for replacement, the user can always use one with a higher voltage rating provided all other device ratings are equal or better. Likewise, a higher current rated unit can be selected so long as all
of the other ratings are equal or better and the mechanical package is the same. By following these guidelines,
the user can often locate a suitable replacement faster, reduce spare parts inventory by standardizing on a
fewer number of replacement semiconductors, and gain increased reliability with greater voltage and/or
current safety factors. Of course, the additional cost for the higher rated semiconductor must be weighed
against the savings in inventory reduction, fewer failures, and reduced down time.
In the absence of any other information, a good "rule ofthumb" for specifying the proper device voltage
rating (based upon the supply voltage to the semiconductor equi pment) is as follows: 11 OV line-use a 300 volt
device, 220V line-use a 600 volt device, and a 440V line-use a 1200 volt device. If in doubt about what device
to use, call the semiconductor manufacturer and ask for a recommendation.
The user must realize that power semiconductors, like any other component, fail for a reason. It is acceptable to just replace a suspect semiconductor if that is all that is wrong. However, frequently a suspect
semiconductor fails as a result of a current or voltage overload elsewhere in the circuit. Simply replacing the
suspect semiconductor in these instances will only result in destroying more semiconductors. Therefore,
always look for the cause of failure before replacing any devices.
53
®
Replacement Device Identification Checklist
(make copy for each use)
If you have been unable to locat"e your power semiconductor part number in the @ Master cross reference index,
simply complete a copy of this form. Chances are @can help you identify the part and provide you with a direct or
equivalent replacement. Call your nearest authorized distributor or your local sales representative for a fast response
and prompt delivery.
o Rectifier
o Thyristor (SCR)
c Transistor
PRODUCT
CLASSIFICATION
DEVICE
MARKING ____________________________
o Other:
o Do not know.
Example:
@ t R404i040 7710
1
2
3
o
1. Semiconductor manufacturer's name, symbol or identification: '.
D@ DOther: _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
2. Prodlltt and/or polarity symbol:
o ... Rectifier (Standard Polarity)
o t Rectifier (Reverse Polarity)
SCR
4
D
Other: _ _ _ _ __
Sketch
o No symbol
3. Complete Device part number: _ _ _ _ _ _ _ _ _ __
4. Manufacturer!s date and/or lot code: _ _ _ _ _ _ _ __
0.,
PHYSICAL DESCRIPTION
3. Lead Terminal Description:
1. Package Type:
o
o STUD
MOUNT
o DISC
MOUNT
o INTEGRAL
HEATSINK
2. Approximate Sizes:
CD
~
o
o
o
o
.190"-32
.25"-28
.312"-24
.375"-24
0
0
.50"-20
.75"-16
o Other
~
Mounting surface diameter (d): _ _
(Smallest diameter)
Package height (H): _ _ _ _ __
rn
Fin size (LxWxH)
[IJ
1
H
+L+ -
" SruDLESS
Stud Size (A)
0
0
o
o
0
!~
r
--e-
5"x4"x2"
Other: _ _ _ _ _ _ _ _ __
o
Distance across the flats of the hex:
o 1.25"
o 1.75"
FLEX
(CABLE)
LEAD
o
STUD
TOP
LEAD
o
PIN
LEAD
OTHER:
f~
f
/
FLAG
LEAD
STANDARD
TERMINAL
LEAD
AXIAL
LEAD
Power and/or Control Lead
Lengths: _ _ _ _ _ _ _ __
o Other:
o OTHER:
D
List critical dimensions:
Sketch
4. Physical Appearance (i .e. ceram ic or g lass-to-metal seal, color of
seal or package, nickel plating, etc.):
Sketch
DEVICE ELECTRICAL RATINGS
EQUIPMENT DESCRIPTION
1. Current _ _ _ _ _ _ _ _ _ 2. Voltage: _ _ _ __
1. Type: _ _ _ _ _ _ _ _ 2. Manufacturer: _ _ _ __
3. Other spl. characteristics (surge current, ton, toll, etc.): ___
3. Approximate age: _ _ _ _ _ _ _ _ _ _ _ _ _ __
CURRENT
REQUIREMENT
REQUESTED
1. Application:
0
Replacement
BY
0
New Design
0
Name: _ _ _ _ _ _ _ _ _ _ _ _ Job Functlon: _ _ __
Conversion
2. Quantity required: _ _ 3. Required deiivery:_ _ _ __
Company: _ _ _ _ _ _ __
4. Other considerations: _ _ _ _ _ _ _ _ _ _ _ _ __
Address: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
Phone No.: (_ _) _ _ __
Ci!y: _ _ _ _ _ _ _ _ _ _ _ _ _ State:_ _ _ _ Zip: _ _
54
When removing a defective semiconductor, care must betaken so as notto marthe mounting contact surfaces or damage adjacent components and to preserve all identifying device markings. It is wise to tag the
smaller leads (Le. gate, cathode potential, etc.) for ease of identification. Installing a replacement power
semiconductor is discussed in the Westinghouse application data sheet NMounting Power Semiconductors"located in the General section oftheWestinghouse Data Book. The most important considerations in remounting or replacing devices are to maintain clean mounting and contact surfaces, to continue using a good thermal compound at the mounting interfaces, and to apply the specified torque.
9. SAFETY
Safety in operating and servicing solid state equipment is espeCially important. Unlike mechanical equipment which has rotating parts, moving contactors, etc., there is nothing to warn one that the equipment is
energized. There is also a tendencyforthe uninitiated to believe that voltage and current levels associated with
semiconductor electronics are too low to be dangerous-don't bet your life on it! Obvious safety measures
must be carefully observed. Most high powerequipment includes built in safety interlocks to make certain that
the equipment is turned off before anyone can gain access to the circuit areas.
However, maintenance personnel often defeat these interlocks to simplify their service work. This is both
careless and stupid. In cases when circuits must be checked while energized there are a·few simple rules which
could save both personal pain and equipment damage. First, if possible, always work with another person present-one who knows how to shut-down the equipment in a hurry. Second, when working around high
voltages, be sure that the floor is covered with a rubber mat, and follow the good practice of working with one
hand in your pocket. This sounds simple, but it could prevent one from completing a circuit through the body.
Finally, always use insulated tools to avoid short circuits that could further damage electronic components.
Some of the common shop practices for safety are too often overlooked or ignored. To name a few:
1. Always wear safety glasses-hot metal from a short or a soldering iron can ruin an eye as quickly as a
metal chip.
2. Keep long hair contained with a cap or net.
3. Lock out the disconnect or breaker for the circuit you are about to service.
4. Check with a voltmeter to be sure the circuit is completely dead.
5. Maintain "off limit" areas for high voltage equipment. Access'should be allowed only to authorized personnel.
Too many accidents are caused by carelessness or laziness. Bear in mind that it can happen, so be careful.
55
Westinghouse Semiconductor
Lifetime Guarantee
•
Westinghouse warrants to the original purchaser that it will correct
any defects. in workmanship or material, by repair or replacement,
F.O.B. factory or, at its option, issue credit at the original purchase
price, for any silicon power semiconductor bearing this symbol ...
during the life of the equipment in which it is originally installed,
provided said device is used within manufacturer's published ratings and applied in accordance with good engineering practice.
The foregoing warranty- is exclusive and in lieu of all other warranties of quality whether written, oral, or implied (including any
warranty of merchantability or fitness for purpose) .
•
IS
ave
nosecon source.
56
5
RELIABILITY
1. UNDERSTANDING SEMICONDUCTOR RELIABILITY
Explanation of reliability. Much has been written about reliability, and it usually ends up in mountains of
charts, tables, graphs, curves, and equations which require a mathematical background plus several good
courses in statistics to understand. Of cou rse, a great deal of reliabi lity is expressed in statistical terms, such as
AQL (Acceptance Quality Level), LTPD (Lot Tolerance Percent Defective), MTBF (Mean Time Between
Failures), etc. It will be the object of this section to discuss reliability so thatthe user, the supplier, the purchasing agent, the salesman and the engineer can understand just what is required and what can be supplied in
terms of a reliable product, and to what degree, and at what cost.
The age old requirements of a good newsworthy article are: Who, What, Why, When, and Where. Then, to
make this a technical discussion, we add the word, "How".
The Who in reliability must refer to the manufacturer. Is the manufacturer dependable? Does back-up data
and a good "history" of product usage in the field exist? Can the manufacturer speak knowledgeably in the
realm of reliability? These things must be considered when an MTBF figure is discussed or when an L TPD
value is specified.
Next, we come to the big question: What is Reliability? The dictionary describes it as "worthy of confidence; trustworthy." From the word rely, "to depend on; trust; repose confidence upon". This is all quite
graphic and needs no further explanation. However, another parameter enters the picture here and that is the
degree of reliability. It has become customary in the semiconductor industry to refer to any device which is a
cut above the standard as a Hi-Rei device, no matter how reliable (or unreliable) the standard product is or to
what deg ree it has been improved. So now it becomes necessary to define degree or level of reliability required
and to do so in a universal language which will put us all in the same ball park. For this reason we turn to the
common denominator of statistics.
In the field of semiconductors, the standard for quality has been set by the military, and rightly so, since in
many of their applications life itself depends upon the reliability of the device being used. The basic document
is Specification MiI-S-19500, "Semiconductors, General Specifications For." This specification provides an
excellent table for evaluating or planning device reliability. Table 5.1 provides a sampling plan for testing a lot
of devices with a reasonable assurance (90% confidence level) that, 9 out of 10 times, the number of defective
units that may be found in the lot (regardless of size) will not exceed the percentage indicated by the chosen
LTPD number. As an example, let us assume that a certain lot of units has been processed to meet an LTPD of
10. From the table we select a testsampleof38 devices, which allows one failure (a= 1). This would bean actual
failure rate for the test sample of 2.63%. The difference between 10% and 2.63% takes into account a statistical
probability of picking out defective units in the same proportion as they may appear in a lot, with a small random sample. Note that the larger the sample the greater the percent defective allowed; if we select a sample
size of 326 (in the 10% column), the acceptance number is 25. This gives an actual percent defective in the test
samp Ie of 7.67%. In other words, if we continue testing the entire lot the acceptance nu mber approaches 10%.
This means that if the acceptance number is not exceeded in the first test sample (usually small), one may be
su re (90%) that the number of defective units in this particular lot (one manufacturing run) will not exceed the
LTPD to wh ich we are testing. Usually, the actual quality of a group of devices is much better than is indicated
by the L TPD to which they have been tested, for the simple reason that a manufacturer cannot afford to
process devices to the exact degree where each test sample will produce the allowable number of defectives
and no more. A rejected lot can be very expensive. Note also that, as data accumUlates in "small sample"
testing, the better the overall LTPD becomes.
In the example justcited, ifalot is tested toan LTPDof10with a sample size of 38, the lot is accepted atthis
level (10% LTPD) with one reject. If 10 lots in a row are accepted, each with maximum allowable failures, the
total sample size becomes 380 and the acceptance number is 10. From the table this would indicate (by extrapolation) an LTPD of 3.7 for the total product. It is evident that a product with a history of lot acceptances
must be considered more reliable than a similar new product, even though both are tested to the same
specifications and at the same level; hence, there is a definite resistance to change by users of proven semiconductor products, even though the manufacturer has devised numerous tests to show that the product has been
improved. Another reason for this "resistance" is the fact that very often changes in product are instituted for
57
Max.Percent
Defective
(LTPD) orA
Acceptance
Number (c)
50
30
5
(1. 03)
8
(4.4)
11
(7.4)
13
(10.5)
16
(12.3)
19
(13.8)
21
(15.6)
24
(16.6)
26
(18. 1)
28
(19.4)
31
(19.9)
33
21. 0)
36
(21. 4)
38
(22.3)
40
(23.1).
43
(23.3)
45
24.1)
47
(24.7)
50
(24.9)
52
25.5)
54
26.1)
65
(27.0)
1
2
3
4
5
6
7
8
9
10
g:
11
12
13
14
15
16
17
18
19
20
25
---
... -----
----
10
15
5
7
3
2
1.5
1
0.7
0.5
0.3
0.2
Minimum Sample Sizes
(For device-hours required for life test, multiply by 1000)
1r=c+ll
0
20
-------
15
8
11
22
(0.64) (0.46) (0.34) (0.23)
18
38
13
25
(1.4) (0.94)
(2.7) (2.0)
:Ill:
lIS
Z:I
34
(4.5) (3.4) (2.24) (1. 6)
32
43
65
22
(6.2) (4.4) (3.2) (3.1)
78
27
38
52
(7.3) (5.3) (3.9) (2.6)
91
45
60
31
(8.4) (6.0) (4.4) (2.9)
104
51
35
68
(9.4) (6.6) (4.9) (3.2) 116
57
77
39
(10.2) (7.2) (5.3) (3.5)
128
43
63
85
(10.9) (7.7) (5.6) (3.7)
69
140
47
(11.5) (8.1) (:.30). (3.9)
75
100
152
51
(12.1) (8.4) (6.3) (4.1)
166
83
III
54
1(12. ID. J8.3t .(6.2) 1(4.2)
178
89
119
59
(13.0) (8.6) (6.5) (4.3)
126 - 190
95
63
(13.4) (8.9) (6.7) (4.5)
134
201
67
101
(13.8) (9.2) (6.9) (4.6)
142
213
71
107
(14.1) (9.4)
(7.1) (4.7)
112
150
225
74
1(14. 6) (9.7) (7.2) (4.8)
158
79
118
236
(14.7) (9.86) (7.36) (4.93)
124
248
83
165
(15.0) (10.0) (7.54) (5.02)
173
259
86
130
(15.4) (10.2) (7. 76t (5.12)
180
135
271
90
1(15.6) (10.4) (7.82) (5.19)
163
217
326
109
(16.1) (10.8) (8.08) (5.38)
--------
-----
~---
45
76
116
32
153
(0.16) (0.11) (0.07) (0.04) (0.03)
77
llJ5
55
1ZD
Z58
(0.65) (0.46) (0.28) (0.18) (0.14)
-(:I
IHi
Ztiti
IU:I
3:14
(1. 1)
(0.78) (0.47) (0.31) (0.23)
132
221
333
94
444
(1.5) (1.0)
(0.62) (0.41) (0.31)
113
158
398
531
265
(1. 8) (1. 3) (0.75) (0.50) (0.37)
131
184
617
308
462
(2.0) (1.4) (0.85) (0.57) (0.42)
149
209
349
:100
(2.2) (1. 6) (0.94)
(0.47)
166
234
589
783
390
(2.4) (1. 7) (1. 0) (0.67) (0.51)
431
184
258
648
864
(2.6) (1.8) (1.1) (0.72) (0.54)
201
282
(~.Oi7)
(2.7) (1. 9)
7-(0
102:1
218
306
511
(2.9) (2.0) (1. 2) (0.80) (0.60)
555
832
332
11~!j
1_(2. !l l(1. 2) (0.83) (0.62)
_1187
356
890
254
594
(3.0) (2.2)
(1. 3) (0.86) (0.65)
379
271
632
948
1264
(3.1) (2.26) (1. 3) (0.89) (0.67)
1007
288
403
672
1343
(3,2) (2.3) (1. 4) (0.92) (0.69)
426
711
305
!422
(3.3) (2.36) (1.41) (~?;~) (0.71)
(8~:2)
(r:8)
(i~~)
J~~
_!l 2l
(3.37)
338
(3.44)
354
(3.51)
370
(3.58)
386
(3.65)
466
(3.76)
1(i.5~1)
473
(2.46)
496
(2.51)
518
(2.56)
541
(2.60)
652
(2.69)
231
(0.02)
3DO
(0.09)
:133
(0.15)
668
(0.20)
798
(0.25)
927
(0.28)
(0.31)
1178
(0.34)
1300
(0.36)
(0.22)
1680
(0.24)
1854
(0.25)
461
767
1152
(0.01)
(0.007) (0.005)
778
1296
11146
(0.045) . (0.027) (0.018)
J.,(,(3
lUti:l
'ZtitiZ
(0.080) (0.045) (0.031)
1337·
2226
3341
(0.10)
(0.062) (0.041)
1599
3997
2663
(0.12)
(0.074) . (0.049)
1855
3090
4638
(0.14)
(0.085) (0.056)
2107
5267
3509
(0.155) (0.093) (0.062)
2355
3922 - 5886
(0.17)
(0.101) (0.067)
2599
4329
6498
(0.18)
(0.108) (0.072)
(~~~~)
(~?~~)
(~~t~)
(~~~:)
30~2
328
(0.02)
555
(0.06)
-(:Ill
(0.11)
953
(0.14)
1140
(0.17)
1323
(0.20)
10~
150~
1:141
(0.40)
1664
(0.42)
1781
(0.43)
1896
(0.44)
2015
(0.46)
23~~
(0.2
2544
(0.3)
2709
(0.31)
2878
(0.32)
(~~~~)
(g?~~)
(1.1I~) (~~~~ (~~;~
(~~::)
788
(1. 48)
826
(1. 51)
864
(1.53)
902
(1. 56)
1086
(1.61)
2364
(0.49)
2478
(0.50)
25!j1
(0.52)
2705
(0.52)
3259
(0.538)
1182
(0.98)
1239
(1. 0)
1296
(1. 02)
1353
J1. 04)
1629
(1.08)
1576
(0.74)
1652
(0.75)
1728
(0.77)
1803
l(0.78)
2173
(0.807)
.
-
(g.Z;:7)
3377
(0.344)
3540
(0.351)
3702
(0.358)
3864
(0.364)
4656
(0.376)
(0.20)
3323
(iJ. 21)
3562
(0.22)
3793
(0.22)
40~~
(0.23)
0.15
0.1
I
1
1534
2303 I
(0.003) . (0. 0021
'3891 2592
(0.013) (0.009)
3:>1'(
1I3Z3
(0.022) (0.015) I
6681
4452
(0.031) (0.018) I
5327
7994
(0.037) (0.025)
6181
9275
(0.042) (0.028)
7019
10533
(0.047) (0.031)
7845
11771
(0.051) (0.034)
12995
8660
(0.054) (0.036)
(~:::4) (~.lg:7) (~g:7) (~~~g~)
(g.l:io) (J::O)
5546
(0.12)
5936
(0.13)
6321
(0.134)
6716
(0.138)
(~~::5) (~.lf21)
102~~_
~~07
(0.060) (0.040)
8319
11092
16638
(0.083) 1(0. 062) {0.042)
11872
17808
8904
(0.086) (0.065) (0.043)
18964
9482
12643
(0.089) (0.067) (0.045)
10073
20146
13431
(0.092) (0.069) (0.046)
1061.>2
(0.094)
(~~~~;)
(~~~~~>"
(i:i~l) (~.4i~) (~~~~ (~~~;~ (~~:~)
4728
(0.246)
4956
(0.251)
51~~
(0.256)
5410
(0.260)
6518
(0.269)
7880
(0.148)
8260
(0.151)
8638
(0.153)
9017
(0.156)
10863
(0.161)
11819
(0.098)
12~90
(0.100)
12957
(0.102)
13526
(0.104)
16295
(0.108)
15759
(0.074)
16520
(0.075)
17276
(0.077)
18034
_(0.078)
21726
(0.081)
23639
(0.049)
24780
(0.050)
25!j~4
(0.051)
27051
(0.052)
32589
(0.054)
-
TABLE 5.1 LTPD sampling plans 11 21
Minimum size of sample to be tested to assure, with a 90 percent con- Poisson exponential binomial limit. 21 The minimum quality (apfldence, that a lot having percent-defective equal to the specified LTPD prOXimate AQL) required to accept (on the average) 19 of 20 lots Is
will not be accepted (Single sample). 1/ Sample sizes are based upon the. shown In parenthes" for Information only.
the sole purpose of cost reduction; then the change is made on an "as good as" basis, and only a similar history
of successful usage will convince a user. In this respect, the market is often fickle because it forces many
reliable manufacturers to compete with "junk dealers" on price alone, and then it pays a high price to have
reliability processed into the device.
In spite of this resistance to changing an established product, it is necessary for a manufacturer to keep
abreast of the state-of-the-art and, as is usually the case, an old (and proven) line of devices must be discontinued in favor of the new before enough data has been accumulated to call it equivalent. In these instances,
one has to use a "projected" failure rate rather than an actual failure rate. As an example, if wetakethefactual
LTPD of 3.7 as determined above and go back to the Table (by extrapolation), we find that we may expect one
failure in 111 units; if the test is a 1000-hour operation life test, we may now say that the product has an established MTBF of 110,000 hours. For the new product, we claim the same MTBF, on the basis of starting with
the same test level and including enough processing to give a reasonable assurance that the succeeding lots
will pass operating life test. This is considered a projected MTBF. When the LTPD figure is applied to 1000hour life tests or LTPD per thousand hours, it becomes the life test failure rate, (Lambda), which is expressed
as percent defective per 1000-hour operation.
To sum up what is meant by reliability in semiconductors, we find that:
• The degree of reliability must be defined; the term "hi-rei" device is meaningless by itself.
• Degree or level is definecf(usually) by a Mean Time Between Failure figure, along with a given confidence
level.
• There is a distinction between High Reliability and Established Reliability. A device may be designed for
High Reliability, but Established Reliability is achieved only from actual data covering hundreds of
thousands of device hours of actual use.
• A good yardstickforestimating a "projected reliability" is the LTPD figure to which the device lot is tested, as
set forth in the Table of Mil-S-19500 with a 90% confidence level.
Why is so much emphasis being placed on reliability? As semiconductors are being designed into more
complex and sophisticated equipment, it becomes more and more essential to avoid "down" time or malfunctions. Also, in the missile and space program, "expected" failures cannot be tolerated. Although the greatest
Hi-Rei requirements are found in such applications as aircraft, military and space projects, the equipment
manufacturers and industrial users are beginning to demand more reliability in the semiconductors which they
use. Here again, the cost of replacing a component must be weighed against the cost of procuring a sufficiently
high reliability device to minimize or eliminate the need for replacement. This becomes our when of reliability;
when the cost of processing a manufactured lot of semiconductors is attractive when compared to a possible
malfunction of a standard device, or when the added reliability of a piece of equi pment enhances the manufacturer's reputation for dependability.
Where is reliability introduced into a device-from beginning to end. It starts with the choice of suppliers
of component parts and continues with incoming inspection, in-line processes and controls, processing after
construction, end of line screening and testing, quality assurance testing, storage and marking methods and
controls, and shipping tests and it ends with the user's incoming inspection and application with special
emphasis on conformance to the parameters as set forth for the device.
Th is method of using actual test failures, together with a history of (accumulated data) similar devices, to
obtain a projected MTBF is probably an over-simplification, but it does provide a ball park figure which, if
anything, would be conservative. No matter what complicated and time consuming system is used, the results
will still be an approximation.
How to achieve reliability.
How is this "extra" reliability to be obtained? We have often heard it stated that one cannot test quality into
a product. This is very true; however, we can process non-quality out. First, let us consider some of the possible
causes of semiconductor failure, not necessarily in order of importance:
•
•
•
•
•
•
•
Excessive junction temperature
Thermal fatigue
Aging
Poor construction, misalignment of parts
Foreign particles
Mechan ical stress
Lack of hermeticity
59
• Inconsistencies in crystal, doping, element
• Improper curing of junction coating
• Improper use-nonconformance to limiting parameters assigned to the device
No doubt there are many other causes of fallures,but these are the ten most obvious. Many of these
"faults" can be. greatly minimized by rigid incoming inspections and constant monitoring of fusion furnace
temperatures, etching processes, assembly practices, soldering temperature, junction coating and curing,
and visual inspection up to encapsulation. This in-line control is essential for good reliability in a product and
is a "must" if we are to "aintain a reasonable confidence level. However, even the best controls cannot enable
one to predict the effect of electrical, mechanical, andemiironmental stresses upon a device. For this reason,
various conditioning procedures have been developed to simulate some ofthe above listed causes of failure. It
is an attemptto prevent and/or weed out devices which may be subjectto "i nfant mortality"-that is, failure in the
first week or two of operation. It has been found ~rom experience and many thousands of hours of operation
that once a semiconductor survives the first w~ek or two of operation,its chance of reaching the expected
lifetime is more than doubled.
Normally, one would believe that with exacting in-line controls,such faults as misalignment, foreign particles, hermeticity, and improper .curing would be eliminated, but this is not so. Many things can happen to a
device during the encapsulation procedure which usually involves heat stresses from welding and soldering
temperatures and mechanical stresses from pressures on the internal lead and pinch-off and crimping
operations. Also, the amount of in-line controls must be dictated by the quality and cost required to meet competition in the volume market. Once this criterion is met, we start considering the various procedures for
producing a high reliability product. There are three major contributing factors in planning a Hi-Rei program:
(a) Level of reliability required; (b) Cost of achieving the required level of reliability and (c) Volume-number of
units to be processed. Naturally, the customer wants the most reliability for the least cost and the customer
must decide what level can be tolerated. Before going into the various levels of reliability, it would be wise to
look into the various tests and procedures that are available to achieve these levels and to consider the good
.
and bad features of each.
1. Temperature Cycling: Cycles from minimum to maxi mum rated junction temperatures and back again
in a specified time. This operation is done on a batch basis and is relatively inexpensive.lt is designed to weed
out those devices that may have a tendency to fail due to expansion and contraction of the various materials in
the device package which could crack an element or break a solder connection.
2. Stabilization Bake: A bake at the maximum rated temperature. The purpose of this step is to stabilize the
device by further curing of the junction coating. This is also an inexpensive procedure. These first two steps
are essential before proceeding with further processing. In many instances, especially in the case of military
products, it is included in the standard procedure.
3. X-Ray Examination: A very expensive operation, made more so because of the elaborate requirements
of some semiconductor X-ray specifications which require that all devices be serialized. Film must be process. ed and examined and careful lot control maintained so that corresponding units and film are shipped together..
The equipment is expensive and the operators must be well~trained. This is the only way, however, by which
faulty construction or the presence of foreign particles can be detected after encapsulation. The test becomes
much more effective if performed after shock and/orvibration te~ts. Needless to say, the sooner this procedure'·
can be changed from a 1000/0 basis to a sample basis withou.t jeopardizi ng the confidence level, the happier all
concemed will be.
4. Operating Life: Perhaps the best single process for improving the reliability of a device. This process
consists of actually operating the unit at stated parameters for a specific period oftime. Usually, the operating
conditons are the maximum rated forward current, reverse voltage, and case temperature. Times vary depending on need. This operation is expensive because every device must be handled separately, it ties up life test
equipment for long periods, and scheduling times are often prohibitive. The cost of building special equipment
for any particular order is also prohibitive. For this reason, volume and delivery requirements are important
conSiderations in using this procedure.
The reason Operating Life is so highly regarded is graphically illustrated by"a Failure Rate versus
Operating Ti me Cu rve, Figure 5.1. This curve falls very steeply during the initial operati ng ti me, then gradually
levels out to the inherent value for the device.
5. Blocking Life: This process has the rated peak reverse voltage (either full or half wave rectified) applied
to the un its whi Ie in an ambient equal to the maximum rated j unction temperature for a determi ned time period.
This is often done in conjunction with Stabilization Bake with a moderate increase in cost because a connec-
60
CD
Standard Product
--
ta
One Week Bum-in
~
! --__ ...1
~
= II II
If
---t-T-I
Two Week Bum-in
.Inherent Failure Rate
I
Operating Time
Figure 5.1 Effect of operating life burn-In on semiconductor failure rate over time.
tion must be made to each device, which then limits the number of devices that can be handled at one time. It is
no longer a "batch" operation. Blocking Life is a very good alternative for Operating Life.
6. Power Cycling (Thermal Fatigue): The Power Cycling test may also be used as a substitute for
Operating Life. However, care must be taken as to the number of cycles specified for conditioning because this
is a severe test and probably reduces the actual lifetime of the device. The test consists of heating the device up
to its operating case temperature by the application of forward current and then force-cooling it back to approximately room temperature. The device under test is ,subjected to a continuous expansion and contraction
of materials which sets up stresses in the soldered and brazed connection within the device package and
simulates, in an accelerated manner, the effects of actual usage. Reverse voltage is usually not applied during
this test. Here again, a great deal of equipment is involved, depending on the quantities (and size) of units to be
conditioned. The equipmentis not very complicated and should be relatively inexpensive when compared to
operating life test equipment.
7. Monitored Shock and Vibration: Used to determ ine the mechanical stability of the device. The units are
subjected to specified vibrations and lor shocks while in an operating state. The current, either forward or
reve rse, is mon ito red to detect instantaneous opens or shorts or electrical "noise". This is a slow, therefore expensive,. test since only a few units can be process.ed at a time. When this procedure is called for, it should be
done before X-Ray and Hermeticity tests.
8. Hermeticity Test: This test is used to determine the effectiveness of the package seal which protects the
element. The entranoe of damaging contaminants will reduce the effective life of a semiconductor, hence, a
good package seal is imperative in a high reliability device. This is afairly expensive test when done on a 100%
basis. It requires a good commercial tester and is not a batch operation.
Of these procedures, you will note that 1,2,4,5, and 6 are conditioning processes, while 3, 7, and [~'~re
selection or "weeding out" type of tests. Naturally, any conditioning should be done before the select; .,;: ;.:"IS.
The monitored shock and vibration tests can be considered as both conditioning and selecting, and!':; IQwd be
performed before hermeticity tests or X-Ray.
All of these procedures become more effective when accompanied by limitations on changes in
characteristics, that is, maximum allowable AVFand AIR. This assures a more stable end product but may
also eliminate a lot of good devices and prove quite expensive.
After a lot of semiconductors has been stabilized and most of the "weak sisters" removed by some combination of the above mentioned procedures, there is a final process which will enhance reliability tremendously and that is "derating" the device in some (or all) of its parameters. For instance, an 800 volt, 12 amp at
Tc =1500 C rectifier will be more rei iable if rated as a 600 volt device and even more rei iable as a 600 volt, 6 amp
at Tc =125°C device. The intended application of the rectifier wouid dictate which parameters should be
derated for the best results. If the unit may be subjected to high transient voltages, then the voltage should be
derated. If the unit is to be used in a circuit with frequent on-off operations or subjected to many temperature
excursions, then the current andlor temperature should be derated.
To illustrate to the semiconductor equipment designer and user the value of derating as a reliability tool,
graphs of the failure rates per 1000 hours for thyristors, transistors, and rectifiers are shown in figures 5.2, 5.3,
and 5.4.
61
Failure Rate
(% per 1000 hours)
% V DRM
and/orVRRM
3r---~----------~
Failure Rate
(% per 1000 hours)
10
% VeE
Failure Rate
(%pe!1000hours)
3~'--------------~~~
5
3
2
0.5
0.5
0.1
0.3
0.2
0.05
0.5
0.1
0.1
0.05
0.04
0.03
0.02
0.01 '--:.':~------==-----:-:'-:-----,-J
SO
. 75
100
125
Junction Temperature, 0 C
Figure 5.2 Estimated degradation failure rate for thyristors at
less than 50 amps per j.tsec. For
catastrophic failures, use 10%
of these values.
0.01
0.05
0.005
0.004
0.003
0.002
0.03
0.02
0.01 '---:':SO:-L----::!::---~--:7=---:-:'.
junction Temperab,lre, 0
c
Figure 5.3 Estimated failure
rate for transistors. For
catastrophic failures, use 10%
of these values.
0.001 '--'SO----"71.5 -1-'-00--'125--1SO'--1.....75
Junction Temperature, 0 C '
Figure 5.4 Estimated failure
rate for rectifiers. For
catastrophic failures, use 10%'
of these values.
'
These graphs show that one key to enhancing reliability is derating. Derate any of the reliability sensitive
parameters, such as the temperature and the voltage to which the semiconductor is subjected, and derate the
related parameters of current, power, thermal impedance; and time, and the reliability will be increased. A
study ofthederating curves shows that a reduction of the junction temperature gives a larger reduction inthe
failure rate than a similar reduction in applied voltage.Also;a largerpercentageoffailures is expected at 100%
of rated voltage than at a lower (derated) voltage. Using figure 5.2, the failure rate for 125°C and 100% rated
voltage is 3%. If the voltage is lowered to 75% of rated value and the junction temperature is decreased to 75°C,
the failure rate is 0.15%, or 20 times lower.
Th is discussion has endeavored to reduce the complicated business of semiconductor reliability, whether
achieving, proving, calculating or projecting, to a few undeniable truths, as follows:
'
• The chief reasons for unreliability must be recognized and dealt with.
• There are only a certain number of processes or procedures that can be applied to a semiconductor device
to enhance its quality, once manufacturing is completed.
• There are so many variables in both the manufacture and use ofthese devices that each type has an inherent
degree of reliability which cannot be improved upon with any amount of processing.
• Because cf economic and practical considerations, one must sample test to determine and project reliability.Use of Table 5.1 provides a good method for this.· .
• Expense must be balanced with need in specifying a degree of reliability. Reliability can be a practical1hing;
i~ does not have to be a tool for statisticians, nor doeS it require exotic computer programming.
,
,
So let us keep in mind, whether buying or selling reliability, that a Hi-Rei product is a good thing, but the
degree of reliability must be hand.led intelligently. We do not want to waste money, but we dowant a device we
can depend on-a reliable device.
62
2. QUALITY CONTROL
To insure reliability, the Westinghouse Semiconductor Division uses a quality control program, a
statistical method that monitors the manufacture and testing of semiconductors. The quality of a semiconductor is determined by quality controls, such as incoming materials inspections, control ofthe silicon processing
and chemical purity, electrical tests, environmental tests, packaging and many other controls used in the
manufacturing process. These controls are inserted to insure uniform quality.
Teltlng for reliability
During the design of a semiconductor, and particularly before final manufacturing approval is given,
operating, storage, and environmental tests are conducted to determine the integrity and reliability of the
semiconductor. The tests can be operated at accelerated stress levels to help determine margins in the device
design and to predict the reliability at low application stress levels. A partial list of these tests follows:
• Centrifuge, shock, and thermal shock are evaluated to determine the mechanical features of a design .•
• Operating and storage life tests are used to evaluate the physical and chemical stability of the semiconductor design.
• Current surge data is gathered to verify the semiconductor current handling capability and the short, high
current capability of the internal connections,
• Thermal fatigue data is used for checking element mounting integrity.
• Thermal impedance measurements are made to insure proper junction temperature during operation.
• Blocking life tests are used to determine if reliability is affected by junction temperature and voltage.
• Step stress testing can be run to show the threshold of failure and the accelerated stress areas such asjunction temperature, voltage or environment.
During the manufactured I ife, a family plan oftesting determines if the reliability test results are still valid.
The goal of the family plan is to achieve maximum device yield economy consistent with sufficient assurance
that end-of-life I imits will not be exceeded during the semiconductor equipment lifeti me. These results can be
used as an interpretation of the reliability of similar device families. Other voltage and current parameters can
be extrapolated from similar device characteristics.
Improved reliability is achieved through many corrective actions involving the design, process, fabrication, material, and device assembly inspections. Before any of these are changed, the reliability impact is
stud ied and appropriate testing is instituted. Over the years, there have been improvements in the element surfaces, the element material, and the packaging that have resulted in generally lower failure rates.
Testing to determine the quality of the semiconductors is done on various parameters. This testing is
repeated many times as the semiconductor element continues through the manufacturing cycle and is
repeated again when the element is assembled in a package. Reliability testing, such as blocking life, is done
on a sampling basis in the element state, as well as in the completed package. Surge capability and thermal i mpedance are used as reliabil ity measurement tools.
Types of failures
Quality is closely related to reliability, which in turn, is dependent on failure rate. There are three types of
semiconductor failures: the early or freak failures, the chance failures, and the wearoutfaiI ures. These fail ures
are shown in Fig. 5.5 in relation to semiconductor lifetime.
Early failures result when semiconductors have some production defect, material defect, or other
deficiency. Even with good quality control, semiconductors will always have a small percentage of early
failures, but these can be eliminated by doing quality conformance testi ng on all the units or by sample testing.
One or more of the following tests, which could take from 2 hours to 168 hours or more, could be chosen:
stabilization bake, operation life, or blocking life. Tests that are nottime dependent could include temperature
cycling, salt spray and hermeticity.
Wearout failures are practically non-existent in properly applied semiconductors during the normal life of
a system. Where they do occur, wearout mechanisms exist both in structural flaws and in internal encapsulated contaminants. Because semiconductors cannot be made completely free of these flaws or contaminants, early failures can happen. But in well-designed, properly applied semiconductors, the wearout
should occur long after the useful life of the system itself.
Chance failures occur between the early failures and the much later wearout period. This is the long period
of useful life of a semiconductor during which there is small expectation of failures. The failures that do occur
are time, temperature, current, and voltage dependent.
63
Figure 5.5 The probability of failure as a function of semiconductor lifetime.
Quality and reliability testing defined
Testing for quality and reliability is usually divided into four catagories; Group A, Group B, Group C, and
Special.
• Group A includes all the standard electrical tests requ ired to assure that a semiconductor meets the voltage,
current, switching times, control functions, etc. as stated in the device specification. Group A is performed
on every lot.
• Group B testing provides assurance that the semiconductor is properly constructed, durable, and will
operate under extreme environmental conditions. These tests include operating life tests, stabilization
bake, hermeticity tests, humidity, shock and vibration, etc. Once a manufacturer has established a consistent parts supplier and fabrication cycle, group Btesting (which is expensive) may be performed on combined lots or alternate lots.
• Group C testing, in essence, checks whether or not the semiconductor is properly designed to meet certain
special criteria. These tests include such things as high altitude test, salt atmosphere test, and thermal
resistance tests. Usually, these tests are necessary only when there is a change of material, design, or
process in the manufacturing cycle.
• Special testing. In some instances, a customer application puts unique stresses on semiconductors so that
extra testing of certain parameters, or even specially designed testing, is required to assure that the
semiconductor will perform as required.
Table 5.2 on page 65 illustrates a typical test plan and preferred order of grouping as recommended in
Mil-S-19500.
3. RESPONSIBILITIES
User responsibility: The user has the responsibility of insuring proper operation of the equipment. The
maximum rating of the equipment must never be exceeded. The voltage and current must never be raised
above maximum ratings to increase production. The cooling system must be monitored periodically to insure
proper cooling at all times. The semiconductors and associated equipment must be kept clean. It is imperative
to reliable operation that a schedule be set up for cleaning, tightening connections, etc. I n short, exercise good
operating and maintenance procedures.
64
Shared responsibility: Semiconductor reliability is a shared responsibility among the semiconductor
manufacturer, the original equipment manufacturer (OEM), and the end user oftheequipment. The manufacturer must design and build a reliable semiconductor, the OEM must use good engineering practices when
designing the equipment, and the user must operate the equipment within its ratings and in a clean environment. If these conditions are met, power semiconductors will be reliable.
Failure analysis as a reliability tool: Failure analysis involves the gathering and analyzing of all possible information about the cause of a failed semiconductor. Knowing the reason for failure, the user can modify the
circuit to eliminate any repetitions of this failure mode, or the manufacturer can take corrective action in device
fabrication or testing. Proper analysis may determine if a failure is due to voltage, current, over-temperature or
surge. However, a failed semiconductor may show more than one mode of failure; a history ofthe use ofthe
device is then necessary. For instance, if the installation was trouble-free until a certain point in time, when new
or different equipment was added or a new operator was being trained, the problem may be easily resolved.
Thus, failure analysis can often be specific and give the actual failure mode but, just as often, the actual cause
of failure is masked, and help in the form of historical data is needed. A "burn-out" of a semiconductor is often
violent enough to mask out much, if not all, of the original cause of failu reo So, the more background furnished,
the more meaningful the analysis. A good failure analysis will determine the reason for failure and corrective
action can then be taken.
• Group A Inspection
Visual & mechanical examination
Electrical performance tests
• Group B Inspection
Subgroup 1
Physical dimensions
Subgroup 2
Solderability
Terminal strength
Temperature cycling
Hermetic Seal
Thermal shock
Misture resistance
Subgroup 3
Shock
Vibration fatigue
Vibration, variable frequency
Constant acceleration
Subgroup 4
Terminal strength
Subgroup 5
High temperature life, non-operating
Subgroup 6
Operating life
• Group C Inspection
Barometric pressure (altitude)
Salt atmosphere
Other periodic tests
Table 5.2 Typical Test Plan
65
slicing ...
From silicon rod ...
"
'~
'~~-'-
... ,:. . . . ',-.~
.:.
,~.
diffusion ...
element testing ...
.
'
package assembly ...
to finished devices.
66
6::~:MANUFACTURING @POWER SEMICONDUCTORS
1. FACILITIES
The Westinghouse Semiconductor Divi$ion facility (Figure 6.1) in Youngwood, Pa. is the most modern
high power semiconductor manufacturing plant in the world. At the Youngwood facility, nestled in the foothills
of the Allegheny Mountains, the silicon elements whic.h house all the electrical characteristics of the power
semiconductor component are made. This single location for element production extends its capability for
supplying superior high power semiconductor devices to identical assembly facilities in Le Mans, France
(Figure 6.2) and San Juan, Puerto Rico (Figure 6.3) with a new facility opening in Brazil to serve the Latin
American market.
Figure 6.2 Westinghouse, LeMans, France-power
semiconductor manufacturing in Europe.
Figure 6.3 Westinghouse, Puerto Rico-power
semiconductor assembly in Gurabo (San Juan).
Figure 6.1 Westinghouse-Youngwood, Paemploying the most modem, up-to-date techniques
In high power semiconductor manufacturing.
67
2. PRODUCT BREAKTHROUGHS
Several product breakthroughs have been instrumental in making the@manufacturingconceptareality.
One key to success is theabiJ~tyto manufacture, test, and sforethesemiconductorelement independent ofthe
device package. First, element sizes have been standardized forrectifiers, SeR's and transistors. Comparable
semiconductor element sizes for@high power rectifiers and SeR's are shown in Figure 6.4. The early process-
Figure 6A Westinghouse Power Semiconductor
68
Element~
ing stages for slicing and diffusing the silicon are identifical for rectifiers and SeR's. An all-diffused process
for making rectifiers and SeR's offers good reproducibility and process precision. All Westinghouse high
power SeR designs feature center-fired, di/namic gate structures forfast turn-on capability,high repetitive
di/dt capability, and low switching losses. This gate structure is comparable to a device built with a pilot SeR to
turn on a main SeR (Figure 6.5). Westinghouse developed a special di/namic mid-gate SeR for high peak
ANODE
G
CATHODE
Figure 6.5 Equivalent electrical circuit for the dl/namlc gate design.
current and narrow pulse width fast switching applications. By using an irradiation process (see Figure 6.6) to
produce fast recovery rectifiers and fast switching SeR's, Westinghouse has the advantage of being able to
Figure 6.6 Exclusive @ Irradiation procell for manufacturing Fast Switching SCA's and Fast Recovery
Rectifiers.
69
apply this technique after the semiconductor element has completed its processing cycle. This process
promotes greater manufacturing flexibility and better control in producing fast switching and fast recovery
characteristics. Westinghouse's special emitter shunt designs make possible dv/dt capabilities of 300 to 1000
volts per microsecond-the highest available in the industry. Exclusive@processesfor passivating semiconductor elements, enabling sealing and stabilization of the elements with no danger of degradation, complete
the element breakthroughs necessary to establish a World Element Bank (Figure 6.7)-an inventory center for
storing completely tested and passivated elements.
Figure 6.7 The World Element Bank, an inventory center for storing completely tested, passivated semiconductor elements, ready for assembly anywhere In the world.
70
Originally, power semiconductors were offered only in stud mount packages. Later, by placing the same
element in an integral heat sink package, (Figure 6.S), a 40% improvement in current rating was obtained
',
..
,
Figure 6.8 An integral heat sink package offers up to a 40% Improvement In current rating over the
same element size in a stud mount package.
because one thermal interface (case to sink) was eliminated. However, the real innovation in packaging was
the disc; with double-sided cooling (Figure 6.9), the same element offers uptoan SO% improvement in current
rating over the same element in a stud mount package. An additional benefit is that it is easy to stack these disc
devices in a series arrangement or a back-to-back arrangement and devices can simply be "flipped over" for
reversing polarity. Initially low power semiconductor elements were bonded to the device package with a low
temperature or soft solder. Later, hard solder or high temperature soldering techniques were used, and they improved device thermal cycling capabilities by an order of magnitude. However, as element sizes increased
and applications became more severe, a more fatigue-free construction was required and compression
bonded encapsulation (CBE) was developed. This CBE technique completely eliminates solder connections
71
.Flgure 6.9 Disc packages offer up to 80% improvement In current rating over the same element size .In
a stud mount package.
between the element and the package. The metallic bond is replaced by a constant-pressure spring washer
system (Figure 6.10) which supplies a constant load force to the element. Today, this technique is used to
manufacture thermal fatigue free SCR's, rectifiers, and transistors that are magnitudes better than hard solder
devices. CBE simplifies the manufacturing process and improves semiconductor reliability. Thissame design
philosophy is employed in the disc package except that the spring clamp system is supplied externally by the
user. The Westinghouse worldwide assembly concept owes its success to this patented CBE product
breakthrough.
3~
KEY MANUFACTURING INNOVATIONS
At the Westinghouse Semiconductor plant, innovative manufacturing procedures are the cornerstone of a
large scale manufacturing concept, wherein power semiconductor elements, the heart of the semiconductor
device, are the common denominator among worldwide manufacturing plants. This concept is being used to
serve the power semiconductor user by guaranteed element availability from an element bank, independent of
package requirements. By making package commitment at the last moment, faster delivery, at the required
ratings. is made, and an inventory reduction on the part of the user can be realized. Applications, today, require
a wide variety of electrical needs. In addition, regional demands require these ratings in an even wider range of
72
Figure 6.10 Compression Bonded Encapsulation (CBE)
packages or assemblies. This function is well served by the Westinghouse element-oriented manufacturing
system wherein the optimum application charcteristics are ensured in processing, test, and package
assembly.
Several basic techniques (Figure 6.11) support this element manufacturing system. The spreading
resistance probe, developed to predict a product's characteristics instantly, weeks before the product is completed, means better visibility of design characteristics early in the manufacturing cycle. A Westinghouse 2500
process control computer plays an important role in the diffusion cycle by monitoring furnace temperature
cycles and cool-down rate to indicate when a deviation from profile occurs. Through the effective use of the
computer, the various process cycles are more controllable and predictable, providing a distri bution and yield
of products to match requirements. A high volume paced conveyor element test line is used to fully
characterize an element before committing it to a device package. All standard and special hot or cold tests can
be performed on various size elements simultaneously on this test line. After testing, these passivated
elements are .quality checked and bubble-packed for storage in the World Element Bank until needed. Fundamental to the element system is Compression Bonded Encapsulation (CBE)-a pressure-mounted contacting means for assembling semiconductor elements into a variety of packages-stud, disc, integral heat
sink, or flat base. CBEensures reliability and flexibility in assembly while eliminating thermal fatigue problems
inherent in conventional solder construction designs. Accurate and sophisticated testing have made
Westinghouse high power semiconductors among the most reliable to be found anywhere. All this adds up to
the advantages of predictable, reproducible element characteristics, World Bank stocking, guaranteed
emergency delivery, and reduced inventory and cash flow for users of Westinghouse power semiconductors.
73
Spreading resistance probe.
High power conveyor.
Paced element test line.
In-line product marking.
Patented compression bonded encapsulation.
Bubble-packed elements completely identified,
quality checked and ready for World Bank.
Figure 6.11 Key manufacturing Innovations.
- 74
4. TECHNOLOGY LEADERSHIP
Indicative of Westinghouse's leadership role in manufacturing high power semiconductors, UNITRA of
Poland selected Westinghouse from among suppliers worldwide to provide them with semiconductor
technology, facilities, and training. This agreement, for Westinghouse the largest sale oftechnology ever, was
the first of its type by a U.S. manufacturer.
The Semiconductor Division also enjoys the support of the Westinghouse Research and Development
Center (Figure 6.12) located in Churchill, Pennsylvania, only twenty-five miles from Youngwood. Thus, a continuous program to provide long range product development and the latest technology and manufacturing
techn iques is carried on from year to year. Westinghouse invests millions of dollars each year to provide the
user with products which offer more efficient energy utilization, promote a cleaner environment, result in
greater reliability, reduce size and weight, provide for increased safety, and offer new and expanded
capabilities at the lowest possible cost.
Figure 6.12 Westinghouse Research and Development Center located in nearby Churchill, Pa.
@ Westinghouse
A powerful part of your life.
75
76
User's Manual
SEMICONDUCTOR GLOSSARY
End User-Refers to individuals andlor companies who
purchase, use, and maintain equipment utilizing
power semiconductors.
Failure-Termination of ability of a device to perform its
required function. Also see failure mode.
Failure Mode-Refers to type of failure rather than to
cause of failure. Component failures are generally
either catastrophiC (sudden and complete) failures or
degradation (parameter drift) failures. Short- and
open-circuit failures are ca~~strophic and usually occur - at - random. OegradatiOillailures resuh in
deviations from acceptable limits without complete
cessation of the function required.
Fast Recovery Rectifier-Term used to describe rectifiers
characterized for fast operating response. This class
of devices is used for free wheeling diodes and a variety of high frequency applications.
Fast SWitching SCRs-Term used to describe SCRs
characterized for turn-off time capability and other
speed characteristics. This class of devices is used in
choppers, inverters, and other high frequency
applications.
Flag Lead-Term used to describe top terminal on some
stud mount devices. Terminal is a rigid, metal, flagshaped connection.
Flat Base-Commonly used to describe a studless (clamp
down) or a square base (bolt down) device package.
Flex Lead-Term used to describe top terminal on some
stud mount devices. Terminal is made from flexible
stranded cable.
Forward Direction-The direction of current flow in a
semiconductor.
Forward Polarity-See standard polarity rectifier.
Free Wheeling Rectifier (Dlode)-Rectifier that is used to
bypass the current due to the stored energy in the inductance.
Full Control-Circuit utilizing all SCR's for controlling
both half-cycles in an A.C. circuit.
Fusion-See element.
GPM-Gallons per minute. Water flow rate through liquid
cooled heat sink.
Gain-The ratio of output to input. Normally used to
characterize amplification properties of a transistor.
Gate-Control terminal of an SCA.
General Purpose Rectifier-Term used to describe rectifiers for conventional power control applications
where operating speed is not a prime consideration.
Half Control-An arrangement of rectifiers and SCRs that
controls only half the cycle in A.C. circuits.
Hard Solder-A high temperature solder having an expansion coefficient very compatible to the element and
package base material.
High Voltage Stack-An assembly of a number of
semiconductors connected in series to obtain extra
high voltage ratings.
HI-Rel-Abbreviated version of high reliability. Denotes a
device having an established level of reliability above
that of standard production line product.
AQL-Acceptance Quality Level.
Ambient Temperature-Medium or free air temperature in
which device is being operated.
Anode-One of two high current terminals of rectifier or
SCR; other terminal is cathode.
Assemblies-Combination of discrete devices on heat
sinks connected in various circuit configurations.
Average Current-Current integrated over a full cycle.
Current measured on DC ammeter.
Base-Control terminal of a transistor.
Beta-See gain.
Blocking Voltage-Ability of a semiconductor to withstand a specific voltage stress without conducting
current.
Breakdown Voltage-Maximum voltage a semiconductor
can support in its nonconducting direction.
Bridge-Combination of discrete devices on heat sinks;
generally in circuit configurations to change A.C.
current to D.C. current.
CBE-Encapsulation technique which replaces conventional solder, metallic bonds with a constantpressure, spring, washer system. This technique
eliminates thermal fatigue due to solder jOints.
CFM-Cubic feet per minute - amount of air being moved
(CFM = LFM x cross-sectional area of heat sink).
Case Temperature-Temperature of package measured
at a specific location. Indirect method for determining
junction temperature. For stud devices, proper thermocouple location is center of any hex flat - for disc
devices, mount thermocouple on rim (radial edge) of
pole face.
Cathode-One of two high current termi nals of rectifier or
SCR; other terminal is anode. In electronic symbol for
rectifier or SCR, arrow points toward cathode.
Chip-Smail semiconductor element, usually for one to
forty amp discrete device ratings.
Collector-One of high current terminals of a transistor;
other terminal is emitter.
Commutation-Transfer of current flow from one circuit
element to another.
Conduction Angle-Number of electrical degrees that
current flows. A full cycle of A.C. voltage or current is
360 electrical degrees.
Creepage Distance-Shortest distance across surface of
an insulator between positive and negative terminals.
Dice-See chip.
Diode-See rectifier.
Disc-Semiconductor package that can be cooled from
both sides.' Various industry names include Pow-RDisc, Press Pak, Hockey Puck, etc.
Duty Cycle-Ratio of operating time to total operating
plus nonoperating time.
Element-Sil icon wafer that has been processed to create
a semiconductor junction(s), passivated, tested and
ready for assembly into a device package.
Emitter-One of high current terminals of a transistor;
other terl'l1inal is collector.
Encapsulation-Refers to process of assembling a
semiconductor element into device package.
77
Reverse Polarity Rectifier-Denotes the direction of
current flow where stud mount base is the anode and
the top terminal is the cathode.
SCR-Silicon Controlled Rectifier-Principal memb~r of
the thyristor family - is basically a rectitierwith a
control feature added. This three-terminal device
(anode, cathode, and gate) is a controllable on-off
switch.
Soft Solder-Any solder that is not "hard solder". USlJally
has a melting pOint of approximately 230DC, as compared to the melting pOint of hard solder which is in
excess of 4000C.
Solid State-An electrical device or circuit using semiconductor devices. (Uses no tubes and has no moving
parts.) Mechanical relays, switches, rotaries, m-g
sets, thyratrons, ignitrons, and vacuum tubes are
replaced by semiconductors.
'
Spike-An unintended flow of electrical energy of short
duration. Graphically displayed on a scope as a very
high voltage or current having a very short durationusually in the microsecond range.
Standard Polarity Rectifier-Denotes direction of curr~nt
flow where stud mount base is the cathode and the top
terminal is the anode.
Strike Distance-The shortest distance in air between
points of opposite potential. It is the distance through
which arcing might o,ccur.
Stud Top-Term used to describe top terminal on some
stud mount devices. Terminal is a threaded stud.,
Supplier-Power semiconductor manufacturer or
authorized distributor.
Thennal Fatigue-The mechanical stress placed on
semiconductor interfaces due to the different expansion rates of the various metals being joined ..
Thennallmpedance (Resistance)-The resistance to heat
flow through a material or from one material to
another. The unit is DC/W, which means the centig rade degrees of temperature rise of the material per
each watt of power dissipated at the source. ,
Thennal Shock-Mechanical stresses placed on ,mat~rial
or, more expressly, where two different materials are
joined together, due to a sudden large change in
temperature. Can be destructive.
Thyristor-One of three primary gro.ups of solid state
power devices - rectifiers, transistors, and thyristors.
Principal members of the thyristor family includes
SCR, triac, RBDT, GATT, GCS, GTO, etc.
TranSient (Surge) Suppressor-An electrical device used
to absorb the energy of extraneous high peaks of
voltage or current. Used to protect semiconductors
from ruinous overloads.
,
Transient VOltages-Extraneous spikes of high voltage
which appear across a device due to switching, commutating, interruptions, etc. in associated circuitry or
by natural forces such as lightning. Transients are of
very short duration, usually in the microsecond range.
Transistor-Three-tt)rminal (base, collector, emitter)
, device used primarily for switching and amplification
applications.
User-Refers to both the original equipment marlUfacturer (OEM) who manufactures eqUipment utilizing
power semiconductors and the end user who
purchases, uses, and maintains this equipment.
Vendor-See supplier.
Wafer-A very thi n disc of silicon that has been cut from a
silicon rod.
Hockey Puck-See disc.
Integral Heat Sink-Refers to a device package which incorporates its own heat sink. Package is very efficient
as the element is mounted directly to the heat sinkeliminating the case to sink thermalJesistance.
JAN-Refers to device specifications for military use, with
, Joint Army and Navy sponsorship.
JEDEC-Joint Electronic Device Engineering Council.
Sets parameters and specifications for a standard line
of devices throughout the industry.
Junctlon-A transition region between the positive and
negative layers of a semiconductor.
LFM-Linear feet per minute. Rate of air flow moving
across a cooling surface.
LTPD-Lot Tolerance Percent Defective.
Leakage Current-The small currents which get through
or around the blocking characteristic of a semiconductor device, capacitor, or insulator.
MRO-Term stands for Maintenance, Repair, and
Operations of a factory, plant, hospital, etc., and
refers to the industrial replacement and retrofit
market.
MTBF-Mean Time Between Failures.
OEM-Original Equipment Manufacturers who build and
sell equipment utilizing power semiconductors.
OSHA-Occupational Safety and Health Administration.
Establish and enforce national standards of safety
and health in industry.
Parameter-A value, condition, or characteristic that is a
measurable property of a device. It may be electrical,
mechanical, or thermal and can be expressed for a
given set of operational and environmental conditions.
Passivatlon-A process by which a semiconductor junction is protected against oxidation and contamination.
Pellet-See element.
Phase Control SCR's-Term used to descri be SCRs where
fast turn-off time is not a prime requirement.
Pole Face-Mounting surface on a disc device; each disc
has two pole faces.
Pow-R-Disc-See disc.
Press-Pak-See disc.
Procurement-Overall process of obtaining a semiconductor. Period between selection of required device
and receipt of that device.
Pulse-A flow of electrical energy of short duration which
is deliberately generated.
RBDT-Reverse Blocking Diode Thyristor. Two-terminal
thyristor, ideal for pulse applications because of its
high di/dt and fast switching capabilities.
RMS-Abbreviation stands for root-mean-square and
refers to the effective heating value of current.
Rating-The ulti mate or limiting condition stated for a
'given device parameter (either maximum or
minimum) beyond which the device will not operate
properly and/or is not guaranteed by the manufacturer.
Rectlfier-A two-terminal device where current can flow in
only one direction - from anode to cathode. Low
current rectifiers are frequently called diodes.
Reliability-The probability that a system or device will
operate for a given period of time and under given
operating conditions.
Reproducibility-The ability to produce a group of
semiconductors having the exact characteristics of
previously produced groups.
Reverse Direction-Describes the direction in which a
semiconductor is nonconducting.
78
SUBJECT INDEX
Distributors
27,29,53
(see Data Book G61, G62)
Expediting Orders
30,32-39
Failure
causes of
51,52
protection from
43-47
rates of
61,62
replacing
30,52-55
trouble shooting
47-52
types of
63,64
Failure Analysis
checklist
51,52
procedure
30,31,41,42,52
reliability tool
65
Firing Circuits, SCR
(see Data Book G51-G54)
Heat
15,41-46,48,51, 52,59-62
effects of
protection from
42-46, 52, 61, 62,65
(see Data Book G43-G49)
Incoming Inspection
41
Insurance
38, 39
Installation
mounting considerations
42, 55
cooling considerations
43.
(see Data Book G43-G49)
Invoicing
32,37,38
JEDEC
52, 53
LTPD
57-59
MTBF
57, 59
Maintenance
preventative
46, 47
replacement
52-55
servicing
47-52
testing
47-52
trouble shooting
47-55
Manufacturing
facilities
67
innovations
72-74
product breakthroughs
68-72
technology leadership
75
Military
57-59,65
(see Data Book G42)
Mounting
42,43,51,55
(see Data Back G43-G49)
Overload
current
46, 51, 52
equipment
44
motor
44, 45
voltage transient
44,46,51,52
(see Data Book G55-G60)
Packing List
35, 36
Parameters
basic
15-18
confusing terminology
18, 19
cost trade-ofts
27,28,52,53
Acceptance Quality Level (AQL)
57,58
Applications
19-25
checklists
engineering assistance
19-25,29
uses
13
Assemblies
advantages
27
application checklist
25
product line
10, 11
uses
13
(see Data Book A1-A80)
Checklist
assembly applications
25
buyer's
31
device identification
54
failure analysis
51,52
rectifier application
21
replacement device
54
scr application, fast switching
23
scr application, phase control
22
supplier evaluation
28-30
transistor application
24
trouble shooting
47, 48
Claims
30,31,41,42
Cleaning
46,47,51
Cooling
cost
42,43
need for
42-46,48,51,52,65
reiiability
52, 59-62, 65
types of
42-44
(see Data Book G43-G49)
Cost
cooling
42-44
engineering
27, 28
expediting
30,32-39
insurance
38, 39
parameter trade-off
27,28,52,53
procurement
26-42
reliability
59-62
safety factor
28,53,62
shipping
38,39
testing
28, 41,47-51, 60-65
total
27
Cross Reference Guide
9, 19, 53
(see Data Book G3-G37)
Damage
see shipments
Data
product
9, 10, 19
technical
9, 10, 15-19
test
32, 38
(see Data Book)
Delivery
27-39
(see Data Book G41, G61)
Diode
see rectifier
79
Pricing
(see Data Book G61, G62)
Procurement
Protection
see overload
Prototype
Purchase Order
acknowledgement
entering
expediting
status
Quality Control
Quotation Response
(see Data Book G61, G62)
RBDT
(see Data Book S1, S95-S98)
Receiving
Rectifier (diode)
application checklist
parameters
product line
testing
uses
(see Data Book R1-R78)
Reliability
cost
definition
responsibility
testing
(see Data Book G42)
Repair
see replacements
Replacements
checklist
procedures
(see Data Book G43-G49)
Reproducibility
Returned Material
SCR
application checklists
parameters
product line
testing
uses
(see Data Book 81-S94)
Safety
Safety Factor
Sales Coverage
(see Data Book G62)
Samples
Shipments
advance warning of delays
condition
cost
damage
methods
on-time
receipt of
return of
9,10,27-29
Standardization
JEDEC
manufacturing
value of
Supplier Evaluation
Table
appl ications
cleaning solvents
group A, B, and C. testing
LTPD sampling plans
motor overloads
parameters, basic
shipping method
supplier evaluation
terminology, confusing
Terminology
basic
confusing
glossary
rectifier (diode)
scr
transistor
Test
cost
data
equipment
incoming inspection
rectifier (diode)
reliability
scr
transistor
Thyristor
see SCR
Traceability
Transistor
application checklist
parameters
product line
testing
uses
(see Data Book T1-T34)
Trouble Shooting
checklist
equipment
procedures
Vendor Evaluation
see supplier evaluation
Warranty
(see Data Book G39, G40,
A2, R2, S1, T1)
Weights
(see Data Book)
26-42
29
29, 30, 32-35
31,32
30,32-39
29, 30, 32-35
41, 63-65, 73
29
11
30,41
21
15, 16
10,11
48, 49
13
59-62
57, 59
52,65
59-65
54
42,43,51-55
29,68-70, 72-75
30,31,41,42
22, 23
15-17
10,11
48,49
13
55
28, 51-53, 62
29
29
30,32,33,35
30,41
38, 39
30,41,42
38,39
30,33-39
30,41
30,31,41,42
80
52,53
68-7027,28, 62, 53'
28-30
13
47
65
58
45
15
39
28
18
15-18
18, 19
77, 78
15, 16
15-17
15,17,18
28,41,47-51,~
32,38
47-51
41
48,49
57.;es
48, 49
49-51
38, 39
24
15, 17, 18
11
49-51
13
47,48
47-51
47-55
28,30,41,42,56
38,39
, ,t-.
•
POWER SEMICONDUCTOR DATA BOOK
Assemblies, Rectifiers, Thyristors, and Transistors
How To Use This Book
DEVICE TYPE NUMBER SEARCH
• If only a JEDEC or Industry Type Number is known:
Go to the Master Cross Reference Type Number Index (GENERAL section Page G3). Using this index, the reader can rapidly locate any power semiconductor JEDEC or industry type number for which Westinghouse offers an
exact or suggested replacement along with the page number of the
referenced technical data.
or
• If both the Product Family and the JEDEC or ® Type Number are known:
Go to the Type Number Index at the beginning of the appropriate PRODUCT
section. Using this index, the reader can turn directly to the page location
for any JEDEC or ® type number that is listed.
GENERAL APPLICATION SEARCH
• If a Specific Product Application Requirement is known:
Go to the appropriate PRODUCT section and scan the Product Capability
Graphs and Product Selector Guides under the appropriate product subgroup.
These graphs and guides are presented in order of increasing current rating
so the reader can quickly locate a suitable Westinghouse product type along
with the page number of the referenced technical data.
or
• If both a Specific Product Application Requirement and the Desired Device
Package are known:
Go to the Table of Contents (GENERAL section - Page G2) for the location of
the appropriate PRODUCT section, product subgroup, and device package
type. The page number reference marks the beginning of the desired data
section; the data for a given device package type is presented in order of
increasing current rating to simplify the reader's search.
The @ Power Semiconductor Data Book supersedes all loose-leaf technical data issued prior to
January 2, 1978. This technical data is applicable for all @ power semiconductors manufactured
in Youngwood, Pennsylvania.
The semiconductor devices and arrangements disclosed herein may be covered by patents of
Westinghouse Electric Corporation or others. Neither the disclosure of any information herein
nor the sale of semiconductor devices by Westinghouse Electric Corporation conveys any license
under patent claims covering combinations of semiconductor devices with other devices or
elements. In the absence of an express, written agreement to the contrary, Westinghouse
Electric Corporation assumes no liability for patent infringement arising out of any use of the
semiconductor devices with other devices or elements by any purchaser of semiconductor
devices or others .
TABI,.E O,F, CONTE~TS
GENERAL
• Master Cross Reference Type Number Index
- JEDEC 1 N, 2N, 3N Part Numbers
- Alpha Industry Part Numbers
- Numeric Industry Part Numbers
G2
G3
G4
G6
G22
• Westinghouse Selling PolicylWarranty
G39
• Delivery Lead Time Guidelines
G41
• Military and High Reliability Products
G42
• Application Data
- Mounting Power Semiconductors
- SCR Gate Turn-On Characteristics
- Thyristor Surge Suppression Ratings
G43
G51
G55
• Westinghouse Quick Service Directory
G61
ASSEMBLIES
Introduction. Product Family Index. Selector Guide
• Modular Rectifier Bridges
• Gold Line, Stud Mount Devices
• Air and Liquid Cooled Disc
• Manifold AC Switch, Liquid Cooled
• Kits and Sinks
• High Voltage Rectifier Stacks
A1
Introduction. Type Number Index. Selector Guides
RECTIFIER
• General Purpose
- Axial Lead Mount
- Stud Mount
- Disc Mount
• Fast Recovery
- Stud Mount
- Disc Mount
R1
A3
A5
A37
A52
A65
A69
R9
R13
R39
R55
, R67
THYRISTOR
Introduction. Type Number Index. Selector Guides
• Phase Control SCR's
- Stud Mount
- Disc Mount
- Integral Heat Sink
- Flat Base
• Fast Switching SCR's
- Stud Mount
- Disc Mount
• Reverse Blocking Diode Thyristor (RBDT)
- Stud Mount
- Disc Mount
$1
TRANSISTOR
Introduction. Type Number Index. Selector Guides
• NPN Power
- General Purpose (TO-66/TO-3)
- High S.O.A. (Stud Mount)
- High Power Fast Switching (Stud and Disc Mount)
T1
S9
541
S71
S73
S77
S83
S95
S97
T5
T15
T33
MANUFACTURER'S CODES
ATS-Atlantic Semiconductor IOiodes, Inc. PSI-Power Semiconductors, Inc.
DEL-Delco Electronics
RCA-RCA
EDI-Electronic Devices, Inc.
SAR-Sarkes Tarzian
EDL-Edal Industries
SET-Semtech
GE-General Electric
SOL-Solitron
GI-General Instrument
SSD-Solid State Devices
IR-International Rectifier
SYN-Syntron (FMC)
JAN-JAN (Military)
TUN-Tungsol
JED-JEDEC (E.I.A. PIN)
UNI-Unitrode
MOT-Motorola
VAR-Varo
NAT-National Electronics
WCE-Westcode
WES-Westinghouse Electric
PPC-Power Physics Corp.
The@replacements represent what we believe to be equivalents for the products listed.
Emphasis has been placed on providing the user with a replacement device of the same
current and voltage rating when possible. The user must determine the substitution
acceptability by reviewing the electrical mechanical. and thermal characteristics
presented in the referenced technical data sheets. Westinghouse assumes no responsibility for guaranteeing the acceptability of any suggested replacement in this master
cross reference type number index.
PRODUCT TYPE NOTES
A-Assembly
D-Drawing (Consult Factory)
R-Rectifier
S-SCR
T-Transistor
REPLACEMENT NOTES
CF-Consult Factory
SO-Special Order-limited availability
XX(5th & 6th digits of @ Product Description
Number)-Replace with appropriate twodigit numeric voltage code.
G3
Part Number
Type Mfgr,
$1IlIr,elted@
RaJ> .cement
Suggested@
Pege
Part Number
IN248A
IN248B
IN248C
IN249A
IN248B
R
R
R
R
R
JED 1N248A
JED IN248B
JED 1N248C
'JED IN249A
JED IN249B
CF
CF
CF
'CF
CF
INI281
INI282
INI283
INI284
INI285
IN249C
IN260A
IN260B
IN260C
R
R
R
R
JED IN249C
JED IN260A
JED IN260B
JED IN260C
CF
CF
CF
CF
INI286
INI287
INI291
INI292
INI293
l~m:A
R
R
R
R
JED
JED
JED
JED
JED
IN1t24
INII24A
INI126
1N1125A
IN112S
CF
CF
CF
CF,
CF
INI294
INI296
INI296
INI297
IN1330
R
R
:lEg
IN1128A
INI127
INII27A
INII28
IN1128A
CF
CF
CF
CF
CF
INI331
INI332
:lE8
JED
JED
JED
INII83
IN1183A
IN1184
INII84A
IN1185
INII25
IN1126A)
INII28
Type Mfgr,
Replacement
R JED CF
R 'JED CF
R JED CF
,R ' JED CF
R JED CF
Suggelted@
Page
CF
CF
Cf
CF
CF
INI676
IN2054
IN2054R
IN2055
IN2965R
Type
R
R
R
R
R
Part Number
Page
Mfgr,
JED
JED
JED
,JED
JED
IN3169
IN2054
11112054R
IN2055
IN2055R
CF
CF
CF
CF
CF
Replacement
R
R
R
R
R
JED
JED
JED
JED
JED,
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
IN2056
IN2056R
IN20S7
IN2057R
IN2058
R
R
R
R
R
JED
JED
JED
JED
JED
IN2066
IN2066R
IN2067
IN2067R
IN2058
CF
CF
CF
CF
CF
R
R
R
R
JED
JED
JED
JED
JED
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
IN2068R
IN2059
IN2059R
IN2060
' -,"IN2060R
R
R
R
R
R
JED
JED
JED
JED
JED
IN2068R
IN2059
IN2069R
IN2060
IN2060R
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
IN2061
IN2061R
:~a3~
JED
JED
JED
JED
JED
CF
INI3~3
R
R
R
R
R
JED
JED
JED
JED
JED
IN2061
IN2081R
IN2063
IN2083R
IN2064
CF
CF
CF
CF
CF
RI5
RI5
RI6
RI5
RI5
INI336
INI341
INI341A
INI3418
INI342
R
R,
R
R
R
JED
JED
JED
,JED
JED
CF
INI341
INI34IA
INI34IB
INI342
R
CF
IN2084
R
R
R
R
R
!:F
R'13
RI3
RI3
RI3
IN2064R
IN2066
IN2065R
IN2086
IN2086R
R
R
R
R
R
JED
JED
JED
JED
JED
IN2064R
IN2065
IN2085R
IN2086
IN2086R
CF
CF
CF
CF
CF
JED 'INI342A
JED INI342B
JED INI343
JED INI343A
JED INI343B
RI3
RI3
RI3
RI3
AI3
IN2087
IN2087R
IN2088
IN2088R
IN2128
R
R
R
R
R
JED
JED
JEb
JED
JED
IN2087
IN2087R
A4040060
CF
CF
CF
CF
R17
R
R
R
R
R
JED
JED
JED
JED
JED
INI344
INI344A
INI344B
INI345
INI346A
RI3
RI3
RI3
RI3
RI3
IN2129
IN2130
IN2131
IN2132
IN2133
R
R
R
R
R
JED
JED
JED
JED
JED
R4040160
R4040260
R4040260
R4040380
A4040360
AI7
RI7
R17
R17
1117
INI345B
INI346
INI346A
INI346B
INI347
R
A
R
R
R
JED
JED
JED
JED
JED
INI345B
IN I 346
INI346A
INI346B
INI347
RI3
RI3
RI3
RI3
RI3
IN2135
IN2137
IN213B
IN2154
IN2155
R
R
R
R
R
JED R4D40480
JED R4040580
JED R4040860
JED IN2164
JED IN2155
RI7
RI7
R17
RI5
RI5
Rt'!;
RI6
RI5
RI5
RI5,
INI347A
INI347B
INI34B
INI348A
INI348B
R
R
R
R
R
JED
JEd
JED
JED
JED
INI347A
INI347B
INI34B
INI348A
INI348B
RI3
RI3
RI3
RI3
RI3
IN2166
IN2167
IN2168
IN2169
IN2180
R
R
R
R
R
JED
JED
JED
JED
JED
IN2156
IN2157
IN216B
IN2159
IN2160
RI6
RI6
RI6
RI5
RI6
JED IN1195A
JED IN1196
JED INII96A
JED IN1197
JED IN1197A
RI5
RI6
RI5
AI5
AI5
INI376
INI377
IN1378
INI379
INI380
R
R
R
R
R
JED
JED
JED
~~g
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
IN3OB5
IN3065R
IN3OB8
IN3066R
IN3OB7
R
R
R
R
R
JED
JED
JED
JED
JED
A5OOO115
A5DI0115
R5000215
R5Dl0215
R5OOO316
R23
R23
R23
R23
R23
R
R
R
A
JED
JED
JED
JED
IN1198
INII9BA
IN1199
INII99A
RI5
RI5
RI3
RI3
INI3BI
INI382
INI396
INI397
INI39B
R
R
R
R
R
JED
JED
JED
JED
JED
CF
CF
R51000l0
R51OOll0
R510+Il0
CF
CF
R23
R23
R23
IN3OB7R
IN3OB8
IN3OB8R
IN3OB9
IN3OB9R
R
R
R
R
R
JED
JED
JED
JEI)
JED
R6D1.0315
R5000415
R6DI0416
R6D00616
R5DI0615
R23
R23
R23
R23
R23
INII99B
INl200
INl200A
INl200B
INI201
R
R
R
R
R
:l~g
JED
IN1199S
JED
JED
I=U88A
INl200B
INI201
RI3
RI3
RI3
RI3
RI3
INI399
INI400
INI401
INI402
INI403
R
R
R
R
R
JED
JED
JED
JED
JED
R51OO210
R51oo310
R6100410
R51oo610
R6100610
R23
R23
R23
A23
R23
IN3090
IN3090R
IN3091
IN3091R
IN3092
R
R
R
R
R
JED
JED
JED
JED
JED
R5000815
R5DI0815
R6DOOBI6
R6DIOSl5
R6DOI015
R23
R23
R23
R23
R23
INI20lA
INI20lB
INI202
INI202A
A
R
R
R
JED INI20lA
JED INI2DI8
JED INI202
JED INI202A
RI3
' RI3
RI3
RI3
INI581
INI582
INI583
INI584
INI585
R
R
R
R
R
JED
JED
JED
JED
JED
INI581
INI6S2
INI583
INI584
INI686
CF
CF
CF
CF
CF
IN3092R
IN31"
R
IN3161R
l=ml
R
R
n
R5DIIOl5
R5DOOOl5
R
JED
JED
JED
JED
JED
rrr:ft1<f"5
IN3161R
A23
R23
R23
CF
CF
INI202B
INI203
INI203A
INI203B
INI204
R
R
R
R
R
JED INI202B
JED INI203
JED INI203A
JED IN1203B
JED IN1204
RI3
RI3
RI3
RI3
RI3
INI586
INI587
INI612
INI613
INI614
R
R
R
R
R
JED
JED
JED
JED
JED
INIS86
INI587
INI612
INI613
INI614
CF
CF
RI3
RI3
RI3
IN3162
IN3162R
IN3163
IN3163R
IN3164
R
R
R
R
R
JED
JED
JED
JED
JED
IN3162
IN3162R
IN3163
IN3163R
IN3164
CF
CF
CF
CF
CF
INI204A
INI2048
INI206
INI20SA
IN12D68
R
R
R
R
R
JED
JED
'JED
JED
JED
INI204A
INI204B
INI205
INI20SA
INI20SB
RI3
RI3
RI3
RI3
RI3
INI615
INI616
INl860
INI6S1
INISS2
'R
R
R
R
R
JED
JED
JED
JED
JE,D
INI615
INl6T6
IN3260
IN3261
IN3262
RI3
RI3
R27
R27
R27
IN3164R
JAN IN31S4
JAN IN3164R
IN31SS
IN31SSR
R
R
R
R
R
JED IN3164R
JAN JANIN3164
JAN JAN IN3164R
JED IN3186
JED IN316SR
INI206
INI20BA
INI2OB8
INI271
INI272
R
A
A
R
R
J~D
JED
JED
JED
JED
INI20B
INI208A
INI206B
CF
CF
RI3
RI3
RI3
CF
CF
INISS3
INI664
IN1SS5
INI666
INI670
R
R
R
R
R
JED IN3263
JED IN3265
JED IN3267
JED IN326S
JED IN3161
R27
R27
R27
R27
CF
IN3166
IN316SR
IN3167
IN3'187R
IN316a
R
R
R
R
R
JED
JED
JED
JED
JED
INI273
INI274
INI27S
INI27S
INI277
R
R
R
R
R
JED
JED
JED
JED
JED
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
INI671
INI672
INI673
INI674
INIS75
R
R
R
R
JED
JED
JED
JED
JED
CF
CF
CF
CF
CF
IN3168R
JAN IN3168
JAN IN3168R
IN3101l
IN3169R
R
R
R
R
R
JED IN3168R
JAN JAN IN31S8
JAN JAN IN3168R
JED IN3169
JED IN3169R
I~H~A
IN1127A
INII28'
INI128A
II
R
R
JED
JED
JED
INI183
IN1183A
INl184
INl184A
IN1185
R
R
R
lIil1185A
INII86
INII86A
IN1187
INII87A
R
R
R
R
A
JED
JED
JED
JED
JED
IN1185A
IN1186
IN1188A
INII87
INII87A
RI5
lil5
RI5
• RI&
AI5
INI342A
INI342B
INI343
INI343A
INI343B
'R
R
R
R
R
INl18B
IN1188A
IN1189
INII89A
INl190
R
A
A
R
II
JED
JED
JED
JED
JED
INl18B
IN1188A
INII89
IN1189A
INl190
AI5
AI5
RI5
RI5
RI6
INI344
INI344A
INI344B
INI345
INI345A
IN1190A
IN1191
INII91A
IN1192
IN1192A
R
R
R
R
R
JED
JED
JED
JED
JED
INII90A
INII91
INII91A
INII92
IN1192A
,RI6
RI6
RI5
RI5
RI6
IN1193
IN1193A
INI194
IN'I194A
INII96
R
R
A
R
A
JED
JED
JED
JED
JED
INII93
INII93A
INl194
INllMA
INII95
INI;95A
INl196
IN1196A
INI197
INII97A
A
A
R
A
R
INI198
INII98A
INII99
INII99A
R
R
!!
IN3162
IN3163
IN31S4
IN3166
IN3lS8
g~
1~~~~R
1~~ggIR
IN3166
IN3186R
IN3167
IN31S7R
IN31SS
Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on pageG3
04
--~----
CF
G42
G42
CF
CF
CF
CF
CF
CF
CF
CF
G42
G42
CF
CF
Part Number
Type Mfg..
Sugga.tad@
Replacement
Page
Part Number
Type Mfg.:
Sugllestad@
Replacement
Page
Plrt Numbe.
Type Mfg..
Suggestad@
Repl.comant Paga
IN3170
IN3170R
JAN IN3170
JANIN3170R
IN3171
JED
JED
JAN
JAN
JED
IN3170
IN3170R
JAN IN3170
JAN IN3170R
IN3171
CF
CF
G42
G42
CF
JANIN3293R
IN32MA
IN32MAR
~~=I=I~tR
R
R
R
R
A
JAN
JED
JED
JAN
JAN
JAN IN3293R
IN32MA
IN32MAA
JAN IN3294
JAN IN3294A
G42
R19
R19
G42
G42
IN4007
IN4044
IN4044A
R
R
R
R
R
JED
JED
JED
JED
JED
IN40d7
IN4044
IN4044A
IN4045
IN4046A
R29
R29
A29
R29
R29
IN3171R
IN3172
IN3172R
JAN IN3172
JAN IN3172R
JED
JED
• JED
JAN
JAN
IN3171R
IN3172
IN3172R
JAN IN3172
JAN IN3172R
CF
CF
CF
G42
G42
IN3295A
IN3295AR
JAN IN3295
JAN IN3295R
IN3298A
A
R
A
R
A
JED IN3295A
JED IN3295AR
JAN JAN IN3295
JAN JAN IN3295A
JeD IN3296A
R19
R19
G42
G42
R19
IN4046
IN4046A
IN4047
IN4047R
IN4048
R
A
A
JED
JED
JED
JED
JED
IN4046
IN4046A
IN4047
IN4047R
IN4048.
R29
R29
R29
R29
R29
1~=iR
IN3173
IN3173R
IN3174
IN3174R
JANIN3174
JED IN3173
JED IN3173R
JED IN3174
JED IN3174R
JAN JAN IN3174
CF
CF
CF
CF
G42
IN329BAR
IN3297A
IN3297AR
IN3615
IN3616
R JED
R JED
R JED
R JED
A ,·.JED
IN3296AA
IN3297A
IN3297AR
IN3616
IN3616
R19
R19
R19
A13
R13
IN4048A
IN4049
1N4049R
IN4050
IN4050R
JED
JED
JED
JED
JED
IN4048R
IN4049
IN4049R
IN4050
IN4050R
R29
R29
R29
R29
R29
JAN IN3174R
IN3208
IN3209
IN3210
IN3211
R
JAN
JED
JED
JED
JED
JAN IN3174R
IN3208
IN3209
IN3210
IN3211
G42
R15
R15
R15
R15
IN3617
IN3618
IN3819
IN3620
IN3621
R
R
R
R
R
JED
JED
JED
JED
JED
IN3617
IN3B18
IN3B19
IN3B20
IN3621
R13
R13
R13
R13
R13
IN4051
IN4051R
IN4052
IN4052R
1N4053
JED
JED
JED
JEd
JED
IN4051
IN4D51R
IN4052
IN4052A
IN4D53
R29
R29
R29
R29
R29
IN3212
IN3213
IN3214
IN3260
IN3260R
R
R
R
R
R
JED
JED
JED
JED
JED
IN3212
IN3213
IN3214
IN3260
IN3260R
R15
R15
R15
R27
R27
IN3822
IN3B23
l1li3624
IN3670
IN3670A
R
R
R
R
R
JED
JED
JED
JED
JED
IN3622
IN3B23
IN3B24
IN3670
IN3670A
A13
R13
R13
R13
R13
IN4053R
IN4054
IN4054A
IN4055
IN4055A
R
R
A
A
JED
JED
JED
JED
JED
IN4053R
IN4064
IN4054R
IN4055
IN4D55R
R29
R29
R29
R29
R29
IN3261
1"3261R
IN3262
IN3262R
IN3263
R
R
R
R
R
JED
JED
JED
JED
JED
IN3261
IN3261 R
IN3262
IN3262R
IN3263
R27
R27
R27
R27
R27
IN3671
IN3671A
IN3672
IN3672A
IN3673
R
R
R
A
R
JED
JED
JED
JED
JED
IN3671
IN3B71 A
IN3672
IN3672A
IN3673
R13
R13
R13
R13
R13
IN4056
IN4056A
IN413B
IN4137
IN4138
R
R
R
R
R
JED
JED
JED
JED
JED
IN4D56
IN4056A
A404021O
R4040470
R4040670
R29
R29
R17
R17
R17
IN3263R
JAN IN3263
JAN IN3263R
IN3264
IN3264R
R
R
R
R.
R
JED
JAN
JAN
JED
JED
IN3263R
JAN IN3164
JAN IN3164R
IN3264
IN3264R
R27
G42
G42
R27
R27
IN3673A
IN3735
IN3735A
IN3736
IN3736R
R
R
R
R
R
JED
JED
JED
JED
JED
IN3673A
IN3735
IN3735A
IN3736
IN3736R
A13
CF
CF
CF
CF
IN4458
IN4459
IN4587
IN4587R
IN4588
R
R
R
R
A
JED
JED
JED
JED
JED
IN4458
IN4459
l1li4687
IN4687R
IN4588
R13
R13
R21
R21
R21
IN3265
IN3265R
IN3266
IN3266R
IN3267
R
R
R
R
R
JED
JED
JED
JED
JED
IN3265
IN3265R
IN3266
IN3266R
IN3267
R27
R27
R27
R27
R27
IN3737
IN3737A
IN3738
IN3738R
IN3739
R
R
R
R
R
JED
JED
JED
JED
JED
IN3737
IN3737R
IN3738
IN3738R
IN3739
CF
CF
CF
CF
CF
IN"588R
IN4589
IN4589R
IN4590
IN4590R
A
R
A
R
R
JED
JED
JED
JED
JED
IN4588A
IN4689
IN4589R
IN4590
IN4590R
R21
R21
R21
R21
R21
IN3267R
JANIN3267
JANIN3267R
IN3268
IN3268R
R
R
R
R
R
JED
JAN
JAN
JED
JED
IN3267R
JAN IN3168
JAN IN3168R
IN3268
IN3268R
R27
G42
G42
R27
R27
IN3739R
IN3740
IN3740A
IN3741
IN3741R
R
R
R
R
R
JED
JED
JED
JED
JED
IN3739A
IN3740
IN3740R
IN3741
IN3741R
CF
CF
CF
CF
CF
IN4591
IN4591R
IN4592
IN4592R
IN4593
R
R
R
R
R
JED
JED
JED
JED
JED
IN4591
IN4591 R
IN4592
1N4592R
IN4593
R21
R21
R21
R21
R21
IN3269
IN3269R
JAN IN3269
JAN IN3269R
IN3270
R
A
A
A
A
JED IN3269
JED IN3269R
JAN JAN IN3170
JAN JAN IN3170A
JED IN3270
A27
A27
G42
G42
A27
IN3742
IN3742A
IN3743
IN3743R
IN:t744
R
R
R
R
R
JED
JED
JED
JED
JED
IN3742
IN3742R
IN3743
IN3743R
IN3744
CF
CF
CF
'CF
CF
IN4693R
IN4694
IN4594R
IN4596
IN4595R
R
R
R
R
A
JED IN4593R
JED IN4594
JED IN4594A
JED IN4595
JED IN4595R
R21
R21
R21
R21
R21
IN3270R
IN3271
IN3271R
JAN IN3271
A
A
A
A
JED IN3270A
JED IN3271
JED rN3271A
JAN JAN IN3172
R27
R27·
R27
G42
IN3744R
IN3765
IN3766
IN3767
IN3768
R
R
R
R
R
JED
JED
JED
JED
JED
IN3744R
IN3765
IN3766
IN3767
IN3768
.cF
IN4596
IN4596R
IN4816
IN4817
IN4818
R
R
R
R
R
JED
JED
JED
JED
JED
IN4596
IN4696R
IN4816
IN4817
IN4818
R21
R21
R9
R9
R9
JAN IN3271R
IN3272
IN3272R
IN3273
IN3273R
R
R
R
A
R
JAN
JED
JED
JED
JED
JAN IN3172R
IN3272
IN3272R
IN3273
IN3273R
G42
R27
R27
R27
R27
IN3879
IN3880
IN3881
IN3882
IN3.883
R
R
R
R
R
JED
JED
JED
JED
JED
IN3879
IN3860
IN3881
IN3882
IN3883
R55
R65
R55
R56
R56
IN4819
IN4820
IN4821
1~38~~
R
R
R
R
R
JED
JED
JED
JED
JED
IN4819
IN4820
IN4821
IN4822
IN6052
R9
R9
R9
R9
R9
JAN IN3273
J..... N IN3273R
IN3274
IN3274R
IN3275
R
R
R
R
R
JAN
JAN
JED
JEl>
JED
JAN IN3174
JAN IN3174R
IN3274
IN3274R
IN3275
G42
G42
R27
R27
R27
IN3889
IN3890
IN3891
IN3892
IN3893
R
R
R
R
A
JED
JED
JED
JED
JED
IN3889
IN3890
IN3881
IN3892
IN3893
R55
R55
R66
A65
IN6053
IN6D54
IN5162
IN5162A
IN5331
R
R
R
R
R
JED
JED
JED
JED
JED
IN5053
IN5054
R6C01216
R5C11216
IN5331
R9
R9
CF
CF
CF
IN3275R
IN3276
IN3276R
IN3288A
IN3288AR
R
R
R
R
II
JED
JED
JED
JED
JED
IN3276R
IN3276
IN3276R
IN3286A
IN32B8AR
R27
R27
R27
R27
R19
IN3899
1N3900
IN3901
IN3902
IN3903
R
R
R
A
A
JED
JED
JED
JED
JED
IN3899
IN3900.
1N3901
IN3902
IN3903
A67
R67
R57
R57
R57
IN5332
IN5391
IN6392
IN6393
In5394
R
R
A
R
R
JED
JED
JED
JED
JED
IN5332
IN5391
IN6392
IN5392
IN6394
CF
R9
R9
R9
R9
IN3289A
IN3289AR
JAN IN3289
JAN IN3289R
IN3290A
R
R
A
R
A
JED
JED
JAN
JAN
JED
IN3289A
IN32B9AR
JAN IN3289
JAN IN3289R
IN3290A
R19
R19
G42
G42
R19
IN3909
IN391 0
IN3911
IN3912
IN3913
R
A
R
R
A
JED
JED
JED
JED
JED
IN3909
IN3910
IN3911
IN3912
IN3913
R57
A57
R57
R57
R57
IN5395
IN5396
IN5397
IN5398
IN5399
R
R
A
R
R
JED
JED
JED
JED
JED
IN6395
IN5396
IN5397
IN5398
IN5399
A9
R9
R9
R9
R9
IN3290AR
IN3291A
IN3291AR
JAN IN3291
JAN IN3291R
R
R
R
R
R
JED
JED
JED
JAN
JAN
IN3290AR
IN3291 A
IN3291AR
JAN IN3291
JAN IN3291 R
R19
R19
R19
G42
G42
IN3987
IN3988
IN3989
IN3990
IN4001
R
R
R
R
R
JED
JED
JED
JED
JED
IN3987
IN3988
IN39B9
IN3990
IN4001
1113
R13
R13
R13
R9
IN5400
IN5401
IN5402
IN5403
IN6404
R
R
R
R
R
JED
JED
JED
JED
JED
IN5400
IN5401
IN5402
IN5403
IN5404
R9
R9
A9
A9
A9
IN3292B
IN3292BR
IN3293A
IN3293AR
JAN IN3293
R
R
R
R
R
JED IN3292B
JED IN3292BR
JED IN3293A
JED IN3293AR
JAN JAN IN3293
R19
R19
A19
R19
G42
IN4002
IN4003
IN4004
IN4005
IN4006
A
R
R
R
A
JED
JED
JED
JED
JED
IN4002
IN4003
IN4004
IN4005
IN4006
R9
R9
A9
R9
R9
IN6405
IN5406
IN5407
IN5408
2N681
R
R
R
R
S
JED
JED
JED
JED
JED
IN5405
IN6406
IN5407
IN6408
2N681
R9
R9
A9
A9
R15
R15
R15
R15
AIlS
Sll
Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are listed on page,G3
G5
Suggested@
Part Number
Type Mfgr.
Replacement
Page
Part Number
Suggested@
Type Mfgr.
Replacement
Page
2N682
2N683
2N686
2N687
2N688
S
S
5
5
5
JED
JeD
JED
JED
JeD
2N882
2N883
2N686
2N687
2N688
SII
511
SII
SII
SII
2N2113
2N2114
2N2116
T
T
T
JED
JED
JED
CF
CF
CF
CF
CF
CF
~~m~
f
~~8 8~
2N689
2N690
2N691
2N692
2Nl016
5
5
5
5
T
JED
JED.
JeD
JED
JeD
2N688
2N690
2N691
2N692
2Nl015
511
511
511
511
Tl9
2N2119
2N2120
2N2123
2N2124
2N212S
T
T
T
T
T
JED
JED
JED
JED
JED
2Nl016A
2Nl0158
2Nl015C
2Nl015D
2Nl016E
T
T
T
T
T
JED
JeD
JeD
JED
Jeo
2Nl015A
2Nl015B
2N1016C
2Nl01SD
CF
Ti9
Tl9
Tl9
Tl9
CF
2N2126
2N2130
2N2131
2N2132
2N2133
T
T
T
2Nl016
2Nl016A
2Nl016B
2Nl016C
2Nl016D
T
T
T
T
T
JeD
JeD
JED
JeD
JED
2Nl016
2Nl016A
2Nl016B
2Nl016C
2Nl016D
Tl9
Tl9
Tl9
Tl9
Tl9
2N2226
2N2227
2N2228
2N2229
2N2230
T
2Nl016E
2N1792
2N1793
2N1794
2N1795
T
5
5
5
5
JED
JED
JED
JED
JED
CF
2N1792
2N1793
2N1794
2N1795
CF
519
S19
S19
519
2N1796
2N1797
2N179B
2N1799
2N1BOO
5
5
5
5
5
JeD
JED
JED
JED
JED,
2Nj796
2N1797
2N1798
2N1799
2NI600
2NI601
2NI602
2NI603
2N1804
2N1805
5
5
5
5
JED
JED
JED
JED
JED
Sugguted@
Part Number
8~
2N3772
2N3773
2N3884
2N3885
2N3886
T
S
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
2N3887
2N3888
2N3889
2N3890
2N3891
JED
JED
JED
JED
JED
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
T
JED
JED
JED
JED
JED
2N2226
2N2227
2N2228
2N2229
2N2230
2N2231
2N2232
2N2233
2N2739
2N2740
T
T
T
T
T
JED
JED
JED
JED
JED
519
519
519
S19
519
2N2741
2N2742
2N274S
2N2746
2N2747
T
T
T
2N1BOl
2N1802
2NI603
2N1B04
2NI605
519
519
519
519
519
2N27S1
2N27S2
2N2753
~~m1
T
JED
JED
JED
JEO
JED
2N1806
2NI607
CF
CF
CF
519
519
CF
CF
CF
2N1812
2N1813
2N1814
2N1816
2N1817
T
T
T
T
T
JED
JED
JED
JED
JED
CF
CF
CF
CF
CF
2N1818
2N1819
2N1820
2N1823
2N1824
T
T
T
T
T
JED
JED
JED
JED
JED
2N1825
2N1826
2N1830
2N1831
2N1832
T
T
T
T,
T
2N1833
2NI842A
2N1843A
2NI844A
2N1845A
T
Page
2N3772
2N3773
2N3884
2N3885
2N3886
S
5
S
JED
JED
JeD
JED
JED
2N3887
2N3888
2N3889
2N3890
2N3881
531
531
531
531
531
2N3B92
2N3B93
2N3894
2N3895
2N3896
S
S
S
5
5
JED
JED
JED
JED
JED
2N3892
2N3893
2N3894
2N3895
2N3896
531
531
531
531
531
T25
T25
T26
T25
T26
2N3B96
2N3897
2N3898
2N3899
2N4347
S
5
5
5
T
JED
JED
JED
JeD
JED
T4OOO12208
T4OOO22208
T400032208
T400042208
2N4347
513
513
513
513
CF
2N2231
2N2232
2N2233
CF
CF
T25
T25
T25
CF
CF
2N4348
2N4361
2N4362
2N4363
2N4384
T
5
5
5
JED
JED
JED
JED
JED
2N4348
2N4361
2N4362
2N4363
2N4364
CF
521
521
521
521
T
JeD
JED
JED
JeD
JED
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
2N4365
2N4366
2N4367
2N4388
2N4371
S
5
5
S
S
JED
JED
JeD
JED
JED
2N4366
2N4366
2N4367
2N4368
2N4371
521
521
521
521
521
T
T
T
T
T
JED
JED
JED
JED
JED
CF
CF
CF
CF
2N2767
CF
CF
CF
CF
T29
2N4372
2N4373
2N4374
2N4375
2N4376
5
S
5
5
5
JED
JED
JED
JED
JED
2N4372
2N4373
2N4374
2N4376
2N4376
521
521
521
2N2758
2N2759
2N2760
2N2761
2N2763
T
JED
JED
JED
JeD
JED
2N2768
2N2759
2N2760
2N2761
2N2763
T29
T29
T29
T29
T29
2N4377
2N4378
2N5168
2N5169
2N5170
5
5
5
5
5
JED
JED
JeD
JED
JED
2N4377
2N4378
T400001608
T4OOO21608
T400041608
521
T
T
T
T
CF
CF
CF
CF
CF
2N2764
2N2765
2N2766
2N2769
2N2770
T
T
T
T
T
JED
JED
JED
JED
JED
2N2764
2N2765
2N2766
2N2769
2N2770
T29
T29
T29
T29
T29
2N5171
2N5204
2N5205
2N5206
2N5207
S
5
5
5
5
JED
JED
JED
JED
JED
T4OOO61608
2N5204
2N5206
2N5205
2N5207
513
513
513
513
513
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
2N2771
2N2772
2N2776
2N2776
2N2777
T
T
T
T
T
JED
JED
JED
JED
JED
2N2771
2N2772
2N2776
2N2776
2N2777
T29
T29
T29
T29
T
T
T
T
T
JED
JED
JED
JED
JED
2N3056
2N6254
2N3771
2N6262
2N3441
. TIl
129
2N6253
2N6254
2N6257
2N6262
2N6263
JED
JED
JED
JED
JED
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
2N2778
2N3064
2N3065
2N3232
2N3233
T
T
T
T
T
JED
JeD
JED
JED
JED
2N2778
2N3064
2N3055
2N3232
2N3233
T29
T5
T7
CF
CF
2N6371
3N221
3N222
A28A
A28B
T
A
A
R
R
JED
JED
JED
GE
GE
2N6264
3N221
3N222
IN3890
IN3891
T9
A52
AS2
R5S
R56
JED
JED
JED
JED
JED
CF
2NI842A
2NI843A
2NI844A
2NI846A
CF
59
59
59
59
2N3234
2N3236
2N3429
2N3430
2N3431
T
T
T
T
T
JED
JED
JED
JED
JED
2N6262
2N3236
2N3429
2N3430
2N3431
T9
CF
T21
T21
T21
A28C
A28D
A28F
A29A
A29B
R
5
5
S
S
GE
GE
GE
GE
GE
IN3892
IN3893
IN3898
IN3890R
IN3891R
R56
R5S
R5S
.RSS
R5S
2N1846A
2N1847A
2NI848A
2N1849A
2N1850A
5
5
S
S
5
JED
JED
JED
JED
JED
2NI846A
2NI847A
2NI848A
2N1849A
2N1850A
59
59
59
59
59
2N3432
2N3433
2N3441
2N3442
2N3470
T
T
T
T
T
JED
JED
JED
JED
JED
2N3432
2N3433
2N3441
2N3442
2N3470
T21
CF
T6
T7
T27
A29C
A29D
A29F
A40A
GE
GE
GE
GE
IN3892R
IN3893R
IN3889R
IN3209
RS6
RS6
R5S
RIS
2NI909
2N1910
2N1911
2N1912
2N1913
S
5
S
5
5
JED
JED
JED
JED
JED
2NI909
2N1910
2N1911
2N1912
2N1913
519
519
519
519
519
2N3471
2N3472
2N3473
2N3474
2N3475
T
T
T
T
T
JED
JED
JED
JED
JED
2N3471
2N3472
2N3473
2N3474
2N3475
T27
T27
T27
T27
T27
A40B
A40C
A40D
A40E
A40F
GE
GE
GE
GE
GE
IN3210
IN3211
IN3212
IN3213
IN3208
RI6
RI6
RI6
RI6
R15
2N1914
2N1915
2N1916
2N2023
2N2024
S
5
JED
JED
JED
JED
JED
2N1914
2N1915
2N1916
2N2023
2N2024
519
519
519
CF
CF
2N3476
2N3477
2N3630
2N3631
2N3532
T
T
S
5
5
JED
JED
JED
JED
JED
2N3476
2N3477
2N3530
2N3631
2N3632
T27
T27
CF
CF
CF
A40M
A41A
A41B
A41C
A41D
R
GE
GE
GE
GE
GE
IN3214
IN3209R
IN3210R
IN3211R
IN3212R
RI5
R16
R15
R15
R15
2N2025
2N2026
2N2027
2N2028
2N2029
5
S
5
S
5
JED
JED
JED
JED
JED
2N2025
2N2026
2N2027
2N2028
2N2029
CF
CF
CF
CF
CF
2N3533
2N3634
2N3536
2N3636
2N3537
5
S
S
5
S
JED
JED
JED
JED
JED
2N3633
2N3534
2N3535
2N3536
2N3537
CF
CF
CF
CF
CF
A41 E
A41 F
A41 M
A50HXX0210
A50HXX0510
R
R
R
T
T
GE
GE
GE
WE5
WE5
IN3213R
IN3208R
IN3214R
A50HXX0210
A60HXX0610
R15
RIS
RIS
CF
CF
2N2030
2N2109
2N2110
2N2111
2N2112
5
T
T
T
T
JED
JED
JED
JED
JED
2N2030
CF
CF
CF
CF
CF
CF
CF
CF
CF
2N363B
2N3539
2N3540
2N3541
2N3771
5
S
S
5
T
JED
JED
JED
JED
JED
2N3538
2N3539
2N3540
2N3541
2N3771
CF
CF
CF
CF
TIl'
A51 HXX051 0
A6OGXX1010
A6OGXX1040
A60HXX10l0
A60HXX1510
T
T
T
T
T
WE5
WE5
WE5
WE5
We5
A61HXX0610
A6OGXX1010
A60GXX1040
CF
CF
CF
CF
CF
CF
CF
5
5
,~
T
5
5
5
T
T
T
T
T
T
Note: Manufacturer's Codes, Product Type Note5 and@Replacement Notes are listed on pageG3
T
Replacement
JED
JED
JED
JED
JED
2N1806
2NI607
2NI809
2N1810
2N1811
G6
Type Mfgr.
5
5
5
5
S
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
TIl
TIl
531
531
531
521
521
521
513
513
513
T7
T9
T9
T6
Pert Numbat'
Tvpe Mfg..
SU99ested@
Replacement
Page
Part Number
A60HXX2010
A61 HXXI 010
A61HXX1610
A61HXX2010
A61HXX2610
T
T
T
T
T
WES
WES
WES
WES
WES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
Al800
Al60E
Al80M
Al80N
Al80P
A67GXX10l0
A67GXX1040
A67HXX1010
A67HXX1610
A67HXX2010
T
T
T
T
T
WES
WES
WES
WES
WES
A67GXX10l0
A67GXX1040
A67HXX1010
A67HXX1610
A67HXX2010
CF
CF
CF
CF
CF
Al80PA
.A180PB
A67HXX2510
A70A
A70B
A70C
A700
T
R
R
R
R
WES
GE
GE
GE
GE
A67HXX2510
R5100110
R5100210
R5100310
R5100410
A70E.
A70M
A70N
A70P
A70PB
R
R
R
R
R
GE
GE
GE
GE
GE
A70S
A7ar
A71A
.A71B
A71C
R
R
R
R
R
A710
A71E
A71M
A71N
A71P
A71PB
A71S
Tvpe Mlgr.
A
SUggasted@
Replacement
Page
Part Number
Tvpe Mfgr.
Suggested@
Replacement Page
GE
GE
GE
GE
GE
A5100415
R5100B15
A5100B16
R5100815
R6101015
A23
R23
A23
A23
R23
A197B
A197C
A1970
A197E
A191M
R
R
A
A
R
GE
GE
GE
GE
GE
A6020225FJ
A6020326FJ
A6020425FJ
A6020626FJ
R6020625FJ
AB3
R63
RB3
RB3
A63
!l:g~g
R
A
A
A
A
GE
GE
GE
GE
GE
R5001115
A5001215
A5001315
A5001415
SO
R23
A23
A23
R23
A23
A197N
A197P
A197PA
A197PB
A197PC
R
A
A
R
R
GE
GE
GE
GE
GE
A6020825FJ
A6021026FJ
R6021125FJ
A6021226FJ
A6021325FJ
R63
R63
AB3
A63
A63
CF
R23
R23
R23
R23
Al80RA
A180RB
A180RC
A180RO
A180RE
R
A
A
A
A
GE
GE
GE
GE
GE
A6110115
R5110215
A5110315
A5110415
R5110515
A23
R23
R23
R23
R23
A197PO
A197PE
A197AA
A197RB
A197RC
R
R
A
R
R
GE
GE
GE
GE
GE
R8021425FJ
R8021526FJ
A6030125FJ
R6030226FJ
A8030325FJ
RB3
A63
RB3
R63
RB3
R6100510
R&1 OOBI 0
R6100Bl0
R5101010
R5001210
R23
R23
R23
R23
R23
Al80AM
A180RN
A180RP
A180RPA
A180APB
A
A
A
A
A
GE
GE
GE
GE
GE
A6110815
A5110615
A5111015
A5011115
R5011215
R23
A23
R23
R23
A23
A197AO
A197AE
A197AM
A191AN
A197AP
R
R
R
R
R
GE
GE
GE
GE
GE
R6030425FJ
R6030525FJ
R6030825FJ
R6030825FJ
R6031025FJ
A63
R63
A63
RB3
R63
GE
GE
GE
GE
GE
R5100710
R6100910
R5110110
R6110210
R5110310
R23
R23
R23
R23
R23
A180RPC
A180RPO
A180APE
Al80RS
Al80RT
A
R
R
A
R
GE
GE
GE
GE
GE
R5011315
R5011415
SO
A5110715
R5110915
A23
R23
A23
R23
A23
A197RPA
A197APB
A197APC
A191RPO
A197APE
R
R
R
R
R
GE
GE
GE
GE
GE
R6031125FJ
R6031225FJ
R8031325FJ
R8031425FJ
R6031525FJ
R63
R63
R63
A63
R63
R
R
R
R
R
GE
GE
GE
GE
GE
R5110410
R5110510
R6110610
R511OB10
R5111010
R23
R23
R23
R23
Al80S
Al8ar
A187A
A187B
A187C
R
GE
GE
GE
GE
GE
R5100715
R5100915
A6020110FJ
R6020210FJ
R5020310FJ
A23
R23
R59
A59
R59
A197AS
A197RT
A197S
A197T
A291 PC
R
R
R
R
R
GE
GE
GE
GE
GE
R6030725FJ
R6030925FJ
A8020725FJ
R6020925FJ
R6011325
A63
R63
A63
A63
R31
ABOA
A90B
A90C
R
R
R
R
R
R
6GE R5111210
GE
R5110710
GE
R5110910
GE
R6100125
GE
R6100226
GE
R6100326
R23
R23
R23
R31
R31
R31
A1870
A187E
A187M
A187N
A187P
GE
GE
GE
GE
Ge
R5020410FJ
A5020510FJ
R5020610FJ
R502OB1OFJ
R5021010FJ
A69
R59
A69
R69
A69
A291PO
A291PE
A291 PM
A291PN
A291PS
R
R
R
R
R
GE
GE
GE
GE
GE
R8011425
R8011525
A6011625
R6011825
R6011725
A31
A31
R31
A31
R31
ABOO
ABOE
A90M
ABON
ABOP
R
R
R
R
R
GE
GE
GE
GE
GE
R6100425
R6100525
R6100626
R6100826
R6101025
R31
R31
R31
R31
A31
A187PA
A187PB
A187PC
A187PO
A187PE
GE
GE
GE
GE
GE
A5021110FJ
R6021210FJ
R5021310FJ
A5021410FJ
SO
A59
A59
R59
A69
A59
A295B
A296C
A2950
A295E
A295M
R
R
R
R
R
GE
GE
GE
GE
GE
R7010206
A7010305
R7010405
R7010506
R7010605
R35
A35
A35
A30
A35
ABOPA
ABOPB
A90S
ABOT
A91A
A
A
R
R
A
GE
GE
GE
GE
GE
A8001125
R8001226
R6100725
A6100925
A6110125
R31
R31
R31
R31
R31
A91B
A91C
A910
A91E
A91M
A
R
A
R
A
GE
GE
Ge
GE
GE
A6110226
R6110326
R6110425
R6110525
A6110625
A31
A31
R31
A31
R31
A91N
A91P
A91PA
A91PB
A91S
A
R
R
R
R
GE
GE
GE
GE
GE
R611OB25
R6111025
R6011125
R6011225
R6110726
R31
R31
R31
R31
R31
A9H
A96A
A96B
A96C
A960
R
R
R
R
R
GE
GE
GE
GE
GE
R6110925
R6020125FJ
R6020225FJ
R6020325FJ
A6020425FJ
R31
R63
A63
R63
R63
A96E
A96M
A96N
AS6P
A96S
R
A
A
A
A
GE
GE
GE
GE
GE
A6020525FJ
A6020625FJ
A6020825FJ
A6021025FJ
A6020725FJ
A63
R63
A63
A63
A63
A
GE
GE
GE
GE
GE
R6020925FJ
A6030125FJ
A6030225FJ
A6030325FJ
R6030425FJ
R63
A63
A63
A63
A63
GE
GE
GE
GE
GE
R6030526FJ
R6030625FJ
R6030825FJ
R6031025FJ
R6030725FJ
R63
A63
A63
R63
Ril3
GE
GE
GE
GE
GE
R6030925FJ
A5001310
A5001410
SO
A5011310
A63
A23
R23
A23
A23
A7H
A96T
A97A
A97B
A97C
A970
A97E
A97M
A97N
A97P
A97S
A97T
A170PC
A170PO
A170PE
A170RPC
A170APO
A 170APE
Al80A
Al80B
A180C
A
A
A
A
A
R
A
R
A
A
R
A
A
A
A
A
A
R
R
GE
GE
GE
GE
GE
R5011410
SO
A5100115
R5100215
A5100316
A23
R23
R23
R23
R23
A180PE
A
A
A
A
A187RA
A187RB
A187RC
A187RO
A187AE
R
A
R
A
A
GE
GE
GE
GE
GE
R5030110FJ
A5030210FJ
R5030310FJ
R5030410FJ
A5030610FJ
A69
A59
R59
R59
A59
A296N
A295P
A295PA
A295PB
A295PC
R
R
R
R
R
GE
GE
GE
GE
GE
R7010806
A7011005
R7011106
R7011205
A7011305
A35
A35
A35
A35
A35
A187RM
A187RN
A187RP
A187RPA
A187RPB
R
A
R
R
A
GE
GE
GE
GE
GE
R5030610FJ
R5030810FJ
R5031010FJ
A5031110FJ
A5031210FJ
A59
A69
A59
R59
A59
A295PO
A295PE
A296PM
A295PN
A295PS
R
A
A
A
R
GE
GE
GE
GE
GE
R7011405
A701160b
A7011805
R7011705
A35
A35
A35
A35
A35.
A187RPC
A187APO
A187APE
A187RS
A187RT
R
A
R
R
GE
GE
GE
GE
GE
R5031310FJ
A5031410FJ
SO
R5030710FJ
A5030910FJ
A59
A69
A69
A59
A59
A295S
A295T
A296S
A296C
A2960
R
R
R
R
R
GE
GE
GE
GE
GE
R7010705
R7010905
CF
CF
CF
R35
A35
CF
CF
CF
A187S
A187T
Al90C
A
A
A
GE
GE
GE
A5020710FJ
R5020910FJ
A6100325
A296E
A296M
A296N
A296P
R
~tlggm
A69
A59
A31
A31
A31
GE
GE
GE
GE
CF
CF
CF
CF
CF
CF
CF
CF
GE
GE
GE
GE
GE
A6100625
R6100825
R6101025
R6001125
A6001225
R31
A31
A31
A31
A31
A296PA
A296PB
A296PC
A296PO
R
R
R
R
GE
GE
GE
GE
CF
CF
CF
CF
CF
CF
CF
CF
R8001325
A8001425
A8001525
R6110326
R31
R31
A31
R31
A296PE
A296PM
A296PN
A296PS
R
GE
8~
CF
CF
CF
CF
mg~
Al90M
A190N
A190P
A190PA
A190PB
A
~
A
R
A
A
A
g~
R
R
R
A7011&~5
A190PC
A190PO
AI90PE
Al90RC
R
GE
GE
GE
GE
R
GE
CF
CF
CF
CF
Al90RO
Al90AE
AI90AM
A190AN
A190AP
R
A
A
A
A
GE
GE
GE
GE
GE
A6110425
A6110525
A6110625
A6110825
R6111025
A31
R31
R31
R31
R31
A296S
A296T
A390A
A390B
A390C
R
GE
GE
GE
GE
GE
CF
CF
R6200140
R6200240
R6200340
CF
CF
A39
A39
A39
A190APA
Al90APB
A190APC
A190APO
A190APE
A
GE
GE
GE
GE
GE
A6011125
A6011225
R6011325
A6011425
A6011525
A31
R31
R31
A31
R31
A3900
A390E
A390M
A390N
A390P
R
R
R
GE
GE
GE
GE
GE
R6200440
R6200540
A6200640
R6200840
A6201040
A39
A39
A39
R39
R39
A190AS
Al90AT
Al90S
AI90T
A197A
A
R
R
GE
GE
GE
GE
GE
RB110725
R6110925
R6100725
RB 100925
R6020125FJ
R31
R31
R31
A31
R63
A390PA
A390PB
A390S
A390r
A39BA
GE
GE
GE
GE
GE
R6201140
R6201240
R6200740
R6200940
RB220140FJ
R39
R39
R39
R39
RB7
A
A
A
R
A
A
R
R
A
~
R
A
R
R
R
A
R
R
R
R
R
Note: Manufacturer's Codes, Product Type Notes 8nd@ Replacement Notes are listed on page G3
G7
Part Number
A396B
A396C
A3960
A396E
A396M
Type Mfg,.
5ugge.ted@
Replacement
Page
Part Number
R
R
R
R
R
GE
GE
GE
GE
GE
R6220240FJ
R6220340FJ
R6220440FJ
R6220540FJ
R6220640FJ
R67
R67
R67
R67
R67
AS40LA
A540lB
A540lC
A540l0
A540M
R
R
GE
GE
GE
GE
GE
R622OB40FJ
R6221040FJ
R6220740FJ
R6220940FJ
R6220140FJ
R67
R67
R67
R67_
R67
A540N
A540P
A540PA
A540PB
A540PC
A397B
A397C
A3970
A397E
A397M
GE
GE
GE
GE
GE
R6220240FJ
R6220340FJ
R6220440FJ
R6220540FJ
R6220640FJ
R67
R67
R67
R67
R67
A540PO
A540PE
A540PM
A540PN
A540PS
A397N
A397P
A397PA
A397PB
A397PC
GE
GE
GE
GE
GE
R6220840FJ
R6221040FJ
R6221140FJ
R6221240FJ
R6221340FJ
R67
R67
R67
R67
R67
A397PO
A397PE
A3975
A397T
A430A
GE
GE
GE
GE
GE
R6221440FJ
R6221540FJ
R6220740FJ
R6220940FJ
R72oo112
A430B
A430C
A4300
A430E
A430M
GE
GE
GE
GE
GE
A430N
A430P
A430PA
A430PB
A430PC
Type Mfg,.
R
R
SUggestad@
Replacement
Page
Part Number
GE
GE
GE
GE
GE
CF
CF
CF
CF
R7200612
CF
CF
CF
CF
R43
B500
BSOF
B50Z
855-14
Bl10-14
GE
GE
GE
GE
GE
R72oo812
R7201012
R7201112
R7201212
R7201312
R43
R43
R43
R43
R43
GE
GE
GE
GE
.GE
R7201412
SO
SO
SO
SO
A540PT
A5405
A540T
A570A
A570B
GE
GE.
GE
GE
GE
R67
R67
R67
R67
R43
A570C
A5700
A570E
A570M
A570N
R72oo212
R7200312
R7200412
R72oo512
R7200612
R43
R43
R43
R43
R43
GE
GE
GE
GE
GE
R72oo812
R7201012
R7201112
R7201212
R7201312
A430PO
A430PE
A4305
A430T
A437A
GE
GE
GE
GE
GE
A437B
A437C
A4370
A437E
A437M
A3
A3
A3
523
523
B0125-01
B0125-02
B0126-04
B0125-06
B0125-08
PSI
PSI
PSI
PSI
PSI
R51OO110
R51oo210
R5100410
R5100610
R51oo810
R23
R23
R23
R23
R23
R43
R43
R43
R43
R43
B0125-10
B0125-12
B0125-14
B0150-01
B0150-02
PSI
PSI
PSI
PSI
PSI
R5101010
R5OO1210
R5OO1410
R51oo115
A51OO215
R23
R23
R23
R23
R23
50
R72OO712
R7200912
R92OO111
R92oo211
R43
R43
R43
R47
R47
B0150-04
B0150-06
B0150-08
B0150·10
B0150-12
PSI
PSI
PSI
PSI
P51
R5100415
R51OO615
R51oo815
R5101015
R5OO1215
R23
R23
R23
R23
R23
GE
GE
GE
GE
GE
R92oo311
R9200411
R92oo511
R9200611
R92OO811
R47
R47
R47
R47
R47
B0150-14
C30A
C30B
C30C
C300
PSI
GE
GE
GE
GE
R5OO1415
T4OO011608
T4ooo21608
T4ooo31608
T400041608
R23
513
513
513
S13
A570P
A5705
A570T
A596N
A596P
GE
GE
GE
GE
GE
R9201011
R92oo711
R9200911
R722OB08EJ
R722100BEJ
R47
R47
R47
R71
A71
C30F
C35A
C35B
C35C
C350
GE
GE
GE
GE
GE
T4oooo1608
T4ooo12208
T4ooo22208
T4ooo32208
T400042208
513
513
513
513
513
R43
R43
R43
R43
R43
A596PA
A596PB
A596T
A640l
A640LA
GE
GE
GE
GE
GE
R7221108EJ
R7221208EJ
R7220908EJ
R9202016
R9202116
R71
R71
A71
R47
R47
C35E
C35F
C35M
C35N
C355
GE
GE
GE
GE
GE
T4ooo52208
T4oooo2208
T40008220B
T4ooo82208
T4ooo72208
513
513
513
513
513
R7201412
50
R7200712
R7200912
R722010BEJ
R43
R43
R43
R43
R71
A640N
A640P
A640PA
A640PB
A640PC
GE
GE
GE
GE
GE
R92oo816
R9201016
R9201116
R9201216
R9201316
A47
A47
R47
R47
A47
C36A
C36B
C36C
C360
C36E
GE
GE
GE
GE
GE
T4ooo11008
T4ooo21008
T4ooo31 008
T4ooo41 008
T4ooo51008
513
513
513
513
513
GE
GE
GE
GE
GE
R7220208EJ
R7220308EJ
R7220408EJ
R722050BEJ
R722060BEJ
R71
R71
R71
R71
R71
A640PO
A640PE
A640PM
A640PN
A640P5
GE
GE
GE
GE
GE
Rsio1416
R9201516
R9201616
R9201816
R9201716
R47
R47
R47
R47
R47
C36F
C36M
C36N
C36S
C37A
GE
GE
GE
GE
GE
T40000 1008
T4OO061 008
T4ooo81 008
T4OO071OO8
T4ooo11608
513
513
513
513
513
A437N
A437P
A437PA
A437PB
A437PC
GE
GE
GE
GE
GE
R722OBOBEJ
R722100BEJ
R722110BEJ
R722120BEJ
R722130BEJ
R71
R71
R71
R71
R71
A640PT
A6405
A640T
A670XX0515
A670XX0525
GE
GE
GE
WES
WES
R9201916
R92oo716
R92OO916
A670XX0515
A670XX0525
R47
R47
R47
CF
CF
C37B
C37C
C370
C37E
C37F
GE
GE
GE
GE
GE
T4ooo21608
T4ooo31608
T4oo041608
T4ooo51608
T4oooo1608
513
513
513
513
513
A437PO
'A437PE
A4375
A437T
A500l
GE
GE
GE
GE
GE
50
R7221508EJ
R722070BEJ
-R7220908EJ
R7202009
R71
R71
R71
R71
R43
A045-01
A045-02
A045-04
A045-06
A045-OB
PSI
PSI
PSI
PSI
PSI
IN1184A
IN1186A
IN11B8A
IN1190A
R41oo840
R15
R15
R15
R15
R15
C37M
C37N
C37S
C38A
C38B
GE
GE
GE
GE
GE
T4oo081608
T4OO08160B
T4OOO71608
CF
CF
"513
513
513
CF
CF
A500LA
A500lB
A500lC
A5OOl0
A500lE
GE
GE
GE
GE
GE
R7202109
R7202209
R7202309
R7202409
R7202509
R43
R43
R43
R43
R43
A045-10
A045-12
A065-01
A065-02
A065-04
PSI
PSI
PSI
PSI
P51
R4101040
R4101240
R4040170
R4040270
R4040470
R15
R15
C38C
C380
C38E
C38M
C45A
GE
GE
GE
GE
GE
CF
CF
CF
CF
T51OO15004AB
CF
CF
CF
CF
527
A500lM
A500LN
A500lP
A5OOl5
A500lT
GE
GE
GE
GE
GE
R7202609
R7202809
R7203009
R7202709
R7202909
R43
R43
R43
R43
R43
A065-06
A065-OB
A065-10
A065-12
Al-l0-5
PSI
PSI
PSI
PSI
EOl
R4040870
R4048070
R4041070
R4041270
MB12A25V05
R17
A3
C45B
C45C
C450
C45E
C45F
GE
GE
GE
GE
GE
T51OO25004AB
T51oo35004AB
T510045004AB
T51oo55004AB
T51ooo5004AB
527
527
527
527
527
ASOOP
A500PA
A500PB
A500PC
A5OOPO
GE
GE
GE
GE
GE
R7201OO9
R7201109
R7201209
R7201309
R7201409
R43
R43
R43
R43
R43
Al-l0-l0
Al-l0-20
Al-l0-30
Al-10-40
Al-iO-so
EOl
EOl
EOl
EOl
EOl
MB12A25Vl0
MB12A25V20
MB12A25V30
MB12A25V40
MB12A25V50
A3
A3
A3
A3
A3
C45G
C45H
C45M
C45N
C45P
GE
GE
GE
GE
GE
T51OO25004AB
T51 oo35004AB
T51OO65004AB
T5OO084004AA
T5OO104004AA
527
527
527
523
523
ASOOPE
A500PM
A500PN
A500PS
A500PT
GE
GE
GE
GE
GE
R7201509
R7201609
R7201809
R7201709
R7201909
R43
R43
R43
R43
R43
Al-l0-60
Al·25-5
Al-25-10
Al-25-20
Al-25-30
EOl
EOl
EOl
EOl
EOl
MB12A25V60
MB12A25V05
MB12A25Vl0
MB12A25V20
MB12A25V30
A3
A3
A3
A3
C45PA
C45PB
C45S
C45T
C45U
GE
Ge
GE
GE
GE
T5OO114004AA
T5OO124004AA
T5OO074004AA
T5OOO94004AA
T51ooo5004AB
523
523
523
523
527
A5OOXXOlll
A500XXOl18
A510XXOl15
A510XX0125
A540A
WE5
WE5
WE5
WE5
GE
A6OOXXOlll
A5OOXX0118
A510XXOl15
A510XX0125
R72oo112
CF
CF
CF
CF
R43
Al-25-40
Al-25-SO
Al-2.5-60
Bl0A
BlOB
EOl
EOl
EOl
TUN
TUN
MB12A25V40
MB12A25V50
MB12A25V60
MB12A25Vl0
MB12A25V20
A3
A3
A3
A3
A3
C46A
C46B
C46C
C460
C46E
GE
GE
GE
GE
GE
T51 00 15004AO
T51OO25004AO
T51oo36004AO
T510045004AO
T51OO55004AO
527
527
527
527
527
GE
GE
GE
GE
GE
R72oo212
R72oo312
R7200412
R72oo512
CF
R43
R43
R43
R43
CF
Bl00
Bl0F
Bl0Z
B50A
B50B
TUN
TUN
TUN
TUN
TUN
MB12A25V40
MB12A25V60
MB12A25V05
MB12Al0Vl0
MB12A1OV20
A3
A3
A3
A3
A3
C46F
C46G
C48H
C46M
C46N
GE
GE
GE
GE
GE
T51ooo5004AO
T51oo25004AO
T51OO35OO4AO
T510085004AO
T5OOO84004AO
527
f:27
527
527
523
A540B
A540C
A5400
A540E
A540l
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
A
A
A
A
A
R17
R17
R17
R17
R17
R17
A3
Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are-listed on page·G3
A
A
A
S
5
Suggested @
Replacement Page
TUN MB12Al0V40
TUN MB12A1OV60
TUN MB12Al0V05
PSI T5OO144003AO
PSI T5OO148004AO
A396N
A396P
A3965
A396T
A397A
G8
Type Mfg,.
5
S
5
5
5
Part Number
Type Mfg.,
Suggested@
Replacement
Pege
Part Number
C152P
C152PA
C152PB
S
5
5
GE
GE
GE
Type Mfg.,
Suggested@
Replacement
Suggested@
Replacement Page
Page
Part Number
T500108004AA
T500118004AA
T50012OO04AA
523
523
523
ClOOA
ClOOB
C180C
ClOOD
ClOOE
5
5
5
5
5
GE
GE
GE
GE
GE
T610011504BT
T610021504BT
T61003f504BT
T610041504BT
T610051504BT
533
533
533
533
533
Type Mfg.,
C46P
C46PA
C46PB
C465
C46T
5
5
5
5
5
GE
GE
GE
GE
GE
T500104004AO
T500114004AO
T500124004A(
T5OOO74004AO
T5OOO94004AO
S23
523
523
523
523
C46U
C50A
C50B
C50C
C50D
5
5
5
5
5
GE
GE
GE
GE
GE
T51ooo5004A
T510018004AO
T510028004AO
T510038004AO
T510048D04AO
527
527
527
527
527
C152PC
C1525
C152T
C153E
C153M
C153N
C153P
5
5
5
5
5
5
5
GE
GE
GE
GE
GE
GE
GE
T500138004AA
T5OOO78004AA
T600D98004AA
T507058054AA
T507068054AA
T507088054AA
T507108D54AA
523
523
523
577
577
577
577
ClOOM
ClOON
C180P
C180PA
ClOOP8
5
5
5
5
5
GE
GE
GE
GE
GE
T610061504BT
T600081504BT
T800101504BT
T800 111504BT
T600121504BT
533
533
533
533
533
C50E
C50F
C50G
C50H
C50M
5
5
5
5
5
GE
GE
GE
GE
GE
T51 0058004AO
T51ooo8004AO
T510028004AO
T51003OO04AO
T510068004AO
527
527
527
527
527
C153PA
C1535
C153T
C154A
C154B
5
5
5
5
5
GE
GE
GE
GE
GE
T60711OO54AA
T507078054AA
T50709OO54AA
T50701OO84AO
T50702OO84AO
577
577
577
577
577
C180PC
ClOO5
C180T
C185A
C185B
5
5
5
5
5
GE
GE
GE
GE
GE
T800131504BT
T6ooo71504BT
T600091504BT
T6D7011864BT
T607021864BT
533
533
533
579
579
C50N
C50P
C50PA
C50PB
C505
5
5
5
5
5
GE
GE
GE
GE
GE
T500088004AO
T500108004AO
T500118004AO
T500128004AO
T500078004AO
523
523
523
523
523
C154C
C154D
Cl54E
C154M
C155A
5
5
5
5
5
GE
GE
GE
GE
GE
T50703OO84AO 577
T507048084AO 577
577
U8~8~i8Wa 577
T50701OO64AO 577
C185C
C185D
C185E
C185M
C185N
5
5
5
5
5
GE
GE
GE
GE
GE
T607031864BT
T6070418648T
TOO7051864BT
T607061864BT
T607081864BT
579
579
579
579
579
C50T
C50U
C5lA
C52B
C52C
5
5
5
5
5
GE
GE
GE
GE
GE
T500098004AO
T51ooo8004AO
T510018004AB
T510028004AB
T510038004AB
523
527
527
527
C155B
C155C
C155D
C155E
C155M
5
5
5
5
5
GE
GE
GE
GE
GE
T507028064AO
T5070311064AO
T50704OO64AO
T50705OO64AO
T50706OO64AO
C1855
C186N-30
CI86N-40
CI86P-30
CI86P-40
5
5
5
5
5
GE
GE
GE
GE
GE
T6D7071864BT
T607081554BT
T607081544BT
T6071015548T
T667101544BT
579
579
579
579'
579
C52D
C52E
C52F
C52G
C52H
5
5
5
5
5
GE
GE
GE
GE
GE
T510018D04AB
T510058004AB
T51ooo8004A8
T51002OO04AB
T510038004AB
527
527
527
527
527
C156A
C156B
C156C
C156D
C156E
5
5
5
5
5
GE
GE
GE
GE
GE
T50701OO84AA 577
T50702OO84AA 577
T50703OO84AA 577
T507048084AA 577
T507058084AA 577
C186PA-30
CI86PA-40
C186PB-30
CI86PB-40
C1865-30
5
5
5
5
5
GE
GE
GE
GE
GE
T607111554BT
T6071115448T
T607121554BT
T607121544BT
T607071554BT
579
579
579
579
579
C52M
C52N
C52P
C52PA
C52PB
5
5
5
5
5
GE
GE
GE
GE
GE
T510068004AB 527
T5OOO88004AA 523
T500108004AA 523
T500 l1OO04AA 523
T500 12OO04AA 523
C156M
C157A
C167B
C157C
C157D
5
5
5
5
5
GE
GE
GE
GE
GE
T60708OO84AA 577
T50701OO64AA 577
T50702OO64AA 577
T507038064AA 577
T50704OO64AA 577
C1865-40
C186T-30
C186T-40
C220A
C220B
5
5
5
5
5
GE
GE
GE
GE
GE
T607071544BT
T607091554BT
T607091544BT
T4ooo11 008
T400021008
579
579
579
513
513
C525
C52T
C52U
C60A
C608
C60C
C60D
C60E
5
5
5
5
5
5
5
5
GE
GE
GE
GE
GE
GE
GE
GE
T5OOO78004AA
T50009OO04AA
T51 0008004AB
T515018004AO
T51 502OO04AO
T51503OO04AO
T515048004AO
T51505OO04AO
523
523
527
CF
CF
CF
CF
CF
C157E
C157M
C158E
C158M
C168N
5
5
5
5
5
GE
GE
GE
GE
GE
T5D7058084AA
T507068064AA
T507058054AO
T507068054AO
T507088054AO
577
577
577
577
577
C220C
C220D
C220E
C220F
C220M
5
5
5
5
5
GE
GE
GE
GE
GE
T400031008
T400041008
T4OOO51 008
T4oooo1008
T4ooo61008
513
513
513
513
513
C60F
C60G
C60H
C60U
C62A
5
5
5
5
5
GE
GE
GE
GE
GE
T515008004AO
T515Q2OO04AO
T51503OO04AO
T515008004AO
T515018004AB
CF
CF
CF
CF
CF
C158P
C158PA
C168PB
C158S
C158T
5
5
5
5
5
GE
GE
GE
GE
GE
T50710OO54AO
T507118054AO
T507128054AO
T507078054AO
T507098054AO
577
577
577
577
577
C235-15
C280N
C200P
C280PA
C200PB
5
5
5
5
5
P51
GE
GE
GE
GE
T6001515038T
T700082504BY
T700102504BY
T700112504BY
T700122504BY
533
537
537
537
537
C159E
C159M
C159N
C159P
C159PA
5
5
5
5
5
GE
GE
GE
GE
GE
T50705OO54AA 577
T50706OO54AA 577
T507088054AA 577
T507108054AA 577
T507118054AA 577
C200PC
C 80PE
C200PM
C200PN
5
5
5
5
5
GE
GE
GE
GE
GE
T700132504BY
T700142504BY
T700152504BY
T700162504BY
T700182504BY
537
537
537
537
537
0159PB
CI595
C169T
CI60-15
C164A
5
5
5
5
5
GE
GE
GE
P51
GE
T5071'28054AA
T507078054AA
T507098054A."
T600151303BT
T507017084AO
577
577
577
533
577
C280P5
C2805
C280T
C281N
C281P
5
5
5
5
5
GE
GE
GE
GE
GE
T700172504BY
T7000725048Y
T700092504BY
T680083504BY
T780103504BY
537
537
537
575
575
CI648
C164C
CI84D
CI84E
CI64M
5
5
5
5
5
GE
GE
GE
GE
GE
T507027084AO
T507037084AO
T507047084AO
T507057084AO
T507067084AO
577
577
577
577
577
C281PA
C281PB
C281 PC
C281PD
C281PE
5
5
5
5
5
GE
GE
GE
GE
GE
T780113504BY
T780123504BY
T780133504BY
T780143504BY
T7801535C48Y
575
575
575
575
575
C165A
C1658
C165C
C165D
C165E
5
5
5
5
5
GE
GE
GE
GE
GE
T507017064AO
T507027064AO
T507037064AO
T507047064AO
T507057064~O
577
577
577
577
577
C281 PM
C281 PN
C281P5
C2815
C281T
5
5
5
5
5
GE
GE
GE
GE
GE
T780163504BY
T780183504BY
T780173504BY
T780073504BY
T780093504BY
575
575
575
575
575
C165M
0165N
C1655
C178A
CI78B
5
5
5
5
5
GE
GE
GE
GE
GE
T507067064AO
T507087064AO
T507077064AO
T6100115048T
T61D0215048T
577
577
577
533
533
C282N
C282P
C282PA
C282PB
C282PC
5
5
5
5
5
GE
GE
GE
GE
GE
T7000825048Y
T700102504BY
T700112504BY
T700122504BY
T700132504BY
537
537
537
537
537
C178C
C178D
CI78E
CI78M
C178N
5
5
5
5
5
GE
GE
GE
GE
GE
T6100315048T
T610041504BT
T610051504BT
T610061504BT
T600081504BT
533
533
533
533
533
C282PD
C282PE
C282PM
C282PN
C282P5
5
5
5
5
5
GE
GE
GE
GE
GE
T700142504BY
T700152504BY
T700162504B't
T7001825048Y
T700172504BY
537
537
537
537
537
C178P
5
5
5
5
5
GE
GE
GE
GE
GE
T600101504BT
T600 111504BT
T600 121504BT
T600071504BT
533
533
533
533
533
C2825
C282T
C283N
C283P
C283PA
5
5
5
5
5
GE
GE
GE
GE
GE
T7000725C48Y
T70009025048Y
T7800835048Y
T780103504BY
T7OOl13504BY
537
537
575
575
575
C283PB
C283PC
C283PD
5
5
5
5
5
GE
GE
GE
GE
GE
T7801 i35048Y
T7801335048Y
T7OO143504BY
575
575
575
575
575
SiP
C628
C62C
C62D
C62E
C62F
5
5
5
5
5
GE
GE
GE
GE
GE
T515028004AB
T515038004AB
T515048004AB
T51 5058004AB
T515008004AB
CF
CF
CF
CF
CF
C62G
C62H
C62U
C702LC
C702LD
5
5
5
5
5
GE
GE
GE
GE
GE
T51 5028004AB
T51503OO04AB
T515008004AB
T9G0231003DH
T9G0241003DH
CF
CF
CF
561
561
C137E
C137M
C137N
CI37P
C137PB
5
5
5
5
5
GE
GE
GE
GE
GE
T4ooo62208
T400062208
T400082208
T400102208
T400122208
513
513
513
513
513
C1375
C137T
C150E
C150M
C150N
5
5
5
5
5
GE
GE
GE
GE
GE
T4ooo72208
T400D92208
T51 D058D04AO
T510068004AO
T5OOO88004AO
513
513
527
527
523
CI50P
C150PA
C150PB
C150PC
C1505
5
5
5
5
5
GE
GE
GE
GE
GE
T500108004AO
T500118004AO
T500,128004AO
T500138OO4AO
T5OOO78004AO
523
523
523
523
523
C150T
CI51E
CI51M
C151N
C151P
5
5
5
S
5
GE
GE
GE
GE
GE
T500098004AO
T507058054AO
T50706OO54AO
T50708OO54AO
T:;0710OO54AO
523
577
577
S77
577
CI51PA
CI51PB
CI515
C151T
CI52E
5
5
5
5
GE
GE
GE
GE
GE
T50711OO54AO
T50712OO54AO
T507078054AO
T507098054AO
T510058004AB
577
577
577
577
527
CI52M
CI52N
S
5
GE
GE
T510068004AB
T500D88004AA
527
523
S
'/
~178PA
C178PB
CI785
C178T
T6ooo91504~T
577
577
577
577
577
C~OOPD
C28~PE
C283PM
T~01535048Y
T
0163504BY
Note: Manufacturer's Codes, Product Type Notes and® Replacement Notes are listed on pageG3
G9
Part Number
C283PN
C283P5
C2835
C283T
C286N
Sugge.tod@
Suggo.ted@
Type Mfgr.
S
Replacement
Page
Part Number
Type Mfgr.
Suggested @
Replacement
Page
T6270220840N
T6270320840N
T627042084DN
T6270520840N
T6270620840N
587
587
587
587
587
C393A
C393B
C393C
C3930
C393E
GE
GE
GE
GE
GE
T7270140740N
T7270240740N
T7270340740N
T7270440740N
T7270540740N
591
591
591
591
591
Part Number
Replacement
Page
5
5
5
5
GE
GE
GE
GE
GE
T780183504BY
T780173504BY
T7BD073504BY
T78OO93504BY
T7DOO825C4BY
575
575
575
575
537
C364B
C364C
C3640
C364E
C364M
5
5
5
5
5
GE
GE
GE
GE
GE
C286P
C286PA
C286PB
C286PC
C286PD
5
5
5
5
5
GE
GE
GE
GE
GE
T700102504BY
T7oo112504BY
T7oo122504BY
T700132504BY
T7oo142504BY
537
537
537
537
537
C365A
C3658
C365C
C365D
C365E
5
5
5
5
5
GE
GE
GE
GE
GE
T627012054DN
T627022064DN
T6270320640N
T627042064DN
T627052064DN
587
587
587
587
587
C393M
C394A
C394B
C394C
C3940
GE
GE
GE
GE
GE
T7270640740N
T7270148840N
T7270248840N
T7270348840N
T727044884DN
591
591
591
591
591
C286PE
C286PM
C286S
C286T
C287N
5
5
5
5
5
GE
GE
GE
GE
.GE
T700152504BY
T700162504BY
T7DOO72504BY
T700092504BY
T780083504BY
537
537
537
537
575
C365M
C380A
C3808
C380C
C3800
5
5
5
5
5
GE
GE
GE
GE
GE
T627062064DN
T620013OO4DN
T62oo23004oN
T6200330040N
T62oo430040N
587
543
543
543
543
C394E
C394M
C395A
C395B
C395C
GE
GE
GE
GE
GE
T727054884DN
T7270648840N
T727014874DN
T727024874DN
T7270348740N
591
591
591
591
591
C287P
C287PA
C287PB
C287PC
C2B7Po
5
5
5
5
5
GE
GE
GE
GE
GE
T780103504BY
T780113504BY
T7BD123504BY
T780133504BY
T780143504BY
575
575
575
574
575
C380E
C380M
C380N
C380P
C380PA
5
5
5
5
5
GE
GE
GE
GE
GE
T620053OO40N
T62oo63004oN
T6200830040N
T6201030040N
T6201130040N
543
543
543
543
543
C3950
C395E
C395M
C397E
C397M
GE
GE
GE
GE
GE
T7270448740N
T727054874DN
T727064874DN
T727054544DN
T727064544DN
591
591
59'591
591
C287PE
C287PM
C2875
C287T
C290A
5
5
5
5
T7BD153504BY
T780163504BY
T780073504BY
T780093504BY
T7oo013504BY
575
575
575
575
537
C380PB
C380PC
C3805
C380T
C384A
5
.5
S
GE
GE
GE
GE
GE
C290B
C290C
C290D
5
GE
5
GE
55 GE
T7oo023504BY
T100033504BY
T700043504BY
537
537
537
C290E
C290F
C290M
C290N
C290P
5
5
5
5
5
GE
GE
GE
GE
GE
T7DOO53504BY
T7DOO13504BY
T700063504BY
T700083504BY
T7oo103504BY
537
537
537
537
537
C290PA
C290PB
C2905
C290T
C291A
5
5
5
5
5
GE
GE
GE
GE
GE
T700113504BY
T7oo123504BY
T7oo073504BY
T7oo093504BY
T7800135C4BY
537
537
537
537
575
C291 B
C291C
C291D
C291E
C291M
5
5
5
5
5
GE
GE
GE
GE
GE
T78oo23504BY
T780033504BY
T780043504BY
T7B0053504BY
T780063504BY
575
575
575
575
575
C291N
C291P
C291PA
C291PB
C2915
5
5
5
5
5
GE
GE
GE
GE
GE
T780083504BY
T780103504BY
T780113504BY
T780123504BY
T78oo73504BY
575
575
575
575
575
.C291T
C350A
C350B
C350C
C350D
5
5
5
5
5
GE
GE
GE
GE
GE
T78oo93504BY
T520012004DN
T5200213040N
T5200313040N
T520041304DN
575
541
$41
541
541
C350E
C350M
C350N
C350P
C350PA
S
5
5
5
5
GE
GE
GE
GE
GE
T520051304DN
T52(!061304DN
T5200813040N
T5201013040N
T520111304DN
541
541
541
5'11
541
C350PB
C350PC
C3505
C350T
C354A
5
5
5
5
5
GE
GE
GE
GE
GE
T5201213040N
T5201313040N
T520071304DN
T5200913040N
T5270113840N
541
541
541
541
583
C354B
C354C
C354D
C354E
C354M
5
5
5
5
5
GE
GE
GE
GE
GE
T5270213840N
T527031384DN
T527041384DN
T527051384DN
T527051384DN
583
583
583
583
583
C355A
C355B
C355C
C355D
C355E
5
5
5
5
GE
GE
GE
GE
GE
T527011364DN
T527021364DN
T5270313640N
T527041364DN
T5270513640N
583
583
5B3
583
583
C355M
C35BE
C35BM
C358N
C358P
5
5
5
5
5
GE
GE
GE
GE
GE
T527051364DN
T5270513540N
T5270613540N
T527051354DN
T527101354DN
583
SB3
583
583
583
C358PA
C358P8
C3585
C358T
C364A
5
GE
GE
GE
GE
GE
T527111354DN
T527121354DN
T527071354DN
T527091354oN
T627012084DN
583
583
583
583
587
5
5
S
5
5
GE
GE
GE
GE
GE
T620123OO40N
T620133OO40N
T6200730040N
T62oo93004oN
T6270125840N
543
543
543
543
587
C397N
C397P
C397PA
C397PB
C3975
GE
GE
GE
GE
GE
T727084544DN
T727104544DN
T727114544DN
T727124544DN
T727074544DN
591
591
591
591
591
C384B
C384C
C384D
C384E
C384M
5
5
5
5
5
5
5
5
GE
GE
GE
GE
GE
T6270225840N
T627032584DN
T6270425840N
T6270525840N
T6270625840N
587
587
587
587
587
C397T
C39BE
C398M
C398N
C398P
GE
GE
GE
GE
GE
T7270945440N
T7270545540N
T7270645540N
T7270845540N
T7271045540N
591
591
591
591
591
C385A
C385B
C385C
C3850
C385E
5
5
5
5
5
GE
GE
GE
GE
GE
T6270125640N
T6270225640N
T6270325640N
T6270425640N
T6270525640N
587
587
587
587
587
C398PA
C398PB
C3985
C39ST
C400
GE
GE
GE
GE
GE
T7271145540N
T7271245540N
T7270745540N
T7270945540N
CF
S91
591
591
591
CF
C385M
C385N
C3855
C386N·30
C386N·40
5
GE
GE
GE
GE
GE
T6270625640N
T6270825640N
T6270725640N
T6270825540N
T6270825440N
587
587
587
587
587
C440
C441
C445
C448
C501N
GE
GE
GE
GE
GE
CF
CF
CF
CF
T7200555040N
CF
CF
CF
CF
551
GE
GE
GE
GE
GE
T6271025540N
T6271025440N
T6271125540N
T6271125440N
T6271225540N
587
587
587
587
587
C501P
C501PA
C501PB
C501PO
GE
GE
GE
GE
GE
T7201055040N
T7201155040N
T7201255040N
T7201355040N
T7201455040N
551
551
551
551
551
C386P·30
C386P·40
C386PA·30
C386PA·40
C386PB·30
5
5
.5
5
5
5
5
5
5
C~OlPC
C386PB·40
C3865·30
C3865-40
C386T·30
C386T·40
5
5
5
GE
GE
GE
GE
GE
T6270725440N
T6270725540N
T6270725440N
T6270925540N
T6270925440N
587
587
587
587
587
C501PE
C501PM
C5015
C50H
C502PE
GE
GE
GE
GE
GE
T72015550401\!
T7201655040N
T72oo755040N
T72oo95504oN
T7201555040N
551
551
551
.551
551
C387E
C387M
C387N
C387P
C387PA
5
5
5
5
5
GE
GE
GE
GE
GE
T7270535540N
T7270635540N
T7270835540N
T7271035540N
T7271135540N
591
591
591
591
591
C502PM
C509
C520A
C520B
C520C
GE
GE
GE
GE
GE
T7201655040N
CF
T72oo155040N
T72OO255040N
T7200355040N
551
CF
551
551
551
C387PB
C3875
C387T
C388E
C388M
5
5
5
5
5
GE
GE
GE
GE
GE
T7271235540N
T727073554DN
T727093554DN
T7270540640N
T727054064DN
591
591
591
591
591
C520D
C530A
C530B
C530C
C5300
GE
GE
GE
GE
GE
T7200455040N
T72oo155040N
T72OO255040N
T72OO355040N
T7200455040N
551
551
551
551
551
C388N
C388P
C388PA
C388PB
C3885
5
5
5
5
5
GE
GE
GE
GE
GE
T7270840640N
T727103564DN
T727113564DN
T7271235640N
T727074064DN
591
591
591
591
591
C530E
C530M
C600
C601
C602
GE
GE
GE
GE
GE
T720055504No
T72oo655040N
CF
CF
CF
551
551
CF
CF
CF
C388T
C390E
C390M
C390N
C390P
5
5
5
5
5
GE
GE
GE
GE
GE
T727093564DN
T7200555040N
T720065504DN
T720085504DN
T720105504DN
591
551
551
551
551
C609
C612
C701PA
C701 PB
C701 PC
GE
GE
GE
GE
GE
CF
CF
T9G01112030H
T9G01212030H
T9G01312030H
CF
CF
561
561
561
C390PA
C390PB
C390PC
C3905
C390T
5
5
5
5
5
GE
GE
GE
GE
GE
T720115504DN
T7201255040N
T720135504DN
T720075504DN
T72oo95504 DN
551
551
551
551
551
C701PD
C701PE
C701PM
C702l
C702LA
GE
GE
GE
GE
GE
T9G01412030H
T9G01512030H
T9G01612030H
T9G0201OO30H
T9G02110030H
561
561
561
561
561
C391 PC
C391PD
C391PE
C391 PM
C392A
5
5
5
5
GE
GE
GE
GE
GE
T720135504DN
T7201455040N
T720155504DN
T7201 655040 N
T727014084DN
551
551
551
551
591
C702lB
C712l
C712PE
C712PM
C712PN
GE
GE
GE
GE
GE
T9G0221OO30H
CF
CF
CF
CF
561
CF
CF
CF
CF
C392B
C382C
C392D
C392E
C392M
5
5
5
5
5
GE
GE
GE
GE
GE
T727024084DN
T727034084DN
T727044084DN
T727054084DN
T727064084DN
591
591
591
591
591
C712P5
C712PT
C0160-01
C0160-02
CD160·04
GE
GE
PSI
P51
P51
CF
CF
IN3261
IN3263
IN3267
CF
CF
R27
R27
R27
5
5
5
Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on pageG3
G10
Type Mfgr.
Part Numbe,
Type Mfg,.
Suggested@
Replacement
Page
Part Number
Type Mfg,.
Suggested@
Replacement
Page
Part Number
Type Mfg,.
Suggested @
Replacement
Page
COl SO-OS
COleO-OB
COl60-10
COl60-12
C01S0-14
R
R
R
R
R
PSI
PSI
PSI
PSI
PSI
IN3269
IN3271
IN3273
IN3274
IN3275
R27
R27
R27
R27
R27
0470
0480XX0320
0480XX0420
0480XX0520
0480XX0815
S
T
T
T
T
PSI
WES
WES
WES
WES
T7oo-3004BT
0480XX0320
0480XX0420
0480XX0520
0480XXOB16
S37
CF
CF
CF
CF
ESP05Bl
ESP181
ESP281
ESP481
ESPS81
A
A
A
A
A
SYN
SYN
SYN
SYN
SYN
MBllA02V05
M811A02Vl0
M811A02V20
MBllA02V40
MBllA02VSO
A3
A3
A3
A3
A3
COI60-1S
C0250-01
C0250-02
C0250-04
C0250-06
R
R
R
R
R
PSI
PSI
PSI
PSI
PSI
IN327S
R6100125
RS100225
RS100425
R6100625
R27
R31
R31
R31
R31
0480XXl015
01197
01245
0240SA
·0240SAR
T
S
S
R
R
WES
WCE
WCE
RCA
RCA
0480XX1015
T9GHXXOB-4
CF
IN3880
IN3880R
CF
S39
CF
R55
R55
ESP8Bl
ESP1081
Fl80
F220
F300
A
A
S
S
S
SYN
SYN
PSI
PSI
PSI
MBllA02V80
MBllA02Wl0
CF
CF
CF
A3
A3
CF
CF
CF
C0250-OB
C0250-10
C0250-12
C0250-14
C0250-16
R
R
R
R
R
PSI
PSI
PSI
PSI
PSI
R61OO825
R6101025
R6001225
R6001425
R6oo1625
R31
R31
R31
R31
R31
02406B
02406BR
02406C
02406CR
0240S0
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
IN3881
IN3881R
IN3882
IN3882R
IN3883
R55
R55
R55
R55
R55
F400
F500
F600
FOSoo-05
FOSoo-l0
5
S
S
R
R
PSI
PSI
PSI
PSI
PSI
CF
CF
CF
R7200S0S
R720100S
CF
CF
CF
R43
R43
C03OO-01
C03OO-02
C03OO-04
C0300-06
C03OO-OB
R
R
R
R
R
PSI
PSI
PSI
PSI
PSI
RS100130
RS100230
R6100430
RS100630
R6100630
R31
R31
R31
R31
R31
0240S0R
0240SF
0240SFR
0240SM
0240SMR
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
IN3883R
IN3879
IN3879R
R3020S0S
R3030S06
R65
R55
R55
R55
R65
F0600-12
F0600-16
F0600-18
FOSOO-20
F06oo-22
R
R
R
R
R
PSI
PSI
PSI
PSI
PSI
R720120S
R7201S0S
R720180S
R7202oo6
R720220S
R43
R43
R43
R43
R43
C03OO-10
C03OO-12
C03OO-14
C03OO-16
CH119A
R
R
R
R
R
PSI
PSI
PSI
PSI
TUN
R6101030
RSoo1230
R6001430
R6001630
R5100115
R31
R31
R31
R31
~23
02412A
02412AR
024128
024128R
02412C
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
IN3890
IN3890R
IN3891
IN3891R
IN3892
R55
R55
R55
R65
R55
FOSoo-24
F0600-30
F0900-06
F0900-10
F09OO-12
R
R
R
R
R
PSI
PSI
PSI
PSI
PSI
R7202406
R7203006
R7200610
R7201010
R7201210
R43
R43
R43
R43
R43
CH119AR
CHl19AZ
CHl19AZR
CHl19B
CHl198R
R
R
R
R
R
TUN
TUN
TUN
TUN
TUN
R5110115
R5,0.,15
R5".,,6
R5100215
R5110215
R23
R23
R23
R23
R23
02412CR
024120
024120R
02412F
02412FR
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
IN3892R
IN3893
IN3893R
IN3889
IN3889R
R55
R55
R55
R55
R55
F0900-16
F09OO-18
F0900-20
G3OO-1
G300-2
R
R
R
S
5
PSI
PSI
PSI
PSI
PSI
R7201610
R7201810
R7202010
T72oo135040N
T72oo235040N
R43
R43
R43
551
551
CHl19C
CH119CR
CHl190
CHl190R
CHl19E
R
R
R
R
R
TUN
TUN
TUN
TUN
TUN
R5100315
R5110315
R5100415
R5110415
R51OO515
R23
R23
R23
R23
R23
02412M
02412MR
02520A
02520AR
02520B
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
R3020612
R3030S12
IN3900
IN3900R
IN3901
R55
R55
R57
R57
R57
G300-3
G3OO-4
G3OO-5
G300-S
G3OO-7
5
5
5
5
5
PSI
PSI
PSI
PSI
PSI
T72oo335040N 551
T7200435040N 551
T7200535040N 551
T7200635040N S51
T72oo735040N 551
CH119ER
CHl19F
CH119FR
CHl19Z
CHl19ZR
R
R
R
R
R
TUN
TUN
TUN
TUN
TUN
R5110515
R5100S15
R5110S15
R5100015
R5110015
R23
R23
R23
R23
R2l
02520BR
02520C
02520CR
025200
025200R
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
IN3901R
IN3902
IN3902R
IN3903
IN3903R
R57
R57
R57
R57
R57
G3OO-8
G3OO-9
G3OO-10
G3OO-12
G3OO-14
5
5
S
S
5
PSI
PSI
PSI
PSI
PSI
T7200835040N
T72oo935040N
T7201035040N
T7201235040N
T7201435040N
551
551
S51
S5.1
551
CH10912A
CH1OB12AR
CH10912AZ
CH10912AZR
CH109128
R
R
R
R
R
TUN
TUN
TUN
TUN
TUN
R5100115
R5110115
R5,0.,,5
R511+115
R5100215
R23
R23
R23
R23
R23
02520F
02520FR
02520M
02520MR
02540A
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
IN3899
IN3899R
R4020S20
R4030S20
IN3910
R57
R57
R57
R57
R57
G3OO-1S
G3OO-18
G3OO-20
G300-22
G4oo-1
5
S
5
S
5
PSI
PSI
PSI
PSI
PSI
T7201635040N
T7201835040N
T7202035040N
T7202235040N
T7200135040N
551
S51
551
S51
S51
CH10912BR
CH10912C
CH10912CR
CH109120
CH10912DR
R
R
R
R
R
TUN
TUN
TUN
TUN
TUN
R5110215
R5100315
R5110315
R5100415
R5110415
R23
R23
R23
R23
R23
02540AR
02540B
025408R
D2540D
D2540DR
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
IN3910R
IN3911
IN3911R
IN3913
IN3913R
R57
R57
R57
R57
R57
G400-2
G400-3
G400-4
G400-5
G400-S
5
5
S
S
5
PSI
PSI
PSI
PSI
PSI
T72oo235040N
T72oo335040N
T7200435040N
T72oo53504DN
T72ooS3504DN
551
551
551
S51
S51
CH10912E
CH10912ER
CH10912F
CH10912FR·
CH10912Z
R
R
R
R
R
TUN
TUN
TUN
TUN
TUN
R510P515
R5110515
R51OOS15
R5110S15
R5100015
R23
R23
R23
R23
R23
D2540F
D2540FR
D2540M
D2540MR
D3S10
R
R
R
R
R
RCA
RCA
RCA
RCA
SYN
IN3909
IN3909R
R4020630
R4030630
R4040160
R57
R57
R57
R57
R17
G400-7
G4oo-8
G4oo-9
G4oo-10
G400-12
S
S
S
S
5
PSI
PSI
PSI
PSI
PSI
T72oo73504DN
T72oo83504DN
T7200935040N
T7201035040N
T7201235040N
551
S51
S51
S5l
S51
CH10912ZR
CS131A
CS131AR
CS131AZ
CS131AZR
R
R
R
R
R
TUN
TUN
TUN
TUN
TUN
R5110015
IN4045
IN4046R
IN4046
IN404SR
R23
R29
R29
R29
R29
DRS·250
ORS·250R
ORS·251
DRS·251 R
DRS·252
R
R
R
R
R
DEL
DEL
DEL
DEL
DEL
RSloo825
RSll0825
R6101025
RSlll025
R6001225
R31
R31
R31
R31
R31
G400-14
G400-1S
G400-18
G400-20
G400-22
5
S
5
S
5
PSI
PSI
PSI
PSI
PSI
T7201435040N
T7201635040N
T7201835040N
T7202035040N
T7202235040N
551
551
551
551
S51
CS131B
CS131BR
CS131C
CS131CR
CS1310
R
R
R
R
R
TUN
TUN
TUN
TUN
TUN
IN4047
IN4047R
IN4049
IN4049R
IN4050
R29
R29
R29
R29
R29
DRS·252R
ORS·253
DRS·253R
DRS·254
DRS·254R
R
R
R
R
R
DEL
DEL
DEL
DEL
DEL
RSOl1225
RSoo1425
R6011426
R6001625
RSOllS25
.R31
R31
R31
R31
R31
G500-1
G5OO-2
G5OO-3
G5OO-4
G500-5
S
S
5
5
5
PSI
PSI
PSI
PSI
PSI
T72oo136040N
T720023504DN
T7200335040N
T720043504DN
T7200535040N
551
S51
551
551
551
CS1310R
CS131E
CS131ER
CS131F
CS131FR
R
R
R
R
R
TUN
TUN
TUN
TUN
TUN
IN4050R
IN4051
IN4051R
IN4052
IN4052R
R29
R29
R29
R29
R29
EI80
E220
E300
E400
E500
5
S
S
S
5
PSI
PSI
PSI
PSI
PSI
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
G500-S
G500-7
G5OO-8
G5OO-9
G500-10
S
5
5
S
S
PSI
PSI
PSI
PSI
PSI
T72oo63504DN
T7200735040N
T72oo835040N
T720093504DN
T7201035040N
S61
551
551
551
551
CS131Z
CS131ZR
080T405010
0601455010
060T505010
R
R
T
T
T
TUN
TUN
WES
WES
WES
IN4044
IN4044R
OSOT405010
060T455010
OSOT505010
R29
R29
T33
T33
T33
EHF1BI
EHF2Bl
EHF3Bl
EHF4Bl
EHF581
A
A
A
A
A
SYN
SYN
SYN
SYN
SYN
MB12A1OV10
MB12A1OV20
MB12A1OV30
MB12A1OV4O
M812A1OV50
A3
A3
A3
A3
A3
G5OO-12
G5OO-14
G5OO-IS
G500-18
G600-20
S
5
S
S
S
PSI
PSI
PSI
PSI
PSI
T720123504DN
T7201435040N
T720163504DN
T7201835040N
T7202035040N
S51
S51
S51
551
551
0235
0350
0390XX0520
0390XX0525
0400
S
S
T
T
S
PSI
PSI
WES
WES
PSI
T600-1804BT
T6oo-1804BT
0390XX0520
0390XX0525
TSoo--18048T
S33
S33
CF
CF
S33
EHFSBI
EMF1Bl
EMF281
EMF481
EMF681
A
A
A
A
A
SYN
SYN
SYN
SYN
SYN
M812A1OVSO
MB12A25Vl0
M812A25V20
M812A25V40
M812A25V60
A3
A3
A3
A3
A3
GS50-1
GS50-2
G650-3
G660-4
G650-5
S
S
S
S
S
PSI
PSI
PSI
PSI
PSI
T7200145040N
T7200245040N
T7200345040N
T7200445040N
T7200645040N
S61
S51
S51
S51
S51
Note: Manufacturer's Codes, Product Type Notes and® Replacement Notes are listed on page·G3
G11
Part Number
Type Mfgr.
Suggested@
Replacement
Pege
Part Number
Type Mfgr.
Suggested@
Replacement
Page
Part Number
Sugge.ted@
Replacement Pege
G650-6
G650-7
G650-8
G650-9
G650-1D
5
S
5
S
S
PSI
PSI
PSI
PSI
PSI
T72oo645040N
T72oo746040N
T7200646040N
T7200946040N
T72D1046040N
561
S51
551
S51
S51
HIIDD·12
H8DD·14
H80D 16
H8oo·18
H8oo·2D
S
S
S
S
S
PSI
PSI
PSI
PSI
Pi?l
T92D12D6D20W
T92D1406D20W
T92D1606D20W
T92D1806D20W
T92O'2006D20W
S55
S55
555
S55
S55
KBH25OO5
KBPC1D2
K8PC104
K8PC1D6
K8PC1D8
A
A
A
A
A
GI
GI
GI
GI
GI
MB12A26VD5
MB11AD2V2D
MB11AD2V4D
MB11AD2V6D
M811AO'2V8D
A3
A3
A3
A3
A3
G650-12
G650-14
G650-16
G65O'-18
G850-1
S
S
'5
5
PSI
PSI
PSI
PSI
PSI
T72D1245040N S51
T72DI445040N 561
T72O'I645040N 561
T72D1845040N ·551
T72oo155040N 551
H8oo·22
H8oo·24
H800·26
H80D·28
H8DD·3D
S
5
5
5
5
PSI
PSI
PSI
PSI
PSI
T92O'2206D20W
T92O'2408020W
T92O'26D6D20W
T92O'2806D20W
T92O'3OO6D20W
S55
S55
565
555
S55
K8PCllD
KBPC810'
KBPC 10'0'5
KBPC8oo5
KBPC8D25
A
A
A
A
A
GI
GI
GI
GI
GI
M811AD2W1D
MB11AD6W1D
MB11AD2VD5
MB11A06VD5
MBllA06V2O'
A3
A3
A3
A3
A3
G85D-2
G85D-3
G850-4
G85D-5
G850-6
5
5
5
5
S
PSI
PSI
PSI
PSI
PSI
T72oo255040N
T72oo355040N
T7200455040N
T72oo555040N
T72oo655040N
551
551
551
551
551
Hl0oo·6
Hl000 12
Hl000·18
Hl000 20'
Hl000 22
5
5
5
5
5
PSI
PSI
PSI
PSI
PSI
T92oo6D7D20W
T92O' 120'70'2 OW
T92D18D7D20W
T92O'2O'D7O'20W
T92O'22D7D20W
555
555
555
555
555
KBPC8045
KBPC8D65
KBPC8D85
KD6000·2
KD60oo-4
A
A
A
R
R
GI
GI
GI
PSI
PSI
MBllA06V40
MB11AO'6V6D
MB11AO'6V8D
CF
CF
A3
A3
A3
CF
CF
G85D-7
G85D-8
G85D-9
G85D-ID
G85D-12
,5
'5
5
.5
is
PSI
PSI
PSI
PSI
PSI
T72oo755040N 551
T72oo855040N 551
T72oo955040N 551
T72D1D55040N 551
T72D1255040N '551
H12oo·6
H12oo·10
H1200 12
H1200 14
H1200 16
S
5
5
S
5
PSI
PSI
PSI
PSI
PSI
T92O'0609D20W
T92O'loo9D20W
T92O'12O'9D20W
T92O'14D9D20W
T92D16D9D20W
S55
555
555
555
555
KD60oo-6
MB11AO'2VXX
MB11A06VXX
MB12A1DVXX
MB12A25VXX
R
A
A
A
A
PSI
WES
WES
WES
WES
CF
MB11AO'2VXX
MB11AD6VXX
MB12A1DVXX
M812A25VXX
CF
A3
A3
A3
A3
G85D-14
G85D·16
G85D-18
G85D-2D
.5
'5
5
'5
5
PSI
PSI
PSI
PSI
PSI
T72D1455040N
T72D1655040N
T72D1855040N
T72D2D5504DN
T72DD1S5040N
551
551
551
551
551
H14oo·6
H1400 8
H1400 10'
H1400 12
H1400 14
5
5
5
5
5
PSI
PSI
PSI
PSI
PSI
T920061OO20W
T92oo81oo20W
T92O'I0'1 OO20W
T92O'121oo20W
T92O'141oo20W
555
555
555
555
555
MB13A1O'VOS
MB13A1DV1D
MB13A1DV2D
MB13A1DV3D
MB13A1DV40
A
A
A
A
A
WES
WES
WES
WES
WES
MB12A1DVD5
MB12A1DV1D
MB12A1DV2D
MB12A1DV3D
MB12A1O'V4D
A3
A3
A3
A3
A3
5
5
T72DD255040N
T72DD35504DN
T72D045604DN
T72oo55504DN
T72D0655040N
551·
551
551
S51
561
H14oo·16
H1600 6
H16oo·8
H16DD 10'
><1600 12
5
S
5
5
5
PSI
PSI
PSI
PSI
PSI
T92O'161DO'20W
T92oo61oo20W
T920061oo20W
T92O'I 0'1 DD20W
T92O'121DD20W
555
S55
555
555
555
MB13A1DV5D
MB13A1DV6D
MB13A15Vl0
MB13A15V20
MB13A15V3D
A
A
A
A
A
WES
WES
WES
WES
WES
MB12A1DV6D
MB12A1DV6D
MB12A25V1D
MB12A25V2D
MB12A25V3O'
A3
A3
A3
A3
A3
PSI
PSI
PSI
PSI
PSI
T92O'141DD20W
CF
R92oo611
R92D1Dll
R92D1211
555
CF
R47
R47
R47
MB13A15V4D
M813A15V5D
MB13A15V6D
MB13A2DVID
MB13A2DV2D
A
A
A
A
A
WES
WES
WES
WES
WES
MB12A25V40
MB12A25V6D
MB12A25V60
MB12A25V1D
MB12A25V2D
A3
A3
A3
A3
A3
G95D·l
S
G95O'-2
G95D-3
G95D-4
G95D-5
G950-6
I~.5
PSI
PSI
PSI
PSI
PSI
G950-7
G95D-8
G95D-9
G95D-ID
G95D-12
5
5
5
S
5
PSI
PSI
PSI
PSI
PSI
T72oo755040N
T72D065504DN
T72D0955040N
T72D1D55040N
T72D1255040N
551
551
551
551
551
H1600 14
H1800
HD150012
5
5
R
R
R
G950-14
G95D-16
G95D-18
GA2 ......
GA3 ......
5
5
5
A
A
PSI
PSI
PSI
WES
WES
T72D145504DN
T72D1655040N
T72D1855040N
GA2 ........
GA3 ........
551
551
551
A19
A28
HD15OO-16
H015OO-18
HD15OO-2D
H015OO-22
H01500-24
R
R
R
R
R
PSI
PSI
PSI
PSI
PSI
R92D1611
R92O'1811
R92O'2Dll
R92D2211
R92O'2411
R47
R47
R47
R47
R47
MB13A2DV30
MB13A2DV4D
MB13A2DV5D
MB13A2DV6D
MCR39-35
A
A
A
A
5
WES
WES
WES
WES
MOT
MB12A25V3D
MB12A25V4D
MB12A2SV60
MBl2A25V60
T4oooo22D8
A3
A3
A3
A3
513
GBI
GB2
GB3
GC1
G01
......
......
......
......
......
A
A
A
A
A
WES
WES
WES
WES
WES
GB1
GB2
GB3
GCl
G01
........
........
........
........
........
A12
A2D
A29
AID
A9
HD15DD-30
H021 00-6
HD21oo-1D
H021DD-12
H021oo-16
R
R
R
R
R
PSI
PSI
PSI
PSI
PSI
R92D3Dll
R920062D
R92O'1D2D
R92O'122D
R92D162D
R47
R47
R47
R47
R47
MCR45-DS
MCK45-1D
MCR45-15
MCR45·2D
MCR45-25
5
5
5
5
5
MOT
MOT
MOT
MOT
MO'T
T51 0'0050'0'7 AB
T51DD15OO7AB
T51 0'0'250'0'7AB
T51 0'0'250'0'7AB
T51DD35DD7AB
527
527
527
527
527
G02 ......
G03 ......
GG8oo-D6
G080D-ID
G08DD-12
A
A
,R
,R
R
WES
WES
PSI
PSI
PSI
GD2 ........
G03 ........
R7200609
R72Dl009
R72DI2D9
A18
A27
R43
R43
R43
H021oo-18
H021oo-2D
HD25OO-2
H025OO-4
H025OO-6
R
R
R
R
R
PSI
PSI
PSI
PSI
PSI
R92O'182D
R92O'2D2D
R92O'D22O'
R92O'042D
R92O'062D
R47
R47
R47
R47
R47
MCR45-3D
MCR45-4D
MCR45-5D
MCR45-60
MCR45·70
5
5
5
5
5
MOT
MOT
MOT
MOT
MO'T
T51 0'0'350'0'7AB
T51 0'0450'0'7AB
T51DD55DD7AB
T51 0'0'650'0'7AB
T5OOD74004AA
527
527
527
527
523
'R
R
R
'R
:R
PSI
PSI
PSI
PSI
PSI
R72DI6D9
R72DI8D9
R72D2009
R72D22D9
R72D2409
R43
R43
R43
R43
R43
H025OO-8
H025OO-1D
H025OO-12
H03000-1
HD3DOO-2
R
R
R
R
R
PSI
PSI
PSI
PSI
PSI
R920062D
R92O'1D2O'
R920122D
CF
CF
R47
R47
R47
CF
CF
MCR45-8D
MCR45-9D
,MCR4S·1oo
MCR45-11D
MCR4S-12D
5
5
S
5
5
MOT
MOT
MOT
MOT
MOT
T5OOD84004AA.
T5OOD940D4AA
TSoolD40D4AA
TSoo 114DD4AA
TSoo1240D4AA
523
523
523
523
523
G08oo-3D
GO 1400-0'6
G014oo-1D
G014oo-12
G014oo·16
R
R
R
R
R
PSI
PSI
PSI
PSI
PSI
SO
R72oo612
R72D1D12
R72D1212
SO
R43
R43
R43
R43
R43
HI;l3OOD-4
H03OOD-6
HH .......
J3OOD-2
J3OOD-4
R
R
A
5
S
PSI
PSI
WES
PSI
PSI
CF
CF
HH ........
CF
CF
CF
CF
A76
CF
CF
MCR46-DS
MCR46·1D
MCR46-1S
MCR46-2D
MCR46-2S
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T51 0'0050'0'7AO
T51DD15DD7AO
T51 DD2SDD7AO
TSI 00250'0'7AO
T51 DD3Soo7AO
527
527
527
527
527
GD14oo-18
G014oo·20
GEl .......
GE2 ........
GE3 ........
R
:R
A
A
A
PSI
PSI
WES
WES
WES
SO
SO
GEl .........
GE2 .........
GE3.. .......
R43
R43
A13
A21
A3D
.J3OOD-6
J3000-8
J3000-1D
J3000-12
JD45OO-2
5
5
5
5
R
PSI
PSI
PSI
PSI
PSI
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
MCR46-3D
MCR46-35
MCR46-40
MCR46-SD
MCR46·60
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TSI OD3SD07 AO
TSI 0'045007AO
T51 0'045007AO'
T51 0'0'550'0'7AO
TSI 0'0'650'0'7AO
527
527
527
527
527
G0800-16
.G08OD-18
G0800-2D
G0800-22
G0800-24
HD150Q 6
HD150D 10
GEB10D
GEB101
GEB1D2
GEB1D4
GEB1D6
A
A
A
A
A
GE
GE
GE
GE
GE
MB11A02VD5
MB11AD2V1D
MB11AD2V2D
MB11AD2V4D
MBllAD2V6D
A3
A3
A3
A3
A3
J046oo-4
J045OO-6
J045OO-8
J045OO-1D
J045OO-12
R
R
R
R
R
PSI
PSI
PSI
PSI
PSI
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
MCR46·7D
MCR46-8D
MCR46-9D
MCR46-1oo
MCR46·11D
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T5OOD740D4AO
T5OOD84DD4AO
T5OOD940D4AO
T5OO1D40D4AO
T5OO114DD4AO
523
523
523
S23
523
GEB1D8
GEB11D
GF2
GF3 .......
GNI
A
A
A
A
A
GE
GE
WES
WES
WES
MBllAD2V8D
MBllAD2W1D
GF2 .........
GF3 .........
GNI
A3
A3
A22
A31
All
J06000-2
J06000-4
JD6000-6
KBHD2
KBH04
R
R
R
A
A
PSI
PSI
PSI
GI
GI
CF
CF
CF
MB12A1DV2D
MB12A1DV4D
CF
CF
CF
A3
A3
MCR46·12D
MCR5D-DS
MCR5D·1D
MCRSD-IS
MCRSD-2D
S
5
5
S
5
MOT
MOT
MOT
MOT
MOT
TSoo1240D4AO
TSI 0'0080'0'7AB
TSI 0'0'180'0'7 AB
TSI 0'0'280'0'7 AB
T51DD280D7AB
523
S27
527
S27
527
GRI
G51
GT3
GYI.
HBOO-6
A
A
A
A
S
WES
WES
WES
WES
PSI
GRI .......
GSI ........
GT3 .........
GY1 .........
T92oo606D2DW
AS
A14
A26
A15
555
KBH06
KBH005
KBH2502
KBH2504
KBH2506
A
A
A
A
A
GI
GI
GI
GI
GI
MB12A1DV6D
MB12A1DBD5
MB12A2SV20
MB12A2SV40
MB12A2SV6D
A3
A3
A3
A3
A3
MCRSD-2S
MCR5D-30
MCR5D-35
MCRSD-4D
MCR50-50
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TSI 0'0'3800'7 AB
T51 OD3BD07 AB
T51 00'48007 AB
T51 00'480'07 AB
T51 00580'07 AB
527
527
S27
527
527
NDte: Manufacturer's Codes, Product Type Notes and@ Replacement NDtes are listed on page G3
G12
Type Mfgr.
5uggested@
Part Number
Type Mfg •.
Page
Replacament
Part Number
Type Mfg •.
5uggested@
Replacament
Page
Part Number
Type Mfg••
Sugr,ested@
Rep ........nt
Pag.
MCRSO-60
MCR50-70
MCR50-80
MCR50-90
MCRS2-10
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T510066007AB
T500076007AA
T500086007AA
T5000116007AA
TS07017044AA
527
523
523
523
577
MCR157-20
MCR157-30
MCR157-40
MCR1S7-50
MCR157-60
5
5
5
5
5
MOT
MOT
MOT
MOT
iIIIOT
T507027064AA 577
TS07037064AA 577
TS07047064AA 577
TS070S7064AA 577
TS07067064AA 577
:;:g:Ug::g8
MCR2S08-130
MCR2508-140
MCR250B-150
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T500118OO6AQ
T50012B005AQ
T500138OO6AQ
T500148OO6AQ
T500158OO6AQ
523
523
523
523
523
MCR52-20
MCRS2-30
MCR52-40
MCR52-S0
MCRS2-60
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TS07027044AA
TS07037044AA
TS07047044AA
T507057044AA
T507067044AA
577
577
577
577
577
MCR158-10
MCR158-20
MCR1S8-30
MCR158-40
MCR168-50
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TS070170S4AQ
TS070270S4AQ
TS07037054AQ
TS070470S4AQ
TS07057054AQ
577
577
577
577
577
MCR25Ol-10
MCft250L-20
MCR250L-30
MCR25OL-40
MCR2SOL-50
5
5
5
5
5
MOT
MOT
MOT
MOt
MOT
1510018OO6AB
T51002800SAB
T510038OO6AB
TSl004600SAB
T510011B005AB
527
527
527
527
527
MCRS2-70
MCRS2-BO
MCRS2-90
MCR60·0S
MCR60-10
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TS07077044AA
TS07087044AA
TS07097044AA
TS10008007AQ
TS10016007AQ
·577
577
577
527
527
MCR158-60
MCR1S8-70
MCR1S8-BO
MCR1S8-90
MCR1S8-100
5
5
5
5
5
MOT'
MOT
MOT
MOT
MOT
TS07067054AQ
TS07077054AQ
TS070870S4AQ
TS070970S4AQ
TS07107054AQ
577
577
577
577
577
MCR250L-60
MCR250L-70
MCR250L-BO
MCR250L-SO
MCR250L-l00
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T5 I OOII800SAB 527
T500078OO4AA 523
T500088OO5AA 523
T5000118OO5AA 523
TSOO108006AA 523
MCR60-1S
MCR60-20
MCR60-25
MCR60-30
MCR60-40
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TS10028007AQ
TS10026007AQ
TS10036007AO
TS10038007AO
TS10048007AO
527
527
527
527
527
MCR158-110
MCR1S8-120
MCR158-130
MCR159-10
MCR159-20
.s
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TS07117054AQ
TS071270S4AO
TS071370S4AO
TS07017054AA
TS070270S4AA
577
577
577
577
577
MCR2S0L-ll0
MCR250L-120
MCR250L-130
MCR250L-140
MCR250L-1S0
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
rsool I BOO5AA
T50012B005AA
T50013B005AA
TSOOl4600SAA
T50015B005AA
523
523
523
523
MCR60-50
MCR62-0S
MCR62-10
MCR62-1S
MCR62-20
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TS100S8007AO
TS10008007AB
TS10018007AB
TS10028007AB
TS10026007AB
527
527
527
527
527
MCR159-30
MCR159-40
MCR1S9-50
MCR159-60
MCR1S9-70
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TS07037054AA 577
TS070470S4AA 577
TS070S7054AA 577
TS07067054AA 577
TS07077054AA 577
MCR2S1B-l0'
MCR251B-20
MCR2S1B-30
MCR2S1B-40
MCR251B-50
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T510015005AO
T510025005AO
TS10035005AO
TSl0045005AO
TSl00S5005AO
527
527
527
527
527
MCR62-2S
MCR62-30
MCR62-40
MCR62-S0
MCR1S0-05
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TS10038007AB
TS10038007AB
TS10048007AB
TS100S8007AB
TS1000BOOSAO
527
527
527
527
527
MCR159-BO
MCR159-90
MCR159-100
MCR159-110
MCR159-120
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TS07087054AA
TS070970S4AA
TS07107054AA
TS071170S4AA
T507127054AA
577
577
577
577
577
MCR251B-60
MCR2S1B-70
MCR2S1B-BO
MCR2S1B-SO
MCR251B-l00
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TS'100115005AO
TSOOO7400SAO
TSOOOII4005AO
T500011400SAQ
TS00104006AO
527
523
523
523
523
MCR1S0-l0
MCR150-20
MCR150-30
MCR150-40
MCR1S0-S0
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TS1001800SAO
T51002600SAO
TS1003BOO5AO
:rSl004800SAO
T5100S600SAO
527
'527
527
527
527
MCR1S9-130
MCR23S-10
MCR23S-20
MCR235-30
MCR23S-40
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TS071370S4AA
T620012004DN
T620022004DN
T620032004DN
T620042004DN
577
543
543
543
543
MCR2S1B-l10
MCR251B-120
MCR251B-130
MCR2S1B-140
MCR2S1B-1S0
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T500114005AO
T500124005AO
T500134005AO
TSOOl4400SAO
T500154005AO
523
523
523
523
523
MCR1S0-60
MCR1S0-70
MCR150-BO
MCR15D-SO
MCR150-100
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TS10011BOOSAO
TSOOO78004AO
T5000118004AO
T500098004AO
T500108004AO
527
523
523
523
523
MCR235-50
MCR235-60
MCR235-70
MCR_235-BO
MCR23S-90
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T620052004DN
T620062004DN
T620072004DN
T620082004DN
T620092004DN
543
543
543
543
543
MCR2S1L-l0
MCR2S1L-20
MCR251L-30
MCR251L-40
MCR251L-50
S
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T510015005AB
T510025005AB
T510035005AB
T510045005AB
T510055005AB
527
527
527
527
527
MCR15D-110
MCR15D-120
MCR150-130
MCR1S0-140
MCR150-150
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TSOOll8004AO
T500128004AO
TSOO138004AO
T500148004AO
T500158004AO
523
523
523
523
523
MCR235-100
MCR235-110
MCR235-120
MCR23S-130
MCR23S-140
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T620102004DN
T620112004DN
T620122004DN
T620132004DN
T620142004DN
S43
543
543
543
543
MCR2S1L-60
MCR2S1L-70
MCR251L-BO
MCR251L-SO
MCR251 L-l00
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T5100115005AB
TSOOO74005AA
T500084005AA
T500094005AA
T500104005AA
527
523
523
523
523
MCR152-OS
MCR1S2-10
MCR152-20
MCR152-30
MCR152-40
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TS10008004AB
T51001B004AB
T510028004AB
T510038004AB
TS1004B004AB
527
527
527
527
527
MCR235-1S0
MCR23SA-l0
MCR235A-20
MCR235A-30
MCR235A-40
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T620152004DN
T627011584DN
T627021584DN
T627031S84DN
T627041584DN
543
587
587
587
587
MCR251L-ll0
MCR251L-120
MCR251L-130
MCR251·L-140
MCR251L-150
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T500114005AA
T500124005AA
T500134005AA
T500144005AA
T500154005AA
523
523
523
523
523
MCR1S2-S0
MCR1S2-60
MCR152-70
MCR1S2-BO
MCR152-SO
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TS100S8004AB
T51006800fAB
T500078004AA
TS00088004AA
TS000II8004AA
527
527
523
523
523
MCR235A-50
MCR235A-60
MCR23SB-l0
MCR23SB-20
MCR23SB-30
5
5
5
5
S
MOT
MOT
MOT
MOT
MOT
T6270S1584DN
T627061584DN
T627011574DN
T627021S74DN
T627031574DN
587
587
587
587
587
MCR3BO-l0
MCR380-20
MCR38D-30
MCR380-40
MCR38D-50
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T620013004DN
T620023004DN
T620033004DN
T620D43004DN
T620053004DN
543
543
543
543
543
MCR1S2-100
MCR1S2-110
MCR1S2-120
MCR152-130
MCR152-140
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
TS00108004AA
T500118004AA
TSOO12B004AA
T500138004AA
T500148004AA
523
523
523
523
523
MCR23SB-40
MCR23SB-SO
MCR23SB-60
MCR235B-70
MCR23S8-BO
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T627041S74DN
T6270S1S74DN
T627061S74DN
T627071574DN
T627OB1574DN
587
587
587
S87
587
MCR380-BO
MCR380-70
MCR3BO-BO
MCR3BO-SO
MCR380-100
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T820063004DN
T820073004DN
T820083004IJN
T8200930040N
T620103004DN
543
543
543
543
543
MCR1S2-150
MCR1S4-10
MCR1S4-20
MCR1S4-30
MCR1S4-40
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T5001S8004AA
T507017084AO
TS07027084AO
T507037084AO
T507047084AO
523
577
577
577
577
MCR23SC-l0
MCR23SC-20
MCR235C-30
MCR235C-40
MCR23SC-SO
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T627011S84DN
T627021584DN
T627031564DN
T627041564DN
T627051564DN
587
587
587
587
587
MCR380-110
MCR3BO-120
MCR380-130
MCR380-140
MCR380-150
5
5
5
5
5
MOT
MOT
MDT
MOT
MDT
T620113004DN 543
T620123004DN 543
T620133004DN 543
T62D143004DN 543
T6201S3D04DN 543
MCR1S4-50
MCR154-60
MCR155-10
MCR155-20
MCR155-30
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T507057084AO
T507067084AO
TS07017064AO
T507027064AO
T507037064AO
5n
577
577
577
577
MCR235C-60
MCR235C-70
MCR235C-BO
MCR235C-90
MCR235C-l00
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T627OB1564DN
T627071564DN
T627081564DN
T627091564DN
T627101564DN
587
587
587
587
587
MCR3BOB-l0
MCR38OB-20
MCR3B08-30
MCR3808-40
MCR3BOB-5D
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T627012574DN .587
T627022674DN 587
T627032674DN 587
T627042574DN 587
T627052S74DN 587
MCR1S5-40
MCR1S5-50
MCR1S5-60
MCR1S6-10
MCR1S6-20
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T507047064AO
TS070S7064AO
T507067064AO
TS07017084AA
TS07027084AA
577
577
577
577
577
MCR2508-10
MC$2S0B-20
MCR250B-30
MCR2S08-40
MCR2SOB-50
5
5
5
5
S
MOT
MOT
MOT
MOT
MOT
TS1001800SAO
TS10028005AO
TS10038005AO
TS1004800SAO
TS10058005AO
527
527
527
527
527
MCR38OB-BO
MCR38OB-70
MCR380B-80
MCR38DC-l0
MCR3BOC-20
5
5
5
5
.5
MDT
MOT
MOT
MOT
MOT
T627062S74DN 587
T627072574DN 587
T827082574DN 587
T827012564DN 587
T627022564DN 587
MCR1S6-30
MCR1S6-40
MCR1S6-50
MCR156-60
MCR157-10
5
5
MOT
MOT
MOT
MOT
MOT
TS07037084AA
TS07047084AA
T5070S7084AA
TS07067084AA
TS07017084AA
577
577
577
577
577
MCR25OB-60
MCR25OB-70
MCR25OB-BO
MCR2SOB-SO
MCR2S08-100
5
5
S
5
5
MOT
MOT
MOT
MOT
MOT
TS10068005AO
TSOOO78005AO
T500088005AO
TSOOOII8005AO
TSOO10800SAO
527
523
523
523
523
MCR38DC-30
MCR380C-40
MCR38DC-50
MCR38DC-60
MCR380C-70
.~
5
5
MOT
MOT
MOT
MOT
MOT
T621032564DN
T627042S64DN
T637052564DN
T627062S64DN
T627072564DN
S
5
5
.
5
5
587
587
S87
587
587
Note: Manufacturer'5 Codes, Product Type Note5 and@Replacement-Note5 are listed on page'G3
G13
Part Number
Type Mfgr,
Sugge.t~d@
Replacement ':Page
Part Number
Type Mfgr,
'Suggested@
Replacement
Pege
Part Number
Suggested @
Replacemant
Page
MCR5500·110
MCR5500·120
MCR800-10
MCR800-20
MCR800-30
S
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T72711 35540N
T7271235540N
T720016604DN
T7200265040N
T72OC355040N
591
591
551
55!
551
MPOllBBH
MPOII8BK
MP0118BM
MPOllBBP
MPOllBB5
A
A
A
A
A
WE5
WE5
WE5
WE5
WE5
MBllA02V4O
MBllA02V60
MBllA02V80
MB11A02V80
MBllA02V80
A3
A3
A3
A3
A3,
T6270326540N 587
T6270425540N '587
T6270525540N 587
T6270625540N 587
T6270725540N 587
MCR800·4O
MCR800-60
MCR800-60
MCR800-70
MCR800-80
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T7200455040N
T720065604DN
T7200655040N
T7200755040N
T7200B55040N
561
561
561
561
551
MP011BBV
MP011BBZ
MP012JBA
MP012JBB
MP012JBO
A
A
A
A
A
WE5
WE5
WE5
WE5
WE5
MBllA02Wl0
MBllA02Wl0
MBI2Al0v06
MB12A1OV10'
MB12Al0V20
A3
A3
A3
A3
A3,
MOT
MOT
MOT
MOT
MOT
T6270825540N
T6270925540N
T6271025540N
T6271125540N
T6271225540N
587
587
587
587
587
MCR800·90
MCR8oo·1oo
MCR8oo·110
MCR800·120
MCR800·130
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T7200985040N 561
T7201055040N 551
17201155040N 551
T7201256040N 561
T7201355040N 551
MP012JBF
MP012JBH
MP012JBK
MP012JBM
MP013MBB
A
A
A
A
A
WE5
WE5
WE5
WE5
WE5
MB12Al0V30
MB12A1OV40
MB12A1OV60
MB12Al0V60
MB12A25Vl0
A3
A3
A3
A3
A3
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T6270525540N 587
T6270625540N 587
T6270725540N 587
T627P825540N 587
T6270925540N 587
MCRBOO·'40
MCR800·150
MCRlSI8-1
MCR2918-2
MCR2918·3
5 ' MOT T7201466040N
MOT T7201555040N
5
MOT T4OOOD1608
5
MOT T4OOOD1608
5
MOT T4OO011608
5
561
551
513
513
513
MP013MBO
MP013M8F
MP013MBH
MP013MBK
MP013MBM
A
A
A
A
A
WE5
WE5
WE5
WE5
WE5
MB12A25V20
MB12A25V30
MBI2A25V40
MB12A25V60
MBI2A25V60
A3
A3
A3
A3
A3
MCR4200·100
MCR470·10
MCR470·20
MCR470·30
MCR470·4O
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T6271025540N
T620013OO40N
T62oo230040N
T62oo33OO40N
T6200430040N
587
543
543
543
543
MCR2918-4
MCR2918-5
MCR2918-6
MCR2918·7
MCR29'8-8
MOT T4ooo21608
5
5 , MOT T4OOO31608
MOT T400041608
5
5
MOT T400051608
MOT T4ooo81608
5
513
513
513
S13
513
MP013RBB
MP013RBO
MP013RBF
MP013RBH
MP013RBK
A
A
A
A
A
WE5
WE5
WES
WE5
WE5
MB12A25Vl0
MB12A25V20
MB12A26V30
MB12A25V4O
MB12A25V60
A3
A3
A3
A3
A3
MCR470·60
MCR470·60
MCR470·70
MCR470-80
MCR470·90
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T6200530040N
T62oo630040N
T6200730040N
T6200830040N
T62oo930040N
543
543
543
543
543
MCR3918-1
MCR3918-2
MCR3918-3
MCR3918-4
MCR3918-5
5
5
5,
5
5
MOT
MOT
MOT
MOT
MOT
T4OO001608
T4OO001608
1400011608
T4OO021608
T4ooo31608
513
'513
513
513
513
MP013R8M
MR681
MR860
MR860R
MR861R
A
R
R
R
R
WE5
MOT
MbT
MOT
MOT
MBI2A25V60
IN3910
IN3909
IN3909R
IN3910R
A3
R57
R57
A57
R57
MCR470·1oo
MCR470·110
MCR470·120
MCR470·130
MCR470·140
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T6201030040N
T6201130040N
T6201230040N
T6201330040N
T6201430040N
543
543
543
543
543
MCR3918-6
MCR3918-7
MCR3918·8
MCR3935·2
MCR3935·3
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T4OO041608
T400051608
T400061608
T4OO002208
T400012208
513
513
513
513
513
MR862
MR862R
MR864
MR864R
MR866
R
R
R
R
R
MOT
MOT
MOT
~OT
MOT
IN3911
IN3911R
IN3913
IN3913R
R4020630
R57
R67
R57,
MCR470·150
MCR470C-l0
MCR470C-20
MCR470C·30
MCR470C-4O
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T6201530040N
T6270125640N
T6270225640N
T6270325640N
T6270425640N
543
587
587
587
587
MCR3935·4
MCR3935·5
MCR3935-6
MCR3935-7
MCR3935·8
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
1"400022208
T4OOO32208
T400042208
T4OOO62208
T4OO082208
513
513
513
S13
513
MR866R
MR1120
MR1120R
MR1121
MR1121R
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
R4030630
IN1199A
IN1199AR
IN1200A
IN1200AR
R67
:R13
R13
R13'
R13
MCR470C·60
MCR470C·60
MCR470C·70
MCR470C·80
MCR4700·10
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T6270525640N
T6270625640N
T6270725640N
T6270825640N
T6270125540N
587
587
587
587
587
MOA922·2
MOA922-3
MOA922-4
MOA922-5
MOA922·6
A
A
A
A
A
MOT
MOT
MOT
MOT
MOT
MBllA02V06
MBllA03Vl0
MBllA02V20
MBllA02V30
MBllA02V40
A3
A3
A3
A3
A3
MR1122
MR1122R
MR1124
MRl124R
MR1126
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
IN1202A
IN1202AR
IN1204A
IN1204AR
IN1206A
R13
R13
R13
R13
R13
MCR4700·20
MCR4700·30
MCR4700·4O
MCR470E-l0
MCR470E-20
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T6270225540N
T6270325540N
T6270425540N
T6270125440N
T6270225440N
587
587
587
587
587
MOA922-7
MOA922·B
MOA922·9
MOA952·1
MOA952·2
A
A
A
A
A
MOT
MOT
MOT
MOT
MOT
MBllA02V60
MBllA02V80
MBllA02Wl0
MBllA06V05
MBllA06Vl0
A3
A3
A3
A3
A3
MRl126R
MRl128
MR1130
MR12105B
MR12105L
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
IN1206AR
IN3671A
IN3673A
CF
CF
R13
R13
RIS
CF
CF
MCR470E·30
MCR470E·4O
MCR470E-50
MCR470E-60
MCR470E-70
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T6270325440N
T6270425440N
T6270525440N
T6270625440N
T6270725440N
587
587
587
587
587
MOA952·3
MOA952·4
MOA952·5
MOA980·1
MOA980-2
A
A
A
A
A
MOT
MOT
MOT
MOT
MOT
MBllA06V20
M811A06V30
M811A06V4O
MB12Al0V05
MB12Al0Vl0
A3
A3
A3
A3
'A3
MR12105LR
MR12115B
MR12115BR
MR12115L
MR12115LR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
CF
CF'
CF
CF
CF
CF
MCR470E-80
MCR470E-90
MCR470E·l00
MCR470E·l10
MCR470E·120
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T6270825440N
T6270925440N
T6271025440N
T6271125440N
T6271225440N
587
587
587
587
587
MOA980·3
MOA980-4
MOA980-5
MOA980·6
MOA990-1
A
A
A
A
A
MOT
MOT
MOT
MOT
MOT
MB12Al0V20
MB12Al0V30
MBI2Al0V40
MB12Al0V60
MB12A25V05
A3
A3
A3
A3
A3
MR12125B
MR121258R
MR12125L
MR12125LR
MR12135B
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
MCR550C-l0
MCR550C-20
MCR550C-30
MCR550C·4O
MCR550C·50
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T7271040640N
T6270240640N
T7270340640N
T7270440640N
T7270540640N
591
591
591
591
591
MOA990·2
MOA990·3
MOA990-4
MOA990-5
MOA990-6
A
A
A
A
A
MOT
MOT
MOT
MOT
MOT
MB12A25Vl0
MB12A25V20
MB12A251130
MB12A25V4O
MB12A25V60
A3
A3
A3
A3
A3
MR12135BR
MR12135L
MR1213SLR
MR12145B
MR12145BR
R • MOT CF
R MOT CF
R MOT CF
R MOT CF
R MOT CF
CF
CF
CF',
CF
MCR550C-60
MCR550C-70
MCR550C-80
MCR550C·90
MCR550C-l00
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T7270640640N
T7270740640N
T7270840640N
T7270935540N
T7271036640N
591
591
591
591
591
MP010ABA
MP010ABB
MP010A80
MP010ABF
MP010ABH
A
A
A
A
A
WE5
WE5
WE5
WE5
WES
MBllA02V05
MBllA02Vl0
MBllA02V20
MBllA02V30
MB11A02V40
A3
A3
A3
A3
A3
MR12145L
MR12145LR
MR1215SB
MR12155BR
MR12155L
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
MCR5500:,0
MCR5500·20
MCR5500·30
MCR5500·40
MCR6500·50
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T7270140540N
T7270240540N
T7270340540N
T7270440540N
T7270540540N
591
591
591
591
591
MP010ABK
MP010ABM
MP010ABP
MP010AB5
MP010ABV
A
A
A
A
A
WE5
WE5
WE5
WES
WE5
MBllA02V60
MBllA02V60
MBllA02V80
MBllA02V80
MBllA02Wl0
A3
A3
A3
,MR12155LR
MR12165B
MR12165BR
MR12165L
MR12165LR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
CF
CF
CF
CF
"CF
CF
MCR5500·60
MCR5500-70
MCR550D-80
MCR5500·90
MCR5500·100
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
T7270640540N
T7270740540N
T727084054DN
T7270935540N
T727103554!lN
591
591
591
591
591
MP010ABZ
MP011BBA
MPOllBBB
MPOllBBO
MPOllBBF
A
A
A
A
A
WE5
WE5
WES
WE5
WE5
MB11A02Wl0
MBllA02V05
MB11A02Vl0
MBllA02V20
MBllA02V30
A3
A3
A3
A3
A3
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
MCR3BOC-80
MCR3BOC·90
MCR3BOC·loo
MCR38oo-10
MCR3800-20
S
S
5
5
5
MOT
MOT
'MOT
MOT
MOT
MCR3BOO-30
MCR3800-4O
MCR3800-4O
MCR3800-60
MCR3800·70
5
5
5
5
5
MOT
MOT
MOT
MOT
MOT
MCR3800·80
MCR3800-90
MCR3BOO·loo
MCR3800·110
MCR3800·120
5
5
5
5
5
MCR4200-50
MCR4200·60
MCR4200·70
MCR4200·80
MCR4200·90
T6270826640N
T6270826640N
T6271025640N
T6270125540N
T6270225540N
S87
587
587
587
587
AS
AS
Note: Manufacturer'5 Codes, Product Type Notes and@ Replacement Notes are listed on page G3
G l..t
Type Mfgr.
MRI2175B
MR12175BR
MR12175L
MRI12175LR
MR12185B
~~~
tF
Part Number
Type Mfgr.
Sugge.ted@
Replacement
Pege
Part Number
Type Mfgr.
Suggested@
Replacement
Page
Part Number
Type Mfgr.
Sugg_@
Replacement P -
MR1218S8R
MR1218SL
MR1218SLR
MR1219SB
MA1219SBR
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
MR1231SL
MR1231SLR
MR1232FB
MR1232FBR
MR1232FL
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
MR1245FLR
MR1245SB
MR1245SBR
MR1245SL
MR1245SLR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
R7ooo304
R7010304
CF
CF
CF
R35
R35
CF
CF
MR1219SL
MR1319SLR
MR1220FB
MR1220FB
MR1220FBR
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
MR1232FLR
MR1232SB
MR1232SBR
MR1232SL
MR1232SLR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
R610+130
R611+130
CF
CF
CF
R31
R31
CF
CF
MRi247FB
MR1248FBR
MR1247FL .
MR1247FLR
MR1247SB
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
R7000404
CF
CF
CF
CF
R35
MR1220FL
MR1220FLR
MR1220SB
MR1220SBR
MR1220SL
MOT
MOT
MOT
MOT
MOT
CF
CF
R610oo20
R611oo20
CF
CF
CF
R31
R31
CF
MR1233FB
MR1233FBR
MR1233FL
MR1233FLR
MR1233SB
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
R6100230
CF
CF
CF
CF
R31
MR1247SBR
MR1247SL
MR1247SLR
MR1248FB
MR1811SBR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
R7010404
CF
CF
CF
CF
R35
CF
CF
CF
CF
MR1220SLR
MR1221FB
MR1221FBR
MR1221FL
MR1221FlR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
MR1233SBR
MR1233SL
MR1233SLR
MR1235FB
MR1236FBR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
R6110230
CF
CF
CF
CF
R31
CF
CF
CF
CF
MR1248FL
MR1248FLR
MR124BSB
MR1248SBR
MR1248SL
R
R
R
R
R
MOT CF
MOT CF
MOT R7ooo504
MOT R7010504
6MOTCF
CF
CF
R35
R35
CF
MR1221SB
MR1221SBR
MR1221SL
MR1221SLR
MR1222F8
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
R6100120
R6110120
CF
CF
CF
R31
R31
CF
CF
CF
MR1235FL
MR1235FLR
MR1235SB
MR1235SBR
MR1235SL
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
R6100330
R6110330
CF
CF
CF
R31
R31
CF
MR1248SLR
MR1249FB
MR1249FBR
MR1249FL
MR1249FLR
R
R
R
R
R
6MOTCF
6MOTCF
MOT CF
MOT CF
MOT CF
CF
CF
CF
CF
CF
1IIIR1222FBR
MR1222FL
MR1222FLR
MR1222SB
MR1222SBR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
R610+120
R611+120
CF
CF
CF
R31
R31
MR1235SLR
MR1237FB
MR1237FBR
MR1237FL
MR1237FLR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
MR1249SB
MR1249SBR
MR1249SL
MR1249SLR
MR1260FL
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
R7000604
R7010604
CF
CF
CF
R35
R35
CF
CF
CF
MR1222SL
MR1222SLR
MR1223FB
MR1223FBR
MR1223FL
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
MR1237SB
MR1237SBR
MR1237SL
MR1237SLR
MR1238FB
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
R6100430
R6110430
CF
CF
CF
R31
R31
CF
CF
CF
MR1260FLR
MR1261FL
MR1261FLR
MR1262FL
MR1262FLR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
MR1223FLR
MR1223SB
MR1223SBR
MR1223SL
MR1223SLR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
R6100220
R6110220
CF
CF
Cf.
R31
R31
CF
CF
MR1238FBR
MR1238FL
MR1238FLR
MR1238SB
MR1238SBR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
R6100530
R6110530
CF
CF
CF
R31
R31
MR1263FL
MR1263FLR
MR1265FL
MR1265FLR
MR1267FL
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
MR1225FB
MR1225FBR
MR1225FL
MR1225FLR
MR1225SB
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
R6100320
CF
CF
CF
CF
R31
MR1238SL
MR1238SLR
MR1239F8
MR1239FBR
MR1239FL
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
MR1267FLR
MR1268FL
MR1268FLR
MR1269FL
MR1269FLR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
MR1225SBR
MR1225SL
MR1225SLR
MR1227FBR
MA1227FL
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
R6110320
CF
CF
CF
CF
R31
CF
CF
CF
CF
MR1239FLR
MR1239SB
MR1239SBR
MR1239SL
MR1239SLR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
R6100630
R6110630
CF
CF
CF
R31
R31
CF
CF
MRf810SB
MR1810S8R
MR1810SL
MR1810SLR
MR1811SB
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
R510oo10
R5110010
CF
CF
R5100110
R23
R23
CF
CF
R23
MR1227FLR
MR1227SB
MRt227S8R
MR1227SL
MR1227SLR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
R6100420
R6110420
CF
CF
CF
R31
R31
CF
CF
MR1240FB
MR1240FBR
MR1240FL
MR1240FLR
MR1240SB
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
R7ooOOO4
CF
CF
CF
CF
R35
MR1811SBR
MR1811SL
MR1811SLR
MR1812SB
MR1812SBR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
R5110110
CF
CF
R510+110
R511+110
R23
CF
CF
R23
R23
MR1228FB
MR1228FBR
MR1228FL
MR1228FLR
MR1228S8
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
R6100520
CF
CF
CF
CF
R31
MR1240SBR
MR1240SL
MR1240SLR
MR1241FB
MR1241FBR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
R701ooo4
CF
CF
CF
CF
R35
CF
CF
CF
CF
MR1812SL
MR1812SLR
MR1813SB
MR1813SBR
MR1813SL
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
R5100210
R5110210
CF
CF
CF
R23
R23
CF
MR1228S8R
MR1228SL
MR1228SLR
MR1229FB
MR1229FBR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
R6110520
CF
CF
CF
CF
R31
CF
CF
CF
CF
MR1241FL
MR1241FLR
MR1241SB
MR1241SBR
MR1241SL
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
R7oo0104
R7010104
CF
CF
CF
R35
~~5
MR1813SLR
MR1814SB
MR1814S8R
MR1814SL
MR1814SLR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
R510+210
R51 I +210
CF
CF
CF
R23
R23
CF
CF
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
MR1815S8
MR1815SBR
MR1815SL
MR1815SLR
MR1816SB
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
R5100310
R5110310
CF
CF
R510+310
R23
R23
CF
CF
R23
MR1229FL
MR1229FLR
MR1229SB
MR1229SBR
MR1229SL
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
R6100620
R6110620
CF
CF
CF
R31
R31
CF
MR1241SLR
MR1242FB
MR1242FBR
MR1242FL
MR1242FLR
MR1229SLR
MR1230FB
MR1230FBR
MR1230F8R
MR1230FL
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
MR1242S8
MR1242SBR
MR1242SL
MR1242SLR
MR1243FB
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
R7oo+104
R701+104
CF
CF
CF
R35
R35
CF
CF
CF
MR1816SBR
MR1816SL
MR1816SLR
MR1817SB
MR1817S8R
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
R511+310
CF
CF
R5100410
R5)10410
R23
CF
CF
R23R23
MR1230SB
MR1230SBR
MR1230SL
MR1230SLR
MR1231FB
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
R61ooo30
R6110030
CF
CF
CF
R31
R31
CF
CF
CF
MR1243FBR
MR1243FL
MR1243FLR
MR1243SB
MR1243SBR
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
R7oo0204
R7010204
CF
CF
CF
R35
R35
MR1817SL
MR1817SLB
MR1818S8
MR1818SBR
MR1818SL
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
R5100510
R5110510
CF
CF
CF
R23
R23
CF
CF
CF'
CF
R31
R31
MR1243SL
MR1243SLR
MR1245FB '
MR1245FBR
MR1245FL
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
MR1818SLR
MR1819SB
MR181SSBR
MR181SSL
MR1819SLR
R
R
R
R
MOT
MOT
MOT
MOT
MOT
CF
R51oo610
R5110610
CF
CF
CF
R23
R23
CF
CF
MR1231FBR
MR1231FL .
MR1231FLR
MR1231SB
MR1231SBR
R
MOT CF
. R .' MOT 'CF' .,
R
MOT CF
R
MOT R6100130
R
MOT R6110130
R
Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are listed on page G3
R
G15
5uggested@
Part Number
~=~~?
R
R
R
R
R
MOT
MOT
MOT
MOT
MOT
N5082A
N50828
N5082C
N50820
N5082E
R
R
R
R
R
N5082F
N5082G
N5082H
NK511-3
NL36N
R
?
Replacement
R3400006
R3400106
R3400206
Page
Part Number
Type Mfg •.
5uggested@
Replacement
Page
Suggested
Part Number
Type Mfgr.
@
Replacement
Page
R3400606
R9
R9
R9
R9
R9
NL-C50G
NL-C50H
Nl-C50M
NL-C50N
NL-C505
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T510028OO7AO
T510038007AO
T510068007AO
T500088007AO
T5OOO78007AO
527
527
527
523
523
NL·C154A
NL-C1548
NL-C154C
NL-C1540
NL-C154E
S
5
5
5
5
NAT
NAT
NAT
NAT
NAT
WE5
WE5
WE5
WE5
WE5
N5082A
N50828
N5082C
N50820
N5082E
CF
CF
CF
CF
CF
NL-C50T
NL-C52A
NL-C52S
NL-C52C
NL-C52D
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T5OOO98007AO 523
T51 001 8007A8 527
T510028007AB 527
T510038007A8 527
T510048007AB 527
NL·C154M
NL-C156A
NL-C1568
NL-C156C
NL-C1560
5
S
S
5
S
NAT T507068083AO
NA r T507018083AA
NAT T507028083AA
NAT T610011302BT
NAT T507048083AA
R
R
5
5
WE5
WE5
WE5
NAT
NAT
N5082F
N5082G
N5082H
T4OO082008
T400082008
CF
CF
CF
513
513
NL-C52E
NLC52G
NL-C52H
NL-C52N
NL-C525
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T510058007A8 527
T51 0028007AB 527
T510038007AB 527
T500088007AA 523
T500078007AA 523
NL-C156E
NL-C156M
NL-C157A
NL-C157S
NL-C157C
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T507058083AA 577
T507068083AA 577
T507018063AA 577
T507028063AA 577
T507038063AA 577
NLC365
NL511-4
NL511-S
NL570A
NL5708
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T400072008
T400102008
T400121008
CF
CF
513
513
513
CF
CF
NL-C52T
NL-C55A
NL-C55B
NL-C55C
NL-C550
S
5
5
5
NAT
NAT
NAT
NAT
NAT
T5OOO98007 AA
T507018067 AO
T507028067AO
T507038067AO
T507048067AO
523
577
577
577
577
NL-C1570
NL-C157E
NL-C157M
NL-C178A
NL-C1788
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T507048063AA
T507058063AA
T507068063AA
T610011302BT
T610011302BT
577
577
577
533
533
NL570C
NL5700
NL570E
NL570M
NLC35A
5
5
5
5
5
NAT CF
NAT CF
NAT CF
NAT CF
NAT T4ooo12208
CF
CF
CF
CF
513
NL-C55E
NL-C55G
NL-C55H
NL-C55M
NL-C56A
NAT
NAT
NAT
NAT
NAT
T507058067AO
T507028067AO
T507038067 AO
T507068067AO
T507018067AA
577
577
577
577
577
NL-C178C
NL-C178D
NL-C178E
NL-C178M
NL-C178N
5
5
5
5
S
NAT
NAT
NAT
NAT
NAT
T610031302BT
T610041302BT
T610051302BT
T610061302BT
T6ooo813028T
533
533
533
533
533
NLC35B
NLC35C
NLC350
NLC35E
NLC35F
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T400022208
T4OO032208
T400042208
T400052208
T400002208
513
513
513
513
513
NL-C56B
NL-C56C
NL-C56D
NL-C56E
NL-C56G
NAT
NAT
NAT
NAT
NAT
TS07028067AA
T507038067AA
T507048067AA
T507058067AA
T507028067Aa
577
577
577
577
577
NL-C178P
NL-C178PA
NL-C178P8
NL-C1785
NL-C178T
S
5
5
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T600101302BT
T6001113028T
T600121302BT
T600071302BT
T6000913028T
533
533
533
533
533
NLC35M
NLC35N
NLC35P
NLC35T
NLC3SA
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T400062208
T400082208
T400072208
T400092208
T4ooo12008
513
513
513
513
513
NL-C5SH
NL-C5SM
NL-CSOA
NL-C60S
Nt-C60C
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T507038067AA
T507068067AA
T515018007AO
T515028OO7AO
T515038007AO
577
577
CF
CF
CF
NL-CIBOA
NL-C1808
NL-C180C
NL-CIBOD
NLC180E
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T6100115048T
T610021504BT
T610031504BT
T610041504BT
T610051504BT
533
533
533
533
533
NLC3SB
NLC3SC
NLC360
NLC36E
NLC36F
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T4OOO22008
T400032008
T400042008
T4OO052008
T400001008
513
513
513
513
513
NL-C60D
NL-C6DE
NL-C6DG
NL-C60H
NL-CSOI
5
5
NAT
NAT
NAT
NAT
NAT
151 5048007 AO
T5 I 5058007 AQ
T515028007AO
T515038007AO
CF
CF
CF
CF
CF
CF
NL-C180M
. NL-CIBON
NL-CIBOP
NL-CIBOPA
NL-C180PB
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T6100615048T
T6ooo815048T
T600101504BT
T60011 15048T
T8OO1215049T
533
533
533
533
533
NLC36M
NLC36N
NLC365
NLC37A
NLC37B
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T400062008
T400082008
T400072008
T4ooo11608
T400021608
513
S13
513
513
513
NL-C62A
NL-C62B
NL-C62C
NL-CS2D
NL-CS2E
5
5
S
5
5
NAT
NAT
NAT
NAT
NAT
T515018007A8
T5 I 5028007 AB
T515038007AB
T515048007 AB
T515058007AB
CF
CF
CF
CF
CF
NL-CIBOPC
NL-C1805
NL-C180T
NL-C181A
NL-C1818
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T6001315048T
T600071504BT
T600091504BT
T6100115029T
T6100215028T
533
533
533
533
533
NLC37C
NLC370
NLC37E
NLC37F
NLC37M
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T400031608
T400041608
T4OO051S08
T400001608
T400061608
513
513
513
513
513
NL-C62G
NL-C62H
NLC137E
NLC137M
NLC137N
S
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T515028007A8
T515038007A8
T400062208
T400062208
T4oooB2208
CF
CF'
513
513
513
NL-C181C
NL-C181D
NL-C181E
NL-C181M
NL-C181N
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T6100315028T
T61004150281
T610051502BT
T6100615028T
T6ooo815028T
533
533
533
533
533
NLC37N
NLC375
NLC38A
NLC38B
NLC38C
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T4ooo81608
T400071608
CF
CF
CF
513
513
CF
CF
CF
NLC137P
NLC137PB
NLC1375
NLC137T
NL-Cl50E
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T400102208
T400122208
T400072208
T400092208
T510058004AO
513
513
513
513
527
NL-C181P
NL-C1815
NL-C181T
NL-C185A
NL-C1858
5
S
5
5
5
NAT
NAT
NAT
NAT
NAT
T600101502BT 533
T6000715028T $33
T600091502BT 533
T607011564BT 579
T607021564BT 579
NLC380
NLC38E
NLC38M
NL-C45A
NL-C458
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
CF
CF
CF
T510015007AB
T510025007AB
CF
CF
CF
527
527
NL-C150M
NL-C150N
NL-0150P
NL-Cl50PA
NL-C150P8
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T510068004AO
T500088004AO
T500108OO4AO
T500118004AO
T500128004AO
527
523
523
523
523
NL-C185C
NL-V286F
NL-C185E
NL-C185M
NL-C2BOA
S
S
S
S
NAT
NAT
NAT
NAT
NAT
T6070315648T
T6070415648T
T607051564BT
T60706 I 5548T
T700013004BY
579
579
579
579
537
NL-C45C
NL-C450
NL-C45E
NL-C45G
NL-C45H
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T510035007A8
T510045007AB
T510055007AB
T510025007AB
T510035007AB
527
527
527
527
527
NL-C150PC
NL-C1505
NL-C150T
NL-C151 E
NL-C151M
5
5
5
NAT
NAT
NAT
NAT
NAT
T500 138004AO
T5OO078004AO
T500098004AQ
T507058034AQ
T507068034AO
523
523
523
577
577
NL-C2908
NL-C2BOC
NL-C2900
NL-C290E
NL-C290M
S
5
S
5
S
NAT
NAT
NAT
NAT
NAT
T7oo0230048Y
T7ooo33004BY
T7ooo43004BY
T7OOO530048Y
T7OO0630048Y
537
537
537
537
537
NL-C45M
NL-C45N
NL-C455
NL-C45T
NL-C46A
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T51 0065007 AB 527
T5OOO84007AA 523
T5OOO7 4007AA 523
T5OOO94OO7 AA 523
T510015007AO 527
NL-C151N
NL-C151 P
NL-C1515
NL-C151T
NL-C1520
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T507088034AQ 577
T507108034AO 577
T507078034AO 577
T507098034AO 577
T510048004AB 527
NL-C290N
NL-C290P
NL-C290PA
NL-C290P8
NLC290S
5
S
5
S
5
NAT
NAT
NAT
NAT
NAT
T7ooo83004BY
T700103004BY
T700113004BY
T7001230049Y
T7ooo73004BY
537
537
537
537
537
NL-C468
NL-C46C
NL-C460
NL-C46E
NL-C46G
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T510026007AO
T510035007AO
T510045007AO
T510055007AO
T510025007AO
527
527
527
527
527
NL-C152E
NL-C152M
NL-C152N
NL-C152P
NL-C152PA
5
5
5
5
5
NATT510058004AB
NAT T510068004A8
NAT T500088OQ4AA
NAT T500108004AA
NAT T5OO118004AA
NL-C290T
NL-C291A
NL-C2918
NL-C291C
NL-C2910
5
5
S
S
NAT
NAT
NAT
NAT
NAT
T700093004BY
T7800135048Y
T780023504BY
T7800335049Y
T7800435049Y
537
575
575
575
575
NL-C46H
NL-C46M
NL-C46N
NL-C465
NL-C4ST
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T510035007AO
T510065007AO
T5OOO84007AO
T5OOO74007AO
T5OOO94007AO
527
527
523
523
523
NL-C152P8
NL-C152PC
NL-C1525
NI.-C152T
NL-C153E
5
5
S
NAT
NAT
NAT
NAT
NAT
T5OO128004AA 523
T500138004AA 523
T500078004AA 523
T5OO098004AA 523
T5070G8034AA 577
NL-C291E
NL-C291M
NL-C291N
NL-C291 P
NL-C291PA
S
NAT
NAT
NAT
NAT
NAT
T7800535048Y
T780063504BY
T780083504BY
T780103504BY
T780113504BY
575
575
575
575
575
NL-C50A
NL-C508
NL-C50C
NL-C500
NL-C50E
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T510018007AO
T510028007AO
T51 0038007 AO
T51 0048007AO
T510058007AO
527
527
527
527
527
NL-C153M
NL-C153N
NL-C153P
NL-C1535
NL-C153T
5
5
5
8
NAT
NAT
NAT
NAT
NAT
T507068034AA
T507088034AA
T507108034AA
T507078034AA
T507098034AA
NL-C291P8
NL-C2915
NL-C291T
NL-C295A
NL-C2958
NAT
NAT
NAT
NAT
NAT
T780123504BY
T780073504BY
T780093504BY
T707013364BY
T707023364BY
575
575
575
581
581
MR752
MR754
MR756
G16
Type Mfgr.
R3~00406
S
5
5
5
S
S
5
S
5
5
5
5
~
S
5
5
527
527
523
523
523
577
577
577
577
577
Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on page G3
S
S
S
5
S
S
5
5
5
5
S
T507018083AQ 577
T507028083AQ 577
T507038083AO 577
T507048083AO 877
T507058083AO 577
577
577
577
577
577
Part Number
Type Mfgr.
5uggested@
Replacement
Page
Part Number
Type Mfgr.
SUggested@
Replacement
Page
Part Number
Type Mfgr.
5uggested@
Replacement Page
Nl-C296C
Nl-C2950
Nl-C296E
Nl-C296M
5
5
5
5
NAT T707033364BY
NAT T707043364BY
NAT T707053364BY
NAT T707063364BY
581
581
581
581
Nl·C16805
Nl·C158o:r
NL·FI60B
Nl·FI50C
Nl·F1600
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T72oo745040N
T72oo945040N
T51oo28004AO
T51OO38004AO
T510048OO4AO
551
551
527
527
527
Nl·F1BOE
Nl·F1BOM
Nl·F1BON
Nl·F1BOP
Nl·FI905
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T6000515048T
T80006 I 504BT
T600081504BT
T600101504BT
T6ooo71504BT
533
533
533
533
533
Nl-C297A
Nl-C2978
Nl-C297C
Nl-C2970
Nl-C297E
5
5
5
5
5
NAT
NAT
iliAT
NAT
NAT
T787013064BY
T787023064BY
T787033064BY
T787043064BY
T787053064BY
CF
CF
CF
CF
CF
NL·FI50E
Nl·FI50M
Nl·F150N
Nl-FI50P
Nl·F1505
5
NAT
5
NAT
5
NAT
5
NAT
5' . NAT
T61oo58004AO
T510068OO4AO
T500088004AO
T5OO108OO4AO
T5OOO78004AO
527
527
523
523
523
Nl·F18,OT
Nl·F1B5A
Nl·FI85B
Nl·F185C
Nl·F1850
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T6000915048T
T607011 564BT
T607021564BT
T6070315648T
T60704 I 564BT
533
579
579
579
579
Nl-C297M
Nl-C35OA
Nl-C360B
Nl-C36DC
Nl-C3600
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T7870630648Y
T52oo113040N
T6200213040N
T5200313040N
T5200413040N
CF
541
541
541
541
Nl·FI50T
Nl·F1518
Nl·FI51C
Nl·F1510
Nl·FI51E
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T500098OO4AO
T507028034AO
T507038034AO
T507048034AO
T607058034AO
523
577
577
577
577
Nl·F185E
Nl·F185M
Nl·F290A
Nl·2OOB
Nl·F2OOC
5
S
5
5
S
NAT
NAT
NAT
NAT
NAT
TB07051564BT
T607061564BT
T7000130048T
T7ooo23004BY
T7ooo33004BY
579
579
537
537
537
Nl·C360E
Nl·C360M
Nl·C360N
Nl·C350P
Nl'C360PA
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T5200613040N
T5200613040N
T6200613040N
T5101013040N
T5201113040N
541
541
541
541
541
Nl·FI51M
Nl·FI51N
Nl·F151P
Nl·F1515
Nl·F15tT
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T50706B034AO
T607088034AO
T50710B0341<0
T507078034AO
T50709B034AO
577
577
577
577
577
Nl·F2OO0
NL·F2OOE
Nl·F290M
Nl·F290N
Nl·F2OOP
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T700043004BY
T700053OO4BY
T7ooo63004BY
T7ooo83004BY
T7oo103004BY
537
537
537
537
537
Nl·C360PB
Nl·C360PC
Nl·C3505
Nl·C360T
Nl·C354A
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T5201213040N'
T5201313040N
T52oo713040N
T5200913040N
T5270113840N
541
541
541
541
583
Nl·F1528
Nl·FI52C
Nl·FI52E
Nl·FI52M
Nl·FI52N
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T51oo28004A8
T510038004AB
T51oo58OO4AB
T51006BOO4AB
T50008BOO4AA
527
527
527
527
523
Nl·F2905
Nl·F290T
Nl·F291A
Nl·F291S
Nl·F291C
5
5
S
5
5
NAT
NAT
NAT
NAT
NAT
T7ooo73004BY
T7OO0930048Y
T78oo13504BY
T780023504BY
T7800335048Y
537
537
575
575
575
Nl'C3648
Nl·C364C
Nl-C3640
Nl·C354E
Nl·C364M
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T5270213840N
T6270313840N
T5270413840N
T5270513840N
T5270613840N
583
583
583
583
583
Nl·FI52P
Nl·F1525
Nl·FI52T
Nl·F1538
Nl·F163C
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T500l08OO4""
TS0007BOO4AA
T5OOO98004""
T50702B034""
T6070380341<A
523
523
523
577
577
Nl·F2910
Nl·F291E
Nl·F291M
Nl·F291N
Nl·F291P
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T7800435048Y
T780053504BY
T780063504BY
T7B00835048Y
T7B0103504BY
575
575
575
575
575
Nl·C365A
Nl·ca66B
Nl'C355C
Nl·C3660
Nl·C365E
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T5270113640N
T5270213640N
T5270313640N
T5270413640N
T5270513640N
S83
583
583
583
583
Nl·F1530
Nl-F153E
Nl·FI53M
Nl·F153N
Nl·FI63P
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T50704B034"" 577
T50705B034"" 577
T50706B034"" 577
T50708B034"" 577
T60710B034"" 577
Nl·F2915
Nl·F29tT
Nl-F295A
Nl·F295B
Nl-F295C
5
5
5
S
5
NAT
NAT
NAT
NAT
NAT
T780073504BY
T780093504BY
T707013364BY
T707023364BY
T707033364BY
575
575
581
581
581
Nl-C356M
Nl·C390A
Nl·C3BOB
Nl·C3BOC
Nl·C3BOO
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T5270613640N
T62oo130040N
T62oo230040N
T6200330040N
T6200430040N
583
543
543
543
543
Nl·F1535
Nl·FI53T
Nl·FI54A
Nl·F154B
Nl·FI54C
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T507079034""
T507098034""
T507019084AO
T607028084AO
T50703B084AO
577
577
577
577
571
Nl·F2950
Nl·F295E
Nl·F295M
Nl·F297A
Nl·F297B
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T707043364BY
T7070533648Y
T707063364BY
T787013064BY
T787023064BY
581
581
581
CF
CF
Nl·C3BOE
Nl·C3BOM
Nl·C3BON
Nl·C390P
Nl·C3BOPA
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T62oo530040N
T6200630040N
T6I200830040N
T620103OO40N
T6201130040N
543
543
543
543
543
Nl·F1540
Nl·F154E
Nl·FI54M
.Nl·FI55A
Nl·FI55B
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T507048084AO
T50705B084AO
T507068084AO
T507018064AO
T607028064AO
577
577
577
577
577
Nl·F297C
Nl-F2970
Nl·F297E
Nl·F297M
Nl·F350A
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
na7033064BY
T787043064BY
T787053064BY
T787063064BY
T52oo113040N
CF
CF
CF
CF
541
Nl·C390PB
Nl·C390PC
Nl·C3B05
Nl·C3BOT
Nl·C385A
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T620123OO40N
T6201330040N
T6200730040N
T620093OO40N
T6270130640N
543
543
543
543
587
Nl·FI55C
Nl·F1650
Nl·FI55E
Nl·FI55M
Nl·FI5BA
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T507038064AO
T50704B064AO
T507058064AO
T50706B064AO
T607018084""
577
577
577
577
577
Nl·F350B
Nl·F350C
Nl-F3500
Nl·F350E
Nl·F350M
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T52oo213040N
T5200313040N
T5200413040N
T5200513040N
T52oo6 I 3040N
541
541
541
541
541
Nl·C386B
Nl·C385C
Nl·C3850
Nl·C385E
Nl·C385M
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T6270230640N
T6270330640N
T6270430640N
T6270530640N
T6270630640N
587
587
587
587
587
Nl·FI56B
Nl·FI56C
Nl·F1560
Nl·FI56E
Nl·FI56M
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T507028084""
T507038084""
T507048064""
T507059084""
T507068084AA
577
577
577
577
577
Nl·F350N
Nl·F360P
Nl·F3505
Nl-F360T
Nl·F354A
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T52oo813040N
T5201013040N
T52oo7 I 3040N
T5200913040N
T5270113640N
541
541
54 I
541
583
Nl·C601A
Nl·C601B
Nl·C501C
Nl'C6010
Nl·C501E
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T72oo155040N
T72oo255040N
T72oo355040N
T7200455040N
T7200555040N
551
551
551
551
551
Nl·FI57A
Nl·FI57B
Nl·FI57C
Nl·F1570
Nl·FI57E
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T507018064""
T507028064AA
T507039064""
T507049064""
T507058064""
577
577
577
577
577
Nl·F354B
Nl·F354C
Nl·F3640
Nl·F354E
Nl·F364M
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T5270213840N
T5270313840N
T5270413840N
T5270513840N
T5270613840N
583
583
583
583
583
Nl·CS01M
Nl-C501N
Nl·CS01P
Nl·C501PA
Nl·C501PB
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T72oo655040N
T7200855040N
T7201055040N
T7201155040N
T7201255040N
551
551
551
551
551
Nl·FI57M
Nl·FI58A
Nl·FI58B
Nl·FI58C
Nl·F1580
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T507068064""
T507018044AQ
T507028044AO
T507038044AO
T507048044AO
577
577
577
577
577
Nl·F355A
Nl·F3558
Nl·F355C
Nl·F3550
Nl·F355E
5
5
5
S
5
NAT
NAT
NAT
NAT
NAT
T5270113640N
T5270213640N
T5270313640N
T5270413640N
T5270513640N
583
583
583
583
583
Nl·C501PC
NL-C601PO
Nl·C60lPE
Nl·C6015
Nl·CS01T
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T7201355040N
T7201455040N
T7201555040N
T72oo755040N
T7200955040N
551
551
551
551
551
Nl·FI58E
Nl·FI58M
Nl·FI58N
Nl·F158P
Nl·F1585
5
5
5
5
5
NAT
. NAT
NAT
NAT
NAT
T507058044AO
T507068044AO
T507088044AO
T507 I 08044AO
T507078044AO
577
577
577
577
577
Nl·F355M
Nl·F355N
Nl·F355P
Nl·F3555
Nl·F355T
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T5270613640N
T5270813640N
T5271013640N
T5270713640N
T5270913640N
583
583
583
583
583
Nl·CI5BOA
NL·CI5BOB
Nl-C1580C
Nl·CI5Boo
Nl-CI5BOE
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T72oo145040N
T72oo245040N
T72oo345040N
T7200445040N
T7200545040N
551
551
551
551
551
Nl·FI58T
Nl·F159A
Nl·FI59B
Nl·FI59C
Nl·F1590
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
TS07098044AO
T507018044""
T507028044""
T507038044""
T507048044""
577
577
577
577
577
Nl·F358A
Nl·F358B
Nl·F35BC
Nl·F3580
Nl·F358E
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T5270113440N
T5270213440N
T5270313440N
T52704 I 3440N
T52705 I 3440N
583
583
583
583
583
Nl-C1580M
Nl·CI5BON
NL·CI5BOP
NLCI590PA
Nl·CI58OPB
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T72oo645040N
T7200845040N
T7201045040N
T7201145040N
T7201245040N
551
551
551
551
551
Nl·FI59E
Nl·FI59M
Nl-FI59N
Nl-FI59P
Nl·F1595
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T50705B044"" 577
T507068044"" 577
T507088044"" 577
T507108044"" 577
T507078044"" 577
Nl·F358M
Nl·F358N
Nl·F358P
Nl·F3585
Nl-F358T
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T5270613440N
T5270813440N
T5271013440N
T5270713440N
T5270813440N
583
583
583
583
5B3
NL·CI580PC
Nl·CI580PO
Nl·CI58OPE
Nl·CI58OPM
NL·CI580PS
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T7201345040N
T7201445040N
T7201545040N
T7201645040N
T7201745040N
551
551
551
551
551
Nl·F159T
Nl·F180A
Nl·F1BOB
Nl·FI8DC
Nl·Fl800
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T507098044""
T6ooo115048T
T6ooo21504BT
T6ooo31504BT
T60004 I 504BT
NL·F380A
Nl·F380B
Nl·F3BOC
Nl·F3BOO
Nl·F380E
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T62oo130040N
T63OO230040N
T62oo330040N
T6200430040N
T62oo530040N
543
543
543
543
543
Note: ManufBcturer's Codes, Product Type Note5 and@ Replacement Notes are listed
577
533
533
533
533
on page G3
G17
Part Number
NL-F3SOM
NL-F3SON
NL-F3SOP
NL-F3S05
NL-F38OT
A303XX06
A303XX12
A310XX03
A310XX05
A310XX06
Page
Part Number
Type Mfgr.
Suggested@
Replacement Page
R600XX25
R600XX28
A600XX30
A601XXI6
A601XX20
WE5
WE5
WES
WES
WE5
A600XX25
A600XX28
R600XX30
A601XX16
A601XX20
R31
CF
R31
CF
R31
A3205
A3210
R3215
R3220
A3225
A
A
NAT
NAT
NAT
NAT
NAT
T720066604DN
T7200B5504DN
T7200B5504DN
T720105504DN
T720115604DN
551
S51
561
561
551
R601XX24
R601XX26
R601XX28
R601XX30
R602XX20
WE5
WES
WES
WE5
WE5
R601XX24
A601XX25
A601XX28
A601XX30
A602XX20
CF
A31
CF
A31
R63
1'13230
1'13240
1'13245
R3250
1'13260
A
A
NAT
NAT
NAT
NAT
NAT
T720126604DN
T720135504DN
T720075504DN
T720095504DN
T727014B73DN
551
551
551
S51
591
R602XX25
R603XX20
R603XX25
R610XX16
R610XX20
WE5
WE5
WES
WES
WES
A602XX25
R603XX20
A603XX25
R610XX16
R610XX20
A63
A63
A63
CF
A31
R3270
1'13280
1'13290
R3405
R3410
5
5
NAT
NAT
NAT
NAT
NAT
T727024B73DN
T727034873DN
T727044B73DN
T727054B73DN
T727064873DN
S91
S91
591
591
S91
R610XX24
R610XX25
R610XX28
R610XX30
R611XX16
WE5
WE5
WE5
WE5
WE5
R610XX24
A610XX25
A610XX28
R610XX30
A611XX16
CF
A31
CF
A31
CF -
NL-F397PB
NL-F3975
NL-F397T
NL-F398A
NL-F398B
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T727124544DN
T727074544DN
T7270945440N
T727014554DN
T727024554DN
S91
S91
S91
591
S91
5
NAT T727014863DN
NAT T727024863DN
NAT T727034B63DN
IiIAT
NAT
R611XX20
R611XX24
A611XX25
R611XX28
R611XX30
WE5
WES
WE5
WE5
WE5
A611XX20
A611XX24
A611XX25
R611XX28
R611XX30
A31,
CF
A31
CF
A31
NL-F398C
NL-F398D
NL-F398E
NL-F398M
NL-F398N
5
~m=~~g~
591
591
S91
S91
S91
5
5
5
NAT
NAT
NAT
NAT
NAT
T7270345540N
T7270445540N
T727054554DN
T727064554DN
T727084554DN
S91
591
S91
591
S91
NAT
NAT
NAT
NAT
NAT
T727064B63ON
T727014544DN
T727024544DN
T727034544DN
T727044544DN
S91
S91
S91
S91
S91
A620XX30
R620XX40
R620XX50
A622XX35
A622XX40
WE5
WE5
WE5
WE5
WE5
A620XX30
A620XX40
R620XX50
R622XX35
R622XX40
R39
R39
A39
R67
R67
NL-F398P
NL-F398PA
NL-F398PB
NL-F3985
NL-F398T
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T727104554DN
T727114554DN
T727124554DN
T7270745540N
T727094554DN
S91
S91
591
591
S91
5
NAT
NAT
NAT
NAT
NAT
T727054544DN
T727064544DN
T727OB4544DN
T727104544DN
T727114544DN
591
S91
591
591
591
A700XX03
A700XX04
A700XX05
A701XX03
A701XX04
WE5
WE5
WE5
WE5
WE5
R700XX03
A700XX04
A700XX05
R701XX03
A701XX04
A35
R35
R35
1'135
1'135
NL-F70IE
NL-F70IM
NL-F70IN
NL-F701P
NL-F701PA
5
5
5
5
5
NAT
NAT
NAT
NAT
NAT
T9GOO512030H
T9GOOB12030H
T9G00812030H
T9G01012030H
T9G01112030H
561
S61
S61
S61
S61
A
A
WE5 A303XX06
WE5 A303XX12
WE5 A310XX03
A310XX05
WE5 A310XX06
A55
A55
CF
CF
CF
A701XX05
A720XX06
A720XXOB
R720XX12
A722XX05
WE5
WE5
WE5
WE5
WE5
R701XX05
R720XX06
R720XXOB
R720XX12
A722XX05
A35
R43
R43
1'143
R17
NL-F70IPB
NL-F70IPC
NL-F70IPO
NL-F70IPE
NL-F70IPM
5
NAT
NAT
NAT
NAT
NAT
T9G0121203DH
T9G01312030H
T9G01412030H
T9G01512030H
T9G01612030H
561
S61
561
561
561
5
NL-F397E
NL-F397M
NL-F397N
NL-F397P
NL-F397PA
Type Mfgr.
S43
S43
S43
543
543
NL-F390PB
NL-F3SOPC
NL-F3905
NL-F390T
NL-F394A
NL-F395M
NL-F397A
NL-F397B
NL-F397C
NL-F397D
Part Number
T6200B3004DN
T6200B3004DN
T620103004DN
T620073004DN
T620093004DN
5
5
5
NL-F395A
NL-F395B
NL-F395C
NL-F395D
NL-F395E
Page
NAT
NAT
NAT
NAT
NAT
5
5
5
5
5
NL-F390E
NL-F390M
NL-F390N
NL-F390P
NL-F390PA
NL-F394B
NL-F394C
NL-F394D
NL-F394E
NL-F394M
G18
Suggested@
Type Mfgr..' Replacement
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
'5
5
5
5
5
5
R
A
A
A310XX12
A310XX16
A311XX03
A311XX05
A311XX06
R
A311XX12
A311XX16
A340XX06
A402XX20
A402XX30
R
A403XX20
A403XX30
A404XX60
A404XX70
A405XX60
A
A405XX70
A410XX15
A410XXIB
A410XX20
A410XX22
A
A
A410XX25
A410XX35
R410XX40
A411XX16
A411XXIB
A
A
A411XX20
A411XX22
A411XX25
A411XX36
A411XX40
A
wes
A
A
A
A
A
R
A
A
R
R
A
5
5
5
5
5
SYN
SYN
SYN
SYN
SYN
IN1184A
IN1184A
INI186A
INI186A
INI187R
1'114
R15
R15
R15
R15
SYN
SYN
SYN
SYN
SYN
IN1187A
IN1188AR
IN1189AR
IN1189A
IN1190A
1'115
A15
R15
1'115
A15
SYN
5YN
SYN
5YN
5YN
IN3765R
IN3766A
IN3767
IN1184AA
IN1184AA
1'115
A15
A15
A15
A15
WES
WE5
WES
WES
WES
A310XX12
A310XX16
A311XX03
A311XX05
A311XX06
CF
CF
CF
CF
CF
A722XX06
R722XX08
R7SOXX03
A780XX04
A780XX06
WE5
WE5
WE5
WES
R71
R71
CF
CF
CF
NL-F7015
NL-F70IT
PA .......... .
PB .......... .
PBOS
5
5
we5
R722XX06
R722XX08
CF
CF
CF
NAT
NAT
WE5
WE5
EOI
T9GOO712030H
T9GOO912030H
PA ......... .
PB ........ ..
MB12A25V05
561
561
A37
CF
A3
WES
WES
WES
WES
WES
A311XX12
A311XX16
R340XX06
A402XX20
A402XX30
CF
CF
R9
A57
R57
R781XX03
R781XX04
R781XX05
R920XXll
A920XX16
WE5
WE5
WE5
WE5
WE5
CF
CF
CF
R920XXll
A920XX16
CF
CF
CF
R47
R47
PBIO
PB20
PB40
PB60
PC .......... .
A
A
A
A
EOI
EOI
EOI
EOI
WE5
MB12A25Vl0
MB12A25V20
MBI2A25V40
MB12A25V60
PC ........ ..
A3
A3
A3
A3
CF
WES
WES
WE5
WES
WE5
A403XX20
A403XX30
A404XX60
R404XX70
R405XX60
, R57
R57
A17
R17
R17
A920XX20
A2005
A2010
A2015
A2030
WE5
5YN
5YN
5YN
5YN
R920XX20
IN1199AR
IN1200AR
IN1202AR
IN1203AR
A47
1'113
A13
RI3
R13
PO .......... .
POO5
POlO
P020
PD40
A
A
A
A
A
WE5
EOI
EOI
EOI
EDJ
PO ........ .
MB11A02V05
MB11A02Vl0
MB11A01V20
MB11A02V40
A37
A3
A3
A3
A3 .
WES
WES
WES
WES
WE5
R405XX70
R410XX15
R410XX18
R410XX20
A410XX22
A17
CF
CF
CF
CF
R2060
A2070
R2OBO
A2090
R2100
5YN
5YN
5YN
5YN
5YN
IN1206AA
IN3670AA
IN3671AR
IN3672AA
IN367.3AA-
R13
R13
R13
P060
PjlS9-
A
A
A
MB11A02V60
MB11A02VSO
MBllA02Vl0
PE .........
MB11 A06V05
A3
A3
A3
CF
A3
WES
WE5
WE5
WE5
WE5
R410XX26
R410XX36
R410XX40
R411XX15
A411XX18
CF
CF
A15
CF
CF
A2105
R2110
R2115
A2120
R2125
5YN IN3615R
5YN
5YN
5YN
5YN
WE5
WES
WES
WES
WES
R411XX20
A411XX22
R411XX26
A411XX35
R411XX40
CF
CF
CF
CF
A16
A2130
R2140
R2150
A2160
A2170
A500XX10
A500XX15
R501XX10
A501XX15
A502XXOB
R WES
AWES
A 'WE5
AWES
R WES
ASOOXX10
A500XX16
R501XX10
R501XXI5
R502XX08
A23
A23
R23
A23
A59
A21SO
A2190
R3105
A3110
A3115
A502XX10
A503XXOB
R503XX10
A510XX10
A510XX16
AWES
R WES
AWES
R WE5
R WE5
R502XX10
R503XX08
R503XX10
A510XX10
A5,10XX15
,RS9
A59
A69
A23
A23
R611XX10
A511XX16
A600XXI6
A600XX20
A600XX24
AWES
AWES
R
WE5
R
WE5
AWES
R511XX10
R511XX15
R600XX16
A600XX20
R600XX24
A23
A23
CF
A31
CF
R
A
A
A
A
A
A
A
A
R
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
-~
PE .......... .
PE05
A
A13
A
EOI
EOI
EOI
WE5
EOI
IN3616R
IN3618A
IN3618R
IN3619R
R13
A13
A13
R13
A13
PEIO
PE20
PE40
PE60
PF .......... .
A
A
A
A
A
EOI
EOI
EOI
EOI
WES
MB11A06Vl0
MBllA06V20
MBllA06V40
MBll A06V60
PF ........ .
A3
A3
A3
A3
CF
WE5
5YN
5YN
5YN
5YN
IN3619R
IN3620A
IN3621R
IN3622R
A3110716
A13
R13
R13
RI3
CF
PH .......... .
PM ........ ..
PN .......... .
PP .......... .
PO .......... .
A
WES
WES
WE5
WE5
WES
PH ....... ..
PM ...... ..
PN ........ .
PP ........ .
PO ........ .
CF
CF
CF
Cf
CF
R
R
A
A
A
SYN
5YN
SYN
5YN
SYN
IN3632A
A3110916
IN1191AR
IN1192AR
IN1194AA
A13
CF
A15
R15
R15
PR .......... .
P5 .......... .
PT .......... .
PW ........ ..
0220A
AWES
AWES
A
WE5
AWES
5
WCE
PA ........ .
PS ........ .
PT ........ .
PW ...... ..
CF
A37
A37
A37
CF
CF
R3120
R3125
R3190
A3140
R3145
R
A
A
A
R
SYN
SYN
5YN
SYN
SYN
IN1194AR
IN1195AR
IN1195AR
IN1196AA
IN1197AR
R15
R15
AI5
A1SR15
A5COXX10
A5COXXl5
A5C1XX10
R5CIXXl5
A500XXIO
A
WE5
AWES
AWES
AWES
R WE5
A5COXX10
A5COXX15
A5C1XX10
R5C1XX15
A5DOXX10
A23
A23
A23
A23
A23
A3150
R3160
R3170
R3180
R3190
A
R
A
R
R
5YN
SYN
SYN
SYN
SYN
IN1197AR
IN1198A
A4110722
R4110822
R4110922
R15
R15
CF
CF
CF
A5DOXXI5
R501XX10
R5DIXX15
A9GOXX13
A9GOXX18
AWES
R WES
R
WE5
AWES
R WE5
A5DOXX15
R501XX10
A501XX15
R9GOXX13
R9GOXX18
R23
1'123
A15
A51
~OIOO
Note: Manufacturer's .Codes. PrOduct, Type Notes and ® Replacement Notes are listed on page G3
A
A
A
A
A23
Part Number
Type Mfg •.
Suggested@
Replacement
Page
Part Number
Type Mfgr.
Suggested@
Replacement
Page
Part Number
Type Mfg •.
®
Suggested
Replacement
Page
A
R
R
A
R
SYN
SYN
SYN
SYN
SYN
A5110715
R5110815
R5l109l5
R51l0015
R51101l5
A23
R23
R23
R23
R23
R50420
A50425
A50430
A50435
R50440
A
A
A
A
A
SYN
SYN
SYN
SYN
SYN
RSl 10230
ASll +230
A6110330
ASl 1+330
ASll0430
A31,
A3l
R31
R3l
R31
A9GOXX22
A9G2XX09
A9G2XXll
A9G2XX14
A9HOXX15
R
WES
AWES
AWES
AWES
R
WES
A9GOXX22
R9G2XX09
A9G2XXll
R9G2XX14
R9HOXX15
A5l
R75
R75
A75
CF
A4270
A4280
R4290
R4305
R43l0
A9HOXX24
A040XX10
A050B
A050C
A050E
R
WES
R
WES
AWES
AWES
AWES
A9HOXX24
R040XX10
CF
CF
CF
CF
CF
CF
CF
CF
R4320
R4330
R4340
A4350
R4360
A
R
R
R
R
SYN
SYN
SYN
SYN
SYN
R5l10215
R5110315
R5l104l5
A51105l5
R5110615
R23
R23
A23
A23
R23
R50445
R50450
R504S0
A50470
A50480
A
A
A
A
A
SYN
SYN
SYN
SYN
SYN
ASl 1+430
ASl 10530
ASl 10630
ASll0730
AS110830
A31
R3l
A3l
R3l
R3l
A050N
A051B
A051C
A051E
A051N
AWES
AWES
AWES
AWES
AWES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
R4370
A4380
A4390
A5ll0
A5l20
A
A
A
A
R
SYN
SYN
SYN
SYN
SYN
A5l10715
R5110815
R51109l5
IN3261 R
IN3263A
R23
A23
A23
R27
R27
R50490
A51100
R53100
R53120
A541 00
A
A
A
A
A
SYN
5YN
5YN
SYN
5YN
AS110930
ASll101S
A61 1 1025
ASOl 1225
AS11 1030
A31
CF
A31
R31
A31
A052B
A052C
A052E
R052N
R052S
AWES
AWES
AWES
AWES
AWES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
A5l30
R5l40
A5l50
R5l60
A5l70
R
R
A
R
A
SYN
SYN
SYN
SYN
SYN
IN3265A
IN3267A
IN3268A
IN3269A
IN3270A
R27
R27
R27
A27
A27
A503100
A503110
A503120
R504100
A504110
A
A
A
A
A
SYN
5YN
SYN
SYN
SYN
AS111025
ASOl 1 1 25
AS011225
A6111030
AS011 130
A31
A31
A31
A31
A31
A052Y
R053B
A053C
ROS3E
A053N
AWES
AWES
AWES
AWES
AWES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
A5l80
A5l90
A5305
A53l0
A5320
A
A
A
A
A
SYN
SYN
SYN
SYN
SYN
IN3271 A
IN3272A
A6ll0025
A61l0l25
A6110225
A27
R27
R31
A31
R31
A504120
5S12·3
5612·5
S622·4
52005
A
A
A
A
A
5YN
5AA
SAA
SAA
SYN
R6011230
MB 1 1 A06V40
MB11A06VSO
MBllA02Wl0
IN1199A
A31
A3
A3
A3
A13
R053S
R053Y
A054B
A054C
R054E
AWES
AWES
AWES
AWES
AWES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
A5330
A5340
A5350
A53S0
A5370
A
A
A
A
A
SYN
SYN
SYN
SYN
SYN
A6l10325
A6ll0425
A6110525
A6l10625
A6110725
A31
R31
R31
A31
A31
52010
S2015
S2030
52060
S2070
A
A
A
R
R
SYN
SYN
5YN
SYN
5YN
IN1200A
IN 1 1 201 A
IN1203A
IN120SA
IN3670A
A13
A 13
A13
A13
A13
A054N
R054S
A054Y
R055E
R055S
AWES
AWES
AWES
AWES
AWES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
A5380
A5390
A54l0
A5420
A5430
R
R
A
R
R
SYN
SYN
SYN
SYN
SYN
A6110825
A6110925
A6l10130
A6ll0230
A61l0330
R31
R3l
R31
A31
R31
52080
S2090
S2100
52105
52110
A
R
A
R
A
SYN
SYN
SYN
SYN
SYN
IN3S71A
IN3S72A
IN3S73A
IN3S15
IN3S16
R13
A13
A13
A13
R13
R055Y
R061B
R061C
R061E
R061N
AWES
AWES
AWES
AWES
AWES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
A5440
A5450
A5460
A5470
A5480
R
A
A
A
A
SYN
SYN
SYN
SYN
SYN
R61l0430
A6110530
A6110630
A6110730
R6110830
A3l
A31
R31
A31
R31
52115
S2120
52125
S2130
S2140
A
R
A
A
A
SYN
5YN
5YN
SYN
SYN
IN3617
IN3S18
R3l0+216
IN3619
IN3620
A13
A13
CF
A13
A13
R061S
R061Y
R062E
R062Y
R063B
AWES
AWES
AWES
AWES
AWES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
A5490
A20020
A20025
A20040
A20050
A
A
A
A
A
SYN
SYN
SYN
SYN
5YN
A6110930
IN1202AR
IN 1203AA
IN1204AR
IN 1205AR
R31
R13
R13
R13
R13
52150
521S0
52170
52180
52190
A
R
A
A
A
SYN
SYN
SYN
5YN
SYN
IN3621
lN3622
R3100716
IN3623
R310091S
A13
R13
CF
A13
CF
R063C
R063E
R063N
R063S
R063Y
AWES
AWES
AWES
AWES
AWES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
R2ll00
A23l30
A23l40
A23l50
R23l SO
R
R
R
R
R
SYN
SYN
SYN
SYN
5YN
IN3624R
R6011325
A6011425
R6011525
R6011625
R13
R31
R31
A31
R31
53105
53110
S3115
S3130
53125
R
R
A
R
R
SYN
SYN
SYN
SYN
SYN
IN1191A
IN1192A
IN1193A
IN1194A
R410+222
R15
R15
A15
R15
CF
R140XX15
A150XX15
A240XX30
R302XX06
A302XX12
R
R
R
R
R
WES
WES
WES
WES
WES
R140XX15
R150XX15
A240XX30
A302XX06
A302XX 12
CF
CF
CF
R55
R55
A3ll00
R32l00
R34l 00
A36l00
R42l 00
R
R
R
R
R
SYN
SYN
SYN
5YN
SYN
R4111022
R4111030
R4111040
R4051060
R5111015
A15
CF
R15
A17
A23
53130
53135
S3140
S3145
53150
A
R
A
A
R
SYN
SYN
SYN
SYN
SYN
IN1195A
R410+322
IN1196A
R410+422
IN1197A
R15
CF
R15
CF
R15
A3420
R3425
'R3430
A3440
R3445
A
R
R
R
A
SYN
SYN
SYN
SYN
SYN
INl186AR
INl187AR
IN1187AR
IN1188AA
IN1189AR
R15
A15
A15
A15
R15
A42ll0
A42l20
R42l30
R42l40
A42l50
R
R
R
R
R
SYN
5YN
SYN
SYN
SYN
R5011l15
R5011215
R5011315
R5011415
SO
A23
A23
R23
R23
R23
S3160
S3170
S3180
S3190
S3205
R·
A
A
R
5YN
SYN
SYN
SYN
SYN
lN1198A
A4100722
R4100822
R4100922
R41 00030
R15
CF
CF
CF
CF
R3450
R3460
R3470
R3480
A3490
A
A
R
A
A
SYN
SYN
SYN
SYN
SYN
IN1189AA
INl190AR
R4110740
A4110840
A4110940
R15
R15
CF
R15
CF
R42l60
A43100
A43ll0
R43120
R43l30
R
R
R
R
R
SYN
SYN
SYN
SYN
SYN
SO
R5111015
A50111l5
R5011215
R501l315
R23
R23
A23
R23
A23
S3210
S3215
53220
S3225
S3230
R
A
R
R
R
SVr-,
SYfII
5VN
5YN
SYN
R4100130
R410+130
R4100230
R4l0+230
R4100330
CF
CF
CF
CF
CF
A3605
A36l5
A3620
R3625
A3630
R
R
R
A
R
5YN
SYN
SYN
SYN
SYN
R4050060
A4050260
R4050260
R4050360
A4050360
A17
A17
A17
R17
R17
A43140
A43l50
R43160
R50305
A503l0
A
R
A
A
R
SYN
SYN
SYN
SYN
SYN
A5011415
SO
50
R6110025
R6110125
A23
A23
A23
A31
A31
S3235
S3240
S3245
S3250
S3260
R
R
A
A
R
SYN
SYN
SYN
SYN
SYN
R41 0+330
R4l00430
A410+430
A4l00530
A4100630
CF
CF
CF
CF
CF
R3635
R3640
R3645
R3650
R3660
R
A
A
R
A
SYN
SYN
SYN
SYN
SYN
R4050460
A40504S0
A4050560
R40505S0
R4050S60
R17
R17
R17
R17
A17
R503l5
R50320
A50325
A50330
R50335
R
A
A
A
R
SYN
SYN
5YN
SYN
SYN
A611+125
R6110225
R611+225
A6110325
A611 +325
A31
A31
A31
R31
R31
53270
53280
S3290
53410
53415
R
A
R
R
R
SYN
SYN
SYN
SYN
SYN
R41 00730
A4100830
A41 00930
INl 184A
IN1185A
CF
CF
CF
R15
R15
A3670
R3680
R3690
A4205
A42l0
R
R
R
A
R
SYN
SYN
SYN
SYN
SYN
A40507S0
A40508S0
A40509S0
A5110015
R51 101 15
A17
A17
A17
R23
R23
R50340
A50345
R50350
A50360
R50370
A
A
R
A
A
SYN
SYN
SYN
SYN
SYN
R6110425
A611+425
A6110525
A6110625
A6110725
R31
R31
R31
A31
A31
53420
S3425
53430
,S3435
53440
R
R
R
R
R
5YN
SYN
SYN
SYN
SYN
INll86A
A410+240
IN1187A
R410+340
INl 188A
R15
CF
R15
CF
R15
R4220
A4230
R4240
A4250
R4260
R
R
A
A
A
SYN
SYN
SYN
SYN
SYN
R5110215
R5110315
A5110415
A5110515
R5110S15
A23
A23
A23
A23
R23
R50380'
A50390
R50405
A5041 0
A50415
R
R
A
R
R
5YN
SYN
SYN
SYN
SYN
A6110825
A6110925
A6110030
R6110130
A611 +130
A31
'A31
A31
A3l
A31
53445
53450
'S34S0
S3470
S3480
R
R
R
R
R
SYN
5YN
SYN
SYN
SYN
R410+440
IN11S9A
IN1190A
R4100740
A41 00840
CF
R15
R15
CF
R15
Note: Manufacturer's Codes, Product Type Notes and® Replacement Notes are listed on page G3
R
G19
Part Number
Suggeated@
Replacement
Type Mfg,_
Page
Part Number
Type Mfg,_
53490
53605
53615
53620
53625
5YN
5YN
5YN
5YN
5YN
R4100940
R4040060
R404+160
R4040260
R404+260
CF
R17
R17
R17
R17
56230-2
56230-3
56230-4
56305
56310
A
A
A
R
R
5AR
SAR
SAR
5YN
5YN
53630
53635
53640
53645
53650
5YN
SYN
5YN
5YN
5YN
R4040360
R404+360
R4040460
R404+460
R4040560
R17
R17
R17
R17
R17
56315
56323-1
56323-2
56323-3
R
A
A
A
53660
53670
53680
53690
54205
5YN
5YN
5YN
5YN
5YN
R4040660
R4040760
R4040660
R4040960
R5100015
R17
R17
R17
R17
R23
56323-4
56323-5
56323-6
56324-2
56324-4
54210
54220
54230
54240
54250
SYN
SYN
SYN
SYN
5YN
R5100115
R5100215
R5100315
R5100415
R5100515
R23
R23
523
R23
R23
SYN
5YN
5YN
5YN
5YN
R5100615
R5100715
R5100B15
R5100915
R5100015
5YN
5YN
5YN
5YN
5YN
5YN
5YN
5YN
5YN
5YN
54260
54270
S4280
54290
54305
R
54310
54320
54330
54340
54350
R
54360
54370
54380
54390
55110
R
55120
55130
55140
55150
55160
55170
55180
55190
55305
55310
55320
55330
55340
55350
55360
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
5uggested@
Replacement
MB11A02V60
MB11A02VBO
MB11A02Wl0
CF
CF
Page
A3
Part Number
550430
550435
Suggested@
Replacement Page
550445
S50450
R
R
A
R
R
5YN
5YN
5YN
5YN
5YN
R6100330
A610+33O
R6100430
R610+430
R6100530
R31
R31
A31
A31
R31
CF
A3
A3
A3
550460
S50470
S50480
S50490
551100
A
R
R
A
R
5YN R6100630
5YN A6100730
SYN R6100630
SYN R6100930
5YN IN3273
R31
R31
R31
A31
R27
MB12Al0V40
MB12Al0V50
MB12Al0V60
MB11A02V20
MB11A02V40
A3
A3
A3
A3
A3
553100
553120
S54100
560100
S631 00
R
R
R
5YN
SYN
SYN
SYN
SYN
A6101025
R6001225
R6101030
CF
CF
A31
R31
R31
CF
CF
5AR
5AA
5AA
5YN
5AR
MB11A02V60
MB11A02V80
MB11A02Wl0
CF
MB11 A06Vl0
A3
A3
A3
CF
A3
S63110
S63120
S63130
S63150
S63160
R
R
R
R
SYN
5YN
SYN
SYN
SYN
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
A
A
A
A
A
SAR
5AA
5AA
SAR
5AA
MB11A06V20
MBllA06V4O
MB11A06V60
MBll A06V80
MB11A06WIO
A3
A3
A3
5503100
5503110
S503120
S504100
S504110
R
R
R
R
R
SYN
SYN
SYN
SYN
SYN
R6101025
R6001125
R6001225
R6101030
A6001130
R31
R31
R31
R31
A31
R
CF
CF
CF
CF
CF
5504120
SB _._ .. :_ ...••. _.
SBR05
SBRIO
SBR10A05
R
R
R
SYN CF
SYN CF
5YN CF
SYN CF
SYN CF
SYN
WES
SET
SET
SET
R6001230
SB .... _........
MBllA02V05
MBllA02VI0
MBI2AIOV05
R31
A69
A3
56360
56370
S63BO
56390
56458-05
R
R
A
R
A
5YN CF
5YN CF
5YN CF
5YN CF
5AR MB12A25V05
CF
CF
CF
CF
A3
SBR10Al
SBR10A2
SBR10A4
SBRIOA6
SBR15
A
A
A
A
A
SET
SET
SET
SET
SET
MB12A1OV10
MB12AIOV20
MB12AIOV40
MBI2AIOV60
MBllA02VI0
A3
IN3263
IN3265
IN3267
IN326B
IN3269
R27
R27
R27
R27
R27
56458-2
56458-4
56458-6
520020
520025
A
A
A
R
R
5AR MB12A25V20
5AR MB12A25V4O
5AR MBI2A25V60
5YN IN1202A
5YN R310+212
A3
A3
A3
R13
CF
5BR25
SBR45
SBR65
SBR85
SC ...............
A
A
A
A
A
SET
SET
SET
SET
WES
M811A02V20
MB11A02V40
MBllA02V60
MB11A02V80
SC .............
A3
A3
A3
A69
5YN
5YN
SYN
5YN
5YN
IN3270
IN3271
IN3272
R6100025
R6100125
R27
R27
R31
R31
S20040
520050
521100
523130
523140
R
R
R
R
A
5YN INI204A
5YN IN 1205A
5YN IN3624
5YN A6001325
SYN IN3744
R13
R13
R13
R31
R31
SCBA05
5CBAI
SCBA2
SC8A4
SCBA6
A
A
A
A
A
SET
SET
SET
SET
SET
MB12A25V05
MB12A25Vl0
MB12A25V20
MB12A25V4O
MB12A25V60
A3
A3
A3
A3
A3
SYN
5YN
5YN
5YN
5YN
R6100225
R6100325
R6100425
R6100525
R6100625
R31
R31
R31
R31
R31
523150
523160
531100
532100
534050
R
R
R
R31
R31
R15
CF
R15
50 .............. _
SOA117A
SOA117B
SOA117C
SOA1170
A
A
A
A
A
WES
SSD
5SD
SSD
SSO
SO .............
MB11A02V05
MB11A02Vl0
MBllA02V20
MBllA02V4O
A3
R
5YN R600 1525
5YN R6001625
5YN R4101022
SYN R4101030
5YN IN11B3A
R6100725
R6100B25
R6100925
R6100130
R6100230
R31
R31
R31
R31
R31
534100
536100
S42100
S42110
542120
R
R
R
R
R
SYN
SYN
SYN
5YN
5YN
R4101040
A4041060
A5101015
A!i'OO1115
R6001215
R15
R17
R23
R23
R23
SOAI17E
5DAI17F
SDAI17G
SDA13BA
SOA13B8
A
A
A
A
A
SSD
SSD
SSD
SSD
SSD
MB11A02V60
MBIIA02V80
MBllA02WI0
MBllA06V05
MBIIA06Vl0
A3
5YN R5001315
SYN R5001415
SYN 50
5YN 50
5YN R5101015
R23
R23
R23
R23
R23
SDA138C
SDA138D
SDAI38E
SDA138F
SDA138G
A
A
A
A
A
SSD
SSD
SSD
SSD
SSD
MB11A06V20
MBIIA06V40
MBllA06V60
MBllA06VBO
MB11A06Wl0
A3
A3
A3
A3
A3
R5001115
R5001215
R5001315
R5001415
SE ...............
A
SH ...... _........
A
so
R23
R23
R23
R23
R23
SN ...............
SQ_ ..............
SS .... _..........
A
A
A
WES SE ............ _ A69
WE5
WES
WE5 SQ ............. A69
WE5 S5 .... _........ A69
A3
A3
CF
CF
S50440
SYN CF
5AA MB12Al0Vl0
5AR MB12A1OV20
SAR MB12A1OV30
A
A
A
A
A
5AR
5AR
5AR
5AR
5AR
56324-6
56324-8
56324-10
56325
56327-1
A
A
A
R
A
R23
R23
R23
R23
R23
56327-2
S6327-4
56327-6
56327-B
S6327-10
R5100115
R5100215
R5100315
R5100415
R5100515
R23
R23
R23
R23
R23
S6330
56335
56340
56345
56350
R
R5100615
R5100715
R5100615
R5100915
IN3261
E12
R23
R23
R23
R27
5YN
5YN
5YN
5YN
SYN
H~7
R
A
A3
A3
R
A
A
A
A
A
A
A3
A3
A3
A3
A3
A3
A3
A69
A3
A3
~
55370
55380
55390
55410
55430
R
R
5VN
5YN
5YN
5YN
5YN
55430
55440
55450
55460
55470
R
R
R
R
R
5YN
5YN
5YN
5YN
5YN
R6100330
R6100430
R6100530
R6100630
R6100730
R31
R31
R31
R31
R31
542130
S42140
S42150
542160
543100
R
A
R
-A
A
55480
55490
56010
56020
56030
R
R
5YN
5YN
5YN
5YN
5YN
R6100B30
R6100930
CF
CF
CF
R31
R31
CF
CF
CF
S43110
543120
S43130
543140
543150
R
R
A
A
5YN
5YN
5YN
5YN
5YN
56040
56050
56060
56070
56080
R
R
R
5YN
5YN
5YN
5YN
SYN
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
543160
550305
550310
S50315
550320
R
A
A
R
A
5YN
5YN
5YN
5YN
5YN
50
R6100025
R6100125
R610+125
R6100225
R23
R31
R31
R31
R31
ST2FR10P
ST2FR20P
ST2FR30P
ST2FR4OP
ST2FR60P
R
R
A
R
R
SAA IN3890
SAR IN3B91
SAR IN3892
SAR IN3893
SAR R3020612
A57
R57
A57
R57
AS5
5YN CF
5AR MB11A06Vl0
5AR MBllA06V20
SAR MB11A06VBO
5AR MB11A06Wl0
Cf
A3
A3
A3
A3
550325
550330
S50335
S50340
550345
R
R
A
R
R
5YN R610+225
5YN A6100325
5YN R610+325
5YN R6100425
5YN R610+425
R31
R31
R31
R31
R31
ST3FR20
ST3FR30
ST3FR4O
ST3FR60
ST3FRIOOP
R
R
R
R
R
SAR IN3911
SAR IN3912
SAA IN3913
SAR A4020630
SAR IN3910
R57
A57
RS7
A57
R57
RCA
RCA
RCA
RCA
5AR
T40001160B
T4OOO21606
T400041608
T40006160B
MB II A02V20
513
513
513
513
A3
550350
S50360
S50370
550380
S50390
R
A
R
A
A
SYN
5YN
5YN
5YN
5YN
R6100525
R6100625
R6100725
R6100625
R6100925
R31
_ R31
R31
R31
R31
ST4FRIOP
5T4FR20
ST4FR30
ST4FR4O
ST4FR60
R
R
R
R
R
SAR
SAR
SAA
SAR
SAR
IN3910
IN3911
IN3912
IN3913
R4020630
R57
A57
R57
RS7
R57
5AA
5AR
SAR
5AR
SAR
MBllA02V40
MB11A02V60
MB11A02V80
MB11A02V20
MBllA02V4O
A3
A3
A3
A3
A3
550405
550410
550415
550420
S50425
R
A
A
R
R
SYN R6100030
SYN R6100130
5YN R610+13O
5YN R6100230
5YN R610+230
R31
R31
R31
R31
R31
ST5Al0P
ST5A20P
ST5A3DP
ST5A40P
ST5A50P
R
R
R
R
A
SAR
SAR
5AR
SAR
SAR
R4040160
R4040260
R4040360
R4040460
A4040560
RI7
A17
R17
RI7
A17
R
R
R
R
R
R
R
56090
56121
56121-1
56121-6
56121-7
A
56210A
56210B
562100
56210M
56211
5
5
5
56211-1
56211-2
56211-3
56230
56230-1
A
A
A
A
5
A
A
A
A
A
A
A
R
Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on page G3
G20
Type Mfg,.
A3
A3.
A3
A3
~~::::::::::::: ~:~
Suggested@
Replacement
Part Number
Type Mfg..
Suggested@
Replacement
Part Number
Type Mfgr.
ST5A60P
ST6A80P
ST6AlOOP
ST5AI20P
ST6AION
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
R4040680
R4040660
R4041060
R4041280
CF
RI7
R17
RI7
RI7
CF
STS80P
ST910N
ST910P
ST920N
ST920P
R
R
R
R
R
SAR CF
SAR IN4045R
SAR IN4045
SAR IN4047R
SAR IN4047
ST6AIOP
ST6A20N
ST6A20P
ST6A30N
ST6A30P
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
ST930N
ST930P
ST940N
ST940P
ST950N
R
R
R
R
R
ST6A40N
ST6A40P
ST6A50N
ST6A50P
ST6A60N
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
ST950P
ST960N
ST960P
ST980N
ST980P
ST6A60P
ST6A80N
ST6A80P
ST6AlOON
ST6AlOOP
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
ST6AI20N
ST6AI20P
ST6AI40N
ST6AI40P
STI6AION
R
R
R
R
R
SAR CF
SAR CF
SAR CF
SAR CF
SAR CF
STI6AIOP
ST16A20N
STI6A20P
STI6A30N
ST16A30P
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
ST16A40N
ST16A40P
ST16A50N
, ST16A5OP
ST16A60N
R
R
R
R
R
STI6A60P
STI6A80N
ST16A80P
ST16AlOON
ST16AlOOP
Page
Page
Suggested@
Replacement Page
Part Number
Type Mfg..
CF
R29
R29
R29
R29
ST16100P
ST16120N
STI61 20P
STI6140N
STISI40P
R
R
R
R
R
SAR R610l016
BAR R6011215
SAR R6001215
SAR R5011415
SAR R5001415
R23
R23
R23
R23
R23
SAR IN4049R
SAR IN4049
SAR IN4050R
SAR IN4050
SAR IN405 I R
R29
R29
R29
R29
R29
ST20l00N
ST20100P
STZOl20N
ST20120P
ST20140N
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
R611 1030
R610l030
R60 II 230
R6001 230
R6011430
R31
R31
R31
R31
R31
R
R
R
R
R
SAR IN4051
SAR IN4052R
SAR IN4052
SAR IN4054R
SAR IN4054
R29
R29
R29
R29
R29
ST20140P
ST22100N
ST22100P
ST22120N
ST22120P
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
R6001430
R70ll005
R7001005
R7011 205
R7001205
R31
R36
R36
R35
R35
STIIIOP
STII20P
STII30P
STII40P
STII50P
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
R4040170
R4040270
R4040370
R4040470
R4040570
RI7
R17
RI7
R17
RI7
ST22140N
ST22140P
T4V0XX22
T9G9XXOS
T9GOXXIO
R
R
5
5
5
SAR
SAR
WES
WES
WES
R7011405
R7001405
T400XX22
T9GOXXOa
T9GOXXIO
R35
R35
513
561
561
CF
CF
CF
CF
CF
STIISOP
STIISOP
ST1610N
STISIOP
ST1620N
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
R404OS70
R4040670
R5110115
R510011 5
R5110215
RI7
R17
R23
R23
R23
T9GOXXI2
T9GHXXOS
T9GHXX09
T40RXX22
T72HXX25
5
5
5
5
5
WES
WES
WES
WES
WES
T9GOXXI2
T9GHXXOS
T9GHXX09
T40RXX22
T72HXX25
561
561
561
595
589
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
ST1620P
ST1630N
STIS30P
ST1640N
ST1640P
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
R5100215
R5110315
R5100315
R5110415
R5100415
R23
R23
R23
R23
R23
T72HXX35
T72HXX45
T92HXX08
t92HXX07
T400XXIO
5
5
5
5
5
WES
WES
WES
WES
WES
T72HXX35
T72HXX45
T9GHXX08
T9GHXX09
T400XXIO
589
589
593
593
513
SAR
SAR
SAR
SAR
SAR
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
ST1660N
STIS60P
ST1S80N
ST1680P
ST20l0N
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
R511OS15
R510OS15
R5110815
R5100815
RSIIOl30
R23
R23
R23
R23
R31
T400XXIS
T400XX22
T500XX40
T500XX80
T507XX40
5
5
S
5
S
WES
WES
WES
WES
WES
T400XXl6
T400XX22
T400XX40
T500XX80
T507XX40
513
513
523
523
523
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
ST20l0P
ST2020N
ST2020P
ST2030N
ST2030P
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
R6100130
R611 0230
R6100230
RSII0330
R6100330
R31
R31
R31
R31
R31
T507XX70
T507XX80
t~:g~~
T520XXl3
5
5
S
5
5
WES
WES
WES
WES
WES
T507XX70
T507XX60
T610XX50
T510XX80
T520XXl3
577
577
S27
S27
541
ST16A120N
ST16A120P
STI6AI40N
ST16AI40P
ST210E
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
CF
CF
CF
CF
IN3616
CF
CF
CF
CF
RI3
ST2040N
ST2040P
ST2060N
ST2050P
ST2060N
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
R6 II 0430
R6100430
RSII0530
R6100530
R611OS30
R31
R31
R31
R31
R31
T527XXl2
T527XXl3
T527XX60
TSOOXXl3
T600XXl5
S
5
5
5
5
WES
WES
WES
WES
WES
T627XXl2
T527XXl3
T527XX60
T600XX I 3
TSOOXXl5
583
583
583
S83
533
ST210P
ST220E
ST220P
ST230E
ST230P
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
INl200A
IN3617
INI20lA
IN3619
INI203A
RI3
RI3
RI3
RI3
RI3
ST2060P
ST2080N
ST20S0P
ST2100E
ST2100P
R
R
R
R
R
SAR R6100630
SAR R6 II 0830
SAR R6 I 00830
SAR IN3S24
SAR IN3673A
R31
R31
R31
RI3
RI3
T600XXIS
T607XXI3
T607XXl5
TS07XXla
TSIOXXI3
5
5
5
5
S
WES
WES
WES
WES
WES
TSOOXXla
T607XXl3
T607XXl5
TS07XXl8
TSIOXXl3
533
579
S79
579
S33
ST240E
ST240P
ST250E
ST250P
ST260E
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
IN3620
INI204A
IN3621
INI205A
IN3622
RI3
RI3
RI3
RI3
RI3
ST2120E
ST2120P
ST2210N
ST2210P
ST~220N
R
R
R
R
R
SAR R310121S
SAR R3101212
SAR R70l0l05
SAR R7000l06
SAR R70l0205
RI3
RI3
R35
R35
R35
TSIOXXl5
TSIOXXla
T620XXl3
TS20XXI5
TS20XX20
5
5
5
5
5
WES
WES
WES
WES
WES
TSIOXXl5
T610XXla
TS20XXl5
T620XXl5
T620XX20
533
533
S43
543
543
ST260P
ST280E
ST280P
ST310P
ST320P
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
INI206A
IN3622
IN367 I A
IN2156
IN215S
RI3
RI3
RI3
RI3
RI3
ST2220P
ST2230N
ST2230P
ST2240N
ST2240P
R
R
R
R
R
SAR R7000205
SAR R70l0305
SAR R7000306
SAR R70l0405
SAR R7000405
R35
R35
R36
R35
R35
TS20XX30
T625XX25
T625XX30
T625XX40
T627XXl5
S
5
5
S
5
WES
WES
WES
WES
WES
T620XX30
T625XX25
T625XX30
T625XX40
T627XXl5
543
547
547
547
587
ST330P
ST340P
ST350P
ST360P
ST380P
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
IN2157
IN215S
IN2159
IN2160
R4100S25
RI3
RI3
RI3
RI3
CF
ST2250N
ST2250P
ST2260N
St22SOP
ST2280N
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
R70l0505
R7000505
R70l0605
R7000605
R70l0805
R35
R35
R35
R35
R35
T627XX20
T627XX25
T6S0XXIS
T700XX25
T700XX30
5
5
5
S
S
WES
WES
WES
WES
WES
T627XX20
T627XX25
T680XX I a
T700XX25
T700XX30
587
587
573
537
537
ST410P
ST420P
ST430P
ST440P
ST450P
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
INIIS4A
INII86A
INII 87A
INII88A
INIIS9A
RI5
RI5
RI5
RI5
RI5
ST2280P
ST3I00P
ST3120P
ST4 I OOP
ST4120P
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
R7000805
R410l025
R4101225
R410l040
R4101240
R35
CF
CF
RI5
CF
T700XX35
T707XX20
T707XX25
T707XX2a
T707XX30
5
5
5
5
5
WES
WES
WES
WES
WES
T700XX35
T707XX25
T707XX25
T707Xx28
T707XX30
537
SSI
581
SSI
581
ST460P
ST460P
ST610N
ST810P
ST620N
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
INII90A
R4100640
CE
CF
CF
RI5
RI5
CF
CF
CF
ST8100N
ST8100P
STSI20N
STSI20P
STSI40N
T707XX33
T720XX35
T720XX45
T720XX55
T727XX35
581
551
551
551
591
CF
CF
CF
CF
CF
ST8140P
ST9100N
ST9100P
ST9120N
ST9120P
CF
CF
CF
CF
CF
CF
R29
R29
CF
CF
WES
WES
WES
WES
WES
SAR CF
SAR CF
SAR CF
SAR CF
SAR CF
CF
CF
CF
CF
CF
CF
IN405SR
IN4056
RSOII 22S
RSOOl228
5
5
5
S
S
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
T707XX33
T720XX35
T720XX45
T720XX55
T727XX25
ST820P
ST830N
ST830P
ST640N
ST640P
R
R
R
R
R
R
R
R
R
R
T727XX35
T727XX40
T727XX45
T727XX48
T760XX30
5
5
S
5
5
WES
WES
WES
WES
WES
T727XX35
T727XX40
T727XX46
T727XX48
T760XX30
591
591
591
591
571
ST850N
ST850P
STS60N
STS60P
STS80N
R
R
R
R
R
SAR CF
SAR CF
SAR CF
SAR CF
SAR CF
CF
CF
CF
CF
CF
ST9140N
ST9140P
STlllOOP
STIII20P
ST16100N
R
R
R
R
R
SAR
SAR
SAR
SAR
SAR
R6011428
R600142S
R4041070
R4041270
R511 1015
CF
CF
RI7
RI7
R23
T780XX35
T920XXOS
T920XX07
T920XX08
T920XX09
5
S
S
5
S
WES
WES
WES
WES
WES
T780XX35
T920XXOS
T920XX07
T920XX08
T920XX09
575
555
555
555
555
Note: Manufacturer's Codes, Product Tvpe Notes and@ Replacement Notes are listed
OR
page G3
G21
5uggetlted@
Part Number
Type Mfg,.
Replacement
Part Number
Page
Typo Mfg,_
Suggested@
Replacement
Page
Part Numbe,
IN3881R
'IN3882R
IN3883R
R3030S06
R3030606
R55
R55
R55
R55
R65
22RCIO
22RC20
22RC30
22RC40
22RC50
IR
IR
IR
IR
IR
IN1341AR
INI342AR
INI344AR
INI34SAR
IN1346AR
R13
R13
R13
R13
RI3
22RCSO
25PP5
25PPIO
25PP20
25PP40
R
R
R
R
A
IR
IR
IR
IR
PPC
IN1347AR
IN1348AR
IN3988AR
IN3990
M811A06VOS
R13
R13
R13
R13
A3
SPP10
SPP20
6PP40
6PP60
6PP80
A
A
A
A
A
PPC
PPC
PPC
PPC
PPC
MBllA06Vl0
MBliAOSV20
MBII AOSV40
MBllA06VSO
MB11AOSV80
A3
A3
A3
A3
A3
SPP100
SVL50
10H3P
10HR30
10RC10A
A
R
R
R
S
IN3879
IN3S80
IN3881
IN3882
IN3889
RS5
R5S
RS5
R55
RS5
10RC20A
10RC30A
10RC40A
10RC50A
10RCSOA
SOL
SOL
SOL
SOL
SOL
IN3890
IN3891
IN3892
IN3899
IN3900
RS5
R5S
R55
RS7
R57
R
R
A
A
A
SOL
SOL
PPC
PPC
PPC
IN3S01
IN3S01
MBllA02VOS
MB11A02Vl0
MBll A02V20
2PP40
2PPSO
2PP80
2PP100
55CBR05
A
A
A
A
A
PPC
PPC
PPC
PPC
PPC
55CBRI
55CBR2
5SCBR4
55CBRS
SAl
SA2
5
IR
IR
IR
IR
IR
8uggetlted@
Rep'-"t
P_
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
SIR
A
PPC
A
PPC
A
PPC
A
PPC
CF
M812A25V05
MBI2A25VIO
M812A25V20
MB12A25V40
CF
A3
A3
A3
A3
25PP60
30DBIT
30DB2T
30DB3T
30DB4T
A
A
A
A
S
PPC
IR
IR
IR
IR
MBI2A2SVSO
MBllA02Vl0
MB11A02V20
MB11A02V30
MBllA02V40
A3
A3
A3
A3
A3
A3
A3
300B5T
30DB6T
30DB8T
30DBOST
30DBIOT
A
A
A
A
A
IR
IR
IR
IR
IR
MBllA02V50
MBllA02V60
MB11A02V80
MBllA02Vl0
MB11A02Wl0
A3
A3
A3
A3
A3
PPC MB11A06WIO
IR
R3020S06
SAR R3100106
SAR R30201 06
IR
T4OOO11S06
A3
RSS
CF
CF
513
30H3P
30HR30
3SRASO
3SRASO
3SRA80
R
R
5
5
5
5AR
SAR
IR
IR
IR
IN1345
IN3882
T51005SOO4AO
T510066004AO
T500088004AO
R13
R55
S27
527
523
S
S
S
S
R
IR
IR
IR
IR
IR
T4OOO21608
T400031608
T400041606
T400051606
T400061608
S13
S13
S13
S13
513
36RA100
3SRAIIO
3SRAI20
3SRA130
36RAI40
5
5
5
5
5
IR
IR
IR
IR
IR
T500108004AO
T5001 18004AO
TS00128004AO
T500138004AO
TS00148004AO
523
523
523
523
523
10RC7OA
10RC80A
10RCSOA
10RC100A
10RC110A
S
S
S
5
S
IR
IR
IR
IR
IR
T400071S08
T400081608
T4OO091S06
T400101S08
T4001I 160B
S13
S13
513
SI3
513
3SRA150
3SRC10A
3SRC20A
3SRC30A
3SRC40A
5
5
5
5
5
IR
IR
IR
IR
IR
T500158004AO
TS10015007AO
T5 I 0025007 AO
T510036007AO
T5 I 0045007 AO
523
527
527
527
527
RS7
ilS7
A3
A3
A3
10RC120A
12A700
12A800
12A900
12Al000
S
R
R
R
R
IR
SOL
SOL
SOL
SOL
T400121606
IN3S70A
IN3671A
IN3S72A
IN3673A
513
RI3
R13
R13
R13
3SRC50A
3SRCSOA
36RC80A
36REH60
3SREH80
5
5
5
5
5
IR
IR
IR
IR
IR
TS10055007AO
TS10065007AO
T500086007 AO
TSI5068004AO
T505068004AO
527
527
523
CF
CF
M811A02V40
MBllA02V60
MBllA02V80
MBll A02Wl0
MB11A06V05
A3
A3
A3
A3
A3
12FSA
12Fl0A
12F20A
12F30A
12F4OA
R
R
R
R
R
IR
IR
IR
IR
IR
INI199A
IN1200A
IN1202A
INI203A
IN1204A
R13
R13
R13
R13
R13
3SREHlOO
3SREHIIO
3SREHI20
3SREHI30
37RA50
5
5
S
5
5
IR
IR
IR
IR
IR
T505108004AO
T505 I 18004AO
T50S128004AO
T505138004AO
T5 I 0055004AB
CF
CF
CF
CF
527
A . SET
A
SET
SET
A
SET
A
RATS
MBI1AOSV10
MB11AOSV20
MBllAOSV40
MB11AOSV60
R34OO106
A3
A3
A3
A3
R9
12F50A
12FSOA
12F8OA
12Fl00A
12FL5
R13
R13
R13
RI3
R55
37RA60
37RABO
37RA100
37RA110
37RA130
5
5
RATS
RATS
RATS
RATS
R
SOL
R34OO206
R34OO406
R34OOS06
R34OOO06
INI341A
R9
R9
R9
R9
R13
12FL10
12FL20
12FL30
12FL40
12FL50
37RAI40
37RA160
37RC1OA
37RC2OA
37RC3OA
S
6AS
SA05
SA15
6A30
SA50
SAl 00
SA200
SA300
R
R
R
R
R
SOL
SOL
SOL
SOL
SOL
INI341A
IN1341A
IN t 342A
IN 1344A
INI34SA
R13
R13
R13
RI3
RI3
SA400
6A500
SA600
SA700
SABOO
R
R
R
R
R
SOL
SOL
SOL
SOL
SOL
INI346A
IN1347A
IN1348A
IN3987
IN3988
SA900
SAl 000
_6A12Ge
SF5A
6Fl0A
R
6F2OA
S630A
SF~OA
R
R
R
SF50A
6F60A
R
T&20XX10
TA20XX12
TA20XX14
VH048
VH148
S
S
S
A
A
WES
WES
WES
VAR
VAR
556
567
567
A3
A3
6FLR20
6FLR30
SFLR40
6FLR50
6FLR60
R
R
R
R
R
IR
IR
IR
IR
IR
VH248
VH448
VH648
.VH848
VJ048
A
A
A
A
A
VAR ~BllA06V20
VAR MB11A06V40
VAR MBllA06V60
VAR MBliAOSV80
VAR MB12A1OVOS
A3
A3
A3
A3
A3
6FR5A
6FR10A
6FR20A
SFR30A
6FR40A
R
R
R
R
R
VJ148
VJ248
VJ448
VJ648
VK048
A
A
A
A
A
VAR MB12Al0Vl0
VAR MB12Al0V20
VAR MBI2A1OV40
VAR MB12A1OVSO
VAR MB12A25V05
A3
A3
A3
A3
A3
6FR50A
6FR60A
SFR80A
SFR100A
SPP5
VK148
VK248
VK448
VKS48
VS048
A
A
A
A
A
VAR
VAR
VAR
VAR
VAR
MB12A25Vl0
MB12A25V20
MBI2A2SV40
MB12A2SV60
MB11A02V05
A3
A3
A3
A3
A3
V5148
V5248
VS448
V5648
V5848
A
A
A
A
A
VAR MB11A02Vl0
VAR MBI 1 A02V20
VAR MB11A02V40
VAR MBll A02V60
VAR MB11A02V80
ZBCP-05
ZBCP-l
ZBCP-2
ZBCP-3
ZCCP-05
R
R
R
R
R
SOL
SOL
SOL
SOL
SOL
ZCCP-l
ZCCP-2
ZCCP-3
ZECN-05
ZECN-l
R
R
R
R
R
ZECN-2
ZECN-3
2PP5
2PP10
2PP20
6M
'~~~~A
6FK20
SFL5
SFL10
SFL30
6FL40
6FL60
SFLR5
SFLR10
R
R
R
R
R
R
R
R
R
R
5
5
S
5
R
R
IR
IR
R
R
IR
IR
R
IR
IN1205A
IN120SA
IN3671A
IN3S73A
IN38B9
R
R
IR
IR
IN38SO
IN3891
R
IR
IN389~
R
R
IR
IR
IN3893
R3020512
R55
RS5
RSS
R55
RS5
12FLSO
12FLR6
12FLR10
12FLR20
12FLR30
R
R
R
R
R
IR
IR
IR
IR
IR
R3020612
IN3889R
IN38SOR
IN3891R
IN3892R
RS5
RSS
R55
RS5
R55
37RC40A
37RC50A
37RC60A
37RC90A
37REH60
5
5
IR
R13
R13
R13.
R13
R13
12FLR40
12FLR50
12FLR60
12FR5A
12FR10A
R
R
R
R
R
IR
IR
IR
IR
IR
IN3893R
R3030512
R3030S12
IN1199AR
IN1200AR
R56
R55
R55
CF
CF
37REH80
37REH100
37REH110
37REH120
37REHI30
5
IR
SOL IN3989
SOL IN3990
SOL R310120S
IR
INI341A
IR
IN1342A
R13
R13
CF
R13
R13
12FR20A
12FR30A
12FR40A
12FRSOA
12FRSOA
R
R
R
IR
IR
IR
IR
IR
IN1202AR
IN1203AR
INI204AR
IN1205AR
INI20SAR
CF
CF
CF
CF
CF
37T
38T
39T
40A50
4OA100
5
5
5
IR
INI344A
IN1345A
IN134SA
INI347A
IN3988
R13
R13
R13
R13
R13
12FR8OA
12FR100A
15PP5
lSPP10
1SPP20
R
R
A
A
A
IR
CF
CF
A3
A3
A3
40A150
4OA200
40AJOO
40A4QO
40A600
R
PPC
PPC
PPC
IN3S71AR
IN3S73AR
MBI2Al0V05
M812Al0Vl0
M812Al0V20
IN3988
IN3990
IN3881
IN3879
IN3880
R13
R13
R5S
R5S
R55
1SPP40
15PP60
1SRCIOA
16RC20A
1SRC30A
A
A
PPC
PPC
IR
IR
IR
MB12Al0V40
MB12Al0VSO
T400012208
T400022208
T400032208
A3
A3
-513
513
513
4OA600
4OH3P
4OHF5
40HFIO
40HF20
R
R
R
IN3882
IN3883
R3020606
IN3879R
IN3880R
R55
R55
R5S
R5S
RS5
16RC40A
ISRCSOA
5
5
5
SI3
513
S1.3
R13
R55
40HF30
4OHF40
4OHFSO
4OHF60
4OHF80
IR
IR
IR
IR
IR
IR
IR
IR
IR
R
R
IR
R
IR
IR
IR
R
R
T920XXIO
TA20XX12
TA20XX14
M811A06V05
MBllA06Vl0
IR
16~CSOA
20H3P
20HR3P
R
R
5
5
5
R
R
III
IR
T400042208
IR
T400052208
IR
T400062208
5AR IN1344
SAR IN3881
I
It
G22
Typo Mfll'_
Note: Manufacturer's Codes, Product Type 'Notes and@ Replacement Notes are listed on page G3
5
5
8
5
5
5
5
5
5
5
5
5
5
5
IR
IR
IR
IR
IR
IR
IR
IR
IR
IR
IR
IR
IR
IR
IR
IR
IR
IR
AS
A3
A3
TS100S5004AB 527
TSOOO88004AA 523
T500 I 08004AA 523
T500118004AA 523
T600138004AA S23
T600148OO4AA
T600168004AA
T610016007A8
T510026007A8
T510036007AB
823
823
S27
827
827
TSI 0045007AB
TS10055007AB
TS10065007AB
T500088007AA
TS1'5068004AA
S27
S27
S27
S23
CF
T505OB8004AA
T505108004AA
T60S118004AA
T50S128004AA
TS05138004AA
CF
CF
CF
CF
CF
WCE T500XX4005AA S23
WCE T500lQ(4005AA S23
WCE T500lOOlOO5AA S23
CF
CF
~ if~gt :~m~
R
R
R
R
R
R
R
R
R
R
R
SOL
SOL
SOL
SCI,L
SOL
IN1185A
IN1186A
IN1187A
IN1188A
IN1188A
CF
CF
CF
CF
CF
SOL
5AR
IR
IR
IR
IN1190
R310040B
IN1183A
INII84A
IN1188A
CF
CF
R15
R15
R15
IR
IR
IR
IR
IR
IN1187A
IN1188A
IN1189A
INll90A
R4100840
R15
R15
R16
R15
R15
Part Number
4OHF100
40HFR5 .
40HFR10
40HFR20
40HFR30
Type Mfgr.
Suggested@
Replacement
Page
Part Number
Type Mfgr.
5uggested@
Replacement
Page
Part Number
Type Mfgr.
5uggested @
Replacement
Page
R
R
R
R
R
IR
IR
IR
IR
IR
R4101040
INl183AR
IN11 B4AR
INl186AR
INl187AR
R15
R15
R15
R15
R15
55C40B
65C40F
55C401L
55C46
55C46B
5
5
5
5
5
5YN
5YN
5YN
5YN
SYN
T510048005AQ
T510048005AB
T510048006AQ
T510058006AQ
T510058005AQ
527
527
527
S27
527
70C251L
·70C30
7OC30B
7OC30F
7OC30lL
S
5
5
5
5
SYN
SYN
SYN
SYN
5YN
T51003B005AQ
T510038005AQ
T510038005AQ
T507088044AO
T510038005AQ
S27
S27
527
S27
527
4OHFR40
40HFR50
4OHFR60
4OHFR80
40HFR100
R
R
R
R
R
IR
IR
IR
IR
IR
IN11BBAR
INl189AR
INl190AR
R4110840
R4111040
R15
R15
R16
R15
R15
55C45F
55C451L
55C50
55C50B
55C60F
5
5
5
5
5
5YN
5YN
5YN
5YN
5YN
T510068005AB
T510058005AQ
T510058005AQ
T510068005AQ
T610058005AB
527
527
S27
527
S27
70C35
70C35B
7OC35F
70C361L
70C40
5
S
5
S
5
5YN
5YN
5YN
5YN
5YN
T51004B005AQ
T510048005AQ
T510048005AB
T510048005AQ
T510048005AQ
527
527
527
527
527
40HR3P
45KL10A
45KL20A
45KL30A
45KL40A
R
R
R
R
R
5AR
IR
IR
IR
IR
IN3883
R5100115
R5100215
R5100315
R5100415
R55
R23
R23
R23
R23
55C50lL
55C60
55C80B
55C6OF
55C601L
5
5
5
5
S
SYN
SYN
SYN
SYN
5YN
T510068005AQ
T510068005AQ
T510068005AQ
T510068005AB
T60006BOO6AQ
527
S27
527
S27
S27
70C40B
70C40F
70C40lL
7OC45
70C45B
S
S
S
5
5
5YN
5YN
SYN
SYN
SYN
T510048005AQ
T510048005AB
T510048006AQ
T510058005AQ
T510058005AQ
S27
527
527
527
527'
45KL50A
45KL60A
45KL60
45KL100A
45KL120A
R
R
R
R
R
IR
IR
IR
IR
IR
R5100515
R5100615
R5100B15
R5101015
R5001215
R23
R23
R23
R23
R23
55C70
55C70B
55C70F
55C70lL
55C80
5
5
5
5
5
SYN
5YN
5YN
5YN
5YN
T500078006AQ
T60007B006AQ
T500078005AA
T50007B005AQ
T60008BOO5AQ
S23
S23
523
S23
523
7OC45F
7OC451L
70C50
70C50B
7OC50F
S
S
5
5
5
5YN
SYN
SYN
5YN
5YN
T510058005AB
T510068005AQ
T510058005AQ
T510058005AQ
T51005B005AB
527
527
527
527
527
45KLR10A
45KLR20A
45KLR30A
45KLR40A
45KLR5OA
R
R
R
R
R
IR
IR
IR
IR
IR
R5110115
R5110215
R5110315
R5110415
R5110515
R23
R23
R23
R23
R23
55C80B
55C80F
55C80IL
55C90
55C90B
5
5
5
5
5
5YN
5YN
SYN
5YN
5YN
T500088005AQ
T6000B8005AA
T50008B005AQ
T500098005AQ
T500098005AQ
523
523
523
523
523
70C50lL
70C60
7OC60B
70C60F
70C6701L
5
5
5
5
5
5YN T510058005AQ S27
5YN T510068005AQ S27
5YN T510068005AQ 527
5YN T510068005AB S27
5YN T51006B005AQ 527
45KLRSOA
45KLR80A
45KLR100A
45KLR120A
45L5
R
R
IR
IR
IR
IR
IR
R5110615
R5110815
R5111015
R5011215
R5DOOO15
R23
R23
R23
R23
R23
55C90F
55C90lL
55Cl00
56Cl00B
55Cl00F
5
5
5
5
5
5YN T500098005AA
5VN T500098006AQ
5YN T50010BOO6AQ
5YN T50010B005AQ
SYN T50010B005AA
523
523
523
523
523
70C70
7OC70B
7OC70F
70C70lL
7OC80
S
S
5
5
5
SYN
5Y N
5YN
SYN
5YN
45Ll0
45L15
45L20
45L25
45L30
IR
IR
IR
IR
IR
R5DOO115
R5DO+l15
R5D00215
R5D0+215
R5D00316
R23
R23
R23
R23
R23
55Cl00IL
55Cll0
55Cll0B
55Cll0F
55CllOiL
5
5
5
5
5
5YN
5YN
SYN
5YN
5YN
T500l0B006AQ
T50011 BOO6AQ
T500118005AQ
T500118006AA
T50011 BOO6AQ
523
523
523
523
523
70C80B
7OC80F
70C80lL
7OC90
70C908
5
S
5
S
S
5YN T500088005AQ S23
5YN T50008B005AA 523
5YN T500088005AQ 523
5YN T500098004AQ 523
SYN T500098005AQ 523
45L35
45L40
45L45
45L50
45L60
IR
IR
IR
IR
IR
R5DO.316
R5D00415
R5D0+415
R5D00515
R5D00615
R23
R23
R23
R23
R23
55C120
55C120B
55C120F
55C120lL
55C130
5
5
5
5
5
5YN
5YN
5YN
5YN
5YN
T500128006AQ
T500128005AQ
T500128005AA
T500128005AQ
T50013B006AQ
523
523
523
523
523
7OC90F
7OC90IL
70Cl00
70Cl00B
7OC100F
5
S
5
5
5
SYN
SYN
SYN
5YN
5YN
T50009B006AA
T500098OC5AQ
T600108004AQ
T500108005AQ
T60010B006AA
523
523
S23
523
523
IR
IR
IR
IR
IR
R5D00715
R5D00615
R6DOO915
R5D01015
R5C01215
R23
R23
R23
R23
R23
55Cl30B
55Cl30F
55C130lL
55Cl40
55Cl40B
5
5
5
5
5
5YN
5YN
5YN
5YN
5YN
T500138006AQ
T500138005AA
T500138005AQ
T500148006AQ
T50014BOO5AQ
523
523
S23
523
S23
7OC100IL
70Cll0
7OCll0B
70Cll0F
7OCll0lL
5
5
5
S
5
5YN
SYN
5YN
SYN
SYN
T500108006AQ
T500118004AQ
T50011B006AQ
T500118006AA
T50011 BOO6AQ
S23
S23
S23
S23
S23
IR
IR
IR
IR
IR
R5Dl0015
R5Dl0115
R5Dl.116
R5Dl0215
R5Dl.215
R23
R23
R23
R23
R23
56Cl40F
55Cl40IL
55C15
55C15B
55C15F
5
5
5
5
5
5YN
5YN
5YN
5YN
5YN
T500148005AA
T5Q0148006AQ
T510028005AQ
T510028005AQ
T510028005AB
523
523
527
527
527
70C120
7OCl20B
70CI20F
7OCl20IL
7OCl30
5
S
5
5
5
SVN
SVN
5VN
SYN
5VN
T600128004AQ
T500128006AQ
T50012B006AA
T600128006AQ
T500138004AQ
S23
523
523
523
523
IR
IR
IR
IR
IR
R5Dl0315
R5Dl.315
R5D10415
R5Dl+415
R5Dl0515
R23
R23
R23
R23
R23
55C151L
55Cl50
55Cl50B
55C150F
55C1501L
5
5
5
5
5
5YN T510028005AQ 527
5YN T500158005AQ 523
5YN T500158005AQ 523
5YN T500158005AA 523
5YN T500158005AQ 523
7OCl30B
7OCl30F
70Cl30IL
7OCl40
7OCl4OB
5
5
5
5
5
5VN
5VN
5VN
5VN
5VN
T500138005AQ
T600138006AA
T50013B006AQ
T500148004AO
T500148005AO
523
S23
S23
S23
523
IR
IR
IR
IR
IR
R5Dl0615
R5Dl0715
R5Dl0B15
R5Dl0915
R5Dll015
R23
R23
R23
R23
R23
60FB05L
60FBIL
60;oB2L
60FB4L
60FB6L
A
IR
IR
IR
IR
IR
7OC14OF
7OC14OIL
7OCl50
7OCl508
70C1EOF
5
5
5
5VN
SYN
5VN
5VN
5VN
T500148006AA
T500148005AQ
T500158004AQ
T500158005AQ
T500158005AA
523
523
523
523
523
R
45L70
45L80
45L90
45Ll00
45L120
R
R
R
R
45LR5
45LR10
45LR15
45LR20
45LR25
R
R
45LR30
45LR35
45LR40
45LR45
45LR50
R
R
R
R
R
R
R
R
R
45LR60
45LR70
45LRBO
451R90
45LR100
R
R
45LR120
46T
47T
50H3P
55Cl0
R
S
IR
WCE
WCE
5AR
SYN
55Cl08
55Cl0F
55Cl01L
55C20
55C20B
5
5
.,
5
5
SYN T5l001B005AQ 527
5YN T510018005AB 527
5YN T510018005AQ $27
5YN T510028005AQ 527
5YN T5l0028005AQ 527
55C20F
55C201L
55C25
55C25B
55C25F
5
5
5
5
5
5YN
5YN
5YN
5YN
5YN
T5l0028005AB
T510028005AQ
T510038005AQ
T510038005AQ
T510038006AB
527
527
527
527
527
55C251L
55C30
55C30B
55C30F
55C301L
5
5
5
5
5
5YN
5YN
5YN
5YN
5YN
T510038005AQ
T5l0038005AQ
T5l0038005AQ
T510038005AB
T510038005AQ
55C35
55C35B
55C35F'
55C351 L
55C40
5
5
S
5
5
5YN
5YN
5YN
5YN
5YN
T510048005AQ
T510048005AQ
T510048006AB
T510048005.6.Q
T510048005AQ
R
R
R
S
5
R
R5C11215
T680XX2504BT
T680XX2504BT
IN1347A
T5l0018005AQ
A
A
A
A
MBllA06V05
MB11A06Vl0
MB11A06V20
MBllA06V40
MB11A06V60
A3
A3
A3
A3
A3
R
R
R
IR
5AR
5AR
IR
IR
MBllA06V80
IN134BA
R3020608
R34001 06
R3400206
A3
R13
R55
R9
R9
7OC161L
7OCl50ll
7OH10
70H20
7OH30
R
R
R
R
5
IR
IR
IR
IR
WCE
R3400406
R3400606
R3400806
R3400006
T680XX 1804BT
R9
R9
R9
R9
CF
70H4O
7OH50
7OH60
70H80
70Hl00
62T
70Cl0
70Cl0B
70Cl0F
70Cl0lL
5
5
5
5
5
WCE
5YN
5YN
5YN
5YN
T680XXl804BT
T51001B006AQ
T510018006AQ
T510018005AB
T510018005AQ
CF
527
527
527
527
70HR10
7OHR20
7OHR30
7OHR4O
7OHR50
527
527
527
527
527
70C15
7OC15B
70C15F
7OC20
7OC20B
5
5
5
5
5
SYN
SYN
5YN
5YN
5YN
T510028005AQ
T510028005AQ
T510028005AB
T510028005AQ
T51002B006AQ
527
527
527
527
527
7OHR60
7OHR80
7OHR100
705T
70T
527
527
527
527
527
7OC20F
7OC201L
7OC25
7OC25B
70C25F
5
5
5
5
5
5YN T51002B006AB
5YN T510028005AQ
5YN T510038005AQ
5YN T510038006AQ
5YN T510038005AB
527
527
527
527
527
7CU6
7OU10
7OU15
70U20
7OU25
R23
CF
CF
R13
527
60FBBL
60H3P
60HR3P
6051
6052
. 6054
6056
6058
60505
6IT
A
R
5
5
5
5
R
R
R
R
R
R
R
R
R
T500078004AQ
T500078005AQ
T500078005AA
T50007BOO5AQ
T50008BOO4AQ
523
523
S23
S23
S23
5VN T61002800bAU 527
5VN T500158005AQ S23
IR
R4040170
. R17
IR
R4040270
R17
IR
R5040370
R17
IR
IR
IR
IR
IR
R4040470
R4040670
R4040670
R4040870
R4041070
R17
R17
R17
R17
R17
IR
IR
IR
IR
IR
R4050170
R4050270
R4050370
R4050470
R4050570
R17
R17
R17
R17
R17
R
R
R
5
IR
IR
IR
WCE
WCE
R4050670
R4060870
R4Q61 070
T600XX1804BT
T780XX3604BV
R17
R17
R17
533
575
R
IR
IR
IR
IR
IR
R6100030
R6100130
R610.130
R8100230
R610+230
R31
R31
R31
R31
R31
R
R
R
R
5
R
R
R
R
Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on page'G3
G23
Suggested@
5uggested@)
Part Number
Type Mfgr.
Replacement
Page
Part Number
Typ~
Mfgr.
~
5
Replacemant
5uggested@)
Page
Part Number
Replacement
Page
T5OO138004AA 523
T5OO148004AA 523
T5OO158004AA 523
T510018004A8 527
T510018004AB 527
82RM60
82RM100
84T
91T
94T
5
5
5
5
5
IR
IR·
WCE
wee
WCE
IR
IR
IR
IR
IR
T51 0018007AB
T510018004AB
T510028004AB
T51 0028007AB
T510028004AB
527
527
527
527
527
lOOCl0
looCl08
IOOC15
IOOCl58
tOOC20
5
5
5
5
5
5YN T610011304BT
5YN T610011304BT
5YN T610021304BT
5YN T610021304BT
5YN T610021304BT
533
533
533
533
533
5
5
5
5
5
IR
IR
IR
IR
IR
T510038004AB
TS10036007AB
T510038004AB
T51 0046007 AB
T510048004AB
527
527
527
527
527
IOOC208
looC25
looC25B
l00c30
lOOC30B
5
5
5
5
5
5YN
5YN
5YN
5YN
5YN
T610021304BT
T610031304BT
T6100313048T
T610031304BT
T610031304BT
533
533
533
533
533
72RC5OA
72RC50B
72RC6OA
72RC60B
72RC6OA
5
5
5
5
5
IR.
IR
IR
IR
IR
T510058007AB
T510088004AB
T51 0068007AB
T510088004AB
T500086007 AA
527
527
527
527
523
1OOC3S
1ooC35B
100C40
l00c4OB
looC45
5
5
5
5
5
5YN
5YN
5YN
5YN
5YN
T610041304BT
T610041304BT
T61 004' 304BT
T610041304BT
T610051304BT .
533
533
533
533
533
R31
R31
R31
R31
R31
72REH60
72REHBO
72REHloo
72REH\10
72REHI20
5
5
5
5
5
IR
IR
IR
IR
IR
T515068004AA
T605088004AA
T505108004AA
T505118004AA
T505128004AA
CF
CF
eF
CF
CF
looC45B
looC50
looC50B
lOOC60
l00c60B
5
5
5
5
5
5YN
5YN
5YN
SYN
5YN
T610051304BT
T610051304BT
T610051304BT
T61'0061304BT
T6100813048T
533
533
533
533
533
R6011230
T510058004AQ
T510068004AQ
T500088004AQ
T500I08004AQ
R31
527
527
523
523
72REHI30
73T
74T
80H3P
BOT
5
5
5
R
5
IR
WCE
Wee
5AR
WCE
T505138004AA CF
T760XX3504BY 575
T760XX3504BY 575
RI3
IN39B8
T7S0XX3504BY 575
looC70
l00c70B
100C60
100C60B
100C90
5
5
5
5
5
5YN T800071304BT
5YN T6ooo71304BT
5YN T6ooo81304BT
5YN T600081304BT
5YN T600091304BT
533
533
533
533
533
IR
IR
IR
IR
IR
T5OO1I 8004AQ
T5OO12SOO4AQ
T5U0138004AQ
T500148004AQ
T500158004AQ
523
523
523
523
523
81RLI0
B1RL20
B1RL30
SIRL40
SIRL50
5
5
5
5
5
IR
IR
IR
IR
IR
T507018064Aq
T50702S054AQ
T50703B054AQ
T50704B054AQ
T50705B054AQ
5277
577
577
577
577
looC90B
100Cl00
100ClOOB
looCll0
I OOCI1 OB
5
5
5
5
5
5YN
5YN
5YN
5YN
5YN
T600091304BT
T600101304BT
T800101304BT
T6oo111304BT
T6oo111304BT
533
533
533
533
533
5
5
5
5
5
IR
IR
IR
IR
IR
T510058004AQ 527
527
523
T5OOI0B004AQ 523
T6ool1 BOO4AQ 523
8IRL60
SIRLBO
SIRLIOO
SIRLA50
81RLA60
5
5
5
5
5
IR
IR
IR
IR
IR
T50706B054AQ
T50708B054AQ
T507106054AQ
T510058004AQ
T51006B004AQ
577
577
577
527
527
IOOC120
IOOCl20B
l00c130
IOOCI30B
IOOCl40
5
5
5
5
5
5YN
5YN
5YN
5YN
5YN
T6oo121304BT
T6oo121304BT
T6oo131304BT
T6oo131 304BT
T6oo141304BT
533
533
533
533
533
"'RBI20
7IRBI30
71RB14O
71RBI50
71RC5B
5
5
5
5
5
IR
IR
IR
IR
IR
T5oo12B004AQ
T5oo138004AQ
T5OO148004AQ
T5OO16B004AQ
T510018007AQ
523
523
523
523
527
81RLA60
81 RLAI 00
81RLAll0
81RLA120
BIRLB50
5
5
6
5
5
IR
IR
IR
IR
IR
T600088004AQ
T5OO10B004AQ
T5oo118004AQ
T5OO128004AQ
T60705B044AQ
523
523
623
523
577
IOOCl4OB
looCI60
l00CI50B
l00H3P
looPB1P
5
5
5
R
A
5YN T6oo141304BT
5YN T6oo151304BT
5YN T6oo151304BT
5AR IN3B90
IR
MB12A1OV10
533
533
533
R13
A3
71RClOA
71RC10B
71RC15B
71 RC20B
71 RC20A
5
'5
5
5
5
IR
IR
IR
IR
IR
T51 0016007 AO
T510016007AQ
T510026007AQ
T510028007AQ
T51 0028007AO
527
527
527
527
527
81RLB60
81RLB60
81RLBloo
81 RLBl1 0
B1RLB120
5
5
5
5
5
IR
IR
IR
IR
IR
T50706B044AQ
T50708B044Aq
T50710B044AO
T507118044AO
T507128044AQ
577
577
577
577
577
looPB2P
lOOP83P
looPB4P
lOOPBSP
looPB6P
A
A
A
A
A
IR
IR
IR
.IR
IR
MB12Al0V20
MB12Al0V30
MB12A101140
MB12A101160
MB12A1OV60
A3
71 RC25B
71RC3OA
71 RC30B
71RC4OA
71RC40B
5
5
5
5
5
IR
IR
IR
IR
IR
T51003Soo7AQ
T510038007AQ
T610036007AQ
T510048007AQ
T51004Soo7AQ
527
527
527
527
527
S1RM10
81RM20
B1RM30
81RM4O
SIRM50
5
5
5
5
5
IR
IR
IR
IR
IR
T50701 BOB4AQ
T507026064AO
T50703B0B4AQ
T50704B0B4AQ
T507056064AQ
577
577
577
577
577
looP606P
101KL40515
101KL40520
101KL40530
10lKL60515
A
R
R
R
R
IR
IR
IR
IR
IR
MBI2Al0v05
R5020410FJ
R5020410EJ
R5020410CJ
R5020610FJ
A3
71 RCSOA
71 RC60B
71 RC60A
71 RC60S
5
5
5
5
IR
IR
IR
IR
TSI0058007AO
T510058007AQ
T510068007AO
T510068007AQ
527
527
527
527
SIRM60
SIRM60
S1RM100
81T
82RLI0
5
5
5
5
5
IR
IR
IR
WCE
IR
T50706B0B4AQ
T507OB8064AQ
T50710B0B4AQ
T7BOXX3504BY
T607018054AA
577
577
577
575
577
101KL60520
101KL60530
101 KLB051 5
101KL60520
·1 01 KL60530
R
R
R
R
R
IR
IR
IR
IR
IR
R5020610EJ
R50208IOCJ
R6020810FJ
R5020810EJ
R5020810CJ
R5B
R5B
R5B
R59
RSB
71 RCSOA
71REH60
71REH80
71REH100
71REHI10
5
5
5
5
5
IR
IR
IR
IR
IR
T600088007AQ
TSI5068004AQ
T505088004AO
T50510B004AQ
T605118004AQ
523
CF
CF
CF
CF
82RL20
82RL30
S2RL4O
82RLSO
82RL60
5
5
5
5
5
IR
IR
IR
IR
IR
TS0702S054AA
TS07038054AA
T507046054AA
T507056054AA
T50706B054AA
577
577
577
577
577
101KL10051S
101KLl00520
101 KL 100530
101 KL 120520
101KL120530
R
R
R
R
R
IR
IR
IR
IR
IR
RS021010FJ
R5021010EJ
R5021010CJ
R5021210EJ
RS021210CJ
RSB
R5B
R59
R5B
R5B
71REH120
71REHI30
7IT
72RA60
72RA60
5
5
5
5
5
IR
IR
WCE
IR
IR
T505128004AQ
T505138004AQ
T7BOXX3604BY
T510068004AB
T510068004AB
CF
CF
575
527
527
82RLBO
82RL100
82RLA50
82RLA60
82RLA60
5
5
5
5
5
IR
IR
IR
IR
IR
T507088054AA
T50710B054AA
T510058004AS
T510068004AB
T5ooo88004AA
577
577
527
527
523
101 KL 130530
101KL140530
101 KL 150530
101 KL 160530
101 KLR40515
R
R
R
R
R
IR
IR
IR
IR
IR
R5021310CJ
R5021410CJ
50
R5030410FJ
RS9
R6B
R59
R5B
R5B
72RA60
72RA60
72RABO
72RAl00
72RAI1 0
5
5
5
5
5
IR
IR
IR
IR
IR
T5OOO8B004AA
T510068004AB
T500088004AA
T5OOI06004AA
T5OO116004AA
523
527
523
523
523
B2RLAloo
B2RLA110
82RLA120
82RLB50
82RLB60
5
5
5
5
5
IR
IR
IR
IR
IR
T6ool08004AA
T5oo118004AA
T6oo128004AA
T50705B044AA
T507066044AA
523
523
523
577
577
101 KLR40520
101 KLR40S30
101KLR60515
101 KLR60520
101 KLR60530
R
R
R
R
R
IR
IR
IR
IR
IR
R5030410EJ
R50304IOCJ
R50306 I OFJ
R5030610EJ
R5030610CJ
R5B
R5B
R5B
R5B
R5B
72RA120
72RA130
72RAI4O
72RA150
72RB50
5
5
5
5
5
IR
IR
IR
IR
IR
T50012B004AA 523
T600138004AA 523
T50014B004AA 523
TSOOI58OO4AA 523
T510056004AB 527
82RLBBO
82RLBloo
B2RLB110
82RLB120
B2RM10
5
5
5
5
5
IR
IR
IR
IR
IR
T507088044AA 577
T507I OB044AA 577
T50711 B044AA 577
T507126044AA 577
TS0701 6064AA 577
101KLRB0515
1011<LRB0520
101 KLR60530
101KLR100515
101 KLR 100520
R
R
R
R
R
IR
IR
IR
IR
IR
R5030610FJ
R5030810EJ
R5030610CJ
R5031010FJ
R5031010EJ
R5B
R5B
RSB
R5B
RSB
72RB60
72RBBO
72RBloo
72RB110
72RB120
5
5
5
5
5
IR
IR
IR
IR
IR
TS10066004AB
T500088OO4AA
T500106004AA
T5oo11 BOO4AA
T500128OO4AA
B2RM20
82RM30
B2RM4O
B2RM50
B2RM60
5
S
5
5
5
IR
IR
IR
"lR
IR
T507026064AA
T50703B064AA
T50704B064AA
T50705B0B4AA
T50706B064AA
101 KLR 100530
101 KLR 120520
101 KLR 120530
101 KLR 130530
101 KLR 140530
R
R
R
R
R
IR
IR
IR
IR
IR
RS031010CJ
R5031210EJ
R5031210CJ
R5031310CJ
R5031410CJ
RSB
R5B
R5B
R5B
R59
7OU30
70U4O
70U45
7OU50
7OU60
R
R
R
R
R
IR
IR
IR
IR
IR
R6100330
R6100430
R610+430
R6100530
R6100830
R31
R31
R31
R31
R31
72RBI30
72RBI4O
72RBI50
72RC2B
72RC5B
IR
IR
5 . IR
IR
5
IR
5
7OU70
7OU60
7OU90
70Ul00
7OUl20
R
R
R
R
R
IR
IR
IR
IR
IR
R6100730
R6100830
R6100930
R6101030
R6oo1230
R31
R31
R31
R31
R31
72RC10A
72RC10B
72RCI5B
72RC20A
72RC208
5
5
5
5
5
7OUR5
70UR10
7OURI5
70UR20
70UR25
R
R
R
R
R
IR
IR
IR
IR
IR
R611OO30
R6110130
R611+130
R6110230
R611+230
R31
R31
R31
R31
R31
72RC25B
72RC30A
72RC30B
72RC40A
72RC40B
?OUR30
7OUR35
7OUR4O
70UR45
7OUR50
R
R
R
R
R
IR
IR
IR
IR
IR
R6110330
R611+330
R6110430
R611+430
R6110530
R31
R31
R31
R31
R31
70UR60
70UR70
7OURBO
7OUR90
7OUR100
R
R
R
R
R
IR
IR
IR
IR
R6110630
R6110730
R6110830
R6110930
R6111030
70UR120
71RA50
71RA60
71RA60
71RA100
R
5
5
5
5
IR
IR
IR
IR
IR
71 RAllO
71RA120
7IRAI30
71 RAI 40
71RAI50
5
5
5
5
5
71RB50
11RB60
71RBBO
71RBloo
71RSll0
IR
i~J88:=:8
527
523
523
523
523
577
577
577
577
577
Note: Manufacturer's Code5, Product Type Notes and@ Replacement Notes are li5ted on page G3
G24
Type Mfgr.
T507088084AA 577
T507108064AA 577
T760XX3504BY 575
T760XXU04BY 575
T760XX3504BY 575
SO
A3
A3
A3
A3
R5B
R59
R59
R5B
5uggested@
Part Number
.
Type Mfg •.
Replacement
Page
Part Number
so
5
lR
lR
IR
IR
IR
T610051303BT
T610061303BT
T600061303BT
R59
R69
533
533
533
140PM60
141AZN
141AZP
141ZNP
141ZP
101RAloo
101RA110
101RA120
107 ...............
108 ...............
5
5
5
T
T
IR
IR
IR
WE5
WE5
T6oo1013038T
T6oo1113038T
T6001213038T
CF
CF
533
533
533
CF
CF
150Cl0
150Cl0B
15OC15
15OC15B
150C20
lIB ...............
llBUA33
llBUM6
llBZN
llBZP
T
T
T
R
R
WE5
WE5
WE5
TUN
TUN
CF
CF
CF
W118ZN
W118ZP
CF
CF
CF
CF
CF
119ZN
119ZP
120H3P
125PAL10
125PAL20
R
R
R
5
5
TUN
TUN
5AR
IR
IR
125PAL3O
125PAL50
125PAL80
125PALSO
125PALloo
5
5
5
5
5
125PALB50
125PALB80
125PALB80
125PALBloo
5
5
iOl KLRI60S30
101 KLR 160530
101RA50
101RA60
lQ1RABO
RR
5
125P~L8110
5
5
5
5
125PAL8 I 20 .
125PAM10
125PAM20
125PAM30
125PAM50
5
5
5
125PAM60
126PAM80
125PAMloo
125PL10
125PL20
5
5
5
5
5
5
5
Type Mfg..
5
R
5ugge.ted@
Replacement
Page
Part Numbe.
Type Mfg..
5uggested@
Replacement Page
IR
TUN
TUN
TUN
TUN
T6270620840N
W141AZN
.lN141AZP
W141ZN
W141ZP
S87
CF
CF
CF
CF
16OLR25A
16OLR3OA
150L40A
150LR50A
150LR60A
R
R
R
R
R
IR
IR
IR
IR
IR
R5Dl +215
R5010315
R5D'0415
R5Dl0515
R5Dl0615
R23
R23
R23
R23·
R23
5VN
5VN
5VN
5VN
5VN
T81OO115048T
T81oo115048T
T61OO215048T
T61oo21504BT
T810021504BT
533
533
533
533
533
150LR70A
150LR80A
16OLR90A
150LR100A
l5OLR120A
R
R
5
5
5
R
R
R
IR
IR
IR
IR
IR
R5Dl0715
R5Dl0815
R5010915
R5011015
R5C11215
R23
R23
R23
R23
R23
150C20B
150C25
150C258
150C30
15OC30B
5
5
5
5
5
5VN
5VN
5VN
5VN
5VN
T81oo215048T
T61oo31504BT
T61oo315048T
T6100315048T
T61oo315048T
533
533
533
533
533
151-XX
151RA60
151RA60
151RABO
151RAloo
T
5
5
5
5
WE5
IR
IR
IR
IR
151.-XX
T6100515048T
T6100615048T
T6000615048T
T6001015048T
CF
533
533
533
533
W119ZN
CF
W119ZP
CF
R3101206
CF
1627012054DN 5B7
T627022054DN 5B7
150C35
150C35B
l5OC40
150C40B
150C46
5
5
5
5
5
5VN
5VN
5VN
5VN
5VN
T610041504BT
T6100415048T
T6100415048T
T6100415048T
T61OO515048T
533
533
533
533
533
151RA110
161RAl20
161RA13O
151RAI40
151RAI50
5
5
5
5
5
IR
IR
IR
IR
IR
T6001115048T 533
T6001215048T 533
T6001315048T 533
T6001415048T .533
T6001515048T 533
IR
IR
IR
IR
IR
T6270320540N
T627052054DN
T827062054DN
T627082054DN
T627102054DN
5B7
587
5B7
5B7
S87
150C45B
150C50
15OC50B
l5OC60
150C80B
5
5
5
5
5
5VN T61OO515048T
5VN T81oo515048T
5VN T81oo51504BT
5VN T6100615048T
5YN T610061504BT
533
533
533
533
533
151RB50
151RB60
151R860
151R81oo
151R8110
5
5
5
S
IR
IR
IR
IR
IR
T810061503BT
T810061503BT
T800081503BT
T600101503BT
T8oo1115038T
533
533
533
533
533
IR
IR
IR
IR
18
T6270520440N
T827062044DN
T627082044DN
T627102044DN
.T621112044DN
587
587
587
587
587
150C70
150C70B
150CBO
150C80B
150CSP
S
5
5
5
5VN
5VN
5VN
5VN
5VN
T6000715048T
T6ooo715048T
T600061504BT
T6000815048T
T6oo0915048T
533
533
533
533
533
151R8120
151R813O
151RBI40
151RB150
151.RC10
5
5
5
5
5 .
IR
IR
IR
IR
IR
T600121603BT
T8oo131503BT
16oo141603BT
T6001515038T
T61oo1·160481:
533
533
533
533
533
150C90B
150Cloo
150ClooB
15OC110
150Cl10B
5
S
5
5
S
5VN T6000915048T
5VN T6001015048T
5VN T6oo1015048T
SVN T6oo1015048T
SVN T6oo1115048T
533
533
533
533
533
151RC10A
151RC20
151 RC20A
151RC3O
151 RC30A
5
5
5
5
5
IR
IR
IR
IR
IR
T61oo115048T
T61OO216048T
T61OO216048T
T81oo315048T
T61oo31504BT
533
533
533
533
533
5
5
5
·IR
'IR
IR
IR
IR
SO
T6271220440N 587
. T627012064DN 5B7
T6270220640N 587
T6270320640N 587
T6270520640N 5B7
R
R
R
5
5
S.
5
IR
IR
IR
IR
IR
T627062064DN
T6270820640N
T627102064DN
T6270120540N
T627022054DN
587
587
5B7
587
587
150C120
150C120B
150C130
150C130B
150Cl40
S
5
5
5VN
SVN
5VN
5VN
5VN
T600 1215048T
T6oo1215048T
T6oo1315048T
T6oo131Q04I!T
T6001415048T
533
533
533
533
533
151RC40
151 RC40A
161RC50
151 RC50A
151RC80
S
5
5
IR
IR
IR
IR
IR
T6100415048T
T6100415048T
T61oo515048T
T8100515048T
T810061504BT
533
533
533
533
533
5
125PL30
125PL60
125PL60
125PL80
125PLloo
5
5
5
5
5
IR
IR
IR
IR
IR
T627032054DN
T6270620540N
T627062054DN
T6270820540N
T627102064DN
5B7
587
5B7
587
587
150Cl40B
150Cl50
l5OC150B
160Kl0A
150K15A
5
5
5
R
R
5VN T6oo141604BT
5VN T6oo1515048T
5VN T6oo1515048T
IR
R51oo115
IR
R510+115
533
533
533
R23
R23
151 RC60A
151RC80
151 RCBOA
151RF5
151RF10
5
5
5
S
5
IR
IR
IR
IR
IR
T610061504BT
T6ooo815048T
T6000616048T
T607oo15838T
T8070115638T
533
533
533
579
579
125PL110
125PL120
125PLB50
125PLB60
126PLBBO
5
5
5
5
5
IR
IR
IR
IR
IR
T6271120540N
T627122054DN
T627052044DN
T627062044DN
T627082044DN
587
587
587
587
587
150K20A
150K25A
150K3OA
150K40A
150K50A
R
R
R
R
R
IR
IR
IR
IR
IR
R51OO215
R510+215
R51oo315
R5100415
R5100515
R23
R23
R23
R23
R23
151RF15
151RF20
151RF25
151RF3O
151RF40
5
5
5
5
5
IR
IR
IR
IR
IR
T6070215638T
T6070215638T
T8070315838T
T6070315638T
T607041583BT
S79
579
579
579
579
125PLBloo
125PLB110
125PlB120
125PM10
125PM20
5
5
5
5
5
IR
IR
IR
IR
IR
T6271020440N
T62711 20440N
T627122044DN
T6270120640N
T627022064DN
587
587
587
587
587
150K80A
150K70A
150K60A
150K90A
150Kl00A
R
R
R
R
R
IR
IR
IR
IR
IR
R5100615
R51OO715
R5100815
R5100915
R5101015
R23
R23
R23
R23
R23
151RF50
151RF60
151Rl50
151Rl80
151RL80
5
5
5
5
S
IR
IR
IR
IR
IR
T5070515838T
T6070615838T
T6070515638T
T6070616638T
T6070615538T
579
579
579
579
579
126PM3O
125PM50
125PM80
126PM80 .
126PMloo
5
IR
IR
IR
IR
IR
T827032064DN
T627052064DN
T6270620640N
T6270B20640N
T627102064DN
587
587
587
587
5B7
150K12OA
150KR10A
150KR15A
150KR20A
l5OKR25A
R
R
R
R
R
IR
IR
IR
IR
IR
R5001215
R5110115
R511+115
R5110215
R511+215
R23
R23
R23
R23
R23
151RLIoo
151R110
151RL120
151RM50
151RM60
S
5
5
5
5
IR
IR
IR
IR
IR
T6071015538T
T6071115538T
T6071215538T
T8070515638T
T6070615638T
579
579
579
579
579
5
IR
IR
IR
IR
IR
T627112064DN
T6271220640N
T62701 2064DN
T627022064DN
T6270320640N
587
587
587
587
5B7
150KR3OA
150KR40A
150KR50A
150KR60A
150KR7OA
R
R
R
R
R
IR
IR
IR
IR
IR
R5110315
R5110415
R5110616
R6110615
R5110715
R23
R23
R23
R23
R23
151RM80
151RMloo
151RM110
151RM120
151-XX
5
5
S
5
T
IR
IR
IR
IR
WE5
T8070815638T
T6071015638T
T5071115638T
T6071216638T
151-XX
579
579
579
579
T15
140PAL40
140PAl50
140PAL80
140PAM10
140PAM20
5
IR
IR
IR
IR
IR
T827042064DN
T8270520640N
T827062064DN
T6270120640N
T627022084DN
587
5B7
5B7
587
587
150KRBOA
150KR9OA
160KR100A
160KR120A
150Ll0A
R
R
R
R
R
IR
IR
IR
IR
IR
R5110815
R5110915
R5111015
R5011215
R5OOO115
R23
R23
R23
R23
R23
152-XX
153-XX
154-XX
156H21
161Rll0
T
T
T
T
5
WE5
WE5
WE5
WE5
IR
152-XX
153-XX
154-XX
CF
T607011 B648T
115
117
117
CF
579
140PAM30
140PAM40
140PAM50
140PAM80
140Pll0
5
5
IR
IR
IR
IR
IR
T627032084DN
T627042084DN
T8270520840N
T827062084DN
T627012064DN
5B7
587
587
5B7
5B7
150L15A
16OL20A
150L25A
150L3OA
150L40A
R
R
R
R
R
IR
IR
IR
IR
IR
R500+115
R50oo215
R500+216
R5D00315
R5D00415
R23
R23
R23
R23
R23
161RL20
161Rl30
161Rl40
161Rl50
161RL80
5
5
5
S
5
IR
IR
IR
IR
IR
T6070218648T
T6070318648T
T8070418848T
T607051864BT
T6070818648T
579
579
579
579
579
140PL20
140PL30
140PL40
140PL60
140PL60
5
IR
IR
IR
IR
IR
T6270220640N
T627032064DN
T6270420640N
T627052064DN
T827082084DN
5B7
5B7
587
5B7
5B7
150L50A
150L80A
150L70A
150L80A
150L90A
R
R
R
R
R
IR
IR
IR
IR
IR
R5000515
R5D00615
R5OOO715
R5000815
R5000915
R23
R23
R23
R23
R23
161RM10
161RM20
161RM30
161RM40
161RM50
5
5
5
5
5
IR
IR
IR
IR
IR
T607011884BT
T807021884BT
T6070318848T
T607041 B848T
T8070518848T
579
579
579
579
579
140PM10
140PM20
140PM3O
l4OPM40
140PM50
5
IR
IR
IR
IR
IR
T827012084DN
T8270220840N
T8270320B4DN
T827042084DN
!8270520840N
5B7
5B7
587
5B7
5B7
150LlooA
150L120A
150LR10A
150LR15A
150LR20A
R
R
R
R
R
IR .
lR
IR
IR
IR
R5OO1015
R5C01215
R5Dl0115
R501+116
R6Dl0215
R23
R23
R23
R23
R23
161RM60
163-XX
164-XX
171Cl0
171Cl08
5
T
T
5
5
IR
WE5
WE5
5VN
5VN
T6070618848T 579
163-XX
T23
184-XX
T23
T62oo120040N 543
T62oo12004DN 543
125PM110
126PM120
140PAll0
140PAL20
140PAL3O
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on page G3
G25
Part Numbe,
SUllgelted@
Replacement
Type Mfg'.
Page
Part Numbe,
Type Mfg'.
T820022004DN S43
T820022004DN S43
T6200220040N S43
T620022004DN S43
T620032004DN S43
202V
202Z
202Z0
203A
203B
R
R
R
R
SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN
T620032OO4DN S43
T6200320040N 543
T620042OO40N 543
T620042OO40N 543
T6200420040N S43
T620042OO40N S43
T620052004DN 543
T620052OO40N S43
T620062OO40N 543
T620052004DN 543
2030
203F
203H
203K
203M
R
R
R
203P
2035
203V
203Z
203Z0
5
5
5
5
5
SYN
SYN
SYN
SYN
SYN
T620062004DN
T620062004DN
T6200720040N
T820072004DN
T620082004DN
543
543
543
543
543
171C80B
171C90
171C90B
171Cl00
171Cl00B
5
5
S
S
5
SYN
SYN
SYN
SYN
SYN
T6200820040N
T620092OO40N
T620092OO4DN
T620102OO40N
T6201020040N
543
543
S43
543
S43
171Cll0
171Cll0B
171C120
171C120B
171Cl30
S
5
5
5
5
SYN
SYN
5YN
SYN
SYN
171Cl30B
171Cl40
171Cl40B
171C150
171C160B
S
S
5
5
5
175PA50
175PAOO
175PAOO
175PA100
176PA110
171C15
171C15B
171C20
171C20B
171C25
171C25~
5
5
5
5
5
5
SYN
SYN
SYN
SYN
SYN
SYN
171C30
171C30B
171C35
171C35B
171C40
171C40B
171C45
171C45B
171C50
171C5OB
5
5
5
5
5
5
5
5
5
5
171 COO
171COOB
171C70
171C7OB
171 COO
Suggelted@
Replacement
P8ge
Part Number
Sugg_@
Replacement Page
WES
WES
WES
WES
WES
202V
202Z
202Z0
203A
203B
CF
CF
CF
CF
CF
213P51
2135
213551
213V
213V51
5
5
5
5
5
WES
WES
WES
WES
WES
213P51
2135
213551
213V
213V51
CF
CF
CF
CF
CF
R
WES
WES
WES
WES
WES
2030
203F
203H
203K
203M
CF
CF
CF
CF
CF
213Z
213Z51
21SA
21SB
21SC
5
5
5
5
5
WES
WES
WES
WES
WES
2132
213251
21SA
21SB
218C
CF
CF
CF
CF
CF
R
R
R
R
R
WES
WES
WES
WES
WES
203P
2035
203V
203Z
203Z0
CF
CF
CF
CF
CF
21S0
21BE
21SF
21SH
218K
5
5
5
5
5
WES
WES
WES
WES
WES
21S0
21SE
218F
218H
218K
CF
CF
CF
CF
CF
209A
209B
209C
2090
209E
5
5
5
5
5
WES
WES
WES
WES
WES
209A
209B
209C
2090
209E
CF
CF
CF
CF
CF
21SM
21SP
21SS
21BV
21SZ
5
5
5
5
5
WES
WES
WES
WES
WES
218M
218P
2185
21SV
2182
CF
CF
CF
CF
CF
209F
209H
209K
209M
209P
5
5
S
S
5
WES
WES
WES
WE5
WES
209F
209H
209K
209M
209P
CF
CF
CF
CF
CF
218ZB
218Z0
218ZF
21S2H
218lK
5
S
S
5
S
WES
WES
WES
WES
WES
218ZB
21810
2182F
218ZH
21SZK
CF
CF
CF
CF
CF
T6201120040N 543
T6201120040N S43
T6201220040N S43
T6201220040N 543
T6201320040N 543
209S
209V
208Z
208ZB
20920
S
5
S
5
5
WE5
WE5
WES
WES
WES
209S
209V
2092
2092B
208Z0
CF
CF
CF
CF
CF
218ZM
219A
219A51
219B
219B51
5
5
S
S
S
WES
WE5
WES
WES
WES
218ZM
219A
219A51
219B
219B51
CF
CF
CF
CF
CF
SYN
SYN
SYN
SYN
SYN
T6201320040N
T6201420020N
T6201420040N
T620162004DN
T6201520040N
208ZF
208ZH
2092K
209ZM
211A
S
S
5
5
5
WES
WES
WES
WES
WES
2092F
209ZH
208ZK
209ZM
211A
CF
CF
CF
CF
CF
219C
219C51
2190
219051
2l9E
S
5
5
5
5
WES
WE5
WES
WE5
WES
219C
219C51
2190
219051
219E
CF·
CF
CF
CF
CF
5
5
5
5
5
IR
IR
IR
IR
IR
T6200520030N
T6200620030N
T6200820030N
T620102003DN
T620112003DN
543
543
543
543
S43
211B
211C
2110
211E
211F
5
5
5
5
5
WES
WES
WES
WES
WES
211B
211C
2110
211E
211F
CF
CF
CF
CF
CF
219E51
219F
219F51
219H
219H51
5
S
5
5
5
WE5
WES
WES
WES
WES
219E51
219F
219F51
219H
219H51
CF
CF
CF
CF
CF
175PA120
175PA130
175PAl40
175PA150
175RA50
5
5
5
5
5
IR
IR
IR
IR
IR
T6201220030N S43
T6201320030N S43
T6201420030N 543
T6201520030N 543
T61 0051 S04BT 533
211H
211K
211M
211P
2115
5
5
5
5
5
WES
WES
WES
WES
WES
211H
211K
211M
211P
2115
CF
CF
CF
CF
CF
219K
219K51
219M
219M51
219P
5
S
5
5
S
WES
WES
WES
WE5
WES
219K
219K51
219M
219M51
219P
CF
CF
CF
CF
CF
175RAOO
175RASO
175RA100
175RAll0
175RAl20
5
5
5
5
5
IR
IR
IR
IR
IR
T6100B1804BT
T6000818048T
T600101804BT
T600111804BT
T600121804BT
533
533
533
533
533
211V
211Z
211lB
21110
211lF
5
5
5
5
5
WES
WES
WES
WES
WES
211V
211Z
211Z8
211Z0
211ZF
CF
CF
CF
CF
CF
219P51
2195
219551
219V
219V51
S
5
5
5
5
WES
WES
WE5
WES
WES
219P51
2195
219551
219V
219V51
CF
CF
CF,
CF
CF
2OOUB5
200UB10
200UB20
200UB30
200UB40
R
R
R
R
R
IR
IR
IR
IR
IR
R6100020
R6100120
R6100220
R6100320
R6100420
R31
R31
R31
R31
R31
211ZH
2112K
2112M
212A
212B
5
5
5
5
5
WES
WES
WES
WES
WES
211ZH
211ZK
211ZM
212A
212B
CF
CF
CF
CF
CF
219Z
219Z51
219Z8
WES
WE5
WES
WES
WES
219Z
219Z51
219Z0
5
5
5
S
5
2192B51
219Z0
CF
CF
CF
CF
CF
200UB50
200U860
200UBR5
200UBR10
200UBR20
R
R
R
R
R
IR
IR
IR
IR
IR
R6100620
R6100620
R6110020
R6110120
R6110220
R31
R31
R31
R31
R31
212C
2120
212E
212F
212H
5
5
5
5
S'
WES
WES
WES
WES
WES
212C
2120
212E
212F
212H
CF
CF
CF
CF
CF
219Z051
219ZF
219ZF51
219ZH
219ZH51
5
5
S
5
5
WES
WE5
WES
WES
WE5
2192051
219ZF
219ZF51
219ZH
219ZH51
CF
CF
CF
CF
CF
200UBR30
200UBR40
200UBR50
200UBR60
201A
R
R
R
R
R
IR
IR
IR
IR
WES
R6110320
R6110420
R6110520
R6110620
201A
R31
R31
R31
R31
CF
212K
212M
212P
2125
212V
5
5
S
5
5
WES
WES
WES
WES
WES
212K
212M
212P
2125
212V
CF
CF
CF
CF
CF
219ZK
219ZK51
219ZM
219ZM51
220A
5
5
5
5
5
WES
WE5
WES
WE5
WE5
219ZK
219ZK51
219lM
219ZM51
220A
CF
CF
CF
CF
CF
201B
2010
201F
201H
201K
R
R
R
R
R
WE5
WES
WES
WE5
WES
2018
2010
201F
201H
201K
CF
CF
CF
CF
CF
212Z
213A
213A51
213B
213B51
5
5
5
5
5
WES
WES
WES
WE5
WES
2122
213A
213A51
213B
213B51
CF
CF
CF
CF
CF
2208
2200
220F
220H
220K
5
5
5
5
5
WE5
WES
WE5
WE5
WES
2208
2200
220F
220H
220K
CF
CF
CF
CF
CF
201M
201P
2015
201V
2012
R
R
R
R
R
WES
WE5
WES
WES
WES
201M
201P
2015
201V
213C
213C!>1
2130
213051
213E
5
5
5
5
5
WES
WES
WES
WES
WES
213C
213C51
2130
213051
213E
CF
CF
CF
CF
CF
220M
2205
201l
CF
CF
CF
CF
CF
nop
nov
220Z
5
5
5
5
5
WES
WES
WES
WES
WES
220M
220P
220S
220V
220Z
CF
CF
CF
CF
CF
20120
202A
202B
2020
202F
R
R
R
R
R
WES
WES
WE5
WES
WES
20120
202A
2028
2020
202F
CF
CF
CF
CF
CF
213E51
213F
213F51
213H
213H51
5
S
5
5
S
WES
WES
WES
WES
WES
213E51
213F
213F51
213H
213H51
CF
CF
CF
CF
CF
220ZB
220Z0
220ZF
220ZH
220ZK
5
5
S
S
S
WES
WES
WES
WES
WE5
220ZB
22OZ0
220ZF
220ZH
220ZK
CF
CF
CF
CF
CF
CF
CF
CF
CF
213K
213K51
213M
213M51
213P
S
S
S
S
5
WES
WES
WES
WES
WES
213K
213K51
213M
213M51
213P
CF
CF
CF
CF
CF
220ZM
221ZB
2212F
221ZH
221ZK
5
S
5
S
S
WES
WES
WES
WES
WES
220ZM
CF
CF
CF
CF
CF
CF
CF
CF
CF
202H
202K
202M
202P
202S
R
R
R
R
R
T62Q03~ON
WE5
WES
WES
WES
WES
202H
202K
202M
202P
202S
S43
S43
543
S43
S43
543
R
R
2191851
Note: Manufacturer"s Codes, Product Type Notes and@Replacement Notes are listed on page G3
G26
Type Mfg'.
21918
CF
Sugge.ted@
Sugge.ted@
Part Number
221ZM
222A
222B
222C
2220
Type Mfgr.
Replacement
Page
Part Number
Type Mfgr.
Replacement
Suggested@
Page
Part Number
Type Mfgr.
Replacement
Page
S
5
S
5
S
WES
WE5
WES
WES
WES
CF
222A
222B
222C
2220
CF
CF
CF
CF
CF
229E
229F
229H
229K
229M
S
S
5
S
S
WES
WE5
WE5
WES
WE5
229E
229F
229H
229K
229M
CF
CF
CF
CF
CF
242T
244T
250A
250A51
250B
S
5
5
S
S
WCE
WCE
WE5
WES
WES
CF
CF
250A
250A51
250B
CF
CF
CF
CF
CF
222F
222H
222K
222M
222P
S
5
S
5
S
WES
WES
WES
WES
WES
222F
222H
222K
222M
222P
CF
CF
CF
CF
CF
229P
2295
229V
2292
2292B
5
5
5
5
5
WE5
WE5
WE5
WES
WE5
229P
2295
229V
229Z
229ZB
CF
CF
CF
CF
CF
250B51
250C
25OC51
2500
250051
S
S
5
S
S
WE5
WES
WE5
WES
WES
250851
250C
250C51
2500
250051
CF
CF
CF
CF
CF
222S
222V
2222
2222B
222Z0
S
S
S
5
5
WES
WES'
WES
WES
WES
222S
222V
222Z
222ZB
222Z0
CF
CF
CF
CF
CF
229Z0
229ZF
2292H
229ZK
229ZM
5
5
S
5
S
WES
WE5
WE5
WE5
WE5
229Z0
229ZF
229ZH
229ZK
229ZM
CF
CF
CF
CF
r.F
250E
250E51
250F
250F51
25OJB1P
S
S
S
S
A
WES
WES
WES
WES
IR
250E
250E51
250F
250F51
MB12A25Vl0
CF
CF
CF
CF
A3
222ZF
222ZH
222ZK
222ZM
2230
S
S
S
S
5
WES
WES
WES
WES
WES
222ZF
222ZH
222ZK
222ZM
2230
CF
CF
CF
CF
CF
231T
233T
234T
240A
2408
5
5
5
5
S
WCE
WCE
WCE
WE5
WES
CF
CF
CF
T4OOoo22
T4OO0122
CF
CF
CF
513
S13
25OJB2P
25OJB3P
25OJB4P
25OJB5P
25OJB6P
A
A
A
A
A
IR
IR
IR
IR
IR
MB12A25V20
MBl2A25V30
MB12A25V40
MB12A25V50
MBI2A25V60
A3
A3
223F
223H
223K
223M
223P
5
S
S
S
5
WES
WE5
WES
WES
WE5
223F
223H
223K
223M
223P
CF
CF
CF
CF
CF
2400
240F
240H
240M
240P
S
S
S
5
5
WES
WE5
WE5
WE5
WE5
T4oo0222
T4oo0322
T4000422
T4000622
T4ooo722
S13
S13
S13
513
513
25OJB05P
250K
250K51
250M
250M 51
A
5
5
5
S
IR
WES
WE5
WE5
"",E5
MB12A25V05
250K
250K51
250M
250M51
A3
CF
CF
CF
CF
223S
223V
223Z
223ZB
223Z0
5
S
5
S
S
WES
WES
WES
WES
WES
223S
223V
223Z
223ZB
223Z0
CF
CF
CF
CF
CF
240PAL10
240PAL20
240PAL30
24OPAL4O
24OPAL50
5
5
S
S
5
IR
IR
IR
IR
IR
T6270125640N 587
T6270225640N 587
T6270325640N 587
T6270425640N 587
T6270525640N S87
250P
250P51
250PA50
250PA60
250PA80
5
5
5
5
5
WE5
WES
IR
IR
IR
250P
250P51
T62oo530040N
T6200630040N
T6200830040N
CF
CF
S43
543
S43
223ZF
223ZH
223ZK
223ZM
224B
S
5
S
S
S
WE5
WES
WES
WES
WES
223ZF
223ZH
223ZK
223ZM
224B
CF
CF
CF
CF
CF
24OPAL60
24OPAL80
24OPALloo
240PAM10
24OPAM20
5
S
5
5
S
IR
IR
IR
IR
IR
T6270625640N
T6270825640N
T6271025640N
T6270125840N
T6270225840N
SB7
5B7
587
587
587
250PAloo
250PAll0
250PA120
250PA130
250PA14O
5
5
5
5
5
IR
IR
IR
IR
IR
T6201030040N
T620113OO40N
T6201230040N
T6201330040N
T6201430040N
S43
543
543
543
543
2240
224F
224H
224K
224M
5
S
S
5
5
WES
WES
WES
WES
WES
2240
224F
224H
224K
224M
CF
CF
CF
CF
CF
240PAM30
24OPAM40
24OPAM50
24OPAM60
24OPAM80
5
S
5
5
5
IR
IR
IR
IR
IR
T6270325840N
T6270425B40N
T6270525B40N
T6270625840N
T6270825840N
587
587
S87
587
S87
250PA150
250PA160
250PAC10
250PAC20
250PAC30
5
S
S
5
S
IR
IR
IR
IR
IR
T6201530040N
T6201630040N
T6200130040N
T6200230040N
T6200330040N
543
S43
S43
S43
543
224P
224S
224V
224Z
224Z0
5
S
5
5
5
WES
WES
WE5
WE5
WE5
224P
224S
224V
224Z
224Z0
CF
CF
CF
CF
CF
2405
240V
240M
240Z
240ZB
5
5
5
5
5
WE5
WE5
WES
WES
WES
T4000822
T4ooo922
T4oo0622
T4oo1022
T4oo1122
513
S13
S13
513
513
250PAC4O
250PAC50
250PAC60
250PAL10
250PAL20
S
S
S
5
5
IR
IR
IR
IR
IR
T6200430040N
T6200530040N
T6200630040N
T6270125540N
T6270225540N
543
S43
543
587
S87
224ZH
224ZM
227A
2278
227C
S
S
S
S
5
WE5
WES
WE5
WE5
WE5
224ZH
224ZM
227A
227B
227C
CF
CF
CF
CF
CF
24OZ0
241Cl0
241Cl0B
241C15
241C15B
5
5
5
5
S
WE5
5YN 5YN
5YN
SYN
T4oo1222
T62oo130040N
T62oo130040N
T6200230040N
T6200230040N
513
543
S43
543
543
250PAL30
250PAL4O
250PAL50
250PAL60
250PAM10
5
5
5
S
S
IR
IR
IR
IR
IR
T6270325540N
T6270425540N
T6270525540N
T6270625540N
T6270125B40N
587
587
587
587
S87
2270
227E
227F
227H
227K
5
5
S
S
5
WE5
WE5
WE5
WE5
WES
2270
227E
227F
227H
227K
CF
CF
CF
CF
CF
241C20
241C20B
241C25
241C25B
241C30
5
5
S
5
5
5YN T62OO230040N 543
5YN T62oo230040N 543
5YN T62oo330040N 543
5YN T62oo330040N 543
SYN T62oo330040N 543
250PAM20
250PAM30
250PAM40
250PAM50
250PAM60
S
S
5
5
5
IR
IR
IR
IR
IR
T6270225B40N
T6270325B40N
T6270425B4DN
T6270525B40N
T6270625B40N
587
587
587
587
587
227M
227P
2275
227V
227Z
S
S
5
S
S
WE5
WE5
WES
WE5
WE5
227M
227P
2275
227V
227Z
CF
CF
CF
CF
CF
241C30B
241C35
241C35B
241C4O
241C4OB
5
S
S
5
S
SYN
5YN
5YN
SYN
SYN
T62OO330040N
T6200430040N
T6200430040N
T6200430040N
T6200430040N
543
543
S43
S43
S43
250RA10
250RA20
250RA30
250RA40
250RA50
5
5
S
S
S
IR
IR
IR
IR
IR
T7ooo12504BY
T7oo022504BY
T7ooo32504BY
T7oo042504BY
T700052504BY
537
537
S37
S37
S37
227ZB
227Z0
227ZF
227ZH
227ZK
5
S
S
5
S
WE5
WES
WE5
WE5
WES
227ZB
227Z0
227ZF
227ZH
227ZK
CF
CF
CF
CF
CF
241C45
241C45B
241C50
241C50B
241C60
S
S
5
5
5
5YN T62OO530040N
SYN T62OO530040N
5YN T6200530040N
5YN T6200530040N
5YN T62oo630040N
543
S43
543
543
S43
250RA60
250RA80
250RA100
250RAll0
250RA120
S
5
S
5
5
IR
IR
IR
IR
IR
T700062504BY
T7oo082504BY
T7oo102504BY
T7oo112504BY
T7oo122504BY
S37
537
537
537
S37
228A
2288
2280
228F
228H
5
S
S
5
5
WE5
WE5
WE5
WE5
WE5
228A
228B
2280
22SF
228H
CF
CF
CF
CF
CF
241C60B
241C70
241C70B
241C80
241C80B
5
5
5
5
5
5YN T6200630040N
5YN T6200730040N
5YN T6200730040N
5YN T6200830040N
5YN T6200830040N
543
S43
543
543
543
250RAl30
250RA14O
250RA150
250RAl60
250RA170
5
S
5
5
5
IR
IR
IR
IR
IR
T700132504BY
T7oo142504BY
T7oo152504BY
T7oo162504BY
T7oo172504BY
S37
S37
537
S37
537
228K
228M
228P
228S
228V
S
S
5
5
5
WE5
WE5
WE5
WE5
WES
228K
228M
228P
2285
228V
CF
CF
CF
CF
CF
241C90
241C90B
241Cl00
241ClOOB
241Cl10
S
5
S
S
S
5YN T62oo930040N
5YN T62oo930040N
5YN T6201030040N
5YN T620 1030040N
SYN T620113OO40N
543
543
543
S43
543
250RL60
250RL80
250RLloo
250RL 110
250RL120
S
5
S
5
S
IR
IR
IR
IR
IR
T707063024BY
T707083024BY
T707103024BY
T707113024BY
T707123024BY
581
SBI
S81
SBI
581
228Z
228ZB
228Z0
228ZF
228ZH
5
5
5
5
5
WE5
WE5
WES
WE5
WE5
228Z
228ZB
228Z0
228ZF
228ZH
CF
CF
CF
CF
CF
241Cl10B
241C120
241C1208
241C130
241C130B
5
S
S
SYN
5YN
SYN
SYN
SYN
T6201130040N
T6201230040N
T6201230040N
T6201330040N
T6201330040N
S43
S43
543
S43
543
250S
250551
250V
250V51
250Z
S
S
5
S
S
WES
WE5
WES
WES
WES
250S
250S51
250V
250V51
250Z
CF
CF
CF
CF
CF
228ZK
228ZM
229A
229B
2290
5
WES
WE5
WE5
WE5
WE5
228ZK
228ZM
229A
229B
2290
CF
CF
CF
CF
CF
241C14O
241C140B
241C150
241C150B
241T
S
5
SYN
SYN
SYN
SYN
WCE
T6201430040N
T620143004DN
T6201530040N
T6201530040N
CF
543
S43
543
S43
CF
250Z51
250ZB
25OZB51
250Z0
25OZ051
S
S
S
S
5
WES
WES
WES
WES
WES
25OZ51
250ZB
250ZB51
25OZ0
25OZ051
CF
CF
CF
CF
CF
S
5
5
5
i"
\'
1
S
S
S
S
S
A3
A3
A3
Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are li5ted on pageG3
G27
Suggested@
Replacement
Type Mfg,.
Suggested@
Replacement
Part Number
Type Mfg,.
254851
254C
254C51
2540
254051
CF
CF
CF
CF
CF
263V
263Z
263Z8
263Z0
263ZF
S
S
S
S
5
WES
WES
WE5
WE5
WES
263V
263Z'
263Z8
263Z0
263ZF
CF
CF
CF
CF
CF
WES
WE5
WES
WES
WES
254E
254E51
254F
254F51
254H
CF
CF
CF
CF
CF
263ZH
263ZK
263ZM
270A
2708
5
S
5
5
5
WES
WES
WE5
WES
WES
263ZH
263ZK
263ZM
270A
2708
CF
CF
CF
CF
CF
5
S
S
S
S
WES
WES
WES
WES
WES
254H51
254K
254K51
254P
254P51
CF
CF
CF
CF
CF
270C
270P
270S
270V
270Y30860
5'
S
S
S
S
WES
WES
WES
WES
WES
270C
270P
270S
270V
270Y30860
CF
CF
CF
CF
CF
254V
254V51
254Z
254Z51
254Z8
5
S
S
S
S
WES
WES
WES
WES
WES
254V
254V51
254Z
264Z51
254Z8
CF
CF
CF
CF
CF
270Y30870
270Y30880
270Y30890
270Y3OC10
270Y30Cl1
S
S
S
S
S
WES
WES
WES
WES
WES
270Y30870
270Y30880
270Y308go
270Y3OC10
270Y30Cl1
Cf
CF
CF
CF
CF
CF
CF
CF
CF
CF
254Z851
254ZF
254ZF51
254ZH
254ZH51
S
S
5
5
S
WES
WES
WES
WE5
WE5
254Z851
264ZF
254ZF61
254ZH
254ZH61
CF
CF
CF
CF
CF
270Y3OC12
270Y30C13
270Y30C14
270Y3OC15
270Y3OC16
S
S
S
S
5
WES
WES
WE5
WE5
WE5
270Y30C12
270Y30C13
270Y3OC14
270Y30C16
270Y30C16
CF
CF
CF
CF
CF
251M51
251P
251P51
251S
251551
CF
CF
CF
CF
CF
254ZK
254ZK51
Z56T
258T
280A
S
S
S
5
S
WE5
WE5
WCE
WCE
WE5
254ZK
254ZK51
CF
CF
260A
CF
CF
CF
CF
CF
270Y30C17
270Y30C18
270Y30C19
270Y30C20
270Z
S
S
5
S
5
WES
WE5
WES
WES
WE5
270Y3OC17
270Y3OC18
270Y3OC19
270Y30C20
270l
CF
CF
CF
CF
CF
IR
IR
IR
IR
IR
R6020425FJ
R6020425EJ
R6020425CJ
R6020625FJ
R6020625EJ
R63
R63
R63
R63
R63
2808
2600
280F
260H
260K
S
S
S
S
S
WE5
WE5
WES
WES
WES
2608
2600
280F
260H
280K
CF
CF
CF
CF
CF
27Ol8
27Ol0
270lF
270ZH
270ZK
5
5
5
5
S
WE5
WE5
WE5
WES
WES
270Z8
27Ol0
270ZF
270ZH
270ZK
CF
CF
CF
CF
CF
R
R
R
R
R
IR
IR
IR
IR
IR
R6020625CJ
R6020825FJ
R6020825EJ
R6020825CJ
R6021025FJ
R63
R63
R63
R63
R63
280M
260P
280RL10
280RL20
260RL3O
5
S
S
S
S
WES
WES
IR
IR
IR
280M
280P
T7070133648Y
T7070233648Y
T7070333648Y
CF
CF
581
581
581
i71A
2718
271C
2710
271F
S
5
S
S
S
WES
WES
WES
WE5
WE5
271A
2718
271C
2710
271F
CF
CF
CF
CF
CF
251 UL100S20
251 UL100S3O
251UL120520
251UL12OS3O
251 UL130530
R
R
R
R
R
IR
IR
IR
IR
IR
R6021025EJ
R6021025CJ
R8021225EJ
R8021225CJ
R6021325CJ
R63
R63
R63
R63
R63
280RL4D
260RL60
280RL80
280RM10
280RM20
S
S
5
5
5
IR
IR
IR
IR
IR
T7070433648Y
T7070633648Y
T7070633648Y
T7070133848Y
T7070233848Y
S81
581
581
581
S81
271H
271K
271M
271P
2715
S
S
5
S
5
WES
WE5
WE5
WE5
WE5
271H
271K
271M
271P
2715
CF
CF
CF
CF
CF
261 UL140530
251 UL150S3O
251UL 160530
251 ULR40S16
261ULR40S20
R
R
R
'R
R
IR
IR
IR
IR
IR
R8021425CJ
R8021525CJ
R6021625CJ
R6030425FJ
R8030425EJ
R63
R63
R63
R63
R63
260RM30
260RM40
260RM50
260RM60
260V
5
5
5
S
5
IR
IR
IR
IR
WE5
T7070333648Y
T7070433848Y
T7070633848Y
T7070633648Y
260V
581
581
S81
581
CF
271V
271Z
271Z8
271Z0
271ZF
5
5
5
S
5
WES
WE5
WE5
WE5
WE5
271V
271Z
271Z8
271Z0
271ZF
CF
CF
CF
CF
CF
251 ULR40S30
251 ULR60S15
251 ULR60S20
251 ULR60S30
251 ULR60S15
R
R
R
R
R
IR
IR
IR
IR
IR
R8030426CJ
R6030625FJ
R6030625EJ
R6030625CJ
R8030825FJ
R63
R63
R63
R63
R63
260Z
260Z8
260Z0
260ZF
260lH
5
5
5
5
S
WES
WES
WES
WES
WES
260Z
26Ol8
26Ol0
260ZF
260ZH
CF
CF
CF
CF
CF
271ZH
272 ..............
272A
2728
272C
5
5
S
5
5
WES
WES
WE5
WES
WES
271ZH
CF
272A
2728
272C
CF
CF
CF
CF
CF
251 ULR60S20
251 ULR80530
251ULR100516
251ULR100S20
251ULR100S30
R
R
R
R
R
IR
IR
IR
IR
IR
R6030825EJ
R6030625CJ
R8031025FJ
R6031025EJ
R6031025CJ
R63
R63
R63
R63
R63
260lK
260ZM
261 •......•...•.•
261A
2618
S
S
5
5
5
WES
WES
WES
WES
WES
260ZK
260ZM
CF
261A
2618
CF
CF
CF
CF
CF
2720
272F
272H
272K
272M
S
S
5
5
S
WES
WE5
WES
WE5
WE5
2720
272F
272H
272K
272M
CF
CF
CF
CF
CF
251ULR 120520
251 ULR12OS30
261 ULR 130530
261ULRl40S30
251ULR160S30
R
R
R
R
R
IR
IR
IR
IR
IR
R8031225EJ
R6031225CJ
R6031325CJ
R6031425CJ
R6031525CJ
R63
R63
R63
R63
R63
2610
261F
261H
261K
261M
5
5
5
5
5
WES
WES
WES
WES
WES
2610
261F
261H
261K
261M
CF
CF
CF
CF
CF
272P
272S
272V
272Z
272Z8
S
5
5
S
5
WES
WE5
WES
WE5
WES
272P
2725
272V
272Z
272Z8
CF
CF
CF
CF
CF
261 ULR 160530
261V
261V51
261Z
261Z61
R
5
5
5
5
IR
WES
WES
WES
WES
R6031625CJ
251V
251V51
251Z
261Z51
R63
R63
CF
CF
CF
261P
2615
261V
261Z
261Z8
S
S
S
S
5
WES
WES
WES
WES
WES
261P
2615
261V
261Z
261Z8
CF
CF
CF
CF
CF
272Z0
272ZF
272ZH
273 ..............
273A
5
S
5
5
5
WE5
WE5
WES
WES
WE5
272Z0
272ZF
272ZH
CF
273A
CF
CF
CF
CF
CF
251Z8
251Z851
251Z0
251Z061
261ZF
S
5
5
5
5
WE5
WE5
WE5
WE5
WE5
251Z8
261Z861
251Z0
251Z051
251ZF
CF
CF
CF
CF
CF
261Z0
261ZF
261ZH
261ZK
261ZM
S
S
S
5
5
WES
WES
WES
WES
WES
261Z0
261ZF
261ZH
261ZK
261ZM
CF
CF
CF
CF
CF
2738
2730
273F
273H
273K
5
5
5
5
5
WE5
WES
WE5
WE5
WE5
2738
2730
273F
273H
273K
CF
CF
CF
CF
CF
261ZF61
261ZH
261ZH61
251ZK
251ZK51
5
S
5.
5
5
WE5 251ZF51
WE5 251ZH
wes 261ZH51
WE5 251ZK
WE5 251ZK51
CF
CF
CF
CF
CF
263A
2638
263C
263E
263F
S
5
S
S
5
WES
WES
WES
WES
WES
263A
2638
263C
263E
263F
CF
CF
CF
CF
CF
273M
273P
2735
273V
273Z
5
S
5
5
5
WES
WES
WE5
WE5'
WES
273M
273P
2735
273V
273Z
CF
CF
CF
CF
CF
261ZM
251ZM51
254A
254A51
2548
S
5
S
S
5
WE5
WES
WES
WES
WE5
CF
CF
CF
CF
CF
263H
263K
263M
263P
2635
S
5
S
5
5
WES
WES
WES
WES
WES
263H
263K
263M
263P
2635
CF
CF
CF
CF
CF
273Z8
273Z0
273ZF
273ZH
273ZK
S
S
S
S
S
WES
WE5
WES
WES
WES
273Z8
273Z0
273ZF
273ZH
273ZK
CF
CF
CF
CF
CF
Type Mfg,.
250ZF
25OlF51
250ZH
250ZH61
250lK
S
S
S
5
S
WES
WES
WES
WE5
WES
250ZF
250ZF61
250lH
250ZH51
250lK
CF
CF
CF
CF
CF
254851
254C
254C51
2540
254051
S
S
5
5
S
WES
WES
WES
WE5
WE5
250ZK51
250ZM
250ZM51
251A
251A51
S
S
S
S
S
WES
WES
WES
WES
WES
250ZK61
250ZM
250ZM51
251A
251A51
CF
CF
CF
CF
CF
254E
254E51
254F
254F51
254H
S
5
S
S
S
2518
251861
251C
251C51
2510
S
S
S
S
S
WE5
WES
WES
WES
WES
2518
251861
251C
251C51
2510
CF
CF
CF
CF
CF
254H51
254K
254K51
254P
254P51
251051
251E
251E51
261F
251F51
S
S
S
S
S
WES
WES
WES
WES
WES
251051
251E
251E51
251F
251F51
CF
CF
CF
CF
CF
251H
251H51
251K
261K61
251M
S
S
S
5
5.
WES
WES
WES
WES
WES
251H
261H61
261K
261K51
251M
251M51
251P
251P51
251S
251561
S'
S
5
5
S
WES
WE5
WE5
WE5
WE5
251UL40515
251UL40520
251UL40S30
251UL80515
251UL80520
S
R
R
R
R
251UL6OS30
251UL80515
251UL80S20
251UL80S30
251UL100515
251ZM
251ZM51
254A
254A51
2548
Page
Note: Manufacturer's Codes, Product Tvpe Notes·.and@ Replacement Notes are listed on page G3
G28
Sugge.ted @
Replacement
Page
Part Number
Part Number
Pege
Suggested@
Suggested@
Part Number
Type Mfgr.
Replacement
Page
Part Number
Type Mfg •.
Replacement
Page
Part Number
273ZM
275U5A
275Ul0A
275U15A
275U20A
S
R
R
R
R
WE5
IR
IR
IR
IR
2732M
IN4044
IN4045
IN4046
IN4047
CF
R29
R29
R29
R29
283Z0
283ZF
283ZH
2868
2860
S
S
5
S
5
WE5
WES
WES 2832H
WES 2868
WES 2860
~:~~
CF
CF
CF
CF
CF
3OORAI30
3OORAl40
3OORAl50
3OORAl60
3OORA170
275U25A
275U30A
275U40A
275U5OA
275U60A
R
R
R
R
R
IR
IR
IR
IR
IR
IN4048
IN4049
IN4050
IN4051
IN4052
R29
R29
R29
R29
R29
286F
286H
286K
286M
286P
S
S
S
S
5
WE5
WES
WE5
WE5
WE5
286F
286H
286K
286M
286P
CF
CF
CF
CF
CF
3OORB10
3OORB20
300RB30
3OORB40
3OORB50
275U70A
275U8OA
275U9OA
275UlOOA
275Ul lOA
R
R
R
R
R
IR
IR
IR
IR
IR
IN4053
IN4054
IN4055
IN4056
R6oo1 I 28
R29
R29
R29
R29
CF
286S
286V
286Y30860
286Y30B70
286Y30880
S
5
5
5
5
WES
WE5
WE5
WE5
WE5
2865
286V
286Y30B60
286Y30B70
286Y308BO
CF
CF
CF
CF
CF
300RB60
3OORBBO
300RBIOO
300RB110
3OORB120
275U120A
275UR5A
275UR10A
275UR15A
275UR20A
R
R
R
R
R
IR
IR
IR
IR
IR
R6oo1228
IN4044R
IN4045R
IN4046R
IN4047R
CF
R29
R29
R29
R29
286Y3OB90
286Y30Cl0
286Y3OCI I
286Y3OC12
286Y3OC13
5
5
5
5
5
WE5
WE5
WE5
WE5
WE5
286Y30B90
286Y3OC10
286Y3OC11
286Y3OCl2
286Y30C13
CF
CF
CF
CF
CF
3OORB130
300RBl40
300RB150
300RBI60
300RB170
275UR25A
275UR3OA
275UR4OA
275UR50A
275UR6OA
R
R
R
R
R
IR
IR
IR
IR
IR
IN4048R
IN4049R
IN4050R
IN4051R
IN4052R
R29
R29
R29
R29
R29
286Y3OC14
286Y3OC15
286Y3OC16
286Y3OC17
286Y3OC18
5
5
5
5
5
WE5
WE5
WE5
WE5
WE5
286Y30C14
286Y30C15
286Y30C16
286Y30C17
286Y30C18
CF
CF
CF
CF
CF
275UR70A
275UR8OA
275UR9OA
275URlooA
275URI lOA
R
R
R
R
R
IR
IR
IR
IR
IR
IN4053R
IN4054R
IN4055R
IN4056R
R601 I I 28
R29
R29
R29
R29
CF
286Y30C19
286Y3OC20
286Z
286Z0
286ZH
5
5
5
5
S
WE5
WE5
WE5
WES
WE5
286Y30C 19
286Y3OC20
2862
286Z0
286ZH
275UR120A
276A
2768
2760
276F
R
5
5
S
S
IR
WES
WES
WE5
WES
R601 I 228
276A
2768
2760
276F
CF
CF
CF
CF
CF
286ZM
286ZP
2888
2880
288F
5
5
S
5
S
WE5
WE5
WE5
WE5
WE5
276H
276K
276M
276P
276S
S
S
5
5
5
WES
WE5
WE5
WE5
WES
276H
276K
276M
276P
2765
CF
CF
CF
CF
CF
288H
288K
288M
288P
288S
S
S
S
5
5
276V
276Z
276ZB
276ZF
2762H
S
5
5
S
S
WES
WES
WES
WE5
WES
276V
276Z
27628
276ZF
2762H
CF
CF
CF
CF
CF
288V
286Z
286Z0
288ZH
286ZM
276ZK
276ZM
2788
2780
278F
S
S
5
S
5
WE5
WE5
WES
WES
WES
276ZK
276ZM
2788
2780
278F
CF
CF
CF
CF
CF
278H
278K
278M
278P
278S
S
S
S
S
5
WE5
WE5
WES
WE5
WES
278H
2781(
278M
278P
2785
278V
276Z
278ZH
276ZM
282A
S
S
5
5
S
WE5
WE5
WE5
WES
WES
2828
2820
282H
282K
282M
S
S
5
S
5
282P
2825
282V
282Z
282Z8
Type Mfg ••
5
Suggested@
Replacement Peg.
IR
IR
IR
IR
IR
T7oo133004BY
T700143004BY
T7oo153004BY
T7oo183004BY
T7oo173004BY
537
537
537
537
S37
IR
IR
IR
IR
IR
T700013004BY
T700023004BY
T700033004BY
T700043004BY
T700053004BY
537
537
537
537
537
IR
IR
IR
IR
IR
T700063004BY
T700083004BY
T700103004BY
T700113004BY
T7oo123004BY
537
537
537
537
537
5
5
5
IR
IR
IR
IR
IR
T7001330048Y
T7oo143004BY'
T7oo153004BY
T700163004BY
T7OO1730048Y
537
537
537
537
537
3OOU1OA
3OOU15A
300U20A
3OOU25A
3OOU30A
R
IR
IR
IR
IR
IR
R8100130
R610+130
R6100230
R610+230
R6100330
R31
R31
R31
R31
R31
CF
CF
CF
CF
CF
3OOU40A
3OOU5OA
3OOU6OA
300U7OA
3OOU80A
R
IR
IR
IR
IR
IR
R6100430
R6l00530
R6loo630
R61oo730
R6100B30
R31
R31
R31
R31
R31
286ZM
286ZP
2888
2880
288F
CF
CF
CF
CF
CF
300U9OA
3OOUlOOA
3OOU120A
3OOURl0A
3OOURI5A
R
IR
IR
IR
IR
IR
R6100930
R6101030
R6001230
R6ll0130
R611+130
R31
R31
R31
R31
R31
WE5
WE5
WE5
WE5
WE5
288H
288K
288M
288P
2885
CF
CF
CF
CF
CF
3OOUR2OA
3OOUR25A
300UR3OA
3OOUR40A
3OOUR5OA
R
R
R
IR
IR
IR
IR
IR
'R6l10230
R611+230
R6110330
R6110430
R6110530
R31
R31
R31
R31
R31
S
S
S
5
S
WES
WES
WE5
WE5
WE5
288V
286Z
286Z0
286ZH
286ZM
CF
CF
CF
CF
CF
300UR60A
300UR7OA
300UR8OA
3OOUR9OA
300URlooA
R
R
R
R
R
IR
IR
IR
IR
IR
R611OB30
R6110730
R611OB30
R6110930
R6111030
R31
R31
R31
R31
R31
300A
300AR
300B
3OO8R
300C
R
R
R
R
R
WE5
WE5
WE5
WE5
WE5
R5100010
R6110010
R5100110
R5110110
R510+110
R23
R23
R23
R23
R23
3OOUR12OA
30lCIO
301CIOB
30lCI5
301CI5B
R
5
5
5
5
IR
5YN
5YN
5YN
5YN
R6011230
T62oo130040N
T6200130040N
T6200230040N
T6200230040N
R31
S43
543
543
543
CF
CF
CF
CF
CF
300cR
3000
3OO0R
300E
300ER
R
R
R
R
R
WE5'
WE5
WE5
WE5
WE5
R511+110
R5100210
R5.110210
R510+210
R511 +210
R23
R23
R23
R23
R23
301C20
301C20B
301C25
301C25B
30lC30
5
5
5
5
5
5YN
5YN
5YN
5YN
5YN
T62oo230040N
T6200230040N
T6200330040N
T62oo330040N
T620033004PN
543
543
543
278V
278Z
276ZH
276ZM
282A
CF
CF
CF
CF
CF
300F
300FR
300G
300GR
300H
R
R
R
R
R
WE5
WE5
WE5
WE5
WE5
R5100310
R5110310
R510+310
R511+310
R5100410
R23
R23
R23
R23
R23
301C3OB
301C35
301C35B
301C40
301C40B
5
5
5
5
5
SYN
5YN
5YN
5YN
5YN
T62oo330040N
T6200430040N
T6200430040N
T6200430040N
T6200430040N
543
S43
543
543
543
WES
WES
WES
WE5
WES
2828
2820
282H
282K
282M
CF
CF
CF
CF
CF
300HR
300K
300KR
3OOPA50
3OOPA60
R
R
R
5
5
WE5
WE5
WE5
IR
IR
R5110410
R51oo510
R5110510
T6200530040N
T62oo63!1040N
R23
R23
R23
543
543
301C45
301C45B
301C50
301C5OB
301C60
5
5
S
5
5
5YN
5YN
5YN
5YN
5YN
T6200630040N
T6200530040N
T6200630040N
T6200530040N
T6200630040N
543
543
543
543
543
S
S
5
5
5
WE5
WE5
WE5
WES
WES
282P
282S
282V
282Z
28228
CF
CF
CF
CF
CF
3OOPA60
·3OOPAloo
3OOPAl10
3OOPA120
3OOPAC10
S
5
5
5
5
IR
IR
IR
IR
IR
T6200B30040N
T6201030040N
T6201130040N
T6201230040N
T62oo130040N
S43
543
543
543
543
30lC6OB
301C70
30lC7OB
301CBO
301C8OB
5
5
5
5
5
5YN
5YN
5YN
5YN
5YN
T6200630040N
T62oo730040N
T62oo730040N
T6200B30040N
T6200B30040N
543
543
543
543
543
282Z0
282Zf
282ZH
282ZK
283A
S
S
5
5
5
WE5
WES
WE5
WES
WE5
282Z0
282ZF
282ZH
282ZK
283A
CF
CF
CF
CF
CF
3OOPAC20
3OOPAC30
3OOPAC40
3OOPAC50
3OOPAC60
5
5
5
5
5
IR
IR
IR
IR
IR
T6200230040N 543
T6200330040N 543
T6200430040N 543
T6200530040N 543
T6200630040N 543
301C90
301C90B
301Cloo
301(:,ooB
30lCll0
5
5
5
5
5
5YN
5YN
5YN
5YN
5YN
T8200B30040N
T62oo930040N
T6201030040N
T6201030040N
T620113OOA0N
543
543
543
543
543
2838
283C
2830
283H
283M
S
5
S
5
S
WE5
WES
WES
WES
WES
2838
283C
2830
283H
283M
CF
CF
CF
CF
CF
300RA10
3OORA20
3OORA30
3OORA40
3OORA50
5
5
5
5
5
IR
IR
IR
IR
IR
T700013004BY
T7000230048Y
T700033004BY
T700043004BY
T700053004BY
537
537
537
537
S37
301Cl10B
301C120
301C120B
301CI30
301C130B
5
5
5
5
5
5YN
5YN
5YN
5YN
5YN
T8200930040N
T6201230040N
T6201230040N
T6201330040N
T8201330040N
543
543
543
543
543
283P
2835
283V
2832
283Z8
S
S
5
5
5
WES
WES
WES
WE5
WE5
283P
283S
283V
283Z
283Z8
CF
CF
CF
CF
CF
3OORA60
300RABO
3OORA100
3OORAl10
300RA120
S
S
S
5
S
IR
IR
IR
IR
IR
T700063004BY
T700063004BY
T7oo103004BY
T700113004BY
T700123004BY
S37
S37
S37
S37
S37
301CI40
301Cl4OB
301Cl50
301C15OB
301U80
5
5
5
5
R
5YN
5YN
5YN
5YN
IR
T8201430040N
T6201430040N
T8201530040N
T8201530040N
R6100B30
543
543
543
543
R31
5
5
S
5
5
5
5
5
5
5
5
5
5
5
5
S
R
R
R
R
R
R
R
R
R
R
R
R
R
R
S43
543
Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on pageG3
G29
Suggested@
Part Number
Replacement
Page
Part Number
Type Mfgr.
Suggested@
Replacement
Page
Part Number
Type Mfgr.
Suggested @
Replacement
Page
301Uloo
301U120
301UI40
301U160
301U160
R
R
R
R
R
IR
IR
IR
IR
IR
R6101030
R6oo1230
R6oo1430
R6001630
R6oo183O
R31
R31
R31
R31
R31
327E
327F
327G
327H
327K
R
R
R
R
R
WES
WES
WES
WES
WES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
339A
3398
339C
3390
339E
R
R
R
R
R
WES
WES
WES
WES
WES
IN3161
IN3162
IN3163
IN3164
IN3166
R31
R31.
R31
R31
R31
301U2OO
301U210
301U220
301U240
301U250
R
R
R
R
R
IR
IR
IR
IR
IR
R6oo203O
R6002130
R6002230
R6oo243O
R6002530
R31
R31
R31
R31
R31
32BA
3288
328C
3280
328E
R
R
R
R
R
WES
WES
WES
WES
WES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
339F
339G
339H
339K
341A
R
R
R
R
R
WES
WES
WES
WES
WES
IN3166
IN3167
IN3168
IN3169
IN1199A
R31
R31
R31
R31
R13
301UR80
301URloo
301UR120
301URI40
301URI60
R
R
R
R
R
IR
IR
IR
IR
IR
R6110830
R6111030
R6011230
R6011430
R6011630
R31
R31
R31
R31
R31
328F
328G
328H
328K
329A
R
R
R
R
R
WES
WES
WES
WES
WES
CF
CF
CF
CF
IN3260
CF
CF
CF
CF
R27
3418
3410
341F
341H
341M
R
R
R
R
R
WES
WES
WES
WES
WES
IN1200A
IN1202A
IN1204A
IN1204A
IN1206A
R13
R13
R13
R13
R13
301URI80
301UR2oo
301UR210
301UR220
301UR240
R
R
R
R
R
IR
IR
IR
IR
IR
R6011830
R6012030
R6012130
R6012230
R6012430
R31
R31
R31
R31
R31
3298
329C
3290
329E
329F
R
R
R
R
R
WES
WES
WES
WES
WES
IN3261
IN3262
IN3263
IN3264
IN3265
R27
R27
R27
R27
R27
344T
346A
3468
3460
346F
S
R
R
R
R
WCE
WES
WES
WES
WES
T620XX30040N 543
IN1199A
R13
INI200AR
R13
INI202AR
R13
IN1204AR
R13
301UR250
302A
3028
302C
3020
R
R
R
R
R
IR
WES
WES
WES
WES
R6012530
IN1184A
IN1184A
IN118BA
IN1186A
R31
R15
R15
R15
R15
329G
329H
329K
331A
3318
R
R
R
R
R
WES
WES
WES
WES
WES
IN3266
IN3267
IN3268
CF
CF
R27
R27
R27
CF
CF
346H
346M
350PL50
350PL60
350PL80
R
R
S
5
5
WES
WES
IR
IR
IR
IN1204AR
INI208AR
T7270535440N
T7270635440N
T7270835440N
R13
R13
S91
S91
591
302E
302F
302G
302H
302K
R
R
R
R
R
WES
WES
WES
WES
WES
IN1188A
IN1188A
IN118BA
IN118BA
IN1190A
R15
R15
R15
R15
R15
331C
3310
331F
331H
331K
R
R
R
R
R
WES
WES
WES
WES
WES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
360Pl1OO
350PL110
350PL120
350PM50
350PM60
S
5
S
IR
IR
IR
IR
IR
T7271035440N
T7271135440N
T7271235440N
T7270535540N
T7270636540N
S91
591
591
S91
591
302M
302P
3025
R
R
R
R
R
WES
WES
WES
WES
WES
IN1190A
R4100840
R4100840
R4101040
IN1184A
R15
R15
R15
R15
R15
331M
R
5
R
R
R
WES
WCE
WES
WES
WES
CF
T620XX20040N
CF
CF
CF
CF
543
CF
CF
CF
350PM80
350PMloo
350PM110
360PM120
350RA10
IR
IR
IR
IR
IR
T7270835540N
T7271036640N
T7271135540N
T7271236540N
T700013504BY
591
591
591
S91
S37
WES
WES
WES
WES
WES
IN1184A
IN1186A
IN118BA
IN118BA
IN1190A
R15
R15
R15
R15
R15
3320
332F
332H
332K
332M
R
R
R
R
R
WES
WES
WES
WES
WES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
350RA20
350RAJO
360RA40'
360RA50
350RA60
S
303F
303H
303M
R
R
R
R
R
S
5
S
5
IR
IR
IR
IR
IR
T700023504BY
T700033504BY
T700043604BY
T7oo053504BY
T700063504BY
537
537
S37
S37
537
3035
303Z
304A
3048
3040
R
R
R
R
R
WES
WES
WES
WES
WES
R4100840
R4101040
INI200A
INI200A
IN1202A
R15
R15
R13
R13
R13
332T
333A
3338
333C
3330
5
R
R
R
R
WCE
WES
WES
WES
WES
T620XX20040N
CF
CF
CF
CF
543
CF
CF
CF
CF
350RABO
350RAloo
350RA110
350RA120
350RA13O
5
S
S
5
S
IR
IR
IR
IR
IR
T700083604BY
T7oo103504BY
T7oo113504BY
T7oo123604BY
T700 133504BY
537
S37
537
537
537
304F
304H
304M
3045
304Z
R
R
R
R
R
WES
WES
WES
WES
WES
IN1204A
INI204A
IN1206A
IN3671A
IN3673A
R13
R13
R13
R13
R13
333F
333H
333K
333M
333T
R
R
R
WES
WES
WES
WES
WES
CF
CF
CF
CF
T620XX20040N
CF
CF
CF
CF
543
350RAI40
350RAl50
350RAl60
350RA170
36H
S
S
5
S
5
IR
IR
IR
IR
WCE
T7oo143604BY
T7oo163604BY
T700 163504BY
T7oo173604BY
T627XX25440N
537
537
537
S37
587
3Oi;"
318
319A
3198
319C
R
R
R
R
R
WES
WES
WES
WES
WES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
334A
3348
334C
R wCe
R
R
R
R
WES
WES
WES
WES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
352T
353T
356A
3568
356C
S
S
R
R
R
WCE
WCE
WES
WES
WES
T627XX16840N
T627XX15B40N
IN3260R
IN3261 R
IN3262R
S87
587
R27
R27
R27
3190
319E
319F'
319G
319H
R
R
WES
WES
WES
WES
WES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
R
R
R
5
R
WES
WES
WES
WCE
WES
CF
CF
CF
T620XX30040N
INI184AR
CF
CF
CF
543
R15
3560
356F
356H
356K
356M
R
R
R
R
R
WES
WES
WES
WES
WES
1N3263R
IN3265R
IN3267R
IN3268R
IN3269R
R27
R27
R27
R27
R27
319K
320C ....••.•..•.•
322A
3228
322C
R WES
OWES
R WES
R WES
R WES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
3358
3350
335F
335H
335M
R
IN1184AR
IN118BAR
IN118BAR
IN118BAR
IN1190AR
R15
R15
R15
R15
R15
357A
3578
357C
3570
357F
R
R
R
WES
WES
WES
WES
WES
WES
WES
WES
WES
WES
IN3161R
IN3162R
IN3163R
IN3164R
IN3166R
R27
R27
R27
R27
R27
3220
322E
322F
322G
322H
R
R
R
R
II
WES
WES
WES
WES
WES
.CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
R15
R15
R15
R16
R15
R27
R27
R27
R9
R9
CF
CF
CF
CF
CF
CF
INI184AR
IN1184AR
IN1186AR
IN118BAR
IN118BAR
IN3168R
IN3169R
IN3170R
IN4816
IN4817
WES
WES
WES
WES
WES
WES
WES
WES
WES
WES
WES
WES
WES
WES
WES
WES
R
R
R
R
R
0
R
R
R
R
R
357H
357K
357M
359A
3598
322K
325
326A
3268
326C
336..............
336A
3368
3360
336F
336H
WES
WES
WES
WES
WES
IN4818
IN4819
IN4820
IN4821
IN4822
R9
R9
R9
R9
R9
3260
326E
326F
326G
326H
R
R
R
R
R
WES
WES
WES
WES
WES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
R
R
WES
WES
WES
WES
WES
IN5052
IN5053
IN5054
INl199A
IN1200A
R9
R9
R9
R13
R13
326K
327A
3278
327C
3270
R
R
R
R
R
WES
WES
WES
WES
WES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF ..
R
R
R
R
R
WES
WES
WES
WES
WES
IN1202A
IN1204A
IN1204A
IN1206A
IN1206A
R13
R13
R13
R13
R13
302Z
303A
3038
3030
G30
Type Mfgr.
R
R
R
33H
332A
3328
332C
3340
334F
334H
334K
334M
334T
335A
336M
337A
3378
3370
337F
R
R
R
R
R
R
R
R
R
R
WES
WES
WES
WES
WES
IN1190AR
IN1199AR
INI200AR
IN1202AR
IN1204AR
R15
R15
R15
R16
R16
INI204AR
IN120BAR
CF
CF
CF
R15
R15
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
337H
337M
336A
3388
338C
R
R
R
WES
WES
WES
WES
WES
3380
338F
338H
338K
338M
R
R
R
R
R
WES
WES
WES
WES
WES
R
R
Note: Manufac1Urer's Codes, Product Type Notes and@ Replacement Notes are listed on page'G3
3590
359F
359H
359K
359M
359P
3595
359Z
366A
3668
3660
366F
366H
366K
366M
S
S
S
S
S
5
S
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
Part Number
Type Mfg,.
Suggeated@
Replacement
Page
Part Number
Type Mfg,.
Suggeated@
Replacement
Page
p...rt Numbe,
Type Mfg,.
Suggelted @
Replacament
Page
367A
367B
3670
367F
367H
R
R
R
R
R
WES
WES
WES
WES
WES
INl200A
INl200A
IN1202A
INI204A
INI204A
RI3
RI3
RI3
RI3
RI3
400G
400H
400K
400M
400P
R
R
R
R
R
WES
WES
WES
WES
WES
400G
400H
400K
400M
400P
CF
CF
CF
CF
CF
406M
409A
409B
4090
409F
R
R
R
R
R
WES
WES
WES
WES
WES
INI206A
IN1199A
INl200A
IN1202A
INI203A
RI3
RI3
R13
RI3
RI3
367M
368A
368AR
3688
368BR
R
R
R
R
R
WES
WES
WES
WES
WES
INI206A
IN3615
IN3615R
IN3616
IN3616R
RI3
RI3
RI3
RI3
RI3
400S
400V
400Z
40lA
4018
R
R
R
R
R
WES
WES
WES
WES
WES
400S
400V
400z
40IA
401B
CF
CF
CF
CF
CF
409H
40BK
409M
410A
410AR
R
R
R
R
R
WES
WES
WES
WES
WES
INI204A
INI205A
IN120BA
410A
410AR
RI3
R13
R13
CF
CF
3680
3680R
368F
368FR
368BR
R
R
R
R
R
WES
WES
WES
WES
WES
IN3618.
IN3618R
IN3619
IN3619R
IN3620
RI3
RI3
RI3
RI3
RI3
40IC
4010
40IE
40lF
40lG
R
R
R
R
R
WES
WES
WES
WES
WES
401C
4010
401E
40IF
401G
CF
CF
CF
CF
CF
410B
410BR
410C
410CR
4100
R
R
R
R
R
WES
WES
WES
WES
WES
410B
410BR
410C
410CR
4100
CF
CF
CF
CF
CF
368HR
368K
368KR
368M
368MR
R
R
R
R
R
WES
WES
WES
WES
WES
IN3820R
IN3821
IN3621R
IN3622
IN3622R
RI3
RI3
RI3
RI3
RI3
40lH
40lK
40IM
40lP
401 POA40L15
R
R
R
R
R
WES
WES
WES
WES
IR
401H
401K
401M
401P
R6220440FJ
CF
CF
CF
CF
R67
4100R
410F
410FR
410H
410HR
R
R
R
R
R
WES
WES
WES
WES
WES
4100R
410F
41DFR
410H
410HR
CF
CF
CF
CF
CF
374A
374B
374C
3740
374F
R
R
R
R
R
WES
WES
WES
WES
WES
R510ool0XXZT
R51OO110XXZT
R510+110XXZT
R51oo210XXZT
R51OO310XXZT
R23
R23
R23
R23
R23
401 POA4OL20
401 POA4OL30
401 POA60LI 5
401 POA60L20
401 POA60L30
R
R
R
R
R
IR
IR
IR
IR
IR
R6220440EJ
R6220440CJ
R6220640FJ
R6220B40EJ
R6220640CJ
RB7
R67
R67
R67
R67
410K
410M
410MR
410S
410SR
R
R
R
R
R
WES
WES
WES
WES
WES
410K
410M
410MR
410S
410SR
CF
CF
CF
CF
CF
374H
374K
374M
376A
376B
R
R
R
R
R
WES
WES
WES
WES
WES
R5100410XXZT
R6100610XXZT
R5100610XXZT
376A
376B
R23
R23
R23
CF
CF
401 POA80L15
401 POA80L20
401 P0A90L30
401 POA I OOL20
401 POA I ooL30
R
R
R
R
R
IR
IR
IR
IR
IR
R6220840FJ
R6220640EJ
R6220640CJ
R6221040EJ
R6221040CJ
R67
R67
R67
R67
R67
410Z
410ZR
411 A
411AR
411B
R
R
R
R
R
WES
WES
WES
WES
WES
410Z
410ZR
411A
411AR
411B
CF
CF
CF
CF
CF
376C
3760
376F
376H
376K
R
R
R
R
R
WES
WES
WES
WES
WES
376C
3760
376F
376H
376K
CF
CF
CF
CF
CF
401 POAI 20L20
401 POAI20L30
401 POA130L30
401 POA 14OL30
40'1 POA I 6OL30
R
R
R
R
R
IR
IR
IR
IR
IR
R6221240EJ
R6221240CJ
R6221340CJ
R6221440CJ
R6221640CJ
R67
R67
R67
R67
R67
411BR
411C
411CR
4110
411F
R
R
R
R
R
WES
WES
WES
WES
WES
411BR
411C
411CR
4110
411F
CF
CF
CF
CF
CF
376M
371A
371B
371C
3770
R
R
R
R
R
WES
WES
WES
WES
WES
376M
371A
371B
377C
3770
CF
CF
CF
CF
CF
R
IR
IR
IR
IR
IR
R6220440FJ
R6220440EJ
R6220440CJ
R6220640FJ
R6220640EJ
R67
R67
R67
R67
R67
411FR
411H
411HR
411K
411KR
R
R
R
R
R
WES
WES
WES
WES
WES
411FR
411H
411HR
411K
411KR
CF
CF
CF
CF
CF
377F
371H
371K
377M
384A
R
R
R
R
R
WES
WES
WES
WES
WES
377F
371H
371K
377M
IN5391
CF
CF
CF
CF
R9
401 POL60S30
401 POL80S 15
401 POL80S20
401 POL80S30
401 POll OOS20
R .IR
R IR
R IR
R IR
R IR
R6220640CJ
R6220640FJ
R6220640EJ
R6220840CJ
R6221040FJ
R67
R67
R67
R67
R67
411M
411MR
411S
411SR
411Z
R
R
R
R
R
WES
WES
WES
WES
WES
411M
411MR
411S
411SR
411Z
CF
CF
CF
CF
CF
384B
3840
394F
384H
384K
R
R
R
R
R
WES
WES
WES
WES
WES
IN5392
IN5393
IN5394
IN5395
IN5396
R9
R9
R9
R9
R9
401 POL looS30
401 POL 120S20
401 POL 120S30
401 POL 130530
401S
R
R
R
R
IR
IR
IR
IR
IR
R6221040CJ
R6221240EJ
R6221240CJ
R6221340CJ
401S
R67
R67
RS7
R67
CF
411ZR
412A.
412B
4120
412H
R
R
R
R
R
WES
WES
WES
WES
WES
411ZR
IN11B4A
IN1184A
IN1186A
IN1188A
CF
RI5
RI5
R15
R15
384M
384S
384Z
387A
387AR
R
R
WES
WES
WES
WES
WES
IN5397
IN5398
IN5399
IN3899
IN3899R
R9
R9
R9
RS7
R57
401V
401Z
402A
402B
4020
R
R
R
R
R
WES
WES
WES
WES
WES
401V
401Z
R4040070
R4040170
R4040270
CF
CF
R17
R17
R17
412M
413A
413B
4130
413H
R
R
R
R
WES
WES
WES
WES
WES
INI190A
IN1184A
IN1184A
INII86A
IN1I88A
RI5
RI5
RI5
RIS
RI6
R
R
R
R
R
WES
WES
WES
WES
WES
R4040370
R4040670
R4040770
R4040670
R4040970
R17
R17
R17
RI7
R17
413M
416A
416B
416H
416K
R
R
R
R
R
WES
WES
WES
WES
WES
INI190A
R404oo70
R4040170
R4040470
R4040570
RI5
R17
R17
RI7
RI7
R
R
R
. 401 POL4OS15
401 POL4OS20
401 POL4OS30
401 POL60S 15
401 POL60S20
R
R
R
R
R
R
387B
387BR
3870
3870R
387F
R
R
R
R
R
WES
WES
WES
WES
WES
IN3900
IN3900R
IN3901
IN3901 R
IN3902
R57
R57
R57
RS7
RS7
402F
402M
402P
402S
402V
387H
387M
389A
389AR
3898
R
R
R
R
R
WES
WES
WES
WES
WES
IN3903
CF
IN3909
IN3909R
IN3910
R57
R57
R57
R57
R57
402Z
402Z0
403A
403B
4030
R
R
R
R
R
WES
WES
WES
WES
WES
R4041070
R4041270
R41oo14O
R41oo14O
R41OO24O
R17
R17
CF
CF
CF
416M
416P
416S
416V
416Z
R
R
R
R
R
WES
WES
WES
WES
WES
R4040670
R4040770
R4040870
R4040970
R4041070
RI7
R17
RI7
RI7
RI7
389BR
3890
3890R
389H
389M
R
R
R
R
R
WES
WES
WES
WES
WES
IN3910R
IN3911
IN3911 R
IN3912
CF
R57
R57
R57
R57
R57
403H
403M
404A
404B
4040
R
R
R
R
R
WES
WES
WES
WES
WES
R4100440
R4100640
INI19SA
INl200A
IN1202A
CF
CF
R13
R13
R13
417A
417B
4170
417H
417M
R
R
R
R
R
WES
WES
WES
WES
WES
INI184A
IN1184A
IN1186A
IN118BA
IN1190A
R16
RI5
RI5
RI5
RI5
398A
3988
398C
398F
398H
R
R
R
R
R
WES
WES
WES
WES
WES
IN5400
IN5401
IN5402
IN5403
IN5404
R9
R9
R9
R9
R9
404F
404H
404K
404M
407A
R
R
R
R
R
WES
WES
WES
WES
WES
IN1203A
IN1204A
IN1205A
IN1206A
IN1199A
RI3
R13
R13
R13
R13
418A
418B
4180
418H
418M
R
R
R
R
R
WES
WES
WES
WES
WES
IN1184A
IN1184A
IN1186A
IN1188A
IN1190A
RI5
RI5
RI5
RI5
RI5
39aK
398M
398S
398Z
400A
R
R
R
R
R
WES
WES
WES
.WES
WES
IN5405
IN5406
IN5407
IN5408
400A
R9
R9
R9
R9
CF
407B
4070
407F
407H
407K
R
R
R
R
R
WES
WES
WES
WES
WES
IN1200A
INI202A
INI203A
INI204A
INI206A
R13
R13
RI3
R13
RI3
R
R
R
R'
R
R
R
R
R
R
WES
WES
WES
WES
WES
400B
4DOC
4000
400E
400F
CF
CF
CF
CF
CF
407M
408A
406B
4060
406H
R
R
R
R
R
WES
WES
WES
WES
WES
INI20BA
INI199A
IN1200A
IN1202A
INI204A
RI3
RI3
RI3
R13
RI3
S
WES
WES
WES
WES
WES
IR
IN1184A
IN1184A
IN118BA
INI18BA
IN1190A
T72OO545040N
RI5
RI5
RI5
RI5
R15
S51
400B
400C
4000
400E
400F
419A
419B
4190
419H
419M
420PA50
420PA60
420PA80
420PAloo
420PAI10
420PA120
S
5
S
S
S
IR
IR
IR
IR
IR
T72oo645040N
T7200645040N
T7201045040N
T7201145e40N
T7201245040N
S51
S51
S51
S51
551
Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are listed on page,G3
G3l
5uggeated@
Replacement
Part Number
Type Mfgr.
420PA13O
420PA14O
420PAI50
420PAI60
420PA170
S
S
S
5
5
IR
IR
IR
IR
IR
T7201345040N
T7201445040N
T720154504DN
T720164604DN
T7201745040N
S51
'S51
S51
S51
551
43sM
435P
4355
435V
436Z
R
R
R
R
420PB50
420PB60
420PB80
420PB100
420P8110
S
S
5
S
5
IR
IR
IR
IR
IR
T720064504DN
T720064604DN
T720064504DN
.T7201 04504DN
T720114604DN
S61
551
561
S61
S51
435ZD
439A
439AR
4398
,,39BR
420PB120
420PB130
420PB140
420PB150
420PB160
S
5
5
S
S
IR
IR
IR
IR
IR
T720124504DN
T720134504DN
T7201445040N
T720164504DN
T720184504DN
S51
561
551
561
S51
420PB170
420PBL50
420PBl60
420PBl80
420PBll00
S
S
5
5
5
IR
IR
IR
IR
IR
T7201745040N
T727054524DN
T7270645240N
T727064524DN
T7271046240N
420PBlll0
420PBl120
420PBM50
420PBM60
420PBMBO
5
S
5
5
5
IR
IR
IR
IR
IR
420PBM100
420PBM110
420PBM120
420PL60
420PL80
5
5
5
5
5
420Pll00
420PL110
420Pl120
420PM60
420PM80
Page
Pert4!Aumber
Type Mfg,.
R,
5uggeated@
Replacement
• We~ .A"40&w7O
Page
:
Pai1 Number
s:::r.=~
Rep
,
t
P-
WeS'R4050770
WES ,R4050870
WE5 R4050970
WES R4051070
471PD180
471PD200
471PDA120
471PDA14O
471PDAI60
R
R
R
R
R
IR
IR
IR
IR
IR
~ro~8~
R6201250
R6201450
R6201650
R39
R3e
R39
R39
R39
R
R
R
R
R
WE5
WE5
WES
WES
WES
R17
CF
CF
CF
CF
471 PDAI BO
471PDA200
471T
472T
473T
R
R
5
S
S
IR
IR
wee
wee
wee
R8201850
R6202050
CF
T727XX4064ON
T727XX48740N
R39
R39
CF
S91
891
439C
439CR
4390
439DR
439E
R
R
R
R
R
WES 439C
WES 439CR
WE5439D
WES 439DR
WES 4391:
CF
CF
CF
CF
CF
474T
476T
477T
478A
478AR
5
S
S
R
R
WCE
WCE
wee
WE5
WES
T727XX4554DN
T727XX4534DN
T727XX36340N
IN3979
IN3979R
891
S91
S91
R6S
R66
561
591
591
591
591
439ER
439F
439FR
439G
439GR
R
R
R
R
R
WES 439ER
WE5 439F
WE5 439FR
WE5439G
WES 439GR
CF
CF
CF
CF
CF
478B
478BR
4780
47BDR
478F
R WES IN3980
R WE5 IN3880R
R 'WES IN3981
R WES IN398IR
R WES IN3882
T7271145240N
T727124524DN
T7270646440N
T727064644DN
T7270646440N
S91
591
591
591
591
439H
439HR
439K
439KR
439M
R
R
R
R
R
WE5
WE5
WE5
WE5
WES
439H
439HR
439K
439KR
439M
CF
CF
CF
CF
CF
478H
47BT
479A
479B
4790
R
S
R
R
R
WE5
WCE
WES
WES
WES
IN3883
T720XX3S04DN
IN3989
IN3880
IN3S91
R66
561 ,
RS7
RS7
R67
IR
IR
IR
IR
IR
T727104544DN
T7271145440N
T727124544DN
T727064524DN
T727064524DN
591
S91
591
591
591
439MR
441 A
441B
4410
,44,1F.,
R
R
R
R
,R
WE5
WE5
WE5
WE5
III!E5
439MR
R3100012
R3100112
R3100212
479F
479H
489A
489B
4890
R
R
R
R
R
WES
WES
WES
WES
WES
IN3892
IN3893
IN3909
IN3910
R~100312
CF
CF
CF
CF
.c~
IN~911
R67
R57
RS7
R57
,,57
5
5
5
5
5
IR
IR
IR
IR
IR
T7271045240N 591
T727114524DN 591
T727124524DN 591
T727064544DN 591
T727064644DN 591
441H
441K
441M
441P
4415
R
R
R
WE5
WE5
WE5
WE5
WE5
R3100412
R3100512
R3100612
R3100712
R3100612
CF
CF
CF
CF
CF
489F
489H
5OOPA5
500PA10
600PA20
R
R
5
WES
WES
IR
IR
IR
IN3912
IN3913
T7200156040N
T7200156040N
T7200266Q40N
RS7
R57
551
561
551
420PM100
420PM110
420PM120
424A
5
5
5
R
IR
IR
IR
WE5
T727104544DN
T727114544DN
T7211245440N
IN3909
591
591
591
R57
441V
4411
R
R
S
5
R
WES
WE5
WCE
'WCE
WES
R3100912
R3101012
T720XX65040N
CF
IN1199AR
CF
CF
561
CF
R13
5OOPA30
500PA40
5OOPABO
5
600PABO
500PB050
5
IR
IR
IR
IR
IR
4248
4240
424F
424H
425A
T72003S604ON 561
T7200455D40N 561
T72006S604ON 561
T7200865040N 561
T727064644DN 591
R
R
R
R
R
WE5
WE5
WE5
WE5
WE5
IN3910
IN3911
IN3912
IN3913
IN3909
R57
R57
'R57
R57
R57
146K
R
R
R
R
R
WE5
WE5
WE5
WE5
WES
INI200AR
IN1202AR
IN1203AR
INI204AR
IN 1206AR
R13
R13
R13
RI3
R13
600PB060
500PB08O
500PBOIOO
500PBOll0
600PB0120
5
5
5
S
IR
IR
IR
IR
IR
T727064544DN
T7270845440N
T727104544DN
T7271145440N
T7271245440N
591
891
S91
591
S91
425B
4260
425H
429A
429AR
R
R
R
R
R
WES
WES
WES
WES
WES
IN3910
IN3911
IN3913
429A
429AR
R51
R51
R51
CF
CF
-l46M
446P
4465
446V
4462
WE5
WES
WES
WES
WES
IN120sAR
IN3670AR
IN3S11AR
IN3672AR
IN3673AR
R13
R13
R13
R13
R13
600v5A
SOOVl0A
5OOV2OA
60!lV30A
5OOV4OA
III
IR
IR
IR
IR
R7000006
R7000106
R7000206
R7000306
R7000406
429B
429BR
429C
429CR
4290
II
R
R
R
R
R36
R36
R36
R36
R36
R
WE5 429B
R , WE5 429BR
R
WE5 429C
R WE5 429CR
R
WE5 4290
CF
CF
CF
CF
CF
5
S
5
S
T727014884DN
T7270148B4DN
T7270248B4DN
T727034884DN
T7270648B4ON
591
591
591
S91
S91
IR
IR
IR
III
IR
R7000606
R7000606
R1010106
R1010206
111010306
R
R
R
R
R
R36
R36
R36
R36
R36
WES
WES
WES
WES
WE5
429DR
429E
429ER
429F
429FR
S
IR
IR
IR
IR
IR
SOOV6OA
5OOVBOA
5OOVR10A
500VR20A
500VR3OA
429DR
429E
429ER
429F
429FR
450PF5
450PF10
450PF20
450PF30
45DPF50
CF
CF
CF
CF
CF
S
5
5
5
5
IR
WCE
WCE
WCE
WCE
T7210648B40N
T720XX56040N
T720XX5504DN
CF
T920XX0903OW
S91
S61
551
CF
555
500VR4OA
500VR5A
500VR6OA
500VRBOA
601PB050
429G
429GR
429H
429HR
429K
450PF60
456T
458T
482T
464T
IR
IR
IR
IR
IR
R1010406
R7010006
R7010&06.
R7010806
T7270546540N
R36
R36
R3S
R36
591
R
R
R
R
R
WE5429G
WES 429GR
WES 429H
WES 429HR
WES 429K
CF
CF
CF
CF
CF
466T
470PA50
470PA60
470PABO
470PA100
WCE
IR
IR
IR
IR
CF
T120065504DN
T720065504DN
T7200665040N ,
T7201055040N
CF
S51
551
S61
551
601PBQ60
501PB08O\
601 PBOI 00
601PB0110
501PBa120
8
429KR
429M
429MR
429RC70
430PL10
S
S
5
5
5
R
1'1
R
R
S
WES
WES
WESc
WES
IR
429KR
429M
429MR
CF
T127014864DN
S
IR
IR
IR
IR
IR
T7270845640N
T727D84654ON
T7271046640N
T7211146540N
T727124664DN
CF
CF
CF
CF
591
sel
591
S91
591
591
470PAll0
410PA120
470PA130
470PA14O
410PA160
5
S
S
5
5
IR
IR
IR
IR
IR
T7201155040N
T720122504DN
T720136504DN
T720145504DN
T1201556040N
551
551
551
551
551
501VBOB
601VBOB
601Vl00B
501V120
501V12OB
430PL20
430PL30
43OPl4O
430Pl50
43OPl60
R
R
II
R
R
III
IR
IR
IR
IR
R7000606
R7000806
R7001D06
R7001204
R7001206
1135
R36
R3S
R36
R3S'
5
5
5
5
5
IR
IR
IR
IR
IR
T7270248640N
T1210348640N
T727044864DN
T727054864DN
T721064864DN
591
591
S91
591
591
470PA160
470PB50
470PB60
470PB80,
410PB100
IR
IR
IR
IR
IR
T120165504DN
T7200655040N
T720065504DN
T720065504DN
T7201055040N
S61
561
S61
S51
561
601V140
601V14OB
5OlV160
601V1BO
501V200
R
430PM10
43OPM20
430PM30
430PM40
430PM50
5
5
5
S
S
IR
IR
IR
IR
IR
R7001404
R7001406
R7001604
R7001804
R7002004
5
5
5
5
S
IR
IR
IR
IR
IR
1135
R35
R35
R3S
R3S
T721014B84DN
T7270248840N
T721034884DN
T727044864DN
T721064864DN
591
591
S91
S91
S91
430PM60
435B
435D
435F
435H
410PB110
410PB120
410PB130
470PBl40
410PB150
III
IR
IR
IR
IR
551
551
551
551
S51
601V210
501V220
601V230'
501V24O
501VRBOB
IR
WES
WES
WES
WES
T720115504DN
T720125504DN
T720135504DN
T120146504DN
T720165504DN'
IR
IR
JR
IR
IR
5
R
R
R
R
5
S
5
5
S
R70021 04
R7002204
R7002304
R7002404
R7010806'
T727064B940N
R4050170
R4050210
R4050370
R4050410
S91
Rl1
R17
R17
R17
R35
R36
R35
R36
R36
470PBI60
410T
411PD120
411PD14O
471PDI60
,8
IR
wee
IR
IR,
IR
T720165504DN'
T727XX45240N
R6201250
R6201450
R6201650
551
591
R39
R39
R39
501VRBOB
50tVR 1OOB ,
501VR120
501VR120B
501VR14O
IR
IR
IR
IR
IR
117010806
R7011006
R7011204
117011206
R7011404
R36
R3S
R35
R36
1136
R
R
1-17T
144T
~4flA
146B
.. 460
!46F
~46H
S
R
R
R
R4061270
439A
439AR
439B
439BR
Note: Manufacturer's Codes, ProductTv~Notes and@ Rep1aC8ntf!rtt NOtes ,are listed. onpiJge G3"
.
G32
Type Mfgr•
R17
R17
R17
R17
R17
.".
".-
• . . •"
~i~~
-.
8
5
5
8
8
8
II
R
5
8
8
II
R6S
R66
R66
RS6
RS6
Pert Number
Type Mfgr.
Suggested@
Replacement
Page
Part Number
Type Mfgr.
Suggested@
Repllcement
Plge
501VRI40B
501VR160
501VRIBO
501VR2oo
501VR210
R
R
R
R
R
IR
IR
IR
IR
IR
R7011405
R7011604
R7011B04
R7012004
R7012104
R35
R35
R35
R35
R35
67g·4
679·6
680·1
680·2
6BO·4
A
A
A
A
A
UNI
UNI
UNI
UNI
UNI
MBI2A25V40
MB12A25Y60
MB12A1OV10
MB12Al0V20
MBI2A1OV40
501VR220
501VR230
501VR240
507C .............
506C .............
R
R
R
0
D
IR
IR
IR
WES
WES
R7012204
R7012304
R7012404
CF
CF
R35
R35
R35
CF
CF
6BO·6
697·1
697·2
697·3
697·4
A
A
A
A
A
UNI
UNI
UNI
UNI
UNI
MB12A1OV60
MBllA06Vl0
MBllA06V20
MBllA06V30
M811A06V40
A3
550PA5
550PA10
550PA20
550PA30
550PA40
S
S
S
S
5
IR
IR
IR
IR
IR
T720015504DN
T7200155040N
T7200255040N
T7200356040N
T7200455040N
551
551
S51
S51
551
697·5
697·6
7ooPA50
7ooPA60
700PABO
A
A
S
S
5
UNI
UNI
IR
IR
IR
550PA50
550PA60
560PB60
550PB60
550PBBO
S
5
S
S
S
IR
IR
IR
IR
IR
T7200555040N
T7200655040N
T7200555040N
T7200655040N
T7200B55040N
S51
S51
S51
S51
S51
700PAloo
7ooPA110
700PA120
7ooPAI30
7ooPAI40
S
5
S
S
S
550PBloo
550PBll0
550PB120
550PB13O
550PB14O
S
5
S
5
5
IR
IR
IR
IR
IR
T7201055040N
T7201155040N
T7201265040N
T7201355040N
T7201455040N
S51
S51
S51
S51
551
7ooPAl50
7ooPAI60
7ooPA170
7ooPK50
7ooPK60
550PBl50
550PBl60
560PB010
560PB020
550PB030
5
5
5
5
5
IR
IR
IR
IR
IR
T7201555040N
T7201655040N
CF
CF
CF
S51
S51
CF
CF
CF
550PB040
550PB050
550PB06O
6OOPB170
6ooPBl80
5
S
li .
S
S
IR
IR
IR
IR
IR
CF
CF
CF
T920170604DW
T9201B0604DW
6ooPBI90
6ooPB2oo
6OOPB21 0
8OOPB22O
8OOPB23O
5
S
5
5
5
IR
IR
IR
IR
IR
6ooPB240
6ooPB250
651 POB50l20
851POB50l30
651 POB50l25
5
5
R
R
R
IR
IR
IR
IR
IR
651 POB60l20
651 POB60l25
651 PDB60l20
851 POB60l25
851 POB6OL3O
PIn Number
750PB14O
750PBI50
750PBI80
750P811O
750PBI80
Type Mfgr.
Sugge.ted@
Replacement Pege
S
S
5
S
5
IR
IR
IR
IR
IR
T920140B040W
T920150B040W
T920160B040W
T920170604DW
T9201BOB040W
555
555
555
555
555
A3
A3
780P
780S
760V
760Z
760ZB
R
R
R
R
R
WES
WES
WES
WES
WES
760P
780S
760Y
760Z
760ZB
CF
CF
CF
CF
CF
MBllA06V50
MB11A06V60
T9200507040W
T9200607040W
T9200B0704DW
A3
A3
S55
555
S55
760Z0
760ZF
760ZH
760ZK
760ZM
R
R
R
R
R
WES
WE5
WES
WE5
WES
760Z0
760ZF
760lH
760ZK
760lM
CF
CF
CF
CF
CF
IR
IR
IR
IR
IR
,T9201OO704DW
T9201107040W
T920120704DW
T920130704DW
T920140704DW
S55
S55
555
S65
S55
761P
761S
761V
761Z
7B1ZB
R
R
R
R
R
WES
WES
WES
WES
WES
761P
761S
761V
761Z
761ZB
CF
CF
CF
CF
CF
S
S
5
5
5
IR
IR
IR
IR
IR
T920160704DW
T920160704DW
T9201707040W
T9200507040W
T9200607040W
S55
S55
S66
555
S55
7B1Z0
761ZF
761ZH
761ZK
761ZM
R
R
R
R
R
WES
WES
WES
WES
WES
7B1Z0
761ZF
761ZH
761ZK
761ZM
CF
CF
CF
CF
CF
7ooPKBO
700PKloo
7ooPK110
700PK120
7ooPK)30 '
S
5
S
S
S
IR
IR
IR
IR
IR
T920OB0704DW
T9201OO704DW
T920110704DW
T920120704DW
,~2Ql ;l(>7Q4Dy\(
S55
S55
S55
S55
555.
770A
710B
770C
7700
770F
R
R
R
R
R
WES
WES
WES
WES
WES
770A
770B
770C
7700
770F
CF
CF
CF
CF
CF
CF
CF
CF
S55
S55
7ooPK14O
700PKl50
7ooPKl60
7ooPK170
710A
S
S
S
S
R
IR
IR
IR
IR
WES
T920140704DW
T920150704DW
T9201507040W
T920170704DW
710A
555
S55
S55
S55
CF
770H
7701(
770M
770S
770l
R
R
R
R
R
WES
WES
WES
WES
WES
770H
770K
770M
7705
770l
CF
CF
CF
CF
CF
T920190604DW
T920200604DW
T9202106040W
T920220604DW
T9202306040W
S55
S55
S55
555
S55
710AR
710B
710BR
710C
710CR
R
R
R
R
WES
WE5
WE5
WES
WE5
710AR
7106
710BR
710C
710CR
CF
CF
CF
CF
CF
770lD
770ZH
771 A
771B
771C
R
R
R
R
R
WES
WES
WES
WES
WES
770lD
770lH
771A
771B
771C
CF
CF
CF
CF
CF
T920240604DW
T920250604DW
R722050BEJ
R72205OBOJ
R7220506CJ
555
S55
R71
R71
R71
710D
710DR
710E
710ER
710F
R
R
R
R
R
WE5 7100
WES 710DR
WI;S 710E
WES 710ER
WE5 710F
CF
CF
CF
CF
CF
7710
771F
771H
771K
771M
R
WES
WES
WES
WES
WES
771D
771F
771H
771K
771M
CF
CF
CF
CF
CF
R IR
R IR
R 'IR
R
IR
R
IR
R7220606EJ
R72206060J
R722060BEJ
R7220506CJ
R72206080J
R71
R71
R71
R71
A71
710FR
710H
710HR
710K
710KA
R
R
R
R
R
WE5
WE5
WES
WES
WES
710FR
710H
710HR
710K
710KR
CF
CF
CF
CF
771S
771Z
771Z0
771ZH
7BlA
WE5
WES
WES
WE5
WES
7715
771Z
771ZD
771ZH
R6200030
CF
CF
CF
CF
R39
651POBlool25
651 POB 1OOl3O
651 PDB 120L25
651 POB 120L30
A
R
R
R
IR
IR
IR
IR
R7221006DJ
R7221006CJ
R7221208DJ
A7220606CJ
R71
R71
R71
R71
710M
710MR
710P
710PR
7105
R
R
R
R
R
WES
WES
WES
WES
WES
'710M
710MR
710P
710PR
710S
CF
CF
CF
CF
CF
7B2B
7B2C
7B20
782F
7B2H
R
WES
WES
WES
WE5
WES
R6200130
R620+130
R6200230
R62oo330
R6200430
651 POB 130L30
661POBI40l30
651 POBI60L30
651 POL50S20
651 POL50S25
R
R
R
R
R
IR
IR
IR
IR
IR
R7221306CJ
R7220506CJ
R7221606CJ
R722050BEJ
R722050BDJ
R71
R71
R71
R71
R71
R39
R39
R39
R39
R39
710SR
710V
710VR
710l
710ZD
R
R
R
R
WES
WES
WES
WES
WES
710SR
710V
710VR
710l
710Z0
CF
CF
CF
CF
CF
782K
7B2M
783A
7B3B
783D
R
R
R
R
R
WES
WES
WES
WES
WES
R6200530
R6200630
7B3A
7B3B
7B3D
R39
R39
CF
CF
CF
651 POL50S30
651 PDL60S20
651 POL60S25
661 POL60S20
651 PDL60S25
R
R
A
R
R
IR
IR
IR
IR
IR
R722050BCJ
A7220606EJ
R722060BOJ
R7220606EJ
A72206060J
R71
R71
R71
A71
A71
710ZDR
710ZR
720A
720AA
7206
R
R
A
R
A
WES
WES
WES
WES
WES
71Ol0R
710lR
720A
720AA
7208
CF
CF
CF
CF
CF
R
R
R
A
A
WES
WES
WES
WES
WES
651 PDL60S30
651 PDL looS26
651 PDL l00S30
651POL110S25
651 POLll 0530
A
A
A
R
R
783F
7B3H
783K
783M
7B3S
IR
IR
IR
IR
IR
A7220606CJ
R72210OBOJ
A7221006CJ
R722110BDJ
R722110BCJ
7B3F
783H
783K
783M
783S
CF
CF
CF
CF
CF
A71
A71
A71
R71
R71
~208A
20C
720CR
7200
7200R
R
A
R
R
R
WES
WES
WES
WES
WES
720BR
720C
720CR
720D
1200R
CF
CF
CF
CF
CF
661 PDL 120S25
B51 POL 120S30
661T
662T
666T
R
R
S
S
S
IR
IR
WCE
WCE
WCE
R122120BDJ
R7221206CJ
T920XX0503DW
T920XX0703DW
T920XX1003DW
R71
R71
S65
S55
S55
783Z
7B3ZD
7B3ZH
7B3ZK
7B3ZM
R
R
R
R
R
WES
WES
WES
WES
WES
783Z
7B3ZD
7B3ZH
7B3ZK
7B3ZM
CF
CF
CF
CF
CF
720F
720FR
720H
720HR
120K
R
R
R
R
R
WES
WES
WES
WES
WES
720F
720FR
720H
720HR
720K
CF
CF
CF
CF
66BT
869T
673-1
673·2
673·3
S
S
A
A
A
WCE
WCE
UNI
UNI
UNI
T920XX1003DW
T920XX1003DW
MB11A02Vl0
MB11A02V20
MBl1A02V30
S56
S55
7B4A
7B4B
7B4C
7B40
7B4F
R
R
R
R
R
WES
WES
WES
WES
WES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
720KR
720M
720MR
720S
720SR
R
R
R
R
R
WES 720KR
WES 120M
WES 720MR
673-4
673·5
673·6
B79·1
679·2
A
A
A
A
A
UNI
UNI
UNI
UNI
UNI
MBl1A02V40
MBllA02V50
MB11A02V60
MBI2A25Vl0
MB12A25V20
~g'~~R
CF
CF
CF
CF
CF
7B4H
7B4K
7B4M
7B4S
7B4Z
R
R
R
A
R
WES
WES
WES
WES
WES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
720l
720lR
750PBll0
750PB12O
750PBI30
R
R
S
S
S
WES
WES
IR
IR
IR
CF
CF
S56
S55
S55
7BeA
7858
7B5C
7B6D
785F
R
R
R
R
R
WES
WES
WES
WES
WES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
A3
A3
A3
A3
A3
A3
A3
A3
R
'R
720l
720lR
T920110B04DW
T920120B04DW
T920130B040W
A3
A3
A3
A3
A3
A3
A3
.
",'
CF
CF
Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are listed on page G3
G33
Suggestad@
Port Numbe,
Typo Mfg,.
Replacement
Pege
Part Numbe,
Type Mfg,.
Sugg.stad@
Replacement
Pege
Type Mfg,.
Suggestad@
Replacement
Page
786H
785K
785M
786S
786Z
R
R
R
R
R
WES
WES
WES
WES
WES
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
790ZK
790ZM
790ZS
790ZZ
790ZZ0
R
R
R
R
R
WES
WES
WES
WES
WE5
790ZK
790ZM
790ZS
790ZZ
790ZZ0
CF
CF
CF
CF
CF
809ZM61
850PA50
850PA80
850PA80
850PA100
S
S
S
S
5
WES
IR'
IR
IR
IR
809ZM61
T9200509040W
T920060904DW
T92DD809040W
T9201D09040W
CF
S66
556
565
556
788A
788AR
788B
7B8BR
7B8C
R
R
R
R
R
WE5
WE5
WE5
WE5
WES
788A
788AR
788B
788BR
788C
CF
CF
CF
CF
CF
790ZZK
791A
791B
791C
7910
R
WE5
WES
WES
WES
WES
790ZZK
IN3161R
IN3162R
IN3163R
IN3164R
CF
R31
R31
R31
R31
860PAll0
850PA120
850PAl30
850PA14O
85OPAl50
5
S
S
S
5
IR
IR
IR
IR
IR
T9201109040W
T9201209040W
T9201309040W
T920140904DW
T9201609040W
556
566
565
565
565
788CR
78BO
7B80R
788F
788FR
R
R
R
R
R
WE5
WE5
WES
WES
WES
788CR
7880
7880R
788F
788FR
CF
CF
CF
CF
CF
WE5
WES
WES
WES
WES
WES
R31
R31
R31
R31
R31
R31
S
5
5
S
S
IR
IR
IR
IR
IR
T9201609040W
T9200509040W
T92DD809040W
T9200809040W
T9201009040W
S66
565
555
S66
566
R
R
R
R
R
WES
WES
WES
WES
WES
788H
788HR
788K
788KR
788M
CF
CF
CF
CF
CF
IN3166R
IN3168R
IN3169R
IN3170R
IN3172R
IN3174R
85OPAl80
85OPK50
850PK80
850PK80
850PK100
7B8H
7B8HR
788K
788KR
788M
791F
791H
791K
791M
791S
791Z
791Z0
791lH
791ZK
791ZM
WE5
WE5
WE5
WE5
R8011224
R8011424
R8011524
R8011624
CF
CF
CF
CF
850PKll0
850PK120
85OPKI30
860PK14O
860PKI60
5
S
S
5
5
IR
IR
IR
IR
IR
T9201109040W
T9201209040W
T9201309040W
T9201409040W
T9201609040W
565
566
565
555
'555
788MR
788S
7885R
788Z
788Z0
R
R
R
R
R
WES
WES
WES
WE5
WES
788MR
788S
788SR
788Z
788Z0
CF
CF
CF
CF
CF
791Z5
791ZZ
791ZZK
791ZZ0'
801PD80B
R
R
R
WE5
WES
WES
WE5
IR
R8011824
R6012024
791ZZK
791ZZ0
R7200612
CF
CF
CF
CF
R43
850PKl80
9OOPB60
900PB60
9OOPBSO
900P81 00
S
5
S
S
S
IR
IR
IR
IR
IR
T920160904DW
T920050904DW
T92DD809040W
T92DD809040W
T9201D09040W
555
566
S65
565
555
788Z0R
788ZH
788ZHR
788ZK
788ZKR
R
R
R
R
R
WE5
WE5
WES
WES
WE5
788Z0R
788ZH
788ZHR
788ZK
788ZKR
CF
CF
CF
CF
CF
801P0808
801P01008
801P0120
801P01208
801P014O
R
R
R
R
R
IR
IR
IR
IR
IR
R72D0912
R7201012
R7201209
R7201212
R7201409
R43
R43
R43
R43
R43
9OOP8110
900PB120
l000PA50
l000PA80
1OOOPAI 00
5
S
5
5
5
IR
IR
IR
IR
IR
T9201109040W
T9201209040W
T9200610040W
T9200610040W
T9201010040W
S66
555
S65
S65
S66
788ZM
788ZMR
788ZR
788ZS
788Z5R
R
R
R
R
R
WE5
WE5
WE5
WE5
WES
788ZM
788ZMR
788ZR
788ZS
788ZSR
CF
CF
CF
CF
CF
801POI408
801P0160
801POI80
801P0200
801P08608
R
R
R
R
R
IR
IR
IR
IR
IR
R7201412
R7201609
R7201809
R7202D09
R7200612
R43
R43
R43
R43
R43
l000PAll0
l000PAI20
l000PAI30
l000PAI4O
l000PAI50
S
S
S
S
S
IR
IR
IR
IR
IR
T9201110040W
T9201210040W
T9201310040W
T9201410040W
T9201510040W
S56
565
S55
S65
S56
788ZZ
788ZZ0
788ZZ0R
7B8ZZR
789A
R
R
R
R
R
WES
WES
WES
WES
WE5
788ZZ
7B8ZZ0
788ZZ0R
788ZZR
789A
CF
CF
CF
CF
CF
801P08808
801 P081 008
801P08120
801P081208
801P0814O
R
R
R
R
R
IR
IR
IR
IR
IR
R7200912
R7201012
R7201209
R7201212
R7201409
R43
R43
R43
R43
R43
l000PAl80
l000PK50'
l000PK60
l000PK80
l000PK100
S
S
S
S
S
IR
IR
IR
IR
IR
T920161004DW
T9200510040W
T9200610040W
T920061004DW
T9201010040W
555
566
566
555
S66
789AR
7898
7898R
789C
789CR
R
R
R
R
R
WES
WES
WE5
WES
WES
789AR
7898
789BR
789C
789CR
CF
CF
CF
CF
CF
801P081408
801P08180
801P08180
801P08200
801P08210
R
R
R
R
R
IR
IR
IR
IR
IR
R7201412
R7201609
R7201609
R7202009
R72021 09
R43
R43
R43
R43
R43
l000PK110
l000PK120
l000PK130
l000PK140
l000PK160
S
5
S
5
5
IR
IR
IR
IR
IR
T9201110040W
T920121004DW
T9201310040W
T9201410040W
T9201610040W
566
S55
S56
S56
555
7890
7890R
789F
789FR
789H
R
R
R
R
R
WES
WES
WE5
WE5
WE5
7890
7890R
789F
789FR
789H
CF
CF
CF
CF
CF
801P08220
801P08230
801P0824O
809A
809A51
R .IR
R IR
R IR
WES
S
S WES
R7202209
R7202309
R7202409
609A
809A51
R43
R43
R43
CF
CF
l000PKI80
1200PN120
1200PN130
1200PN14O
1200PNl50
S
S
S
5
S
IR
IR
IR
IR
IR
T9201610040W
TA201212040Y
TA201312040Y
TA201412040Y
TA201612040Y
S56
S67
567
S67
5.67
789HR
789K
789KR
789M
789MR
R
R
R
R
R
WES
WES
WES
WES
WES
789HR
789K
789KR
789M
789MR
CF
CF
CF
CF
CF
8098
809861
809C
609C61
8090
S
S
S
S
S
WES
WES
WES
WES
WES
8098
609851
809C
809C51
8090
CF
CF
CF
CF
CF
1200PNI80
1200PN170
1200PNI80
1200PNl90
1200PN200
5
S
5
5
5
IR
IR
IR
IR
IR
TA201612040Y
TA201712040Y
TA201812040Y
TA201912040Y
TA202012040Y
567
567
567
S67
·567
789S
.789SR
788Z
789Z0
789Z0R
R
R
R
R
R
WES
WES
WES
WES
WES
7895
7895R
789Z
789Z0
788Z0R
CF
CF
CF
CF
CF
609061
809E
609E51
809F
809F51
S
S
S
S
WES
WES
WES
WES
WES
809051
809E
809E51
809F
609F61
CF
CF
CF
CF
CF
1200PN210
1200PN220
1561·XX03
1561·XX04
1561·XX09
S
S
T
T
T
IR
IR
WES
WE5
WES
TA202112040Y
TA202212040Y
1661·XX03
1561·XX04
1661·XX09
S67
S67
CF
CF
CF
789ZH
789ZHR
789ZK
789ZKR
789ZM
R
R
R
R
WES
WES
WE5
WES
WES
789ZH
789ZHR
789ZK
789ZKR
789ZM
CF
CF
CF
CF
CF
809H
609H51
809K
809K61
809M
S
S
S
S
5
WES
WES
WES
WES
WES
609H
809H61
809K
809K51
809M
CF
CF
CF
CF
CF
1561·XX10
1561·XXI5
1671·XX20
1571·XX26
18OOPN120
T
T
T
T
S
WES
WES
WES
WES
IR
1561·XX10
1561·XXI5
1571·XX20
1671·XX26
CF
CF
CF
CF
CF
CF
789ZMR
789ZS
789ZSR
789ZR
789ZZ
WES
WES
WES
WES
WES
789ZMR
789ZS
789ZSR
789ZR
789ZZ
CF
CF
CF
CF
CF
809M51
809P
809P61
809S
809S51
S
S
S
5
S
WES
WES
WES
WES
WE5
809M51
809P
809P51
8095
809S61
CF
CF
CF
CF
CF
16OOPN130
16OOPN14O
16OOPNI50
18OOPNI80
1801POK120
S
S
S
S
R
IR
IR
IR
IR
IR
CF
CF
CF
CF
R9201216
CF
CF
CF
CF
.R47
789ZZ0
789ZZOR
789ZZR
790A
7908
WES 789Z20
WES 789ZZ0R
WE5 789ZZR
\IllES 790A
WES 7908
CF
CF
CF
CF
CF
809V
809V51
809Z
809Z51
809Z8
S
S
S
S
S
WES
WES
WE5
WES
WES
809V
809V61
809Z
809Z61
809ZB
CF
CF
CF
CF
CF
1801POK14O
1801POKI80
1801POKI80
1801POK200
1801POK220
R
R
R
R
R
IR
IR
IR
IR
IR
R9201416
R9201616
R9201816
R9202016
R9202216
R47
R47
R47
R47
R47
S
790C
7900
790F
790H
790K
R
R
R
WE5
WES
WES
WE5
WES
790C
7900
790F
790H
790K
CF
CF
CF
CF
CF
809Z851
809Z0
809Z061
809ZF
809ZF51
S
S
S
5
S
WES
WES
WES
WES
WES
809Z861
809Z0
809Z051
809ZF
809ZF61
CF
CF
CF
CF
CF
1601POK24O
1601PDK260
2001P060
2001P080
2001P0100
R
R
R
R
R
IR
IR
IR
IR
IR
SO
SO
R9200620
R9200920
R9201020
CF
CF
R47
R47
R47
790M
7905
790Z
790Z0
790ZH
R
R
R
R
R
WE5
WES
WES
WE5
WES
790M
7905
790Z
790Z0
790ZH
CF
CF
CF
CF
CF
809ZH
809ZH51
809ZK
809ZK51
809ZM
5
S
5
5
S
WES
WES
WES
WES
WES
809ZH
809ZH61
809ZK
809ZK51
809ZM
CF
CF
CF
CF
CF
2oo1P0120
2001P014O
2001POI50
2001POK60
2001POK80
R
R
R
R
R
IR
IR
IR
IR
IR
R9201220
R9201420
R9201620
R9200620
R9200920
. R47
R47
R47
R47
R47
Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are listed on page G3
G34
Part Numbe,
Suggested@
Part Numbat'
Type Mfgr.
Replacement
Page
Part Number
Type Mfgr.
Suggested@
Replacement
Page
Part Numbat'
Type Mfgr.
Suggested@
Replacement Page
S
S
S
S
5
WES
WES
WE5
WE5
WE5
2201K
2201M
2201P
22015
2201V
CF
CF
CF
CF
CF
2271P
2271S
2271V
2271Z
22728
S
S
5
S
5
We5
WES
WE5
WES
WE5
2271P
2271S
2271V
2271Z
22728
CF
CF
CF
CF
CF
2001 PDKI 00
2001POK120
2001POKI40
2001POKI80
21818
R
R
R
R
S
IR
IR
IR
IR
WES
R9201020
R9201220
R9201420
R9201620
21818
R47
R47
R47
R47
CF
2201K
2201M
2201P
2201S
2201V
21810
2181F
2181H
2181K
2181M
S
S
S
S
S
WES
WES
WES
WES
WES
21810
2181F
2181H
2181K
2181M
CF
CF
CF
CF
CF
2201Z
2201Z8
2201Z0
2202A
22028
5
5
5
S
5
WE5
WES
WES
WES
WES
2201Z
2201ZB
2201Z0
2202A
22028
CF
CF
CF
CF
CF
22720
2272F
2272H
2272K
2272M
5
WES
5
WES
S WES
S . WES
S WES
22720
2272F
2272H
2272K
2272M
'CF
CF
CF
CF
CF
2181P
2181S
2181V
2181Z
21828
S
5
5
5
5
WES
WE5
WES
WES
WES
2181P
21815
2181V
2181Z
21828
CF
CF
CF
CF
CF
22020
2202F
2202H
2202K
2202M
5
5
S
5
5
WE5
WE5
WE5
WE5
WE5
22020
2202F
2202H
2202K
2202M
CF
CF
CF
CF
CF
2272P
2272S
2272V
2272Z
2272Z0
S
5
S
5
S
WES
WE5
WE5
WES
WES
2272P
2272S
2272V
2272Z
2272Z0
CF
CF
CF
CF
CF
21820
2182F
2182H
2182K
2182M
5
5
5
5
5
WES
WES
WE5
WES
WE5
21820
2182F
2182H
2182K
2182M
CF
CF
CF
CF
CF
2202P
2202S
2202V
2202Z
2202Z8
5
5
S
5
S
WE5
WE5
WE5
WES
WES
2202P
22025
2202V
2202Z
2202ZB
CF
CF
CF
CF
CF
22918
22910
2291F
2291H
2291K
5
S
S
5
S
WES
WES
WE5
WES
WE5
22918
22910
2291F
2291H
2291K
CF
CF
CF
CF
CF
2182P
2182S
2182V
2182Z
2182Z0
5
5
5
5
5
WES
WES
WE5
WE5
WES
2182P
21825
2182V
21B2Z
2182Z0
CF
CF
CF
CF
CF
2202Z0
2231A
22318
22310
2231F
S
S
S
S
S
WES
WES
WES
WES
WES
2202Z0
2231A
22318
22310
2231F
CF
CF
CF
CF
CF
2291M
2291P
2291S
2291V
2291Z
S
S
S
S
S
WE5
WES
WES
WES
WES
2291M
2291P
22915
2291V
2291Z
CF
CF
CF
CF
CF
2191A
2191A51
21918
2191861
21910
5
S
5
5
5
WES
WE5
WE5
WES
WES
2191A
2191A51
21918
219851
21910
CF
CF
CF
CF
CF
2231H
2231K
2231M
2231P
2231S
5
S
S
S
S
WES
WES
WES
WES
WES
2231H
2231K
2231M
2231P
2231S
CF
CF
CF
CF
CF
2292B
22920
2292F
2292H
2292K
5
5
5
S
S
WE5
WES
WES
WES
WE5
22928
22920
2292F
2292H
2292K
CF
CF
CF
CF
CF
2191061
2191F
2191F61
2191H
2191H61
5
S
5
S
S
WES
WES
WES
WES
WES
2191051
2191F
2191F51
2191H
2191H51
CF
CF
CF
CF
CF
2231V
2231Z
2231Z8
2231Z0
2232A
S
S
S
S
S
WES
WES
WES
WES
WE5
2231V
2231Z
2231Z8
2231Z0
2232A
CF
CF
CF
CF
CF
2292M
2292P
2292S
2292V
2292Z
5
5
S
S
S
WE5
WES
WES
WES
WES
2292M
2292P
2292S
2292V
2292Z
CF
CF
CF
CF
CF
2191K
2191K61
2191M
2191M6l
2191P
5
5
5
5
5
WE5
WE5
WE5
WE5
WE5
2191K
2191K51
2191M
2191M51
2191P
CF
CF
CF
CF
CF
22328
22320
2232F
2232H
2232K
5
5
S
5
S
WES
WES
WES
WE5
WES
22328
22320
2232F
2232H
2232K
CF
CF
CF
CF
CF
2292Z0
25018
25010
2601F
2501H
S
S
S
S
S
WES
WES
WES
WES
WES
2292Z0
25018
25010
250lF
2501H
CF
CF
CF
CF
CF
2191P61
2191S
2191S51
2191V
2191V51
5
5
5
5
5
WE5
WE5
WE5
WES
WE5
2191P61
21915
2191551
2191V
2191V51
CF
CF
CF
CF
CF
2232M
2232P
2232S
2232V
2232Z
S
S
S
S
S
WES
WES
WES
WE5
WES
2232M
2232P
2232S
2232V
2232Z
CF
CF
CF
CF
CF
2501K
2501M
2502B
25020
2502F
S
S
S
S
S
WES
WES
WES
WES
WES
250IK
2501M
25028
25020
2502F
CF
CF
CF
CF
CF
2191Z
2191Z51
2192A
2192A61
21928
5
5
5
5
S
WE5
WES
WES
WES
WES
2191Z
2191Z51
2192A
2192A51
21928
CF
CF
CF
CF
CF
2232Z8
2232Z0
22418
22410
2241F
S
S
S
5
S
WES
WES
WES
WES
WES
2232Z8
2232Z0
22418
22410
2241F
CF
CF
CF
CF
CF
2502H
2502K
2502M
2502P
2502S
S
S
S
S
S
WES
WES
WES
WES
WES
2502H
2502K
2502M
2502P
26025
CF
CF
CF
CF
CF
2192851
21920
2192051
2192F
2192F51
S
S
S
S
S
WES
WES
WES
WE5
WE5
2192851
21920
2192051
2192F
2192F51
CF
CF
CF
CF
CF
2241H
2241K
2241M
2241P
22415
5
S
S
S
S
WES
WES
WES
WES
WES
2241H
2241K
2241M
2241P
2241S
CF
CF
CF
CF
CF
25038
25030
2503F
2503H
2503K
5
S
S
S
S
WES
WES
WES
WES
WES
25038
25030
2503F
2503H
2503K
CF
CF
CF
CF
CF
2192H
2192H51
2192K
2192K51
2192M
S
S
S
S
S
WES
WES
WES
WES
WES
2192H
2192H61
2192K
2192K61
2192M
CF
CF
CF
CF
CF
2241V
2241Z
22428
22420
2242F
5
S
5
S
S
WES
WE5
WES
WES
WES
2241V
2241Z
22428
22420
2242F
CF
CF
CF
CF
CF
2503M
2503P
2503S
2603V
2503Z
S
S
S
S
S
WES
WES
WES
WES
WES
2503M
2503P
2503S
2503V
2503Z
CF
CF
CF
CF
CF
2192M51
2192P
2192P61
2192S
2192851
S
5
S
5
5
WE5
WES
WE5
WE5
WES
2192M51
2192P
2192P51
21925
2192S61
CF
CF
CF
CF
CF
2242H
2242K
2242M
2242P
2242S
S
S
S
S
S
WES
WES
WES
WE5
WES
2242H
2242K
2242M
2242P
2242S
CF
CF
CF
CF
CF
2503Z0
2503ZH
2506B
25060
2505F
5
S
S
S
S
WES
WES
WES
WES
WES
2503Z0
2603ZH
25058
25050
2505F
CF
CF
CF
CF
CF
2192V
2192V51
2192Z
2192Z51
2193A
S
S
S
S
S
WES
WES
WE5
WES
WES
2192V
2192V61
2192Z
2192Z51
2193A
CF
CF
CF
CF
CF
2242V
2242Z
2242Z0
22488
22480
S
5
5
5
S
WES
WE5
WE5
WE5
WES
2242V
2242Z
2242Z0
22488
22480
CF
CF
CF
CF
CF
2505H
2506K
2506M
2505P
2505S
S
S
S
S
S
WES
WES
WES
WES
WES
2505H
2506K
2505M
2505P
2506S
CF
CF
CF
CF
CF
21938
21930
2193F
2193H
2193K
S
S
S
S
S
WE5
WE5
WES
WES
WES
21938
21930
2193F
2193H
2193K
CF
CF
CF
CF
CF
2248F
2248H
2248K
2248M
2248P
S
5
S
S
5
WES
WES
WE5
WES
WES
2248F
2248H
2248K
2248M
2248P
CF
CF
CF
CF
CF
2505V
2505Z
2611B
25110
2611F
S
S
S
S
S
WES
WES
WES
WE5
WES
2505V
2505Z
26118
25110
2511F
CF
CF
CF
CF
CF
2193M
2193P
2193S
2193V
2193Z
S
S
5
S
S
WES
WES
WES
WES
WES
2193M
2193P
2193S
2193V
2193Z
CF
CF
CF
CF
CF
22485
2248V
2248Z
2248Z0
22718
S
S
S
S
S
WES
WES
WES
WE5
WES
2248S
2248V
2248Z
224BZO
22718
CF
CF
CF
CF
CF
2611H
2611K
2511M
2511P
2511S
S
S
S
S
S
WES
WES
WES
WES
WES
2511H
.2511K
2611M
2511P
2511S
CF
CF
CF
CF
CF
2201 A
22018
22010
2201F
2201H
S
S
S
S
S
WES
WES
WES
WES
WES
2201A
22018
22010
2201F
2201H
CF
CF
CF
CF
CF
22710
2271F
2271H
2271K.
2271M
S
S
5
S
S
WE5
WES
WES
WES
WES
22710
2271F
2271H
2271K
2271M
CF
CF
CF
CF
CF
2511V
2511Z
2512A
25128
25120
S
S
S
S
S
WES
WES
WES
WES
WES
2511V
26"Z
2612A
25128
25120
CF
CF
CF
CF
CF
Note: Manufacturer's Codes, Product Type Notes and
® Replacement Notes are listed on page G3
G35
Sugge.ted@
Sugge.ted@
Part Number
Type Mfg •.
Replacement
PagL
Part Numbe.
Type Mfg •.
Replacement
Page
S"IIII_@
Part N'umber
R.~I8c_
P-
CF
CF
CF
CF
CF
S
S
S
S
S
WES
WES
WE5
WES
WES
2643M
2543M61
2543P
2543P61
2543S
CF
CF
CF
CF
CF
2832F
2832H
2832K
2832M
2832p
S
S
5
S
S
WES
WES
WES
WES
WES
2832F
2832H
2832K
2832M
2832P
CF
CF
CF
CF
CF
2512S
2512V
2512Z
2513B
25130
CF
CF
CF
CF
CF
2543551
2601B
26010
2601F
2601H
S
S
5
S
5
WES
WE5
WES
WE5
WES
2543S51
2601B
26010
2601F
2601H
CF
CF
CF
CF
CF
28325
2832V
2721A
2721B
27210
5
S
5
5
.S
WE5
WES
WE5
WES
WE5
2832S
2832V
2721A
2721B
27210
CF
CF
CF
CF
CF
WE5
WES
WES
WE5
WES
2513F
2513H
2513K
2513M
2513P
CF
CF
CF
CF
CF
2601K
2601M
2601P
,2601PDN120
2601PONl40
S
S
S
R
R
WES
WES
WES
IR
IR
2601K
2601M
2601P
CF
CF
CF
CF
CF
CF
CF
2721F
2721H
2721K
2721M
2721P
5
S
5
S
5
WE5
WES
WES
WE5
WE5
2721F
2721H
2721K
2721M
2721P
CF
CF
CF
CF
CF
5
S
5
5
S
WES
WES
WE5
WES
WES
26135
2513V
2513Z
2513ZB
251320
CF
CF
CF
CF
CF
2601PDN180
2601PONl80
2601PDN200
2601PDN220
2601PDN240
R
R
R
R
R
IR
IR
IR
IR
IR
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
27215
2721V
27212
2722A
2722B
S
5
S
5
S
WE5
WE5
WE5
WE5
WES
2721S
2721V
2721Z
2722A
2722B
CF
CF
CF
CF
CF
2515B
25150
2515H
2515K
2515M
S
S
S
5
5
WE5
WES
WES
WE5
WE5
2615B
25150
2515H
2515K
2615M
CF
CF
CF.
CF
CF
2801PON250
26015
2601 V
26012
2602B
R
S
S
5
S
IR
WES
WES
WE5
WE5
CF
2601S
2601 V
2601Z
2602B
CF
CF
CF
CF
CF
27220
2722F
2722H
2722K
2722M
S
S
S
5
5
WES
WES
WE5
WE5
WES
27220
2722F
2722H
2722K
2722M
CF
CF
CF
CF
CF
2515P
25155
2515V
2615Z
2541A
5
5
5
5
S
WE5
WE5
WE5
WE5
WES
2515P
25165
2515V
2615Z
2541A
CF
CF
CF
CF
CF
26020
2802F
2602H
2802K
2802M
5
5
5
5
S
WE5
WE5
WE5
WE5
WES
26020
2602F
2602H
2602K
2602M
CF
CF
CF
CF
CF
2722P
27225
2722V
2722Z
2722Z0
5
5
5
5
S
WES
WE5
WE5
WES
WES
2722P
27225
2722V
2722Z
2722Z0
CF
CF
CF
CF
CF
2541A51
2541B
2541B51
25410
2541051
S
S
S
S
S
WES
WES
WES
WES
WES
2541A51
2641B
2541B61
26410
2641051
CF
CF
CF
CF
CF
2602P
2602S
2602V
2802Z
26058
S
S
S
S
S
WES
WES
WES
WES
WES
2602P
2602S
2602V
2602Z
2605B
CF
CF
CF
CF
CF
2731A
2731B
27310
2731F
2731H
S
S
S
S
S
WES
WES
WES
WES
WE5
2731A
2731B
27310
2731F
2731H
CF
CF
CF
CF
CF
2541F
2641F51
2541H
2541H51
2541K
S
S
S
S
S
WES
WES
WES
WES
WES
2541F
2541F61
2541H
2641H61
2541K
CF
CF
CF
CF
CF
26050
2605F
2805H
2605K
2605M
S
S
S
S
S
WES
WES
WES
WES
WES
26050
2606F
2606H
2805K
2805M
CF
CF
CF
CF
CF
2731K
2731M
2731P
2731S
2731V
S
S
S
S
S
WES
WES
WES
WES
WES
2731K
2731M
2731P
2731S
2731V
CF
CF
CF
CF
CF
2541K51
2541M
2541M51
2541P
2641 PSI
S
S
S
S
S
WES
WES
WES
WES
WES
2541K51
2641M
2641MSI
2641P
2541P51
CF
CF
CF
CF
CF
2605P
2605S
260SV
2605Z
2811B
S
S
S
S
S
WES
WES
WES
WES
WES
2805P
2805S
2605V
2806Z
2811B
CF
CF
CF
CF
CF
27312
2731Z0
2732A
2732B
27320
S
S
S
S
S
WES 27312
WES 273120
WES 2732A
WES 2732B
WES.27320
CF
CF
CF
CF
CF
2541S
2541S51
2541V
2541V51
2641Z
S
S
S
S
S
WES
WES
WES
WES
WES
2541S
2641S51
2541V
2641V51
25412
CF
CF
CF
CF
CF
26118
28110
2811F
2811H
2611K
2611M
S
S
S
5
S
S
WES
WES
WES
WES
WES
WES
26118
28110
2611F
2811H
2611K
2611M
CF
CF
CF
CF
CF
CF
2732F
2732H
2732K
2732M
2732P
S
S
S
S
S
WES
WES
WES
WES
WES
2732F
2732H
2732K
2732M
2732P
CF
CF
CF
CF
CF
2541251
2542A
2542A51
25428
2642851
5
S
S
5
S
WES
WES
WES
WES
WES
2541Z51
2542A
2542A51
2642B
2542B51
CF
CF
CF
CF
CF
2811P
2611S
2611V
26112
26128
S
5
5
S
S
WES
WE5
WES
WES
WES
2611P
26115
2611V
26112
26128
CF
CF
CF
CF
CF
2732S
2732V
2732Z
273220
2761B
S
S
S
S
S
WES
WES
WES
WES
WES
2732S
2732V
2732Z
2732Z0
2781B
CF
CF
CF.
CF
CF
25420
2542051
2542F
2542F51
2542H
5
S
S
S
S
WES
WES
WES
WES
WES
26420
2642051
2642F
2642F51
2542H
CF
CF
CF
CF
CF
26120
2612F
2612H
2612K
2812M
S
S
5
S
5 '
WES
WES
WES
WES
WES
28120
2612F
2612H
2612K
2612M
CF
CF
. CF
CF
CF
27810
2781F
2761H
2761K
2781M
S
S
5
5
5
WE5
WES
WES
WES
WES
27610
2761F
2781H
2761K
2761M
CF
CF
CF
CF
CF
2542H51
2542K
2542K51
2542M
2542M51
5
S
S
S
5
WES
WES
WES
WE5
WE5
2542H51
2542K
2542K51
2542M
2642M51
CF
CF
CF
CF
CF
2812P
2612S
2612V
2612Z
2612Z0
5
S
S
5
S
WES
WES
WES
WES
WES
2612P
2612S
2612V
2612Z
2612ZD
CF
CF
CF
CF
CF
2781P
2761S
2761V
27612
2762A
S
S
5
S
S
WES
WES
WES
WE5
WES
2761P
2761S
2761V
2781Z
2782A
CF
CF
CF
CF
CF
2542P
2542P51
2542S
2542551
2542V
S
S
S
S
S
WES
WES
WES
WES
WES
2542P
2642P51
2642S
2542551
2542V
CF
CF
CF
CF
CF
28158
26150
2615F
2615H
, 2616K
S
S
5
5
S
WES
WE5
WES
WES
WES
26158
26150
2616F
2616H
2616K
CF
CF
CF
CF
CF
27828
27820
2762F
2762H
2782K
S
5
S
5
5
WES
WES
WES
WES
WES
27628
27820
2782F
2762H
2782K
CF
CF
CF
CF
CF
2642V61
2542Z
2542251
2543A
2543A51
S
5
S
S
S
WES
WES
WE5
WES
WES
2642V61
2542Z
2642251
2543A
2643A51
CF
CF
CF
CF
CF
2615M
2615P
2615S
2615V
2815Z
5
5
5
S
S
WES
WES
WES
WES
WES
2616M
2615P
26155
2615V
26152
CF
CF
CF
CF
CF
2762M
2782P
2762S
2762V
2762Z
S
S
S
5
S
WES
WE5
WES
WE5
WES
2762M
2782P
2762S
2762V
2762Z
CF
CF
CF
CF
CF
26438
2543851
26430
2543051
2543F
S
S
5
S
S
WE5
WE5
WES
WES
WE5
25438
2643851
25430
2643051
2643F
CF
CF
CF
CF
CF
28318
26310
2631F
2631H
2631K
S
5
S
5
5
WES
WES
WES
WES
WES
26318
28310
2831F
2631H
2631K
CF
CF
CF
CF
CF
2762Z0
2781A
2781B
27810
2781F
S
5
5
S
S
WES
WES
WE5
WE5
WES
2762Z0
2781A
2781B
27810
2781F
CF
CF
CF
CF
CF
2643F51
2543H
2543H51
2543K
2543K51
S
5
S
S
S
WES
WES
WES
WES
WES
2543F51
2543H
2643H51
2643K
2543K51
CF
CF
CF
CF
CF
2831M
2631P
2831S
2632B
26320
5
S
5
S
5
WES
WES
WE5
WES
WES
2831M
2831P
2631S
26328
28320
CF
CF
CF
CF
CF
2781H
2781K
2781M
2781P
27815
5
S
5
S
S
WES
WES
WE5
WES
WE5
2781H
2781K
2781M
2781P
27815
CF
CF
CF
CF
CF
S
S
S
S
S
WES
WE5
WE5
WES
WE5
2512F
2512H
2512K
2512M
2512P
2512S
2512V
25122
2513B
25130
S
S
S
S
5
WES
WES
WES
WES
WE5
2513F
2513H
2513K
2513M
2513P
S
S
5
S
S
2513S
2513V
25132
25132B
2513Z0
Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are listed on page G3
G36
Type Mfg •.
2543M
2543M51
2543P
2543P61
2543S
2612F
2512H
2512K
2512M
2512P
Suggestod@
Replacement
Page
Type Mfgr.
Page
Part Number
27B1V
2781Z
27B2A
27B2B
27820
S
S
S
S
S
WES
WES
WES
WES
WES
27B1V
27B1Z
27B2A
27B28
27B20
CF
CF
CF
CF
CF
43892
43B92R
43893
43893R
43B94
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
IN3892
IN3B92R
IN3B93
IN3893R
R3D2OB12
R55
R55
R55
R55
R55
27B2F
27B2H
27B2K
27B2M
27B2P
S
S
S
S
S
WES
WES
WES
WES
WES
27B2F
27B2H
27B2K
27B2M
27B2P
CF
CF
CF
CF
CF
43B94R
43B99
43899R
43900
43900R
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
R3D30612
IN3B99
IN3B99R
IN3900
IN3900R
R55
R57
R57
R67
R57
27B2S
27B2V
27B2Z
27B2Z0
3001PON80
S
S
S
S
R
WES
WES
WES
WES
IR
27B2S
27B2V
27B2Z
27B2Z0
CF
CF
CF
CF
CF
CF
43901
43901R
43902
43902R
43903
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
IN3901
IN3901R
IN3902
IN3902R
IN3903
R57
R57
R67
R57
R57
3001PON80
3001 PDNI 00
3001PDN120
3001PDN14O
3001PDNI80
R
R
R
R
R
IR
IR
IR
IR
IR
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
43903R
43904
43904R
R
R
R
RCA IN3903R
RCA R402OB20
RCA R4030620
40108
40108R
40109
40109R
40110
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
IN1199A
IN1199AR
INI200A
IN1200AR
IN1202A
R13
R13
R13
R13
R13
40110R
40111
40111R
40112
40112R
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
INI202AR
IN1203A
INI203AR
IN1204A
IN1204AR
R13
R13
R13
R13
R13
40113
40113R
40114
40114R
40115
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
IN1205A
INI205AR
IN1206A
INI206AR
IN3671A
R13
R13
R13
R13
R13
40115R
40208
4020BR
40209
40209R
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
IN3671AR
IN1191
IN1191R
IN1192
IN1192R
R15
R15
R15
R15
40210
40210R
40211
40211R
40212
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
IN1194
IN1194R
IN1195
IN1195R
IN119S
R15
R15
R15
R16
R15
40212R
40213
40213R
40214
40214R
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
IN119SR
INl197
IN1197R
INl19B
INl19BR
R15
R15
R15
R15
R15
40741
40742
40743
40754
40755
S
S
5
S
5
RCA
RCA
RCA
RCA
RCA
T40001100B
T40002100B
T40003100B
T400011608
T40002160B
S13
513
S13
S13
S13
40756
407E/7
40956
40956R
40967
5
5
R
R
R
RCA
RCA
RCA
RCA
RCA
T40006160B
T400041608
INllB3A
INllB3AR
INllB4A
513
513
R16
R15
R15
40967R
40958
4095BR
40959
40959R
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
INllB4AR
INl186A
INllB6AR
INllBBA
INl18BAR
R15
R15
R16
R15
R15
40980
40980R
43879
43B79R
43880
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
INl190A
INl190AR
IN3879
IN3879R
IN3880
R15
R15
R55
R55
R55
438BOR
43B81
43BBIR
43882
43BB2R
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
IN3B80R
IN38Bl
IN3B81R
IN3882
IN388ZR
R55
R55
R55
R55
R55
438B3
43883R
43884
43884R
43889
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
IN3B83
IN3B83R
R3020S06
R3030806
IN3889
R55
R55
R55
R55
R55
438a9R
43890
43890R
43B91
43B91R
R
R
R
R
R
RCA
RCA
RCA
RCA
RCA
IN3889R
IN3890
IN3890R
IN3891
IN3891R
R55
R55
R55
R55
R55
Part Number
Typo Mfgr.
R67
R57
R57
"1.$
Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on pageG3
G37
.
"
Designed with YOU in Mind
Ideal for all users of power semiconductors regardless of
job'function, technical background, and experience level.
.
-,~
."",
•
...
--
"---.
.
~s-
•
<
:
•
•
•
•
0::-..
.'
".tVeJ'=~
.......
.'
Two books in one
8Y2 x 11 format
Easy to read
Fully indexed
tlMfa. .
:
' , .
:'.
:
':
-""',
•
",
.
• Master cross reference
• Complete product data
• 432 Pages
U..S. $6.50 • Book Rate Postage Included. Elsewhere $7.50
This valuable reference book will save you
time and money when specifying, buying,
installing, testing, maintaining, troubleshooting, servicing, identifying, and
replacing power semiconductors. Order your
copy today.
Send check or money order (payable in U.S.
funds) to:
Westinghouse Electric Corporation
Book Order
Semiconductor Division
Youngwood, Pa. 15697
Acceptance of Orders
The conditions stated below shall take precedence over any conditions which may
appear oli your standard form, and no provisions or conditions of such form, except as
expressly stated herein shall be binding on Westinghouse. Notice of objection ·to any
additional or different terms is hereby given.©
may develop under proper or normal use
during the period of one year from the
date of shipment. by repair or replacement
f.o.b. factory. of the defective part or parts.
or. at its option. issue credit at the original
purchase price.
Order Entry
Send all orders for quantities shown in PL 54~020 to our authorized full line Westinghouse
distributor. Orders for larger quantities may go to:
Westinghouse Electric Corporation
Semiconductor Division
Youngwood, Pennsylvania 15697
Telephone: 412-925-7272
TVVX:
510-468-2840
Standard Conditions of Sale
Price Policy
Prices are firm for orders specifying
delivery within six months from acceptance of order by Westinghouse. Shipments scheduled beyond six months
from order acceptance. or held or postponed beyond such six months at the
request of buyer. are subject to price
adjustment to price in effect at time of
shipment. Such adjustment will not apply
to products scheduled for shipment within
thirty days of the date of notification to
bUY81 of the price adjustment.
Minimum Billing
The minimum order shall be $250.00 plus
transportation charges.
Taxes
The prices do not include any Federal.
State or Local property. license. privilege.
sales. use. excise. gross receipts or other
like taxes which may now or hereafter be
applicable to. measured. by or imposed
upon or with respect to the transaction.
the property. its sale. its value or its use.
or any services performed in connection
therewith. Purchaser agrees to payor reimburse any such taxes which Westinghouse or Westinghouse's subcontractors
or suppliers are required to pay.
Terms of Payment
Terms of payment are net within 30 days
from date of shipment.
Payments
If, in the judgment of Westinghouse. the
financial condition of the purchaser. at any
time during the manufacturing period. or at
any time product is ready for shipment.
does not justify the terms of payment specified. Westinghouse may require full or
partial payment in advance.
© Changed since previous issue.
Delivery
F.O.B.-P.S.-Frt./Coli. (Transportation
charges. not allowed). This product is
delivered Free on Board. Point of Shipment. Freight Collect (Transportation
Charges not allowed).
Loss. Damage, or Delay
Westinghouse shall not be liable for failure
to perform or for delay in performance due
to fire. flood. strike or other labor diffiCUlty. act of any governmental authority
or of the purchaser. riot. embargo. car
shortage. wrecks or delay in transportation,
inability to obtain necessary labor. materials.
or manufacturing facilities from usual
sources or due to any other cause beyond
its reasonable control.
In the event of delay in performance due
to any such cause. the date of delivery or
time for completion will be postponed by
such length of time as may be reasonably
necessary to compensate for the delay.
Warranty
Lifetime Guarantee
Westinghouse warrants to the original
purchaser that it will correct any defects in
workmanship or material. by repair or replacement. F.O.B. factory or. at its option.
issue credit at the original purchase price.
for any silicon power semiconductor
bearing this symbol + during the life of
the equipment in which it is originally
installed. provided said device is used
within manufacturer's published ratings
and applied in accordance with good
engineering practice.
Other Semiconductor Products
Westinghouse. in connection with products
sold. agrees to correct any defect or defects in workmanship or material which
Developmental Products
Westinghouse semiconductor products
designated at the time of sale to be developmental are warranted to meet the applicable preliminary specifications in effect
at time of order entry. If any failure to comply with such preliminary specifications
appears within 12 months from date of
shipment. Westinghouse will correct such
non-compliance by repair or replacement
f.o.b. factory. or. at its option. issue credit
at the original purchase price.
The foregoing warranties are exclusive and
in lieu of all other warranties of quality
whether written, oral, or implied (including
any warranty of merchantability or fitness
for purpose).
Correction of non-conformities in the
manner and for the periods of time specified above shall constitute fulfillment of all
liabilities of Westinghouse to the purchaser
whether based on contract. negligence or
otherwise in respect to such products.
Limitation of Liability
Neither party shall be liable for special.
indirect. incidental or consequential damages. The remedies of the purchaser set
forth herein are exclusive and the liability
of Westinghouse with respect to any contract or sale or anything done in connection therewith. whether in contract. or in
tort (including negligence) shall not
exceed the price of the equipment or part
on which such liability is based.
Patents
Westinghouse shall at its own expense.
defend any suits or proceedings brought
against the purchaser. and/or its vendees.
mediate and immediate. so far as based on
an allegation that any goods. material.
equipment. device or article (hereinafter
referred to as product) or any part thereof
furnished hereunder constitutes an infringement of any claim of any patent of the
United States, other than a claim covering
a process performed by said product or
another product produced by said product.
provided that such product is not supplied
according to purchaser's design. and is
used as sold by Westinghouse. if purchaser
January 2. 1978
Supersedes Selling Policy 54-000. pages 1 and 2.
Dated February 26. 1976
G39
The purchaser should immediately inspect
Patents. Continued
each shipment. and if there is evidence of
shall have made all payments then due
loss or damage during transit. should file
hereunder. and if Westinghouse is notified
a claim against the carrier. Westinghouse
promptly in writing and given authority.
may assist with such claims. but will not
information and assistance for the defense
accept any responsibility for the claims.
of said suit or proceeding. and WestingAny adjustments in such cases are behouse shall pay all damages and costs
tween the purchaser and the carrier.
awarded in any suit or proceeding so defended. provided that this indemnity shall
License Notice
not extend to any infringement based upon
The sale of any product hereunder does
the combination of said pro<;tuct or any
not convey any license. express or implied.
part or parts thereof with another product
under any patent claims on circuits. sysor things not furnished hereunder unless
tems or processes. or on any combination
Westinghouse is a contributory infringer.
of the product with other devices. eleWestinghouse shall not be responsible for
ments or things.
any settlement of such suit or proceeding
made without its written (:onsent. In case
Termination©
the product or any part thereof furnished
Any order may be terminated by the
hereunder is in any suit or proceeding' so
purchaser only upon'payment of reasondefended held to constitute infringement.
able cancellation charges which will be
and its use is enjoined. Westinghouse
determined by Westinghouse in
shall. at its own option and its own exconjunction with expenses and
pense. either procure for the purchaser the
, !)ommitme.nts,incurred.
right to continue using said product ,0(.'
,part thereof; or replace it with a non-in';,.
fringing product; or modify it so'it b;;-'"'' " ,'. The iri'inimum charge for an order which is
cancelled after Engineering has been
comes non-infringing; or remove it and
completed prior to release to Production
refund the purchase price and the transwill be $250,00. or 2% of the selling price.
portation and installation costs thereof.
whichever is greater. If an order is
The foregoing states the entire liability of
cancelled after it has been released to
Westinghouse with respect of patent inProduction. an additional charge will be
fringement by said product or any part
made in proportion to the percentage of
thereof.
completion of the order. The additional
charge will be based on material. labor.
To the extent that said product. or any
and overhead costs plus a 15% markup to
part thereof. is supplied according to
compensate for disruption in scheduling.
purchaser's design or instructions. or is
disruption in planned production. lost
modified by purchaser. or combined by
profit. and other indirect costs.
purchaser with another product or things
not furnished hereunder except to the exReturning Product
tent that Westinghouse is a contributory
Authorization and shipping instructions for
infringer. or is used by Pllrchaser to per~
the return of any product must be obtained
form a process. or produce another prodby the purchaser from Westinghouse beuct. and. by reason of said design,instrucfore returning the product. Product must
tion. modification. combination. performbe returned with complete identification in
ance. or production. a suit or proceeding
accordance with Westinghouse instrucis brought against Westinghouse. purtions or it will not be accepted. Where a
chaser agrees to indemnity Westinghouse
purchaser requests authorization to return
in the manner and to the extent Westinghouse indemnifies purchaser in the preced- product for reasons of his own. he will be
.charged for placing the returned goods
ing paragraph insofar as the terms thereof
in salable condition (restocking charge)
are appropriate.
and for any outgoing and incoming transportation paid by Westinghouse.
Title - Risk of Loss
The product shall remain the personal
In no event will Westinghouse be responproperty of Westinghouse until fully paid
sible for product returned without proper
for in cash. and the purchaser agrees to
authorization and identification.
perform all acts which may be necessary
to perfect and assure the retention of title
to such property by Westinghouse. Risk of
loss of·the product. 'or any part of the
same. shall pass to the purchaser upon
delivery of such product or pert.F.O.B .•
point of, shipment.
© Changed since previous issue.
..
G40
This schedule is to be used for
general planning guidelines only.
These typical factory lead times
'Iisted do not include order transmittal time to the semiconductor
factory or shipping time to the
user's plant. Please contact Westinghouse for specific requirements.
Check with the local authorized
distributor for off-the-shelf delivery
on most rectifier, SCR, transistor,
and modular rectifier assembly
products.
There are several points worth
noting about power semiconductors when planning for volume
purchases. Semiconductors are yield
dependent devices - once manufactured, if they don't meet the
desired specification, they usually
cannot be altered or modified. Also,
ordering the highest current rating,
highest voltage rating, and fastest
turn-off time device in a given
product family usually results in a
longer lead time due to lower
production yield. As with most any
type of manufactured product, unforeseen delays in shipping product
due to late parts delivery, parts
shortages, receipt of inferior or Ol,ltof-spec component parts, can occur. The actual quantity required by
the user of a given semiconductor
type as well as the general market
demand for the device can also
affect the product's lead time.
Therefore, the user should work
closely with the manufacturer to
assure on-time delivery of the
needed semiconductors.
The best way to assure a steady
flow of semiconductors into your
pia nt is to enter a pu rchase order on
the manufacturer with scheduled
monthly releases. An alternate
approach would be a purchase
agreement to buy a certain number
of power semiconductors (particular type) in a specified period of
time. The purpose of either of these
approaches is to provide the semiconductor manufacturer with better
planning visibility so that the factory
can match its production schedule
to your actual requirements.
TYPICAL FACTORY LEAD TIMES
Typical
Factory
Lead Time
Shipping
Quantity
(Am......l
Voltage
Range
(Volte)
2-25
12-1650
197-8700
588-13,580
900-2200(RMS)
50-1000
100-2000
100-4000
100-4000
1200-3000
.5-325
6-450
1K-688K
2K-72K
500
100
100
100
100
50
50
50
1-2
4-8
4-8
4-8
4-8
4-12
6-8
6-10
General Purpo.e
1-6
3-16
15-70
100-150
160-550
300-2200
50-1000
50-1000
50-1200
100-1400
50-4000
l00-4pOO
1000
500
500
100
100
100
2-4
1-2
1-2
2-4
2-4
4-6
50-600 _
50-1600
100-32.00
100
100
100
2-6
4-6
4-8
Currant
Rangea
Product
Type
Data Book
Location
(Page Numbers)
(Weakll
ASSEMBLIES
A3,A4
A5-A36
A39-A44
A45-A51
A52-A55
A65-A66
A69-A75
A76-A79
Modular Rectifier
Gold Line
Air Cooled Disc
Liquid Cooled Disc
Liquid Cooled Manifold
Sinks and Kits
H.V. Stacks, Channel
H.Y. Stacks, Plate
RECTIFIERS
R9-R12
R13,R14
R15-R18
R19-R26
R27-R38
R39-R54
Axial Lead Mount
Stud Mount
Stud Mount
Stud Mount
Stud Mount
Disc Mount
R55-R58
R59-R66
R67-R78
THYRISTORS
59-518
S19-530
531-540
541-554
555-570
571,572
573-576
Stud Mount
Stud Mount
Disc Mount
Fast Recovery
6-30
80-250
350-1400
Stud Mount
Stud Mount
Stud Mount
Disc Mount
Disc Mount
Integral H.S.
Flat 8ase
Pha8e Control SCR'.
10-22
25-1200
40-80
25-1500
125-350
50-2200
125-550
100-2200
600-1400
100-3000
300
100-2000
175-350
100-1600
100
100
100
100
100
50
50
2-4
4-6
4-6
4-6
6-8
4-6
4-6
577-582
583-594
Stud Mount
Disc Mount
Fast Switching SCR'.
40-325
100-1200
60-900
100-2200
100
100
4-8
6-10
595,596
597,598
Stud Mount
Disc Mount
600-1000
600-1000
100
100
6-8
6-10
40-150
1000
4-6
30-250
100
4-6
50
50
8-12
8-12
TRANSISTORS
T5-T14
T15-T32
T33,T34
T33,T34
TO-66/TO-3
Stud Mount
Stud Mount
Disc Mount
RBDT'.
22
125
General Purpose
.5-15"
High S.O.A.
1.5-25"
High Power Fast Switching
50'
400-500
50"
400-500
"Gain Rated Current
For volume users of high power
semiconductors, Westinghouse offers a program that can help save
you and your company time and
money. Westinghouse will carry
your safety stock, at no cost to you,
in the form of a bonded element
inventory selected to your specifications and with guaranteed delivery
time for encapsulating these elements into any device package you
desire. In addition, this program will
allow Westinghouse to respond
more rapidly to sudden increases in
your production levels. Therefore,
by letting Westinyhouse carry your
safety stock, you not only get a
guaranteed delivery lead time, but
your company realizes an improvement i.n its cash flow as a result of
the reduction in committed captial.
For fast delivery and prompt service,
specify Westinghouse power semiconductors.
G41
Westinghouse has been a pioneer in the manufacture of reliable power semiconductors for both
commercial and military applications worldwide. From simple conditioning tests to a full-scale high
reliability test program, Westinghouse can deliver a product to meet any required level of reliability.
A complete line of high power military rectifiers are available in both standard and reverse polarity.
The JAN type numbers and their respective ratings are as follows:
100 Ampere/DO-8 Package
MIL-S-19500/246
VOLTAGE
RATING
240 Ampere/DO-9 Package
MIL-S-19500/211
TYPE NUMBER
TYPE NUMBER
JAN 1 N3164, R
400V
JAN 1 N3289, R
JAN 1 N3291 , R
600V
JAN 1 N3293, R
JAN 1 N3170, R
800V
JAN 1 N3294, R
JAN 1 N3172, R
1,QOOV
JAN 1 N3295, R
JAN 1 N3174, R
200V
JAN 1 N3168, R
For copies of the military specifications, contact the Commanding Officer, Naval Publications and Forms
Center, 5801 Tabor Avenue, Philadelphia, Pa. 15120.
Westinghouse power semiconductors have been selected for use in a
-NAVY NUCLEAR (SVFC)
v~riety
of high reliability programs.
-APOLLO
- SEA SPARROW
- AIR LAUNCH CRUISE MISSILE
-SATURN MISSILE
-'F15, F16
-NIKE X
-Baa SONAR
- KC 135
-ARSR-3
-SHILLELAGH
-TPS-43
- AIRBORNE CAMERA SYSTEM
-D2W
-MARK 46/48
-SST
- MOL PROGRAM
-AWG10
-50556
- A.A.F.S.S.
- SIRDIPS
- LEM PROJECT
- PHASE ARRAY RADAR
- TRC-170
- SPRINT/SPARTAN (A.B.M.)
- DE1160
- LORAN C
- TRIDENT SUBMARINE
-C5A
- E2C RADAR
For the utmost in reliability, specify Westinghouse power semiconductors.
G42
Introduction
Semiconductor devices control large amounts
of power with high efficiency and reliability.
With ever-increasing circuit and device
power levels, the requirement for adequate
cooling of semiconductors is mandatory. The
problem for the user is to properly assemble
the devices into equipment without reducing
thei~ capability. Regardless of whether the
device is a lead mount, stud type, flat base or
disc, certain mounting procedures must be
adhered to in order to get the most reliable
device "peration. The amount of heat involved requires proper mounting to prevent
unwanted temperature rise or damage to the
semiconductor. This AD sheet discusses
proper mounting methods and surface preparation required for successfully applying
semiconductors.
Equivalent Electrical
Schematic
,. ~Analogof
DeVice Power
Heat
-lj
I
>"'---Devlce and
Encapsulation
-TC
-TS
ReSA
j.\1
Mechanical
Analog
Parameter
T
- Temperature v -Voltage
AT -Temperature AV -Voltage
Difference
Difference
*Re -Thermal
Resistance
P
R -Electrical
Resistance
-Heat Source
-Current Source
*Re -Units of °CIWatt
P -Units of Watts
Thermal losses at the junction and in device
resistance must be conducted through device
and package to the ambient. Under stable
operating conditions, the resulting AT,
between the junction and the ambient is
expressed as
A TJA
P x R9JA
=
For stud and disc types Re is made up of three
quantities so the thermal equation may be
written:
A TJA = P(ReJc + Recs + ResA)
Source of
Thermal
Resistance
_ _ Heat Sink and Coolant
e--TA
-TA
Fig. 1: Mechanical-Electrical Analog of Stud Mounted Device.
Thermal Resistance Analogs
Semiconductor heat flow is conveniently
depicted by the thermal-electrical analog
illustrated in Figures 1 and 2. These figures
show the heat flow paths for the stud and disc
type devices, respectively. The discussion will
cover one heat flow path as in Figure 1, but
apply equally to Figure 2. In the diagrams, the
following quantities are analogs.
'.,
6;
~r--- Contact Resistance
Recs
Equivalent Schematic
-TA
ReSA
...--- Sink Resistance
Recs
....--- Contact Resistance
ReJC
ReJC
....--- Device Resistance
Cathode
- TJ
Anode
....--- Device Resistance
Recs
.....--Contact ReSistance
ReSA
...--- Sink Resistance
-TS(K)
Cathode
Side
-TC(K)
TCIKl
TC(A)
r
Heat
1
A)
Anode
Side
t
-
Source of
Thermal
Resistance
-TC(A)
-TS(A)
-TA
Fig. 2: Mechanical-Electrical Analog of Oisc Mounted Device with Double Sided Cooling.
properties for this double side cooled device
responds in the same manner described for
stud type dey-ices.
Stud type thermal resistance (ReJc) is determined by device design. The heat sink
thermal resistance, (ResA), is similarly fixedby the dissipator selected and the amount of
coolant used. The remaining thermal resistance quantity, Recs, is the variable which
should be reduced to lowest practical levels
by proper mounting procedures. These
procedures include preparation and treatment of the mating surfaces, use of joint
compounds, and applying the required force
to the mating surfaces.
These lead mount devices are not affected by
load force, and surface finish as are the
higher power devices mentioned previously.
When using disc devices the ReJC value is
effected by how well the recommended
mounting force is applied. The case to sink
Surface Requirements
The condition of the sink mounting surface is
one of the most important mounting details.
Lead mount semiconductors have their
internal resistance predetermined by how
well they are soldered together. The axial
lead, bonded directly onto the wafer takes
heat out of the body and radiates it to the
surrounding ambient. A detailed thermal
analysis is provided in the lead mount data
sheet.
The following sections describe what limits
should be met on flatness and surface finish
to minimize mounting resistance due to
surface problems.
a. Surface Flatness
Surface flatness is specified as a total
,indicator reading (TIR), measuring the
maximum distance between the crests
and valleys of the mounting surface. The
flatness of the mounting plane is referenced to the maximum deviation measured in the device mounting area.
For satisfactory mounting, the device
seating area should be held from .0005 to
.001 nR. Commercial extruded heat sinks
do not have comparable flatness values. In
addition, cast sinks, rough plates, etc. will
require additional treatment.
G4~
-------
b. Surface Finish
A second sink condition of importance is
surface finish. All surfaces have a roughness factor. This value is expressed in
microinches and is the average of the
deviations above and below mean value of
the deviations.
In general, the surface finish should be
approximately 30-60 microinches, which
is the equivalent finish supplied on Westinghouse semiconductor devices. Finer
finishes add undue cost and, in general,
do not result in lower contact drop at the
mounting interfaces.
Table 1 shows the approximate surface
roughness obtainable with various production methods. Generally speaking, mill
finish or machined surfaces on copper or
aluminum will be satisfactory if they are
flat and free from deep scratches. Castings or rough extrusions should be spotfaced to insure flatness and finish. A
suitable procedure is to measure a sample
surface on a production run, and if satisfactory, proceed with production based on
machining techniques. Periodic sample
testing will assure that tool wear, etc., is
not affecting the desired values.
trical and thermal insulator which offers
resistance to heat flow. Therefore, it must
be removed from' the mounting area. Another treated aluminum finish is irridite, or
chromate acid dip, which offers low resistances because of its thin surface. But, for
optimum performance, the device seating
area should be spotfaced to remove the
irridite finish. For economy, paint is sometimes used for sinks. When this finish is
used, cleaning is mandatory, because of high
thermal and electrical resistance.
Thermal Compounds
Following all the prescribed procedures
previously listed, it is still possible to have air
voids between mating surfaces. To optimize
contacts, thermal joint compounds are used.
Other approved thermal compounds are Dow
Corning 342 available from Dow Corning
Corporation in Midland, Michigan or Silicone
Oil SF 1154 available from the General
Electric Company.
Mounting Pressures
Optimum m-ounting pressures for -device
types have been determined by empirical
tests. Based on the results of these experiments, the device tabulations were generated
for Table 2. Lower than recommended torques
or forces can result in overheating and higher
values may result in cracked silicon or internal
contact problems. For higher or lower torque
and force values, contact Westinghouse.
The formula for thermal resistance of any
substance is:
Re
="t/A
----
Pal Nut
Hex Nut
where Re=thermal resistance of the film in
DC/Watt
p = specific thermal resistance of the
film
Fig. 3-A: Typical Non-insulating Hardware Kit.
.
t = average film thickness of the film
in inches
Hex Tenznut
A=film area in square inches
Table 1 Surface Texture vs. Process
All Values are in Micro-inch Average Deviation
Process
Polish
Hone
Grind
Electrolytic Grind
Barrel Finish
Bore, Turn
Die Cast
'Broach, Ream
Mill
Normal Range (Min.)
Average Tooling
4 to 16
4 to 32
4 to 63
8 to 32
8 to 32
16 to 250
32 to 63
32 to 125
32 to 250
Treated Mounting Surfaces
To produce a reliably low electrical and
thermal resistance between the contacting
surfaces it is necessary that they be free of
all foreign material, oxides, andfilms. Freshly
machined surfaces are generally free of
these contaminants if used immediately.
Bear in mind that freshly bared aluminum
forms an oxide film in a matter of seconds.
Other types of metals, such as copper and
steel, oxidize more slowly.
As a precautionary measure, all mating surfaces, and particularly aluminum, should be
used immediately after machining. If they
are stored, a cleaning operation is good
practice. A satisfactory cleaning technique is
to polish the mounting area with No. 000 fine
steel wool, followed by an alcohol or warm
soap and water wipe.
Many aluminum heat sinks are black anodized for appearance, durability, and performance; however, anodizing is an elec-
The values of p will vary from .10°C inches
per watt for copper film to 12000C inches
per watt for air, whereas a satisfactory joint
compound will have a resistivity of approximately 60°C inches/watt. Therefore, the
voids, deep scratches, and imperfections
which are filled with joint compound, will
have a thermal resistance of about 1 /2Oth of
the original value.
Westinghouse recommends the use of Alcoa
#2 electrical joint compound to fill these
voids. This compound contains an active
chemical in a grease type medium that dissolves the oxide film, present on most heatsink mounting surfaces, and seals the joint
against moisture. Some compounds attack
the surface, with localized action going relatively deep. With this compound, however,
the surface is lightly etched with no deep
localized attack; it attacks the oxide and not
the metal.
All heat exchanging surfaces should be
cleaned as mentioned previously. Apply
Alcoa #2 compound to all heat exchanging
surfaces sparingly with the use of a spatula or
lintless brush. Another method is to place a
predetermined minimal amount at or around
the center of the contact area and then rotate
the device back and forth while pressing it
into the heat sink. In this fashion, excess compound will be forced out and may be wiped
clean. Prolonged skin contact with the
compound should be avoided since it does
contain a fluoride ·base. It is recommended
that after using the compound, any skin areas
which were in contact with the compound
should be washed clean ..
Fig. 3-B: Alternate Non-insulating Hardware.
Fig. 3-C: Typical Insulating Hardware Kit Assembly.
Standard mounting hardware for stud devices
includes a nut and locking washer, or a pal
nut. With either combination, the nutshould
be carefully tightened applying the torque
indicated for the type of device shown in
Table 2.
An illustration of standard mounting hardware for stud devices is shown in Figure 3.
Standard hardware kits are available to
accomodate mounting all semiconductor
types. The appropriate kit is identified by a
code number as shown in the last three
colu mns ofT able 2. These codes are explained
in Table 3 as to what components cot:ne. in
each kit.
Alcoa #2 Joint Compound is available from .•. Alcoa
Conduct8 Products Company. Division of Aluminum
Company of America, Pittsburgh, Pennsylvania.
G44
1
!'
Table II
Semiconductor Mounting Torque. Force. and Hardware
. Pack8ge
Description
Stud Mount
Stud Size
.190-32
.250-28
Package
Outline
00-4
® IApplicable JEDEC Series Types
Insulating
Tenz
Nut
20 (2.22)
31
32
25
30 (3.33)
14
34
37
50 (5.56)
56
17
19
R500/R501/R502/R503/R510/R5111
120 (13.35)
99
-
98
IN3288A/IN4587
Rectifier
R500/R501
130 (14.46)
02
-
01
360 (40.06)
03
-
04
10(1.11)
10(1.11)
-
22*
20*
-
Rectifier
R302lR303/R31 0/R311 IIN1199. A.B
IN 1341. A. B/IN 16121IN3615/IN3670. A
IN3987/1N4458
Rectifier
R402/R403/R404/R405/R410/R4111
00-5
IN248. A.B. C/IN1183. AlIN1191. A
IN2154/1N3208/1N3765
RBDT
T40R
SCR
T400/2N681/2N1842.A
Transistor
MT-52
Mounting Hardware Codes
Non-insulating
00-5
TO-48
Mounting
Torque
Lb-In (N-M)
153/15412N3429
Transistor
.312-24
MT-1
MT-33
.375-24
00-8
151/152/2N1015/2N1016/2N2226
163/164/2N2757/2N3470
Rectifier
.500-20
00-30
SCR
.750-16
Diamond
Base Mount
Axial Lead
Mount
Flat Base
Mount
TO-941
T500/T507/T510/2N1792/2N19091
TO-83
2N2023/2N4361/2N4371
Rectifier
00-9
R600/R601/R602/R603/R610/R611
R70
IN2054/1N3161/1N3260/1N3735/1N4044
R700/R701
SCR
TO-93
T70
T600/T607/T610/2N3884
1700/T707
060
Transistor
060T
TO-66
TO-3
00-41
00-27
00-15
rvOO-27
R34
T68
T78
Integral HeatSink Mount
176
2N305412N3441
2N3055/2N3232-33/2N3236/2N34421
2N3771.2. 3/2N4347-48
IN4001-07
IN4816-22/IN5052-54
IN5391-99
IN5400-08
R340
T680 (2.4" Square Base)
T780 (Stud less)
17601T767
-
None Required
Solder Leads
to Terminals
25 (2.78) Per 80lt
Four .312-24 bolts supplied by Customer
Spring flat and
parallel to
mounting plane
26**
Bolt used for
electrical connection only.
-
-
.5-20 Bolt supplied by customer.
• *(2) .138-40 Bolts required per device. Bolts supplied by customer.
**(2) .312-24 Bolts required per device. Bolts supplied by customer.
G41S
Semiconductor Mounting Torque. Force. and Hardware (Continued)
Package
Description
Package
Outline
Mounting
Force
LB iKN)
. @/APPlicable JEDEC Series Types
Mounting Hardware Codes
Disc Mount
Interface Oia.
In. (mm)
.75 (19.05)
R62
Rectifier
R620/R622
RBDT
T62R
SCR
1400 (6.2)
1000/4.5
T52
T62
T520/T527
T620/T625/T627
1400 (6.2)
062
Transistor
062T
1400 (6.2)
Rectifier
1.34 (34.04)
R72
2400 (10.7)
R720/R722
SCR
T72
Clamp Purchased Separately
T720/T7271T72H
Rectifier
1.75 (44.45)
RS2
RS20
5500 (24.5)
SCR
TS2
1.S0 (48.26)
RSG
TS20
RSGO/RSG2
6000 (26.7)
SCR
TSG
TSGOITSGH
Rectifier
2.48 (62.SS)
RA2
RA20
1
~600 (53.4)
SCR
TA2
TA20
Device - - - - - - - - - - - - - - . 0 0 ;
Suitable Thermal Joint Compound
Applied.
Heat Sink Mounting Plate
Mounting Surface
Finish:
30 to 60 Microinches per
Inch Clear of all Oxides,
Paints and Foreign Particles.
Flatness:
Flat to .001 TIR Min.
Chamfer Edge .01" Radius
to Remove Burrs
fastening Hardware:
a) Hex Nut plus Pal Nut or Lockwasher
-orb) Hex Tenznut (Alternative)
Flat Bearing Surface
Fig. 4: Recommended Mounting Practices and Finishes for Stud Mount Devices.
G46
Mounting of Stud Type Devices
Figure 4 presents an exploded view of a studtype device and shows the various recommendations of surface flatness and finish. It
should be noted that the diameter of the
mounting hole should not exceed the diameter of the stud by more than '164" and that
the edge of the hole should have a chamfer
not exceeding .01" radius.
The fastening hardware shown consists of a
nut and a locking feature, either pal nut or
lock washer. Either type will work as .long as
proper torque is applied. It is very importantto
apply the torque with a good torque wrench
such as those sold by P.A. Sturtevant Co. and
Snap-On Tools Corporation or other reputable
firms.
It should be noted that Westinghouse does
not recommend as standard practice drilling
and tapping holes for mounting stud type
devices. This is due to the need for 'Ito of a
degree perpendicularity necessary between
the hole and mounting surface.
Mounting Flat-Base Devices
In mounting flat-base devices the required
pressure is obtained by fastening tne device
corners or edges with bolts. The pressure
should be applied in a staggered fashion such
as tightening opposite corners to one half the
recommended torque as per Table 2 and then
finally apply the necessary remaining torque
in the same staggered fashion. Special "studless" devices are mounted by mounting
springs as shown in Figure 5. Proper
mounting pressure is applied when the
spring is flat and parallel to the heat sink
surface.
Mounting Discs
Disc's achieve higher current ratings due to
improved heat transfer capabilities. This is
made possible by two heat paths and greater
heat cc.nduction area. Since these devices
are fabricated without mounting features.
such as studs. plates or retainer assemblies.
the devices must be mounted with external
force.
The required clamping force must be applied
perpendicular to the disc surfaces and should
be uniformly distributed over the total contact
areas. To achieve this. the clamping system
must assure sink-device parallelism via
appropriate clamp construction and mounting
technique.
Westinghouse offers a clamp which provides
uniform distribution of the required pressure.
This distribution of pressure is accomplished
by a ball and socket type gimbaling mechanism. The force is applied via a spring bar or
bars depending on the magnitude of the force
to be delivered. This clamp is available with
a mechanical force gauge to acknowledge
what force is applied. The stud length is
variable to accomodate different lengths of
clamping columns.
An exploded view of an assembly consisting
of a disc type semiconductor with double side
cooling and the Westinghouse clamp is
shown in Figure 6.
Table III
Semiconductor Mounting Hardware
CODE NUMBER
TYPE
HARDWARE DESCRIPTION
01
Tenz nut
.5-20 Nut-washer combination
02
Non-insulating
.5-20 Hex nut and pal nut
03
Non-insulating
.75-16 Hex nut and pal nut
04
Tenz nut
14
Non-insulating
17
Insulating
.312-24 Nut. mica washer.
glass sleeve. solder lug. pal nut
and shoulder bushing
.75-16 Nut-washer combination
.25-28 Hex nut and pal nut
19
Tenz nut
.312-24 Nut washer combination
20
Insulating
Mica sheet and (2) bushings
22
Insulating
Mica sheet and (2) bushings
25
Tenz nut
.190-32 Nut-washer combination
26
Spring bracket
Spring. spacer and safety bracket.
Bolts supplied by customer
31
Non-insulating
.190-32 Nut and lock washer
32
Insulating
.190-32 Nut. shoulder bushing.
mica washer. lockwasher and
solder lug
34
Insulating
.25-28 Nut. shoulder bushing.
mica washer. lockwasher and
solder lug
37
Tenz nut
.25-28 Nut-washer combination
98
99
Tenz nut
Non-insulating
.375-24 Nut-washer combination
.375-24 Hex nut and pal nut
Note: Semiconductor DeVice Hardware IS supphed upon request only. Most
standard non-insulating hardware kits are available free of charge if specifically
requested when ordering devices. Insulating kits, tenz nuts. and other special
hardware kits are available at extra cost-consult factory.
A recommended procedure for mounting disc
types is as follows:
1. Check mounting surfaces of semiconductor and heat exchanger to insure no
large scratches. nicks or irregularities are
present.
2. Mounting surfaces should be free of
oxides. films or foreign materials in order
to have good heat exchanging properties.
Surfaces should be rubbed lightly with
000 steel wool and swabbed with alcohol
immediately prior to assembly. Surfaces
should not be touched after cleaning.
Parts may be placed on a lint free surface
until final assembly.
3. Pre-assemble any roll locating pins to be
used with a light hammer into the center
dowel hole in each heat sink if necessary.
A gauge block is useful to prevent excessive length of this pin.
4. Polarity of the device should be checked
prior to assembly to insure the device is
installed in the desired direction.
Spacer
Device - - - - - - - - - } -.........
Finish:
Surface to be 30 to 60 Microinches.
Flatnass: Flat to .001 TIR Min.
Safety Bracket
Spring
Suitable Thermal Joint Compound
Applied.
Heat Sink - - - - -....
Fig. 5: Mounting Procedures for Studless Device.
5. For assembly the contact surfaces of the
semiconductor and heat sink should be
G47
Clamp
(Epoxy Coated)
Finish: Surface to be 30 to 60 Microinches.
F1.tn.ss: Flat to .001 TIR.
Suitable' Joint Compound Applied.
Fig. 6: Mounting Procedure For Disc Mounted Devices (Exploded Viewl.
lightly coated with Alcoa #2 (or suitable
substitute). The device should then be
centered on the heat sink. If dowel pin
locators are used the device should be
placed with its locator holes over the projections. The device should then be rotated
through 1800 to distribute the compound.
1. Removing the Device
Disassembly should be made by loosening
the clalTlP nuts in a staggered fashion, i.e.,
one half turn from one nut, one halfturn
from the other, etc., until the nuts can be
removed by hand.
6. The appropriate clamp may now be
inserted through the heat sink. The clamp
force bar with mechanical force gauge
must be initially adjusted to give a zero
force reading. The spring bar may now be
placed over the studs and the centering
pin located in the hole provided. The nuts
may now be finger tightened, in an even
fashion such that approximately the same
number of threads show above each nut.
2. Re-Zeroing Clamp Gauge
Make sure that the gauge is set to zero
before using again. This is done simply by
bending the indicator until a zero force is
indicated.
7. To achieve the correct mounting force
apply either half or quarter turns per nut in
a staggered fashion until the gauge indicates the correct force.
Remounting Disc Devices
In some instances devices must be replaced
in the field. The procedure to be used is
similar to the mounting procedure just outlined with the following additions:
G48
3. Clllaning and Coating of Clamp Threads
While the clamp is disassembled. clean
th., threads with a light brushing and then
wiPII with a cloth. Prior to using the clamp
a coating of Anti-Seize or Never-Seez nongalling compound should be applied to the
threads.
WARNING:
Due to the high load forces placed on these
clamps' breakage could occur when torsional force is being applied to the threads
resulting in the broken bolt becoming a
flying projectile. Safety precautions must
be taken to prevent bodily harm.
As indicated earlier. proper device loading is
necessary to guarantee good thermal performance. With disc devices power dissipating properties are also affected by loading
effectiveness. Figures 7a and 7b illustrate the
typical effect of mounting force on thermal
performance and device forward voltage drop
for discs.
Parallel Mounting of Disc Devices
For applications requiring greater current
output than can be obtained from one device.
two or more devices can be readily paralleled.
It is necessary. however. to take simple precautions to allow for possible variations in
height of the devices. A rigid heat sink may be
used and will serve as a base for the units
to be paralleled. but the other side of the
devices should be cooled by individual heat
sinks. Individual clamps are required for each
device to provide the required pressure.
Stack Mounting of Disc Devices
The flat symmetrical design of the disc
package permits stacking the devices to
obtain a number of circuit configurations. A
single clamping device can be used with the
length of bolt adjusted to clamp thE! total
wherein insulated spacers may replace
devices in the mechanical assembly.
Heat Sink Considerations
The previous discussion referred indiscriminately in the various sections to either platetype or to extruded heat sinks. The plate-type
is the simplest to' use and may be of copper,
aluminum or any thermally conductive material. The aluminum extrusions are the most
common heat sinks presently used and
furnish a greater exposed surface for heat
transfer to the ambient atmosphere.
.....
~------
Mounting Force _
Mounting Force _
Fig.7A: Typical Junction-Case Thermal
Impedance Varietion as a Function of
Mounting Force for Disc Type Devices.
Fig. 7B: Typical Forward Voltaga Drop
Variation as a Function of Mounting Force
For Disc Type Devices.
length of the stack. The limit of stacking, of
'course, depends on the rigidity of the assembly and the amount of expansion and contraction which can be tolerated during operation.
Both problems can be solved by proper fixture
design for assembly and by selection of
springs with suitable load-deflection characteristics. When stacking devices in one
clamped column it is necessary to keep sink
mounting surfaces parallel to within .0005
inch if devices are to be mounted on both
sides of the sink such as in many plate
designs,
a) Parallel
Figure 8 shows the basic configurations
which may be obtained in a single stack.
These include parallel, series, center tap,
doubler and three-phase, full wave circuits.
Many others are possible. The diagrams use
diode circuits for simplicity of illustration.
They are applicable to SCR's connected in
series and to complete isolated circuits'
b) Series
The heat-transfer characteristics of any heat
sink, under normal convection ,conditions,
can be greatly enhanced by using either
forced air or some liquid coolant. The use of a
liquid coolant is considerably more efficient.
Liquid cooled sinks are generally cast or
machined. Either is highly efficient but cast
heat sinks have very little waste in fabrication
and have very low pressure drop. The flow of
coolant through the sinks is usually controlled
to hold the semiconductor temperature to the
designed maximum level.
A complete line of air and liquid cooled heat
sinks are available to accommodate all disc
type semiconductors. In addition, Westinghouse offers a full line of air and Ifquid cooled
assemblies fbr all power semiconductors.
c) Doubler
Ac
Ac
Ac
(+)
(-)
d) Center Tap
e) 3 Phase. Full Wave
Fig. 8: Stack Mounted Disc Assemblies.
G4~
Designed;'with"YOU· in Min~
Ideal for all users of power 'semiconductors reg ard I;ess ,of'
job function, technical background, and experience le"el.·
•
•
•
•
Two books in one
8% x 11 format
Easy to read
Fully indexed
u.s. $~.50
• Book Rate Postage Included. Elsewhere $7.50
This valuable reference book will save you
time and money when specifying, buying,
installing, testing, maintaining, troubleshooting, servicing, identifying, and
replacing power semiconductors. Order your
copy today.
G50
• Master cross reference
• Complete product data
• 432 Pages
Send check or money order (payable in U.S.
funds) to:
Westinghouse Electric Corporation
Book Order
Semiconductor Division
Youngwood, Pa. 15697
Introduction
The Silicon Controlled Rectifier (SCR) is a
thyristor which attains its power control
function by gate turn-on. The gate signal
causes the SCR to revert from a forward
blocking or off-state condition to a current
conducting or on-state condition. Turning on
an SCR should be simple, but circuit considerations and device trade-ofts add some
complexity. With an understanding of gate
terminology, trade-offs and requirements of
an SCR, a designer will have better guidelines for specifying gate turn-on requirements.
Without a gate control signal, the thyristor
blocks voltages in both directions, so that
power flow is inhibited. To initiate power
flow, the SCR is gated only when it is in the
forward blocking (VORM) off state. Increasing the gate signal IG from 0 to IGT shows
that the SCR's ability to block voltage decreases until it turns on. The reverse blocking
voltage characteristic (VRRM) is like a rectifier
diode. If one were to leave on a gate signal
while the SCR becomes reverse biased, it is
possible that the SCR would fail due to
increased leakage current.
V II Characteristics of an SCR
The SCR is a three terminal thyristor, properly defined as a Reverse Blockir'lg Triode
Thyristor. The V II characteristics relationship
is shown in Figure 1.
The SCR can be turned on by three methods;
viz.,
• The recommended application of a gate
current and voltage to the gate cathode
potential leads.
Off State or Forward Blocking Voltage
IG=O
V ORM
n---IG=IGNT
• Two-terminal turn-on by exceeding the
non-repetitive forward blocking (off-state)
voltage rating, referred to at times as Veo
turn-on.
1I"\....---IG=IG2
"'\14---- IG= IG3
• dv Idt turn-on due to high dv /dt causing
capacitive current triggering action.
,
The last two methods are not recommended
for repetitively turning on an SCR because of
restricted anode current rise time (di /dt)
and magnitude.
t
V
Forward
Current
Reverse Blocking Voltage
Figure 1. Voltage Current Characteristics Using
Gate Control.
To turn off an SCR in an AC phase control
circuit is relatively easy. Suppress the gate
signal and the reversal of the AC line voltage
causes commutation from the conduction
state back to the off state. Of course, there
are circuits which require sophisticated
methods to achieve turn-off commutation
such as choppers and inverters. These are
available in the literature.
causes the SCR to latch into conduction
and remain "on" (hold); referred to as gate
trigger voltage.
• IGNT is a dc gate current which, when
applied to the gate cathode terminal, will
still permit the SCR to block rated VORM;
referred to as non-trigger gate current.
• VGNT is a dc gate voltage which, when
applied to the gate cathode terminal, will
still permit the SCR to block rated VORM;
rEiferred to as non-trigger gate voltage.
6n
12v
-=-
Figure 2. OC Gate Characteristics Test Circuit.
There are other gate parameters which must
also be considered and are subsequently
covered. They include peak gate trigger current for pulse operation, IGTM; peak and
average gate power, PGM and PG(AV); and
peak reverse gate voltage, VGRM. The rated
values are given in the data sheets.
The maximum gate triggering characteristics
for Westinghouse di/namic gate SCA's is
given in Figure 3. The di/namic or amplifying gate SCR consists of a pilot and main
r
Maximum Instantaneous Gate
Trigger Voltage VGTM • Volts
Gate Parameters and Characteristics
Because of the myriad of SCR applications,
a dc gate test condition (Figure 2) with a
resistive load was chosen to permit both the
manufacturer and the user to ascertain basic
gate parameters. It was not intended to reflect
operational application requirements. These
dc gate trigger requirements are normally
given on SCR data sheets.
• IGT is a dc gate current which causes the
SCR to latch into conduction and remain
"on" (hold); referred to as gate trigger
current.
• VGT is the dc gate cathode voltage which
.15
2
3
Maximum Instantaneous
Gate Trigger Current IGTM Amperes -
4
A
Figure 3. Maximum Gate Triggering Characteristics
for Westinghouse di/namic Gate SeR·s.
G51
SC~ on the same element; this new gating
structure provides improved characteristics
over previous designs. N9te that the ratings
are at 25°C and that a recommended load
line for moderate di/dt applications is given.
The characteristic effect of junction temperature versus gate trigger current Ivoltage is
depicted in Figure 4 with an SCR IGT= 150 rna.
Note that as an SCR is heated to 125°C,
the required gate current to trigger typically is
one-half the 25°C value, and that the --40°C
value is approximately twice the 25°C value.
.
on concept (q = 5 IGT dtp) described in the
referenced literature. The minimum gate
trigger requirements versus pulse widths are
given with respect to junction temperature.
This.insures that the SeR will latch on and
remain on (if provided in circuit) but is not
the optimum gate drive requirements.
Gate Drive Requirements
The present di/namic gate SCR may be
triggered with either Soft Gate Drive or Hard
Gate Drive. Predecessor devices with center
firing and edge firing gates required hard
gate drive to achieve uniform..current conduction and I.ow switching losses. However,
even with the di Inamic gate and newer mterdigitated geometries, applications still exist
which 'equire hard gate drive.
firing circuitry. providing a cost reduction. If
a snubtier network is always available to
discharge upon signal initiation, soft gate
drive may be adequate even for some high
di Idt applications, but further assistance is
advised from an application engineer.
IG
~
IGTM=3 to 5XIGT
diG>1 A//Jos
Cit
diG
0.l/Jos<trs1/Jos
§dt
u
*
"Back Porch"
(!)
t,
201JoS
14-
--I
I-- Anode Current---i
I+Conduction Time
Time (Not to Scale)
Figure 8. Hard Gate Drive.
Hard Gate Drive
Demanding applications where hard. gate
IGTM=1.5 to 31GT
drive is suggested include inverter and chopper
diG>.5A//Jos
circuits of capacitive type, loads where high
dt
repetitive di/dt is evident; heavy industrial·'
t,~1/Jos
phase control operation with inductivo load
(or power factor control) and.systems where
I
electrical rioise is troublesome requiring noiseIGTM~r'----------------~~--~
150
o 10 75
225
300 375 immune thyristors and gate signal suppresl't,1
:
sioncircuitry (up to IGT). Figure 6 is the
IGNT
1--20l's to Anode Current..,..
Minimum Required Gate Current, IGT,"" mA. suggested ,Hard Gate Drive for an individual
Conduction Time
Figure4. Typical Gat. Triggering Range for Various SCR. The cases of anode current conduction
Time (Not to Scale)
interval:::; 20 pS or picket fence gate firing
Junction Temperatures·.
Flg'ure 7. Soft Gate Drive.
are not shown. Reference must be made to
To relate the measured value of dc gate
the Minimum Pulsed Gate Trigger Requiretrigger current to pulsed gate operation rements (Figure 5) to obtain the proper value
Example: A Westinghouse T920 has a data
quired in some applications, the following
of IGT. This value of IGT is then used for the
sheet IGT=200 ma @ 25°C. The recominformation is needed and is shown in
mended gate drive, to cover all types of load
Hard Gate Drive IGTM determination.
Figure 5. Whether the SCR design is a convariations @ TJ=--40°C start-up is as
ventional center fire gate, di Inamic gate, or
Soft Gate Drive shown in Figure 7 is perfollows:
other, it is necessary to increase the gate
fectly adequate for resistive and inductive
iGT @--40oC=2xIGT@25°C (from Figure4)
drive amplitude for,pulse widths less than 20
load applications. In general, a gate drive
IGT@--40°C=400ma
microseconds. This is due to the charge turntransistor can be eliminated from the gate
Hard Gate Drive-IGT=3.3to 5x IGT@--40oC
Answer
IGT= 1.3A peak (Min. value)
1000
Gate Trigger
Current, IGTM, 800
Milliamperes
,"-
'\
\. ~ .......
1'1...
600
400
.~
t"-...
200
............
['0,.
"~
.......
r-.....
........
I"-
o
I
. I 'SdR
I
I.
Minimum Gate Turl'l-On Characteristics6.
Westinghouse di/namic Gate Designs
SCR IGT";150ma, 25°C
5.5
@ Vp=12V
IGTM vs tp, TJl
5.
VGTM VS tp, TJ I
4.5
-.....r-.......
--
-- ---
VG1 1@ -400C- 4.
3.5
3.
__ VGT@25°C
~
---
-
""-
IGT@
40°C
IGT @ 125°C
2,5
VGT@125°
1.5
I
IGT@:.!5°C
G52
o
I
500.
Recommended Gating Practices
A di/namic gate SCR is optimized to provide
fast turn-on and low switching losses with a
Gate Trigger soft gate drive signal. Recognition of situaVoltage,
tions where di/namic gate action is limited
VGTM, Volts along with a number of recommended design
practices are given below.
• Gate the SCR when the anode voltage is
positive. Allowing a positive gate while the
SCR becomes reverse biased limits device
reliability .
1.
.5
1.
2.
5.
10. 20.
50. 100. 200.
Square Wave Pulsewidth, tp, Microseconds
Figure 5. Minimum Pulsed Gate Trigger Requirements.
2.
The conduction period of the anode current
"back porch" must have a gate current no
lower than the IGT @ --40°C; i.e., 400 ma to
ensure conduction for low power factor loads.
• Design the gate firing sequence such that
the snubber network across the SCR is
charged prior to gate sign,!1. This gives
good di Inamic gate action.
• If a de gate signal is used in a multi-phase
system a soft gate drive signal does not
give good di /namic gate action. No
snubber discharge is possible after time
zero which results in poor di/namic gate
action. In addition, Westinghouse SCR's
have high noise-immune characteristics
(IGNT) meaning they do not false trigger
at very low gate currents. For this particular
application hard gate drive is required.
from the same source. Generally, 10 to
250 is used to diminish input gate cathode
impedance variations.
• Use single point triggering if gating rhore
than one device from the same source.
capability, redundancy is required or because
reduced junction temperature operation is
desired. It is understood that the required
type of gate drive circuit is dependent upon
the particular circuit and load characteristics.
A specific gate firing problem is encountered
with parallel operation of devices. In situations where anode reactors are employed, as
shown in Figure 10, care should be exercised
• The gate drive circuitry should have a 1 to
because as device "a" turns on, its voltage is
2A average 100V diode in series with thtl
supported by the reactor. Until the slow
gate and across the gate cathode terminals
device "b" turns on, no current, except magas shown in Figure 8. These will eliminate
Series Operation
netizing current, flows. Therefore, device "a"
two possible failure modes of an SCR.
The diodes in series with the gate will
Present application techniques are such that, in has low turn-on losses. Device "b" on the
other hand has the circuit voltage plus the
many designs, circuit applications exceed
prevent negative gate current flow while
device blocking capabilities. For this reason,
transformed voltage across it while switching
the diode across the gate cathode limits
series connected SCR applications have been, half the load current, and so is stressed harder
the reverse gate voltage, VGRM, to'" 2V
and are prevalent. Figure 9 shows a typical
due to delay variations. Therefore, in this
by diode clamping.
instance the designer should consider the
A circuit connection, including the compensating components required for proper operation. delay variations in gate pulse amplifier design,
I n such a series connection the last device
assuming single point trigg'ering. It must be
recognized that with a di/namic gate device
to turn on may be subject to an overvoltage
G
and dissipates the most energy. A high drive
and low magnetizing current (~IL), di/namic
gate signal from a single source is required to gate action may not be achieved and high
1 N 4817
gate drive is recommended.
minimize delay times and switching losses.
1N 4817
Gate
The resistors Rs are for static voltage balancCircuit
ing due to blocking voltage, leakage current
The necessity for economy sometimes dictates
- - - - - - - - ' - - - - - - - - -.. K differences. The snubber capacitor C is not
the operation of thyristors without balancing
Figure 8. Protected Gate Cathode
components, as illustrated in Figure 10(b).
only for dv /dt but also.for ORR variations.
Unlike the previously described situation,
Source
with balancing reactors, device "a" turns
• Provide open circuit gate voltage>20V to
prevent gate drive extinction. The instanon first and ,is more severely stressed as it
taneous gate cathode voltage can exceed the
must switch both the R-C network energy
source voltage in high di /dt applications.
and the load current. If the load is capacitive
or resistive a di /dt problem may exist. The
Rs
combination of di/dt, device "b" turn-on
• Inductive loads can be troublesome if the
with very low anode voltages, and long delay
gate drive is insufficient in amplitude or
width. Existing recommended practice is
times, dictates hard gate drive.
the use of the "picket fence" or hard gate
Vsource
Ac Input
drive. A picket fence is a high frequency
gate signal varying from 1 to 15KHz, 200",s
Rs
to 50",s wide within a 60Hz envelope such
that the SCR is continuously gated. The
R
average gate current rating is maintained.
In hard gate drive circuits, the "back porch"
C
anticipates worse-case power factor; making
Load
Load
the gate pulse width wide enough to enFigure 9. Typical Series Connection with Single
(a) Reactor Current Balancing
sure SCR latching and holding.
Point Triggering.
• If highest total circuit reliability is desired,
a power burn-in of the complete gate firing
board at rated temperatures and power will
eliminate weak components and infant
mortality.
----+
• To prevent noise pickup in the gate
potential connections, twist together th'e
gate cathode potential leads of the SCR
and use either a twisted wire pair from the
gate pulse amplifiers circuit or a coax-type
shielded cable. Locate the wires as close
as possible to the SCR but away from
magnetics or high current carrying members in the circuit. Of course, the gate
cathode lead lengths should be as short
as possible.
It should also be noted that the gate circuitry
employs individual resistors. To neglect this
point is dangerous, since one low impedance
gate consumes an excess of the available
energy by voltage clamping of the transformer,
thus reducing the energy available to the
other devices and possibly causing overvoltage destruction of the device with the
maximum delay. In such applications, a good
overdrive gate signal is recommended.
One should specify matched D. delay times
• To minimize D. delay time variations between and D. ORR (if not diode clamped) fqr each
SCR's, use hard gate drive with as high a
series connected group of SCR's to optimize
voltage sharing.
gate current risefime (diG /dt) as possible;
ref. Figure 6.
Parallel Operation
Discrete SCR's must be paralleled because
• Always use a resistor in series with each
gate lead if triggering more than one SCR
they lack the required current handling
-=+
Ac Input
(a)
R
(b)
C
Load
(b) No External Balancing
Figure 10. Parallel Operation of Thyristors.
It is also wise in this type of operation to
select device characteristics which provide
matching voltage drops and turn-on times.
In inverter or commutating SCR applications,
the di/namic forward lIoltage drop matching
permits current sharing while steady state
voltage drop matching is not necessary.
G53
Gate Firing Circuits
A gate trJgger circuit can become quite
sophisticated such as in an inverter application. Trigger logic circuits have been designed to do many things-
Circuits
Gate Signals
• Trigger the proper SCR's.
• Suppress the gate at overtemperature
conditions,
• Crowbar (trigger) or suppress at fault
conditions or overvoltage.
• Not trigger at low gate signal levels or
predetermined pulse widths.
These type of circuits require design time and
in many cases practical experience. If your
experience or time is limited, consider the
commercial gate firing circuit manufacturers
to implement your required SCR circuit.
Shown in Figure 11 are three examples of an
SCR's hard gate firing circuit for phase control operation.
In the first circuit, a Shockley diode (4E20-B)
provides the trigger pulse by voltage breakover, with AC line synchronization on the
primary. In the second circuit, the Westinghouse T507 or other fast turn-on SCR is the
trigger pulse, which can be gated within
any point of the positive AC voltage. The
negative AC voltage causes the SCR to line
commutate off. The DC circuit uses a transistor to trigger, since an SCR in this circuit
would not naturally commutate off. In all
three circuits, the negative gate voltage is
clamped by the diode across the gate cathode
terminals. Other gate firing circuits are available in the Westinghouse SCR Designer's
Handbook and those of other manufacturers.
Summary
The information provided herein will allow
the designer or user to assess the merits of a
gate trigger circuit. It is important that the
gate drive circuit provide a signal which
compensates for temperature and circuit
effects. The reliability of a circuit is dependent
upon every item within it. A proper gate drive
signal will not guarantee improved circuit
reliability but certainly is a proper step in
achieving total reliability.
G54
.75-1A
Igt
I
. - .150 Amps
c -..j 101- t2 < 1psec
Gate Current
Input Signal
::::Olts D 1 C , r r . : G
T-64525
___
;r;;;,
t, = :0 1pSec.
t2=Cond. Angle
~BK
______ 1.5A
~
L::::::::!- - - 0.2A
0.5 ufd
1--_--.... Input
IG
TR=:01 psec. .
Gate Current
I
,VGT .7v-3.Ov
1
VGR
1.0v
Gate Voltage (With SCR Connected)
Figure 11. Examples of High Drive Circuitry.
References
1. Rice, L. R., "Westinghouse Silicon Controlled Rectifier Designers Handbook,"
Second Edition, Westinghouse Electric
Corporation, 1970.
2. Gentry, F. E., Gutzwiller, F. W., Holonyak,
N. and Von Zastrow, E. E. "Semiconductor Controlled Rectifiers," Prentice-Hall,
1964.
3. Dewan, S. B., and Straughen, A., "Power
Semiconductor Circuits," John Wiley &
Sons, 1975.
4. Gyugyi, L., and Pelly, B. R., "Static
Power Frequency Changers," John Wiley
& Sons, 1976.
5. Bedford, B: D., and Hoft, R. G. "Principles
of Inverter Circuits," John Wiley & Sons,
1964.
6. Schaefer, J., "Rectifier Circuits, Theory and
Design," John Wiley & Sons, 1965.
7. Pelly, B. R., "Thyristor Phase Controlled
Converter and Cycloconverters:' John
Wiley & Sons, 1971 .
B. Grafham, D. R.and Hey, J. C., "General
Electric SCR Manual." Fifth Edition,
General Electric Company, 1972.
9. Hoft, R. G., "International Rectifier SCR
Applications Handbook:' First Printing,
International Rectifier Corporation, 1974.
10. Kusko, A., "Solid State DC Motor Drives,"
The M.I.T. Press, 1969.
11. McMurray, W., 'The Theory and Design
of Cycloconverters," The M.I.T. PresS,
1972.
12. Ramshaw, R. S., "Power Electronics:'
Chapman and Hall, 1973.
13. Mazda, F. F., "Thyristor Control:' John
Wiley and Sons, 1973.
14. Murphy, J. M. D., "Thyristor Control of
AC Motors," Pergamon Press, 1973.
15. Davis, R. M., "Power Diode and Thyristor Circuits," Cambridge University
Press, 1971.
During the design of any power circuit
incorporating thyristors, the designer is faced
with choosing between several techniques
for protecting the thyristors from load
induced faults which would subject them to
Inordinately high levels of forward current.
Many of these faults are of short duration
and self-clearing. Conventional fault clearing
techniques employing breakers or fuses are
costly to maintain as they require varying
periods of "downtime" either to reset the
breakers or replace blown fuses. A better
approach to limiting faults of this nature is
surge suppression.
Thyristor Surge Suppression
Surge suppression is a fault clearing technique utilized in AC circuits in which the
thyristor "rides thru" the first half cycle of
surge current. The gate drive is inhibited at
this point and the thyristor recovers to the
blocking state isolating the load fault. Gate
drive can be re-instituted following the---succes$ful clearing of the fault allowing
continued use of the equipment with essentially zero downtime due to the load induced
fault.
Design of circuits employing surge suppression is more difficult than conventional
designs for several reasons. Fault sensing
logic must be employed to sense and clear
the fault and then perhaps automatically
re-institute circuit operation. The exact
magnitude of the worst case current fault
must be known to properly coordinate the
thyristors. Of prime importance, a definitive
set of surge suppression ratings must be
available for the thyristors to facilitate prop'er
derating for reliable operation.
To aid in your design of a surge suppression
circuit, a number of graphs have been
developed. The first graph A has been designed to facilitate the determination of the
magnitude and width of a fault current pulse
given the ratio of resistance (R) to inductive
reactance (XL) of the circuit during a fault.
Graphs B-1 through B-17 for Westinghouse
phase control thyristors give the maximum
permissible single cycle surge current that
cen be reliably utilized in a surge suppression
circuit. These current levels are presented as
functions of the base width and initial peak
junction temperature as the figure illustrates.
Graph C gives the voltage rating factor
applicable to all Westinghouse phase control
devices. Their use is outlined and an illustrative example is as follows:
ITSM
Procedural Outline
1. Determination of fault current magnitude
and pulse width.
Determine the equivalent resistance
a. (R) and inductive reactance (XL> from
detailed analysis of voltage source and
circuit loop impedances.
b. Determine the offset factor, K, from
.
R
the graph A, given the value of XL.
Then IT(asm)= KXIT(Sm) where:
IT(asm) is the peak value of
asymmetric surge current
IT(sm) is the peak value of
symmetric surge current given by:
(1) Calculate or estimate the peak
junction temperature of the
thyristor prior to the anticipated
surge. Worst case will be 125°C.
(2) On the Surge Suppression Rating
graph B-1 through B-17, locate
the specific ordinate scale pertaining to the anticipated surge
current pulse width.
(3) Locate the specific magnitude
of surge current on this scale.
(4) Move horizontally on this value
of surge current until you intersect
the peak initial junction temperature curve as determined in 2.b.1.
(5) Read the peak junction temperature from the abscissa scale.
(6) Refer to Graph C for the Voltage
Rating Factor. Find the value of
the maximum junction temperature following surge given in
2.b.5 on the abscissa scale. Follow
this value of temperature vertically
until you intersect the "standard"
curve. The value of the Voltage
Rating Factor, F, corresponding
to this intersection is the minimum
F factor which can be used to
establish the device voltage rating
by the following expression.
VRating= FXVp
Where: V is the peak open circuit
voltage.
R is the value of circuit
resistance.
XL is the value of circuit
inductive reactance.
c. Determine the asymmetric surge current base width from Graph A given
R
the value of XL.
2. Selection of proper thyristor for an
anticipated surge.
a. Select tne proper family of thyristors
suited to the specified operating current-voltage-mechanical configuration and cooling requirements of the
equipment. Refer to the Westinghouse
Short Form Catalog (54 .. 000) or
specific data sheets for this information.
b. Refer to the appropriate Surge
Suppression Rating Graph 8-1 through
B-17 for the specific thyristor selected
in 2a.
Where:
• VRating is the minimum rated
voltage for the thyristor,
VORM and VRRM.
.• F is the voltage rating factor.
• Vp is the peak forward voltage
seen by the thyristor following a surge.
3. If the voltage rating derived above is
greater than that attainable for the device
in question there are several options open:
a. Repeat 6 using the ··selected" curve.
If an acceptable rating is attained, a
device may be specially selected and
tested by the manufacturer to perform
at the specified operating levels.
Contact your Westinghouse Applications engin.per for details if you require
a specially selected device.
b. A higher current rated thyristor can
be specified and the calculations outlined in 2b-1 thru 2b-6 repeated.
c. Two thyristors can be operated in
series to attain the specified voltage
rating.
G5!
• Calculate magnitude of'asymmetric surge
current IT(aam)'
Design Example
Given:
• Maximum junction temperature prior to
surge, Tji= 110°C.
• Circuit equivalent resistance, R = .01 ohms.
• Circuit equivalent inductive reactance,
XL=.025 ohms.
• Peak .open circuit voltage, Vp-400V.
• Assume a 1000V, T920 type thyristor will
be used for this application for steady
state current and reliable voltage derating
requirements.
12 msec. ordinate scale-19,000A using peak
Tji = 110°C curve.
IT(aam) = K. IT(am) == 1.28. 14,860= 19,000A
• Find asymmetric surge current pulse width
from Graph A for~== 40
XL . •
Pulse base width -11.9 msec.
Initial device selection T920, 900 ampere
device.
Initial junction temperature given as 110°C.
From surge suppression rating curve for
T920-09 (Graph 8-16).
12 msec. ordinate scale-19000A peak
using Tji curve for 110°C.
Peak Tj=173°C from graph.
Examining the Voltage Rating Factor curve
for a standard device at 173"C, NO F factor
is available in the standard rating. The 900
ampere standard device cannot be used
under the stated conditions.
First Option:
Evaluate the T92G-1000 ampere device.
Find:
Magnitude and width of fault current pulse.
Acceptable device rating for this application.
Procedure:
R
.
.01
XL ratlo=.025=0.40
From Graph A find the offset factor. K=1.28
• Calculate magnitude of symmetric surge
current IT(am)'
Using the Voltage Rating Factor curve for a
standard device at Peak Tj = 163°C,
F=3.2
VRating=F. Vp-3.2. 400=1280 volts
A standard 1300 volt-1000 ampere T920
thyristor fulfills the minimum requirement for
this application.
Second Option:
Using the special selection curve of Graph C
for Tj-173°C; F-2.6.
VRating= 2.6X400= 1040 V.
A specially selected 1100 volt-900 ampere
T920thyristor may also be used.
Tji=1100C
V
400
IT(am)" (R2+XL2)',.= [(.01 )2+ (.025)2]1{2
from surge suppression curve for T920-10
(Graph B-17).
= 14,855A
Surge Current Offset Factor- Pulse Width-Graph A
--r-...
16.7
16
...... 1'....
MdI f...
fsir ul- Fvcle Sur
"- '\
15
rei
Off et Fil tor
14
r-- t......
1\
\
11
\ rnSi
i
..
~
IT'••,
10
11M
;
1.8
i\
,
1\
12
<3
~
2.0
1\
........ f',
13
_
,
I\.
~
...
\
·IT,~~
9
is
1.4 t;
...
1\
1\
IV
i
1.2 ~
0
1\
~
\
E
.3.5.7 10. 3
.3.5.7 10. 2
.3.5.7 10. 1
R
XL
.3
~
i\~ I'.
i
8.3
10. 4
GS6
'"
1\ \
L
en
"
'j
1.6
\
.5.7 1
3
."
1.0 u
""
5 710
Peak Tj=163°C
~
:0
U)
Surge Suppression Rating for Phase Control SCR's-STUD MOUNT
Asymmetric and Symmetric Surge Currents VB. Junction Temperature
1100
900
1200
1200
1100
1000
1000
800
900
600
1400 1600
1000
800
800
1600 1
900
700
800
800
1000 1200
«
:::i 4OO
~
1400 1:::F!'ttt±iFH:R:
800 1000
1200
600
800
1000
400
600
800
200
400
600
E200
700
~
800
600
"
u
800
700
400
I:'R:ffiffiffl+t:!::I-:li!'-F.::I't'
500
OJ
..
::!II
24
II
~200
E300 E
o
N
ii
e"
9-200 9130
e
140
Junction Temperature Prior to Reapplied VOSM. TJ. °C
5
8
9
7
8
6
7
5
6
4
5
3
4
2
3
7
4
3
5
6
4
5
3
2
7
4_
4
3
3
2
2
2
2
~
~
o
"
2
'"
aI
"
"
Ii}
9-
9-
3
~
~
o
'"aI
ii
6
9-
Junction Temperature Prior to Reapplied VOSM. TJ. °C
5
9
8
8
7
7
10
8
6
8
5
4
9
7
6
6
11
9
7
6
4
9
8
7
8
10
9
8
7
10
6
7
5
6
4
5
5
4
3
4
3
2
3
3
2
~
N
~
"
9-
~
o
"
9-
3
.!
~
2
~rh ~
1
I~ 9
'"aI
"
9-
.. '"
100 110
120
130
140
150
160
170
180
Junction Temperature Prior to Reapplied VOSM. TJ. °C
N
2
~
o 2
e"
4
~
'"aI
3
"
e2.5~~~~~~~~~~DE~~~~]i~~~
100 110 120 130 140 150 160 170 180
Junction Temperature Prior to Reapplied VOSM. TJ. °C
G57
Surge Suppression Rating for Phase Control SCR's-DISC MOUNT
Asymmetric and Symmetric Surge Currents vs. Junction Temperature
10
9
7
8
6
7
6
6
4
!5
:::E 3
4
i
3
:s
~
~
2
.."
u
8
9
7
8
~
."
8
7
!5
8
5
6
:s
3
4
4
6
3
4
2
3
2
3
~
i
~E
.!'"
E
E
N
0
c "
en&
e"
"'~
4
::IE 2
.. . .
'U ..
6
3
~
..~"
u
2
<II
5
4
...cDE
Ii
e"
e
<II
i" .E
2
uE
.!'"
"'~
c"
eng.
1
100 110
120
130
140
150
160
170 180
~2
N
0
e"
e"
.
3
...cOE
e"
2
100 110
Junction Temperature Prior to Reapplied VOSM. TJ. 'C
7
6
10
7
8
9
6
7
8
5
6
7
:s
5
6
r<II
4
5
3
'4
4
2
~
9
5
3
::IE
8
6
4
r<II
i
11
7
6
«
><
10
8
u"
.
~ 2
u"
"~
"
"
<II
. . .
~fIJ
uE
E 2
.!'"
E
N
0
.- CI.
e"
e"
~';
<II~
E 3
~E
e"
Ci)g.
...cD
. '"
~~
2
11
8
9
10
7
8
9
6
7
8
5
6
7
4
5
6
3
4
5
140
160
160
170
..E ..E .E
...
2
3
N
0
e"
e"
2
cD
e"
Junction Temperature Prior to Reapplied VOSM. TJ.
'c
Junction Temperature Prior to Reapplied VOSM. TJ.
'c
4
3
Junction Temperature Prior to Reapplied VOSM. TJ. 'C
14
9
10
11
9
11
12
8
9
10
8
10
11
7
8
9
7
9
10
6
7
8
6
8
9
:i
<II
5
6
7
::IE 5
7
8
i
4
5
6
6
7
."
3
4
5
5
6
7
13
12
6
11
5
:s
:s
4
r
~ 2
u
~
"
"
~E
<II
. '"
~'ii
.- CI.
<II~
G58
10
<II
.!::" 3
..E ..E .
3
2
N
0
e"
e"
2
...cDE
e"
9
E' 4
"t:
u"
8
3
"~
<II
"
" .. 2
'U
4
~E
-&~ 1
3
c "
<nE130
Junction Temperature Prior to Reapplied VOSM. TJ. °C
180
'c
3
.[
2
"".
~
<II
10
130
4
::IE
3
9
120
Junction Temperature Prior to Reapplied VOSM. TJ.
7
.E ..E ..E
4
N
g.
"
3
5
0
e"
4
...cD
e"
6
5
Surge Suppression Rating for Phase Control SCR's-DISC MOUNT
Asymmetric and Symmetric Surge Currents VS. Junction Temperature
22
18
20
16'
18
14
16
12
14
~ 10
12
i
8
10
"e'
6
8
..
"U
4
6
U
>'"
E
..
E
~~ 2
~ 4
o
M
en So
So
~4
"
~
22
22
18
20
16
18
18
14
16
16
12
14
20
20
18
16
~
16
14
P
14
12
12
10
10
8
12
~
10
"
u
8
en"
c::: II
14
16
12
14
10
12
H +':-!-H-
8
.
E6
II
20
18
8
..
E
'"E
6
~ 4
~
M
9-
94
~
E
<Xi
"
6
II
6
'"
E
8
<Xi
II
"
6
170 180
Junction Temperature Prior to Reapplied VOSM' TJ •
28
26
22
24
20
22
18
20
16
18
Junction Temperature Prior to Reapplied VOSM' TJ. "C
20
26
24
18
24
20
22
24
16
22
22
14
20
16
18
20
18
16
18
16
16
E
1!
16
14
12
:; 8
S-
14
~
14
..
e elO
N
~10
II
II
So
So 8
"
Junction Temperature Prior to Reapplied VOSM. TJ. "C
20
26
28
24
26
22
24
20
22
18
20
16
18
14
16'
12
14
22
18
6
<Xi
S- 8
14
8
M
0
II
12
en" 6
'"E 12
El0
8
12
U
12
'"E
20
14
14
N
II
24
18
20
10
28
26
22
0
'"
E 12
M
<Xi
"
~10
Junction Temperature Prior to Reapplied VOSM. TJ. "C
20
16
18
14
16
14
E
~
U"
12
8
10
(I)
e'
.il
6
(I)
"U'"
~E4
.!ID
"'~
c: "
Cii~2
.. .
8
E
N
"
~
El0
6
0
"
~
..
E 12
M
<Xi
8
"
~
10
1
Junction Temperature Prior to Reapplied VOSM. TJ. "C
G5!l
to the increased gate sensitivity of the device
at the high junction temperature following
a surge.
Conclusion
A detailed procedure has been outlined
which will aid in specifying a device for a
given surge suppression requirement. The
surge suppression ratings arrived at by this
technique are intended to be maximum
ratings similar to the maximum blocking
voltage and conduction current specifications
on device data sheets. As such, a certain
degree of derating from this maximum
operating condition would greatly increase
the reliability of operation. This derating is
intended to buffer the detrimental effects of
variations in circuit parameters from the
values used in the determination of the device
specifications.
RC dv /dt suppression networks are
required to hold the reapplied dv /dt to less
than the data sheet rating to prevent dv /dt
triggering following the surge. This is the
predominant surge suppression failure mode
and thus great care should be taken in the
suppression network design.
Secondary fault protection techniques
must be employed in the event the thyristor
fails to successfully suppress the fault. This
is usually provided by slow speed fuses or
circuit breakers.
In addition, care must be taken throughout
the design of the equipment. The gate drives
must be well shielded so as not to present
appreciable noise currents to the thyristor
during the surge suppression interval. These
noise currents could cause retriggering due
References
1. J. D. Balenovich &. W. H. Karstaedt
"An SCR Surge Suppression Rating Technique:"IEEE Conference Record of lAS,
October 1976.
Voltage Rating Factor-Graph C
10
9
8
7
6
Stand rd-~
r--"'- --- -
--
Select d
-
--i-
5
'+
t
4
I
3
I
J
I
II /
I
2
!5
tl
II
II.
~
//
'I
'i
.,
a:
'"
l!!
~
100
Peak Tj (OCt
G60
I
120
--
/
140
/
160
- r--
V
--
R comm .. ded
~
aximum J
180
'i
200
220
REQUEST
PRE-ORDER
•
PRICE AND DELIVERY QUOTATIONS
Assemblies, Rectifiers, Thyristors, SCR's, RBDTs,
and Transistors
•
APPLICATION ENGINEERING ASSISTANCE
Assemblies, Rectifiers, Thyristors, SCR's, RBDTs
and Transistors.
•
TECHNICAL LITERATURE REQUESTS
Tech Tips, Application Data Sheets, Handbooks,
Technical Data, User's Manual & Data Book, etc.
ORDER
•
IN-PROCESS ORDER INFORMATION
(Factory Orders)
ACTION
Contact your local sales representative or
authorized distributor (listing on next page).
If additional information is required, call
the factory and ask for Sal.es.
Call the factory and ask for Applications
Engineering.
Call the factory and ask for
Communications.
Call the factory and ask for Customer
Service. For factory orders, the name of
your customer service representative is
located in the lower right-hand corner of
your @ weekly open order status report.
POST ORDER
•
RETURN MATERIAL AND OTHER CLAIMS
•
DEVICE IDENTIFICATION AND REPLACEMENTS
@
FACTORY
WESTINGHOUSE ELECTRIC CORPORATION
SEMICONDUCTOR DIVISION
YOUNGWOOD, PENNSYLVANIA 15697
Call the factory and ask for the Return
Material Coordinator.
Contact your local sales representative or
authorized distributor (listing on next
page). If additional information is required,
call the factory and ask for Sales.
PHONE
(412) 925-7272
TWX
510/468-2840
See .:: Sales Representative and Distributor listing on the next page.
G61
Westinghouse Worldwide Power Semiconductor Sales Headquarters
U.S.A. -
South Amerlce
Europe
Canada
Internatlonel
YOUNGWOOD, PENNSYLVANIA
BURLINGTON, ONTARIO
LE MANS, FRANCE
SAO PAULO, BRAZIL'
Westinghouse Electric Corporation
Semiconductor Division
Youngwood, Pa. 15697
Westinghouse Canada, Ltd.
P.O, Box 5009
Bur1lngton, Ont., Canada L7R4B3
CDS Westinghouse
Avenue G. Durand
12003 Le Mans. France
Rue Santa Justina. 41
04545 - SAO Paulo - SP
Phone: 412/925-7272
510/468-2840
Phone: 416/639-6010
.TELEX: 061-8509
Phone: (43) 84.33.40
TELEX: 842-720040+
TWX:
Semicondutores Industriais Westinghouse LTDA
Brasil
Phones: (011) 240.5264
(011) 61.8800
Westinghouse Power Semiconductor Sales Representatives
CALIFORNIA, Culver City .
· .. Bestromcs, Inc
CALIFORNIA, Los Angeles.
. . . .. .. Westinghouse ............ .
...... BestrOnlcs of San Diego, Inc.
CALIFORNIA, San Diego.
CALIFORNIA, Sania Clara
· .. Magna Sales
CALIFORNIA, Mt View ..
........... Westinghouse .
. ....... LlndbergCo .. .
COLORADO. Denver ...
CONNECTICUT, Old Saybrook.
· . Gerber Sales Corporation ..
CONNECTICUT. Newtown.
· Gerber Sales Corporation .'
FLOR I DA. Orlando
..... .. LawrenceAssoc, Inc
ILLINOIS, Chicago
. Westinghouse
· ... S A I Marketing. . .................. .
INDIANA, Indianapolis.
.... Dy-Tronl)(, Inc .
IOWA, Cedar Rapids .
MARYLAND, Baltimore
· Westinghouse
MASSACHUSETTS, Boston .
....... Westinghouse .. . ........ .
MASSACHUSETTS, East Longmeadow ....... Gerber Sales Corporation .
MASSACHUSETTS, Waltham
.... Gerber Sales Corporation .
MICHIGAN, Brighton .
... S A I Marketing
... S A I Marketing
MICHIGAN, Grand Rapids
MINNESOTA, Minneapolis.
· .. Comstrand Inc.
.............
Dy-Tronl)(, Inc
MISSOURI, SI LoUIs.
MISSOURI. Independence
NEW JERSEY, Haddonfield
NEW JERSEY, Ringwood
· ... JL Sales Assoc
NEW MEXICO, Albuquerque
...... Lindberg Co
.: :~~~~~~s~~lat~s':'"
213/870-9191
213/572-4849
714/278-2150
4081985-1750
4151965-()3()5
3031758-9033
203/388-4386
203/426-3440
305/592~600
312/887-8922
317/844-7196
319/377-8275
3011828-5400
617/237-6950
413/525-3059
617/890-8040
313/227-1786
616/942-2504
612/571-0000
314/731-5799
3141731-5799
609/854-3011
201/962-6315
505/881·1006
NEW YORK, Clinton ,
NEW YORK, Endicott .
NEW YORK, Hempstead
NEW YORK, Syracuse
NEW YORK, ScottsVille
NORTH CAROLINA. Charlotte
OHIO, Cincinnati .
OHIO, Cleveland
OHIO. Day. In
OHIO. Dayton.
PENNSYLVANIA, Youngwood ,
TEXAS. Dallas
TEXAS. Houston
UTAH, Salt Lake City
WASHINGTON, Seattle,
WISCONSIN, Milwaukee ,
.. Advanced Components Corp ,Inc
· .Advanced Components Corp, Inc
· Westinghouse.
. •..
,., .. , ...... Advanced Components Corp ,Inc
· Advanced CGmponents Corp, Ipc
· .. Westinghouse .
'
· S A I Markebng .
· .. S.A I Marketing .,'
S.A I Marketing ..
· Westinghouse .
Westinghouse .
Kruvand ASSOCiates, Inc
· Kruvand AsSOCiates, Inc
· .. LlndbergCo
. . .. Quadra Sales Corp
· .. Westinghouse. ,
315/853-6438
6071785-3191
516/489-2200
315/699-2671
716/889-1429
704/377-3471
313n61-5432
216/292-2982
513/435-3181
5131228-9627
4121925,,7272
214/691-4592
7131780-9710
8011534-1500
2061883-3550
4'141786-{)260
Canada
MANITOBA. Winnipeg
ONTARIO. Burlington
QUEBEC, Lachine. , ... , .
USA-Washington, Seattle
· Westinghouse Canada Ltd
. .. Wesllnghouse Canada Ltd
· Westinghouse Canada Ltd
,Quadra Sales CorporallOn .
204/772-9401
416/639-6010
514163;1-94; 1
206/454-4946
Authorized Westinghouse Power Semiconductor Distributors
ALABAMA. Birmingham
.,',.,., .Ack Semiconductors .
ALABAMA, Huntsville.
. . Hamllton/Avnet
ARIZONA, Phc '1IX •
• Hamllton/Avnet
, ... , ... , . , , ~.
CALIFORNIA, Gosta Mesa
Avnet Electronics.
CALIFORNIA, Los Angeles ,
.. Hamilton Electro Sales.
CALIFORNIA, Mt View
. ,Hamllton/Avnel
CALIFORNIA, San Diego.
. .. Hamllton/Avnet
COLORADO, Denver '. ........
.Hamllton/Avnet
CONNECTICUT, Georgetown.
.Hamllton/Avnet
CONNECTICUT, North Haven
.Cramer .
FLOR IDA, Hollywood
... Cramer .
FLORIDA. Ft Lauderdale
.Hamllton/Avnet
FLORIDA, Orlando
"',." ....... ,.Cramer ..
GEORGIA, Atlanta.
..,' . Cramer .
GEORGIA, Atlanta.
. ..... Harnllton/Avnet
GEORGIA. Atlanta.
. Specialty Distributing.
GEORGIA. Augusta
... Specialty Distributing.
ILLINOIS, Chicago
... , .... , ... Complete Reading Electric.
ILLINOIS, Chicago
... Hamllton/Avnet
ILLINOIS, Chicago
" .. SemlconductorSpeclallsts ,
INDIANA, Ft Wayne ,.
, .. Ft Wayne Electronics ,
INDIANA, Indianapolis.
". ,RA-DIS-CO .
KANSAS. Kansas City
.. Hamllton/Avnet
MARYLAND. Baltimore
.. Harnllton/Avnet ..... , ...
MARYLAND, Rockville.
, .. Cramer (Washington, DC) .
MASSACHUSETTS, Boston.
. ,Cramer
MASSACHUSETTS, Boston
...• , Hamllton/Avnet ...... , .. " ... , .. .
MASSACHUSETTS, Boston
.... ,Schweber ..... .
MICHIGAN, DetrOit.
. .Hamllton/Avnet .... , ... ,
MICHIGAN. DetrOit.
.Semlconductor Specialists
MICHIGAN. Detroit.
, ... , ... , ......... Shendan Sales
.
MINNESOTA, MinneapoliS ..
,Hamllton/Avnet
MINNESOTA. Minneapolis .
, . , ... Schweber .
MINNESOTA. Minneapolis .
, . , ... Semiconductor Specialists .
MISSOURI, Kansas City.
.. .... , ... L-COMP .. , ......... , , ..
M ISSOUAI, Kansas City
.. ,Semiconductor Specialists
MISSOURI, SI LoUIs.
Hamllton/Avnet
MISSOURI, St LOUIs....
. Semiconductor SpeCialiSts .. ,
NEW JERSEY,Camden
. General RadiO Supply Co
NEW JERSEY. Cedar Grove.
.., . Hamllton/Avnet ,.
NEW JERSEY, Lltue Falls
..... Cramer ... , .... , ........... .
NEW JERSEY. Moorestown .............. , ... Arrow ElectroniCS
G62
205/322-0588
205/533-1170
602/275-7851
7141754-6111
213/558-2121
415/961-7000
714/279-2421
3031534-1212
203/762-0361
203/239-5641
3051923-8181
305/971-3491
305/894-1511
404/448-9050
404/448-0600
4041873-2521
4041722-1526
312/454-1234
312/678-6310
312/279-1000
219/423-3422
317/637-5571
913/888-8900
3011796-5000
301/948-0110
617/969-7700
6171933-8020
617/890-8484
313/522-4700
313/478-2700
313/477-3800
612/941-3801
612/941-5260
612/854-8841
816/221-2400
816/452-3900
314n31-1144
314/731-2400
609/964-8560
201/239-0800
201/785-4300
6091235-1900
NEW JERSEY, Mt Laurel.
.."." .. ," . Harnllton/Avnet
NEW JERSEY, Somerset
, . , . Schweber
NEW MEXICO, Albuquerque
. , ,Hamllton/Avnet
NEW YORK. L I
.Cramer
NEW YORK. L I
.Hamllton/Avnet
NEW YORK, L I
..... Schweber .
NEW YORK. Rochester
..... Cramer .
NEW YORK. Rochester
........... , .Hamllton/Avnet
NEW YORK. Rochester
., ... , ..... Schweber .
NEW YORK. Syracuse
.Cramer
.
NEW YORK, Syracuse
... Hamllton/Avnet
NORTH CAROLINA, Winston-Salem.
. .Cramer
OHIO. CinCinnati
.. Shendan Sales.
OHIO. Cleveland
.. Hamllton/Avnet
OHIO, Cleveland
" .. , ............ , .. ShendanSales .
OHIO. Columbus
.. Hughes Peters
OHIO, Di"Iyton .
, .. Hamllton/Avnet
... " .. " ....... .
PENNSYLVANIA. Plttsburgi1 ,
, .. CAMIAPC
TEXAS, Dallas
... , .. Altalr .
TEXAS, Dallas
, .. Hamllton/Avnet
TEXAS, Houston
, ... Altalr .......... , ....... .
TEXAS, Houston
......... , .. , ...... , .. CompleteReadlng ElectriC
TEXAS, Houston ...
. ,Hamllton/Avnet
UTAH. Salt Lake City ....
. ,Hamiltbn/Avnet
WASHINGTON, Seattle.
. ....... ,', .. " .. Hamllton/Avnet
WEST VIRGINIA, Charleston.
. . McJunkin ." .... ,
WISCONSIN. Milwaukee. .. .. .
. . Taylor ElectrOniCs
WISCONSIN. Milwaukee ........ ,
.... Hamllton/Avnet
609/234-2133
201/469-6008
5051765-1500
516/231-5600
5161333-5800
5161334-7474
716/275-0300
716/442-7820
716/461-4000
315/437-6671
315/437-2642
919/725':'8711
5131761-5432
216/461-1400
216/831-0130
614/294-5351
513/433-0610
4121782-3770
214/231-5166
214/661-8861
713/462-3029
713/224-5731
713neo-l"71
6011972-2800
2061746-6750
3041348-4965
414/241-4321
4141784-4510
Caneda
BRITISH COLUMBIA, Vancouver
MANITOBA, Winnipeg
ONTARIO, Mississauga
ONTARIO, Ottawa ..... .
ONTARIO, Toronto
ONTARIO, Toronto ..
ONTARIO, Toronto ..
QUEBEC, Montreal
.R-A-E Industrial ElectroniCS .
,.
· . , . Cam-Gard Supply ..
'"''
... Schweber
· Hamilton/Avnet .
,Cesco ElectrOniCS
,Hamilton/Avnel ......... , .. ..
· Semiconductor Specialists •..
,Hamilton/Avnel ....
. , ............ ..
604/687-2821
2041768-8481
4161678-9050
613/228-1700
416/661-(1220
4161677-7432
416/678'-1444
514/331-6443
INTRODUCTION
Westinghouse has an extensive line
of assembly capabilities with over
twenty years of design experience.
These products include Modular
Bridges, Gold Line-Stud Mount, Air
and Liquid Cooled-Disc, High -Voltage Stacks, and Custom Designs
in a variety of circuit configurations
as identified on the following pages.
Westinghouse assemblies offer you
savings in money, manpower, and
time. Pre-engineered modular designs are available wth expert application assistance. All devices and
heat sinks are thermally matched
for optimum performance with guarteed ratings and are 100% factory
tested. Buying assemblies rather
than discrete components minimizes or eliminates tooling and set
up charges and means single supplier contact for negotiating, purchasing, and expediting materials.
Multiple incoming inspections, inventory investment, assembly time,
and other handling costs are reduced. Thus, buying assemblies can
save time and money while allowing
a company to use its manpower and
resources on programs that offer a
greater return on investment. Buyers of assemblies also benefit by
buying products which utilize the
latest assembly techniques as well
as those that incorporate the stateof-the-art in power semiconductors
and heat sinks.
In addition to the industry's broadest line of "catalog" assemblies,
Wesinghouse can offer custom designs to meet virtually any requirement - consumer, industrial, or
military. As a semiconductor manufacturer and a knowledgeable assembly supplier who deals with
numerous materials and vendors
worldwide, Westinghouse can help
you minimize your total system cost
by optimizing your custom design.
ASSEMBLY PRODUCT INDEX
M
G
P
S
H
PRODUCT FAMILY
PAGE
MODULAR BRIDGES, SINGLE PHASE RECTIIFER ...........•........•••... A3
2-2SA/SO-1000v
Economical, electrically isolated designs provide high surge ratings and small
size for applications requiring easy hookup and reductions in assembly time.
GOLD LINE ..........•....•..•....•....•...•.....•..•..•.•...•........•. AS
12-1670A/100-2000v
A complete product line of stud mount rectifier and/or SCR assemblies
simplifies any design selection because of circuit, mounting and electrical
mounting and electrical variations that are available from standard designs.
AIR AND LIQUID COOLED DISC ......................................... A37
197-13,S80A/100-4000V
Variations of six heat sink designs (three extrusions and three castings) provide
a building block approach to the mounting and cooling of a complete line of disc
rectifiers and/or SCR's.
HIGH VOLTAGE STACK, CHANNEL DESiGN .............................. A69
.S-324A/1-688KV
Fully compensated rectifier modules in conjunction with a varilength mounting
channel provide a method of obtaining custom designs from standardized
components with very high packaging densities.
HIGH VOLTAGE STACK, PLATE DESiGN ................................. A76
6-4S0AI2 -72KV
Provides a viable base design for very high current and high voltage rectifier
design combinations requiring repetitive surge capabilities and high reliability.
SINKS AND KITS •.......•...........•...•..••...•..•.......•...•..•••.. A6S
Sinks developed by Westinghouse are offered in complete kits with all
necessary hardware supplied to mount and assemble disc power semiconductors. Extrusions designed for cooling large area power semiconductors are
compatible with special fabrications.
A1
Regardless of heat sink type - plate,
fabrication, or extrusion; device
type - standard, special. or military;
mounting, cooling, and clamping
requirements; or other special components - resistors, capacitors,
fuses, thermostats, etc., Westinghouse can help. To get this free
"added value" service, simply call
Westinghouse on your next design
project.
All Westinghouse assemblies carry
a one year warranty. In addition,
spare parts and r.eplacement assemblies are readily available for
most designs. Save time and money;
consider an assembly and specify
Westinghousel
eI)
~
I-
u
C
eI)
c
AVAILABLE CIRCUIT
CONFIGURATIONS
(sHADED AREAS)
RECTIFIER
HALF CONTROL-RECTIFIER/SCR
FULL CONTROL - SCR
A2
:a.::
u
eI)
a:
S
:;:)
C
0
:E
w
Z
::::i
C
...I
0
(l'
C
eI)
c
w
w
(l'
...I
w 00
U
...I
C
LI.
...I
0
0
U
C
0
2
<C
~
0
:E
::t
I-
>
a: ::J
;;: d::::i :E<C ::t2
0
eI)
::J
U
Dimensions: Inches (Millimeters)
MB11A02 Serle.
MB12A10 lit MB12A25 Series
M B11 A06 Seri..
1
.087
(2.2)
.152 Dia.
(3.8)
~~--+-'T
ForNo.6~S~c~re~w~~~____-t1-
.125
(3.18)..1
.152 Dia.
I
(3.8)
""T
-,...t---.....
ForNo.6~Szcr~ew~~~____-t1-
.600
(15.0)
Positive
Terminal=:::~~~~~~tJ
ColorD~
~
.750
(19.05)
~
Positive
Terminall-:=::t~J-----''----',,"
Color Dot
TsL
~~.600--'
.750-.J
(3.18) 1(19.05) ~
(2.2) r-(15.0)~
_-' '- .030 dia.
-----, ,.. (.76)
I.J;
f
f
................~--L
.250 Max.
(6.35)
(6.35)
-r
Features:
• Single ,phase bridge circui!
• Positive terminal polarity key (MB12)
• Electrically isolated case
• Low Vt, low leakage
• High surge current ratings
Applications:
• Motor control, AC to DC converters
• Power supplies, battery chargers
~
I
.652
(16.56)
1.125
(28.58)
l
.712
(18.08)
.193" Dia. Hole for No.8 Screw
(4.90)
.875 Min .
(22.2)
.................. .250
-L
Max.
II
IEiiII
r"\
(2r= m+ :J
L:
- - ' '-- .050 Dia.
~ ,.. (1.27)
.875 Min.
(22.2)
AC
(16.56
1.125
-r
•
1.000
Max.
.,g,;;..;~~..;;.. .
(25.40).....
n
(11.10)
437
.........'+'-_..
Module:
MB11A02
MB11A06
MB12A10
MB12A25
V10
V20
V30
V40
V60
vao
W10
Benefits:
• Economy • Availability
• Easy assembly hook-up
• 25 to 50% reduction in assembly time
Ordering Guide
To order a Westinghouse Modular Assembly
simply add the appropriate voltage code
suffix from the table to the basic type number
of the assembly you have selected. For
example, to order the assembly MB12A25
with a 400 Volt rating, add the voltage code
suffix-V40. Now the complete ten digit type
number description is MB12A25V40.
A3
Maximum Ratings and Characteristics
--
1
riBIIJ>12
5, fl(':;
I
.
Repetitive Peak Reverse Voltage (PRV)
Average DC Output Current* at 50"C
Peak One Cycle (Non-repetitive. 60Hz) Surge Current
Forward Voltage Drop per cell at 25°C
Reverse Leakage per cell at rated PRY at 25°C
Thermal Resistance-Junction to Case (typical)
Operating Temperature Range
Storage Tempereture Range
,'H'11A,I,
c.;
I
',~BI2'"
S(
fI'
50-1000V
2A
50A
1_0 V at 1.0 A DC
10"A
50-1000V
6A
125A
1.0 V at 3.0 A DC
10I'A
-55°C to +125°C
-55°C to +l60°C
-55°C to +125°C
-55°C to +150°C
1
I
III:::;
Mel
)
'J>~C
'It',
50-600V
25A
50-600V
lOA
200A
1.2 Vat 5 A DC
10"A
1.5°C/W
-55°C to +150°C
-55°C to +150o C
300A
1.2 V at 12.5 A DC
10I'A
1.5°C/W
-55°C to +150'C
-55°C to +150oC
*NOTE: 60Hz, resistive or inductive load; for capacitive load. derate current by 20%.
Mechanical Characteristics
11V121"\'"
IMBllA02
SUIt'S
Electrically Isolated
Case
Any
10 in.-Ib. Max.
(#6 Screw)
3.5 grams
.030· Dia. Leads
Positive Output: Color dot
Negative Output: Diagonally opposite
positive output
Case
Mounting Position
Mounting Torque
Weight
Terminals/Leads
Polarity Marking
30
25
!
'~Bl',\,
S
rl
Electrically Isolated
Metal Case
Any
20 in.-Ib. Max.
(#8 Screw)
31 grams
.25" Universal Faston
Inputs:
AC
Posithle Output: +
Negative Ou~put: -
300r-----~-------+----
I
MB12~25 Seri
Electrically Isolated
Metal Case
Any
20 in.-Ib. Max.
(#8 Screw)
31 grams
.25" Universal Faston
Inputs:
AC
Positive Output: +
Negative Output: -
I
Non-Repetitive Surge Current Versus Time
I
I
.+
I
s
'\
20
~I
'\
I
I
I
MBP ~10 Seri s
MB11 ~06 Seri s
MB11 iA02 Seri s
I
"' ~
......
.........
~
'\
i
~
E
'\
<C
~
" b::~ ~
~
20
40
60
80
100
Maximum Allowable Case Temperature, ·C
120
140
100r---~~--------r-"--~~~----t-~~~~------;
.><
to
CD
0-
f 50~~::::j:====~B11A~!S~~~~--"-r:;~;:::::~::::::j
u
CD
2'
100..
A4
I SI lies
Electrically-Isolated
Case
Any
10 in.-Ib. Max.
(#6 Screw)
6 grams
.050" Dia. Leads
Positive Output: Color dot
l\Iegative Output: Diagonally opposite
positive output
Bridge Output Current Versus Temperature
35
iMB12AIO
':.,(>rll c;
160
~
O~----~---------~------~------~--------~------~
1
2
5
10
20
50
10"_
Cycles at 60 Hertz
How to Select an Assembly
I. Circuit Funtion
A. Rectifier (contains rectifiers only)Go to Page A6
B. Half Control (contains both rectifiers
ar1 SCR's) - Go to Page A16
C. Full Contrc>' 'contains SCR's only) Go to Pagl .24
II. Circuit Configuration - Select the configuration desired and then turn to the
page number referenced.
III. Current Rating - The assemblies are
listed in order of increasing current
rating on each page. Select the one that
best meets your requirements. Each
'assembly has a table of current ratings
as a function of various ambient temperatures, air flow velocity and conduction or delay angles for half and full
control assemblies.
IV. Mounting - Select the type number for
either floor or wall mounting. Most assemblies offer both types of mounting.
V. Vc.:tage Rating - Now from the range of
voltage ratings shown. select the voltage rating you require from the voltage
code suffix table.
NOTE: Additional electrical and mechanical
data on the assembly you have
chosen can be found by referring to
the respective key numbers.
For information on current and voltage
ratings not shown or' for any special
electric... and/or mechanical requirements
as well as additional information on any
of the Gold-Line Assemblies listed. contact
your nearest Westinghouse Sales Office.
Features
• Pre-engineered Design
• Low Cost
• Fully Tested Assemblies
• Full Range of Current and Voltage
Ratings
• Guaranteed Assembly Ratings
• Easy to Read Rating Charts
• General Recommendations for Fuses.
Voltraps. Gate Drives. R-C Networks
• Complete Information for Assembly
Application
• Value Engineered Design
• Compact Size
• Light Weight
• All Standard Circuit Configurations
Available
• Most Assemblies Built from Stock
• Gold Chromate Finish
• Insulated Mounting
• JEDEC and MIL Approved Devices
Available for Most Designs
• Resistor/Capacitor Networks and other
Special Frame Modifications Available.
100
" 200
300
400,
600
800
1000
1200
1400
1.600
2000
:w.r+;;
";~~Jl~:
A5
Rectifier Assemblies
This section describes the circuit configura~
tions available for Rectifier Assemblies.
(assemblies using rectifiers only). The chart
below shows the schematics, waveform,
recommended diode voltage ratings, the
basic current ratings available, and the page
number where specific rating information
for each assembly can be found.
On each page the as!lemblias for a given circuit configuration are listed in order of increasing current rating. The tabulated current ratings for each assembly type number
are given as a function of ambient temperature and as a function of air velocity
(linear. feet per minutll- LFM).
Refer to the mechanical and electrical keys
specified for the assembly you have selected
to obtain assembly wei.ghfand dimensions
and other electrical data and recommendations.
Assembly Output
Ripple (%)
Wave Form
.45 ERMS
.707 ERMS
121
(See Single Phase Bridge "B" or Three Phase "E").
A6
.900 ERMS
1.0 ERMS
48
.900 ERMS
1.0 ERMS
48
.900E RMS
1.0 ERMS
48
1.350 ERMS
1.351 ERMS
4
%ID
1.350 ERMS
1.351 ERMS
4
%ID
1.170E RMs
1.171 ERMS
4
Description of Rectifier Assemblies Pictured on the Right
I. Westinghouse GE11A61, 3t/> Bridge, 35-61 Amps, 100-800 Volts on 3 x 3 plates.
II. Westinghouse GE15B30, 3t/> Bridge, 100-300 Amps, 100-1600 Volts on 114 x 4 x 5
heat sinks.
III. Westinghouse GE16B45, 3t/> Bridge, 225-450 Amps, 100-1600 Volts on 4 x 4 x 5
heat sinks.
IV. Westinghouse GE19B53, 3t/> Bridge, 280-530 Amps, 100-2000 Volts on 5 x 5 x 6
heat sinks.
V. Westinghouse GE19B83, 3t/> Bridge, 520-830 Amps, 100-2000 Volts on 5 x 5 x 6
heat sinks.
.. ,",
Available A...mbll_ " .',
~
Actual
Diode
Peak
Reverse
Voltage
Recommended
Rectifier
Diode
Repetitive
Voltage
Rating
1.41 ERMS
or 7r ED
2.8 ERMS
or 6.28 ED
Output Current Ratimfs
(Amperes) AVG
'~:-'
'"
"
,'"
>
foroed ! ,~
ConveRtioti '
(i4O"C &
Natural
' Convection
@40°C
:
For Specific
Rating Info
See Page
' "QC:)(UJiM,
,
2.2 to 300 ,
,12t0190
'
"
-
~
AS
... ,' .
"
i1.2to 120
A9
45t6'61{)
"
i
I
I
II
••
2.828 ERMS
or 7r ED
45 to 610>' (
26 to 380
5.7 ERMS
or 6.28 ED
A11
JII
2.828 ERMS
or 7r Eo
5.7 ERMS
or 6.28 Eo
,',
26 to 380
45 to 610
A10
,.
"
,.
,
1.414 ERMS
or 1.57 Eo
2.8 ERMS
or 3.2 Eo
26 to 380
':"
A12
"~'
..
~!.
2.8 ERMs
or 2.1 ED
• ".j
45 to 610.
:'c.
1.414 ERMs
or 1.05 ED
,~
.
,
"
61 to 830
'35 to 520
.,
.
.. ::.
A13
..
,!':
.'
2.828 ERMs
or2.1E o
5.7 ERMs
or 4.2 Eo
57 to 860
2.45 ERMs
or 2.1 Eo
4.9 ERMs
or 4.2 Eo
70 to 1050
100 to 1360'
!
A14
, <=
I
I
I
120 to 1670
A15
,~,<
A7
- - - _ . _ - - ------
n
Single Rectifier
R
Current Rating
Voltage Ratings
12-22 Amps
100-800 Volts
Type
Number
Mounting
Mech. Data
Pg. A34-35
40 Amps
100-1000Volts
20-38 Amps
100-1000Volts
Elec. Data
Pg. A33
Type
Mach. Data
Pg. A34-35
Number
Elac. Data
Pg. A33
Type
Number
Mech. Data
Pg. A34-35
Elec. Data
Pg. A33
Floor
Wall
Air Velocity (LFM)+
40'C
Maximum
Ambient
60'C
Temperature
80'C
Output Current (Ayg. Amps.)
1000
150
N.C.
400
250
15 +:~~;'':
17
"'"1. ii1 19
19
17
15
14
11
16
11
9
14
13
Output Current (Ayg. Amps.)
400
250
150
34
30
26
32
29
25
22
17
22
20
15
28
25
Output Current (Ayg. Amps.)
1000
400
250
150
N.C.
40
40 t:(~7~
·::I.~l1 40
40
40
40
40
40
40
40
40
34
40
Current Rating
Voltage Ratings
70-140 Amps
100-1600 Volts
110-150 Amps
100-1600 Volts
190-300 Amps
100-2000 Volts
Type
Type
Type
Number
Number
Number
Mounting
Mach. Data
Pg. A34-35
Elec. Data
Pg. A33
Floor
Wall
Air Velocity (LFM)"
40'C
Maximum
Ambient
60'C
Temperature
80'C
AS
Output Current (Ayg. Amps.)
1000
N.C.
400
250
150
90 r'~::
::;:,WdJ 110 99
125
101
90
80
55
103
85
47
65
75
Output Current (Ayg. Amps.)
150
126
400
146
127
108
250
136
118
99
150
126
110
92
93
78
Output Current (Ayg. Amps.)
400
250
150
281
266
247
256
237
224
160
208
216
200
189
175
135
Doubler
D
Current Rating
Voltage Ratings
Type
Meeh. Data
Pg. A34-35
Number
Mounting
18-32 Amps
100-1000Volts
12-20 Amps
100- 800 Volts
Elee. Data
Pg. A33
Meeh. Data
Pg. A34-35
Number
Elee. Data
Pg. A33
Type
Number
Floor
Wan
Output Current (Avg. Amps.)
400
18
15
13
Air Velocity (LFM) +
4O'C
Maximum
Ambient
60'C
Temperature
80'C
Current Rating
Voltage Ratings
250
16
14
12
Meeh. Data
Pg. A34-35
Number
Output Current (Avg. Amps.)
150
15
13
11
45-135 Amps
100-1600 Volts
Type
Mounting
Type
19-40 Amps
100-1000Volts
400
31
27
23
250
28
24
21
400
36
32
24
75-150 Amps
100-1600 Volts
Elee. Data
Pg. A33
Type
Mech. Data
Pg. A34-35
Number
Output Current (Avg. Amps.)
150
24
21
18
250
33
27
20
150
30
25
19
190-300 Amps
100-2000 Volts
Elec. Data
Pg. A33
Floor
Type
Number
r-----
Mech. Data
Pg. A34-35
Elee. Data
Pg. A33
Wan
Output Current (Avg. Amps.)
Air Velocity (LFM)+
4O'C
Maximum
Ambient
6O'C
Temperature
80'C
400
104
85
65
250
92
75
58
150
81
66
51
Output Current (Avg. Amps.)
400
124
250
110
100
76
88
68
150
93
75
57
46
Output Current (Avg. Amps.)
400
270
240
204
250
253
222
188
150
228
201
170
N.C.
A9
Po•. Center Tap
C
Current Rating
Voltage Ratings
Mounting
26-45 Amps
100-800 Volts
40-76 Amps
1oo-1000Volts
Type
Mech. Data
Elec. Data
Type
Mecb. Data
Elec. Data
Type
Mech. Data
Elec. Data
Number
Pg.A34·35
Pg.A33
Number
Pg. A34·35
Pg. A33
Number
Pg. A34·35
Pg. A33
Floor
~-
Wall
..
Output Current (Avg. Amps.)
Air Velocity (LFM).
Maximum
4O'C
Ambient
60'C
Temperature
80'C
Current Rating
Voltage Ratings
Mounting
1000
I
38
31
400
40
34
28
250
36
31
25
150
33
28
23
..
1·:NC
22
18
90-270 Amps
100-1600 Volts
1000
'7t:'~1
65
55
400
76
57
49
250
68
52
44
150
NC
59
45
38
~~
···1
E2
Output Current (Avg. Amps,)
155-300 Amps
100-1600 Volts
270-510 Amps
100-2000 Volts
Mech. Data
Elec. Data
Type
Type
Mech. Data
Elec. Data
Number
Pg. A34·35
Pg. A33
Number
Number
Pg. A34·35
Pg. A33
F-34
. .
220 .
150
400
207
170
115
250
185
152
103
150
162
133
90
74
50
380-610 Amps
100-2000 Volts
Type
Mech. Data
Elec. Data
Number
Pg. A34·35
Pg. A33
Floor
Wall
Output Current (Avg. Amps.)
Air Velocity (LFM).
Maximum
4O'C
Ambient
6O'C
Temperature
80'C
W.10
34
29
Wall
Current Rating
Voltage Ratings
~
Type
Output Current (Avg. Amps.)
A10
Output Current (Avg. Amps.)
Floor
Air Velocity (LFM).
4O'C
Maximum
Ambient
60'C
Temperature
80'C
Mounting
60-80 Amps
1oo-1000Volts
1000
'ttl"'i
520
426
400
564
460
393
250
532
455
371
150
490
418
342
NC
ElW:ti
325
265
Output Current (Avg. Amps.)
265
212
400
279
225
180
250
248
200
160
150
209
169
135
-~--1
E 4
W-34
Output Current (Avg. Amps.)
Neg. Center Tap
N
Current Rating
Voltage Ratings
Type
Mach. Data
Pg. A34-35
Number
Mounting
40-76 Amps
100-1000Volts
26-45 Amps
100- 800 Volts
Elac. Data
Pg. A33
Type
Mach. Data
Pg. A34-35
Number
60-80 Amps
100-1000Volts
Elac. Data
Pg. A33
Type
Mach. Data
Pg. A34-35
Number
Elac. Data
Pg. A33
Floor
Wan
I.
Output Current (Avg. Amps.)
Air Velocity (LFM).
Maximum
4O·C
Ambient
6O·C
Temperature
80.C
Current Rating
Voltage Ratings
1000
400
250
150
r';;.f'l
40
36
33
38
34
31
28
31
28
25
23
22
18
90-270 Amps
100-1600 Volts
Type
Mach. Data
Pg. A34-35
Number
Mounting
N.C.
1000
400
250
150
68
65
76
57
59
45
55
49
.71 I
52
44
38
,
NC
34
29
Type
Mach. Data
Pg. A34-35
Number
1000
400
250
150
,.(i_L,s!
80
80
80
80
80
80
80
75
74
68
61
N.C.
Pih.',:;,
50
41
270-510 Amps
100-2000 Volts
155-300 Amps
100-1600 Volts
Elec. Data
Pg. A33
Output Current (Avg. Amps.)
Elac. Data
Pg. A33
Type
Mach. Data
Pg. A34-35
Number
Elac. Data
Pg. A33
Floor
, Wan
Output Current (Avg. Amps.)
Air Velocity (LFM).
4O·C
Maximum
Ambient
60·C
Temperature
80·C
Current Rating
Voltage Ratings
Output Current (Avg. Amps.)
400
250
150
N.C.
1000
400
250
150
207
185
162
JIO:
.;;.• ':t
279
248
N.C.
220
170
152
133
74
265
225
200
209 •.::,'tiJ;;;
169
125
150
115
103
90
50
212
180
160
135
100
Output Current (Avg. Amps.)
1000
400
250
150
NC
~_;i
454
426
378
I·:.·'
496
395
321
370
330
235
302
266
190
360
380-610 Amps
100-2000 Volts
Type
Number
Mounting
.'
Output Current (Avg. Amps.)
Mech. Data
Pg. A34-35
Elec. Data
Pg. A33
Floor
Wan
Output Current (Avg. Amps.)
Air Velocity (LFM).
Maximum
4O·C
Ambient
6O"C
Temperature
80·C
A11
1 cP Bridge
B
Current Rating
Voltage Ratings
26-45 Amps
100- 800 Volts
Type
Mach. Data
Pg. A34-35
Number
Mounting
Elec. Data
Pg. A33
Floor
Wall
Output Current (Avg. Amps.)
=Type
Number
FW9
250
68
62
44
400
76
67
49
90-270 Amps
100-1600 Volts
Type
Elac. Data
Pg. A33
I
Elec:Data
Pg. A33
Type
Mach. Data
Pg. A34-35
Number
Floor
Type
Number
E2
Output Current (Avg. Amps.)
160
69
45·
38
155-300 Amps
100-1600 Volts
Mach. Datil
Pg. A34-35
Number
Mounting
Mech. Data
Pg. A34-35
Output Current (Avg. Amps.)
Air Velocity (LFM).
Maximum
4O'C
Ambient
60'C
Temperature
80'C
Current Rating
Voltage Ratings
60-80 Amps
100-1 000 Volts
45-76 Amps
1oo-1000Volts
270-510 Amps
100-2000 Volts
Elec. Data
Pg. A33
Type
Mech. Data
Number
Pg. A34-35
,-----
Elec. Data
Pg. A33
I
Wall
Output Current (Avg. Amps.)
Air Velocity (LFM).
Maximum
4O'C
Ambient
6O'C
Temperature
80'C
Current Rating
Voltage Ratings
400
207
170
116
Number
Floor
160
162
133
90
_
Mach. Data
Pg. A34-35
F-41
Elac. Data
Pg. A33
i
E-4
Output Current (Avg. Amps.)
Air Velocity (LFM).
Maximum
4O'C
Ambient
60'C
Temperature
80'C
A12
Output Current (Avg. Amps.)
400
279
225
180
380-610 Amps
100-2000 Volts
Type
Mounting
250
186
162
103
250
248
200
160
160
209
169
136
Output Current (Avg. Amps.)
3
q, Bridge
E
Current Rating
Voltage Ratings
35-61 Amps
100- 800 Volts
Type
Mech. Data
Pg. A34-35
Number
Mounting
55-100 Amps
1 00-1 OOOVolts
Elec. Data
Pg. A33
Type
70-120 Amps
100-1000Volts
Mecn. Data
Pg. A34-35
Number
Elec. Data
Pg. A33
Type
Mech. Data
Pg. 'A34-35
Number
Elec. Data
Pg. A33
Floor
Wall
Output Current (Avg. Amps.)
Air Velocity (LFM).
Maximum
40'C
Ambient
60'C
Temperature
80'C
Current Rating
Voltage Ratings
400
54
52
46
45
40
Type
Number
Mounting
Floor
150
1000
400
250
150
N.C.
45
fi,;~J
92
84
73
"'.'elk;:
42
36
38
33
30
91
81
73
26
78
69
62
63
54
48
41
100-300 Amps
100-1600 Volts
r-----
Output Current (Avg. Amps.)
250
49
Mech. Data
Pg. A34-35
Elec. Data
Pg. A33
Output Current (Avg. Amps.)
400
250
150
';-~ 120
1000
116
107
.,.
NC
[
116
115
96
87
58
94
85
72
70
47
180-380 Amps
100-1600 Volts
225-450 Amps
100-1600 Volts
Type
Type
Number
Number
Mech. Data
Pg. A34-35
.'
Elec. Data
Pg. A33
Wall
Output Current (Avg. Amps.)
Air Velocity (LFM).
4O'C
Maximum
Ambient
60'C
Temperature
80'C
Current Rating
Voltage Ratings
Mounting
246
189
Output Current (Avg. Amps.)
Output Current (Avg. Amps.)
400
250
150
400
250
150
1000
400
230
205
180
288
405
250
361
168
148
82
307
243
196
;JL_~
189
145
323
261
145
393
333
290
130
113
63
234
198
149
110
297
252
224
232
1.76
150
NC
303
tal',
249
188
185
140
280-530 Amps
100-2000 Volts
370-700 Amps
100-2000 Volts j
520-830 Amps
100-2000 Volts
Type
Type
Type
Number
Number
Number
Mech. Data
Pg. A34-35
Elec. Data
Pg. A33
GE19B83
F·43
EA
Floor
Wall
Output Current (Avg. Amps.)
Air Velocity (LFM).
40'C
Maximum
Ambient
60'C
Temperature
80'C
Output Current (Avg. Amps.)
Output Current (Avg. Amps.)
..
1000
400
250
730
150
NC
672
Is.zo
325
730
770
675
638
588
455
275
617
570
540
600
385
400
250
150
1000
400
250
150
NC
470
443
393
~i] 628
581
l<~
456
405
382
336
240
611
552
510
526
461
360
321
302
266
190
517
468
432
391
•. :J
A13
6 <p Star
Current Rating
Voltage Ratings
Type
Number
Mounting
Mech. Data
Pg. A34-35
Elec. Data
Pg. 0433
Mech. Data
Pg. A34-35
TYPII
Number
Elec. Data
Pg. A33
Type
Number
Mech. Data
Pg. A34-35
Elec. Data
Pg. A33
Floor
Wall
Output Current (Avg. Amps.)
Air Velocity .(LFM).
Maximum
4O'C
Ambient
60'C
Temperature
80'C
Current Rating
Voltage Ratings
1000
400
250
150
·;t.'j
!
P.utput Current (Avg. Amps.)
NC
400
250
195
189
171
Eff"" ..·
375
344
294
187
156
142
95
308·
274
241
153
138
117
114
77
236
212
184
457·870 Amps
:.100.-?OOO Volts
367-735 Amps
10.0-1600 Volts
Type
Nu,!!ber.
Mech. Oats
Pg. A34-35
Output Current (Avg. Amps.)
150
189
Type
Number
Mounting
294-620 Amps
100-1600 Volts
163.4.90 Amps
'10Q.1600 Volts
114-195 Amps
100-1000Volts'
603-1150 Amps
100-2000 Volts
Elec. Data
Pg. A33
Type
Number
Floor
Wall
Output Current (Avg. Amps,.)
Current Rating
Voltage Ratings
Floor
A14
(Avg. Amps.)
Output Current (Avg. Amps.)
150
NC
400
250
150
400
250
150
~:tC~ 660
543
641
588
tWf'"
767
722
641
1022
947
853
473
494
406
411
366
307
484
302
744
661
623
548
392
997
899
832
753
228
587
523
492
433
310
843
764
704
638
850-1360 Amps
100-2000 Volts
I
GS19C13
Mech. Data
Pg. A34-35
Elec. Data
Pg. A33
_
Output Current (Avg. Amps.)
Air Velocity (LFM).
Maximum
4O'C
Ambient
60'C
Temperature
eo'c
Curren~
250
Type
Number
Mounting
Output
400
1000
Air Velocity {LFM).
Maximum
4O'C
Ambient
60'C
Temperature
80'C
1000
N.C
400
250
150
1190
1095
1190
1253
1100
1038
959
742
1005
930
880
815
628
.*
.1
I
8&0
Current Rating
Voltage Ratings
Mounting
140-240 Amps
1 00-1 OOOVolts
200-600 Amps
100-1600 Volts
Type
Mech. Date
Elec. Data
Numbe.
Pg. A34-35
Pg. A33
Type
Number
360-760 Amps
100-1600 Volts
Mech. Data
Elec. Data
Type
Mech. Data
Elec. Data
Pg. A34-35
Pg. A33
Number
Pg. A34-35
Pg. A33
Floor
Wall
Output Current (Avg. Amps.)
Air Velocity (LFM) +
Maximum
4O'C
Ambient
60'C
Temperature
80'C
Current Rating
Voltage Ratings
Mounting
1000
-I
232
188
400
240
230
170
250
232
192
144
150
..
NC
210 _ : '
174
116
140
94
1000
400
250
160
I!~'l 480
410
336
260
360
296
226
492
378
378
290
N.C
l164
126
450-900 Amps
100-1600 Volts
560-1060 Amps
100-2000 Volts
Type
Numbe.
Type
Number
Output Current (Avg. Amps.)
Output Current (Avg. Amps.)
Output Current (Avg. Amps.)
1000
,.
400
646
250
576
150
486
614
468
522
396
464
354
392
298
290
220
740-1400 Amps
100-2000 Volts
Mech. Data
Elec. Data
Pg. A34-35
Pg. A33
Type
Number
Mech. Data
Pg. A34·35
Elee. Data
Pg. A33
Floor
Wall
Current Rating
Voltage Ratings
1222
1034
I
400
1266
1104
260
1162
1020
936
864
..
160
NC
1062
I 740
922
782
550
650
1040-1670 Amps
100-2000 Volts
Type
Mech. Data
Pg. A34-35
Number
Floor
t.
Output Current (Avg. Amps.)
1000
Air Velocity (LFM)+
Maximum
40'C
Ambient
60'C
Temperature
80'C
Mounting
Output Current (Avg. Amps.)
__
F-43
Eisc. Data
Pg. A33
I
E4
Output Current (Avg. Amps.)
Air Velocity (LFM)+
40'C
Maximum
Ambient
60'C
Temperature
80'C
1000
400
t810 J 1540
1460
1234
1360
1140
250
1480
1276
1080
150
1344
1176
1000
N.C.
L-910
770
A15
Half Control Assemblies
increasing current rating. The tabulated
current ratings for each assembly type number are given as a function of ambient temperature, as a function of the conduction
or delay angle, and as a 'function of the air
velocity (linear feet pElr minute - LFM).
The conduction angle is defined as the
number of electrical degrees the SCR conducts current. The ~elay angle is defined as
the number of electrical degrees the gate
trigger pulse is delayed from the time the
anode voltage on the SCR starts positive.
Refer to the mechanical and electrical keys
This section describes the standard circuit
configurations available for Half Control
Assemblies (assemblies using both rectifiers
and SCR's). The chart below shows the
schematics, waveform, recommended SCR
and diode voltage ratings, the basic current
ratings available, and the page number
where specific rating information for each
assembly can be found.
On each page the assemblies for a given
circuit configuration are listed in order of
';''1'';', '
specified for the assembly you have selected
to obtain assembly weight and dimensions
and other electrical data and recommendations.
'I'
,
\
Assembly Output
Circuit
"
,
,
<,
f~umlol'\
,
~'" ~ ;-"
Schematic
"
"
.:".ouWer
,:':t,
"'
"
,
o
,~
'
.,
,.
~
»c<,~ ~.:",
"
,',
.~.~~Ph.aM Bridge
~.
'1-.,'\
:-'1- 0
-~
.ca.- Ell"
;"',
t /
I'~ Ttl....
>',to
,,'
Waveform
,
A'...... ~ AiCfawttch
"
Pb... 'ridge
~';.
','
,;.. t'hrf!ItPhasa AC .SWitch
"
1 ~
!RL
,
L
CR,
'"
~.
R
~
'Bi
~ ·Iw
~
L
Maximum
Voltage
Ed=Avg.
E.=RMS
Maximum
SCR
Voltage
Maximum
Diode
Voltage
(See: Single Phase Bridge "B" or Three Phase Bridge "E")
°lw
1
CR,
Er'~1
A16
",'
;'t':.,
E.=ERMS
1.4 ERMS
1.4 ERMS
Ed =.90 ERMS
1.4 ERMS
1.4 ERMS
Ed=1.35 ERMS
2.45 ERMS
2.45 ERMS
E.=E RMS
1.4 ERMS
1.4 ERMS
,Description of Half Control Assemblies Pictured on the Right
I
Westinghouse GA28B32, 141 AC Switch 180-320 Amps, 100-1600 Volts on 4 x 4 x 9
II
III
IV
V
heat sinks.
Westinghouse
heat sinks.
Westinghouse
heat sinks.
Westinghouse
heat sinks.
Westinghouse
heat sinks.
Recommended
SCR &. Diode
Voltage Rating
2.8 ERMS
2.8 ERMS
or 3.9 Ed
GB28B29,
141
Bridge, 161-290 Amps, 100-1600 Volts on 4 x 4 x 9
GE28B42,
341
Bridge, 232-420 Amps, 100-1600 Volts on 4 x 4 x 9
GE24B 11,
341
Bridge 54-11 0 Amps, 100-1000 Volts on 1% x 4 x 5
GF24A89,
3lP AC
Switch 42-89 Amps, 100-1000Volts on 1% x 4 x 5
Output Current Ratings
(Amperea)
Forted
Natural
CCltWeCtiOn
aUO·C &.
Convection
at40·C
'1000 I.FM·
12 tl.l71
19ta 140
ja'RMSto
"180RMS
<MRMS,to
320RMS'
3tQ161
;M~'2./
For Specific
Rating Info
See Page
AlB
~\,
II
A19
A2D
.,
III
4.9 ERMS
or 2.1 Ed
2.8 ERMS
'37 to 232.
A2l
A22
IV
v
A17
M
Doubler
D
Current Rating
Voltage Ratings
12-19 Amps
100-1000 Volts
Type
Number
Mounting
36 Amps
100-1200 Volts
18-36 Amps
100-1000 Volts
Type
Mech. Data
...-N_um_be_r_ _ Pg. A34-35
Elec. Data
Pg. A33
Type
Number
Mech. Data
Pg. A34-35
Floor
Wall
Maximum
Air
Velocity
+Ambient
Temperature (LFM)+
I
"-
4O'C
L
I
60'C
L
I
SO'C
L
Delay
Angle
60
90
120
150
o
Delay
Angle
60
90
120
150
o
Delay
Angle
60
90
120
150
Current Rating
Voltage Ratings
Mounting
Output Current (Avg. Amps.)
1000
400
250
150
16
15
,.'
17
16
15
14
17
10
14
13
12
16
12
11
9
10
12
8
8
8
7
6
16
15
13
11
14
13
11
13
12
11
12
11
10
10
9
8
7
9
6
8
6
7
6
11
10
10
9
8
7
6
5
8
7
6
6
5
6
9
8
8
5
9
8
6
9
8
6
5
5
4
Output Current (Avg. Amps.)
400
250
150
35
32
28
33
30
27
28
28
27
18
24
23
14
23
21
23
16
18
18
11
18
35
32
28
23
16
29
27
26
21
16
26
26
22
19
18
23
22
20
18
14
14
13
12
11
27
26
21
19
16
22
21
19
16
13
20
19
17
16
12
18
10
17
9
16
13
10
8
7
6
9
Output Current (Avg. Amps.)
400
250
150
36
36
36
33
33
33
28
28
28
28
28
23
23
23
23
23
16
16
16
16
16
36
33
28
23
18
36
33
28
23
16
36
33
28
23
16
36
33
28
23
16
29
27
26
21
16
36
33
28
23
18
33
31
27
22
16
30
29
25
22
16
28
27
24
21
16
21
20
17
16
12
47-72 Amps
100-1200 Volts
63-110 Amps
100-1600 Volts
77-140 Amps
100-1600 Volts
Type
Number
Type
Number
Type
Number
Mech. Data
Pg. A34-35
Elec. Data
Pg. A33
Floor
Wall
Maximum
Air
+Ambient
Velocity
Temperature (LFM)+
I
4O'C
L
I
I
I
L
80'C
A18
o
Delay
Angle
60
90
120
150
o
Delay
Angle
80
SO
120
150
o
Delay
Angle
80
90
120
150
Output Current (Avg. Amps.)
150
NC
1000
400
250
':.:,~<l 68
63
57 I 41
64
43
67
63
59
49
40
54
58
58
45
35
45
45
4~
32
32
32
32
28
..
Output Current (Avg. Amps.)
150
NC
1000
400
250
81
93
1101 104
ea ...
81
105
98
89
79
81
57
88
88
72
84
71
71
71
60
49
49
49
49
40
-r
59
55
50
42
32
55
52
46
40
31
51
48
43
38
30
47
44
40
35
27
36
34
31
27
22
92
87
79
69
49
83
80
73
84
45
41
37
32
25
41
39
34
30
23
38
38
32
28
22
35
33
30
28
21
26
24
22
19
18
89
85
81
64
42
..
49
47
76
86
72
83
58
62
41
43
49
86
58
48
82
59
56
48
38
65
53
49
43
35
48
47
44
39
31
34
32
38
32
30
27
23
Output Current (Avg. Amps.)
250
150
NC
1000
400
111
97 I 17
1401 128
'1'21
94
74
107
134
89
110
98
88
121
75
59
94
84
98
48
68
80
89
89
..
79
82
91
88
79
89
56
70
61
50
80
67
53
48
37
74
73
88
58
47
87
65
59
52
42
57
58
53
48
37
41
39
36
31
28
113
109
99
88
88
102
99
82
81
74
84
50'
90
77
77
1 ~ACSwltch
A
Current Rating
Voltage Ratings
28-46 Amps
100-1000 Volts
Type
Number
Floor
Wall
Mounting
Maximum
+Amblent
r-----
Air
Velocity
F~::,a:LFM)~
L
4CrC
r-
Ir-.
so·c
L
Angle
120
150
180
Delay
Angle
90
o
120
150
180
o
Delay
Angle
90
120
150
180
Current Rating
Voltage Ratings
Mech. Data
Pg. A34-35
Elec. Data
Pg. A33
Output Current (RMS Amps.)
1000
400
250
150
N.C.
48
40
38
47
42
30
39
35
43
48
40
36
31
49
44
41
38
32
50
45
40
34
43
o
f
[
I
8O'C
Delay
90
120
160
lSO
Delay
Angle
90
120
L
o
150
lSO
o
Deley
Angle
Type
Number
Type
Number
Output Current (RMS Amps.)
1000
400
250
150
N.C.
74
66
42
..•.
82
73
48
89
87
82
77
51
89
89
86
89
89
89
84
56
89
89
89
87
64
Output Current (RMS Amps.)
1000
400
250
150
as
89
89
89
89
89
89
89
89
89
89
89
89
89
89
89
89
89
89
89
89
89
89
Mech. Dala
Pg. A34-35
Elee. Data
Pg. A33
33
34
35
37
38
31
32
33
34
3.6
28
29
30
31
33
22
24
25
26
27
81
86
89
89
89
68
75
78
85
89
61
67
70
77
85
54
60
63
69
78
33
34
39
43
50
89
89
89
89
89
89
89
89
89
89
89
89
89
89
89
86
89
89
89
89
68
69
73
76
82
29
30
31
32
33
25
26
27
28
29
23
24
25
26
27
21
22
23
24
26
16
17
17
19
21
61
63
64
70
76
50
53
54
59
64
45
47
48
53
58
40
42
43
47
52
23
24
25
27
30
80
76
79
81
85
89
71
74
75
80
66
69
70
74
78
49
52
53
56
50
147-260 Amps
100-1600 Volts
106-170 Amps
100-1200 Volts
Type
Number
r--___- -
Mech. Data
Pg. A34·35
83
85
89
89
83
180-320 Amps
100-1600 Volts
Elec. Data
Pg. A33
Type
Number
Mech. Data
Pg. A34·35
Elec. Data
Pg. A33
Floor
Wall
Maximum
Air
Velocity
+Ambient
Fmperature (LFM)+
I -
85-89 Amps
100-1200 Volts
38
39
40
41
42
Type
Number
Mounting
42-89 Amps
100-1200 Volts
90
120
150
lSO
Output
1000
1701
174
177
177
177
Current (RMS Amps.)
150
N.C.
400
250
157
147
134 11"
111
154
141
164
157
144
113
168
156
127
177
176
136
177
177
168
136
143
146
155
168
128
134
137
145
159
120
126
128
136
150
108
113
116
126
138
83
85
88
98
106
102
106
111
117
126
96
101
109
110
118
86
80
85
88
95
58
60
62
70
74
94
97
103
112
102
Output Current (Avg. Amps.)
1000
400
250
150
N.C.
tso t 240 216 196 I 147
274
256
230
204
159
279
264
237
208
165
279
254
227
180
279
279
279
273
250
198
211
225
232
272
193
205
212
230
251
173
188
196
206
226
156
169
175
189
202
143
154
160
171
187
128
137
142
155
169
250
Output Current (Avg. Amps.)
1000
400
250
150
N.C.
260
227 I 1SO
alOI 297
341
313
276
242
193
360
321
286
250
200
378
346
308
270
212
302
390
375
337
235
153
161
166
184
202
112
120
125
137
151
260
278
288
310
341
237
252
260
282
309
209
112
78
83
86
95
103
191
209
218
233
256
175
188
195
210
233
153
167
174
190
120
124
138
151
223
232
252
277
208
181
193
200
223
247
135
145
150
164
180
132
141
146
166
185
92
98
102
110
122
A19
1.
Bridge
B
Current Rating
Voltage Ratings
26-41 Amps
100-1000 Volts
Mach. Data
Pe· A34-35
Type
Number
Mounting
4O"C
L
r
Jrc
L
8O"C
L
Type
Mach. Data
Pg. A34-35
Number
Elec. Data
Pg. A33
Type
Mach. Data
Pe. A34-35
Number
Elac. Data
Pe. A33
,
Output Current (Avg. Amps.)
E 6
Output Current (Avg. Amps.)
Output Current (Avg. Amps.)
180
I
I
78-80 Amps
100-1200 Volts
---I
~- -\IVF13
15
Floor
Wall
Mulmum
Alit
+Ambient
Velocity
T8IIIJIIII'atUf8 (LFM)+
r
Elac. Data
Pe. A33
38-80 Amps
100-1000 Volts
Conduetion 120
Angle
80
80
30
3430
. 30
28,
28
21
16
23
19
14 '
21
18
13
24
22
20
18
12
Conduction 120
Angle
80
23
20
18
80
UI
30
12
20
18
18
16
11
18
17
14
13
10
18
13
13
13
10
180
Conduction 120
Angle
80
80
30'
180
Current .Rating
Voltage Ratings
Mulmum
+Ambient
Air
Velocity
73
86
57
13
12
11
10
8
"60
~
F29
~--~
V\1 29
45
31
43
38
30
81
66
48
43
31
54
60
48
41
38
32
27
41
38
45
38
31
34
29
23
48
44
40
35
27
28
27
24
22
17
80
68
80
88
"46
56
38
33
31
27
21
20
18
17
16
12
72
88
Elac. Data
Pg. A33
J
f7
I
Output Current (Avg. Amps.)
Type
Mach. Data
Pg. A34-35
Number
HB--
F- 30
\",1
32
"
48
32
78
66
80
54
56,
50
48
32
80
88
58
48
32
48
32
42
32
88
81
54
48
32
84
69
50
44
32
80
54
48
42
32
44
40
34
32
24
161-290 Amps
100-1600 Volts
130-230 Amps
100-1600 Volts
Mach. Data
Pg. A34-35
Number
Floor
Well
20
18
17
14
10
94-160 Amps
100-1200 Volts
Type
Mounting
27
26
'
Elec. Data
Pg. A33
Type
Mach. Data
Pg. A34-35
Number
Elac. Data
Pg. A33
I
3('
[ 8
EII!InII
Output Current (Avg. Amps.)
W30
i
f
'
Output Current (Avg. Amps~)·'..
TlllllJMftlure (LFM)+
r
180
I
' Conduction 120
I
Conduction 120
Ir - :
Ir - :
I
8O"C,
A20
L
122
110
113
104'
106
88
88
89
86
63
82
80
82
88
76
69
80
70
65
180
88
63
Conduction 120
Angle
80
82
77
75
88
88
78
71
86
:"
71
88
80
112
41
180
80
30
84,
87
72
88
63
54
44
182
174
169
138
174
180
144
128
89
89
48
47
143
128
120
107
130
120
107
88
84
77
45
38
32
'''68
143
130
118
92
118
107
88
88
70
138
127
118
104
100
83
88
77
83
84
104
84
88
78
83
70
84
58
53
48
218
188
172
138
212
188
178
154
124
188
178
169
138
112
174
161
148
128
100
167
146
133
118
84
137
130
117
104
84
234
162'
122
152
140
114
106 .
122
100
92
74
118
112
107·
82
74
84
78
73
82
58
3
q, Bridge
E
Current Rating
Voltage Ratings
37-58 Amps
100-1000 Volts
Type
Number
Floor
Mounting
Wall
Maximum
"Ambient
Air
Velocity
110 Amps
100-1200 Volts
54-110 Amps
100-1000Volts
Mech. Data
Pg. A34·35
Elee. Data
Pg. A33
F.4
i
VV 5
:
- .- - - - - <
E 5
Output Current (Avg. Amps.)
Type
Number
Mach. Data
Elec. Data
Pg. A34·35
Pg. A33
GE24B11
GE54Bl1
F·18
'
Type
Number
Mach. Data
Elec. Data
Pg. A34·35
Pg. A33
E·6
VV·20
Output Current (Avg. Amps.)
[-'::.:~.~
L
I
Angle
90
120
150
o
6O"C
L
I
8O'C
L
Delay
Angle
60
90
120
150
Delay
Angle
45
39
32
23
o
34
60
90
120
30
27
24
18
150
Current Rating
Voltage Ratings
39
34
28
21
30
27
24
23
16
37
32
27
19
33
30
24
18
27
25
21
24
20
19
19
19
15
15
97
85
68
15
47
19
18
16
15
81
75
140-220 Amps
100-1200 Volts
Type
Number
Mounting
27
'25
64
58
44
82
74
64
47
75
67
58
47
66
61
53
42
67
62
56
49
38
59
56
51
44
35
53
50
46
40
31.
40
37
32
26
29
26
25
22
18 ,
Pg. A33
Elec. Data
Pg. A33
Type
Number
, 99
64
84
69
48
48
105
99
99
93
81
67
,48
84
69
48
69
Floor
[
I
8O'C
L
I
8O'.c
L
Output Current (Avg. Amps.)
Output Current (Avg. Amps.)
60
90
120
84
81
72
63
63
60
51
48
46
30
Elec. Data
F-32
Pg. A33
I
E·g
o
60
90
120
150 '
Output Current (Avg. Amps,)
1000
400
250
':~.~1
378
402
364
362
330
282
207
334
322
294
252
204
294
207
150
Delay
Angle
90
87
75
66
48
Pg. A34·35
.
o
Delay
Angle
81
75
63
48
W-32
Maximum
Air
Velocity
"Ambien1
Temperature (LFM)"
Delay
Angle
99
84
69
48
Mech. Data
Type
Nurnber
Wall
I
99
84
69
48
2.32-420 Amps
100-1600 Volts
188-330 Amps
100-1600 Volts
flec. Data
99
177
165
149
127
95
139
165
156
120
93
o
134
122
60
123
116
90
112
103
120
96
150
75
89
70
163
144
129
113
89
140
132
120
106
82
108
102
94
81
65
275
260
236
208
148
250
240
218
192
148
224
217
196
174
137
196
190
175
156
124
147
141 129
'115
'96
114
107
105
99
97
84
66
78
62
77
71
67
68
-47,
208
195
182
161
125
186
178
164
144
115
165
159
146
129
105
'145
141
132
117
94
-103
: 96
91
80
68
90
338
327
297
258
204
306
296
268
231
186
246
242
222
192
150
222
218
198
174
141
150
291
282
264
225
180
1II.C.
[IIIf
222
206
177
144
238
207
168
236
230
210
183
150
180
170
158
138
111
198
194
176
156
126
171
168
159
138
111
123
117
108
93
78
272
264
"'
A21
3
cp AC Switch
F
Current Rating
Voltage Ratings
28-46 Amps
1oo-1000Volts
42-89 Amps
85-89 Amps
100-." OOOVolts
100-1200 Volts
Floor
Mounting
Wall
Maximum
Air
Velocity "
"Ambient
Fmperature (LFM)+
L
400C
I
I
I
80°C
L
o
Delay
Angle
90
120
150
180
o
Delay
Angle
Delay
Angle
. Output Current (RMS A,mps.)
150
400
250
40
38
34
36
43
40
38
32
49
44
41
45
43
40
34
50
50
47
45
42
36
250
74
80
86
89
89
40
28
30
31
33
35
22
25
26
27
30
81
85
89
89
89
68
72
78
85
89
61
66
70
77
85
25
27
28
29
31
23
25
26
27
29
21
23
24
26
28
16
17
19
21
22
61
64
70
76
83
50
54
59
84
72
45
48
53
38
40
41
42
33
35
37
, 38
180
43
o
29
31
32
33
33
Current Rating
Voltage Ratings
89
89
89
400
82
89
89
89
89
31
33
34
36
37
90
120
150
90
120
150
180
Output Current (RMS Amps.)
106-170 Amps
Type
Number
Mach. Data
Pg. A34-35
58
66
71
}7
84
89
57
63
69
78
33
36
39
43
50
40
43
41
52
60
23
25
27
30
36
54
147-260 Amps
100-1600 Volts
100-1200 Volts
Ellrc. Data
Pg. A33
Output Current (RMS Amps.)
·150
66
89
89
89
89
89
80
86
89
89
89
89
89
89
89
89
89
89
89
89
86
89
89
89
89
68
73
76
82
89
76
81
85
89
89
71
75
80
83
89
66
70
74
78
87
49
53
56
60
87
180-320 Amps
100-1600 Volts
Type
Mech, Data
Elee. Data
Type
Number
Pg. A34-35
Pg. A33
Number
Mech. Data
Pg. A34:35
Elec. Data
Pg. A33
Floor
Mounting
Wall
Maximum
.. Ambi~nt
Air
Velocity
Fmperat::la:LFM1~
L
4O C
O
I,
L
6OOC
I
80°C
A22
L
Angle
120
150
180
o
Delay
Angle
90,
120
160
180
o
Delay
Angle
90
120
150
180
Output Current (RMS Amps.)
1000
400
250
150
N.C.
157
147
134 .UJqJ_'
177
168
157
144
113
177 '
177
170
156
127
177
177
168
136
177~'"
177
177
177
177
155
inut
Output Current (RMS Amps.)
1000
400
250
160
N.C.
216
..JIII1II 240
196 J~.7
279
264
237
208
165
279
279
254
227 ' 160
279
279
273
198
250
279
279
279
279
228
136
146
155
168
177
128
137
145
159
174
120
128
136
150
184
108
.116
126
138
152
83
88
98
106
122
211
232
250
272
279
193
212
230
251
279
173
196
206
226
261
163
166
184
202
102
111
117
126
140
96
104
110
118
132
88
97
103
112
125
80
88
95
102
115
58
62
70
74
88
156
175
189
202
235
143160
171
187
218
128
142
155
169
197
Output Current (RMS Amps.)
1000
400
250
150
N.C.
260
320 I 297
227 t;,1Il"'
286
200
250
360
321
378
346
308
270
212
390' 375 337 302 235
, 390
ago
385
344
278
181
200
223
247
285
135
150
164
160
356
209
232
252
277
317
175
195
210
153
174
190
233
208
240
132
146
166
185
215
92
102
110
122
150
260
288
310
341
381
237
260
282
234
112
126
137
151
178
112
124
138
151
177
'78
86
95
103
125
191
218
233
256
290
309
267
2~6
Full Control Assemblies
Westinghouse GA33A49, 1cp AC Switch 34-49 Amps,
100-1200 Volts on 1 ~ x 4 x 3 heat sinks.
IV
Westinghouse G F33A49, 3cp AC Switch, 34-49 Amps,
100-1200 Volts on 1 ~ x 4 x 3 heat sinks.
II
Westinghouse GA36B16, 1cp AC Switch, 104-160
Amps, 100-1200 Volts on 4 x 4 x 5 heat sinks.
V
Westinghouse GF36B16, 3cp AC Switch 104-160 Amps,
100-1200 Volts on 4 x 4 x 5 heat sinks.
III
Westinghouse GA39B34, 1cp AC Switch 222-340
Amps, 100-1600 Volts on 5 x 5 x 6 heat sinks.
VI
Westinghouse GF39B34, 3cp AC Switch 222-340 Amps,
100-1600 Volts on 5 x 5 x 6 heat sinks.
A23
Full Control Assemblies,
This section describes the standard circuit configurations available for Full Control Assemblies (assemblies using SCR's
only). The chart below shows the schematics, waveform, recommended SCR voltage ratings, the basic current ratings available, and the page number where specific
rating information for eacH assembly can
be found.
On each page the assemblies far a given
circuit configuration are listed in order of
increasing current rating. The tabulated current ratin'gs for each assembly type number
are 'given as a function of ambient temperature, as a function of the conduction or
delay angle, and as a function of the air
velocity (linear feet per minute - LFM).
Tht;! conduction angle is defined as the
number of electrical degrees the SCR conducts current. The delay angle is defined as
the number of electrical degrees the gate
trigger pulse is delayed from the time the
anode voltage on the SCR starts positive.
Refer to the mechanical and electrical keys
specified for the assembly you have selected
to obtain assembly weight and dimensions
and other electrical data and recommendations.
Assembly Output
Waveform
Maximum
Voltage
Ed=Avg.
E.=RMS
Maximum
SCR
Voltage
Ed =.45 ERMS
1.4 ERMS
E. =.707 ERMS
(See: Single Phase Bridge "B" or Three Phase Bridge "E")
1.4 ERMS
1.4 ERMS
1.4 ERMS
A24
,
Description of Full Control Assemblies Pictured on the Right
VII. Westinghouse GB33A44. 11/> Bridge. 34-44 Amps. 100-1200 Volts on 1% x
VIII.
IX.
X.
XI.
heat sinks.
Westinghouse
heat sinks.
Westinghouse
heat sinks.
Westinghouse
heat sinks.
Westinghouse
heat sinks.
Recommended
SeR Repetitive
V.oltage Rating
2.8 ERMS
6.2 Ed
or
4 x 3
GB36B14. 11/> Bridge. 93-140 Amps. 100-1200 Volts on 4 x 4 x 5
GB39B31. 11/> Bridge. 196-310 Amps. 100-1600 Volts on 5 x 5 x 6
GE36B20. 31/> Bridge. 135-200 Amps. 100-1200 Volts on 4 x 4 x 5
GE39B44. 31/> Bridge. 285-440 Amps. 100-1600 Volts on 5 x 5 x 6
VII
~----------------------~
For Specific
Rating Info
See Page
A26
VIII
A27
2.8 ERMS
A28
IX
2.8 ERMS
or 3.1 Ed
A29
4.9 ERMS
or 2.1 Ed
A30
2.8 ERMS
A31
X
XI
A25
Single SCR
T
Current Rating
Voltage Ratings
Mounting
17-22 Amps
100-1200 Volts
36-40 Amps
100-1200 Volts
Type
Numb!!r
Type
Number
Mech. Data
Pg. A34-35
47-71 Amps
100-1200 Volts
Elec. Data
Pg. A33
Floor
Type
Number
,-----
Mech. Data
Pg. A34-35
Elec. Data
Pg. A33
Wall
Maximum
Air
..,Ambient
Velocity
Temperature (LFM).
I
4O'C
Conduction
Angle
60'C
L
I
80'C
1000
400
250
180
J2
21
19
18
120
19
18
17
16
16
15
14
14
13
13
12
11
30
8
8
8
8
. 180
19
17
16
15
13
40
40
39
37
28
57
54
51
48
37
120
16
15
14
13
12
33
33
33
33
26
52
49
46
43
33
Conduction
Angle
L
90
14
13
12
11
10
28
28
28
28
23
47
44
42
39
30
60
11
,9
9
8
22
22
22
22
20
41
39
,36
35
27
30
7
10
7'
7
6,
6
16'
16
16
16,
16
32
30
29
27
21
180
1.5
13
12
11
10
34
32
30
28
21
43
41
38
36
27
120
13
12
II
10
8
30
28
27
25
19
39
37
34
32
24
90
11
10
9
8
7
27
26
24
23
17
36
33
32
30
22
60
8
8
7
7
6
22
21
20
19
14
31
29
28
26
20
30
6
6
5
5
5
16
16
15
14
11
24
23
22
21
16
Current Rating
Voltage Ratings
77-120 Amps
100-1600 Volts
Type
Number
Mech. Data
Pg. A34-35
98-150 Amps
100-1600 Volts
Elec. Data
Pg. A33
Type
Number
Mech. Data
PII' A34-35
Elec. Data
Pg. A33
Floor
Wall
Maximum
Air
..,Ambient
Velocity
Temperature (LFMl.
Output Current (Avg. Amps.)
1000
400
250
150
NC
1000
400
250
150
I
',120'1
112
106
96
~ F'n::~
~
144
134
121 •
40'C
L
r-
60'C
L
r-
80'C
A26
L
Output Current (Avg. Amps.)
90
Conduction
Angle
Mounting
Output Current (Avg. Am,ps.)
150
60
L
I
Output Current (Avg. Amps.)
180
Conduction
Angle
..
Output Current (Avg. Amps.)
NC
120
105
103'
96
88
73
142
132
124
112,
92
90
89
89
89
81
67
124
119
113
102
85
60
71
71
71
71
59
99
99
97
90
74
30
50
50
50
50
47
70
70
70
70
60
180
98
91
85
78
60
124
115
108
97
76
Conduction 120
Angle
90
89
83
78
71
57
115
107
99
91
73
82
76
72
66
53
105
98
92
83
67
60
71
66
62
58
47
90
85
79
73
59
30
.,50
50
50
46
38
70
67
64
59
48
180
72
68
63
57
43
92
86
80
72
53
Conduction 120
Angle
90
67
62
58
52
41
86
79
74
68
53
62
58
55
50
39
80
74
68
62
48
60
54
50
47
44
35
69
64
60
55
43
30
42
40
38
35
28
55
54
49
45
36
Doubler
D
Current Rating
Voltage Ratings
Mounting
15-20 Amps
100-1200 Volts
34-36 Amps
45-68 Amps
100-1200 Volts
100-1200 Volts
Type
Number
Type
Number
Type
Number
Floor
Wall
Maximum
Air
+Ambient
Velocity
Temperature (LFM).
I
4O'C
L
I
60'C
L
I
80'C
L
Delay
Angle
Delay
Angle
1000
400
0
~,;:R"J
60
18
19
16
90
13
12
250
18
16
11
17
NC
Output Current (Avg. Amps.)
1000
llK4fu: {;.Thi
Output Current (Avg. Amps.)
400
250
150
N C.
1000
400
250
36
36
36
~;.It.'~.'
'~~.~~i
64
60
150
56
15
12
32
32
32
32
31
62
58
55
52
41
11
10
22
22
22
22
22
45
45
45
42
34
0
17
16
16
14
12
36
36
36
35
31
55
52
49
46
35
15
11
14
13
12
10
32
32
32
32
26
50
47
45
10
10
9
8
22
22
22
22
20
41
39
38
42
36
32
28
0
13
12
11
10
9
32
42
10
10
8
29
24
18
37
34
34
32
25
23
8
6
22
21
20
19
15
38
31
39
35
8
9
7
29
26
20
11
9
30
27
27
60
29
28
26
19
90
Current Rating
Voltage Ratings
75-114 Amps
Floor
95-150 Amps
100-1600 Volts
100-1600 Volts
Type
Number
Mounting
150
60
90
Delay
Angle
Output Current (Avg. Amps.)
,.----.,
Mech. Data
Pg. A34-35
Elec. Data
Pg. A33
Type
Number
Wall
Maximum
Air
+Ambient
Velocity
Temperature (LFM).
I
40'C
L
I
60'C
L
I
80'C
L
,,0\ \'
400
109
60
101
101
96
86
90
71
71
71
69
0
Delay
Angle
Delay
Angle
Delay
Angle
Output Current (Avg, Amps.)
1000
..
260
150
NC
101
92
1':;:'
~;.1:c
72
58
Output Current (Avg. Amps.)
1000
400
250
150
''''.':.\
138
129
118
r ..,;·
137
98
128
98
120
108
90
88
74
98
NC
0
94
87
81
74
68
120
112
104
95
79
60
88
82
70
55
113
105
97
88
69
90
69
65
77
63
57
46
90
86
80
74
59
0
60
70
66
65
60
57
65
52
41
90
84
78
62
40
78
~o
70
64
48
90
53
50
47
43
34
83
69
64
60
64
43
53
A27
1
q, AC Switch
A
Current Rating
Voltage Ratings
34-49 Amps
100-1200 Volts
Type
Mach. Data
Pg. A34-35
Number
Mounting
80-89 Amps
100-1200 Volts
Elec. Data
Pg. A33
~
Air
Velocity
Output Current (RMS Amps.)
t-:":~:::
L
Elec. Data
Pg. A33
1000
400
250
150
E6
W22
Output Current (RMS Amps.)
Output Current (RMS Amps.)
42
39
47
44
41
90
50
48
45
42
60
50
49
46
44
30
50
50
48
46
180
40
37
35
32
28
89
89
88
83
64
129
121
114
107
80
Conduction 120
Angle
90
42
38
36
34
29
89
89
89
89
68
140
132
124
115
88
43
40
37
35
31
89
89
89
89
72
148
140
132
124
96
60
44
41
39
37
32
89
89
89
89
76
160
153
144
136
105
40
38
34
89
89
89
89
86
178
168
160
150
118
Angle
L
30
45
42
180
31
28
26
25
21
76
71
67
64
47
97
91
86
80
67
Conduction 120
Ang}e
:
33
30
28
27
22
81
76
70
66
49
107
100
94
86
62
30
Current Rating
Voltage Ratings
33
31
29
27
24
85
80
76
72
63
112
106
100
93
68
34
32
30
29
25
88
84
80
76
58
121
115
108
103
75
35
33
31
30
26
89
89
86
81
62
133
127
121
115
86
174-223 Amps
100-1600 Volts
Type
Mech. Data
Pg. A34-35
Number
Mounting
222-340 Amps
100-1600 Volts
Elec. Data
Pg. A33
Type
Number
Floor
Wall
Maximum
Air
.Ambient
Velocity
Temperature (LFM)+
r
l.c
L
r
~o.c
L
A28
Number
44
r
Jo.c
r
Jo.c
Type
50
L
r
Jo.c
Mech. Data
Pg. A34-35
Number
~
F20-li
~---
Floor
Wall
Maximum
.Ambient
Type
104-160 Amps
100-1200 Volts
L
Output Current (RMS Amps.)
-
Output Current (RMS Amps.)
400
250
320
300
377
350
328
298
390
378
355
323
265
390
390
382
355
290
390
390
390
390
333
175
1000
180
Conduction 120
Angle
90
60
30
180
160
N.C.
272 _
244
280
260
245
220
Conduction 120
Angle
90
223
222
208
190
150
305
285
267
242
190
223
223
223
207
164
327
305
287
263
206
60
223
223
223
223
182
355
330
314
292
230
30
223
223
223
223
211
390
376
357
330
267
160
149
139
126
95
208
192
160
162
125
178
165
155
141
106
228
200
180
135
192
179
168
154
118
247
210
'230
215
197
147
208
196
185
170
152
275
267
247
230
172
223
223
212
186
154
306
286
270
250
195
180
Conduction 120
Angle
90
60
30
I
1. Bridge
B
Current Rating
Voltage Ratings
34-44 Amps
100-1200 Volts
Type
Number
Mounting
73-80 Amps
100-1200 Volts
Meeh. Data
Elee. Data
Pg. A34-35
Pg. A33
Type
Number
Mech. Data
93-140 Amps
100-1200 Volts
Pg. A34-35
Else. Data
Pg. A33
Type
Number
Mech. Data
Elee. Data
Pg. A34-35
Pg. A33
Floor
Wall
Maximum
Air
+Ambient
Velocity
Temperature (LFM)+
I
4O"C
L
I
60°C
L
rL
60°C
O~tPut
Current (Avg. Amps.)
180
Conduction 120
Angle
90
60
30
180
Conduction 120
Angle
90
60
30
180
Conduction 120
Angle
90
60
30
Current Rating
Voltage Ratings
37
32
27
22
15
34
30
25
20
14
32
28
24
19
14
30
26
22
18
13
29
26
21
26
23
20
16
12
24
22
18
15
22
20
17
14
II
II
17
12
Mounting
Floor
Maximum
Air
+Ambient
Velocity
Tempereture (LFM)+
I
,L
4O"C
60°C
L
"
8O"C
L
13
80
66
67
45
32
80
66
57
45
32
79
66
57
45
32
74
66
57
45
32
57
62
47
40
32
114
104
94
82
63
108
98
88
78
60
102
92
83
72
51
95
86
78
69
54
74
66
60
54
42
19
17
16
13
10
68
60
54
45
32
64
57
51
43
32
60
54
48
41
30
56
51
46
39
29
42
38
35
29
23
86
18
81
13
66
58
45
16
68
63
55
43
72
64
59
62
41
54
48
43
40
31
26
23
20
17
154-240 Amps
100-1600 Volts
Type
Number
Mech. Data
Output Current (Avg. Amps.)
1000
400
250
150
N.C.
80
80 J!II!I
~ 80
66
66
66
66
65
57
57
57
57
57
45
45
45
45
45
32
32
32
32
32
11
62
48
196-310 Amps
100-1600 Volts
Elee. Data
Type
Pg. A34-35 Pg. A33
Number
"10-B-3-9-B-24--:_ _
IOB39B31
Output Current (Avg. Amps.)
--'
Mech. Data
Elee. Data
Pg. A34-35
Pg A33
Output Current (Avg. Amps.)
180
Conduction 120
. 90
Angle
60
30
60
30
196
178
163
142
99
182
166
162
132
99
170
156
144
124
99
156
142
131
116
92
120
114
106
94
76
248'
230
210
180
140
230
214
196
169
134
216
198
184
168
127
194
182
166
146
118
152
146
134
118
96
180
120
Conduction
90
Ang'e
60
30
144
133
123
107
84
136
124
116
100
80
126
116
109
94
76
114
104
99
87
70
86
82
78
69
66
184
172
160
137
110
172
158
148
128
103
160
148
136
120
97
144
135
124
110
90
106
105
96
86
180
Conduction 120
Angle
90
·"
A29
,·il
••
'----'-"---=--~.
-----~
----.-.-,-~---.-
~
3
cp
Bridge
E
Current Rating
Voltage Ratings
Mech. Data
Pg. A34-35
Type
Number
Mounting'"
103-110 Amps
100-1200 Volts
45-60 Amps
100-1200 Volts
Elee. Data
Pg. A33
Type
Number
Mech. Data
Pg. A34-35
1,35-200 Amps
100-1200 Volts
Elec. Data
Pg. A33
Type
Number
Mech. Data
Pg. A34-35
Elec. Data
Pg.A33
Floor
W~II
Maximum
Air
Velocity
"Ambient
Temperature (LFM).
I
L
I
60'C
L
4O'C
I
80'C
L
Delay
Angle
Delay
Angle
250
150
400
250
150
N.C.
1000
400
250
150
10
57
54
51
110
110
110
,03 '•
.2IItt:::
192
180
168
60
54
49
46
44
37
96
96
96
96
94
186
174
166
156
123
90
38
37
34
33
30
66
66
66
66
66
135
135
135
126
102
105
0
52
48
45
42
36
109
109
109
105
82
165
156
147
138
60
45
41
39
37
31
96
96
96
96
75
150
141
135
126
96
90
34
31
30
28
25
66
66
66
66
60
123
117
109
103
79
0
40
36
33
31
27
97
91
87
81
60
126
117
111
102
79
60
34
31
30
28
24
87
82
78
73
54
114
106
102
96
69
90
26
24
23
22
19
66
64
61
57
45
93
88
84
78
57
I
60'C
L
I
80'C
L
A30
Delay
Angle
Delay
Angle
Delay
Angle
225-340 Amps
100-1600 Volts
285-440 Amps
100-1600 Volts
Type
Number
Type
Number
Mech. Data
Pg. A34-35
Elec. Data
Pg. A33
Floor
Maximum
Air
Velocity
"Ambient
Temperature (LFM).
I
4O'C
L
Output Current (Avg. Amps.)
400
Current Rating
Voltage Ratings
Mounting
Output Current (Avg. Amps.)
1000
0
Delay
Angle
OutPllt Current (Avg. Amps.)
Output Current (Avg. Amps.)
1000
400
250
150
N C.
3401
321
303
276
lti!!
60
303
303
288
258
216
90
213
213
213
207
174
o
Output Current (Avg. Amps.) ,
1000
400
250
150
N C
414
388
f'Y• .
411
384
360
354
324
294
294
294
270
-.1
264
222
o
282
261
243
222
174
360
336
312
285
222
60
264
246
231
210
165
336
315
291
264
207
90
207
196
186
171
138
270
255
240
222
179
159
...
o
210
195
180
165
123
270
252
234
210
60
198
186
171
156
120
249
234
210
192
144
90
159
150
141
129
102
207
192
180
168
129
3
q, AC
Switch
F
Current Rating
Voltage Ratings
34-49 Amps
100-1200 Volts
Type
Number
,-----
Floor
Mounting
104-160 Amps
100-1200 Volts
80-88 Amps
100-1200 Volts
Mech. Data
Pg. A34-35
Elec. Data
Pg. A33
Type
Mech. Data
Pg. A34-35
Number
Elec. Data
Pg. A33
Type
Number
Wall
Maximum
"Ambient
Temperature
I
40'C
L
I
60'C
L
I
80'C
L
Air
Velocity
(lFM)+
Delay
Angle
Delay
Angle
Delay
Angle
1000
400
250
150
N C
1000
400
250
150
0
["~'l
44
42
39
!ii:M"
~}J8f'1
88
88
88
90
49
46
43
41
36
88
88
88
88
..
120
49
48
46
43
39
88
88
88
88
40'C
L
I
60'C
L
I
80'C
L
Delay
Angle
1000
400
250
150
N C.
:::fM:]
149
140
132
F~
87
172
162
153
143
114
88
177
177
176
165
133
80
40
37
35
32
28
88
88
88
84
64
128
120
114
106
38
36
34
30
88
88
88
88
70
140
132
124
116
90
120
43
40
38
36
32
88
88
88
88
78
160
153
142
135
104
0
31
28
26
25
21
76
72
67
64
48
98
91
86
81
58
90
33
30
29
27
23
81
76
72
68
51
106
100
94
88
65
120
34
32
30
28
25
88
84
80
76
58
122
116
110
103
76
174-270 Amps
100-1600 Volts
222-340 Amps
100-1600 Volts
Type
Type
Number
Number
Mech. Data
Pg. A34-35
Elec. Data
Pg. A33
Floor
Output Current (RMS Amps.)
1000
400
250
150
~J
251
235
215
90
285
280
260
240
120
285
285
285
280
f;._'
N.C.
Output Current (R MS Amps.)
, W'"J
1000
400
250
150
320
298
271~i'
N.C.
198
379
350
330
303
248
235
390
390
383
352
293
173
0
217
203
189
172
135
278
258
240
218
90
242
227
212
195
157
310
285
268
247
193
279
288
250
230
187
353
333
313
288
232
123
120
Delay
Angle
I
Output Current (RMS Amps.)
42
0
Delay
Angle
..
N C
0
Maximum
Air
Velocity
"Ambient
Temperature (lFM)+
I
Output Current (RMS Amps.)
90
Current Rating
Voltage Ratings
Mounting
Output Current (RMS Amps.)
--
0
160
150
139
126
95
208
192
180
162
90
182
170
160
147
112
238
217
202
186
138
120
212
200
190
172
136
272
253
238
220
170
A31
Electrical Data
Tables I and II provide General Recommendations for Transient Voltage Protection.
Tables III and IV must be, used in conjunction with the electrical key specified
with each of the assembly type numbers.
These tables cover non-repetitive surge
ratings, 12t ratings, general fuse recommendations, recommended gate drive requirements, and recommended RC dv/dt net-
works for the devices used in the Gold
Line Assemblies.
Circuit conditions and economics will dictate which protective devices, if any, are
necessary for reliable operation.
Table I General Recommendations for Voltrap1ll Transient Voltage Suppression for Gold-Line Assemblies _
This table can be used as a general guide
can obtain the size of the Voltrap® required,
the selection and application of Westingwith any Gold Line Assembly. Knowing the
The Voltraps® should be connected across
house Voltraps@, send for T.D. 16-435, pp.
Assembly Input Power Transformer KVA
each device with the shortest lead lengths
1-14 - Westinghouse Electric ,Co., General
and the Secondary Line to Line Voltage, one
practical. For more information regarding
Control Division, Buffalo, N. Y. 14240.
24
60
120
240
480
S03
S04
S05
S05
S06
S01
S02
S03
S04
S04
S05
S01
S01
S02
S03
503
S04
S05
S01
S01
S01
S01
S02
S03
S04
S05
S01
S01
S01
S01
501
S01
S03,
S04
S05
Table II General Recommendations for RC Transient Voltage Suppression Across
for Gold-Line Assemblies
This table can be used as a general guide
work with the shortest lead lengths possible
with any'Gold Line Assembly. R-C networks
should be connected across the DC Output
are generally used when Voltraps@ are not
Terminals of the Rectifier Assembly.
considered economical. Only carbon or non-'
R = Resistor (ohms)
inductive wound power resistors and exP = Power Rating of Resistor (watts)
tended foil or computer grade electrolytic
C = Capacitor (microfarads)
caoal;It(,,',S should be used. The R-C netV = Voltage Rating of Capacitor (volts)
the DC Output Terminals
General recommendations assume that the
transformer and line inductance are lesS'
than R2C/4.
~~~~~~~========~
A32
Table III Electrical Data and General Fuse Recommendations for Rectifier Gold-Line Assemblies
This chart lists the non-repetitive 1-3-5-10 Amp-Trap '''. Equivalent fuse types are avail3. English Electric Co., Limited
cycle'surge current ratings and I2t ratings
able from several companies. A partial listing
Fusegear Division
for the rectifiers used in the Gold Line
of these companies include:
Liverpool, England
Assemblies. In addition, general fuse recom1. Bussmann Mfg. Div.
mendations are presented, Fuses must be
McGraw Edison Co.
mounted in series with each device. The
St. Louis, Missouri 63107
numbers listed in the table are Chase2. The Carbone Corporation
Shawmut (Newburyport, Mass,) Form 101
Boonton, New Jersey 07005
12t
(Amp2-Sec)
5
500
Line
Voltage
Fuse
10
155
130
260
120
240
480
A13 x 30
180
365
310
245
1000
120
240
480
A13 x 50
04.25 x 50
04.60 x 30
2150
1800
37,200
120
240
480
A13x250'
2400
.A&o x 101':
120
240
480
'A13 x 400
A2S.x 40()
. A601(
4500
4100
3500
125,000
AZ5 x30
ASOx30,
~26x300
Table IV Electrical Data and General Gate Drive, Fuse, and RC dv/dt Network Recommendations for Half and
Full Control Gold Line Assemblies
This table lists the non-repetitive 1-3-5-10
Norwalk, Conn. 06852). Vectrol, Inc, (Rockonly extended foil AC voltage rated capacicycle, surge current ratings, I2t ratings and
ville, Md.) and others. For additional infor- tors should be used.
general fuse recommendations for Half Conmation on selecting gate triggering requireR = Resistor (ohms)
trol and Full Control Gold Line Assemblies.
ments and designing gate drive circuitry
P = Power Rating of Resistor (watts)
refer to the Westinghouse SCR Gate Turn on
The fuse types shown' are Chase-Shawmut
C=Capacitor (microfarads)
Form 101 AmpoTrap®. Their address and
Characteristics.
V=Voltage Rating of Capacitor (volts)
the addresses of other fuse manufacturers
are listed under Table III. The fuses must be
Also, listed in this table are RC dv/dt netmounted in series with each device.
works for dv/dt suppression. These RC
In addition this chart lists the general gate
dv/dt networks must be placed with short
requirements for the SCR's used in these 'lead lengths across each device (rectifiers
and SCR's) in the assembly, Only carbon or
assemblies. Commercial gate firing packages
non-inductive wound power resistors and
are available from Firing Circuits, Inc.
12 t
(Amp2-sec)
100 rna
3.0 Volts
350 rna
100 rna
3.0 Volts
350 rna
150 rna
3.0 Volts
500 rna
90
800
6,000
120
240
480
1w .25
2w .25
5w .25
300
600
1000
i 1150 11080
10,700
I
I
I
I 2400 1 2200 : 2000
120
240
480
1w .25
2w .25
5w .25
300
600
1000
45,000
120
240
480
100,000
120
240
480
950
870
I
I
I
1
1
150 rna
3.0 Volts
1600 : 1250
I
500 rna
300
600
1000
90
1200
3300
Line
Volt-
I
5000 1 3600
:
I
I 3350 I 3100
.5
.5
.5
300
600
1000
300
600
1000
A33
.;.
Mechanical Data
Tables V, VI and VII list the length, width and
height, drill plan, mounting hole dimensions
ahd approximate weight for each assembly.
These tables are divided into "floor-type"
mounting, "wall-type mounting", and "floor
and wall type mounting", and must be used
in conjunction with the mechanical key
specified with each of the assembly type
numbers.
Color coding for terminal identification is in
accordance with NEMA standards.
Color Code: Yellow - A.C. terminals (input)
Red
- Positive terminal
(output)
Black - Negative terminal
(output)
The material for Westinghouse Gold Line
heat sinks is aluminum with gold chromate
finish. Mounting feet and other mechanical
support materials are of flame retardant,
non-tracking, NEMA Class B (130·C continuous operation) insulation.
Table V
n
A34
Assembly
Weight (Lbs.)
Length
L
.8
1.6
1.6
2.4
2.4
3.4
.7
.8
1.2
1.4
2.0
2.2
2.4
2.8
2.8
3.3
3.3
3.6
2.7
5.6
5.6
5.9
8.2
8.2
10.8
16.2
4.8
5.0
9.6
10.0
14.4
15.1
4.4
4.6
8.0
9.0
9.0
10.2
10.2
13.5
15.5
15.8
23.4
23.6
4.125
8.750
8.750
13.375
8.750
13.375
4.125
4.125
4.125
4.125
8.750
8.750
8.750
8.750
8.750
8.750
8.750
13.375
4.125
8.750
8.750
8.750
13.375
13.375
9.250
13.875
4.125
4.125
8.750
8.750
13.375
1
5.125
5.125
10.750
10.750
10.750
10.750
10.750
16.375
10.750
11.250
16.375
16.815
D
3.875
3.875
3.875
3.875
6.125
6.125
3.875
3.875
4.375
3.875
3.875
3.875
4.625
3.875
4.125
4.125
4.125
4.625
6.625
6.625
6.625
6.625
6.625
6.625
11.625
11.625
6.625
7.375
6:625
7.250
6.625
7
7.875
7.625
7.625
7.625
7.625
7.625
7.625
7.625
12.625
14.000
12.625
14.000
3.875
3.875
4.125
3.875
4.375
4.375
3.875
5.750
5.875
5.750
5.875
6.062
5.875
5.750
5.750
5.750
6.062
5.875
5.750
6.250
5.750
6.062
5.750
6.062
6.250
9.562
9.562.
9.562
9.562
9.562
9.562
6.750
6.750
7.125
7.250
6.750
6.750
7.125
6.750
6.750
7.250
6.750
7.250·
3.00
7.62
7.62
12.25
7.62
12.25
3.00
3.00
3.00
3.00
7.62
7.62
7.62
7.62.
7.62
7.62
7.62
12.25
3.00
7.62
7.62
7.62
12.25
12.25
7.62
12.25
3.00
3.00
1.62' .
E
Hole
Diameter
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
7.~2
2.75
2.75
2.75
2.75
4.94
4.94
2.75
2.75
2.75
2.75
2.75
2.75
2.15
2.75
2.75
2.75
2.75
2.15
5.50
5,50
5.50
5.50
5.50
5.50
10.50
1
5.50
5.50
5.50
5.50
12.25
1
4.00
4.00
9.62
9.62
9.62
9.62
9.62
15.25
9.62
9.62
15.25
15.25
6.50
6.50
6.50
6.50
6.50
6.50
6.50
6.50
11.50
12.50
11.50
12.50
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
Table VI
Length
L
.8
1.6
1.6
1.6
2.4
2.4
2.4
3.4
.7
.8
1.2
1.4
2.0
2.2
2.4
2.8
2.8
3.3
3.3
3.6
2.7
5.6
5.6
5.9
8.2
8.2
4.8
5.0
9.6
10.0
14.4
15.1
4.4
4.6
8.0
9.0
9.0
10.2
10.2
13.5
5.062
10.000
10.000
10.000
14.625
14.625
10.000
14.625
5.062
5.062
5.062
5.062
10.000
10.000
10.000
10.000
10.000
10.000
10.000
14.625
5.375
10.000
10.000
10.000
14.620
14.620
5.375
5.375
10.000
10.000
14.625
14.625
6.375
6.375
12.000
12.000
12.000
12.000
12.000
17.625
Dimensions in Inches
Height
Width
H
W
3.500
3.750
3.000
3.000
3.750
3.000
5.750
5.750
3.380
3.380
4.500
4.500
3.250
3.000
4.250
3.250
4.000
4.000
4.000
4.250
6.125
6.125
5.880
5.880
5.880
5.880
6.125
7.000
6.125
7.000
6.125
7.000
7.625
6.750
6.7,50
7.625
6.750
6.750
6.750
6.750
3.062
4.688
3.125
4.688
4.688
4.688
4.688
4.688
3.380
5.062
5.062
5.062
5.125
5.626
5.125
5.125
5.125
5.125
5.625
5.125
5.062
5.125
5.125
5.625
5.125
5.625
9.125
9.125
9.125
9.125
9.125
9.125
6.062
6.062
6.625
6.125
6.125
6.125
6.625
6.125
Drill Plan
0
E
4.69
9.25
9.25
9.25
13.88
13.88
9.25
13.88
4.69
4.69
4.69
4.69
9.25
9.25
9.25
9.25
9.25
9.25
9.25
13.88
4.62
9.25
9.25
9.25
13.88
13.88
4.62
4.62
9.25
9.25
13.88
13.88
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
3.75
5.62
5.62
11.25
11.25
11.25
11.25
11.25
6.50
Mounting
Hole
Diameter
.28 slots
.34
.34
.34
.34
.34
.34
.34
.28 slots
.28 slots
.28 slots
.28 slots
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
.34
Table VII
Approximate
Assembly
Weight (Ibs.)
Length
Dimensions in Inches
Width
Drill Plan
Height
L
W
H
0
.2
.3
.4
.5
.7
.6
3.125
3.560
4.000
4.438
5.750
3.500
3.062
3.062
3.062
3.062
3.062
5.062
4.500
4.500
4.500
4.500
4.500
6.500
2.25
2.69
3.12
3.56
4.88
2.62
.7
4.060
5.062
6.500
3.19
.8
4.625
5.062
6.500
3.75
1.0
5.188
5.062
6.500
4.31
1.5
6.875
5.062
6.500
6.00
E
1.00
1.00
1.00
1.00
1.00
2.50
and 1.00
2.50
and 1.00
2.50
and 1.00
2.50
and 1.00
2.50
and 1.00
Mounting
Hole
Slots
.22 x .47
.22 x .47
.22 x .47
.22 x .47
.22 x .47
.28 x .56
.22 x .47
.28 x .56
.22 x .47
.28 x :56
.22 x .47
.28 x .56
.22 x .47
.28 x .56
.22 x .47
A35
Thermal Data
Forced Air Cooling
The rating charts presented in this brochure
cover natural convection and four forced
air conditions: 150. 250. 400. and 1000
linear feet per minute (LFM). The air velocity
is measured in LFM as it approaches the
sink. From the rating charts. it can be seen
that the current ratings of a given assembly
can be increased considerably by using
forced air. All air flow velocity measurements are per JEDEC RS-282. SEC 7-13.
The following is a partial listing of Manufacturers of blowers and fans:
1. W. W. Grainger. Inc.
3812 Penn Ave.
Pittsburgh. Pennsylvania 15201
2. Rotron. Inc.
Woodstock. New York 12498
3. Rotating Components
1560 5th Ave.
Bay Shore. New York 11706
4. Pamotor. Inc.
770 Airport Blvd.
Burlingame. California
5. IMC Magnetics Corporation
Eastern Division
507 Main Street
Westbury. New York
Oil Cooling
Current ratings for assemblies which are
immersed in natural convected oil are
approximately equivalent to the 1000 LFM
air flow ratings listed in this catalog.
A36
INTRODUCTION
Q.de.;",lnfonn,,;o"
J
Voltage Code
Available Circuits
Parallel Circuits
Series Circuits
Liquid Cooled RIC Tabs
Kits and Sinks
Air Cooled Assembly Modules.
ASSEMBLY RATINGS
Rectifier
Single Rectifier
Series Rectifier
1(6 Bridge
3(6 Bridge
3(6 WYE
6(6 Star
*
Half Control
1(6 Bridge
3(6 Bridge
Full Control
Single SCR
Series SCR
10 Bridge
3(6 Bridge
AC Switch. 1 f/J
JEDEC. Manifold AC Switch
*
New High Current Air Cooled Module.
SUPPORTING DATA
Electrical Data
Mechanical Data
Kits and Sinks
Thermal Data
Air Cooled
Assembly
Page
Liquid Cooled
Assembly
Page
A38
A38
A39
A39
A39
A40
A41
A40
A4S
A48
A4S
A46
A47
A46
A42
A42
A49
A49
A43
A43
A43
A44
A44
ASO
A48
ASO
AS1
AS1
AS2
AS6
AS9. A64
A6S. A66
A68
AS6
AS7. AS8. A60-A63
A66
A67
*Also see Page A38. Series Circuit.
Liquid Cooled Assembly Modules.
A37
New High Current Water Cooled Module.
..
-~-
......- - - - -
. . --~
Liquid Cooled Manifold AC·Switch .
Ordering Information All assemblies
in this section are keyed to a standard
twelve digit part number which describes the assembly frame, heat sink,
and device type. Simply insert the two
digit voltage code for the desired
assembly voltage rating.
more devices, to obtain higher voltage
ratings than available in a single device.
This type of circuit 'generally requires
special ORR matching and other test
matching to assure proper voltage
sharing across each device in the
application.
Voltage Code Make sure the desired
assembly voltage rating does I)ot exc;:eed the Maximum Voltage Available
for the assembly under consideration.
Then, using Table I, select the appropriate two digit voltage code. Inserting
this two digit voltage code into the 9th
and 10th positions of the assembly part
number completes the required ordering information for all standard designs.
Standard air cooled assembly modules
are only available for two devices in
series. To order, simply specify PS
frame connection. For current ratings,
refer to the appropriate PR on PT circuit
frame data; for assembly outline drawings, refer to the PO frame mechanical
data.
Available Circuits Table II lists the
standard circuits available from Westinghouse. A complete index by circuit type
is given on page A37. The shaded areas
of Table II denote circuits with ratings
published in this section. PC (positive
center tap - common cathode connection) is available; use the corresponding
single phase bridge data for the appropriate current rating. Likewise, the PN
(negative centertap - common anode
connection) is available; use the corresponding single phase bridge data for the
appropriate current rating. Series and
parallel circuits are also available.
Parallel Circuits This type of circuit is
usually specified when paralleling ·two
or more devices to obtain higher current
ratings than available in a single device.
Two common techniques for paralleling
devices are direct and forced sharing;
both techniques usually require specially factory matched test selection to
assure proper device performance in
the application. The standard Westinghouse PP circuit is provided with
common anode connection; common
cathode parallel circuit connections can
be provided on request.
Series Circuit This type of circuit is
usually specified when seriesing two or
A38
Liquid cooled assembly ratings for two
and three devices in series are presented in this section along with their
outline drawings. For applications requiring four or more devices in series,
consult Westinghouse for a custom
module.
Liquid Cooled R/C Tabs Tab type,
.250 push-on terminals are an option
available on Westinghouse liquid cooled
heat sinks. This option makes the
connection of resistors, capacitors,and/
or voltage protection devices directly
across the semiconductor device an easy
task. To order this feature, add suffix
"RC" to the standard twelve digit type
number- i.e. PDW6T6201230RC.
Kits and Sinks Standard air and liquid
cooled disc assembly kits are available
to the user who needs design flexibi1ity
on small quantity custom designs that
might require non-standard factory
configurations. Air cooled heat sink
extrusions, designed by Westinghouse
to optimize the cooling of large area
power semiconductors. are available in
mill lengths or cut-to-order lengths. See
pages A65 and A66 for more information on Westinghouse kits and sinks.
............
FRAME AND
SINK TYPE
I
DEVICE
TYPE
VOLTAGE
CODE
DEVICE
CURRENT
'
«ti',4'lfIJIJIIDDDemmm
TABLE I
Voltage Code
AssemblY Device
Voltage
Rating
Voltage
100
200
400
600
800
01
02
1000
10
12
14
16
18
20
22
24
26
28
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
4000
04
06
08
30
40
TABLE II
STANDARD AVAILABLE CIRCUITS
Circuit
Schematic
Configuration
n
Voltage
1
Code
,
PRA8R820 30
377
401
368
391
338
30
355
378
342
363
314
341
30
313
333
297
316
276
300
PRA6R820 40
414
448
396
431'
379
411
40
387
419
367
399
347
376
PRA6R820 50
444
482
424
459
403
436
PRA7R720 06
484
537
464
518
444
494
06
448
497
429
479
405
451
06
389
431
362
404
335
373
PRA7R720 09
564
623
536
592
512
567
09
521
576
494
546
465
515
12
755
842
721
802
682
762
Rectifier
R
ONE
ASSEMBLY
PRA7R720
PRA9R920 11
1033 1183
990 1150
947 1110
11
970 1128
930 1080
878 1030
REQUIREO
PRA9R920
11
860 1000
16
1104 1280
945 1010
875
1025 1192
1020 1135 1220
920 1090
1340 1608
1277 1537 1635
1222 1440
PRA9R9GO 13
1087 1305
1040 1230
995 1170
13
1020 1200
970 1140
915 1085
845
990
780
930
PRA9R9GO 1B
1100 1308
1B
1020 1216
965 1150
PRA9R9GO 22
1371 1658
1297 1570
1048 1248
PDA8R820 30
754
802
736
782
676
736
30
710
756
684
726
628
682
30
626
666
594
632
55'2
600
PDA8R820 40
828
896
792
862
758
822
40
774
838
734
798
694
752
PDA6R820 60
888
964
848
918
806
872
968 1074
928 1036
888
988
06
896
994
858
958
810
902
06
778
862
724
808
670
746
PDA7R720 09
1128 1246
1072 1184
1024 1134
09
988 1092
930 1030
PDA7R720 -12
1441 1604
1364 1524
PDA9R920 11
1980 2300
1894 2220
11
1860 2160
1756 2060
11
1620 1890
1490 1750
PDA9R920 16
2110 2450
2000 2150
ASSEMBLIES
REQUIRED
745
1000 1075
16
PDA7R720 06
TWO
810
1055 1225 1300
PRA9R920 20
13
1 </> Bridge
321
368
16
2040 2270
1840 2180
PDA9R920 20
2554 3074
2444 2880
PDA9R9GO 13
2080 2460
1990 2340
13
1940 2280
1830 2170
13
1690 1980
1560 1860
PDA9R9GO 18
2200 2616
2096 2496
18
2040 2432
1930 2300
PDA9R9GO 22
2742 3316
2594 3140
A39
Schematic
This Number)
Configura~
Voltage '-
tion
Code
3~
Bridge
THliEE
ASSEMBLIES
REQUIRED
6~
Star
,
PDA6R620 •• 30
1032 '097
30
959 '0'9
887
955
30
834
779
839 85'
PDA6R620•• 40
'207
40
'033 '1'8
976 1058
1137 '23'
1067 '156
PDA6R 620••50
'252 '360
"94 '295
PDA7R720 ••06
'38' '5'5
'32' '462
1259 1401.
06
'274 '402
'222 '352
'154 1284
06
1106 '2'7
'03' "4'
954 1061
PD"'7R720••09
'596 1766
'5'9 '676
'456 1604
09
'475 '632
'400 '545
1324 1458
PDA7R720 • .12
240'
2038 2282
1933 2'63
-1-------11--PDA9R920 •.11
2790 3234
2676 3105
11
2475 3000
2496 2880
11
2259 2625
2085 2460
PDA9R920 ••16
2925 3396
2772 3270
16
2688 3'74
2520 2985
PDA9R920•. 20
3645 4290
3495 4'34
IPI)A5IR9GO. _13
3360
2700 32'6
13
2655 3'35
2505 2970
13
2265 2700
2115 2520
PDA9R9GO-.18
3060 3627
2910 3450
18
2838 3366
2685 3189
PDA9R9GO••22
3825 4590
3636 4350
PRA6R620• ..30
'553 '636
1500 1579
30
'45' 1528
1392 1464
30
'265 '332
1206 1269
PRA6R620 ••40
'723 1850
1648 1769
40
'609 '727
1529 1641
PRA6R620._50
'884 2027
1793 1939
2045 2249
1957 2144
PRA7R720• ..o6
06
2002 2'99
'906 2096
1810 1983
06
'759 '932
1653 1818
1547 1695
2288 2518
PRA7T720 ••09
25'9 2760
2403 2651
SIX
09
2356 2582
2235 2466
2115 2327
ASSEM8LIES
12
383'
3332 3687
3183 3514
PRA9R920••11
4302 5010
4080 4788
11
3978 4650
3780 4422
'1
3480 4050
3210 3768
PRA9R920.36
4500 5682
4320 5000
REQUIRED
A40
886
954 1028
16
4170 4968
3960 4650
PRA9R920•• 20
5870 6888
5520 6480
PRA9R9GO• .13
44'0 5250
4200 4980
13
4050 4860
3840 4590
13
3468 4'70
3180 3870
PRA9R9GO• .1 8
48'8 5700
4566 5448
18
4470 53'6
4200 5040
PRA9R9GO••22
6210 7398
5916 7038
Schematic
Configura·
tion
mJn
3
WV·
Transformer)
SIX
ASSEMBLIES
REQUIRED
Voltage
Code
•
PRA6R620 30
2064 2194
1908 2056 2084
30
1918 2038
1774 1910 1936
30
1754 1868
1668 1772
1558 1678 1702
PRA6R620 40
2232 2414
2134 2312 2360
40
2066 2236
1952 2116 2180
PRA6R620 50
2388 2590
2274 2462 2510
PRA7R720 06
2762
2642 2924
2518 2602 2864
08
2548
2444 2704
2306 2568 2628
06
2212
2082 2282
1908 2122 2172
PRA7R720 09
3192
3038 3352
2912 3208 3284
09
2800 3090
2648 2916 2986
PRA7R720 12
4564
3866 4326 4448
PRA9R920 II
5580 8510
5362 6210 6600
11
4960 6000
4992 5760 6120
11
4518 6250
4170 4920 5250
PRA9R920 16
6850 6792
5544 6640 6990'
16
6376 6348
6040 6970 6400
PRA9R920 20
7290 8680
6990 8268 8730
PRA9R9GO 13
5670 6720
5400 6432 6840
13
5310 6270 6660
6010 5940 6330
13
5400
4230 6040 6370
PRA9R9GO 18
6120 7254
6820 6900 7360
18
5676 6732
6370 6378 6768
7660
7272 8700 9294
PRA9R9GO 22
A41
Schematic
Configuration,
This Number}
Voltage
Code
•
PDA6T6R6
R4
1 t/J Bridge
PDA6T6R6
rPDA7T7R7
PDA9T9R9
TWO
REQUIRED
PDA9T9R9
PDA6T6R6
~
3 ¢ Bridge
334
356
304
334
278
306
383
418
349
381
315
343
30
433
474
395
431
356
388
25
408
441
378
412
350
382
34
462
500
430
468
398
434
40
606
650
558
614
528
564
411
456
36
504
560
459
508
45
558
615
508
562
454
504
66
639
712
576
645
514
573
06
872 1028
790
932
707
831
07
962 11,32
876 1026
782
919
OB
1051 1234
957 1119
852 1004
09
1185 1402
1075 1267
10
1322 1661
1201
PDA9T9R9
ASS"EMBlIES
REQUIRED
PDA9T9R9
521
1412 1521
954 1131
1060 1263
Gil
930 1090
1G
1140 1360
1040 1244
940 1124
12
1450 1760
1316 1590
1180 1424
840
994
760
900
16
473
503
430
472
393
432
20
545
694
497
643
449
489
30
616
673
561
613
507
552
677
625
634
5~3
496
640
614
PDA6T6R6
PDAn7R7
THREE
16
20
34
654
707
608
662
563
40
857
920
790
869
747
798
655
727
590
652
36
46
729
801
661
725
56
832
928
741
827
06
1140 1347
1020 1203
07
1257 1476
1131
1322
OB,
1375 1611
1231
1444
09
1552 1836
1382 1636
10
1746 2055
1557 183B
GB
1316 1542
1188 1406
1075 1273
1G
1613 1924
1471
1760
1332 1590
12
2052
1862 2250
1670 2015
Circuit
Schematic
Configuration
n
Single SCR
(Order BV
This Numberl
Voltage
Code
PTA6T620
PTA6T625
t
15
152
167
139
153
20
175
190
158
172
30
197
215
178
192
25
189
206
175
191
T
279
308
254
281
66
319
356
288
322
ONE
06
436
514
395
466
ASSEMBLY
07
481
566
438
513
REQUIRED
OB
525
617
478
559
09
593
701
538
633
10
661
781
601
706
530
631
OB
465
545
420
497
335
380
450
10
570
680
520
622
412
470
562
12
725
880
658
795
510
590
712
PTA9T9GO
F11
1 <I> Bridge
PDA6T620
PDA6T625
PDA7T720
PDA9T920
TWO
ASSEMBLIES
REQUIRED
15
334
356
304
334
278
306
20
383
418
349
381
315
343
30
433
474
395
431
356
388
25
408
441
378
412
350
382
30
462
500
430
468
398
434
40
606
650
558
614
528
564
35
504
560
459
508
411
456
45
558
615
508
562
454
504
55
,639
712
576
645
514
573
06
872 1028
790
932
707
831
07
962 1132
876 1026
08
1051 1234
957 1119
09
1185 1402
1075 1267
1201 1412
10
1322 1561
PDA9T9GO 18
930 1090
10
1140 1360
1040 1244
940 1124
12
1450 1760
1316 1590
1180 1424
B40
994
1060 1263
760
900
PDAATA20
A43
Schematic
Configuration
This Number}
Voltage
Code
PDA6T620
~
34> Bridge
THREE
PDA6T626
PDA9T920
ASSEMBLIES
REQUIRED
~
15
473
503
430
472
393
432
20
546
594
497
543
449
489
30
616
673
661
613
507
662
211
577
625
534
5113
495
540
46
795
875
801
'651
725
56
921 1023
832
928
741
827
08
1483
1140 1347
07
1382 1628
1257 1476
1131 1322
08
1375 1611
1231 1444
09
1552 1836 1981
1382 1636
10
1746 2055
1557 1838
1188 1406
PDA9T9GO. 08
~
,
Switch
A
~AC
PAA6T820
PAA6T6211
AMPS
RMS
PAA7T720
TWO
ASSEMBLIES
REQUIRED
PAA9T920
1316
10
1471 1760
1075 1273
1332 1590
12
1862 2250
1670 2015 2151
111
367
391
334
367
306
336
20
420
459
384
419
347
377
30
475
521
434
474
392
427
211
448
486
415
453
385
420
30
508
560
437
477
40
666
715
580
620
311
654
616
463
502
45
614
677
558
618
499
565
66
703
78.3
634
709
666
630
869 1025
778
9'5
963 1129
860 1011
08
07
969 1130
1058
08
1063 1231
938 1104
09
1642
1183 1393
1049 1245
10
'1717
1321 1553
1166 '389
PAA9T9GO 09
1023 '199
924 ,1093
836
990
10
1254
1144 1368
1034 '236
12
"696
'448 1749
1298 1666
PAAATA20 12
A44
1020 1203
(Orde, By
This Number)
Voltage
Cod.
n
Single Rectifier
R
SINGLE
ASSEMBLY
PRW6R620 30
1200
594
601
618
548
554
30
2000
559
565
581
523
529
545
30
3000
498
504
518
459
464
478
PRW6R620 40
1200
604
610
626
567
574
589
40
2000
567
573
588
530
536
550
PRW6R620 50
1200
687
695
715
645
653
672
823
570
PRW7R720 06
1200
830
846
878
777
790
06
2000
.781
796
826
726
739
770
06
4000
692
705
732
636
647
674
PRW7R720 09
1200
971
988
1030
910
926
964
09
2000
1533
REQU IRED 1-!~~~.!!....!:12~-.!.12~0~0!...
14> Bridge.
TWO
REQUIRED
PRW9R920 I I
1200
II
2000
1462
II
3000
1308
1370
PRW9R920 16
1200
1675
1767
16
2000
1572
1650
PRW9R920 20
1200
2170
2280
PRW9R9GO 13
1200
1654
1693
1788
13
2000
1563
1600
1685
1498
1580
13
3000
1397
1430
1510
1288
1320
1398
PRW9R9GO 18
1200
1793
1841
1940
1680
1726
1830
18
2000
1680
1726
1830
1563
1602
1702
PRW9R9GO 22
1200
2376
2517
2175
2228
2363
PDW6R620 30
1200
1188
1202
1236
1096
1108
1140
30
2000
1118
1130
1162
1046
1058
1090
30
3000
996
1008
1036
918
928
956
PDW6R620 40
1200
1208
1220
1252
1134
1148
1178
40
2000
1134
1146
1176
1060
1072
1100
PDW6R620 50
1200
1374
1390
1430
1290
1306
1344
PDW7R720 06
1200
1660
1692
1756
1554
1580
1646
06
2000
1562
1592
1652
1452
1478
1540
1348
06
4000
1384
1410
1464
1272
1294
PDW7R720 09
1200
1942
1976
2060
1820
1852
1928
09
2000
1824
1856
1934
1702
1730
1802
PDW7R720 12
1200
2403
2438
2523
2256
2292
2382
PDW9R920 II
1200
3044
3106
3256
2864
2924
3066
II
2000
2864
2924
3066
2684
2540
2870
II
3000
2560
2616
2740
2354
2400
2534
PDW9R920 16
1200
3280
3350
3534
3070
3144
3300
16
2000
3070
3144
3300
2860
2930
3080
PDW9R920 20
1200
4280
4340
4560
3965
4056
4280
PDW9R9GO 13
1200
3308
3386
3576
3126
3200
3370
13
2000
3126
3200
3370
2934
2996
3160
13
3000
2794
2860
3010
2576
2640
2796
PDW9R9GO 18
1200
3586
3682
3880
3360
3452
3660
18
2000
3360
3452
3660
3126
3204
3404
PDW9R9GO 22
1200
4634
4752
5034
4350
4456
4726
A45
Voltage
Code
~
PDW6R820 30
1676
1724
1584
30
1576
1621
1480
1521
30
1406
1445
1298
1334
PDW6R820 40
1701
1743
1602
1644
40
1597
1637
1497
1536
PDW6R820 60
1942
ll195
1806
1827
1881
PDW7A720 06
2364
2468
2141
2177
2269
06
2224
2312
2037
2072
2160
1970
2048
1784
1814
1891
2770
2877
2596
2703
3t/> Bridge
06
1939
PDW7R720 09
09
2425
2526
ASSEMBLIES
PDW7R720 12
3269
3381
REQUIRED
PDW9R920 11
3924
4005
4200
11
3660
3744
3930
11
3210
3279
3450
PDW9R920 16
4245
4320
4536
2241
2302
THREE
rmTI
30
2347
2387
2441
30
2111
2147
2195
1956
1978
2032
PRW6R620 40
2533
2559
2625
2400
2423
2482
6t/>Star
40
2396
2421
2483
2251
2273
2328
PRW6R620 50
2928
2961
3041
2768
2798
2871
PRW7R720 06
3513
3568
3702
3222
3270
3394
06
3319
3372
3498
3136
3183
3304
2977
3024
3137
2756
2797
2903
4146
4210
4372
394Q., 3999
4146
PRW7R720
3919
3979
4132
3686
37i11 '
3878
SIX
PRW7R720
507i
5145
5312
4811
4874
5027
ASSEMBLIES
PRW9R920
6390
6540
6828
6018
6150
6456
6018
6150
6456
5640
5760
6186
11
5496
5760
4962
5058
5328
PRW9R920 16
7116
7422
6612
6726
7026
6726
7026
6210
6312
6618
9420
9900
8652
8832
9.300
PRW9R9GO 13
7122
7512
6737
7080
13
6737
7080
6300
6660
13
6006
6342
5418
5550
5868
PRW9R9GO 18
7668
8070
7122
7272
7632
7272
7632
6708
6846
7200
10302
10842
9456
9678
10248
11
REQUIRED
16
PRW9R920 20
PRW9A9GO
A46
1627
9216
(Order By
This Number)
Voltage
Coda
PRW6R620
PRW6R620
SIX
ASSEMBLIES
3314
3352
3448
3490
3130
3168
3254
3294
3116
3152
3242
3282
2926
2960
3042
3078
2778
2810
2890
2925
2566
.2596
2668
2700
3362
3402
3486
3526
3168
3204
3288
3224
3106
3156
3194
3274
3310
2960
2994
3072
PRW6R620
3842
3884
3990
4040
3612
3654
3762
3812
PRW7R720
4654
2728
4916
6006
4282
4354
4538
4620
4378
4448
4624
4710
4074
4144
4320
4396
3878
3940
4096
4172
3568
2628
3782
3850
5446
5540
5754
5858
5106
5190
5406
5512
PRW7R720
PRW9R920
REQUIRED
5114
5202
5402
5500
4772
4850
5052
5152
6812
6912
7138
7276
6434
6538
6762
6858
8340
8520
8910
9180
7848
8010
8400
8640
7848
8010
8400
8640
7320
7488
7860
8100
6972
7128
7488
7722
6420'
6558
6900
7092
PRW9R920
8970
9180
9642
9900
8490
4640
9072
9312
8490
4640
9072
9312
7920
8082
8496
8724
PRW9R920
11700
11982
12618
13032
10920
11160
11808
13230
9090
9300
9840
10140
8568
8778
9252
9582
8568.
8778
9252
9582
8028
8208
8664
8958
PRW9R9GO
7632
7812
8264
8556
7032
7212
7632
7878
PRW9R9GO
9774
9996
10578
10932
9204
9432
9954
10302
9030
9204
9432
10302
8618
8820
9112
9630
PRW9R9GO
12852
13200
13974
14448
12012
12348
13080
13584
A47
Circuit
Configura·
tion
r1
PSW6R620 30
594
601
618
548
554
570
30
559
565
581
523
529
545
30
498
504
518
459
464
478
PSW6R620 40
604
610
626
567
574
589
530
536
550
PSW6R620
645
653
672
PSW7R720
777
790
823
726
739
770
636
647
674
910
926
964
OR
! tl1tlltl1
SERIES
RECTIFIER
SINGLE
ASSEMBLY
REQUIRED
Avail.
(VI
Voltage
Code
PSW7R720
PSW7R720
PSW9R920
11
1462
11
1308
1370
PSW9R920 16
1675
1767
16
1572
1650
PSW9R920 20
2170
2280
PSW9R9GO 13
1693
1788
13
1600
1685
1498
1580
13
1430
151q
1288
1320
1398
PSW9R920 18
1841
1940
1680
1726
1830
1680
1726
1830
1563
1602
1702
2317
2376
2517
2175
2228
2363
PSW9R920
M
r1
PSW6T620
OR
SERIES
THYRISTOR
1533
PSW6T625
272
280
285
242
249
253
20
313
323
327
278
286
290
30
355
367
372
314
324
329
25
325
333
336
295
303
306
370
380
384
PSW7T720
436
451
459
45
486
503
512
56
572
593
603
PSW9T920 06
721
158
779
07
SINGLE
BlY
08
REQUIRED
09
10
PSW9T9GO 08
PSWATA20
14
*Consult factory for exact type number before ordering.
A<\S
Vohage
Code
FP1
1. Bridge
PDWITIR8 16
536
544
560 ,
476
484
498
20
618
626
645
548
556
573
30
701
711
733
621
629
648
PDWITIRI 26
636
650
666
578
590
606
3H
728
740
760
660
674
692
926
948
960
844
864
884
859)
872
903
766
777
806
957
971
1007
851
864
898
1128
1145
1186
999
1015
1056
55
PDWBT9R9 08
1419
1442
1517
1250
1271
1338
TWO
07
.1545
1568
1651
1368
1391
1462
REQUIRED
08
1681
1708
1797
1488
151 I
1591
09
1936
1967
2075
1704
1733
1828
10
3161
2196
2316
1903
1934
2040
1330
1360
1440
·DUTPUT
CURRENT
AMPS
RMS
PDWBTBRB 08
1494
1530
1620
10
1860
1920
2010
12
2440
2500
2660
~
PDWIT8R8 11
750
761
784
20
881
892
919
30
998
1010
1044
PDW8TIR8 26
890
910
932
1388
1442
3. Brldgo
PDW7T7R7
PDWBTBRB
THREE
ASSEMBLIES
REQUIRED
1618
1642
1701
2047
2079
2190
2223
2260
2376
2463
2583
2846
3002
3181
3369
2142
2268
2798
PDW9TBRB
A49
.- .
---~
.----
'Circuit
Configura·
tion
n
Slngl.SeR
. T
10rder By
This Number)
Voltage
Code
PTW6T620
PTW6T6.25
272
280
286
242
249
313
323
327
278
286
356
367
372
314
324
326
333
336
295
303
PTW7T720
PTW9T920
SINGLE
SEMBLV
REQUIRED
PTW9T9GO
14
F14
1 "'Bridge
POW6T620 16 1500
1500
618
626
645
548
556
573
30 1500
701
711
733
621
629
648
PDW6T626 25 1200
636
650
666
578
590
606
30 1200
728
740
760
660
674
692
40 1200
926
946
960
844
864
884
PDW7T720 35 2200
869i
872
803
766
777
806
45 2200
957
971
1007
851
864
898
1145
1186
999
1015
1056
20
55 1600
TWO
PDW9T920 06 3000
1442
1517
1271
1338
07 2200
1568
1651
1391
1462
08
1708
1797
1511
1591
1600
1967
2075
1704
1733
1828
10 1600
2196
2316
1903
1934
2040
1440
REQUIRED
09
PDW9T9GO
A50
1494
1530
1620
1330
1360
1860
1920
2010
1660
1710
1800
2500
2660
2220
2340
253
329
Circuit
fOrder By
Thl. Number,
Configuration
~
----3q, Bridge
Voltage
Code
PDW8T820 1
PDW8T825
750
761
784
666
677
881
892
919
780
790
815
998
1010
1044
885
896
924
809
826
848
532
547
890
PDW7T720
932
1064
1327
1344
1238
1283
1365
1388
1442
1618
1642
1701
PDW9T920
THREE
ASSEM8L1ES
REQUIRED
910
1036
2798
PDW9T9GO
2079
2190
2260
2376
2453
2583
2846
3002
3181
3369
2142
2268
2674
2614
3500
3724
697
PDWATA20
1
~
PAW8T620
~
PAW6T625
AC .Switch
ONE
ASSEM8LY
REQUIRED
·OUTPUT
CU1'RENT
AMPS
RMS
PAW9T9GO
616
688
710
603
611
630
771
782
806
683
692
713
636
649
666
699
715
732
800
814
836
1016
1042
1056
945
959
992
46
1053
1068
1108
55
1241
PAW7T720
PAW9920
598
679
1259
1305
06
1586
1668
07
1725
1816
08
1878
1977
09
2164
2282
2415
2647
1643
1683
1782
2101
2211
PAWATA20
PAWATA20
AS1
• Eleven current ratings
available
• Manifold base providing
easy mounting and 18"
isolating liquid path
• 3N221 and 3N222
types available
• %-18 N.P.T. (2) brass
fitting supplied with
grounding wire
• Water temperature sensing
thermostats available for
assembly protection
The Westinghouse AC manifold switch provides a fast-access, high performance assembly
that has been rated for continuous or duty cycle applications. All mounting and electrical
'connections meet the JEDEC outlines. Water connections can be made (V) verti.cal. or (H)
horizontal. The electrical connections may be supplied either (5) short tangs or (L) tangs.
Refer to @ outlines M-16 under mechanic.al data, this section.
AVAILABLE. DE.SIGNS
FRAME
Storage Temperature" ..•••••.••••••••••• -40°C to 66°C
Ma)(imum Ambient Temperature •••••••••••••••• " •• 66°
PAM7
Ma)(imum Water Pressure (INLET) ..••.. " .••.... 60 psig
Maximum Water Temperature (INLEn ...••..•...•.• 60"C
Maximum Pressure Drop, 1.26 GPM ••••••••••• : 10 PSIG
"Manifold must be purged of water
to avoid freeze up at low temperatures.
PAM9
PAM9
EXAMPLE: Obtain optimum device performance for your
application by selecting proper order ·code
PAM7 with T7201255 SCR's rated at 1240A RMS
with 1.25 GPM twater =40.oC and vertical H20
connection, short tang electrical connectiohs.
............_-_........
FRAME AND SINK
TYPE
I
DEVICE
TYPE
I
VOLTAGE
CODE
I
DEVICE
CURRENT
I I
H2 0
TANG
IB III E1I. .II1l1l......III1II. . . . .fI
A52
HANDLING PRECAUTIONS:
When the switch is to be placed in operation, all surface moisture must be
eliminated before power is applied, otherwise catastrophic electrochemical failure
can be induced.
Coordination between cooling water temperature and the prevailing humidity is
necessary to avoid condensation on water cooled metallic surfaces and electrical
insulation. Ordinarily, this is no problem with 40°C cooling water. With lower
temperature water, humidity control may be necessary to completely stop
condensation.
MOUNTING POSITIONS:
No restrictions
WATER QUALITY:
The cooling water shall have the following quality:
A neutral or slightly alkaline reaction, i,e, a pH between
7.0 and 9.0.
A chloride content of not more than 20 parts per million; a
nitrate content of not more than 10 parts per million; and a
sulphate content of not more than 100 parts per million.
A total solids content of not more than 250 parts per million.
A total hardness, as calcium carbonate, of not more than 250
parts per million.
No chemial additives to be used.
MOUNTING
Visually examine the switch before it is mounted to see that it
has not been damaged during handling.
When mounting the insulating base, the following precautions
should be taken to avoid distorting the plastic part, a cause of
.
breakage and/or leakage.
The mounting surface is to be flat within .030".
Bolts or nuts which are used to hold the switch into the
equipment shall be used with a flat washer against the
plastic base. Torque values shall not be exceeded. (Sft-Ibs.
max. for 1.4" screw).
For pipe connections, a sealing agent, joint compound, shall be
used in order to limit the torque needed and in order to get a
water -tight joint.
A53
RMS DEMAND CURRENT.,AMPS
3200
I-
zw
a:
a:
:::l
u
2800
--.....
"
-
--!. f.,.."
k..,." "- ,
::!
w
(/)
20
50
2000
!z3000
Il!
a
NUMBER OF
CONDUCTING
CYCLES
I
1600
1200
2600
~~
-100
0
::!
a:
'
10
0
«z
, ,:2200V
5
2400
3600
3400
'PAM7T72o....35 '
II- MAX, VOLTAGE AVAILABE
~
~ ~~
-..;;: ~ ;::::s
~
z
,~
~
10
I-
zw 4000
-
1
:::l
U
0
5 1 -f.,
3000
z
«
::!:
w
0
2000
(/)
::!:
a:
10
I
20_
-50_
-100
-
.~
..
~
,I
NUMBER OF
1000 -CONDUCTING
~YCLiS
.~
I
o
I
r-L.!.
3600
2'
I-
zw
a:
a:
:::l
U
0
«z
::!:
w
0
(/)
~
a:
......;"".
3200
3000
'
2oJ50
2400
•
100
.
NUMBER OF
2000 CONDUCTING
~ I CYCLES
1600
1
% DUTY
I
I I
I
I
'1
r-....
I
I
"
10
4000
....----
~mill
100
....
~
W
IIIIII
100
10
PAM9T92o....oe I II'
MAX. vqLTAGE AVAILAB LE
2200V
I
2
5
ao
lO_
20
1--50
z
"-
~
I I
I I
w
3000
,
-....;::::: i'-...~ ~ ~
-r-- r-.'_
1-1-
~ t--...
t--
-=- ~~
100 I
«
III
I
I-
f
f'..:.
-.;.;;,:.
"'.......
'~ ~
i--
z
.~
~ ~ ;s
....
1
% DUTY
100
~" ,""
.:-..: r-..."\
m
PAM9T92o....06
MAX. VOLTAGE AVAILABLE
3000V
NUMBER OF
CONDUCTING
. CYCLES I
1400
~~
100
_ 1 0 0 _ 50,
.
1800
-
~
~
m
-20
~
'"
~
................ .......
...;""
i'... ~
5000
":""1
1200
A54
I
--- .I
r-L'
(/)
~
-
10
10
2200
'";::::::; s
I
5
~
PAM9T92o....o7
MAX. VOLTAGE AVAILABLE
2200V
5
10-r-.
2800
.--
!z
% DUTY
4000 ~
-
3600
3400
~
o
......
.......... ':'" .;..""
I
I
1000
10
1
I
u
02600
,
,"'-
0....... ~ ~ ~
1
% DUTY
:::l
.
~'
5
NUMBER OF
CONDUCTING
CYCLES
1000
Il!
..
-
1~
.,
1400
a:
'-.:.
.
2
PAM7T72o..-451 I II
MAX, VOLTAGE AVAILABLE
2200V
_100·
100
-f.,
21
a:
a:
'l.'
20 -:-f.,
~
PAM7T72o....55
MAX. AVAILAB,"E VOLTAGE
l.100V
I
50
o
% DUTY
I
-
2200
(/)1800
If
5000
TWATER = 4()°C. 1 :25 GPM
o
«
~
800 1
---
"'S. PERCENT'DUTY
~
~ 2000 """':""NUMBER OF
CONDUCTING
o
,.CYCLEs.
~
~
a: 1000
.<
o
1
% DUTY
10
100
RMS DEMAND CURRENT. AMPS VS, PERCENT DUTY
TWATER
II
6000
....z
w
-~""
5000
2
5r-i-
a:
a:
::l
u
0
z<{
:::!l
w
10
4000
3000
F--- 1100
en
:::!l
a:
~
~
20'50
0
PAM9T92o. ..()9 I
MAX. VOLTAGE AVAILABL
1700V
I I
NUMBER OF
CONDUCTING
I CYCLES I
2000
....
iria::
~
w
a::
a:: 5000
0
~
4000
w
0
3000
:::!l
en
:::!l
a:
~
2000 -NUMBEROF
CONDUCTING
1000
- I C Y C rS,
~
100
% DUTY
-1
....
zw
a:
a:
::l
u
0
z<{
:::!l
w
2
5
10 20
5000
6000
5000
4000
r........
~~~
....~
I
:::!l 2000 r- NUMBER OF
a:
1000
-
CONDUCTING
CYCLES
o1
I
I
% DUTY
10
100
',III
I I 1
PAM9T9Go._12
MAX. AVAILABLE VOLTAGE
1700V
.......
7000
0
en
:::!l
a:
1
o
10
8000
!Z
en
II
0 1
100
II
2- f-5
~4000
020 50
~
~ 3000 I - - - 00
~
20 10
50
1
1001
~
PAM9T9Ga.._l0
MAX. AVAILABLE VOLTAGE
2000V
6000
::l
5
t'.....
~~ ~
10
~ 6000
a:
1
2
~
% DUTY
MAX. VOLTAGE AVAILABLE
3000V
::l
U
I--.
I
01
100
PAM9T~G~kl I II
....z
I
R
.~ 2000 I- NUMBER OF
CONDUCTING
a::
CYCLES
1000
10
% DUTY
3000
o
PAM9T92a.._10
MAX. VOLTAGE AVAILAB LE
1700V
2
6
lO20
60
1uv
a:
w
'I
t-l-~
::l
1000
01
-
5000
~4000
z
~
= 40°C. 1.25 GPM
~
NUMBER OF
CONDUCTING
3000 I - rCLjS
""II-
~
~~
~ ~ ~.
""'""ll
I
2000
1
10
~
~
rr
100
OPTIONAL THERMOSTAT
% DUTY
A5!
seR
*Typical - 300 V I~s minimum.
**Non-repetitive velue
A56
.-,
.-4
W~8
OI•• n,lon
W-7
mm
Inc....
209.8 rna •.
156.4
S.76 rna •.
.82
506 max
IIICIIII.
8.26 rna ••
6.12
508 rna •.
6.00 max.
1.26
12B.5 max
127.0 rna •.
31.7
15.7
13.5 ref
3.17
11.10
33.32
76.2 ref.
.82
.53 ref.
wldB X K lone:
,101 (21
...
.125
1.31
300 ref
.,prox.
lb•
WI.
168.2
1285ma.
1270 max
317
157
135 ref.
317
500 max
12.
62
63 ref.
126
44
131
TT 10
33.32
78.2 ref
a.OOrel.
tI,
In
tl'
1.26
27.
••
222.3 max.
3.26
148
.-7
DlnltnlllNl
W-9
Inches
mm
9.11 max.
705
662 max.
6.38 max.
200
2314 max
.
W.III I ' IInI
sloll!}
.,.
DIIllnIIOll
Inc""
9.70 max.
(·14
"pIDI.
W..
...
6.00 max.
127.0 max.
500 max
12.
269.5 max
2182
85'
506 max.
128.5 max.
1270 max.
.2
31.8
15.7
.82
53 ref.
.125
13.5 ref
3.18
1.312
3.00 ref
33.32
16.2 ref
Ibs
...
W-7
Iocb"
7."
5.06 max
3.25
tiS
318
.-5
.1061 max
...
101.6 ref
700
246.4 max.
191.5
128.6 max.
1.25
635
11.10
3889
Ib,
.-2
W-8
508
22.4
13.5 ref
53 ref.
.250
.44
153
4.00 ref
tpprOl .
(14
1791
1656 rna)!;
1367 max
11.10
318
" 7
13.5 ref
318
63 ref
12.
44
1.312
til
300
lb.
1.48
425
1110
3332
76.2 ref
tIS
193
.-1
W..
DlIMns ..n
iocII..
11.08m....
280.9 m....
228.8
8.52 ma...
6.38 max.
186.8 m ....
138.7 ma...
...
...
2.00
r~
(1-1
.,111 X K 11111(
alai 121
.63 ref.
.250
..
...
9.00
1.531
4.00 ref.
1,lIfOl.
,.,
w..
8.76
50.•
22.4
13.6
8.36
11.10
38.89
101.S ref.
....
tp
A57
M-3
Dnlllim
W-8
mm
I.....
246.4 max.
9.70 max.
7.64
191.6
5.88 max
5.00 max.
1494 max.
127.0 max.
31.8
15.7
13.66 ref .
1.25
.&2
.53
J ..... 11(
r·~
r·~
3.18
.125
Iant
11.10
33.32
.44
1.312
300 ref.
2.38
Sial (21
M
76.2 ref.
60."
953
.375
1.00
• ,prlll.
WI.
25.4
.p
lb•
32.
1.60
.-8
Dlmlnslon
r·~
r·~
M
W-7
mm
IIIchls
1061 max
86
269.6 max.
218.2
5.B8 max.
149.4 max
S.OO max.
t27.0mex.
31.B
125
.62
.53 ref.
15.7
13.56 ref.
.126
.44
1312
1110
3332
3.18
3.00 ref.
76.2 ref
2.38
60.5
9.63
375
25.4
1.00
• pprox.
WI.
lb•
kl'
7.00
3.17
M-9
Olln..o". 1--==--,W::,.-..:.9--:::::---1
bleb.
mm
11.06 max.
900
280.9 max.
228.6
8.66 max.
6.38 max.
1367 max.
2.00
.88
63 faf.
.260
willlxK _
0101 (21
A5S
60.8
22.4
13.5 ref.
635
.44
11.10
t.53t
38.89
1016 ref.
4.00ref.
M
2t7.4max.
3.00
1.00
.375
762
26.4
9.53
2.00
508
'ppra•.
liII
WI.
9.26
kl'
4.22
M-10
hDI
': ----w---~-
Inches
L_*_J!
r---- " 1
G dtl.
(2lholestDpslnk
(2) ItaIIs ba1tom sink
I
,
I.
.312·18 hu. tid. boll
13018 max
5125 melt
'3018maK
t01.9Tet
425 ref
12.7 ref
50 ref
1079 ref.
127 ref
674
3 ••
67.
402 ref.
1021 ref.
452 ref.
',48 ref
klS
Ibs
'IS
WI.
~70
"". 3.2
~62
Plrsink
.312-18
loch..
13125 max
256
5.75 max.
5125 max.
4.26 ref.
60 ref.
344
4.02 ref.
350 ref.
1H r - .
Ibs
• pprOl.
WI.
,•
(
1
I
3334
65.0
256
625 max
1588 malt
5125 max.
t301Bmax
107.9Tef
425 ref
1079 ref
12.7 ref.
.60 ref
8.75
1148
88"
3.S0ret
88S
lb.
kI'
71
sQ.lnCftIS
SQ. em
!:>i:
6.2
40.0
.0:::6.2
.1
20638 max
636
6.44 max
163.6 max
9938 max
25243 max
225 ref
57.2 ref
100
25.4
apprOI.
lb'
wI.
16.5
SCI. Inches
sect.
••
Ii··
-
I
9.53
19.1 ref
800 ref.
.g.
75
sq. em
677
""'105
~J~~; ha;~~~d."
M-15
Dimension
J
A-9
1--:--,-_.--___
_
Inches
mm
17125 max.
434.28 max
250
l
f
I. -, '-----Itl-:- ,IJ
I
....
8.125 max.
375
75 ref
315 ref
..
. I!~bol1
1 - . . ' .,-.--:t
t
A-9
Incites:
250
J
----W-:-Ol
-.)Ik-
.40.0
M-14
DlmenslDn
-
'--- -- -
kg•
1575
.rea
-- --'"
875
4.52 ref.
per sink
:
~
127 ref.
.344
1021
arGSS
1"1-
650
1460 max
130.18 max
1 - ___
I
3334
13125
67
~".
• .250-2. "'.IId. bI111 J
!I
mm
Inchls
sq. em
Ilea
.
A-7
mm
sq.lnclles
~-w-·rr
_. • . _ l
i--~
-~I f
-, '-----~---:- -L
.. -I"
M-13
14.75
crou_1.
perslilk
sq em
~400
"'62
A-B
••
.P. lid. bOil
~400
Dimension
~T-.l~ "....~mod.l. ~i
I
~34
"" 7.5
sq. Inches
M-ll
---1
__
1588 max
Ibs
sq. em
SCI. Inches
H
. J9l '
650
SOrel
344
L_*_J
r
r·-·- '"
1
\
256
625 max
area
hDI
.: .--w.--~-
155.78 max
1460 max
crosssecf.
.1
.
66.0
6125 max
575 mall.
5125 max
426 ret
appro!.
__
mm
Inches
155.78 malt.
2.56
'M'
~T-~l~ acc~m'd'to ~
._
A-7
mm
6.125 malt
---1
\
M-12
A-B
DImension
1636 max
9938 max.
25243 max
2250 ref.
6715 ref
1.00
254
315 ref.
9.53
1905 ref.
800 ref
4.50 ref
.578 ref.
114.3 ret.
1468 ref
.375
750 ref.
~J
.pproll.
WI.
cro~'r:a.ct.
";·,In.
63.5
644 max.
Ibs
350 •
sq.lniCh"
-106
tl'
15.9
s~
em
677
A59
HS I VS ARRANGEMENT
M-16
1lItII...lo' 1--:--:-...:H:::S:,:'r-:VS=-_ _-l
Iocb..
M..
1094,.f.
MANIFOLD
SWITCH
1748
1.38
4.50 max
3••
1143 max
25.4
185.1
76.2
78.2
216.9
82.0
82.6
'.00
6.50
.25
200
72
150
37
60
56
•
N
~
R
V
277.9 ref,
688
300
300
850
244
32.
6.0
508
.83
38.
94
12.7
142
166
__ ~ __
396 __ _
~_I!!.".+_--:-77'=.6-"m=
••'___l
~ __ ~.!..~
_ 1~.~.07m
••
~. --.~~---.-t--~~-~
1 _ _ ...L0~ _ _ _ ~
1--._
I---ii-- '•.0~8
NPT
--:-:-::---
.--7~~---~~~1--~2·6·~~~9~
.
I--~ ___ ,'~0~6__-t__~~__~
~I------'---r------~
~ -------+------~
.0
H"
112
2159
850
HL , VL ARRANGEMENT
DlmlnslDn
~.
HL & VL
mm
IIIC".
12.50 ref
317.5 ref
1748
688
... 300
762
.' -300_ _
78.2
215-.850
'00
138
4.50 max
L
--"-
~EE WICtlI
"-.
FF lonl
stII. (4)
V
,~
W
I
~
1
~
1 :
II
CC
DD
I
II
FF
i.
AEiO
AI
.........
wiler IRIlt
10"6----
--.--
351
114.3 mex.
100
2.'
6.50
18S.1
2.
200
.72
50.8
1.50
38.1
37
.50
56
1.58
300 ma.
SSm ...
.50
1.00
'A·'8 NPT
64
18.2
•..
12.7
14.2
39.8
7.emu.
14.0mBx.
12.7
26.4
1.00
.375
.7.
25.4
8.50
215.9
9.5
19.1
au
HH
w-e
DlmenslDII
A
B
C
D
E
F
G
H
J
K
L
Inches
mm
11.15 max.
283.2 max.
8.98
228.1
,5.06 max.
128.5 max.
6.00 max.
127.0 max.
1.25
31.8
.62
15.7
.53 ref.
13.5 ref.
.125
3.18
.44
11.10
1.312
33.32
3.00 ref.
76.2 ref.
Ibs
4.6
approx.
wI.
klS
2.1
M-18
W-7
Dimension'H----,----,.------1
mm
Inche.
J
wide.
K 10111
$1ot(2)
H
12.55 max.
318.8 max.
10.54
267.7
5.06 max.
128.5 max.
5.00 max.
127.0 max.
1.25
31.8
.62
15.7
.53 ref.
13.5 ref.
.125
3.18
.44
11.10
1.312
33.32
3.00 ref.
76.20 ref.
klS
Ibs
approx.
WI.
2.36
5.19
M-19
Dimension
W-9
,
Inches
mm
330.7 max.
J wi• • llooK
B
13.02 max.
10.95
Ilot(2)
C
6.52 max.
165.2 max.
D
E
F
6
5.38 max.
2.00
136.7 max.
A
50.8
.88
.53 ref.
H
. 250
J
.44
K
1.531
L
4.00 ref.
22.4
13.5 ref .
6.35
11.10
38.89
101.6 ref.
lb.
IPprox.
WI.
278.1
:
kiS
12.3
5.61
M-20
OIIIIenslon
A
B
C
D
E
Wide x K lone
slot (2)
W-6
inches
11.12 max.
mm
282.4 max.
9.06
230.1
5.88 max.
5.00 max.
127.0 max.
149.4 max.
1.25
31.8
F
.62
15.7
6
H
J
.53 ref.
13.46 reI.
.125
3.18
11.10
33.32
.44
K
1.312
L
M
N
3.00 ref.
76.2 ref.
2.38
60.5
P
R
approx.
WI.
.375
1.00
IbS
4.91
9.53
25.4
klS
2.23
A61
W-7
DImension
A
I
C
D
E
F
G
H
J
K
L
M
N
12.82 mIX.
'10.68
P
.375
R
1.00 "
9.63
25.4
lit.
klS
4.09
W-9
I
mm
a
13.03 max.
J 10.94
C
D
8.56 max.
331.0 ma•.
277.9
217.4 max.
5.38 max.
136.7 max.
E
2.00
.88
.63 ref.
F
G
H
J
K
L
M
N
4.00 ref.
3.00
1.00
.375
2.00
P
approx.
Ibs
WI.
13.26
'pprn.
WI.
A62
W-8
W-7.
Inches
mm
6.00 max.
1.20
4.95m...
127.0 ma•.
30.5
Ibs
3.0
klS
8.02
M-24
M-23
~38
50.8
22.4
13.48 ref.
8.36
11.10
38.89
101.6 ref.
76.2
26.4
9.53
50.8
.250
.44
1.531
R
1.00
78.2 ref.
60.5
Inches
A
6.00mox.
1.92 ref.
2.38
.63 ..1.
31.86
16.7
13.46 ref.
3.18
11.10
33.32
9.00
Dlmenllon
J dla.
each Sink
127.0 max.
.44
1.'12
3.00rol.
2.38
WI.
A
I
C
D
E
F
6
K
J
K
320.6 ma•.
288.2
149.4 max.
6.88 max.
6.00 max..
1.26
.82
.53 rei.
. 125
approx.
DImension
mm
Inches
126.7 max.
127.0 max.
46.8 ref.
60.6
13.6 ref.
9.63
25.4
klS
1.38
Inches
5.50 mex.
1.70
4.95 max.
6.00 max.
1.92 ref.
2.38
,53 ref.
mm
139.7 max.
43.2
126.7 max.
127.0 ma•.
48.8 ref.
60.5
13.5 ref.
.38
1.00
9.53
. 25.4
Ibs
kgS
3.18
7.0
Ic-----D----~
---.
~--i
F
+-+H++++--
t
M-25
Dimension
Inches
mm
A
B
6.91 max.
1.70
150.1 max,
43.2
C
7.16 max.
181.9 max.
D
E
F
G
H
J
K
5.38 max.
136.7 max.
'pprol.
1
W-9
WI.
2.41 ref.
3.00
.53 ref.
61.2 ref.
76.2
13.5 ref.
1.00
.38
2.00
25.40
9.63
50.8
IbS
klS
4.22
9.25
M-26
Dimension
R die. (2) hOles
elch Sink
W-A
Inches
mm
A
B
9.25 max.
235.0 max.
C
9.31 max.
236.5 max.
D
7.06 max.
179.3 max
E
2.B2
F
G
2.1B
.42 ref.
.31
H
J
6.00
1.00
K
l
M
N
P
R
S
2.00
.pprox.
WI.
554
716
107 ref
7.9
152.4
25.4
50.B
22°
B2.6
22°
3.25
.50
1.00
375
.62 ref.
1'2.7
25.4
9.53
·'5.7 ref.
Ibs
kgs
6.79
14.94
M-27
l1
~~
!=f r- -
Dba,nslon
+
R dll. (2) hOles
nCh sink
H
T~~
K
~~~
A
B
C
D
E
F
6
H
J
K
l
M
N
P
R
S
IPprOl.
WI.
W-A
inChes
mm
11.50 max.
I.B7
292.1 max.
47.5
9.31 max.
236.5 max.
7.06 max.
179.3 max.
71.6
10.7 ref.
7.9
2.82
.42 ref.
.31
6.00
1.00
2.00
22°
3.25
.50
1.00
.376
.62 ref.
Ibs
20.76
152.4
25.4
50.B
22°
82.6
12.7
25.4
9.53
15.7 ref.
kgs
9.43
A63
101-28
----- LillJ'T-~"'I0"''''¥r'''''''
----~1·312-"h".".,,"
F
~
j
DllJJIDslon
A-A
Inches
mm
1012 max
2S7.1 max.
1269 max
784 max.
322.3 max.
199.1 mall:.
12.7 ref,
70.6
50 ref
2.78
.578
approx.
wt.
cross sect.
Irea
per sink
~
.1 '
14.88
Ibs
~44.
k&o
...... 20.2
sq. em
Sq. Inches
,..... 1829
. . . . ',8.0
,I
101-29
m¥"'.te.
" -••tsto .... ...11
~.31H.h"."
jF
~
----- LillJ -----
Dimension
A-A
incites
2112 max.
1269 max
7.84 max
50 ret
278
.678
approx.
wI.
.1,
A64
;
.1
cross sect.
aria
per sink
~91
lb.
0
sq. Inches
18.29
1111
5384 max.
322.3 max.
199.1 max.
12.7 ref.
70.S .
14.88
klS
41.3
sq. em
118.0
• One piece aluminum
extrusion'
EXTRUSION NO. A9. V2 SCALE
• Cooling for 50 mm75mm disc devices
• A9 available in 3
or 6 foot lengths
c
A
• AA available in 7
foot lengths
• Cut to length
sections also
available
T
1
r~------B--------~~
EXTRUSION NO. AA. V2 SCALE
I
1
A
~----------------B----------------~~~
• Fully rated and
proven designs
• Includes all necessary
hardware for mounting,
clamping
• Machine finished
mounting surfaces
• Gate terminals provided
with air cooled designs
• Complete thermal
characteristic curves provided
• Clamps/sinks optimized
for each device package
C-F - Consult Factorv
PRW6M010KT
Single Reetifier
R62
Ml
PRW6M230KT
Single Reetifer
R62
M23
PTW6M010KT
Single SCR
T62
M1
PTW6M230KT
Single SCr
T62
M23
PAW6M030KT
AC Switch
R621T62
PDW6M030KT
Doubler - Bridge Leg
R62/T62
M3
PSW6M020KT
PSW6M170KT
Series - two
Series - three
R621T62
R621T62
M2
M17
PRW7M04OKT
Single Rectifier
R72
M4
PRW7M240KT
PTW7M04OKT
Single Reetifier
R72
M24
Single - SCR
T72
M4
PTW7M240KT
Single -SCR
T72
M24
PAW7M060KT
AC Switch external
connection required
R72/T72
M6
PDVII'7M060KT
Doubler - Bridge Leg
R72/T72
M6
PSW7M050KT
R721T72
M5
PSW7M180KT
Series - two
Series - three
R72IT72
M18
PRW9M070KT
PRW9M250KT
Single Rectifier
Single Reetifier
R92
R92
M7
M25
PTW9M070KT
Single SCR
T92
M7
PTW9M250KT
PAW9M090KT
Single SCR
T92
M25
AC Switch external
Connection Required
R92/T92
M9
PDW9M090KT
Doubler - Bridge Leg
R921T92
M9
PSW9M080KT
Series - two
R921T92
~8
PSW9Ml90KT
Series - three
Single SCR
AC Switch External
Connection Required
R92/T92
M19
TA2
M26
TA2
M27
Doubler - Bridge Leg
TA2
M27
Series. Contact Factory
TA2
PTWAM260KT
PAWAM270KT
PDWAM270KT
PSWAM __ KT
ASS
R62
Ml0
Ml0
AC Switch
T62
R62/T62
PRA6Ml00KT
Single Rectifier
PTA6Ml00KT
PAA6Mll0KT
Single SCR
T-2
T-3
C-F
T-4
Mll
PDA6Ml10KT
Doubler-Bridge Leg
R62/T62
Mll
PRA7M120Kl
Single Rectifier
R72
M12
PTA7M120KT
Single SCR
T72
M12
PAA7M130KT
R721T72
PDA7M130KT
ACSwitch
Doubler-Bridge Leg
M13
M13
PRA9Ml40KT
Single Reetifier
R92
M14
PTA9M140KT
Single SCR
T92
M14
PAA9M150KT
AC Switch
R921T92
M15
PDA9M150KT
Doubler-Bridge Leg
R921T92
M15
PRAAM280KT
Single Reetifier
PTAAM280KT
Single SeR
TA2
M28
PAAAM290KT
AC Switch
TA2
M29
PDAAM290KT
Doubler-Bridge Leg
TA2
M29
R72/T72
T-l
M3
T-4
T-5
M28
CF
T-1. T-2. W6 AND W7 SINKS
I
.070
0
I-
...c:
.050
!i
.040
~
.030
\
8
"
'-
0.3:
.5
" .020
_u
.. °~..010
E
..
o
r-..
6
234
6
.025
~
Cii
.,
...,."
.020
0. til
.015
-
m
I
I I I I I I(
I
I I I
Transient Thermal Impedance Vs. Time
I-"
~
~ ~~
"
iii u
E •. 010
°
iii
.s=
l-
E
E
::J
~
~
~
.005
. ~!
:!;
~ ~!!!
0
.1
I-"
~ ~ ~ ~::: ""
~
7
I III
1.0GPM
~ 1.2 GPM
.1.5 GPM
I III
3.0 GPM
5.0GPM
~
~~
~.
'j(
J
I"""
c:
.5 3:
"
II'
/
3
4
5
6
2
o
Water Flow Rate, Gallons Per Minute
7
Water Flow Rate, Gallons Per Minute
...c:
'("
0
8
6
4
2
0
Douj'e sile cotng
In
0
......
L
4
2
"- .......r-..
~
,
1
6
Single Side Cooling
Cii
;: ~
.~ -Pr~ssur~ Drop :"s. w!ter FI~W Ra~e-j-
Zasw VS. Water Flo;" Rate
\
.060
10
100
Time, t, seconds
T-3. W9 SINK
i
~
.05
.04
.040
~
Cii
•
.03 5
.030
20
I
I
I
I
.1
~.
I
., 18 Pressure Drop Vs. Water Flow Rate
...c: ..g 16
Cii<;' 14
~--\ '-Z!SW is, ~ater flOW ~at~ f--
~
~
iO
al
.§~
I\"Single Side Cooling
.02 5
.02 0
\
~
"' ....... ......
.....
g
0
""'-
isme~
8
i&.
4
eli
2
:9
0
a:
8.=..
E
i ~ .010
-
E ~
~~
~...:.
§~
.005
...,
~~'"
~ ~ ~~
.~ ~
~ ~
./
~
1.,..000"
o
.e,:
.015
.,
;:1
/
T~a~si~~ I;Jermal I!ped!nc~ Js.' T!!!
Cii
~
It'
..
2 345
6 7 8 9
Water Flow Rate· Gallons Per Minute
2345678
Water Flow Rate, Gallons Per Minute
.020
j
~~ 6
o
~
8c:
g12
~~10
.01 5
iii
EOu•. 01 0
iii ~.oo 5 -Double Side Cooling
;:~
/
~.s=
&.
I-
I-'
..... .... ...~
~ .....
~
...
GP~
1.0
1.2GPM
1.5 GPM-
I
3.0GPM
~
10-
5.0GPM
~
0
.1
10
100
Time, t, seconds
A67
T-4, A6 AND A7 SINKS
I
E
m
j.....oo"
.,/
,/
/
.
_.50
r::
.45
iii
.350
r::
.250
.200
.300
iii
~
--§- 888
I
I
~ ~ ZeSA Vs. Air Flow Rate:
,I..' • • • • • • • • •
N~~ra! C~m~e.~tio,n ~at!n~, ~Sf'
'\. Single Side Cooled = .98°C/W
Double Side Cooled = .49°C/W
1\
~ .050
-'
~~
Double Side Cooling
I I I I I 1.1 I
8. 8 8 8 §- 8
0
0
Steady State Thermal Resistance
II
III
.A1111
JI
/
.40
r::
,
i
til .35
~~
.. 30
_0
a;
,.
o •. 25
(3. ~ .15
~ 1::' .10
E m-
.~ ~ .05
«
Natura'l:.L
Convection
/
EE
~ « .. 20
:i
0
1
-
IS Air Flow Rate, Linear Feet Per Minute
(3.
Transient Thermal Impedance Vs. Time
8
crH-
.....~Ing:e ~id~
1' ...
.100
:
I I I I I I I
......
~
.150
~
Air Flow Rate, Linear Feet Per Minute
g
~g
.
/
·iii
8 8-88
.400
:.;s
I
I
-±t
.500
.450
Pressure Drop VS. Air Flow Rate
l..& ....
IIIII
-
,
150LFM
300 LFM
500 LFM
1000 LFM
1500 LFM
I
100
10
I I ILl
~
III1
I
1000
10,000
Time, t, seconds
T-5, A9 SINK
.5
Pre~sur~ Dro~ vs.IAir JIO"; tte.
.4
/
.3
J
.2
~
"
. .1
e
II>
a..
V
o
,,/
l/
~
a:~
.06
E·-
.04
-.. r::
m
i;;~
(3.«
Vi;. Air Flow Rate
Double Side Cooled
"
.22°C/W at 275 W
I I I I I I
..... Single Side Cooling
'\
"
.02
r-N..J.
...
II I' I
Double
0
Si~e Cooling 1-1-.
8 8 8
8
~
0
Air Flow Rate, Linear Feet Per Minute 0
Steady State Thermal Resistance
./
./
,
.04
.02
1
10
~
100
Time, t. seconds
Col
8
I I 11111
!.A"T 1III
II II
Tral)sient Thermal Impedance Vs. Ti me
.10
.08 I
.06
If:
Natural Convection Rating, ZeSA:
1\.,;".
, .. Coo,,,, ....=
1\
II III
.22
.20
.18
.16
.14
.12
A6S
.18
.16 -I:E~
UlO .14
•°
~~ .12
~~ .10
ZeSA
m«
air Flow Rate, Linear Feet Per Minute
o
0
t-
.~ .~ .08
- -- °S888§88
V
.20
1000
Nateral
Convection
275W
I I I III
I I I III
_150 LFM300 LFM500LFMl000LFM
1500LFM
10,000
Features and Benefits
• Fully compensated modules for high
reliability
• All terminations supplied for ease of
installation
• Eight standard modules for wide range of
current capability
• Vari-Iength channels for
Package standardization
• High density packaging for compact designs
• Ratings for oil and air cooling
• Internal wiring available for complex
circuit configurations
• Increased ratings by seriesing and/or
paralleling individual channels
• Expert application assistance
• Special custom designs available on request
Applications
• RF generators
• Radio and TV transmitters
• Radar modulators
• Industrial precipitators
• Fusion and l1igh voltage research
• Dielectric heating
• Voltage multipliers
• Electron Beam Welding
Standard Available Circuit
Configurations
SH1
Half
Wave
(Single Leg)
SD1
AC
~
Doubler
(Two Legs)
SB5
AC
AC
Single
Phase
SE5
AC
AC
AC
Three
Phase
OOimensions in I!,!ches (Millimeters)
L
.190-32 UNFx.5
(No. 10 Hardware
Included)
SB5 1</> Bridge
[Note: 205" Spacing
Available on Request)
*Obtain the Channel Length L From
Table III Using the Channel Number
(11th and 12th Digits of Product
Description Number)
2.35 (59.69)
SE5 3</> Bridge
A69
Thesemodules, consisting of silicon diodes
and compl!ns8ting ne~ork, provide the
opii,muri1 iii steady'state and transient volfage
division. The design of the stacks provides
for cooling by free convection air, forced
convection air, or oil.
Design Modules
2AOl
3/\0:)
4/\OS
I
SA09
8A36
I
9B11
**
Volts/Cell
Voltdl](
Co(/p
Surge60Hl
*Oil Only
*OilOnly
6AI4
I
7AI2
I
Volts/Cell
Volt HJf" Codp
Notes:
• Mounting: Any position for oil cooling or forced
convection; horizontal for free air convection.
• Max, ambient operating temperature for free air
convection iii based upon compensating network
A70
maximum ratings.
• JAN/military qualified Rectifiers are available on
• Storage temperature: -55°C to 100°C.
9811 modules.
'
• Surge ratings are par JEDEC and for non-repetitive
, applications. For repetitive faults. consult Westinghouse.
* * This Design is also available with 6A Lead MOllnt Rectifiers -
See next section,
Module Electrical Characteristics Current Output vs Ambient Temperature/Max. PRV
CooirlHJ Conditions
An FI()w
i
Tf
flq}
C
J
I
,
2AOl
I
lA03
.65
.6
.5
.iI
Natural
Convection
40
50
60
150 LFM
40
50
60
.9
.83
.76
I
I
4A05
I
5A09
I
6A14
I
7A12
I
8A36
I
9611
2.6
2.4
1.75
2.4
2.25
2.15
4.0
3.75
3.5
12.0
11.5
7.2
15.0
12.0
8.0
33.0
32.0
30.0
1.1
1.0
0.9
3.2
3.0
2.8
4.2
3.9
3.6
6.8
6.3
5.8
12.0
12.0
12.0
22.0
20.8
19.3
47.0
44.0
41.0
.65
.55
300 LFM
40
50
60
1.1
1.0
0.9
1.35
1.25
1.15
3.7
3.5
3.3
5.6
5.15
4.75
8.8
8.1
7.4
12.0
12.0
12.0
28.5
27.0
25.0
69.0
64.0
60.0
500 LFM
40
50
60
1.3
1.2
1.1
2.3
2.15
2.0
4.1
3.9
3.65
7.2
6.65
6.1
10.8
9.9
9.1
12.0
12.0
12.0
32.0
30.0
28.0
82.0
78.0
73.0
1000 LFM
40
60
60
1.5
1.5
1.35
2.7
2.6
2.3
4.5
4.2
3.8
8.8
8.3
7.8
14.0
13.0
12.0
12.0
12.0
12.0
36.5
35.0
33.0
108.0
101.0
96.0
Oil
40
60
85
1.5
1.5
1.1
3.0
3.0
1.8
5.0
5.0
3.6
10.3
8.4
5.8
19.5
15.7
11.0
12.0
12.0
12.0
36.5
35.0
28.0
108.0
96.0
80.0
Circuit
SHl
i
Half Wave
(Single Leg)
SOl
Doubler
(Two Legs)
CircUIt
I
5Hl
Module
[
501
585
5E5
I
Cell
2AOl
3A03
4A05
5A09
6A14
7A12
8A36
9811
01 through 43
P (.7 Kv)
• Check Table I below for maximum voltage allowed per leg vs.
circuit configuration.
• Check Table II A below for maximum number of modules allowed for
each circuit configuration.
Formula for Channel Number
Channel Number=(Nx5)+C
N = Total numberof modules in channel
5=Module spacing factor, Table II 8
C= Channel circuit factor, Table II C
5 (.8 Kv)
Z (1.0 Kv)
,
Cooi,ng-
I MaXlIllUnl :
Module
I
2AOl
2AOl
3A03
3A03
4A05
5A09
6A14
7A12
8A36
9811
Voltagp
Oil or
Air
16 Kv
11.2 Kv
16 Kv
11,2 Kv
8.0 Kv
4.0 Kv
4.0 Kv
1.0 Kv
1.0 Kv
1.0 Kv
Oil
Air
Oil
Air
Air or Oil
Air or Oil
Air or Oil
Air or Oil
Air or Oil
Air or Oil
Example
Required is a single phase bridge rated (with safety factor)
at 15 KV per leg, I DC output of 12 amps at 40°C ambient natural
convection, and non-repetitive single cycle surge rating of 140 amps.
Circuit Conflquratlon
,
SHl
I
I
688 Kv
313.6 Kv
688 Kv
313.6 Kv
168 Kv
172 Kv
84 Kv
43 Kv
43 Kv
21 Kv
r
SOl
336 Kv
156.8 Kv
336 Kv
156.8 Kv
80 Kv
84 Kv,
40 Kv
21 Kv
21 Kv
-
58::'
. . . Select
-[
160 Kv
67.2 Kv
160 Kv
67.2 Kv
40 Kv
40,Kv
20 Kv
10 Kv
10 Kv
-
SE5
96 Kv
44.8 Kv
96 Kv
44.8 Kv
24 Kv
24 Kv
12 Kv
6 Kv
6 Kv
-
Table II-A, B, C
,
B
A
I
Mi:::Ix Allowed TotLlI :
I Modules vs CircUIt
I
Confl~urdtlon
I
Module
:
-
CircUit
43
43
28
21
21
42
42
28
20
40
40
24
20
I Spat
36
36
24
18
I
C
I
C
S I C ChdfltHl
Module
CircUit Factor
IrlCJ
I SH1'I SOl I 56S I SEb 'I F d ct 0 r
2A01,3A03
(Oil Only)
5A09, 7A12 &.8A36
2A01, 3A03 (Air)
4A05,6A14
9811
I
CircUIt
' -- ~
,SHl i SOli SB5
1.0
1.0
1.5
2.0
2.0
0
0
0
0
1
1
1
1
1
I SE5
3
3
3
3
5
5
5
5
Table III
Channel No
01
02
03
04
05
06
07
08
09
10
11
12
13
14
16
16
17
18
19
20
21
22
A72
I
Lenqth
Inches (mill)
4.25
5.00
5.75
6.50
7.25
8.00
8.75
9,60
10.25
11.00
11.75
12.50
13.25
14.00
14.76
15.50
16.26
17.00
17.75
18.50
19.25
20.00
Chdnnel Number
01 through 43
Table I-Maximum Stack Voltage per Leg vs.
Circuit Configuration
Module
I
Number of Modules pl::.r Leg
M (.6 Kv)
108
127
146
165
184
203
222
241
260
279
298
318
337
356
375
394
413
432
461
470
489
508
II
Chdnnel No
23
24
25
26
27
28,
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
I
Length
Inc hes (mill)
20.75
21.50
22.25
23.00
23.75
24.60
26.26
26.00
26.76
'27.60
28.25
29.00
29.75
30.60
31.26
32.00
32.75
33.60
34.25
35,00
36.75
527
546
565
584
603
622
641
660
679
698
717
737
756
776
794
813
832
851
870
889
908
Module for current and surge from information,
Result
7A12, this number is inserted as the 4
through 7 digits in the product description number.
Cell voltage letter code from information.
"select
Note, highest voltage available would
give most compact deSign but may affect delivery
at times; also, the higher voltage cells operate the
snubber components and diodes closer to
maximum ratings. Z (1.0 KV), this letter code is
Result
inserted as the\8th digit in the product description
number. Number of modules required per leg by
"'Obtain
dividing required voltage per leg (with safety
factor) by module voltage (number of cells
per module times cell voltage) .
15 KV
1 Celi/ModuleX1 KV/Cell 15 modules
15 (9th and 10th digits of product description
Result
number).
Circuit configuration available for your
•
Select
(Trial I) requIrement; check -.
Ta-tiles rand Ilfor'feasibility. This case, a
SB5 7 A 1215, would not be feasible because
60 modules exceed the maximum channel length.
Select
By dividing assembly into next standard
(Trial II) circuit configuration, a doubler design (S01
can be considered as indicated in Trial 1.
SD1 works (1st, 2nd, and 3rd digit of the
Result
product description number). Two assemblies
are now required for a complete single phase
bridge,
Note: This assembly could have been reduced
to single leg components by using the SH1
circuit (four assemblies would then be
required). The added cost for this is minimal
and may be desired should parts or spares
standardization be practical.
Calculate Channel number using total number of
modules per stack channel (N) and multiplying by module spacing factor (5) per Table II
B, then adding the channel circuit factor (C)
per Table II C. N=15 modules/legX2legs
= 30 modules.
Channel number= (N XS)+C
=(30X1)+1=31.
31 (11 th and 12th digits of product descripResult
tion number).
,
Answer S 017 A 12Z1531 (Two doubler assemblies
will be required for this single phase bridge
example).
l1li
Product
Description
Number
5
Circuit
0
1
112 1,3
7
4
Module
A
1
I 151 61
2
7
Cell
Z
8
Module!
Leg
1
5
9 I 10
Channel
Number
3
1
11112
Electrical Characteristics
Average Power Dissipation per Module
60
55
1. and 3.
~
50
..
45
'8
40
:;
::!
Ii
c.
..
=
,
/I
~
,
~
./'
)1'
,/
I'
./
35
//
~
30
V
./
C
.2
10
c.
25
:~
i
~V
10
o
V
/
15
0..
5
V
/
20
Q
A
/
..... V
2AOl
/
./
V
o
3
/
90
60
~
50
C
40
'=
30
~
0
20
C
Ii
0..
/"
/
..,.. V
/
V
10
0
./
./V
/
0
[
/
,
,,/
".,.
V
6A14
V ~A09
/
---
i...-
-
5
V~A1J & ~A1J
/
70
jg
4
/
80
8.
V
V
1. and 3.
::!
V
~ /'V
100
'8"
I'
4A05
."
2
Forward Current, Average Amperes per Module
.!!
~V
3A03
~
7A12
o
2
.3
4
5
6
7
8
9
10
15
20
Forward Current. Average Amperes per Module
.!!
'8"
140
8.
120
::!
I
a.
100
g
80
.~
60
[
C
1
40
r:JIII"
....-
20
o
-
8A36
o
20
30
~
--
40
/
.,,::: roo-
50
60
....... ~
...-
70
::::
80
..,.. ~
~
"i:'"
90
-
..,..... ~
~
.........
98 1
100
110
Forward Current, Average Amperes per Module
A73
I
BA10
CA10
Design Modules
These modules. consisting of silicon diodes
and compensating network. provide the
optimum in steady state and transient voltage
division. The design of the stacks provides
for cooling by free convection air. forced
convection air. or oil.
6.0 Amp Lead Mount
6.0 Amp Lead Mount
Ordering Information
See previous section. High Voltage Stack Channel Design for ordering details in conjunction with tables below.
CIfCUlt
SHl
I
Module
I
BAlD
Cell
M(.6Kv)
SDl
CA10
SB5
5(.8Kv)
SE5
I
Module
MaxlI1ll1ln
Module
Voltage
I
Cooling
Od or
A"
Channel Number
01 through 43
• Check Table 1 below for maximum voltage allowd per leg vs.
circuit configuration.
Formula for Channel Number
Channel Number = (NxS)+C
• Check Table II A below for maximum number of modules allowed for
each circuit configuration.
N=Total number of modules in channel
S=Module spacing factor. Table II B
C=Channel circuit factor. Table II C
Table I - Maximum Stack Voltage per Leg vs.
Circuit Configuration
I
I
Number of Modules per Leg
01 through 21
~
BAlD
6.4KV
Oil or Air
134KV
64KV
32KV
19KV
CA10
4.8KV
Oil or Air
l00KV
48KV
24KV
14KV
Table II - A. B. C
B
A
Module
SHl SDl SB5 SE5
BAlD
or
CA10
A74
I
C
C
Channel
ClfClllt Factor
S
Module
Spacing
21
20
2q
18
Factor
2.0
CircUit
SHl SDl SB5 SE5
0
1
3
5
Coolmg Conditions
Air Flow
Temp "C
BA 10
CA 10
Features and Benefits:
• Fully Compensated Modules For High
Reliability
.
• Vari-l...ength Design For Circuit and
.
Mounting Flexibility
• High Density Packaging For Compact
Designs
• Ratings For Air and Oil Cooling
• Expert Applications Assistance
• Special Designs Available on Request
• High Repetitive Surge Ratings
• Compression Bonded Encapsulation For
Thermal Cycling Capability
,
• Availability, Present High Volume Device Production
Applications:
•
•
•
•
Fusion and High Voltage Research.
High Voltage Free-Wheeling Rectifiers'
Laser Supply Charging Diodes
.
Magnetic Metal Forming Supplies
Circuits
DIMENSION IN INCHES (MILLIMETERS)
HB1
1"
HC1
_t
110
3.00 (31.10)
(76.20) ""I
1__
HD1
HH1
I - - - - - - - ' - - - l ' --~_---_I
u,1IIIII
HN1
-1
IT7.L
8.50
mix.
3.18
(88.55)
. . 112-11 ...
A76
~.j ~i~}
118r)
IIIX.
(190.6)
1
Design Modules
Type 76A,B,C,D
Type B6,A,B,C,D
Heatsink Plate Only
Added Heatsink
Module Cell Types
Average Power Dissipation Per Module (2400 Volts applied per module)
4oowr-----------r---------~~--------~----------~;_--------_,--------;_~
II>
t:
co
300w
3::
c0
~
...
'iii
II>
200w
i5
a;
it
0
a.
100w
O,~O----------2~5----------5~0----------~7~5----------10~O----------1~2-5---------1~50
Forward Current, Average Amperes
A77
50
60,
40
50
60
40
50
60
40
50
60
40
50
60
40
60
85
Natural
Convection
150 LFM
300 LFM
500 LFM
1000 LFM
Oil
'~"VoIta;Q'e
:;,'
,
r, '~in9.ht
~fJI' PRV,
.(Air,orOit)
Convection
40
50
60
40
150LFM
50
Natural
60
40
50
60
40
50
60
40
50
60
40
60
85
300 LFM
500 LFM
1000 LFM
Oil
Muimum Voltage
Rating P4!, Module PRY
(AIr or 011)
23
20
19
33
30
24
111
92
64
35
32
29
42
39
35
47
42
38
50
46
41
121
100
70
SKY ,
BKV
28
26
23
32
27
23
13
8
47
44
39
56
52
47
1~
8
-54
4~
46
8'
6
3
29
24
20
44
37
31
9
7
4
46
41
36'
,12,
8
5
,63
58
40
62
56
50
80
76
69
93
88
82
114
106
99
146
128
98
62
58
54
68
64
60
73
69
64
134
110
76
58
54
49
130
108
82
138
118
90
51a! ,.
4:11t(V
SKV,
,SKY,'
28
24
14
36
26
16
70
64
58
94
88
78
112
104
94
124
114
106
134
124
116
36
26
16
108
98
92
124
116
108
126
128
120
16
12
6
58
48
40
88
74
62
106
88
76
116
108
98
260
216
164
18
14
8
92
82
62
57
53
67
62
58
131
108
76
53
72
44
66
60
38
86
80
74
12
Ii
5
70
Circu;t
40
89
83
71
103
98
91
Half Wave
(Single Leg)
HOI
126
120
116
150
131
100
)AC
~
24
22
12
43
40
38
56
52
46
64
34
46
66
60
48
222
184
128
B4
78
70
94
84
76
100
92
82
242
200
140
262
216
152
146
138
128
268
220
152
72
124
112
100
144
132
120
172
160
148
276
236
180
Doubler
(Two Legs)
.ltv 4.6tQ(
24
16
10
126
116
80
160
150
138
186
176
164
24
16
10
140
120
80
178
166
142
228
212
198
206
196
182
252
240
232
292
256
196
300
262
200
..
()
!
i
!
HHI
60
Circuit
0
HBI
~r
OAC
t
(
~
(
AC
,
Single Phase
External Wiring
Required)
,
150 LFM
300 LFM
500 LFM
1000 LFM
Oil
~muni~
, Rating Per Modi!Ie l"fW
A78
1
7
(Open Negative -
Natural
ConvectIon
(AA«Oil)
11
6
,1IKV
1IKY
5KV
4.6KV
40
50
60
40
50
60
40
50
60
40
50
60
36
33
18
69
60
57
84
78
69
54
39
24
141
132
117
54
39
24
162
147
138
96
81
69
42
36
21
105
96
87
126
117
105
141
126
114
168
156
141
186
171
159
186
1711
162
204
192
180
60
132
111
93
159
132
116
40
50
60
40
60
85
99
90
150
138
72
123
201
186
174
219
207
192
174
162
147
333
276
192
363
300
210
392
324
228
402
33p
228
390
324
246
258
240
222
414
'354
270
6KV
IIKY
·&KV,
5KV
SKY
~,
'"
1IKV
SKV
SKY
4.6KV
24
18
27
36
24
15
189
174
120
36
24
15
210
180
120
267
249
213
9
87
72
150
216
198
180
240
225
207
279
264
246
309
294
273
342
318
297
378
360
348
438
384
294
450
393
300
SKY
".1IKV
.-
.'
4.6KV
21
12
138
123
108
186
168
Circuit
~
--------3 <I> Bridge
THREE
HOI
REQUIRED
OR
SIX
HHI
REQUIRED
Ordering Information
HCl
HDI
B
HHI
6500A
28
Factory
30
Assigned
Dimension
HBI
9.80
HCl
6.60
HDl
6.60
HHI
5.00
HNl
6.60
Tolerance
i..080
Plus
Module
Code
Dimension
Tolerance
01
2.09
02
4.19
03
6.28
04
8.38
05
10.47
+.013
06
12.56
-.003
07
14.66
Per
08,
16.75
Module
09
18.85
10
20.94
11
23.03
12
25.13
...
..
..
...
EXAMPLE:
Frame
Code
Thru
22
23
25
HNI
Table II
Dimension In Inches
Thru
12
5500A
6000A
Required is a single phase bridge rated (with safety factor)
at 60Kv per leg, IDe output 'of 250 amps and a non-repetitive
3 cycle surge rating of 4500 amps (consult @' for repetitive
surge applications).,
SELECT
Module for current and surge from module electrical characteristics tables.
RESULT
B6C Module
B6C, This number will be inserted as the 4 through
6 digits in product description number.
SELECT
Call voltage code from design module cell types.
RESULT
25 (2.5KV), This number code is inserted as 7
through 8 digits.
OBTAIN
Number of modules required per leg by dividing
required voltage per leg (with safety factor) by
module voltage (2 times cell voltage).'
60KV (Total
5KV (Per Module) = 12
RESULT
12 Modules, This number code is inserted as 9
through 10 digits.
SELECT
Circuit configuration available for your requirement by checking maximum allowed modules from
Table II.
RESULT
HH 1 configuration is the only available design ..
Four assetnblies are ;equired, HHl is the 1 through
3 digits.
OBTAIN
High voltage stack length from Table II frame
adder and module dimension adder.
.RESULT
(HH1) 5.00"+ .080" plus (12 modules) 25.13
= 30 13 +.093
.
-.083
STEP
I
4
I
1
I
2
I
3
1
5
(make copy for each use)
Name________________________________________________________ Company_______________________________________
Phone________________________________________--JX~__________~Address __________________~-------------------Job Function _____________________________Sectipn______________ City___________________________ State'___________
Zip _______
Bldg.
Please complete a copy of this form for each different application. Forward this form to Westinghouse Electric Corporatio'n, Semiconductor
Division, Attention: Sales Department, Youngwood, Pa. 15697 for complete quotation. If you need faster service,
please call (412) 925-7272 for a quote.
Circuit
Cooling
0
0
0
0
0
0
0
Application
3"', 12 Pulse Bridge
0
Transmitter
0
Clipper
Charger
De-Queing
Doubler
I </> Bridge
3 q, Bridge
0
Air
o
Oil Type, ______________ Mfg. _________amb. temp. °C_ _ __
o
o
Other, explain
o R F Generator
o Precipitator
o Accelerator
o Hi-Voltage Test Equipment
o Voltage Multiplier
o Other
Natural Convection, Altitude ______________ ft., ambo temp. °C._______
Forced Air, LFM
, ambo temp. °C ________
Current Max. Output Current, IDe
0 RMS
0 Average
Waveform _____________________________
Duty Cycle, Time On ____________________Time Off___________________ Every_____________________________
Cycling (Number of cycles required this application) ____________________________________________________________
Fau It Surge 1'" ______________ Ti me,_______________ ms
3'"
10'"
Time
ms
Time
ms
.Percent Impedance______________________
Transformer KVA
Number of faults expected/lifetime,________________ Note: JEDEC surge is a non-repetitive value. Westinghouse will advise
device for requirement.
Voltage Input Voltage Supply _______________ KV
ACO
DCO
Safety Factor Required: Voltage_____________, Current______________
Circuit Protection:
0
0
Fuse
Circuit Breaker
0
Other, explain
Distance from ground plane (stacks) mounted from:
Bottom
Top,_____________________ Sides,_________________
Other Considerations._______________________________________________________________________________________
Problems experienced in the pastL_________________________________________________________________________________
o
o
o
New Design
Conversion
Replacement
Number /System _______________________________
MFG/Type No. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
Budgetary cost for this system ____________________________________ Number of systems required _________________________
Timetable
Long ra nge potentia 1_________________________________
Westinghouse Assembly Recommended ____________________________________________________.____________________
ABO
Negotiation Number_____________________ Recommended by _ _ _ _-,-_ _ _ _ _ _ _ _ Date _ _ _ _ _ _ _ _ _ _ ____
INTRODUCTION
Westinghouse introduced the first silicon rectifier in 1952. Today, Westinghouse offers a complete line of General
Purpose and Fast Recovery rectifiers.
AII~ rectifier elements use N-type silicon providing soft recovery characteristics which minimize rectifier spike
voltages and reduce transient protection requirements. Westinghouse uses
an exclusive irradiation process to
manufacture fast recovery rectifiers.
This process provides precise control
for better availability, soft recovery
characteristics for less circuit ringing
and reduced transient protection, high
voltage capabilities up to 3200 volts
with low reverse leakage currents, and
fast recoverytimes-200 nanoseconds
for low current (6-30 ampere) rectifiers
and 1.5 to 5.0 microseconds for high
current (80-1400 ampere) rectifiers.
RECTIFIER PRODUCT INDEX
Page
1 Nl183,R-90,R
lNl183A,AR-90A,AR
lNl191, R-98, R
lNl191A, AR-98A, AR
lNl199, R-1206, R
lN1199A,AR-1206A,AR
1 N 1199B, BR-1206B, BR
lN1341, R-48, R
lN1341A AR-48A AR
1 N 1341 B, BR~48B, BR
lN1612, R-16, R
1 N2154, R-60, R
R15
R15
R15
R15
R13
R13
R13
R13
R13
R13
R13
R15
1N3208, R-14, R
1 N3260, R-76, R
lN3288A AR-97A, AR
1 N3615, R-24, R
1 N3670, R-73, R
1 N3670A AR-73A AR
1 N3765, R-68, R
1 N3879, R-83, R
1 N3889, R-93, R
1 N3899, R-3903, R
1N3909, R-13, R
1N3987, R-90, R
R15
R27
R19
R13
R13
R13
R15
R55
R55
R57
R57
R13
1N4001-07
1 N4044, R-56, R
1 N4458, R-59, R
1 N4587, R-96, R
1 N4816-22
R9
R29
R13
R21
R9
lN5052-54
1N5391-99
lN5400-08
R9
R9
R9
Type Number
Page
R5DO
R5Dl
R9GO
R9G2
R23
R23
R51
R75
R302
R303
R310
R311
R340
R55
R55
R13
R13
R9
R402
R403
R404
R405
R410
R411
R57
R57
R17
R17
R15
R15
R500
R501
R502
R503
R510
R511
R23
R23
R59
R59
R23
R23
R600
R60l
R602
R603
R610
R61l
R620
R622
R31
R3l
R63
R63
R31
R31
R39
R67
R700
R70l
R720
R722
R35
R35
R43
R71
R920
R47
R1
--~-'---
------ -"----
• _________
~
Type Number
_
_ -==",-I_",
-
.....
----""----~="-
".....-;;=;
The axial lead mount package is the
most popular 'for one to six ampere
general purpose rectifier (diode) applications. The axial lead mount design
features silver plated copper leads
offering excellent heat conduction, solderability, and corrosion resistance.
Several axial lead mount types are
available with a chamfered body on the
cathode end to insure proper polarity
identification and correct assembly.
Tape and reeling capability is available
for those customers using automatir.
insertion equipment.
All stud mount rectifiers are available
in both standard and reverse polarity.
Color-coded glass or ceramic seals on
all stud mount rectifiers make polarity
identification easy and minimize the
possibility of installing a device of the
wrong polarity. Stud mount rectifiers
(80 amperes and above) feature compression bonded encapsulation (CBE).
This CBE package encapsulation technique reduces thermal fatigue inherent
in conventional solder construction devices by eliminating solder joints.
@disc mount rectifiers offer more amperes per dollar than any other package
type. These devices feature doublesided cooling and have reversible
mounting polarity. These all-copper
non-magnetic packages are ideal in high
frequency applications where magnetic
noise can be a problem. In addition, the
disc glazed ceramic seals are convoluted for long creepage paths which
are especially important in applications
where dirt, humidity and other contaminants can accumulate and cause
arc-over.
Milita,y rectifiers are available in both
polarities in the popular stud mount
00-8 and 00-9 packages: JAN IN328995 series and JAN IN3164-74 series.
Complete test facilities are available for
matching devices' for series and/or
parallel operation,' for special test
parameter selection, and for full-scale
high reliability requirements.@offers a
Lifetime Guaramee on all rectifiers
bearing this symbol +. Specify Westing"
house Rectifiers.
R2
GENERAL PURPOSE RECTIFIERS
1 - 150 Amperes
2000
140CI~------------------------------------------------~-r~~~r
~
120C)~------------------------------------------------TlrT-r;
Z
~a:
w
~
!:i
~
400
200
50~~~~~~~~~-e~~~~~~~~~~~~~~-c~~-c~~~~
1
1.5 1.5
3
5
6
6
12
15
16
18
22
25 35
40
60
70 100 100 150 150
AVERAGE CURRENT RATING
~AXIAL LEAD MOUNT
DSTUDMOUNT
GENERAL PURPOSE RECTIFIERS
160 - 2200 A mperes
4000
3000
~
2000 ' - - -
~a:
1600
z
w~
·C
!:i
g
r-r-
"t
800
400
200
-
"t
a:
a:
CD
CD
...
.CD
a:
"0... ".-0
0
a:
a:
CD
"...
CD
a:
CD
10
N
CD
r- r-
10
... .,...cD "0 "0 '"
0 a: a: .;
'" "00 8" §
C')
50
0
r- ..!-~
-.r- ...
CD
10
1200 ~
1000
600
r-
CD
"...0
CD
a:
"8
CD
r-
III-
-
r-
I
-
~
I~
r-
I r II I r
II
C')
q-,
.11)
a:
a:
...,...0
...,...,
",...00
8",...
"
,...
I
a:
-
q
...,...0
<=!
r-
0
0
0
~
~
a:
a: a: !
a:
a:
a:
160 200250275 300 300300400 450 500 5506009001100120013001600180020002200
!
--
AVERAGE CURRENT RATING
DSTUD MOUNT
~DISC
R3
FAST RECOVERY RECTIFIERS
6 - 1400 Ampere.
3000
2500
2400
2000
C)
z
1800
a:
~
1200
w
C)
CC
!:i
g
1000
800
800
400
200
50
8
12
o
20
30
80
100
200
2150
360
400
600
800
AVERAGE CURRENT RATING
STUD MOUNT
~DISC
Note: Reverse recovery times shown represent fastest currently available at given voltage rating.
R4
800
900
GENERAL PURPOSE RECTIFIERS
1 - 15 Amperes
JEDEC/, TYPE
AVERAGE CURRENT
ONE CYCLE SURGE
VOLTAGE
50
100
150
200
IN4816-22
IN6062-54
IN6400-08
1.5
50
3
200
6
150
IN4816
IN4817
IN5400
IN5401
IN4818
IN4819
IN4820
IN4B21
IN4822
IN5052
IN5053
IN5402
IN5403
IN 5404
IN5405
IN5406
IN1341.A.
IN1348.A.8
IN3987-90
IN5054
IN5408
IN1341,A,B
IN1342.A.8
IN1343.A.B
IN1344.A.B
IN1345.A.8
IN1346.A.B
IN1347,A,B
IN 1348.A.B
IN3987
IN39B8
IN3989
IN3990
PACKAGE TYPE
00-27
"'00-27
00-4
PAGE NUMBER
R9
300
400
500
600
700
800
900
1000
IN5407
R9
•
00-41
,
>
00-27 _
I
,,
,
R13
"For JEDEC Reverse Polarity Units - add suffix "R"_
00-"
GENERAL PURPOSE RECTIFIERS
16 - 70 Amperes
*/*.
JEDEC/TYPE
AVERAGE CURRENT
ONE CYCLE SURGE
VOLTAGE
50
100
150
200
300
400
500
600
18
220
IN1191
IN1192
IN1193
INl194
IN1195
IN1196
IN1197
IN1198
700
800
900
1000
1200
25
IN 1183A-90A
R410-40
R404-70
40
70
1200
~00-27
400
800
IN2154
IN2155
INl183A
INl184A
IN1185A
INl186A
IN1187A
INl188A
INl189A
IN1190A
R4040270
R4040370
R4040470
R4040570
R4040670
R4100840
R4040870
R4101040
R4101240
R4041 070
. R4041270
IN2156
IN2157
IN2158
IN2159
IN2160
R4040070
R4040170
PACKAGE TYPE
00-5
00-5
PAGE NUMBER
R1S
R17
"For JEDEC Reverse Polarity Units - add suffix "R"
""For Reve... Polarity Unit. R410-R41'
R404-R405
,
iR34
+00-_
.i
00-5
(R4041'r
R5
GENERAL PURPOSE RECTIFIERS.
100 - 300 Amperes
150
-3000
R600• ...20
R810-...20
200
5500
IN3288A
IN4587
RSloo120.
IN3289A
IN4588
RSloo220
IN3290A
IN4589
R61oo320
IN3291A
IN32928
IN3293A
IN4590
IN4591
IN4592
IN3294A
IN4593
IN3295A
IN3296A
IN3297A
IN4594
IN4595
IN4596
R6100420
RS100520
R61ooS20
R61oo720
RS100820
R6100920
R6101020
R6001220
R6oo1420
R6oo1620
R6oo2020
R6oo2520
R6oo3020
IN4050
IN4051
IN4062
IN4053
IN4054
IN4055
IN4056
PACKAGE TYPE
00-8
00-8
00-9
00-9
PAGE NUMBER
R19
R21
R31'
R29
4VER4GE CURRENT
ONE CYCLE SURGE
r
VOLT4GE
00-8
..
,
"
~a
II
00-9
i
.
~'~
~
R70
,,
50
100
150
200
250
300
350
400
500
600
700
800
900
1000
1200
1400
1600
2000
2500
3000
'For JEOEC Reverse Polarity Unit. - add suffix "R",
"For Reverse Polarity Units - R600 - RSOl
R6l0- RSll
R600-R60l
R6l0-R6l1
GENERAL PURPOSE RECTIFIERS
300 - 600 Amperes
1',-.
f'
aII
R700• ..o4
R700_..oS
450
8500
550
10000
R7000103
R7000203
R7000303
R7000403
R7000503
R7000603
R7000803
R7oo1003
R7oo1203
R7oo1403
R7oo1603
R7oo2oo3
R7oo2203
R7oo2503
R7oo2803
R7oo3003
R7003503
R7004003
R7000104
R7ooo204
R7000304
R7000404
R7ooo604
R7000604
R7ooo804
R7oo1004
R7oo1204
R7oo1404
R7oo1604
R7oo2004
R7000105
R7000205
R7000305
R7000405
R7ooo505
R7ooo605
R7ooo806
R7oo1oo5
R7oo1205
R70
R70
R70
R35
R35
TYPE
300
6000
VOLTAGE
R62
,~
~
100
200
300
400
500
600
R72
~
~
.
~
"
800
1000
1200
1400
1600
2000
2200
2600
2800
3000
3500
4000
PACKAGE TYPE
•• For Reverse
R6
IN4044-66
IN3288A97A
100
2300
JEDEC/TVPE
R70l
275
5000
IN4044
IN4045
IN4046
IN4047
IN4048
IN4049
GENERAL PURPOSE RECTIFIERS
900 - 2200 Amperes
R920 __11
R9GO__13
R9GO_...J8
R9GO __ 22
AVERAGE CURRENT
ONE CYCLE SURGE
1100
16,200
1300
16,200
1800
21,500
2200
30,000
VOLTAGE 100
200
300
400
500
600
800
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
R9200111
R9200211
R9200311
R9200411
R9200511
R92oo611
R9200811
R9201011
R9201211
R9201411
R9201611
R92018;1
R9202011
R9202211
R9202411
R9202611
R9202811
R9203011
R9GOOl13
R9G00213
R9G00313
R9G00413
R9G00513
R9G00613
R9G00813
R9G01013
R9G01213
R9G01413
R9G01613
R9G01813
R9G02013
R9G02213
R9G02413
R9G02613
R9G02813
R9G03013
R9GOOl18
R9G00218
R9G00318
R9G00418
R9G00518
R9G00618
R9G00818
R9G01018
R9G01218
R9G01418
R9G01618
R9G01818
R9G02018
R9GOO122
R9G00222
R9G00322
R9G00422
R9G00522
R9G00622
R9G00822
R9G01022
R9G01222
PACKAGE TYPE
R92
R9G
R9G
R9G
PAGE NUM8ER
R47
R51
R51
R51
TYPE
tS
'R72
~' R9G
"i~.fN
R7
t
00-4
+
FAST RECOVERY RECTIFIERS
6 - 250 Amperes
* /**
IN3889-93
R302.._12
*/**
12
150
..
R502 __10
~61l2,-;,25
30
300
100
2500
250
'5000
IN3889
IN3890
IN3891
IN3892
IN3893
R3020512
R3020612
IN3909
IN3910
IN3911
IN3912
IN3913
R4020530
R4020630
R5020010
R5020110
R5020210
R5020310
R5020410
R5020510
R5020610
R5020610
R5021010
R5021210
R8020025
R6020125
R$020225
' R6020325
R6020425
R6020525
R8020625
R6020625
R6021025
R6021225
R602i425
.R!I021625
REVERSE RECOVERY
TIME,
200 n.
200 ns
1,5 )Js
'-5-2}'s
PACKAGE TYPE
00-4
00-5
00-8
00-9
PAGE NUM8ER
R55
RS7
JEOECI'TYPE
00-5
AVERAGE CURRENT
ONE CYCLE SURGE
50
VOLTAGE
100
200
300
400
500
600
800
1000
1200
1400
1600
00-8
00-9
R62
R622...40
R722_.DS
R9G2 __09
R9G2 __14
AVERAGE CURRENT
ONE CYCLE SURGE
400
5000
600
9500
900
12000
1400
25000
VOLTAGE 100'
200
300
R6220140
R6220240
R6220340
R6220440.
R6220540
R6220640
R6220640
R6221 040
R6221240
R6221440
R6221640
R7220106
R7220206
R7220306
R7220406
R'7220506
R7220606
R7220806
R7221 006
R7221206
R7221606
R7221606
R9G20109
R9G20209
R9G20309
R9G20409
R9G20509
R9G20609
R9G20809
R9G21009
R9G21209
R9G21409
R9G21609
R9G22009
R9G22409
R9G22509
R9G22609
R9G23009
R9G23209
R9G20114
R9G20214
R9G20314
R9G20414
R9G20514
R9G20614
R9G20814
R9G21014
R9G21214
2-31's
3-5jJs
31's
R72
R9G
R9G
R71
R75
R75
TYPE
4()(j
R9G
500
600
800
1000
,1200
t400
1600
2000
2400
2500
2600
3000
3200
REVERSE RECOVERY
TIME
PACKAGE TYPE
PAGE NUMBER
R8
R63
R302-R303
R 402'--- R 403
R602-R503
RS02-RS03
FAST RECOVERY RECTIFIERS
350 - 1400 Amperes
S
R72
R59
"For Reverse Polarity Units -
'For JEDEC R~rsa Polarity Units add suffix .. R"
,'L5-2I's
R62
R67
,
.I
I
/ l,1
co'
j
;;-'
I
""
'6'
~
//
""i
Symbol
</>b
.,.0
G
L
Symbol
.;b
.;0
G
L
Conforms to 00-41
1N4001 Series
Millimeters
Inches
Min. Max. Min.
Max.
.028 .034
.712
.863
2.04
2.71
.080 .107
.160 .205
4.07
5.20
1.10
28.0
Conforms to 00-15
1N5391 Series
Inches
Millimeters
Min.
Max. Min.
Max.
.027 .035
.686
.889
.104 .140
2.65
3.55
.230 .300
5.85
7.62
1.00 25.40 -
Conforms tolV 00-27
1N5400 Series
Millimeters
Inches
Min. Max. Min.
Max.
.046 .056
.712 .914
4.83
5.33
.190 .210
.285 .375
7.24 9.52
1.125 28.58 -
R34 Outline
R340
Inches
Min. Max.
.046 .056
.360 .390
.250 .350
1.250
~
-
Millimeters
Min.
Max.
.712 .914
9.14 9.91
6.35 8.89
31.75
-
Conforms to 00-27
1N4816 & 1N5052 Series
Inches
Millimeters
Min. Max. Min.
Max.
.712
.914
.028 .036
.190 .210
4.83 5.33
.285 .375
7.24 9.52
1.125 28.58 Features:
• All diffused design
• Low forward voltage drops
• Standard JEDEC outlines
• Lifetime Guarantee
Applications:
• Phase control
• Motor control
• Power supplies
• Light dimmers
R!
Ordering Information
VRRM
(V)
Forward Currant, IF(av)
V
1 Amp
1.5 Amp
1.6 Amp
3 Amp
lAmp
50
100
200
300
400
500
600
700
800
900
1000
1N4001
1N4002
1N4003
1N6391
1N5392
1N6393
1N6394
1N6395
1N6396
lN6397
1N5400
1N5401
1N5402
1N6403
1N6404
1N'6406
1N6406
R3400006
R3400106
R3400206
R3400306
R3400406
R34OO506
R3400606
1N4006
1N4816
1N4817
1N4818
1 N4819
1N4820
1N4821
1N4822
1N5062
1N6063
1N5398
1N6407
R3400806
1N4007
1N6064
1N6399
1N6408
R3401oo6
1N4004
1N4006
Ratings and Characteristics
All Types
Symbol
Repetitive peak reverse voltage. V ••••••••••••
Non-repetitive transient peak reverse voltage. <D.
VRRM
VRSM
100
200
200
300
300
400
400
525
600
650
600
BOO
700
900
1 N4001-07
1 N4B16 thru 1 N5399
1N6400-0B
R340 Saries
IF(av)
IF(av)
1.0
..
1.5
·See Graph A·
3.0
6.0
IFSM
30
3.5
Graph C
50
10
Graph 0
200
16,5
Graph E
400
Symbol
Max forward current. amperes. <!) ••••••••••••
Max current ratings. amperes. <!) ••••••••••••
Max % cycle (60 Hz) peak surge current
(under load). amperes .................. .
Max 1'1 (t<B ms) amps2-second; ••••••.•••••
Max forward voltage drop. peak volts ••••.•••
Max peak reverse current at rated VRRM. "a
TA= 25·C .••••••••••••••••••••••••
TA=150·C •••••••••••••••••••••••••
Max operating ambient and storage temp .•••••
50
100
1'1
VFM
IRRM
IRRM
TA & Tstg
10
300
800
1000
1000
1200
650
Graph F
50
10
10
500
500
300
TA=-65°C to + 175·~Tstg=-65· to +175°C
..
900
1100
•
<D Non-recurrent, B.3 millisecond maximum duration % sine wave pulse. TJ=O· to 175·C.
Graph A-Maximum aliowab,le forward current versus ambient
temperature for resistive load (derate 20% for capacitive load).
Graph B-Maximum allowable peak current versus surge
time statting from maximum rated load.
400
6
360
5
320
1\
\
280
,
~
4
240
3
...
I'
«f'
~
«
2
:.
l..
i
~
C
~
:::J
u
II
I!'
:::J
:::J
U
en
0
0
R10
......
II
~
u..
_
~
!!.
'EIII
~
0
~
180
Q.
E
200
e
II)
40
80
Ambient Temperature, TA, ·C
120
160
200
120
80
40
k
r----
R340
"" , ,
~
........
~
1N4816-22
1N4816-64
1N5391-99
-
2
Cycles ~l 80 Hz
......
1N6400-06
~ 1"0.....
1N4OO1-07
/
/
of
5
"'
r--
~
I
I
10
20
60
100
Graph C-Maximum forward voltage drop of a single diode
Graph D-Maximum forward voltage drop of a single diode
at 26°C and 160°C junction temperatura.
. at 26°C and 160°C junction temperature.
60
100r------r------~----~------~--~--T_--~~
50
70~----~----·_4------4_----~~--~~----_4
40
~ ::;;.-30
50r_-----4--------r------4---~~~~----r_----~
V'
25°C
20
-
H400
J
10
8
6
i
<
~
30~----~----_4------~~~_4------4_----_4
20r_-----+------+-10~----~----_4--~--4_----_4------4_----_4
I
5
gJ
f
Seri s
4
3
I
7~----~----_4~~--4_----_4------4_----_4
'fI
5r_-----4-------+j.-----4-------+--------r_----~
I 3~--4_--~----~--4---_+--__4
2
It-- 25
~
~ 2~-----t----_Ifr------4_------+_------r_----~
I-
15 °C
~ 1.0
~
en
IL
j
t;:
.='"
1ii
:::I
U
.6
.5
.4
.3
.2
11
.7r_-----4--~~-r------;-------+---
j
.5
~
.3r_-----4~_+---r------;-------+-------r_----~
il
c
E
.1
.2
.4
~C
.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8-
.6
.2~-----t~~--~------4_------+_------r_----~
.1~
30
20
10
~
7
/I
5
150°C
~
E
~~~
.5
__
~
______
1.0
~
______L -______L __ _ _ _
1.5
2.0
2.5
~
3.0
Maximum Instantaneous Forward Drop, V FM , Volts
~
V
,..,.
Graph F-Maximum forward voltage drop of a single diode
at 26°C and 150°C junction temperature.
200
IN 816-22
IN 052-54
iN! i::lQ1_QQ
eries
,.ff
VV
,V-
3
~ 2
i
R340 Series
25 r.
I
~
8
/'
~
____
0
Maximum Instantaneous Forward Drop, VFM, Volts
Graph E~Maximum forward voltage drop of a single diode
at 2&oC and 160°C junction temperatures.
50
l
Seri s
~
~ .8
u
j
1 N5 00-08
E
.7
11
~
16O"C
.5
I
; IL
en
:::I
~ .3
E .2
.=~
.1
o
2
3
4
Maximum Instantaneous Forward Drop, VFM , Volts
5
1.4
1.6
1.8
2.0
Maxiinum Foward Voltaga Drop, Vl'M, Volts
R11
How To Determine The Operating
Junction Temperatura of The Lead
Mount Rectifier
When using a lead mounted rectifier as with
all semiconductors, the maximum junction
temperature should never be exceeded. The
derating curves shown in graph A are the
maximum currents at ,specified ambient
temperatures when the lead mount is terminated in a heat sink within Yl inch of the
body. When the lead mounted rectifier isterminated on a terminal strip, printed circuit
board or is mounted in an-enclosed area, the
rectifier could be Operating above or below
the maximum junction temperature because
of the heat sinking area.
To calculate the operating junction temperature, a lead temperature measurement must
be made. First a thermocouple is soldered
to the lead. A small amount of solder should
be used, since excess solder will add to the
area of the lead and will give erroneous
readings. The thermocouple should be
soldered 0.2 inch from the body of the
rectifier. Excessive temperature and excessive time should be avoided when soldering
to the rectifier lead.
Then the lead mount is operated at the
maximum current encountered in the application and the lead temperature is stebilized.
The temperature, forward voltage drop and
current are recorded. The junction temperature is then calculated using the following
formmula:
Example:
The R340 lead mount rectifier is mounted on
a printed circuit board to one inch square
copper pads on each lead. The leads were Yl"
measured from the body of the rectifier to the
printed circuit board. All measurements are
,made in accordance with EIA standard
RS-282. The following was measured.
I
""(avl
= 6AAvg.
= 1.1V
=
=
6.5W
123°C
TA =, TAO =25°C
R9JL = 9°C/W (From Graph G)
P
TL
To take full advantage of the thermal transfer
capabilities offered by the leaCls of lead
'
mounted devices, the following are important points to remember:
• Avoid placing semiconductor devices
which produce heat in locations where air
circulation is restricted.
• Place heat-producing devices on top of a
chassis, instead of below, and preferably
on one that is vertically mounted.
• A 35-mil lead provides approximately 0.1
square inch of radiating surface per inch of
length. 'For this reason one should not trim
off needed cicioHng caPa-Cit.,: --- ,
- ,
The junction temperature can be calculated
as follows:
TJ = TL+(R9JLxP)
123 + (9 x 6.5)
181.5°C
This example shows that one inch square
pads on each lead is not sufficient since the
, junction temperature ,exceeds the 175°C ,
maximu,m: ThisjupcUo!') temperature cel'! b~
"reduced by increasing the copper pads, by
reducing the length of the leads or by increasing the air flow.
• Terminal posts and mounting brackets
frequently provide more cooling area than
the device lead. If possible, take advantage
of the cooling offered by terminals ,and
mounting brackets. Mount heat-producing
devices close to, terminals or brackets.
• Check the ambient temperature inside
cabinets. If it is excessive, install a fan:
forced air can reduce thermal resistance by
as much as 500 per cent.
Graph G-Staady State Thermal Resistance Junction to Lead vs Lead Length
90~--------~--------~---------r---------r---------'
TJ = (TA - TAO) + TL + (R9JL xP)
where TJ = Junction Temperature
TA' = Highest ambient temperature
to be encountered in the
application.
TAO =
The operating ambient temperature at which the lead
, temperature was measured.
80
~
P
...'2
70
60
'rr;-
.,
-ci
'Tl = Measured lead, temperature
~
R9JL = The value obtained from
Graph G for thermal resistance junction to lead at 0.2
inch from the body.
P = The average power calculated
from the current and voltage
readings.
.9
50
40
c
.'.c"
0
'"
.;
,
..
30
.~
20
-,
c
.
, 1115400 selies
1\340 selies
CI>
If the lead temperature is measured at the
maximum operating ambient temperature,
the formula for calculating the junction
temperature reduces to:
TJ = TL + (ReJL x PI
R12
rr;
iij
i
.r:.
I-
10
0
.2(5.08)
.4(10.16)
I,.ead length Inches (Millimeters)
.6(15.24)
.8 (20.32)
1 (25.40)
Symbol
Inches
Min.
A
<l>D
E
F
.424
.075
Max.
.405
.424
.437
.175
J
.BOO
M
N
<l>T
<l>W
.250
.422
.453
.060
.105
10-32 UNF-2A
Millimeters
Min.
Max.
10.29
10.77
10.77
11.10
1.91
4.45
20.32
6.35
10.72
11.51
1.52
2.67
Glass to Metal SealCreepage & Strike Distance =
.07 in. min. (1.75 mm)
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-.2 oz (6g)
R310-Standard Polarity-Gray Glass
R311-Reverse Polarity-Yellow Glass.
Conforms to DO-4 Outline
Matrix
Key Letter
ABC
0
E
F
G
H
I
Features:
• Diffused junction
• Low leakage current
• Lifetime Guarantee
Applications:
• Power Supplies
• DC to DC Conveners
• Battery Chargers
• Machine Tool Controls
NOTES:
1. Complete threads to extend to within
2% threads of seating plane.
2. Angular orientation of this terminal is
undefined.
3. 10-32 UNF-2A maximum pitch
diameter of plated threads shall be
basic pitch diameter (.1697', 4.29 mm)
Ref. (Screw thread standards for federal
services 1957) Handbook H28 Pl.
150
1N1343
1 N1343A
1 N1343B
1 N1201
1 N1201A
1 N1201 B
lN3617
1N1345
1N1345A
1N1345B
lN1203
lN1203A
1N1203B
lN3619
lN3670
lN3670A
lN1583
300
lN1584
1111111B11
500
:::t
1N1Q7
II:
II:
~
700
0)
....as
'0
>
ilN1586
1 N3987
1N44!i8
900
1N4459
~---------------------------------3Ma------------------------------~
R13
16~----~-----,------~----~-----,------,
200
14 ~-----+---~-+
lj=2t iO"C
12~----~----~~---+----~~----+-----~
ISO
~CD.EFGHI-;
L
I
1 Phase
Or
3 Phase
~
~
4~----4-~~~~~~~r---~~~k4----~
.3
2
~
A-,
- L____
~
____
140
~
1/
y
~/
/ V
1---+-J-~c-...3o,.,....--f-......;:~+=~p..,.".pOO&,---i
J O~____~____~______~~__
J
/
/
v
o
V
~
o
Maximum Allowable CaseTemperalure,Tc,"C
10
40
20
70
GO
SO
Forward Current ,[FIAV) ,Amperes Per Diode
Non Repetitive S"rge Current Versus Time
JEDEC Circuit
300
1250
~
~2OO
;~
u
D.U:r.
150
!o
...JI
100
I
J
.OUI.
RDI
SCR
I
Scope
I
50
0
1
2
C)'CIesAt EO Hertz
5
10
20
30
40
EO
Tvpical Recoverv Time Ranges
Westinghouse
Device
Family
R310. R311
.251 rec.
Recovery Time Waveform
R14
JEDEC Circuit
Test Conditions
IIFM =36 A. diR/dt=25 A/jl.s
Typical trr
1-2 jl.S
Symbol
Inches
Min.
A
B
<1>0
E
F
.667
.060
J
M
N
Max.
.450
.080
.667
.687
.200
1.000
.375
.453
.175
.422
.140
.156
%-28 UNF-2A
<l>T
Z
Millimeters
Min.
Max.
16.94
1.52
10.72
3.56
3.96
11.43
2.03
16.94
17.45
5.08
25.40
9.53
11.51
4.45
<l>W
Glass To Metal SealCreepage 8< Strike Distance =
.09 in. min. (2.46 mm)
(In accordance with NEMA standards.)
Finish-Nickel Plate.
A'pprox. Weight-.6 oz (18g)
R410-Standard PolarityGray Glass
R411-Reverse PolarityYellow
Conforms to 00-5 Outline
Matrix
Key Letter
ABC
D
E
F
G
H
NOTES:
I. Complete threads to extend to within
211.t threads of seating plane.
2. Angular orientation of this terminal is
undefined.
3. 14-28 UNF-2A. Maximum pitch diameter
of plated threads shall be basic pitch
diameter (.2268', 5.74 mm) Ref.
(Screw thread standards for federal
services 1957) Handbook H28 1957 Pl.
I
Features:
• Diffused Junction
• Low Leakage Current
• LOWVF
• Lifetime Guarantee
Applications:
• Power Supplies
• DC to DC Converters
• Battery Chargers
• Magnetic Amplifiers
150
:E
a:
a:
lNl185
lN1185A
lN3210
300
lN3211
lNl195
lNl196A
lN2167
lNl187
lNl187A
400
lN3212
1 N1196
1MitllA
1K2'isa . 1";'.
:ufli_
500
lN3213
lNl197
lN1197A
lN2159
600
1N3214
1 Nll1!8
~
Cl
III
800
'0
900
>
1 N1193A
200
700
..
lNl193
·1N1tUA "N2!80,.
tN1189A
lN1189
lllli'_'-1it1'~'J
. ,;". :" ..
;,
",
~ "
For JEDEC Reverse
Polarity Add Suffix
R, i.e"IN1191AR.
lN3765
ft4100822 '
lN3767
1000
IRRM@
25°
IRRM@ 190°C
~-------------------------l00~A --------------------------~~
I:
IE-------------------------- 5.0 rnA --------------------------41
R1
200
TJ = 200 0 C
V
1 Phase
/
Or
3 Phase"-
~
~
~
150
160
10
170
..... --'
20
IY
A,B,C,D,E
F,G,Hil
I-""
40
30
I."
/
60
50
70
Forward Current, IF(AVI, Amperes Per Diode
Maximum Allowable Case Temperature, Te, °C
~
.,
JEDEC Circuit
Q.
Non Repetitive Surge Current Versus Time
900
E
0(
::t
Jg
i
600
~
:;
u
.,
o.u:r.
E'
::>
<f)
~ RFtf==;;;;;:F=~~~~~~~~~
150
::>
E
';(
Ro1
SCR
Scope
::i!
10
·5
co
.01n.
20
30 40
Cycles At 60 Hertz
I
Typical Recovery Time Ranges
.25I,ee.
Recovery Time Waveform
R16
Westinghouse
Device
Family
Test conditions
R410, R411
IFM = 100
A. diR/dt
Typical trr
=
25 Alps
2-4ps
60
Symbol
Inches
Min.
A
E
.667
.060
J
M
N
<pT
Min.
.450
.080
.667
B
<pO
F
Millimeters
Max.
.422
.140
.687
.200
1.000
.375
.453
.175
Max.
11.43
2.03
16.94
16.94
1.52
10.72
3.56
17.45
5.08
25.40
9.53
11.51
4.45
Z
.156
3.96
<pW
%-28 UNF-2A
Glass To Metal SealCreepage & Strike Distance =
.09 in. min. (2.46 mm)
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Allprox. Weight-.6 oz (18g)
R404, -Standard PolarityGray Glass
R405, -Reverse PolarityYellow Glass
Conforms to 00-5 Outline
Features:
• Copper base package
• Hard solder construction
• Proven reliability
in aircraft applications
• Specially designed for
cyclic loading and rotating
applications
NOTES:
1. Complete threads to extend to within
2% threads of seating plane.
2. Angular orientation of this terminal is
undefined.
3. %-28 UNF-2A. Maximum pitch diameter
of plated threads shall be basic pitch
diameter (.2268", 5.74 mm) Ref.
(Screw thread standards for federal
services 1957) Handbook H28 1957 Pl.
Applications:
• Aircraft power systems
• Communications equipment
• High reliability
power supplies
• Motor controls
Ordering Information
Parameter
Current
IF IAVI
@Tc,oC
IFSM
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
TYPE R404, forward polarity, rated at
70A average wilh VRRM = 4OOV, order as:
R404---60
60A
@130
1000 A
12t for FUSing
4160 A'sec
VFM@IFIAVI
& 25°C
1.7V
R404_70
70A
@130
1200A
5600 A 2 sec
1.7V
IRRM@
190°C
6MA
5MA
ReJC
O.75°CIW
O.66°CIW
TJ (Operl
Range
-66
to 200°C
-66
10 200°C
Tsts Range
-65
10 200°C
-65
to 200°C
R17
Voltage.
Blocking State Maximums
Symbol
Repetitive peak reverse voltage, V .•..•••....
Non-repetitive transient peak reverse voltage,
Voltage tp<5.0 msec. V .•.•...........
VRSM
50 100
VRRM
200
300
400
500
600
800
1000
100 150 300
400
500
600
700
900
1100
)
~R~ev~e~r~~I~ea~k~ag~e~cu~r~N~n~t,~m~A~p~ea~k~12:5~._Oc~,.~.~.~.~.~.~IR~R~M~~~t=~--------_l00~A
Typical Recovery Time Range
Test Conditions: JEDEC Circuit
IFM = 100 A. diR/dt = 25A/J,ls
80
.
~
g
~
~::J
to)
8OA~pere
f
.'\.
8-
"~'"
40
3.
.
I!!
a
.:
c 800
~
.
~
100
120
140
Maximum Caae Temperatura, Te, °C
~
eo
~"'lJere .............
"'lJere
t...;....
600
::J
...
l
rn
180
180
~
~
t\.
10
i"--......
::J
to)
.~
20
...............
JI;
"- ~
30
...............
~'000
f'\.
60
1200
E
"2
...~
= 2-4}Js
70A~pere
70
I!! 80
!
<
trr
"
400
E
::J
200
E
'K
III
::i
2
200
5
10
20
1000
.,
TJ = 200°C
80 Ampere
and
70 Ampera
~
..
i'6
~
Q.
Q.
100
E
0(
c:
.2
110
100
TJ = 25°C, 60 Ampere and
70 Ampere
I
~
d·c
50
II
~
I
""
'iii
to)
'6
"2
0
0
40
Forward Current, Averaga Amperes Per Diode
R18
A
f
~
'i.
~
J
TJ = 190°C, 60 Ampere
and 70 Ampere
I!!
i
i
60
40
Cycles at 60 Hz
200r--------r------~~------~------_,
150
~
--..... r.........
60
80
...!
10
/1
2
Maximum Forward Voltaga Drop, VFM, Volts
3
Symbol
A
B
~D
E
F
J
M'
N
a
~T
Inches
Min.
4.18
.050
.860
1.031
.255
2.50
.437
.605
Max.
4.62
.100
1.000
1.063
.400
.650
.645
1.675
.291
.250
.310
%-24 UNF-2A
Z
~W
Millimeters
Min.
Max.
106.17 117.35
2.54
1.27
21.84
25.40
26.19 27.00
10.16
6.48
63.50
11.10 16.51
15.37
16.38
42.54
7.39
6.35
7.87
Creep & Strike-Distance:
Ceramic Seal 1-.66 in. min. (16.94 mm).
Glass Seal -.16 in. min. (4.11 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plete.
Appro•. Weight-3.5 oz (99g)
Standard Polarity-White Ceramic
Reverse Polarity-Pink Ceramic
Standard Polarity-Gray Glass
Reverse Polarity-Yellow Glass
1. Complete threads to extend to within
. 2% threads of seating plane.
Conforms to DO-8 Outline
2. Angular orientation of terminal is
undefined.
3. Pitch diameter of %-24 UNF-2A
(coated) threads (ASA 81.1-1960).
4. Dimension "J" denotes seated height
with lead bent at right angl~.
Symbol
JEDEC Number (D'<D
<I:
...<I:
...z ...z. ...z ...z. ...z ...z
<
<
Ol
III
Maximum Ratings
and Characteristics
Blocking State (TJ =200°C)
Q)
* Non-repetitive Peak Reverse Voltage, Volts
* Max. Allowable doc Blocking Voltage, Volts
......
......
III
0
Ol
N
M
N
Ol
N
M
M
Ol
N
M
N
M
N
M
Ol
N
M
V RRM
100
200
300
400
500
600
VRSM
200
300
400
525
650
800
VR
100
200
300
400
500
600
IRRM
24
24
24
24
21
17
• Available as JAN types
* Repetitive Peak Reverse Voltage, Volts .........
<I:
Q)
..,.<I:
<
Ol
N
M
Ol
N
M
<I:
<I:
,....
Ol
N
M
Ol
N
M
co
It)
....
...z
800
1000
1200 1400
1050 1300
1600 1800
z
800
.
~e
~e
1000
1200 1400
11
9
* Max. Peak Reverse Current at Rated VRRM
100 Amperes Avg. Forward Current, Single
Phase @ Tc =130°C, ma .................
Conducting State (TJ =200°C)
13
7
All Types
* Max. (fca) ®, Forward Current@ Tc=130°C, Amperes
100
Mounting: Recommended stud mounting
torque, 120 in.-Ibs. lubricated.
RMS Forward Current, Amps ......•............
160
Consultlrecommended mounting procedures.
* Max. Peak Y:z Cycle Surge Current (at 60 Hz)
(Under Load), Amps ........•..............•
12t for Fusing (at 60 Hz Half-Wave). Amps2-Sec ....
* Max. Forward Voltage Drop
@ 100 Amperes Average, Tc = 130°C, Peak Volts ..
IFSM
I2t
2,300
22,000
1.5
Thermal Characteristics
* Oper. Junction Temp. Range, °C ........•........
TJ
* Storage Temperature Range, °C ...........•.....
T 8 tg
Max. Thermal Resistance, °C/Watt
* Junction to Case ................•.•...•....
Case to Sink, Lubricated Mounting Surface
<DOrder reverse polarity units by designating R.
<D Full cycle average measured with DC meter.
<DCeramic package avaitable.
@)Ceramic seal supplied
-40@to +200
-40@to+200
.40
.15
• JEDEC Registered Parameters.
R19
~500
~
E
«
-_ ........ 1.
",,;
~
:i
...!!-
50
..........
~
~
~
I
'"
i
..... ..- +---I--i-+t-+Ft~ooI.+!
::l
U
11
.~+
'- + . pr.-~~.~~~+'++~~'~I-H
100
10
LL
.5
1.5
2
2.5
3
Cycles at 60 Hz
Maximum Forward Voltage Drop. VFM • Peak Volts
Figure 1. Forward Current vs. Forward Voltage.
Figure 2. Maximum allowable surge current at rated load conditions;
I
140 I--+---i
~
1~r-~~~~~7r~-+~~~--r-~
~1OO~~~~~-t--~~-+--t-~-1--4--+--~~
.$
! : t-o~.~..d-~~~~--1-.J--r--+-+-i
11
J
t
l
Average Forward Current. IF(AV)
Figure 3. Power dissipation vs. Average forward current.
ai
a"'
t--+-+--i---t--"'~~~+--+--t---i
~ I--t-+~-+--I---+---~~~-+-+-+--i
120
160
Maximum Case Temperature. TC(MAX)"C
Figure 4. Forward Current vs. Case Temperature.
F..tures:
• Standard and Reverse Polarities with
Color Coded Seals.
• High Surge Current Ratings.
• Electrical Selection for Parallel
and Series Operation.
• Compression Bonded Encapsulation.
• Lifetime Guarantee
.4
.9
c:
og
...,::lc:
40
.3
Application.:
•
•
•
•
•
.001
Time. t. Seconds
.1
Figure 5. Transient thermal impedance vs. time.
R20
10
Welders.
Battery Chargers.
Electrochemical Refining.
Metal Reduction.
General Industrial High Current
Rectification.
Symbol
Millimeters
Min.
Max.
Min.
Max.
4.18
.050
.860
4.62
.100
1.000
106.17
1.27
21.84
117.35
2.54
25.40
F
J
1.031
.255
2.50
1.063
.400
26.19
6.48
63.50
27.00
10.16
M
N
.437
.605
.650
.645
1.675
11.10
15.37
16.51
16.38
42.54
.250
.310
.291
6.35
7.87
7.39
A
8
.pO
E
Q
.pT
Z
.pW
%-24 UNF-2A
Creep & Strike-Distance:
.66 in. min. (16.94 mm) .• Ceramic
.16 in. min. (4.11 mm) . • Glass
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-3.5 oz (99g)
Standard Polarity-White Ceramic
Reverse Polarity-Pink Ceramic
Standard Polarity-Gray Glass
Reverse Polarity-Yellow Glass
1. Complete threads to extend to within
2% threads of seating plane.
2. Angular orientation of terminal is
undefined.
3. Pitch diameter of %-24 UNF-2A
(coated) threads (ASA B1.1-1960).
4. Dimension "J" denotes seated height
with lead bent at right al)gle.
Conforms to 00-8 Outline
Symbol
JEDEC NumberCi) Q)
,...
(Xl
(Xl
(Xl
.,..
It)
z
..-
(J)
(Xl
~
N
M
.,..
(J)
(J)
(J)
(J)
(J)
It)
It)
It)
It)
It)
It)
It)
z
z
z
..-
z
z"""
z
..-
z
0
(J)
.,..
.,..
.,..
~
~
~
It)
z
It)
z
.,..
~
.,..
.,..
~
~
It)
.,..
co
(J)
.,..
~
•
•
* Repetitive Peak Reverse Voltage, Volts ..........
V RRM
100
200
300
400
500
600
* Non-repetitive Peak Reverse Voltage, Volts .......
V RSM
200
300
400
525
650
800
1050 1300
1600 1800
800 1000
1200 1400
* Max. Allowable d-c Blocking Voltage, Volts ......
VR
100
200
300
400
500
600
IRIAV)
9.5
9.5
9.0
9.0
8.0
6.5
800
1000
1200 1400
* Max. (fca) @, Reverse Current at Rated VRRM
150 Amperes Avg. Forward Current, Single
Phase @ Tc
110°C, rna .................
=
Conducting State (TJ
= 200°C)
* Max. (fca) @, Forward Current
All Types
@ Tc 110°C, Amperes
RMS Forward Current, Amps .................... .
IF IAV)
150
IFIRMS)
2~6
(Under Load}, Amps ........................ .
* Max. Forward Voltage Drop
@ 150 Amperes Average, Tc
=
3,000
.... .
I FSM
12t
37,200
110°C, Peak Volts ..
V FM
1.35
Amps~Sec
4.5
4.0
3.5
• Ceramic Seal Supplied
Mounting: Recommended stud mounting
torque, 120 in.-Ibs. lubricated.
Consult recommended mounting procedures.
* Max. Peak 'h Cycle Surge Current (at 60 Hz)
Pt for Fusing (at 60 Hz Half-Wave),
5.5
G)IOrder reverse polarity units by designating R.
o 'Full cycle average measured with DC meter.
o Ceramic package available.
Thermal Characteristics
* Oper. Junction Temp. Range, °C . . . . . . . . . . . . . . . ..
* Storage Temperature Range, °C . . . . . . . . . . . . . . . . ..
Max. Thermal Resistance, DC/Watt
Junction to Case ..... . . . . . . . . . . . . . . . . . . . . ..
Case to Sink, Lubricated Mounting Surface
" JEDEC Registered parameters.
TJ
T stg
-65 to +200
-65 to +200
Re JC
Re cs
.35
.15
R21
Electrical Characteristics
~[IJ[~~[2t~IJ[f.~£]~~J:J~~ia~~~
~3000
L~ r'--r~I- --"--~
~
I
:::J
..
••
U
gj,
~m
-"'1000
l'-
c...
5
'x
~
o
5
1.5
2
Maximum Forward Voltage Drop. VFM • Peak Volts
Figure 1. Forward current vs. Forward voltage.
2.5
.
~:
§E
10
- L .__
,--,
.. '
.
II ......
1 .
____--l..-..J ___" _.
0
125
3
Cycles at 60 Hz
Figure 2. Maximum allowable surge current at rated load con·ditions.
~ 120
~
:::J
U
'E
~
.£
80
gj, 40
~
OJ
~
Maximum Case Temperature. Tc(MAX)'C
Figure 4. Forward current vs. Case temperature.
Features:
• Standard and Reverse Polarities with
Color Coded Seals.
• High Surge Current Ratings.
• Electrical Selection for Parallel
and Series Operation.
• Compression Bonded Encapsulation.
• Lifetime Guarantee.
Applications:
• Welders.
• Battery Chargers.
• Electrochemical Refining.
• Metal Reduction.
• General Industrial High Current
Rectification.
Time. t. Seconds
Figure 5. Transient thermal impedance vs. time.
R22
Symbol
A
B
",0
E
F
J
M
N
Inches
Min.
4.18
.050
.860
1.031
.255
2.50
.437
.605
Q
",T
Z
",W
Conforms to 00-8 Outline
Features
• Standard and Reverse Polarities with
Color Coded Seals.
• Flag Lead and Stud Top Terminals
Available.
• High Surge Current Ratings.
• Special Electrical Selection for Parallel
and Series Operation.
• Compression Bonded Encapsulation.
• %" Stud Package Available.
• Lifetime Guarantee
Max.
4.62
.100
1.000
1.063
.400
.650
.645
1.675
.250
.291
.310
%-24 UNF-2A
Millimeters
Min.
Max.
106.17 117.35
1.27
2.54
21.84 25.40
27.00
26.19
10.16
6.48
63.50
11.10 16.51
15.37
16.38
42.54
6.35
7.39
7.87
Creep & Strike-Distance:
RSOO.501-.66 in. min. (16.94 mm).
RS10.511-.16 in. min. (4.11 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-3.S oz (99g)
RSOO-Standard Polarity-White Ceramic
RS01-Reverse Polarity-Pink Ceramic
RS10-Standard Polarity-Gray Glass
RS11-Reverse Polarity-Yellow Glass
1. Complete threads to extend to within
2J.1, threads of seating plane.
11
R510/511
R600/601
2. Angular orientation of terminal is
undefined.
3. Pitch diameter of %·24 UN F·2A
(coated) threads (ASA Bl.I-1960).
4. Dimension "J" denotes seated height
with lead bent at right angle.
Applications
• Welders.
• Battery Chargers.
• Electrochemical Refining.
• Metal Reduction.
• General Industrial High Current
Rectification.
Example
Obtain optimum device performance for your
application by selecting proper Order Code.
!
Type
R
S
j
0
Voltage
0
L
3
Type R51 0 rated at 150A average with VRRM =
300V. and standard flexible lead-order as:
,*t3!!l""s ,M't;; (";"'-':'"
* W' Stud package similar to 00·30 case.
R23
Voltage
Blocking State Maximums (i)
Symbol
Repetitive peak reverse voltage, V ...
Non-repetitive transient peak reverse
voltage, tp <5.0 msec., V ..•.•••
VRRM
100
200
300
400
600
600
700
800
900
1000
1100 1200 1300 1400
VRSM
200
300
400
500
600
700
800
900
1000
1100
1200 1300 1400 1500
R510 ALL TYPES
R500 ALL TYPES
Reverse leakage current, mA peak ..
IRRM
30
Current
R510_15, R511_15
R500_15, R501_15
Conducting State Maximums
Symbol
R510_10, R511_10
R500_10, R501_10
RMS forward current, A ...........•.••••• _....
Ave. forward current, A
One-half cycle surge current@, A
3 cycle surge current@, A .................. .
10 cycle surge current@, A ................ ..
I't for fusing (for times=8.3 ms) A' sec .....•...••
Forward voltage drop at IFM =470 A and
TJ=25°C, V .••...•••..••..••••••••••••.••
Forward voltage drop at rated single phase average
current and case temperature, V •••••....••••. _
IF(rms)
IF(av)
IFSM
IFSM
IFSM
1'1:
160
100
2300
1875
1350
22,000
236
150
3000
2375
1750
37,500
VFM
1.55
. 1.40
VFM
1.37
1.35
Typical Reverse Recovery Time
IFM =314A, tp=40!,s
diR/dt=25AI!'s,
TC=25'C, I's .......... .
,-
7
trr
Thermal and Mechanical
________________~----------------~--S~ymbOI
120
Max. mounting torque, in ib.CD
Thermal resistance
Case to sink, lubricated,
'C/Wall
Min., Max. oper. junction
temp., ·C ...•........••
Min., Max. storage temp., 'C.
'"
3000
~
CD
Q.
E
<
:i
..;'
i
2000
~:::I
U
CD
~
:::I
III
.
~
CD
1000
Q..
E
:::I
E
..
'x
~
Cycles at 60 Hz
(i) At maximum TJ
CD Per JEDEC RS-282, 4.01 F.3.
CD. For R5DO W' stud package use 130 in.-Ib.
,
R24
R8CS
TJ
Tstg
.20
--------------;,1
-65 to 200
-65 to 200 ------------~
2000
'000 F
~~
I,OIi
I
R~,Llo.' R~"I
~ ~ 100-
,10
....
3000
.
2000
~
10
~ RSOO-'O. RBOI
.
T = i2 Cp'
R500-15. RBOI
1000 II- I- _. ...
..
C.
~200
T = 2E ·C
...:
~F j
~
i
~::>
U
II
1/
~~
-
2.5
2
1.5
.5
10
5
o
Maximum Forward Voltage Drop. VFM• Peak Volts
180
"'
'40
Ij
'20
S~gle
J
I/'
80
:t
U
80
1• 40
r
l"-
. ~L.
.......
.
o
100
120
AI;1
11n
!R5'
110
" ""-, ,
"'"
'" "" ~~
......,
~ ~r:
!!
~
~"'I
~!&..!'
180
~
160
J
l·-- 1-.•.
i---
!
200
300
I--
1--
..
::E
100 I -
220
o I...o
,... lI.
J
1/ ~
r---+-
~ ~ r~
I
200
If
....
11
3 ha e.IU ;'as ~-.
v ith nt rp as
Ii
~
Maximum Case Temperature, TC(MAX)'C
200
6Ph se ~ta
~.
Q
I
i
160
2.5
2
1/
~
2
lii
9rn
~-
_.
140
I.
3
~
V. "- ~- I
in, e +ha e
" 'i"-
~
i"
c
r-
~tttI
- I
I
200
r--
I
I
II~, -f-,p ,
'--Ii
I
100
.. _1--
i~
~
~ V' ~"
l/
,
"
~~
,'J
If'
"J
300
400
500
300
400
500
Average Forward Current, IFIAy)
240~m
1
1.5
;c 400
-
i
~
~ ~
i
I
.5
500
J
",
"- ~~
-!
Maximum Forward Voltage Drop, VFM' Peak Volts
"\.
20
J
~
IPhal It
~,
I
i
Dc
m
_.
I I
I\. If"
600
,/
100
-
.
",
=
.
:&IE
...
3
.....
50
20
0
.
.~
100
~
~
J...Io ~
IS
~.
E
)1/
_.
ill!:
l- RS10-1B. RB"_'S 1- l--
!II 500
rI
-
-- ..
~-
600~==
1
t
,'20
a
1
80
f40
l
120
140
Maximum Case Temperature, TdMAX) 'C
160
180
200
100
200
Average Forward Current, IF (AV), Amperes
R25
...
200
190
~
i
~
320
Type R5OCL.10. R501
--
HIO
170
i
SINGLE PHASE
t""oiO:"'"
~ ~ ~~
lJ' ";;::::
SIX PHASE.I
160
~
i
240
11-
200
"'iii
,!!l
THREE PHASE /
.
C
m 120
II
11-
E
::J
~
,~.,
100
90
E
::J
E
';c
::!;
.
o
20
40
80
100
80
120
140
190
u
0
170
~
160
oj
:;
ta
..... r-.;;::
i.I SINGLE
PHASE
THREE PHASE
~
~
~ ~V
lJ' ~ 1"'= ~ "'......."
SIX PHASE 1/
~~
150
.
120
80
40
0
i
>
~
.......
C
,2
Oi
In
110
11-
E
::>
E
';c
::!;
100
.,
80
Average forward Current, IF (AV!. Amperes
~
20
40
l' SINGLE PHASE
80
60
120
100
140
100.
120
140
~
TH~EE ~HA~E ,
160
E
60
~~
SIX PHASE \
80
40
V
..-.!
200
i
-"
~
~ P'
240
120
20
P"
~
V
~~
1/
TYPE R5OCL.15. R501_15
C
90
...
,..... ~ ~
~
L
;;
V
280
130
.,
,
,
120
E
';c
::!;
~
TH~EE ~HA~E
160
m
II
::J
~
320
"'iii
I-
R26
15
& 140
E
~
Average Forward current. IF IAV!. Amperes
TYPE R5OCL.15. R501
180
~
~
.... ....
V
SIX PHASE,
Average Forward Current. IF (AV!. Amperes
200
V
./
~
110
::!;
J
0
.~
130
I-
~PE ~5~16, R5hl~1O
280
C
V
140
¥l
~
~
/
~
::J
150
E
10
40
0
'" ~
...--
jiijIP
k!: ~ ~
P""
V
~
V ~ ~ ~ ....
.....Vk:::: ~ ~
V
V
[7
..,
~~
I"S:NG~E P7AS~
100
40
20
60
80
Average Forward Current, IF (AV), Amperes
120
140
Symbol
A
B
r/>O
E
F
J
M
N
Q
r/>T
Z
r/>W
Symbol
Maximum Ratings
and Characteristics
Blocking State (TJ =190"C)
Volts
*
Millimeters
Min.
Max.
135.13 152.40
1.60
4.37
24.89 27.05
30.78 31.75
6.35 16.00
82.55
13.46 19.18
16.76 19.02
57.15
8.38
8.89
11.18
Creep & Strike Distance:
.49 in. min. (12.52 mm) .• Ceramic
.13 in. min. (3.43 mm). _. Glass
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-8 oz. (226g)
Standard Polarity-White Ceramic
.Reverse Polarity-Pink Ceramic·
Standard Polarity-Gray Glass
Reverse Polarity-Yellow Glass
1. Complete threads to extend to within
2'1.. threads of seating plane.
2. Angular orientation of terminal is
undefined.
3. Pitch diameter of %-16 UNF-2A
(coated) threads (ASA 81.1-1960).
4. Dimension "J" denotes seated height
with lead bent at right angle.
Conforms to 00-9 Outline
* Repetitive Peak Reverse
Inches
Min.
Max.
5.32
6.00
.063
.172
.980 1.065
1.212 1.250
.250
.630
3.250
.530
.755
.660
.749
2.250
.330
.350
.440
%-16 UNF-2A
JEDEC Number 0!CD
0
N
M
N
N
N
M
M
...co
rco
co
ex>
en
co
0
...r-
on
r-
~
N
M
N
M
N
M
Z
Z
Z
~
~
~
800
900
1000
1200
1400
1600
100 200 250 300 350 400 450 525 650 800 925 1050
1175
1300
1600
1800
2000
720
800
960
1120
1280
co
N
M
z
CD
z
co
z
~
co
M
z
~
N
co
'"
N
M
M
N
M
~
~
z
~
co
co
N
N
M
M
Z
~
~
~
r-
r-
N
M
N
N
M
M
Z
Z
~
~
r-
r-
.N
M
Z
N
M
Z
.~
r-
.
N
M
Z
~
Voltage
............. ,VRRM
50 100 150 200 250 300 350 400 500 600 700
Non-repetitive Transient Peak
Reverse Voltage. Volts. V RSM
* Allowable doc blocking
voltage. Volts ........ V R
40
80 120 160 200 240 280 320 400 480 560
640
* Max. (fca) CD. reverse current
at rated VRRM (rep); 160
amperes avg. forward current,
single phase @
Tc=125°C. ma ...... IR(AV)
Conducting State (TJ = 190°C)
*. Max. (fca)
®.
Forward Current at Tc = 130°C. amps
....
12
Symbol
I F(AV)
RMS Forward Current. Amps . . . . . . . . . . . . . . . . . . . . . I F(RMS)
All Types
• Ceramic seal supplied.
160
250
• JEDEC registered parameters.
* Max. Peak '/2 Cycle Surge Current (at 60 Hz) .
(Under Load),Amps . . . . . . . . . . . . . '. . . . . . . . . . . . . I FSM
12t for Fusing (at 60 Hz Half-Wave). Amps2-Sec ...... 12t
2,000
16.700
* Max. Forward Voltage Drop
®
@ 160 amperes average, Tc=125°C, peak volts
V FM
Mounting: Recommended stud mounting
torque; 360 in.-Ibs. lubricated.
1.6
Thermal Characteristics
* Oper. Junction Temp. Range, °C . . . . . . . . . . . . . . . . . . TJ
* Storage Temperature Range, °C . . . . . . . . . . . . . . . . . . T stg
-65 to +190
-65 to +175
Max. Thermal Resistance, °C/Watt
* Junction to Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . ReJC
Case to Sink, Lubricated Mounting Surface ... . . . .. R ecs
'CD Order reverse polarity units by designating R.
CD Full cycle average measured with DC meter.
'0 Ceramic package available.
0.30
.15
R27
Electrical Characteristics
2000 p::~=rn:r:r+:[;J~~+r++=1rrT-lr-:::q1000 I I I I __- -~~
~ '//$'" .
... -- t:::::::::
~-i-
500 ~
-t··I--:"::
...
:--;i--::::
J: ; ·-; -1 ;~- I~ /-I· ·iI5d;~1+;;;allllll·I--I~-I-;
10111111111111
S!
0..
__ _
50 - -
j
--
~
~
20 c-"'-j-'-+-.I-f-+-+-
I-i--Ir-~
5
8~~t:::::b
~ 3 F::":'
0 2 3
4
5
~ 2400
I
i I
r!
j'600 t--t--~-+I--t""+-~..,C:t+-'-I-+--:-1'-1-+++-H+++I
~-
81200
~~
. :-- -I- 1++H-+1H-l
I--+-~~+I-++i-H-h:"';':-+-+'''-.~~I::!-+++-+++.J
~
en 800 I--'---+-+-I-++f++
.>I.
I
!:-- ...
. T " ... ~t·
., ;
=
.. i.
rI
~
,'!
§ 400 I---f-H--i.+H-tHf-++-+--i-f-+-i-++I-H-H-+-I
I
.~
+
~
2
t
II
f I
i 1""-
3.
5 7 10
20
Overload Operating Time. CVcles at 60 Hz
6
Maximum Forward Voltage Drop. VFRM • Peak Volts
Figure 1_ Forward current vs_ forward voltage.
r--,.......,.--r-1r-l')""T"
.. :.,.....~.,..,.Ii""T"l.,....,i""T"l-...,.-.,..-,-...,..,...,...,..,.,.I...-.-...!.......
8.
:
~ 2000 i""'~
30
:itt
50 70100
Figure 2. MaJ<imum allowable surge current at ratec;lload conditions.·
¥l
~600
:>
~
~
lliillllilllillliilllllil
r
tl-tt
1200
~-++H+I*+2i
.{ 400
i
]
,-t-t-l-t
u. 100
E
:::l
I
100
200
300
400
500
600
Average Forward Current. IF(AV)' Amperes
Figure 3. Power dissipation
VS.
average forw8.rd current.
120
f
140
160
Maximum Case Temperatuie. TC(MAX)'·C
Figure 4_ Forward current vs. case temperature .
.4rT~~mrTT~~~~~~~~~~<T~rrm
Features:
• Standard and Reverse Polarities with
Color Coded Seals
• High Surge Current Ratings
• Electrical Selection for Parallel
and Series Operation
• Compression Bonded Encapsulation
• Lifetime Guarantee
Applications:
•
•
•
•
•
TIme.
Figura 5. Transient thermal impedance versus time.
R28
Welders
Battery Chargers
Electrochemical Refining
Metal Reduction
General Industrial High Current
Rectification
180
Inches
Min.
Symbol
A
5.32
.063
.980
1.212
.250
3.250
.530
.660
B
.pO
E
F
J
M
N
6.00
.172
1.065
1.250
.630
135.13 152.40
1.60
4.37
24.89 27.05
30.78 31.75
6.35 16.00
82.55
13.46 19.18
16.76 19.02
57.15
8.89
8.38
11.18
.755
.749
2.250
Q
.pT
Millimeters
Min.
Max.
Max.
.330
.~50
.440
%-16 UNF-2A
Z
.pW
Creep & Strike Distance:
.49 in. min. (12.52 mm)., Ceramic
.13 in. min. (3.43 mm) •• Glass
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-8 oz. (226g)
Standard Polarity-White Ceramic
Reverse Polarity-Pink Ceramic
Standard Polarity-Gray Glass
Reverse Polarity-Ye"ow Glass
1. Complete threads to extend to within
2% threads of seating plane.
2. Angular orientation of terminal is
undefined.
3. Pitch diameter of %-16 UN F-2A
(coated) threads (ASA 81.1-1960).
4. Dimension "J" denotes seated height
with lead bent at right angle.
JEDEC number<D®
Maximum Rat'ings and Characteristics
Blocking State (TJ =190°C)
Symbol
...
a
a
a
... ... ... ... ... ... ... ... ... ...
III
co
,...
a
a
a
0
Z
Z
Z
'<t
'<t
'<t
'<t
'<t
'<t
co
'<t
'<t
'<t
'<t
a'<t •
Z
Z
a
a
III
a
Z
Z
Z
Q')
'<t
'<t
'<t
co
III
N
III
M
III
III
III
III
'<t
'<t
'<t
...
Z
'<t
a
Z
'<t
a
Z
'<t
...
...
BOO
900 1000
a
Z
III
'<t
Z
* Repetitive Peak Reverse Voltage,
Volts
., .... , ........ , ..... V RRM
50
100
150
200
250
300
400
500
600
700
100
200
250
300
350
400
525
650
BOO
925
50
100
150
200
250
300
400
500
600
700
* Non-repetitive Peak Reverse
Voltage, Volts .... , .......... V RSM
1050 1175 1300
* Max. allowable doc blocking
voltage, Volts , .............. V R
BOO
900 1000
* Max. (fca) ®, reverse current at
rated V RRM ; 275 amperes avg.
forward current, single phase
@T = 120°C, rna ... , ... , . , . I R(AV)
Conducting State (TJ = 190°C)
15
Symbol
All Types
* Ave. Forward Current (180° Conduction) @
T
= 120°C,amps
® ....................... IF(AV)
275
RMS Forward Current, amps .................... IF(RMS)
435
* Max. Peak Y2 Cycle Surge Current (at 60 HZ),amps ... IFSM
J2t for Fusing (at 60 Hz half-wave), ampsLsec . , .... Ft
5,000
104,000
Mechanical Characteristics
Finish: Nickel-plated case to maintain low
contact resistance and to prevent corrosion.
Mounting: Recommended stud mounting
torque; 360 in.-Ibs.
Co!.'sult recommended mounting procedures.
* Max. Forward Voltage Drop @ 275 amperes average,
T C = 120°C, peak volts ..................... V FM
1.35
* Oper. Junction Temp. Range, °C. ..' ............. TJ
* Storage Temperature Range, ·C .................. Tstg
Max. Thermal Resistance, °C/Watt
Junction to Case ............•......•....... R eJC
Case to Sink, Lubricated Mounting Surface ....... Recs
• JEDEC registered parameters.
CD Order reverse polarity units by designating
Thermal Characteristics
1 N4044R. etc.
-65to+190
® Full cycle average (measured with a doc meter),
(!) Ceramic package available,
-65 to +190
.17
.15
R29
~
1000
8.
E
<t
"'1l"l
(l.
::i; 100
...!:-
c'
~
::J
u
"E
50
20
~
10
0
LL
2
Maximum Forward Voltage Drop, VFM , Peak Volts
Figure 1. Forward current'vs. forward voltage.
Cycles at 60 Hz
Figure 2. Maximum allowable surge current at rated load conditions.
c: 200
~
::J
U
1!
'"~ 100
0
LL
'OJ"
~
.{
Average Forward Current IF(AV), Amperes
Figure 3. Power dissipation vs. AveFage forward current.
g
Maximum Case Temperature, Tc(Max),"C
Figure 4. Forward current vs. Case temperature.
.2
u'"
~
c
Features:
• Standard and Reverse Polarities with
color Coded Seals
• High Surge Current Ratings
• Electrical Selection for Parallel
and Series Operation
• Lifetime Guarantee
o
"nc
--,::J
§
t
£
.1
Applications:
co
•
•
•
•
•
E~
~~
f-- __
~p
'xE '"
~
~~O
.001
Time, t, Seconds
Figure 5. Transient thermal impedance vs. time.
R30
Welders
Battery Chargers
Electrochemical Refining
Metal Reduction
General Industrial High Current
Rectification
Symbol
A
B
</>0
E
F
J
M
N
Q
</>T
Z
</>W
Applications
• Welders
• Battery Chargers
:. Electrochemical Refining
• Metal Reduction
., General Industrial High Current
Rectification
Inches
Min.
Max.
5.32
6.00
.063
.172
.980 1.066
1.212 1.260
.260
.630
3.260
.630
.766
.660
.749
2.260
.330
.360
.440
%-16 UNF-2A
Millimeters
Min.
Max.
136.13 162.40
1.60
4.37
24.89 27.06
30.78 31.76
6.36 16.00
82.66
13.46 19.18
16.76 19.02
67.16
8.38
8.89
11.18
Creep & Strike Distance:
R600.601-.49 in. min. (12.52 mm).
R6'0.61'-.13 In. min. (3.43 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Welght-8 oz. (226g)
R600-Standard Polarity-White Ceramic
R601-Reverse Polarity-Pink Ceramic
R810-8tandard Polarity-Gray Glass
R6"-Reverse Polarity-YellOW Glass
1. Complete threads to extend to within
2% threads of seating piane.
2. Angular orientation of terminal is
undefined.
3. Pitch diameter of %-16 UNF-2A
(coated) threads (ASA Bl.I-1960).
4. Dimension "J" denotes seated height
with lead bent at right angle.
Features
• Standard and Reverse Polarities
• Flag Lead and Stud Top Terminals
Available
• High Surge Current Ratings
• High Rated Blocking Voltages
• Special Electrical Selection for Parallel
and Series Operation
---,
~
;.I:
~,
~'
.~
t
~'
,,,.,
'
'\
\\
__ '
~
R610!
R611
~
R600!~
R60~
• Glazed Ceramic Seal Gives High Voltage
Creepage and Strike Paths
• Compression Bonded Encapsulation
• JAN Types Available
• Lifetime Guarantee
Ord_ering Information.
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
Type R610 rated at 250A average with V RRM
and standard flexible lead - order as:
= 300V,
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
Type R600 rated at 300A average with VRRM = 1200V,
and standard flexible lead - order as:
R31
Voltage
Blocking State Maximums CD
Symbol
Repetitive peak reverse voltage ,V....... VRRM
Non-repetitive transient peak reverse voltage,
V:S 5.0 msec ...................... VRSM
100
200
400
600
800 1000 1200 1400 1600 1800 200
22002400260028003000
200
300
500
700 1000 1200 1400 1600 18002000220
2400 2600 2800 3000 3200
1+----- R600 __ 20
----i-~*-R600 __ 20-+t~--
1 + - - - - R600 __ 25 .
1+---,-- R600 __ 30 --"";---cH
~--
Min., Max. oper. junction temp., °C . . . . ..
Min., Max. storage temp., °C . . . . . . . . . ..
TJ
Tstg
Typical Reverse Recovery Time
I FM = 785A, tp = 1001's
diR/dt = 25A/l's, Tc = 25°C, 1'8 . .. . . . .
trr
Reverse leakage current, mA peak ........ , I RRM
Current
Conducting State Maximums
RMS forward current, A ........ .
Ave. forward current. A ........ .
One-half cycle surge current®, A ..
3 cycle surge current®, A ..... .
10 cycle surge current®, A .... .
I't for fusing (for times 8.3 ms)
A2 sec.
Forward voltage drop at I FM =
800 A and TJ = 25°C, V ..... .
Forward voltage drop at rated single
phase average current and
R610 (All types)
---.,~
-65.to 190
-65 to 190
-65 to 175
-65 to 190
9
11
-65 to 150
-65 to 190
13
~---------------50-------------~
R600 __25
R610 __25
R601_.25
R61L.25
R600_...30
R610_..30
R601_...30
R611_...30
Symbol
IF(rms)
IF(av)
IFSM
IFSM
IFSM
315
200
5500
4300
3300
400
250
6000
4700
3600
470
300
6500
5050
3900
125,000
150,000
175,000
1.7
1.5
1.4
1.45
1.45
1.45
12 t
Thermal and Mechanical
Symbol
360
Recs
CD At maximum TJ
CD Per JEDEC RS-282, 4.01 F.3.
CD Consult recommended mounting procedures.
R32
----~~-
R600 __ 20
R610 __ 20
R601 __ 20
R611 __20
case temperature, V ......... .
Max. mounting torque, in lb. ® ......... .
Thermal resistance ®
Case to sink, lubricated, °C/Watl . . . . ..
R600 __ 20
R600 __ 25
.10
190 I~
Type RSOO & R60l. _
180
R6l0 & R6l1
_
~
170
VRRMS1000V
~
~ 160
Single Phase
...... ~
150
V""""':: ~
R600.....20. R61D.....20 /
"" 140
'/'-....;:
.fj130
R60l_...20. R6ll_...20
/ ........
/
~ 120
110 I - - R6OD.....25. R61D.....25 /
/
100 I - - R60l_...25. R6ll_...25 '
-
g
i
l
......
•
/
I
90
R600..~O
~ ~
R6ll_..30
I
o
150
100
200
50
Average FoIward Current. IFIAV). Amperes
190~
180
,u ,
300
....... ~
~
--... ~
1~
R610&R611_
VRRM:51000V
Three Phase
__
~
I
E
120
R600.....26. R61D.....26 /
110 ~ R60l_...26. R611_...25 ~+--+-+--7L'+-+-+--I
100 1--..:..:.::..:..r=:..:...:..:.:..:r=:....--+--+-1VI--7<~H-t--I
~
9Or-----+------r--R-600..--~~-O---+~~--~~--~~
!
U
E
.~
~
80
70
60
I----t---+_
R61D..~O /
R6ll_~O --IH----+-t--t----I
R60l_.:aO ~~-----I-+-+---I
5Or----I-----+-----+-1--~----~__I--__I
4OU---r--~---r-1-~-__I_r~___I
O~
o
250
50
100
150
200
Average Forward Current, 'FIAV). Amperes
190 ~
180
~
170
~ 160
~150
R6OD.._20. R61D.._20
R60L...20. R6ll_...20
!
Six Phase
.......... ~
_
-
~ l:'"
1/
1)1'
/
1/
'"
R600..~O
R61D..~O
R6ll __30
R60l_..30
/
R600.._25
R61D.._25
R6ll_...25
R60l __25
~ ~
J o..o
~
~
~
t-:
S
I!?
8.
E
~
~
E
~
'x
~
"?'
0
o
50
100
150
250
200
300
175
17O~
Type RBOO & RBOl
160
..... ~
2000V _
l200V~VRRM
150
Three Phase
~
140
V' --...........;: ~
130
o
I
RBOO_...20
/
12
?"o... ......
RBOL...20
/
110
/
100
R6OD.....25
90
RB01_...25
80
-
-
....
70
60
50
40
.
0
~
o
50
100
150
250
200
300
175
170
Type RBOO & RBOl
_
160
l200V~VRRM
2000V
L"'-.....
~ 150
Six Phase
~---... I-..
~ 140
/
~
~ 130
/RBOD.....20'
to....
t-: 120 -RBOL...20
~ 110
::--....
-.........:
IE
E
j
200
250
-
-
/
100
90
~ 80
~
I
I
50
100
150
Average FoIward Current. 'FIAV). Amperes
70
60
50
40
Average Forward Current,IFIAV). Amperes
R6l0&R6ll
VRRMSi l000V
..............
~
~
300
Type R600 & R60l. _
~
.c 140
.§130
£!! 120
110
a. 100
~ 90
60
50
40
..
.............
Average Forward Current.IF(AV). Amperes
_-+'.:=!II
...
I
........
l ~
350
~ 150
/
""'- ~
"" 140 R600.....20. R61D.....20 ,.LC~~~
--jI-----1
.fj 130 I- R601_...20. R6l1_...20/
~ ...
.
/
R6OD...25 /
R60l_...25
a. 100
Type R600 & R601._
..... ~
170
160
250
-
2000V _
I-..~
R6OD...20 ./
R60L...20
111
j
I
o~
l200VSVRRM
Single Phase
~--......
140 _
- 130
~ 120
0
E
R60l_~O
Type R600 & R60l
-...;:::... ....
~
~
R6la.~O /
60
50
40
175
170
160
~ 150
RBOO• ...25
IR60L...25
70
60
50
40
c~
00
100
50
Average Forward Current. IFIAV). Amperes
150
200
R33
-
150
140
I
.~
~
130
~ ~~
toY 0
.......
0
:::l
~
~
~
§
.~
~
~
"""'----.......-::::::: ~
100 - S i x Phase
~
1§
Type R600-20 _
R601-20
/
/
I
90
~
.."....
Th~ee Phase/
80
""
70
Single Phase
60
l:lIammmmmmmmamm
~
~
• 800
~
....
Type R600-30
m~~~Rt'.l6~0~1-3m~0~fi!fl~mEf
Type R610-30
:. 700
~
~
R611-30
.~
600
.~ 500
/
~400
j~
/
/
E 200
50
40;,;~
0
o
50
00
250
200
150
100
50
100
150
209
250
~
350
400 450 500
Average Forward .Current.IF(AV), Amperes
Average Forward Current. IF(AV), Amperes
10,000
1000
5000
~~
".
~
/
IA'
R610-20,R611-20 ~
R600L-20,R601-20 C-
/.
..,-~
"-
"'-
i'-...
I Tli 15rC I
R610-25,R611-25
R600-25,R601-25
1) = 175°C
'" "
If
Type R600-25
R601-25
Type R610-25
R611-25
~800
-
==
--
-C
I -
r
5.0
2.0
3.0
4.0
Maximum FOlWard Voltage Drop, VFM , Volts
1.0
6.0
~
Six Phase
c:600
R610-30, R611-30
R60CL-30,R601-30
I Tlr 9
«
~700
Three
Phase
'!500
§
200
.~ 100
7.0
~
00
50
100
150
200
250
~
350
400
Average Forward Current.IFIAV), Amperes
~
.2
8OOr-r=~~IIJn~~TT~"--~~-'';'
700
~I"'"
f---
. ..,-1
.1
V
...- ~
o
.001
.005 .01
Time, t. Seconds
R34
.05 .1
.5
5 10
200
150
50
Average Forward Current.IFIAV), Amperes
250
300
",
,
Symbol
",.1':
I
Min.
Max.
9.76
.063
10.00
.172
1.490
247.90
1.60
254.00
4.37
37.85
1.750
.810
41.15
10.92
101.60
44.45
20.57
J
1.620
.430
4.000
M
N
.530
1.04
.755
1.08
3.100
13.46
26.42
19.18
27.43
78.74
.330
.440
.350
8.38
11.18
8.89
</>D
E
j
F
I
"
Q
</>T
Z
, i
,I
!
I
"
R7 Outline
Featu ....:
• Standard and Reverse Polarities
• Flag Lead and Stud Top Terminals
Available
• Flat Base, Flange Mounted Design
Available
• High Surge Current Ratings
• High Rated Blocking Voltages
Millimeters
Max.
A
B
'i
Inches
Min.
, ~,
</>W
%-16 UNF-2A
Creep Distance-2.12 in. min. (53.98 mm).
Strike Distance-1.20 in. min. (30.48 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-16 oz. (454g).
R700-Standard Polarity-White Ceramic
R701-Reverse Polarity-Pink Ceramic
1. Complete threads to extend to within
2% threads of seating plane.
2. Angular orientation of terminal is uhdefined.
3. Pitch diameter of %-16 UNF-2A
(coated) threads (ASA 61.1-1960).
4. Dimension "J" denotes seated height
with lead bent at right angle.
• Electrical Selection for Parallel
And Series Operation
• Color Coded Seals
• High Voltage Creepage and Strike Paths
• Compression Bonded Encapsulation
• Lifetime Guarantee
Applications:
• Welders.
• Battery Chargers.
• Electrochemical Refining.
.' Metal Reduction.
• General Industrial High Current
Rectification.
Example
Obtain optimum device performance for you'r application by
selecting proper Order Code.
Type R700 rated at 450 A average with VRRM = 1000V,
and standard flexible lead-order as:
R35
Voltage
Blocking State MaximumsCD Symbol
Repetitive peak reverse voltage, V ..... VRRM
Non·repetitive transient peak reverse
voltage, tS5.0 m sec, V ..••.••••• VRSM
800
1800 200012:z00 12400 126(1012:8001
500 700 1000
4nrl11 Flnn.11800 2000 2201012~400 2600128(101310001
400 600
Reverse leakage current, mA peak. . . . . IRRM
Switching
Typical Reverse Recovery Time
IFM= 1500A, tp=190,.s
diR/dt=25A/,.s, Tc=25°C,,.s........
trr
Thermal and Mechanical
Min., Max. oper.junction temp., ·C...... TJ
Min., Max. storage temp., ·C........... Tstg
Max. mounting torque, in Ib.@ .........•
Thermal resistance@
Junction to case, °CfWatt. . . . . . . . . . • R6JC
Case to sink, lubricated, °C/Watt. . . . . . R8CS
Current
Conducting State MlI'Ximums
RMS forward current, A ......... ,' .... .
Ave. forward current, A •..............
One-half cycle surge current@, A ....... .
3 cycle surge current<!>, A .......•..
10 cycle surge current<!>. A. . . . ..... .
12t for fusing (for times= 8.3 ms)
A'see...........................
Forward voltage drop at IFM=1500 A
and TJ=25°C, V ..•••••.•.••••••••
Forward voltage drop at rated single
phase average current and case
temperature, V .••...•.......•.....
R700--03
R700--04
R700--05
R701--03
R701--04
R701--05
470
300
7000
'5250
4200
700
450
8500
6400
5100
865
550
10,000
7500
6000
204,000
266,000
416,500
VFM
2.15
1.6
1.4
VFM
1.45
1.45
1.1
IF(rms)
IF(av)
IFSM
IFSM
IFSM
I't
1 At maximum TJ
2 Per JEDEC RS-282, 4.01 F.3.
3 Consult Westinghouse recommended mounting procedures.
R36
-----l"
1IE------65 to 200 ----~1E--,-165 to 175 -...,.tE--------65 to 150
-65 to 200
-65 to 200
to 200 ---"""';M
~----36C1-----~;:---360
360 -----~
I
l!l 1200
I
Type R700/R701
u 200
o
~
I
R700-03
<{
<{
:; 160
~
Q)
2~
~
E
~
6
900
o..<{
800
>
Single
Phase
140
c:"
I"'" ~ b..
.... ~ Ii'
100 Six ~
120
Phase
r--
60
0
700
'"
600
-.,
""'"
80
1100
~1000
VRRM~4000V
180
~
0-
;;::.~:::
,';:
.~:l~:-.~­
_'Bt-OOi.R -Qt-:-04 7-; -:- ,.I ,., - c -
:. ,•'. ;.'
r-:-:-;~:..;+~. ~,
ri-- . .
,Y:j'::
----'-I::~!:~:
.~
0 500
/1"" ~ ~
~
Ql
;!:
Thr:a
Phase
400
0
0..
300
E 200
:::
40
-~x
20
o
o
'"
:2'
100
200
300
400
500
0
600
Average Forward Current, I F(AV), Amperes
'"~
Q)
0-
E
«
:2'
LL
...
c:
~
"
u
'E
~
o
u..
o~---~~~
Maximum Forward Voltage Drop, Vfm, Volts
o
100
___
200
~~~_~~_~~~~
300
400
500
600
700
800
Average Forward Current, I F(AV) , Amperes
\Ii
u'"
B
c:
..,0
.12
"c:
....,"
.10
Q)
"
c:
al0-'"
c:
.08
'.o,
'"
E
0-
.~
o
E
E
Time, t, Seconds Transient Thermal Impedance vs. Time
"
x
'"
:2'
Average Forward Current, I F(AV)' Amperes
R37
220
u
o
200
~ 180
<l:
~
I-u
~-
3
~
160
~
x
~
220
200
I
I
x
~ 160
u 140
.......
......
",-
Z 120
ttl
Iii 100
D.
E
ttl
60
40
20
.Sx
20
o
~
0
o
x
oj
~
220
200
180
ttl
o
100
2<)0" 300
400
500
600
~
~
ttl
U
60
E
40
.£
~
x
u
;..
......
R70C>-05
VRRM:S12ooV
Three Phase
1,/
'............
~
~
~
-
R70<l-04
~
u 140
3
120
Iii'" 100
D.
E
80
I~
u'"
E
100
5\ttl
u
60
E
::J
E
o
100
200
300
400
500
600
700 800
I
I
Type R7oo/R701
~ t-...
VRRM:s12ooV
~ ~....... ........
A
R70C>-03 /
Six Phase
R70C>-05
~ ...... ~
.....-
R70<l-04
~-
~
0
..........
~
.'.~~£ .~t:. '
100
200
300
I
100
ttl
60
E
40
,;.
v'
400 ;·;<'ida- 600
Average Forward Current, IF(AV), Amperes
I
Type R7oo/R701
VRRM:s2000V
~ t-.....
..... ~
140
'"
I'"
'"'"
U
D.
E
o
150
300
450
Average Foward Current, I F(AV) , Amperes
R70<l-04
N
~~
3 120
40
20
"'
700-03
220
200
u
0
..::. 180
x
~ 160
~
"'
ttl
R38
.
80
x
........ ........
ttl
120
'"
E
I'"
...........
Three Phase
40
0
140
..
600
60
20
eo-
/
'"
~
220
200
==::::::::- .........
~ .............. .II'
~-
o
160
~
.-
VRRM:s2000V
R70C>-04
160
20
u
D.
"
............
I.L
~ 180
"
.S
'x
:;;
3
"""'" ~
Type R7oo/T701 -
I-
"' ""
/'
R70C>-03
80
x 180
<l:
I-
/
0
Average Forward Current, I F(AV), Amperes
0
...., ..
R70<l-04
220
u 200
Type R7oo/R701 -
~ i'-o...
120
100
::J
-...........
............
150
300
450
Average Forward Current, 'F(AV)' Amperes
700 800
II
140
'"
E
I'"
D.
Single Phase'
::J
~ 160
~
VRRM:I 2000V
R70C>-03
Average Forward Current, I F(AV)' Amperes
u
-"
80
E
I-
Type R7oo/R701 _
:~
I-
R70C>-04
II
I
:... 180
40
60
::J
-
u
0
'"
'"'"
U
E
E
Single Phase
80
ttl
U
?to
R70C>-03
120
VRRM:! 1200V
~
......... .............. r--.....
.......
140
I
Type R7oo/R701 -
R70C>-05
~ -.......
~ t-...... l/
15. 100
E
~
I
1
Six Phase
~
R70C>-03
80
.S"x
20
~
0
ttl
700 800
-
.
150
300
450
Average Forward Current, IF(AV), Amperes
600
Gene~~1
Purpose
Rectifiers
•
R620
Symbol
<1>0
<1>0,
<1>0,
H
<l>J
J,
N
Inches
Min,
1.610
.745
1.420
.500
.135
.072
.030
Max,
1,650
.755
1.460
.560
.145
.082
300-500 A. Avg.
Up to 3000 Volts
Millimeters
Min,
Max.
41,91
40,89
18.92
19.18
37.08
36.07
12.70 14.22
3.68
3.43
2.08
1.83
.76
Creep Distance-.49 in. min. (12.60 mm).
Strike Distance-.52 in. min. (13.21 mm),
(In accordance with NEMA standards).
Finish-Nickel Plate.
Approx. Weight-2.3 oz (66g).
1. Dimension "H" is clamped dimension.
, R62 Outline
Applications:
Features:
•
•
•
•
• High Surge Current Ratings
• High Rated Blocking Voltages
• Special Electrical Selection
For Parallel and Series Operation
• Available in Factory Assembled
Water or Air Heat Exchangers
• Single or double-sided cooling
• Long creepage & strike paths
• Hermetic seal
• Lifetime Guarantee
Rectification
Free Wheeling
Battery Chargers
Resistance Welding
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
Type R620 rated at 400A average with V RRM
Order as:
=
1000V,
R39
Voltage
Blocking State Maximums<D
Repetitive peak reverse voltage . v .... .' ..
Non-repetitive transient peak reverse voltage.
t:S 5.0 msec .......•.••...........
Symbol
VRRM
100
200
400
600
800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
VRSM
200
300
500
700
1000 1200 1400 1600. 1800 2000 2200 2400 2600 2800 3000 3200
R620 __ 30
R620 __ 30
R620 __ 40
R620 __ 40--il
~620
__ 30~
R620 __ 50
Reverse leakage current. mA peak .........
Switching
Typical Reverse Recovery Time
IFM = 785A.tp := 100,",s
diR/dt:= 25A/,",s. Tc := 25·C. ,",S •• , . . . .
IRRM
60
60
6
9
65 to 190
65 to 190
1000 to 1400
65 to 175
65 to 190
1000 to 1400
.095
.02
.095
.02
50
Symbol
trr
11
Thermal and Mechanical
Symbol
Min .. Max. oper. junction temp .• ·C ......
Min., Max. storage temp .• ·C ...........
Min., Max. mounting force. Ib.®· .........
Thermal resistance®
with double sided cooling
Junction to case, 0 C I Watt ...........
Case to sink. lubricated ·C/Watt ......
TJ
Tstg
ReJC
Recs
65to150_
-65to190~
·1000 to 1400----,!
.095
.02
Current
Conducting State Maximums
Symbol
RMS forward current. A •......
Ave. fo'rward current, A ... , .....
One-half cycle surge current®. A ..
3 cycle surge current®, A , .... .
10 cycle surge current@, A .... .
12t for fusing (for times = 8.3 msl
A2 sec.
IF(rms)
IF(av)
IFSM
IFSM
IFSM
Max 12 t of package (t=8,3 ms), A 2 sec
Forward voltage drop at I FM :=
800 A and TJ := 25·C. V .. , ...
Forward voltage drop at rated single
phase average current and
case temperature, V .' ..... , ...
<D At maximum TJ
CD Per JEDEC RS-282, 4.01 F.3.
CD Consult recommended mounting procedures.
R40
R620 __ 30
R620 __ 40
R620 __ 50
470
300
5500
4300
3300
625
400
6000
4700
3600
785
500
6500
5050
3900
125,000
20xl0·
150,000
20x 10·
175,000
1.7
1.5
1.4
1.7
1.85
1.85
20Xl0·
P
~
:I
150
1400
140
l!
~1~
130
X
;.
I!? 100
.S
.~
90
~
~
+1
ip-
-
1m
8)
.;J 600
10
60
I
0
400
E
:>
E 200
50
j
=l=
~1000
;G11O
~
~~
o(
120
t
..
'x
~
00
50
100
150
20U
250
Average Forward Current.'F(AVI. Amperes
300
350
400
l!
0
250
150
200
100
0
50
Average Forward Current. 'F(AVI. Amperes
300
350
40(
1600
~1400
(2000
~1OOOFi33~:::3~cj~~~~~5:::i
-~
£500
u
1~~~~~~~~~~~~~
to
2.0
3.0
4.0
5.0
6.0
7.0
Maximum Forward Voltage Drop. VFM • VOlts
.10 H-++!I-!1#-I-i-HtIII--l--J..tIl.ilI-l~
.OOH~~~+W~-H~-l­
<:r
.OOH-++!~-r~tIII-~~ilI-l-
~
~!! .071-1-!-HlH1-I-1+l+!-4~~1-++
t~·06
~
B.05I-H~-+H#hlI--4+!~t+
~
.04
.I'~
.:
~ l03I-+++T+II~..f.+W~~I+III-,;f-l...J..J4tHllf--+-HJ+!ltI-+-1:+lt
H++f.IHlI-++H+!!I--I-
~ ~ oU~Iiit::t:rWillU
.0001 .001
TIIIlB t. Seconds
.01
.1
1.0
10.0
100.0
50 100 150 ~ 250 300 350 400 450 500 550 600
Average Forward Current. 'F(AVI. Amperes
R41
175
170
160
~ 150
~ 140
~
~ 150
t.Y130
~ 130
~ 120
~
110
a. 100
~
140
1
~ :
5
~ 120
110
100
E
~
90
3l 80
70
E 60
50
8.
a
E
70
.1 :
~
~
500 550 600
50
100
150 200 250 300
350 400
450 500
Average Forward Current.IF(AV). Amperes
50 100 150 200 250 300 350 400 450 500 550 600
Average Forward Current,IF(AV). Amperes
~
.:.
~
~
50
100
150 200
250
300 350 400
450 500
Average Forward Current.IF(AV). Amperes
190
180
170
160
150
140
~ 130
~ 120
~ 110
8. 100
E
~
90
5
80
§
·xE
~
50 100 150 200 250 300 350 400 450 500 550 600
Average Forward Current.IF(AVI. Amperes
100
150
200 250 300 350 400
Average Forward Current. IF(AV). Amperes
450 500
Symbol
Millimeters
Min.
Max.
Min.
Max.
",0
",0,
",0,
2.250
1.333
2.030
2.290
1.343
2.090
57.15
33.86
51.56
58.17
34.11
53.09
H
",J
1.020
.135
.075
1.060
.145
.090
25.91
3.43
1.91
26.92
3.68
2.29
J,
N
.040
1.02
Creep Distance-1.15 in. min. (29.36 mm).
Strike Distance-1.02 in. min. (2591 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-8 oz. (227g).
1. Dimension "H" is clamped dimension.
Features:
• High Surge Current Ratings
• High Rated Blocking Voltages
• Special Electrical Selection
For Parallel and Series Operation
• Available in Factory Assembled
Water or Air Heat Exchangers
Ii 'Lifetime Guarantee
Application.:
•
•
•
•
Rectification
Free Wheeling
Battery Chargers
Resistance Welding
• Single or double-sided cooling
• Long creepage & strike paths
• Hermetic seal
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
Type R720 rated at 900A average wit/l VRRM "" 1OOOV,
Order as:
R43
Voltage
Blocking State Maximums CD
Symbol
1~12~14~1600 180~rOO~r200 '4~116d~I'80~12000 22~124~1260~128~13000
2400 2600 2800 3000 3200
RepetitIve peak reverse voltage • V ....... VRRM
Non-repetitive transient peak reverse voltage.
t ~ 5.0 msec .....................
VRSM
Reverse leakage current. mA peak .........
IRRM
2.00 300 500 700 1000 1200 1400 1600 1800 2000 2200
I..I'
I..r'"
I..
I'
I..-
R720__06
R720__ 09
R720... _12
50
I'
..
.
~
I'
I'
... I'
R720__06
.
R720__ 06.
-,
R720__ 09~
50
--" LL
50
Switching
Typical Reverse Recovery Time
IFM
lS00tp
190ps
dlR/dt
25A/p.s. Tc
25'C. ps ... · ....
=
=
=
=
"
trr
"
..
1
...
...
..
13
Thermal and Mechanical
Min .• Max. oper. junction temp .• 'c ......
Min .• Max. storage temp .• 'c ...........
Min .. Max. mounting force. Ib® .........
Thermal resistance®
with double sided cooling
Junction to case. 'C/Watt ...........
Case to sink. lubricated 'C/Watt ......
TJ
Tstg
ReJC
Recs
c.-
C;
Conducting State Maximums
IF(rms)
IF(av)
'FSM'
IFSM
IFSM
Max '2t of package (t=8.3 ms). A"sec
Forward voltage drop at I FM
1S00A and TJ
25'C. V .....
Forward voltage drop at rated single
phase average current and
case temperature. V ..........
'2t
=
lOt
~ r""
::: ....
.
...... ...
65 to "75
"6 to 200
2000 t6 2400
.065
.02
R720 __ 09
.
:;: c;:
I'
,
I"!
,.
65 to 150
.65 to 200
2000 to 2400
~
.056
.02
-,....
R720 __ 12
945
600
7000
5250
4350
1415
900
8500
/1350
5300
1886
1200
12500
9400
7800
204.000
80x10·
301.000
80x 10.
660.700
80x10'
VFM
1.8
1.6
1.2
VFM
2.1
2.1
1.6
<D Al maximum TJ
<D Per JEDEC RS-282. 4.01 F.3.
CD Consult recommended mounting procedures.
R44
,
R720 __ 06
RMS forward current. A .......
Ave. forward current. A .........
One-half cycle surge curre,nt@. A
3 cycle surge current@. A .....
10 cycle surge current@. A ....
Pt for fusing (for times =8.3 ms)
AO sec.
=
.055
.02
'""'
i'
Current
65 to 200'
-66to'200
2000 to 2400.
.~
·-:r.
j....~ ... !.
irYPf 1
!
.. I
.\
R720 _06
100
~
~
!
>='
!!
t
E
~
~
il
50
E
E
•
40
~
100
200
300
400
500
soo
700
aoo
200
300
400
500
600
700
Average Forward Current. IF (AV). Amperes
Average Forward Current, IF (AV). Amperes
Maximum ForwardVo!tage Drop, V FM • Volts
Average Forward Current.
~
.06
.9
.05 ,
IF (AV).
Amperes
u
c
°B
.,c
".c
"
.E
~
.04
(J
"C
.03
Co
;;
.L.
.02
;::
.c",
>-;:
E, .01
~u
EO.
'S(
s
~J".
0
.1
.001
.01
Time, t.'Seconds Transient Thermal Impedance vs. Time
\
10
.!
100
J ___
o
.00
200 300 400
500 600 100 800 900 1000 1100 1200 [300
Average Forward Current, IF CAV). Amperes
R45
.:~i:t~2:~';~~~~-~i!
160
SIINGLE ;PHAS¢
120
110
;-,-;-1<72ib::::o;!t=<"k-
;.:i '
! 100
~
!i 90
aE
80
E
70
5
60
!l
~
.. ,
~'-'M _ _
":
".j
E
50
J
40 '
=
'
r:k~H
130
I-'
~
:
0
0
Average Forward Current, IF (AV), Amperes
200
175
170
190
160
180
150
130
140
120
I-'
130
120
100
110
~
100
a
!i
90
E
80
E
80
~
70
E
~
t
~
i!.
~E
60
§
80
:.
.~
70
60
50
,
" .• j
:;
100 200
300 400
!IOO 6()0 700
100
800 900 1000 1100 1200 1300
200
300
Average Forward Current.
Average Forward Current, If ("VI. Amperes
400
IF (AV),
500
190
150
160
140
150
130
140
I-'
~
~
!i
120
5
70
E
::!
TyFjE R720
"
•
I
100
90
~
90
!l
~
~
80
60
80
i
40
0
•.••
Average Forward Current, IF (AV). Amperes
""i.~
•. • .•.•
~
..
~
... ". -- .. ..:
.,.
80
... ,
60
E
50
~
:;
40
~
1000
I
o
f'
""'f
,
L, • ..... r.
0
R46
900
~.:-!-:.
110
!!
~
110
t
800
120
I-'
130
100
700
1200V -< VAAM r'200ElV
.SJitQPHASE. ':' __1-'_'
160
180
170
600
Amperes
200
·1
'_'H'_'~_'
.~
:;
E
j:"
.,..... ~~ ... i,
~
E
~
200011 ;
110
t
90
!i
$.
T~f!~!o f'l:lAA.Elr":"'-; __ "~
140
160
!
~
1200V ~ VAA~
150
170
I-'
~
.JPER-ko,-L-:~-·:-~J
100
. -
~j~- .. --
200
300
400
500
Average Forward Current. If lAY). Amperes
600
700
80Q
900
1000
Symbol
<1>0
<1>0,
<1>0,
H
<l>J
J,
N
Millimeters
Min.
Max.
Min.
Max.
2.880
1.744
2.580
1.020
1.35
.075
.060
2.920
1.755
2.700
1.060
.145
.090
73.15
44.30
65.53
25.91
3.43
1.91
1.27
74.17
44.58
68.58
26.92
3.68
2.29
Creep Distance-.SO in. min. (20.32 mm).
Strike Distance-1.02 in. min. (25.91 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-16 oz. (454g.)
1. Dimension "H" is clamped dimension.
Features:
• High Surge Current Ratings
• High Rated Blocking Voltages
• Special Electrical Selection
For Parallel and Series Operation
• Available in Factory Assembled
Water or Air Heat Exchangers
• Single or double-sided cooling
• Long creepage & strike paths
• Hermetic seal
• Lifetime guarantee
",
it ·
)~\
~)
/.
Applications:
• Rectification
• Free Wheeling
• Battery Chargers
• Resistance Welding
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
Type R920 rated at 1600A average with VRRM
order as:
=
1000V,
R47
Voltage
Blocking State Maximums <D
Repetitive peak reverse voltage ,V •••....
Non-repetitive transient peak reverse voltage,
V :S 5.0 m sec •....................
Symbol
VRRM
VRSM
10~1~0~14~160~1 8°~1100011200
1600 1800 2000 2200
R920 __ 11
./
R920 __ 11
.-
R920 __ 16
./
R920__ 20
~
1
Reverse leakage current, mA peak .........
140~116001180~12000 220~1240~ 12600,1280~ 13000
200 300 500 700 1000 1200 1400
IRRM
100
-,'.....
'i'
... !..-
,,..
':-
2400 2600 2800 3000 3200
R920 __ 11---~
R920 __ 16
R920 __ 20
75
"
,
50
Switching
Typical Reverse Recovery Time
I FM
1500 tp
1901's
diR/dt
25A/p.s, Tc
25·C, I's .......
=
=
=
=
trr
./
,....
12
15
20
,
Thermal and Mechanical
Min., Max. oper. junction temp., ·C ......
Min., Max. storage ,temp.,·C ...........
Min .. Max. mounting force, Ib® .....•...
Thermal resistance®
with double sided cooling
Junction to case, °C/Watt ...........
Case to sink, lubricated ·C/Watt ..•...
TJ
Tstg
L
rReJC
Recs
r-
65 to 190
-65 to 190
5000 to 5500
.03
.01
1-
,
',..
65 to 175
. 65 to 190
5000 to 5500
.03
.01
...
./
.....
...
-
~,-
65 to 150
,
65 to 190
5000 to 5500~
.03
.01
Current
Conducting State Maximums
R920 __ 11
RMS forward current, A ••..... ..
Ave. forward current, A .........
One-half cycle surge current®, A ..
3 cycle surge current®, A ......
10 cycle surge current®, A .....
Pt for fusing (for times> 8.3 msl
A2 sec.
Max l't of package (t=8.3 msJ, A'sec
=
Forward voltage drop at I FM
1500A and TJ
25·C, V ...••
Forward voltage drop at rated single
phase average current and
case -temperature, V ..........
=
IFlrms)
IF(av)
IFSM
IFSM
IFSM
12t
l't
VFM
VFM
CD At maximum TJ
CD Per JEDEC RS-2B2, 4.01 F.3.
CD Consult recommended mounting procedures.
R48
1725
1100
16,000
12,000
10,000
1,100,000
90x10'
R920 __ 16
2500
1600
21,500
16,000
13,300
1,925,000
90x10'
R920 __ 20
3140
2000
30,000
22,000
18,500
3,700,000
90x10'
1.45
1.20
1.05
1.55
,1.50
1.45
-:::
200
lr
180
i
180
~
140
I!
120
!I
100
§
40
!
u
E
I
r--....
Type R920 VRRM.s1200 v
Single Phase
.... ~
~
~ f'} ~
~
TypeR92Q._11/
~~
""
80
80
~
A
TypeR92o.._18/
20
600
1000
1600
2000
i
"
3000
2600
180
180
~
140
;
120
!
100
!
" "-
~"
Type R92o.._20 /
200
u
o
I
tj
E
::J
E
I
200
I
180
140
I!
120
~
I
"""'IIIIi
180
~
i
~
~
~~
~"
~
100
Type R92o.. _11 /
80
Type R92o.. _18 '
80
u
E
40
80
E
20
20
o
600
1000
1600
200
180
180
"'
"" "
2600
2000
100
Type R92Q. _11 "
80
TypeR92o.._18'
Type R92o.. .20
40
20
o
o
'"
/' ~ ') ....
~
3000
~
~~
/
Type R92o.. -20 '
3000
,,
1600
1000
600
"", "-
/~ , } I ' """/ ~
Type R92o.. _18 '
2000
~
2600
"'
3000
Averllge Forwllrd Current. IF (AV). Amperes
-
~
120
2600
ThraePhase
Type R92o.. _11
~,
140
80
~
~
Type R920 VRRM::! 1200 v
Six Phase
~~
'"
Type R920 1200 V< VRRM$ 2000 V
200
~
180
2000
1600
1000
200
lr
Average 50rward Currem. IF IAVI. Amperes
lr
600
..........
"" ~'"
Type R92o....20
o
o
.........
~
40
~"\/
}\.'\
o
'"
~ ~/
Type R92o.. _18 /
'"~" "-
::J
I
~
TypeR92o.._11 /
Average Forward Current. IF (AV). Amperes
Type R920VRRMS1200v
Three Phase -
Type R92o..-20
~
~~
80
Average Forward Currem. IF IAV). Amperes
lr
~
Type R920 1200 V<
VRRMS2000VSingle Phase _
""
/\.\
\ ~,
1000
1600
600
Average Forward Current. IF IAV). Amperes
lr
i
140
;
120
1
100
:
tj
E
::J
E
"'
"x
~
2000
2600
180
~
E
~
~
180
...............
Type R920 1200 V< VRRM:S 2000 V
SixPhasa
~
~
~-..... ~
~
"" >....
/~
80
Type R92o.. _11
80
AV
I'
Type R92o.._18"
40
Type R92Q...20 /
20
o
o
600
1000
,\
~
1600
"
,,,-
"
2000
2600
Average Forward Currem. IF IAVI. Amperes
R4
200
u
o
Type R92Q.. _ 2000 V <:
180
i
VRRMS3000 V
160
r............
~ 140
~
8.
100
E
~
80
Single Phase /
!
60
E
40
'j(
.
20
::!
o
u
::l
E
~
~ ~~
/ ............
~
/
'"
Six Phase I'
500
250
~
700
.2 5000
to
0.
'iii 4000
.!l
C
.,
~
~
a..
"'
1250
1000
750
6000
c:
Three Phase
o
8
~
-.........;:::
Tvpe R92Q.._ll
.,'"
;:
~
e>
.......
120
E
-
3000
2000
E
E 1000
::l
1500
'x.,
::!
0
~
Average Forward Current. IF IAVI. Amperes
~
g g
8
....
~
N
g....
Averalle Forward Forward Current. IF IAV). Amperes
8000r---~~~---'----r---~---r---'---'
r
3
~
2
~
Type R92o.. _11
TJ = 150°C
Ii
f:!
c
..
""~
'"
~
-'
0
;
o
IIIII
100
i 6000~-+--~--+-~---+~~--~-;
~
a..
Type R92Q..-20
TJ=190oC
"E
...!5
~
TvpeR92Q.. _16
TJ = 175°C
e::'"
>
Tvpe R92Q.._16
~ 7000~---4----~----+---~-----t----~~--t----i
I
II
~
'i
~
1000
II
10.000
Average Forward Current.IFM. Peak. Amperes
5i
B
{}.
Average Forward Currnt. IFIAV). Amepres
111111111
lll1lllW
.03 H+I-HHl+HH-tttHitHtlll-ttttltlttffitH-ttHftH1ffHtttllttnm
i
i~H+~~H*~~~~~~~~~ffim~
l~
.en ~JH....++.l..HjIJ.IH.-+H+H#-HHH+tttIIltHitH+ttlttHttH
§SJ:
~
.~ ~
~~OLW~~~~~~WW~~~~~~
.001
.en
.1
Tame. t. Seconds
Transient Thermal Impedance vs. Time
R50
1.
10.
100.
i :::~--~---+----~--+----+--~~~+-~~~-;
J
c
3000
§ 2ooo~--+---+---~~~~~~-t---t---i---1
..:eE
'j(
O~~
o
__-L__~__~~~-L__~~~~.
300
600
900
1200
1600 1800 2100
Average Forward Current. IF IAVI. Amperes
2400 2700
Symbol
4>0
4>0,
4>0,
H
4>J
J,
N
Inches
Min.
2.850
1.845
2.560
1.020
.135
.075
.050
Max.
2.900
1.855
2.640
1.060
.145
.090
Millimeters
Max.
Min.
72.39 73.66
46.86
47.12
65.02 67.06
26.92
25.91
3.68
3.43
2.29
1.91
1.27
Creep Distance-l.15 in. min. (29.36 mm).
Strike Distance-l.02 in. min. (25.91 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-l lb. (454g.)
1. Dimension ""H"" is Clamped Dimension.
R9G Outline
Features:
• High Surge Current Ratings
• High Rated Blocking Voltages
• Special Electrical Selection
For Parallel and Series Operation
• Available in Factory Assembled
Water or Air Heat Exchangers
• Low Thermal Impedance
• Single or double-sided cooling
• Long creepage & strike paths
Applications:
• Rectification
• Free Wheeling
• Battery Chargers
• Resistance Welding
• Cathodic Protection
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
Type R9GO rated at 1800A average with VRRM
order as:
= 1000V.
R51
Voltage
Blocking State Maximums <D
Symbol
Repetitive peak reverse voltage ,V....... VRRM
Non-repetitive transient peak reverse voltage,
V:::: 5.0 m sec ............ , . . . . . . .. . VRSM
1 + - - - - RSGG.._13 - - - - ' I ) - I + _ _ RSGG.._13
1 + - - - - RSGG.._18
1.+---- RSGG...22
Reverse leakage current. mA peak . . . . . . . ..
Switching
Typical Reverse Recovery Time
I FM = 1500 tp = 1901'S
dlR/dt = 25A/p.s, Tc = 25·C, p.s . . . . . . .
I RRM
1+-----100
Symbol
VRRM:::: 1200V
16
RSGG.._18
----)~..f _ -
--+'1+(--RSGG.._13 ---+1
--+
RSGO__ 22
75'---H-~---- 50------;~
1200V <V RRM
!S 2000V
20
2000V <VRRM:s' 3000V
26
trr
Thermal and Mechanical
Symbol
Min., Max. oper. junction temp., ·C . . . . ..
Min., Max. storage temp., ·C . . . . . . . . . ..
Min .. Max. mounting force, Ib@ ........ .
Thermal resistance@
.
with double sided cooling
Junction to case, ·C/Watl . . . . . . . . . . .
Case to sink, lubricated ·C/Watt . . . . . .
TJ
Tstg
ReJC
Recs
VRRM:::: 1200V
-65 to 190
-65 to 190
5000 to 6000
.023
.075
1200V < V RRM ::; 2000V
-65 to 175
-65 to 190
5000 to 6000
.023
.075
2000V < V RRM
-65 to 150
-65 to 190
5000 to 6000
.023
.075
Current
Conducting State Maximums
SYmbol
RMS forward current, A ........ .
Ave. forward current, A ........ .
One-half cycle surge current@, A ..
3 cvcle surge current@, A ..... .
10 cvcle surge current@, A .... .
lOt for fusing (for times'S.3 ms)
A2 sec.
'
Max 1'1 of package (t=8.3 ms), A'sec
Forward voltage drop at I FM =
1600A and TJ = 25·C, V .....
Forward voltage drop at rated single
phase average current and
case temperature, V ......... .
<D At maximum TJ
<D Per JEDEC RS-282, 4.01 F.3.
<D Consult recommended f!lounting
R52
IF(rms)
IF(av)
IFSM
IFSM
IFSM
p~ocedur8S.
,R9GO_13
2040
1300
16,000
12,000
10,000
1,100,000
90xl0'
R9GO_18
2825
1800
21,500
16,000
13,3000
1,925,000
90xl0'
R9GO_22
3455
2200
30,000
22,000
18,500
3,700,000
90xl0'
1.45
.1.20
1.05
1.55
1.50
1.45
:S. 3000V
190
~
180
u
0
~
:;,
....
160
~
g
150
0. 140
E
I- 130
"
"en
ttl
,
~~
~ l'..
170
'"'t'o..
......
120
."
60
o
8
8
'"
.........
190
180
~
:;
g
'"
..
~
""
170
160
150
"
"en
, ,
t-......
~ i"'..
~~
140
Type R9GD.._13
'-
~
§
~
~
175
~ 155
~
~
E
115
0)
ttl
95
'j(
75
u
E
:J
E
I\..
I\..
~
~
§
'" '"
8.....
170
-
~
" '" ,
~
~ype RJGO__ 18 .:s: ~
~
\\
"
"'
o
8
'"
g
~
~
~
~
~
~
Average Forward Current, IF(AV), Amperes
g
'"
~ 155
Type R9GO
VRRM :::;1200V
Six Phase
~
:;
13
I-
'135
ci
~ 130
E
"
I-
CD
I-
0)
en
115
ttl
110
U
E
:J
E
90
95
'j(
ttl
'j(
:2
ttl
:2
Type' R9GD.._13 ~
60
55
35
M
'"
~
~I"
, ,
g
8.....
N
Type R9GO
1200V<VRRM:::;2000V
Three Phase
ttl
I-
ttl
8
It)
175
~ 150
:;
13
E
:J
E
~ I'...
Type R9GO_t2~
en
~
8
I I I
~
0)
Average Forward Current, IF(AV), Amperes
0
"en
U
~~
0.
'190
u
..........
~
:;
~
60
8
N
Average Forward Current, IF(AV), Amperes
I-
, '\ ""
'"
8."
I-
1,\ '
\ I\,
8
75 ~--+---4---4---4---4---~~~~-+---+~~
M
M
~
Type R9GO _18
o
~
g "'"8
'\.
80
95 ~-~--+--~-~--~-~~-+-~~--+-~
13 135
It\. ,
70
~
E
'xttl
r--...
"""'"""
"., "
120
50
ttl
Type R9GD.. _22
u 110
E 100
:J
E 90
'j(
:2
"en
Type R9GO
VRRM:::;1200V Three Phase
~~
ttl
ttl
8.....
135 ~-~--+--~~i-~~-~~~~~;r--r-~
U
'" '"
Average Forward Curren,t, IF(AV), Amperes '"
0.
E 130
I-
8<:t
8
8
It)
~
~ 115 ~-~--+--~-4-~~~~~~~~~~~-~
I'\.
'\. "\
155 1--+-....::p...,~~-+--+--1
0.
E
Type R9GD.. _22
Type R9GD.. _18
70
~
g:;
Type R9GD.._13 " '
110
E
:J
E 100
0)( •
90
ttl
:2
80
0
I--I---
"I",,'" '"
"'.""
V
f'....."
"' ,
r\"" , '"
""\:
'\
U
u
,
Type R9GO
VRRM :::; 1200V
Single Phase
75
70
50
Type R9GD.._18
0
8
'"
8<0
[;l
8
C'\I
8
Il)
8
CD
8N.
Average Forward Current, IF(AV), Amperes
8.....
'"
Average Forward Current, IF(AV), Amperes
R53
150
~~
l;' 140
Xc(
'"
~ .....
~
" " '" t'...
"- '\.
::;; 130
~
:;
I
120
~G> 110
Co
E 100
f-'"
!II
"
u
90
E
::l
E
80
"
70
·x
~
"" '"
"'f\.
G>
i'..
.._
I'\..
"Single Phase
8
~ 8000
i
7000
)
.~f
r-.."
~\ ~hr~Ph~eI
......
Co
5000
.~
4000
j
3000
~
2000
./
::l
..;
E 1000
·x
o ~~
"
~
'"
Type
~
7000
~
6000
~
5000
::;;
8
a
Thre~
-.l
3000
0
/
1/..;1~
V
~~
V
~~
V"
~~
E 1000
10,000
Phase
Singl~ Phase
J
"
:ii
I
Six prase,
-"'"300~600
i"'"
·x
o
900
1200
1500
1800
2100
2400
Average Forward Currn!, IRAV), Amepres
Forward Current. IFM, Peak Amperes
.03
~8000
~
3lCD
u
c:
i'~
.02
>
~
~
::l
-,
o
~I'
tl
c:
CD
7000 r--t---+----ir--t----+
i 6OOO~~--r_~--r__r--~-r~r_~
g
6000~-~-_+-~~-+---+-_4-_7~~~--~
.~
:~
8.
o
.5
J~
eo
::l
"
e=
'jj( U
~~
8
V
2000
E
Single Phase
R9GQ.~18
E
iii
~
~V
Co
.~
Type R9GQ._13
TJ = 150°C
c:
./
~
f""'"
c:"
.2
16 4000
0
.ij
/
Average Forward Forward Current. IF IAV), Amperes
l
1000
/
I
Three Phase
'"
8000
100
V
V./ ~
E
Average Forward Currn!, IFIAV), AmpeJ"es
0
V
J'
V / /
Six Phase
16
8
'"
I
~.
a
"'~
I
o
I
TYPE R9GQ. _13
!II
> 6000
~
SiXPh::~
60
I
I
Type R9GQ. _13 f - - 2000V<VRRM
.01
~
f-u
R54
~
....
~I0
OMC~~~~~
.001
.01
.1
10
Time, t, Seconds
Transient Thermal Impedance Vs. Time
100
o
300
600
__
900
~
__
1200·
~
__
1500
~
__
1800
~
__
2100
Average Forward Current, IF IAV), Amperes
~~
2400 2700
Symbol
Inches
Millimeters
Min.
Max.
.424
.405
.424
.437
A
4>D
E
F
J
4>T
Max.
10.77
10.29
10.77
11.10
.075
.175
.800
.250
1.91
4.45
20.32
6.35
.422
.060
.453
.105
10.72
1.52
11.51
2.67
M
N
Min.
",w
10-32 UNF-2A
Glass to Metal SealCreepage & Strike Distance =
.07 in. min. (1.75 mm)
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-.2 oz (6g)
Standard Polarity-Green Glass
II
Reverse Polarity- Brown Glass
NOTES:
1. Complete threads to extend to within
2% threads of seating plane.
2. Angular orientation of this terminal is
undefined.
3. 10-32 UNF-2A maximum pitch
diameter of plated threads shall be
basic pitch diameter (.1697",4.29 mm)
Ref. (Screw thread standards for federal
services 1957) Handbook H28 Pl.
Conforms to DO-4 Outline
Features:
•
•
•
•
Applications:
•
•
•
•
·Diffused Construction
Fast Recovery
Reverse Polarity Available
LowVF
Ordering Information
Volfdqe
Rdtlnq
I,.
Computer Power Supplies
Control Circuits
Free Wheeling Applications
By-Pass Rectifiers
Electrical Characteristics
"CDCe ·1 "'"CO"
R302 R303 I R302 R303
PardIT1(>ters
I
I
50
IN3879
IN3889
100
IN3880
IN3890
200
IN3881
IN3891
300
IN3882
IN3892
I2t for Fusing
400
IN3883
IN3893
VFM @IFIAV)
& 25°C
500
R3020506
R3020512
600
R3020606
R3020612
R302 - Standard
R303 - Reverse
For JEDEC Reverse Polarity add suffice R, i.e., IN3879R
cD!see JEDEC Circuit
IN3879 R
To
IN3883 R
IN3889 R
To
IN3893 R
" 6A
"12A
@100
@ 100
" 75A
"15OA
.25
90
1.5V
1.5V
" 3.0 MA
"3.0 MA
3.0oC/W
3.0 oC/W
TJ IOPER)
Range
" -65
to 150o.C
" -65
to 150°C
Tstg Range
" -65
to 175°C
" -65
to 175°C
Current
IFIAV)
@TC,oC
IFSM
!fiR CD
" 200 r$
"200 ns
" JEDEC Registered Parameters
R55
Current Versus Temperature
30r-------,--------.--------~------~
300,
.,
200'
-g
15
100
.,
~
III.
Q.
.,
II! 50
<II
E
Co
<
"'.,OJ"
20
<
i
10
~
E
~
Q.
!:
i
~
i
5
u
OJ
2,
u.
1
~
IN3889 Series
10~~~~1_~~~-+--------+_------~
II!
5
::>
u
'E
20~------1--------+--------+-------~
.,II!
Co
IN3879 Series
'EOJ
~
u.
0
1.5
1.0
0;5
. 2,5
2.0
0~80~-~~~-----~~----~~~~--~160
Maximum Allowable Case Temperature, Tc, °C
Maximum forward voltage, VFM, Peak Volts
Non Repetitive Surge Current Versus Time
Power Versus Current
8or----.-----.----~--~_r----_r----~
300r-----,-------,-----,-----,---r-,---,
~
15
~
250
60~--4---_+--~~
m
a.
.i.
j
~
s
g
401---+---+>~-1 Phase_+_---I-_ _-I
..,
(3
(TJ ,; 1500 C)
e-
15
j
20t---+~---t--"O'--1f__'_--+-,---+_--~
~
...O!
.I!
J
E
::>
E
'x
'i
IE
Or:3 Phase
.~
200
O~'--~--~~-~~--~--~---~
10
20
30
'40
60
50
0
2
Forward Current,IF(AV), Amperes Per Diode
5
10
30 40
20
60
Cycles At 60 Hertz
JEDEC Circuit
Normalized Rectifier Efficiency Versus Frequenc
lOO
D.ur.
]
80
h
70
~
60
in
I
.01n.
RDI
SCR
Scope
Reverse Recovery Time IN3879 and IN3889 Series
IFM=36A, diR/dt=25A/usec trr=200 NS
I'R302
50
40
J: o
lK
R56
.........
90
lOOn.
Kilohertz
I
10
100
Inches
Min.
Symbol
A
B
</>0
.667
.060
E
F
J
M
N
Max,
.450
,080
.667
.687
.200
1.000
.375
.453
.175
.422
.140
.156
%-28 UNF-2A
</>1
Z
</>W
Millimeters
Min,
Max.
11.43
2.03
16.94
16.94 17,45
5.08
1.52
25.40
9,53
10.72 11.51
4.45
3.56
3.96
Glass To Metal SealCreepage & Strike Distance =
.09 in. min. (2.46 mm)
,
(In accordance with NEMA standards.)
Finish-Nickel Plate.
A'pprox. Weight-.6 oz (18g)
Standard Polaritv-Green Glass
Reverse Polarity-Brown Glass
NOTES:
I. Complete threads to extend to within
2% threads of seating plane.
2. Angular orientation of this terminal is
undefined.
3. ~-28 UNF-2A. Maximum pitch diameter
of plated threads shall be basic pitch
diameter (.2268", 5.74 mm) Ref.
(Screw thread standards for federal
services 1957) Handbook H28 1957 Pl.
Conforms to 00-5 Outline
Features:
• Diffused Construction
• Fast Recovery
• Reverse Polarity available
• low Profi Ie Package
• low VF
ELECTRICAL CHARACTERISTICS
QRDERING INFORMATION
VOLTAGE
RATING
'OA
"wec I
30A JEDEC
PARAMETERS
R402lR403
R402,R403
<D'N3899
<D'N3909
100
IN3900
200
--
50
Application.:
• Computer Power Supplies
• Control Circuits
• Free Wheeling applications
• Bypass Rectifiers
---
-
IN3B99.R
TO
IN3903 R
----------
-------
IN3909.R
TO
IN3913 R
-
*20 A
*30 A
IN3910
Currant
IF (Ay)
@TC,DC
@IOODC
@IOODC
IN3901
IN3911
IFSM
*225A
*300 A
300
IN3902
IN3912
12t for Fusing
210A2 sec
400
IN3903
IN3913
""M @ IF (AY)
@25 DC
500
R4020520
R4020530
600
R4020620
R4020630
/RRM @ l00DC
R402 - Standard
R403 - Reverse
CD For
1.5 V
*6.0MA
375A2 sac
1.5.V
*10.0 MA
ReJC
1.0DCIW
TJ (OPER)
Range
'-65
. to 150°C
t..65
to 150DC
Tstg Range
'-65
to 175 c C
'-65
to 175c C
I.ODC/W
JEDEC reverse polarity add suffix
R, i.e .. IN3899R.
(j) See JEDEC circuit.
<D trr
200 ns
200 ns
* JEDEC Registered Parameters.
R57
Current Versus Temperature
I
.
~
III
Co
100
.,
TJ = 160°C
.
~
/1. rt
10
5
/I
HI
"E
II~
u
.
~
~
o
IN3903
p"" IN3899
~
u
"E
.
~
~
...
2
1.4
~V
2.5
20
3
3.5
IN389J Series
K~
E
.,
~IN3909-13
.5
/v IN3909 lseries.
~
!!:
1111.
...
30
«
..... TJ = 25°C
---
E
~
-25°C
I '0
~
40
Co
1//.1<.-.
""
.
.,
IL
X//A.
l.
~
0
/h V
«E
E
III
is
~
~
150°C
..,
~
:.,,-"" I /
~
I
10
~~
o
80
100
140
120
180
160
200
Maximum Allowable Case Temperature. Te. °C
Maximum forward drop. IIFM. Peak Volts
Power Versus Current
80
IN3899 and IN3909 Series
~
60
V
40
V
.,~
/
Co
~
~
!!:
/
450
--- --
/
~
20
t-- -...
r--- r--
1-Phase Or 3-Phase (Tj = 150°C)
/
"'Io-~
k
IN3909 Series
IN3899 : r i t " > -
./~
(l
~
I I I I II
o
20·
30
40
50
2
5
10
::::r-r- --
...
...
20
30 40
Forward Current. IF(AV). Amperes Per Diode
Cycles At 60 Hertz
JEDEC Circuit
Normalized Rectifier Efficiency Versus Frequency
60
IN3899 and IN3909 Series
100
1000.
.,
E
u
D.ur.
lK
.OUt
.E
.,c:~
·u
80
70
60
iil
50
10
40
~III
30
c:
.2
~
90
.11
RDl
SCR
Scope
a:
20
10
Reverse Recovery Time IN3899 and IN3909 Series
IFM = 100 A. diR/dt = 25 Alus
R58
Kilohertz
100
Symbol
A
B
<l>D
E
F
J
M'
N
Q
<l>T
Z
<l>W
Conforms to DO-8 Outline
Features:
• Fast Recovery Times
• Standard and Reverse Polarities
• Flag Lead and Stud Top Terminals
Available
• High Surge Current Ratings
• High Rated Blocking Voltages
• Special Electrical Selection for Parallel
and Series Operation
• Glazed Ceramic Seal Gives High Voltage
Creepage and Strike Paths
• Compression Bonded Encapsulation for
Thermal Cycling Capability in Excess of
100, 000 Thermal Cycles
• Lifetime Guarantee
Inches
Min.
4.18
.050
.8~0
1.031
.255
2.50
A37
.605
Max.
4.62
.100
1.000
1.063
AOO
,.650
.645
1.675
.291
.250
.310
%-24 UNF-2A
Millimeters
Min.
Max.
106.17 117.35
1.27
2.54
25AO
21.84
27.00
26.19
10.16
6.48
63.50
11.10 16.51
15.37
16.38
42.54
6.35
7.39
7.87
Creep & Strike--Distance:
.66 in. min. (16.94 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Welght-3.5 az (99g)
Standard Polarity-White Ceramic
Reverse Polarity-Pink Ceramic
1. Complete threads to extend to within
2% threads of seating plane.
2. Angular Orientation of terminal is
undefined.
3. Pitch diameter of %·24 UNF·2A
(coated) threads (ASA B1.1-1960).
4. Dimension "J" denotes seated height
with lead bent at right angle.
MIII
Applications:
• Inverters
• Choppers
• Transmitters
• Free Wheeling
Ordering Information
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
Type R502rated at 100A average with VRRM:;:: 1000V,
recovery time = 1.5 !,sec, and standard flexible lead-order as
R59
Voltage 0
Blocking State Maximums <D
Symbol
Repetitive peak reverse voltage ,v .......
Non-repetitive transient peak reverse voltage.
V~ 5.0msec .....................
VRRM
100
200
300
400
500
600
700
800
900
1000
1100
1206
VRSM
200
300
400
500
600
800
900
1000
1100
1200
1300
1400
Reverse leakage current, mA peak. . . . . . . ..
I RRM
~---------------------------45--------------------------~~
Switching
(TJ = 25·C)
Max. Reverse Recovery Time
IFM = 314A tp = 40p.s
dlR/dt = 25A/ p.s, Tc = 25·C,l's . . • •• . .
1+------------------------1.5, 2.0 & 3 . 0 - - - - - - - - - - - - - - - - - - - - - + - l
trr
Thermal and Mechanical
Min., Max. oper. junction temp., ·C .....
Min., Max. storage temp.,·C ..........
Max. mounting torque, in Ib.@ ® .......
Thermal resistance (J)'
Junction to case, ·C/Watt ........
Case to sink, lubricated, ·C/Watt .....
.
.
.
.
.
-40 to 175
-40 to 175
120
Current
R502 __ 08
R50-3 __ 08
Conducting Stat. Maximums
RMS forward current, A ........ .
Ave. forward current, A ........ .
One-half cycle surge current<!>, A ..
3 cycle surge current<!>, A ..... .
10 cycle surge current@, A ..... .
12t for fusing (for timesi = 8.3 ms)
A2 sec.
Forward voltage drop at I FM
314 A and TJ = 25·C, V ..... .
Forward voltage drop at rated single
phase average current and
case temperature, V ......... .
=
IFlrms)
IFlav)
IFSM
IFSM
IFSM
R502 __ 10
R503 __ 10
125
80
3000
2500
1800
157
100
3500
2900
2150
37,500
51,000
!
12t
VFM
VFM
<D At maximum TJ
<D Per JEDEC RS-282, 4.01 F.3.
<D Consult recommended mounting procedures.
<D For higher voltage. contect Westinghouse.
R60
.27
.12
ReJC
Recs
1.65
1.45
1.60
1.50
180
170
,..
i"=: ~ t::::: ~
~ 160
~
:=
I
(60 Square)
0
I"'"
Three Phase
(1200 Square)
~"" 130
c.
e
~
R502.._08
R503.._08
.I
/,. -.,~~
It': t--..
150 I-- Six Phase
~140
~I--I
I
I
I
Single Phase
(1800 Sine)
./
i 160r--+--+---+--+--~--+-~__~V--+-~V7'~~~
~
7
~
./
./
; 1401.j-~-+-+--+-+-+-~'-~~~~~+-~~~
~
~.
~
1/
=
c120r-~-+--+-~~-+--./~~+~~~~~~~--+--+-~
'~ 100'1--+--lI---l--+-~I7'L..-+,.";"./""'~-l-
'~
./. ~
V
Six Phase
(60 0 Square) -
C, 80~-+-~~~-~~~·~~V~
Three Phase
~
'l
(120 0 Square) I-__f--lf--l
~ 60
V ~
~ 120
5" 110
IL.
§
100
E
40
E
'j(
~
./
t--t-+-+--+-+"""If--t-7f-V-7"'l
.j----I--+-+--+-+~/4--h.£.,i/J;//~
::;;
E
§
I
I-- R502.._.o8
180 I-- R503••,08
90
20
40
60
100
80
Average Forward Current, IF (AVI, Amperes
120
. / I~
Single Phase
""",/~~h~I--4_ (180 0 Sine)
-1--+--1-__1-__1---1
~ 20~~~~j~~~~~±~~~I~~1~~jr~~±~~t~~t~~~~~~~
o
20
40
60
80
100
Average Forward Current, IF (AV), Amperes
,120
180
F
u
0
R502.._08
~ R503 __08
CI)
"c.~
. /~ ~
E
«
"" 1000
~
...- !--
~
,
:ti"
c.
E 140
b
"
100
;== :: TJ = 175°C
;:::: =
... -I
"E
,.
"
~
u..
"
II>
u"
E
"E
"
:2
TJ - 25°C
C/l
250
"
~
230
I
1== R502.._1
~
'iii 130
II>
I--
~
~
90 t--
'"E
E
70
'j(
50
"
:2
3.0
"
Three Phase
(120 0 Square)
10
o
Single Phase
(180 0 Sine)
"...x: .......
" .><
./
./
/
./
./
./
./
:7
./
-/
./
./
150
c.
0
IL.
./
"Ec.
V
~'000
~
"2
f7
~
,3
."
./
J--"
~TJ
~
t::I-' I---
"
A
100
"0
'~5°C
I
u..
::;..-'
20
1-10
F-R502.._1O
~ R503.._10
~
i
"""
./
J'
10'0
140
80
'60
20
Average Forward Current. IF (AV), Amperes
~
~
Six Phase,
(60 0 Square)
C
C 110
110
~
21 Ot-- R502.._10
190
>
~ 170
0
12
100,
0
3
2
Forward Voltage Drop, VFM, Volts
!
'16
130
'j(
I
o
'~
"
I-
/
II
10
:::
160
'iii
l:
u
:=.,;
R502.._10
R503.._10
:; 150
"
~"
~
!
I"J
1\
TI = 2rCI
100
80
40
60
Average Forward Current, IF(AV), Amperes
120
o
2
Forward Voltage Drop, VFM, Volts
3
R61
~------,tp------~
tp=~YCC (,.sec)
IFM'=Ec/VLtC
RD,
SCR,
To
Oscilloscope
JEDEC Recovery TIme Circuit
Recovery Time Waveform
5
¥
.a
S
,.;
E
i=
.,
8.,
a:.,
.,Ie,.
.,
a:
3
~
I
@
r-S;;~
V
-<:: -
.2
ie'= 175 LFM =3\ 4A
0
./
~
~
/.
V
./
/'
,
trr @Tel= 25°C
"I:'s @,Te = 25°C IFM = 314A
. IR
I R
I r I
I
I
VPICS everse ecovery Ime and Overshoot Current Vs.
-Ratj of Revj'se Current for ;2.0 usefR502 atd R50:
T
o
R62
t
4
20
30'
40
Rate of Reverse Current, diR/dt (Amps/usee)
50
o
Recovery Time Comparison for
Fast Switch and Conventional Rectifiers
Symbol
A
B
.. D
E
F
J
M
N
Inches
Min.
5.32
.063
.980
1.212
.250
3.250
.530
.660
Q
..T
Z
..W
Conforms to DO-9 Outline
Max.
6.00
.172
1.065
1.250
.630
.755
.749
2.250
.350
.330
.440
0/4-16 UNF-2A
Millimeters
Max.
Min.
135.13 152.40
1.60
4.37
24.89 27.05
30.78 31.75
6.35 16.00
82.55
13.46 19.18
16.76 19.02
57.15
8.38
8.89
11.18
Creep & Strike Distance:
.49 in. min. (12.62 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-8 oz. (226g)
Standard Polarity-White Ceramic
Reverse Polarity-Pink Ceramic
1. Complete threads to extend to within
2% threads of seating plane.
2. Angular orientation of terminal is
undefined.
3. Pitch diameter of %-16 UNF·2A
(coated) threads (ASA 61.1·1960).
4. Dimension "J" denotes seated height
with lead bent at right angle,
Features:
• Fast Recovery Times
• Standard and Reverse Polarities
• Flag Lead and Stud Top Terminals
Available
• High Surge Current Ratings
• High Rated Blocking Voltages
• Special Electrical Selection for Parallel
and Series Oper.ation
• Glazed Ceramic Seal Gives High Voltage
Creepage and Strike Paths
• Compression Bonded Encapsulation for
Thermal Cycling Capability in Excess of
100,000 Thermal Cycles
• Lifetime Guarantee
Example
Applications:
•
•
•
•
Inverters
Choppers
Transmitters
Free Wheeling
* For higher voltages, consult factory.
Obtain optimum device performance for your application by
selecting proper Order Code.
Type R602 rated at 250A average with V RRM
Recovery time = 1.5 I'sec, and standard
flexible lead - order as:
= 1000V.
R63
Blocking State Maximums<D
Symbol
Repetitive peak reverse voltage ,V ...... .
Non-repetitive transient peak reverse voltage,
V:S 5.0 msec ...•......•..........
Reverse leakage current, rnA peak ..
100
200
400
600
800
1000
1200
1400
1600
200
300
500
700
1000
1200
1400
1600
1800
50
(
Switching
50----+
Symbol
Max. Reverse Recovery Time
=
=
I FM
785A, tp
1001's
diR/dt
25A/ps, Tc
25°C. ps ...... .
=
=
trr
~
1.5. 2.0 & 3.0
Thermal and Mechanical
Symbol
Min., Max. oper. junction temp., °C .
Min., Max. storage temp., °C . . . . . .
Max. mounting torque, in lb.
Thermal resistance
Junction to case, °C/Watt . . . .
Case to sink. lubricated, °C/Watl .
. . . ..
.....
TJ
Tstg
.....
. . . ..
-40t0175
-40 to 200
360
ReJC
Recs
.17
.10
.17
.10
Symbol
R602 __ 20
R603 __ 20
R602 __ 25
R603 __ 25
Current
<D At maximum TJ
CD At 60 Hertz.
R64
1200V < V RRM:S 1600V
-40 to 175
-40 to 200
360
Conducting State Maximums
RMS forward current. A .•...
Ave. forward current. A •........
One-half cycle surge current®, A ..
3 cycle surge current®, A ..... .
10 cycle surge current®. A .... .
I2t for fusing (for times> 8.3 ms)
A2 sec.
Forward voltage drop at I FM =
800 A and TJ = 25°C, V ..... .
Forward voltage drop at rated single
phase average current and
case temperature, V ..... '.....
VRRM:S 1200V
IF(rms)
IF(av)
IFSM
IFSM
IFSM
315
200
4500
400
250
5000
3500
2700
3900
3000
85,000
104,000
1.85
1.65
1.65
1.58
2.0 & 3.0
---l
70 H-··..;-..l±E:::Ff
60 ..
~ ~~~t
O~~·_·~~·~·~~~~~~~==~~~i.~
o
Average Forward Current. IF(AV). Amperes
100
50
50
100
150
150
150
100
50
~r-~~-~""~"--'..'.~~~~-r~~~~
f'
2000
f"
i'~
~3500 ; -
:l
u
~~
300
250
300
I:
•
I
I
'",-
'~
:l
REb<
Rtp;:
m2500
a.
i i! i -I ~tl
I
CJl
-'"
I: fi+
/~~ ~~ ~~ !
.~.:. H·
Iii
I"..... JI i 1
" !'- b:tt'-o~1
E
~2000
I- _
.~
2.5
3.0
3.5
i
I
:E1500
1.5
2.0
Forward Voltage Drop. VFM. Volts
200
II
I
f--
I'i'~
I
i
1.0
250
Average Forward Current.IF(AV). Amperes
Average Forward Current.IF(AV). Amperes
.5
200
Average Forward Current. IF(AV). Amperes
1
2
3
5
10
20
I
30
' SE
50
I
100
Surge Cycles At 60 Hertz
R65
10n
UJ
~-----tp.------~
RD,
R~O.25
tp=nVLC ("sec)
L<O.01I'H
IFMriiEEc/yrJC
SCRl
To
Oscilloscope
JEDEC Recovery Time Circuit
Recovery Time Waveform
3.5
3.0·
u
2,5
w
:t
til
...l:
~
i=
I
0:
(Il
I!!
J
2.0
1.5
1.0
.5
0
10
20
30
40
Reverse Rate Of Current. diR/dt.
I
!
I
... _, .
~
:
!,
I
iI
.-.
.j.,J.
I
,!
i
,
.'
'I
j,
!
,
i
• :11
!;
~-
I
1
i
~
~
V
1
I:
["-'1- . i:~ I-""I-'"
'I
.005 .01
Time. t. Seconds
R66
Recovery Time Comparison for
fast Switch and Conventional Rectifiers
II,
i
:
60
50
N p.SEC
I,
!
,05 .1
.5
5 lO
lOS
Symbol
<l>D
<l>D,
.. D,
H
<l>J
J,
N
Min.
1.610
.745
1.420
.500
.135
.072
.030
Max.
1.650
.755
1.460
. ',560
.145
.082
Min.
40.89
18.92
36.07
12.70
3.43
1.83
.76
Max.
41.91
19.18
37.08
14.22
3.68
2.08
Creep Distance-.49 in. min. (12.60 mm).
Strike Distance-.52 in. min. (13.21 mm).
(In accordance with NEMA standards).
Finish-Nickel Plate.
Approx. Weight-2.3 oz (66g).
1. Dimension "H" is clamped dimension.
R62 Outline
Features:
Applications:
•
•
•
•
•
•
•
•
Fast Recovery Times
High Surge Current Ratings
High Rated Blocking Voltages
Special Electrical Selection
For Parallel and Series Operation
• Non Magnetic Package
• Single or double-sided cooling
• Long creepage 8< strike paths
• Hermetic seal
.' Lifetime Guarantee
Inverters
Choppers
Transmitters
Free Wheeling
*for higher voltages, consult factory
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
Type R622 rated at 400A average with VRRM
and 1.5 /Lsec recovery time order as:
= 1200V,
R67
Voltage
Blocking State Maximums (j)
Repetitive peak reverse voltage ,V .......
Non-repetitive transient peak reverse voltage,
V:S 5.0msec ......................
Symbol
VRRM
100
200
400
600
600
1000
1200
1400
1600
VRSM
200
300
500
700
1000
1200
1400
1600
1800
I
Reverse leakage current, mA peak .........
IRRM
I
*=
50
I'
50
----?
Switching
Symbol
Max. Reverse Recovery Time
I FM
785A, tp
1001'S
diR/dt
25A/ps, Tc
25°C, ps .......
=
=
=
=
trr
I;
...
1.5, 2.0, 3.0
Thermal and Mechanical
Symbol
Min., Max. oper. junction temp., °c ..•.•.
Min., Max. storage temp., °c ..•..•••••.
Min .. Max. mounting force, Ib
Thermal resistance
with double sided cooling
Junction to case. ·C/Watt ...........
Case to sink, lubricated ·C/Watt •.....
.........
TJ
Tstg
-40 to 175
-40 to 175
-40 to 200
1000 to 1400
.095
.02
ReJC
Recs
Current
Conducting State Maximums
Symbol
RMS forward current. A .•.••......•.
Ave. forward current, A ............•
One-half cycle surge current~, A •..•.
3 cycle surge current~, A ........ .
10 cycle surge currel)t~, A •.......
12t for fusing (for times = 8.3 ms)
A2 sec...•...••....••••••......
Max 12t of package (t=8.3 ms).
A2 sec.•••........•.•..•....•.
Forward voltage drop at I.M =
. 800 A and TJ = 25"C, V ••.......•
Forward voltage drop at rated single
phase average current and
case temperature, V ••..••..•.•.•.
CD At maximum TJ
CD At 60 Hertz
R6S
I'(,ml)
1.(••)
I.SM
IFSM
I fSM
R622 __ 35
R622 __ 40
650
350
4500
3500
2700
626
400
5000
3900
3000
86,000
104,000
20 x 10.
20xl0·
1.86
1.65
2.25
2.00
2.0,3.0--7
~150
• • • • • • •
..... 140
jm• • • • •
t
~
~
J
50 100 150 200 250 300 350 400 450 500
Average Forward Current. IF(AV). Amperes
50 100 150 200 250 300 350 400 450 500 550 600
Average Forward Current. IF(AV). Amperes
11_
~1400
21600
i
1200
~1000
~600
j400
E
::::J
.~
50 100 150 200 250 300 350 400 450 500
Average Forward Current.IF(AV). Amperes
~
200
50 100 150 200 250 300 350 400 450 500 550 600
Average Forward Current.IF(AV). Amperes
J
1
.5
1.0
1.5
2.0
Forward Voltage Drop. V FM . Volts
2.5
3.0
3.5
5
Surge Cycles At 60 Hertz
10
20
30
50
100
R69
,J:ln
UJ
i----tp,----i
R:O;;O.25
tp=n.yLC (I'sec)
l<O.01"H
I FM =EcI.ytJC
SCR,
RD,
To
Oscilloscope
JEDEC Recovery TIme Circuit
Recovery TIme Wavefonn
3.5
60
50
~
4O~
«
..
3O~
c!
20
'0
40
30
60
50
TrIll
hI
Ti
I
V
.07
.06
IJ
.05
n,
.0
/
.02
.01
0
.0001
I.-
.001
Time. t, Seconds
R70
.....
.01
. .1
10
~
O~
Reverse Rate Of Current. diR/dt. AI"SEC
.08
§
u
100
Recovery TIme Comparison for
Fast Switch and Conventional Rectiflllrs
Symbol
4>0
4>0,
4>0,
H
.pJ
J,
N
Inches
Min.
Max.
2.250 2.290
1.333 1.343
2.030 2.090
1.020 1.060
.135
.145
.075
.090
.040
Millimeters
Max.
Min.
57.15 58.17
33.86 34.11
51.56 53.09
26.92
25.91
3.68
3.43
2.29
1.91
1.02
Creep Distance-1.15 in. min. (29.36 mm).
Strike Distance-1.02 in. min. (2591 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Appro •. Weight-8 oz. (227g).
1. Dimension "H" is clamped dimension.
R72 Outline
F..tures:
• Fast Recovery Times
• High Surge Current Ratings
• High Rated Blocking Voltages
• Special Electrical Selection
For Parallel and Series Operation
• Non Magnetic Package
• Lifetime Guarantee
Applications:
• Inverters
• Choppers
.. Transmitters
• Free Wheeling
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
Type R722 rated at 800A average withV RRM
and recovery time
3.0 psec.
=
= 1200V
R71
Blocking State Maximums <D
Symbol
Repelilive peak reverse vollage ,V .......
VRRM
Non-repetitive transient peak reverse voltage.
I::; 5.0 msec .....................
VRSM
100 \200 1 300
200 300 400
160~180~roo~r200'140~1:600
1800 12000 121 00 1 2200 \2300 \2400 12600
800 1000 1200 1400 1600 1800 2000 2200 2300 2400 2500 2600 2700
R722--05
·R722_-06
Reverse leakage
curr~nl.
mA peak ...
......
R722--08
50
IRRM
R722- --05
I
I
I
50
Switching
Max. Reverse Recovery Time
I FM
1500 tp
190ps
diR/dl
25A/ps, Tc
25'C, ps .
=
=
=
=
2.0,3.0
.'
.
"
5.0
3.0,5.0
trr
Thermal and Mechanical
Min., Max. oper. junclion lemp.,'C . .....
Min., Max. slorage lemp., ·C ...........
Min .. Max. mounling force, Ib® . .. ......
Thermal resistance®
wilh double sided cooling
Junction to case, °C/Watt ....
Case to sink, lubricaled 'C/Watt . , . . . .
TJ
Tslg
-40 to 150
-40 to 175
-40 to 190
2000102400
ReJC
Recs
.055
.02
Current
Con dueling Slate Maximums
R722--05
RMS forward currenl, A .....
Ave. forward current, A ..
......
One-half cvcle surge currenl0, A .
3 cvcle surge current0. A ....
10 cvcle surge current0. A ..
PI for fusing (for times=·B.3 msl
A2 sec.
Max 1'1 of package (1=8.3 ms). Nsec
Forward vollage drop al I FM
1500A and TJ
25'C, V .....
=
=
IF(rms)
IF(av)
IFSM
IFSM
IFSM
121
12 t
VFM
1 At maximum TJ
2 Per JEDEC RS-282, 4.01 F.3.
3 Consult Westinghouse recommended mounting procedures.
R72
R722--06
R722--08
785
500
7000
5040
4200
945
600
9500
6B40
5700
1250
800
11000
7920
6600
205,000
375,000
504,000
BOX10'
2.6
BOX10·
BOX10·
1.B
1.65
r:'
.,.
.o
.~
E
E
:>
'x.. >«
:i!<L
.
OJ
en
U
E
:>
E
.."
:::E
Average Forward Current, IF (AV), Amperes
r:'
o
'iii
120~.';;·":+*:+:"1:
...
Co
en
Ci
en
~ ~ 800'~~~~~~~~~~~~~~~nma~~~~
~ ;=,
<L -
6001f,4'--C!-'·-!---:-T"J''''"
E
:>
.§
Average Forward Current, IF (A V), Amperes
Average Forward Current, IF(AV), Amperes
R73
500-800 A. Avg.
Up to 2500 Volts
2.0 - 5.0 Jlsec
6.0-
11
Fast Recovery
2.8 ..
• -: ••• " " " ; 1 " T
5.5:
2.6;
5.0'
2.4--
4.5··
2.2'
~_ 4.0-
!l 2.0
:!:
~
:!l; 3.5
g. 3.0
o 2.5·
!!
'" 2.0""
~1.4
g 1.2-
o 1.0", ...~_~
:..-.-:::=....-
1.5 _ _
'E 1.0'
~
.f
1.8
~-1.6'
(I)
~
•
Rectifiers
R722
...g,
~
'EIII
0.5-
0:
500
100
200
1000
Forward Current, IFM, Peak Amperes
2000
0.8
5000
0.6e
0.4'
S 0.2'
0
0
lL
500
1000
100
200
Forward Current, IFM, Peak Amperes
2.8
2000
5000
2.6
5
2.4.
u
...'"
2.0
c:
.;
>
1.8
1lc:
:i
1.6·
>
1.4
'0
0
0
"'"
~
.....
E:!:
=
U .03
0. III
1.2·
,
1110
E ...:
...
~
1.0
~ 0.02
1-"
EN
0.8
'0
>
0.6
'Eco
0.4·
S
0.2·
lL
0
0
.05;
~ ~ .04
lL
<i
.06:
;:;
2.2'
E ,,-.01
'x ~
~ B
200
500
1000
2000
.001
.01
.1
Time, t, Seconds
Transient Thermal Impedance vs. Time
,
;
100
.
0··-----
5000
Forward Current, I FM, Peak Amperes
.
Typ;;cal
•
I"
J i
it·,·,
. . . . I r l 'T1 r
Reve!s~ Rl!c?~erv Tiin. ~rid;qver~tlop~ c;u!r!'7t:'"
~
~ \is. _
...
.. t r ~ ! +-1
>
•
•
•
•
Reye-rse Rate of Current' for- 3.O;.tSec-·
6.0
R;>22· -_ •• -
: .• - 480
! !'" ! ["440
5.0'
t
~;
400
lrl
CJ)
~
:. 4.0
E
~
...
«
~
oj
E
3.0'
:' 0
I-
, 200 c:
:1~.:@tJ''';.2i;''c.iFM';'1oodA: 160 ~
i .. ,. 10aol<~
..'11@li'
os. , . ~l :12'5"C
. : . ~. F.M , . -: • r-'~ 120
t
~ 2.0
o
u
Q)
...14>~:
, @It··
'75'C 1 _ .... 'fQaoA'
.l"!' .-.',F.M~~-''':-''80
a::
~
ii"
a:: 0
· · · · t , l t . , · .. - .. I.... j-;-.
o
.. I
.I
20
40
60
80
100
120
Reverse Rate of Current, di R/dt, A/p.Sec
R74
_ . . -"40
!
1" •
140
t
•
'";
160
:
j"t ~ [I' '0
180 200
a
I"'......- - - t p , - - - - - - l
tp =
n'\,fLC (/Lsec)
~Y:M'=Ec/#
1)
0
~
CD
c3
Recovery TIme Waveform
10
100
Symbol
<1>0
<1>0,
<1>0,
H
Inches
Min.
2.850
1.845
2.560
1.020
.135
.075
.050
Millimeters
Max.
Min.
Max.
2.900
1.855
2.640
1.060
.145
.090
72.39
46.86
65.02
25.91
3.43
1.91
1.27
73.66
47.12
67.06
26.92
3.68
2.29
<l>J
J,
N
Creep Distance-1.15 in. min. (29.36 mm).
Strike Distance-1.02 in. min. (25.91 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-l lb. 1454 g.)
1. Dimension "H" is Clamped Dimension.
Features:
• Fast Recovery Times
• High Surge Current Ratings
• High Rated Blocking Voltages
• Special Electrical Selection
For Parallel and Series Operation
• Non Magnetic Package
Example
Applications:
• Chopper
• DC to AC Inverters
• Transmitters
• High Frequency Rectification
.
Obtain optimum device performance for your application by
selecting proper Order Code.
Type R9G2 rated ar 1400 A average with VRRM = 1200V
and recovery time = 3.0,usee.
R75
Voltage
Blocking State Maximums <D
Symbol
Repetitive peak reverse voltage ,V.......
VRRM
100 200 400 600 800 1000 1200 1400 1600 1800 20002200 2400 2600 2800 3000 3200
VRSM
200 300 600 700 10001200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200
Non-repetitive transient peak reverse voltage.
V:S 5.0 msec ..... .... ............
~----R9G2....D9-----'J~--R9G2....D9
~----R9G2.._11
3400
---3IIE---- R9G2....()9 ---.......;~
R9G2.._11
~----R9G2.._14 ----~
Reverse leakage current. mA peak ..
IRRM
Switching
~------100---------~~---75---~~----------50-------~~
VRRM~1200V
1200V""'VRRM:= 2000V
2000V-VRRM:53200V
Max. Reverse Recovery Time
IFM =1500 tp = 190us
diR/d. 25A/us, Tc 25°C, I's. •. . . .• . ....
=
=
Irr
Thermal and Mechanical
Min" Max. oper, Junction temp" °C. ,. . . . . .
Min" Max, storage temp" °C ......... , .. , .
Min" Max. mountong force, Ib,0 ... , ..... .
Thermal resistance
TJ
Ts.g
0
with double sided cooling
Junction to case, DC/Watt ......... , .. , •
Case to sink, lubricated DC/Watt ...... , •
RWC
Recs
3,0,5,0
5.0
5.0
VRRMS1200V
1200V- VRRM::S 2000V
2000V-VRRM :53200V
5000 to 6000
-40 to 150
-40 to 190
5000 to 6000
-40 to 150
-40 to 190
5000 to 6000
.023
.075
.023
.075
,023
.075
-40 to 150
-40 to 190
Current
Conducting State Maximums
RMS forward current, A ........... , , .... .
Ave, forward current. A .......... , ... , ... ,
One-half cvele surge current, A 0, .. , .... .
3 cycle surge current, A 0 ........ , , .. .
10 cycle surge current, A 0 ....... " . , . , .
I't for fUSing (for times==8,3 msl
A'sec,
Max I't of package (t = 8,3 msl, A'sec
Forward v,oltage drop at IFM =
3,OOOAandTJ = 25°C, V ..... , .... " ...
R9G2_..D9
IFlrms)
IFlav)
IFSM
IFSM
IFSM
I't
I't
VFM
o At maximum TJ
o Per JEDEC RS-282, 4.01 F.3.
o Consult recommended mounting procedures.
R76
R9G2..._11
R9G2 __14
1,415
900
12,000
8,600
7,200
1,730
1,100
15,000
10,750
9,000
2,200
1,400
25,000
17,900
15,000
600,000
9Oxl0'
940,000
9Oxl0'
2,600,000
9Oxl0'
4,80
3,10
2.50
II>
160
u
0
~
140 ~
"'i;
!
pO
f:I
100
GiQ.
E
60
~
~
..
60 -
'K
Three Phase
(120 0 Square)
co
40
Six Phase
0
20 f-- (60 Square)
I
:E
o
o
~
3000
c::
.~
Q.
,~
;;!
/
~
::
0
D-
1500
/#
E 1000
:I
E
'x 500
A~
.
I
:E
1500
2000
o
U
a
~
!
:=
140
,
Q)
Q.
120
80
.
:g
Si~Phase I
u
E
60 r-- (60 0 Square)
I\,
/
-
I
.,
I
~
RSG2.._11 -
~
::.
(180 0 Sine)
0
E
~
~ b.
~~
Three Phase A
(120 Square)
~
/
~ 100 f-
!
I I
Single Phase
:>
.
I
""
I
(120 Square)
0
I
i" Single Phase
I
(180 0 Sine)
I
"
500
1000
Average Forward Current, IFIAV), Amperes
I
1500
2000
1500
2000
4500
4000
RSG2._11
3500
c::
""~
Q.
2500
.,
'iii
0 2000
Gi
~
1500
D-
40
E 1000
:I
•
'x
20
to
o
:E
o
1000
500
Average Forward Current, IFIAV), Amperes
1500
1000
500
Average Forward Current, IFIAV), Amperes
2000
160r---~--~----r---'---~----~--~---'
o
Six Phase
0 Square)
i" (60
~ I" Three Phase
n
'i
:E
u
~
~ 3000
:I
E
'K
J
o
, Average Forward Current, IFIAVI, Amperes
160
/ IX
f' VI
liLt
/,W
0'" 2000
.,
'L
RSG 2. ..oS
/
2500
'iii
~
/'"
\
r---
I
0
r\'" ~
co
u
E
:I
E
/
I
4000
3500
:>
SinglePhaL
(180 0 Sine)
4500
x
::.
«
'\ ~
10
CD
ICD
~
RSG2...QS
+-_
140 1-....;::.....I111:~+__
~
!
'"
~
x
4500
4000
«
::. 3500
:>
~
~
c::
.g
to
c.
'iii
80
60~---r----r-~~---4~--4---~~--+---~
2500
0'" 2000
~
Q)
::0
1500
D-
40
20
3000
1----+----~--4_---4----4_--_4----+_--~
o ~--~--~--~--~--~----~--~~
o
500
1000
1500
2000
Average Forward Current, IFIAV), Amperes
E 1000
:I
E
'xco 500
:E
2000
Average Forward Current, IFIAV), Amperes
R77
10000
II>
V
~
~
~
1000
i
:;
g
TJ = 150°C
c:
-
.~
.02
I/~
8c:
.
'iQ.
//
rl
100
~~
..,"
-=-==~t$>.
~
~
0
.-
?/ V/ V
!V
~
i
~
~'lJG'J,-'
~9G'}...',II.
~
.03
:.
.E
~
u
'E
~
....o
'"
io-~
10
o
2
3
Forward Voltage Drop, VF;"', Volts
4
S
.001
7
6
.01
.1
10
Time. t. Seconds
Transient Thermal Impedance Vs. Time
L
2.5"H
IFMl
,DJl
rn
~
0
tp
R~O.25
tp=Tr.yLC ("sec)
L< 0.01 "H
IFM'=Ec/VOC
SCR,
RD,
To
Oscilloscope
JEDEC Recovery Time Circuit
Recovery Time Waveform
10
.,"
II>
::>
);
iii
'S~
6
Typical Reverse Recovery Time and Overshoot Current
I
VS
I
Reverse Rate of Current For 5.0 usee R9G2
~
I
I
I
400
~trr @TJ= 150°C
~@TJ= 1500C,
IFM = 1500A---'
~
.-100-"""
~
300 E
4
["'-... to--
8
....
......
.,>
0
.,"~
.,
!!!
~
a::
V
2
0
~
V
./
V
./' V
- ....- V
I-........
~
",..
«
j
V
200
100
o
50
75
100
g"
~>
V l o s @.Tj = .25.o C"IFM = 1500A
25
i.,
~
trr @ Tj = 25°C,
1'25
Reverse Rate of Current, diR/dt, Amps/usee
R78
8.
~
V
Fast Switch Rectifier
Recovery Time = 3.0 J,lS8C
150
o
Recovery Time Comparison for
Fast Switch and Conwntional Rectifiers
--lOS
100
INTRODUCTION
Westinghouse thyristors are designed,
manufactured, and tested to insure the
circuit designer' "state-of-the-art"
flexibility in design a:1d dependability in
operation. Westinghouse high power
5CR's feature all-diffused elements and
are available in a variety of packages:
stud, disc, integral heat sink, and flat
base. These 5CR's offer high surge
current capability with optimized forward voltage drops, soft firing and high
di/dt capability with center-fired dil
namic gate designs, and the industry's
highest guaranteed dv/dt capability
with shorted-emitter designs. All high
power Westinghouse stud mount devices utilize compression bonded encapsulation (CBE) construction which reduces thermal fatigue by eliminating
solder joints. Westinghouse disc devices feature non-magnetic packages
and are cold-welded to avoid thermal
stresses on the semiconductor elements during encapsulation.
Westinghouse Phase Control 5CR's
offer package 12 t or explosion ratings for
most ceramic packages; in addition,
surge suppression ratings are available
which enable the designer to better
utilize the full capability of Westinghouse 5CR's. The Westinghouse T625
now offers the designer of a 1500 C
operating junction temperature 5CR;
this device features higher current
ratings and better overload characteristics for motor control applications.
Westinghouse Fast 5witching 5CR's
offer turn-off times as low 10 microseconds as a result of an exclusive
irradiation process. These center-fired
di/namic gate designs all feature low
switching losses, high di/dt, low IGT,
high current, high voltage,low recovered
charges, and fast turn-off times. The
Westinghouse mid-gate structure (available only as a T72H or T9GH) is interdigitated gate design which optimizes
the device for higher peak currents and
narrower pulse widths while provic1ing
low switching losses and faster turn-on
and turn-off capability.
The Westiinghouse Reverse Blocking
Diode Thyristor (RBDT) offers the control of an 5CR without the complex
firing circuitry. This device blocks vol-
THYRISTOR (SCR/RBDT) PRODUCT INDEX
Type Number
Page
2N681-92
2N1792-1809
2N1842,A-50,A
2N1909-16
2N3884-96
2N4361-68
2N4371-78
2N5204-07
511
519
59
519
531
521
521
513
T527
T600
T607
T610
T620
T625
T627
T680
583
533
579
533
543
547
587
573
T9GO
T9GH
T40R
T62R
T72H
T400
T500
T507
T510
T520
561
593
595
597
589
513
523
577
527
541
T700
T707
T720
T727
T760
T780
537
581
551
591
571
575
T920
555
TA20
567
tage in the forward direction until the
appropriate dv/dt pulse is applied. The
RBDT offers excellent di/dt capability
up to 3,OOOA/us, and seriesing is easily
accomplished for high voltage applications.
Westinghouse offers extensive testing
capability for series and/or parallel
matching, special parameter selection,
Type Number
Page
or full high reliability screening. Westingoffers a Lifetime Guarantee on all 5CR's
bearing the symbol +. In addition, all
Westinghouse thyristors are available
on factory assembled and tested air or
water cooled heat exchangers in a
variety of circuit configurations. 5pecify
Westinghouse Power Thyristors.
51
PHASE CONTROL SCR'S
10 - 250 Amperes
1500
CJ
z
i
800
III
CJ
...~
g
400
200
50
50
o
AVERAGE CURRENT RATING
BDISC
STUD
~FLAT BASE
150°C JUNCTION TEMPERATURE
*
PHASE CONTROL SCR'S
250 - 1400 Amperes
3000
2200
2000 CJ
Z
i
III
18001500
I------t:;:; -
1200-
I--
CJ
1000
...
800
>
800-
~
0
./
* r-
-'-
-
~%-
~
4OO1tl
"I
2:~l~
'-
L.....
:oo~~
~
I"! , -1 ~
_~
~ ~,~
250 300 300 300 300 350 350 350'-400-450~550 800 700 800 800 900 1000 1000 1200 1200 1400
o
AVERAGE CURRENT RATING
STUD MOUNT
II DISC
~ STUDLESS
QINTEGRAL HEATSINK
* 150°C JUNCTION TEMPERATURE
S2
FAST SWITCHING SCR'S & RBDT'S
22 -
250 Amperes
1200
1000
(!)
Z
i=
c(
II:
800
600
w
(!)
c(
!3
~
400
200
50
22
40
60
70
115
80
126
126
125
150
160
176
200
260
AVERAGE CURRENT RATING
OSTUD MOUNT
NOTE:
BDiSC
'REVERSE BLOCKING DIODE THYRISTOR
(RBDT)
Turn off times shown represent fastest currently available at given voltage rating.
FAST SWITCHING SCR'S
250 - 900 Amperes
2000
1BOO~------------------------------------------------------------~~--~rw~-
1200~~~~~~~~~~----~~~~.----
1000
BOO
600
400
200
50
L--_ _ __
250
250
275
300
325
350
350
400
450
450
475
800
900
AVERAGE CURRENT RATING
DSTUD MOUNT
f:j DISC
•
di/namic Midgate design
NOTE: Turn off times shown represent fastest currently available at given voltage rating.
S3
+
PHASE CONTROL SCR'S
TO-~
TO-83
T400__16
10
150
16
250
14000010
14000110
14000016
14000116
14000210
14000216
14000310
14000410
14000510
14000610
14000710
14000810
14000910
14001010
14001210
14000316
14000416
14000516
14000616
14000716
14000616
14000916
14001016
14001216
PACKAGE TYPE
10-48
10-48
PAGE NUMBER
513
513
AVERAGE CURRENt
ONE CYCLE 5URGE
~
VOL1AGE
100
160
200
250
300
400
500
600
700
600
TO-94
70
1000
2NI909
2,N1792/2N191 0
2N1793/2N1911
2N179412N1912
2N179512N1913
2N179612N1914
2N1797/2N1915
2N1798/2N1916
26
50
1
"
.,
T4OO__10
JEDECI TYPE
900
1000
1200
1400
1500
2N1803
2NI804
10-83110-94
519
PHASE CONTROL SCR'S
70 - 176 Amperes
T620-_13
1620__16
1600-_18
T610 __18
80
1800
125
1600
150
3300
175
5500
15100080
15100180
16100280
16100380
T6100480
T6100680
T5100680
T5000780
T5000880
T5000980
T6001080
T5001280
T6001580
15200013
16200113
16200213
15200313
T6200413
T6200613
T6200613
T6200713
T&200813
T&200913
T6201013
T6201213
T5201513
16200015
16200116
16200216
16200316
T6200415
T6200616
T8200616
T620071&
T620061& •
T6200916
TII201016
T6201215
T6201615
16100018
16100118
16100218
T6100318
T6100418
T6100618
T6100618
T8000718
T6000618
T6000918
T6001018
T6001218
T6001618
T52
T62
TO:93
541
543
533
JEDEC/1:YPE
VOL1AGE
T521T62
~
""~
50
100
200
300
400
500
600
700
600
900
1000
1200
1500
PACKAGE TYPE
PAGE NUMBER
54
523/527 .
•
THYRISTOR SELECTOR GUIDE
PHASE CONTROL SCR'S
175 - 300 Amperes
T820 __ 20
TYPE
*
T700__ 2&
*
T820 __ 30
T700__ 30
AVERAGE CURRENT
ONE CYCLE SURGE
200
4000
250
7000
300
5500
300
8400
VOLTAGE 100
200
300
400
500
T6200120
T6200220
T6200320
T6200420
T6200520
T6200620
T6200720
T6200820
T6200920
T6201020
T6201220
T6201420
T6201520
T7000125
T7000225
T7000325
T7000425
T7000525
T7000625
T7000725
T7000825
T7000925
T7001025
T7001225
T700.1425
T7001525
T7001625
T7001825
T7oo2025
T7oo2225
T6200130
T6200230
T6200330
T6200430
T6200530
T6200630
T6200730
T6200830
T6200930
T6201030
T6201230
T6201430
T6201530
T7000130
T7000230
T7000330
T7000430
T7000530
T7000630
T7000730
T7000830
T7000930
T7001030
T7001230
T7001430
T7001530
T7001630
T7oo1830
T7oo2030
T7oo2230
600
700
800
900
1000
1200
1400
1500
1600
1800
2000
2200
PACKAGE TYPE
T62
T70
T62
T70
PAGE NUMBER
543
S37
S43
S37
T68
.
~---'
...
T70
a
•
\-,,~
T76
* HIGH TEMPERATURE· 150°C
>
PHASE CONTROL
350 - 700 Amperes
*
'
~
T780__ 35
T&25__40
T720 __ 55
T920__ 07
AVERAGE CURRENT
ONE CYCLE SURGE
350
10,000
400
5000
550
10,000
700
15,000
VOLTAGE 100
200
300
400
500
T78oo135
T78oo235
T78oo335
T7800435
T7800535
T7800635
T7800735
T7800835
T7800935
T7801035
T7801235
T7801435
T7801635
T6250140
T6250240
T6250340
T6250440
T6250540
T6250640
T6250740
T6250840
T6250940
T6251040
T6251240
T72oo155
T72oo25S
T72oo355
T7200455
T72oo555
T7200655
T72oo755
T72oo855
T72oo955
T7201055
T7201255
T7201455
T7201655
TYPE
600
700
800
900
1000
1200
1400
1600
1800
2000
2200
2500
2800
3000
"
T78
T9200607
T92oo707
T9200807
T9200907
T9201007
T9201207
T9201407
T9201607
T9201807
T9202007
T9202207
PACKAGE TYPE
T78
T62
T72
T92
PAGE NUMBER
S75
S47
S51
555
* HIGH TEMPERATURE· 1500C
j~
.".....,.,
~",~
T72
T92
55
PHASE CONTROL SCR'S
800 - 1400 Amperes
T90G..._08
T820__ 10
T9GO __12
TA20 __ 14
AVERAGE CURRENT
ONE CYCLE SURGE
800
13,000
1000
27,000
1200
27,000
1400
35,000
VOLTAGE 800
700
800
900
1000
1200
1400
1800
1800
2000
2200
2400
2600
2800
3000
T9GOO808
T9G00708
T9GOO808
T9GOO808
T9G01008
T9GOI208
T9GOI408
T9GOI808
T9GOI808
T9G02008
T9G02208
T9G02408
T9G02808
T9G02808
T9G03008
T9200810
T92oo710
T9200810
19200910
T9201010
19201210
19201410
T9201810
T9G00812
T9G00712
T9G00812
T9G00912
T9G01012
T9G01212
T9G01412
T9G01612
TA200814
TA2oo714
TA200814
TA200914
TA201014
TA201214
TA201414
TA201814
TA201814
TA202014
TA202214
PACKAGE TYPE
T9G
T92
T9G
TA2
PAGE NUM8ER
561
555
S61
567
TYPE
T92
T9G
TA2
S6
FAST SWITCHING SCR'S and RBDT'S
22 - 125 Amperes
*
T607__40
T60'2-_70
T627__12
AVERAGE CURRENT
ONE CYCLE 5URGE
40
1000
70
1200
115
1200
VOLTAGE 100
200
300
400
500
600
700
900
1000
1200
T5070140
-T507024O
T5070340
T5070440
T5070540
T5070640
T5070740
T5070840
T5070940
T5071040
T5071240
T5070170
T5070270
T5070370
T5070470
- 15070570
T5070670
T5070770
T5070870
T5070970
T5071 070
T5071270
T5270112
T5270212
T5270312
T6270412
T5270612
T5270612
T5270712
T5270812
T6270912
T5271 012
T5271212
TURN OFF TIME
10-501'5
10-501'5
10-50 IJS
PACKAGE TYPE
TO-83/TO-94
PAGE NUMBER
577
TYPE
800
*
+?
00-5
(T40R)
~
TO-83
-,
~
\'
T52
577
TO-94
583
'RBDT - Rever.e Blocking Diode Thyristor
I
I
\
-
.~
FAST SWITCHING SCR'S
125 - 250 Amperes
,,
TO-93
l:L
TB07__ 13
T627__16
T62'2-_20
AVERAGE CURRENT
ONE CYCLE 5URGE
125
3500
150
3500
200
4000
I
VOLTAGE 100
200
300
400
T6270115
T6270215
T6270315
T6270415
T6270515
T6270615
T6270715
T6270815
T6270915
T6271015
T6271215
T6270120
T6270220
T6270320
T6270420
T6270520
T6270620
T6270720
T6270820
T6278920
T6271 020
T6271220
T521T62
900
1000
1200
T6070113
T6070213
T6070313
T6070413
T6070513
T6070613
T6070713
T6070813
T6070913
T6071013
T6071213
TURN OFF TIME
10-50 1'.
10-501'.
10-50 ps
PACKAGE TYPE
TO-93
T62
T62
PAGE NUMBER
579
587
587
TYPE
500
600
700
BOO
T62R
~
57
FAST SWITCHING SCR'S
250 - 350 Amperes
*
T72H __ 25
T70'Z...._30
T727__ 35
AVERAGE CURRENT
ONE CYCLE SURGE
250
6000
300
8000
360
7000
VOLTAGE 100
200
300
T72HOI25
T72H0225
T72H0325
T72H0425
T72H0525
T72H0625··
T72H0725
T72H0825
T72H0925
T72Hl025
T72H1225
T7070630
T7070730
T7070830
T7070930
T7071 030
T7071230
T7270635
T7270735
T7270835
T7270935
T7271 035
T7271235
25-50 iJS
20-50 }-IS
15-50l's
TYPE
T70
400
500
600
700
800
900
1000
1200
TURN OFF TIME
T72
PACKAGE TYPE
T72
T70
T72
PAGE NUMBER
589
581
591
* di/namic mid-gate deSign
FAST SWITCHING SCR'S
400 - 900 Amperes
T9G
T727_A5
TYPE
AVERAGE CURRENT
ONE CYCLE SURGE
450
8000
VOLTAGE 100
200
300
400
500
600
700
800
900
1000
1200
1400
1600
1800
2000
2200
T7270645
T7270745
T7270845
T7270945
T7271 045
T7271245
*
T9GH_-D9
475
900
13,000
8000
T7270148
T7270248
T7270348
T7270448
T7270548
T7270648
T7270748
T7270848
T9GH0609
T9GH0709
T9GHOB09
T9GH0909
T9GH1009
T9GHI209
T9GHI409
T9GHI609
T9GHI609
TURN OFF TIME
20-50 }Js
10-50 }Js
30-80 }Js
PACKAGE TYPE
T72
T72
T9G
PAGE NUMBER
591
591
593
:l<dilnamic mid-gate design
S8
'"
T727_A8
Symbol
A
A,
rJ>D
E
F
J
M
N
rJ>T
rJ>T,
Inches
Min.
.330
Max.
.505
.880
.544
.562
.152
1.193
.300
.453
.165
.075
.544
.113
Millimeters
Min.
Max.
12.83
8.38
22.35
13.82
13.82 14.27
2.87
3.86
30.30
5.33
7.62
10.72 11.51
4.19
3.18
1.52
1.91
3.05
.210
.422
.125
.060
Z
.120
%-28 UNF-2A
<t>W
Approx. Weight-.33 oz. (10 g).
1. Complete threads to extend to within
2% threads of seating plane.
2. Contour and angular orientation of
terminals is undefined.
3. Pitch diameter of 14-28 UNF-2A
(coated) threads (ASA 81.1-1960).
Conforms to TO-48
Maximum Ratings and Characteristics
JEDEC Types: 2N1842, TJ=100'C; 2N1842A, TJ=125'C
Blocking State
Symbol
<:
NN
'<t'<t
~~
zz
NN
<:
MM
'<t'<t
'<t~
'<t'<t
'<t'<t
<:
1010
'<t'<t
<:
..........
<:
00 00
<:
C"l C"l
<:
00
'<t'<t
'<t'<t
'<t'<t
200
250
300
400
500
300
350
400
500
600
6.0
5.5
5.0
4.0
3.0
LtlLtl
0000
0000
0000
0000
0000
0000
........
........ ........
....ZZ....
........
........
........
zz zz
zz
zz zz
zz
NN
NN NN
NN
NN
NN
0000
0000
NN
NN
zz
<:
LtlLtl
"Repetitive Peak Forward and Reverse Voltage,
volts ......... VORM
25
50 100 150
VRRM
"Non-repetitive Transient Peak Forward and Reverse Voltage,
VRSM
75
150
225
t!!:5.0 msec, V .••.•.•...•.•..•..••..•.•••....•.••••
35
"Forward and Reverse Leak,age Current, (full cycle average) mAo .. IO(AV)
IR(AVI 022.5 019.0 012.5 6.5
I
I
Conducting State
(Max. Values at Max. TJ)
RMS Forward Current, amps ..........
"Ave. Forward Current (180'Conduction)
amps ...........................
Surge Current (at 60 Hz): "Y.z Cycle, amps.
3Cycles,amps.
10 Cycles, amps.
12t for Fusing (at 60 Hz half-wave),
amps2 sec .......................
Forward Voltage Drop at TJ =25'C
ITM = 10 A. volts .........................
Symbol
.trRMS
2N1842
Series CD
16
trAV
ITSM
trSM
trSM
10
125
90
75
12t
60
VIM
1.6
Thermal Characteristics
·Oper. Junction Temp. Range, 'C ....... TJ
'Storage Temperature Range, 'C ........ Tstg
Max. Thermal Impedance, 'C/Watt:
Junction to Case ....... , .... , ..... ROJC
Max. Thread Torque, Lubricated, in. Ibs ..
"JEDEC Registered Parameters.
-40 to + 1OOCD
-40 to +125CD
1.3
30
Gate Parameters
(Max. values at TJ =25'C)
Gate Current to Trigger (VFB -12V), ma.
Gate Voltage to Trigger over temperature
range (VFB=12V), volts ............
"Non-Triggering Gate Voltage
(Rated VFB), TJmax, volts ....•......
"Peak Forward Gate Current, amps ......
"Peak Reverse Gate Voltage, volts .......
'Peak Gate Power, watts ..............
"Average Gate Power, watts ...........
Symbol
IGT
VGT
VGNT
IGFM
VGRM
PGM
PG(AV}
Switching State
Typical Turn-On Time, IT-10 A, 10-90%,
VDRM = 1 0 volts ,TJ=25'C, !-'sec ..... ton
Min. di/dt, Linear to 5.0 ITAV, .
amps/!-'sec .•................ , .... di/dt
Typical Turn-Off Time, IF=10 A, TJ max,
diR/dt=10 A/!-,sec., dv/dt=
20VI !-,sec. Linear to .8 VoRM !-,sec .•.. tq
Typ. dv/dt, Exp. to VORM ,voltsl !-,sec ...... dv/dt
CD 2N1842A Series is the same except:
TJ and Tstg=-65 to +125; VGT=3.7; VGNT=.25.
Actual test limit 6.5 mAo
2N1842
Series CD
80
3.5CD
.3CD
2
5
5
.5
3
25
50
100
o
89
3r
Electrical Characteristics
£1
~
'if'-1-~'l
i
25~----
"--':'"
~
1.---.i1--ConduCtion .,,- I .
,
I
Angle.
~~'--' -:--.
r-3W>--r' ..... "
.t?/Jl ... ((It
~ConQuctlon
Angle.
I
. _···-15··_····
_.1
20
Average Forward Current. IT(AV). Amperes
Figure 1. Power dissipation vs forward current. rectangular wave.
20
Figure 2. Case temperature va forward current. rectangular wava.
125100
i
2
. '·~~i/~..
:0
,
o~
!
-'- ·-i~·
2
;
8
0
-'
.IC~lion 11800
--.;.JAnglei&
"10
t-:-
'12
2"
'
c. 9570· •.
E
~
E
E
o
"
"
:;:
0
Average Forward Current. ITIAV). Amperes
Figure 3. Power dissipation
VB
A'IO" T·A~ ---1
~ 8560·
6
4
2
6
--.
forward current. half-wave sinusoid.
'0.
1.2;·--
, .-.
U
-
".,
p
." . . . .
. - 0··"'·-'-' ..
30~
,
.8~'
~-
i
20;
;
,,.-
. !
10f
.2; ,.
. - ·~--IO ----16cf
Forward Current. ITM. Peak Amperes
Figure 5. Forward voltage va forward currant.
510
'10
12
Figure 4. Case temperature vs forward current. half-wave sinusoid.
IA
40. ""
!
.~..
Average Forward Current. ITIAV). Amperes
'1000
o~-6i--·---" :61
.1
Time, t, Seconds
Figura 6. Transient tharmal impedance va time.
Symbol
A
A,
</>D
E
F
J
M
N
</>T
</>T,
Inches
Min.
.330
.544
.113
Max.
.505
.880
.544
.562
.152
1.193
.300
.453
.165
.075
Millimeters
Min.
Max.
8.38
12.83
22.35
13.82
13.82
14.27
2.87
3.86
30.30
5.33
7.62
10.72
11.51
3.18
4.19
1.52
1.91
3.05
.210
.422
.125
.060
Z
.120
":4-28 UNF-2A
</>W
Creep &. Strike Distance.
.27 in. min. (6.96 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-.33 oz. (10 g).
1. Complete threads to extend to within
2}1 threads of seating plane.
2. Contour and angular orientatIon of
terminals is undefined.
3. Pitch diameter of %-28 UNF-2A
(coated) threads (ASA B1.1 -1960).
Comforms to TO-48 Outline
Maximum Ratings and Characteristics
Blocking State (TJ=125'C)
Symbol
JEDEC Type
co
co
z
N
volts .... VORM
VRRM
"Non-repetitive Transient Peak Forward and Reverse Voltage. VRSM
t :::; 5.0 msec
'Forward and Reverse Leakage Current. (full cycle average)mA to(av)
tR(av)
N
M
o:t
co
co
co
z
N
z
N
z
N
co
co
co
L()
co
co
z
N
co
co
co
z
N
"coco
z
N
co
co
co
z
N
en
co
co
z
N
0
en
co
z
N
a;
co
z
N
N
en
co
Z
N
'Repetitive Peak Forward and Reverse Voltage.
,v. ..............................
Conducting State (TJ =125'C)
RMS Forward Current. amps ..........
• Ave. Forward Current (180' Conduction)
amps. . . . . . . . . . . . . . . . . . . . . . . . . ..
Surge Current (at 60 Hz): *1t.i Cycle. amps.
3Cycles.amps.
1 0 Cycles, am ps .
12t for Fusing (at 60 Hz half-wave),
amps2 sec.. . . . . . . . . . . . . . . . . . . . . ..
Forward Voltage Drop at TJ =25'C
IF=16 Adc, volts .................
Symbol
hlrms}
Ir lav}
hSM
IrsM
IrSM
12t
VrM
Thermal Characteristics
·Oper. Junction Temp. Range. ·C ....... TJ
'Storage Temperature Range. ·C ........ T.1g
Max. Thermal Impedance, 'C/Watt:
Junction to Case ................. ROJC
Max. Thread Torque, Lubricated, in. Ibs ..
All Types
25
16
150
110
90
90
1.7
65 to +125
-65 to +150
1.3
30
25
50 100 150 200 250 300 400 500 600 700 800
35
75 150 225 300 350 400 500 600 780 840 960
6.5
6.5
6.5
6.5
6.0
5.5
5.0
4.0
3.0
2.5 2.25 2.0
Gate Paramet.ers (TJ=25'C)
Symbol
Gate Current to Trigger (VFB -12V), ma. IGT
Gate Voltage to Trigger Over Temperature Range (VFB =12V), volts ....... VGT
"Non-Triggering Gate Voltage at TJ= .
125'C (Rated VFB). volts ........... VGNT
'Peak Forward Gate Current, amps ...... IGFM
"Peak Reverse Gate Voltage, volts ...... , VGRM
'Peak Gate Power, watts... . . . . . . . . . .. PGM
• Average Gate Power, watts. . . . . . . . . .. PG(AV)
Switching State
Typical Turn-On Time, 1r-10 A, 10-90%,
VORM=10 volts, TJ=25'C, !'sec ..... ton
Min. di/dt, Linear to 5.0 ITlaVi
amps/ !,sec ..................... , di/dt
Typical Turn-Off Time, Ir=10 A, TJ=
125°C, diR/dt=1 0 Ah,sec., dv/dt=
20V / !,sec. Linear to .8 VORM !,sec. . . .. tq
Typ. dv/dt, Exp. to \lORM volts/!,sec .... , dv/dt
All Types
40
3.0
.25
5
5
5
.5
3
25
50
100
" J EOEC Registered Parameters.
S11
u
o
i
~
~
::>
~
1I0f.:..:-J-l\~~~~.:-l'--+-'-+--+--.Jf"''+-'''''''''4o<---'
100
90~--+---+-\-~~~~~~~~-h--~--~---t--~---1
Q)
Co
E
~
80 .-, -,+-+--tt,--\;-."ot~--f""
'!,
25
Average Forward Current. ITIAVI. Amperes
Figure 1. Power disaipation va forward current, rectangular weve.
30
Average Forward Current. ITIAVI. Amperes
Figure 2. Ca.e temperature va forward current, rectangular wave.
40; - - ,
o~
Average Forward Current. I.TIAVI. Amperes
Figure 3. Power dissipation va forward current, half-wave ainusold.
Average Forward Current. I TIAVI. Amperes
Figure 4. Ca.e temperature va forward current. half-wave ainusold.
,01
Forward Current, ITM Peak Amperes
Figure 6. Forward voltage va forwaro current.
S12
Time. t. Seconds
Figure 8. Transiant thermal impadance va time.
. Symbol
A
A,
cl>D
E
F
Inches
Min.
cl>T
cl>T,
Z
Min.
Max.
.330
.505
.880
.544
8.38
12.83
22.35
13.82
.'544
.113
.562
.152
1.193
13.82
2.87
14.27
3.86
30.30
.210
.422
.125
.300
.453
.165
5.33
10.72
3.18
7.62
11.51
4.19
.060
.120
.075
1.52
3.05.
1.91
J
M
N
Millimeters
Max.
cl>W
)1.1-28 UNF-2A
Finish-Nickel Plate.
Approx. Weight-.33 oz. (10 g).
1. Complete threads to extend to within
2% threads of seating plane.
2. Contour and angular orientation of
terminals is undefined.
3. Pitch diameter of 14-28 UNF-2A
(coated) threads (ASA 61.1-1960).
Conforms to TO-48 Outli'ne .
Ordering Information
22 Amperes
75I<sec(typ.)
40 mA.
TO-48
Example
Obtain optimum device performance for your application by selecting proper order codes.
Type T400 rated 35 Amps RMS with VRRM/VDRM=1200 V,
IGT= 40 rna and tq = 75 ..sec max. Order as
513
I..
..
Type T400
....o.
Order Code
Blocking State
Symbol
00
Repetitive Peak Forward and
Reverse Voltage <D, volts .. VORM
50
VRRM
Non-repetitive Transient Peak,
Reverse Voltage, volts
75
;;5.0 msec .......•...... VR5M
Peak Forward and Reverse
leakage Current mA ....... IORM <D
6.5
IRRM
Current-Select Order Code 10, 16, 22
Conducting State
(Te=120°C)
09
100
200
300
400
500
600
700
800
900
150
300
400
500
600 700
800
900
1000 1100 1200 1300 720 960 1.200 1440
6.5
6.0
5.0
4.0
3.5
2.5
2.2
2.0
I Order Code
3.0
12
1000 1100 1200 600 800 1000 1200
1.8
1.6
10
16
22
16
25
35
10
16
22
IT5M
150
Z50
360
t
l't
90
260
540
t
VTM
2.3
2.3
2.3
T400
JEDEC
50
100
150
100
1.5
3.3
2.5
2.0
Symbol
Order
Code
75
tq not
specified
1
0
Order
Code
40
80
8
6
t JEDEC TYPES HAVE
IrsM = 300 A.
lOt = 375 A'sec
Ratings and Characteristics
Max. holding current, mA
All
Symbol
Types
IH
100
Thermal and Mechanical
Characteristics
Min., Max. oper. junction temp., °C .. " Tj
Min., Max. storage temp., °C ......... Tstg
Max. thread torque, in.·1 bs .......... .
Max. thermal resistance
Junction to case, °C Iwatt .... ...... Rejc
JEDEC TYPES
................ Rsjc
-40 to + 125
-40 to + 150
30
1.6
1.5
Gate Parameters (Tc-25°C) T400
KIIax. gate voltage to trigger at Vo = 5V,
Tc=-40 to +120°C ........... "
Max. non-triggering gate voltage,
Tc= +120°C and rated VDRM, volts.
Peak forward gate current,amps ...... .
Peak reverse gate voltage, volts ...... .
Peak gate power, watts ............. .
Average gate power, watts .......... .
JEDEC TYPES
VGT
VGDM
IGTM
VGRM
PGM
PG(AV)
3
.25
5
10
25
2
I
Peak reverse gate voltage, volts ...... .
Peak gate power, watts ............. .
Average gate power, watts .......... .
814
an
Z
08
Symbol
<D
N
an
Z
07
Gate Current-Select Order Code 8 or 6
Applies for zero or negative gate voltage.
At 60 Hertz.
N
06
Symbol
<D
N
an
Z
05
Turn Off-Select Order Code 1 or 0
M ax. gate current to trigger at
Te=25°C, mA ....... IGT
N
04
Min. critical dv Idt, exponential to VORM, TJ = 125°C
volts IJl.sec. . . . . . . . . . . . . . . . . . . . .. dv Idt
Min. di/dt ,JEDEC Std. #7, Sec.
5.1.2.4. A/Jl.Sec.................. di/dt
Max. turn-off time, IT = 10,
Te = 120°C, diR Idt = 5A I Jl.sec
reapplied dv Idt = 100 V IJl.sec
linear to rated VORM, Jl.sec . " .. tq
N
03
L Type
Switching State
I'
0
N
an
Z
02
1T(.v)
Max. %-cycle<D surge current,
amps .. : ........... . J<" • • • •
Max. I"T for fusing (at 60 Hz
half-wave), ampere" seconds ..
Max. forward voltage drop at IT= 3.14X
IT(Ay) AdC and TJ =26°C, Vdc ., ~ .............
an
0
N
01
IT(rms,
Max. rms forward current, amps ..
Mal(. ave forward current, amps
10 . 11
an
0
N
VGRM
PGM
PG(AV)
5
60
10
1.7
50
""l'''
120
45
110
l! 40
100
i.35
x
~_ 90
!
}
~
3O+--+---l-
~
i&. 20·
..
o
Z
eGO
.;;;
J
80
~ 70
25
8~ ~.
r- 360°-j
15
~~
10
E
::I
:' ~
E
';(
E
~'Conductlon
16
18
20
22
40-:
!
,
E
Angle
~
14
Average Forward Current, IT{AV),Amperes
3l
8
D';~~·'
~
24
"':'"
o
0, ..
26
Figure 1. Power dissipation vs. forward current. rectangular wave.
4
2
6
Average Forward Current, IT{AV),Amperes
Figure 2. Case temperature vs. forward current. rectangular wave.
A
0°
16
j
18
Conduction 1200
Angle.
20
24
Average Forward Current, IT{AV), Amperes
Average Forward Current, IT{AV),Amperes
Figure 4. Case temperature vs. forward current. half wave sinusoid.
Figure 3. Power dissipation vs. forward current. half wave sinusoid.
6ET""""---~"-.
. T400.-10
5
~~~~
~ .. -(-i
1
••
-,'. -,
2.0:- .
'~i
1.6
4- _.
r··
.8
2
'0
E:=
~i
5~
f- .....A
,§~,
~u
:
10
20
50
Forward Current, ITM ,Peak Amperes
Figure 5. Forward voltage vs. forward current.
100
200
500
lK
.
:;: <S 0.--·_· ..
N
.0001
Time,t,Seconds
Figure 6. Transient thermal impedance vs. time.
815
I~~~
T~:6r~
~
1OO1+-t~rl'\:~n~N:-·--r-·i--+
W
[0:4
I~. Conduction
90.,--+--t\--"f:->'n~..r""".t""""'!-:---tAngle
t)
i
o.
,
I
i
j--'H-1
80
'i
,
---j--
70
Z
I
i
60
~ 50H---+-+--+-+t---tt- --t-lr--!+
~
4O,+-+--+--t-+-r----n--H-
I :,+-~-r-+~~~~
0246810
24~
Averoge Forward Current,IT(Av),Amperes
Figure 8. Case temperature vs. forward currant. ractangular wava.
Vo
2
4
6
8
~
~
~
~
~
ro
~ ~ ~
Average Forward Current,irlAV),Amperes
Figure 9. Power dissipation vs. forward cunent. half wave sinusoid.
Figure 10. Ca •• temperature vs. forward current. half wave sinusoid.
2.0
i
I
,.~
l
0
t)
~
1.6
c
:!u
.,c
:>
12
tIc
0
1
!
a
~=
2·
~'~~~~~F±~T~t-·~·~~-~~~r
!i~
ii
:u; 0,.f=::!:t!'I:I:Jf..::.i:..l±lI;l4-,.i:.:.lJili4-.i...:Wi4·.....;..;.......;;~+-..:....::.:.;.:iliI
0+-~-+~~'~~~Y-~-4~~~~~~--~~~
o
~
ro
Forward Current,lTM ,Peak Amperes
2
5
Figure 11. Forward voltage vs. forward current.
516
~
~
roo
N
.0001
Time,t,Seconds
Figure 12. Transient thermal impedance vs. time.
70
120'
T400-22
-..- -_. -t-------+-----
60
t
!
.. -j.-_. _.. _.1 .._- ---··t.-·
, -
50
I
~
....j
~40'
~
c0
I
~
..
~
~
E
E
"
'M
J
~
!
0'
!
~
e
----. .1--.
I
.-..
10
0
4
60·
i
... L
r- 360°-j
~ ~
1.-..-.-1--. Conduction
Angle
8
12
...
I
~
Conduction
Angle
!
~---v~...... ~+--·--t-----+I
t!! 40' .
Jl
I
. -·-
--~T~---" ------~----
....
!
8
E 20
E
"
~
,
32
28
36
20
24
Average Forward Current, tr(AV),Amperes
Figure 13. Power dissipation vs. forward current. rectangular wave.
<'>
.--..--l---n
I
E
I
20
!
8.
i _ ....
_ ....•. _-j-..
30
I----~
801
~.
.+
r- 360°-j
ooL
16
o·
4
0
12
16
20
8
Average Forward Current ,1T(Av),Amperel
24
28
36
Figure 14. Case temperature va. forward current. rectangular wave.
120 "-.;::--...---,---r----r----,-----,,---,.---.--..,
T400-22
..______1.. .. ___ .. -1.--.. ---
60'
--Li
!
.1
.~-
i
-j-
,.
!
.~
0°
o.
o
4
8
12
...! ConduCtion
i!20 °
Angle.
16
20
24
28
36
Average Forward Current, IT(AV),Amperes
Figure 15. Power dissipation va. forward current. half wave sinusoid.
20
24
28
36
Average Forward Current ,IT (Av),Amperes
Figure 16. Ca.e temperature ve. forwerd current. half weve sinusoid.
7'-~--~~~~~~~~--r--r'-rr--r--r~M
Forward Current,lTM ,Peak Amperes
Figure 17. Forward voltage vs. forward current.
llme,t,Seconds
Figure 18. Transient thermal impedanca VB. time.
517
60~--~----'-----r---~----r---~----,
2N5204-07
II
~ 50
~
~ 40~----~--~~--­
>
~
8
16
12
20
24
28
4
Average Forward Current, ITIAV), Amperes
Figure 19. Power dissipation vs. forward current, rectangular wave.
70
16
20
24
28
32
36
2N5204-07
z;: 60'
110
~
~
12
DC
2N5204-07
.
8
Average Forward Current, ITIAV), Amperes
Figura 20. Case temperatu're VB. forward current, rectangular wave.
u
°
50
~
>
~ 40
.:
..,0
'"
Q.
'iii
30
til
i5
..
I;; 20
30
CD
~
E
::>
E
u
E
::> 10'
E
'"
~
Q.
..
'x
.0;C
~
00
36
Averaga Forward Current, ITIAV), Amperes
Figure 21. Power dissipation vs. forward current, half wave sinusoid.
4
8
12
16
20
24
28
32
36
Average Forward Current, IT(AV), Amperes
Figure 22. Case te, ""erature vs. forward current, half wave sinusoid.
10
1000
2N5204-07
2N5204-07
TJ
=25°C
~
~
:g 100
~
E
TJ
=125°C
,1.0
"
,0.4
I;'
...«
/
l.'"
If
i
iCD
.-::: ~ ~
I
Q.
I::
'"'-
10
iii
Ez;:
,CD CD
518
V
•
Eu ,
::>0
.§.,;
::>
U
U-
V
V """"""
./
~~ 0';04
I:
"E
'~"
0
.,4.0
t-
125°C
0
~
I- 25°C
~ ~
~
j
2
3
4
Maximum Forward Voltage Drop, VTM, Peak Volts
Figure 23. Forward voltage vs. forward current.
5
6
2
,
0 .01
0.001 0.004 0.01
0.04 0.1
0.4 1.0
4.0 10
Time, t, Seconds
Figure 24. Transient thermal impedance vs. time.
40 100
Symbol
A
A,
B
</ID
E
F
J
M
N
Q
</IT
Z
</IW
Inches
Max.
Min.
5.775
6.850
.055
6.265
7.500
.075
146.69 159.13
173.99 190.50
~.40
1.91
.860
1.031
.255
1.000
1.063
.400
21.84
26.19
6.48
25.40
27.00
10.16
2.50
.437
.796
.650
.827
63.50
11.10
20.24
16.51
21.01
.260
.250
, ,
Millimeters
Min.
1.675
.291
Max.
6.60
6.35
42.55
7.39
%-20 UNF-2A
Creep & Strike Distance.
.10 in. min. (2.54 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-5 oz. (142 g).
1. Complete threads to extend to within
2% threads of seating plane.
2. Angular orientation of terminals is
undefined.
3. Pitch diameler of %-20 UNF-2A
(coated) th(eads (ASA 81.1-1960).
4. Dimension "J" denotes seated height
with leads bent at right angles.
Conforms to TO-94 Outline
Features:
• 'Center fired, di/namic gate
• All diffused design
• Low gate current
• Compression Bonded Encapsulation
For TO-83 Outline, see page 523.
Applications:
• Phase control
• Power supplies
• Motor control
• Light dimmers
• LOWVTM
• Lifetime Guarantee
Voltage
en
* ...0
Z
CD
Blocking State Maximums (TJ = 125'C)
Symbol
V ORM
VRRM
V RSM
IORM
IRRM
... 1')
Not
otu)
1')10
......
ZZ
... eII
en'"
...
en
en",
III'"
ell'"
NN
NN
NN
NN
100
100
150
150
200
200
150
20
20
225
20
20
300
18
18
... eII
25
25
50
50
35
20
20
75
20
20
N
Repetitive peak forward bloc,king voltage, V
Repetitive peak reverse voltage,
V
Non-repetitive transient peak reverse voltage,
t ~ 5.0 msec. V
.
Forward leakage current, mA peak
Reverse leakage current, mA peak
ON
...
en
......
ZZ
ell
......
zz
ell'"
en'"
NN
NN
... en
...ZZ...
Note: For better ratings & higher voltages, see T500 series.
... en
en'"
IDCO
...
en
en
oen
III
~~
... ...
......
zz
en'"
......
zz
co'"
......
250
250
300
300
400
400
500
500
600
600
350
16
16
400
500
12
12
600
10
10
700
10
10
ZZ
14
14
NN
zz
NN
ZZ
NN
Thermal and Mechanical
Current
Symbol
Conducting State Maximums (TJ = 125'C)
Symbol
RMS forward current, A
Ave. forward current, A
One-half cycle surge current@,A
12t for fusing (for limes 2: 8.3 ms) A2 sec.
Forward voltage drop at ITM=500A and TJ = 25'C, V
IT(rms)
IT(av)
I TSM
121.
110
70
1000
4000
2.3
Gate
Switching
(TJ = 25'C)
Typical turn-off time, IT = 50A
TJ = 125'C, diR/dt = 5
AIp.sec, reapplied dvIdt =
20V Ip.sec linear to 0.8 Vo RM, P. sec
Typ. turn-on-time, IT = 100A
Vo = 100V@),l'sec
Min. critical dv/dt, exponential to V ORM
TJ = 125'C, V/l'sec®®
Min. di/dt(j) non-repetitive, JEDEC,
A/l'sec
eDCDCD
VTM
Min.;.Max. oper. junction
TJ
temp., 'C
Min., Max. storage temp .. 'C Tstg
Max. mounting torque, in Ib.(j)
Max. Thermal resistance(j)
Junction to case, 'C/Watt ReJc
Case to sink, lubricated
'C/Watt
Recs
Maximum Parameters
(TJ = 25'C)
Gate current to trigger at V 0
= 12V,mA
Symbol
tq
100
ton
4
dv/dt
300
di/dt
800
Gate voltage to trigger at Vo
= 12V,V
Non-triggering gate voltage, TJ
= 125'C, and rated Vo RM, V
Peak forward gate current, A
Peak reverse gate voltage, V
Peak gate power, Watts
Average gate power, Watts
-40 to
+ 125
-40 to
130
+ 150
.40
.12
Symbol
IGT
70
VGT
3
VGDM
IGTM
VGRM
PGM
PG(av)
.25
4
5
16
3
CD
CD
CD
CD
(j)
CD
Consult recommended mounting procedures.
Applies for zero or negative gate bias.
Per JEOEC RS-397, 5.2.2.1.
With recommended gate drive.
Higher dv/dt ratings available, consult factory.
Per JEOEC standard RS-397, 5.2.2.6.
*2Nl909 Series in TO-49 PKG
2N1792 Series in TO-83 PKG
519
.50
7
l!l
..
(5
oj
> 6
i
>Ii 5
u'"
TJ = 125°C
e
c:
.S!
U
II
0
!!!
'"'"
4
(5
>
.
"E 3
~
u.
~
E 2
:::I
E
-
.
I----"
'j(
:::1!
2
5
~
V
c:
..,.,
.30
:::I
.
1/
"c:
.,,,,
"0
Q.~
Elii
.20
/
=~
.......
Eu
10'
50 100 200
10 20
.40
g
~o
~-:: .10
... ~
l/
g~
500 1 K 2k
o
5K 10K
.0001
0-.J~;~K)n
10
100
1000
-1----+---_+---.1'1-----1
u
'0;
0.
I
:::I
~
~ 60~----~~~~~~~4_------~----4_----~
~
is 100~----_+----_R,
80~----~
l00~--_\~~~~--~d_----.~----_+----_4----~
~
'~"
E
~
.1
140r---~----~---,----,-----r_--~--__,
.L20
~
~----~----~-----
'j(
.01
Maximum Case Temperature VS. Forward Current
Maximum Power Dissipation VS. Forward Current
18or-----~----~----~~----~----_r----~
~t:
.001
Time, t, Seconds
Forward Current, ITM, Peak Amperes
160
~
~ 140
V
I
40~----~~~~~------~-----+------~----~
801------1--t
III
~
d·c
20
60
40
100
80
4OL----L~--L-~~~__~__~~--L---~
o
120
Average Forward Current, Amperes
20
40
60
80
100.
120
140
Average Forward Current, Amperes
Maximum Power Dissipation VS. Forward Current
Maximum Case Temperature VS. Forward Current
140~~~~~~--~---r--~~--,_--~--~
140'~--~----r---~----r_--_r----~--_r--~
120~--_+----~--_+----~--_+--__+
~
r-360~
~ 100
~
~---I-+-
l..........1-COr>d~ClII,IIl
r:o
Angle"
.~ 80~--+---~--~-~~~~~~~_+--_+--~
:;o
~
1E
:::I
u
°
~ 100 1---+-----'~~~~3Ioo.,~'40::--+--+--_+--__l
~
.,
Q.
60'~--~----_+~~~~~~~--~--_+----~--~
4O'r----r--~~~~---+----~---r--_4--~
E
E
~
..III
80~--_+----~----~--~~~~~~~~--4_--~
u
6O~--+--_4----+l--_I__+--lf__1__I_-I
"f:
:::1!
10
20
30
40
Average Forward Current, Amperes
S20
50
60
70
80
4O~---ILO--~2LO----30LL--~40~L--5LO~--6LO--~~~~80
Average Forward Current, Amperes
Inches
Min.
Symbol
A
A,
Max.
5.775 6.265
6.850 7.500
.055
.075
.860 1.000
1.031 .. 1.063
.255
.400
2.50
.437
.650
.796
.827
1.675
.260
.291
.250
%-20 UNF-2A
B
t/>D
E
F
J
M
N
a
t/>T
Z
t/>W
Millimeters
Min.
Max.
146.69 159.13
173.99 190.50
1..40
1.91
21.84 25.40
26.19 27.00
6.48 10.16
63.50
11.10 16.51
20.24 21.01
42.55
6.60
7.39
6.36
Creep & Strike Distance •
.50 in. min. (12.85 mm) .
.10 in. min. (2.S4 mm). **
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-S oz. (142 g).
1. Complete threads to extend to within
2% threads of seating plane.
2. Angular orientation of terminals is
undefined.
3. Pitch diameter of %-20 UNF·2A
(coated) threads (ASA 81.1-1960).
4. Dimension "J" denotes seated height
with leads bent at right angles.
Conforms to TO-94 Outline
Features:
• All diffused design
• Low gate current
f
* For TO-83 Outline, see page 523.
Applications:
• Phase control
• Power supplies
• Motor control
• Light ~!mmers
• LOWVTM
• Compression Bonded Encapsulation
• Low Thermal Impedance
Voltage
2N4361
2N4371
2N4362
2N4372
2N4363
2N4373
2N4364
2N4374
2N4366
2N4376
2N4366
2N4376
2N4367
2N4377
VDRM
VRRM
100
100
200
200
400
400
600
800
800
1000
1000
1200
1200
1400
1400
VRSM
IDRM
IRRM
200
(
300
500
700
950
10
10
1200
1450
1700
Blocking State Maximums 0
(TJ = 12soq
Symbol
Repetitive peak forward blocking
voltage, V •........••...•... . •• . . • . . . • • . .
Repetive peak reverse voltage ,'V •. . . . . .•. . .
Non·repetitive transient peak reverse
voltage, t~ msec, V ....................
Forward leakage current, rnA peak . . . . . . . . . .
Reverse leakage current, rnA peak ...•..••.•
600
(
>
~
Thermal and Mechanical
Current
Conducting State Maximums (TJ = 125°C)
Symbol
Symbol
RMS forward current. A .......•...•.........•.
Ave. forward current. A .....•.............•.••.
One·half cycle surge current. AC!)
3 cycle surge current. A 0 .................. .
10 cycle surge current. AC!) .................•
I't for fUSing (for times 8.3 ms) A'sec .......... .
Forward voltage drop at ITM = 500AandTJ = 25°C.v
Switching
ITCrms)
ITCav)
1T5M
ITSM
1T5M
I't
ITM
Min., Max. oper. junction
temp .. °C .............. TJ
Min .• Max. storage temp., °C T$'g
Max. mounting torque, C!)
in Ib .................. .
Max. Thermal reslstance(i)
Junction to case,
°C/Watl ............. ReJc
Case to sink, lubricated
°C/Watt .... . . . . . . . . . .. Recs
110
70
1600
1250
1080
10,700
2.5
-40 to +125
-40 to +150
130
.28
.12
Gate
Symbol
Typical turn-oil time, IT = 50A
TJ = 125°C. diR/d' =5 Alpsec,
reapplied dvldt = 20V Ipsec
linear to 0.8 VDRM, psec .......
Typ. turn·on-time, IT = l00A
Vo = 1OOV, ).Isec ...............
Min CritiC'. II rlv eft exponential to
VORM T'
125 r.. V Jlsec CD ....
Mm eft dt Il'ln rp!lt'tltlve A jJSf~C.
2N436S*
2N437S
Maximum Parameters
(T.J
tq
ton
100
4
75
C)
Symbol
G<JIf' £:llrrt'nl to If I~qe->r al VO
IGT
12V ",A
Gatl' volta~w '0 tr IgqE~r at VD
12V V .
............
VGT
250
3
Non-tnggennq gate voltage. TJ
dvldt
dt'dt
100
800
. 125 C. and rated VORM. V. .
Peak forward gate current, A .....
Peak reverse gate voltage, V ......
Peak gate power. Watts ..........
Average gate power. Watts .......
VGDM
IGTM
VGRM
PGM
PG(avl
015
4
5
15
Consult recommended mounting procedures.
Applies for zero or negative gate bias .
Per JEDEC RS-397, 5.2.2.1.
With recommended gate drive.
CD Higher dv/dt ratings available, consult factory.
(i). Per JEDEC standard RS-397, 5.2.2.6.
*2N4361 Series in TO-94 PKG.
2N4371 Series in TO-83 PKG.
**Glass-to-metal seal package.
(i)
C!)
C!)
(i)
521
Maximum Forward Voltage VS. Forward Current
2
4
6
10
20
4060 100 200 400600lK
2K
4K6K 10K
Forward Current, ITM, Peak Amperes
Maximum Case Temperature VS. Forward Current
Time in Seconds
Maximum Power Dissipation VS. Forward Current
200~Tr~~n7~~~c--n~-n--~--~--~--~-r~~-'
A
00
j
Conduction ~Oo
Angle,
120
Average Forward Current, Amperes
Maximum Power DiSSipation VS. Forward Current
u
o
~ 60~--~--+---~---ri--r-t-ti--+--if--~--~r---~~
;a.
~
40r-~t----r-~H-~r;~r4~~~--;;--~---f---i---1
3:OJ
u
Average Forward Current, Amperes
522
Average Forward Current, Amperes
Conforms to TO-83 Outline
Conforms to TO-94 Outline
Symbol
A
A,
B
q,D
E
F
J
M
N
Q
q,T
Z
q,W
Inches
Min.
5.775
6.850
.055
.860
1.031
.255
2.50
.437
.796
Millimeters
Max.
Max.
Min.
6.265
7.500
.075
1.000
1.063
.400
146.69 159.13
173.99 190.50
1-.40
1.91
21.84 25.40
26.19 27.00
6.48 10.16
63.50
11.10 16.51
20.24 21.01
42.55
7.39
6.60
6.35
.650
.827
1.675
.291
.260
.250
%-20 UNF-2A
Min.
A,
Max.
.070
L,
L,
M,
.420
.180
.360
.470
.190
.235
.080
.060
.180
'h-20 UNF-2A
q,W
Max.
Min.
1.810
.110
.650
.520
C
L
q,T,
q,T,
Z,
Features:
• Center fired, di/namic gate
• All diffused design
• LowVTM
• Compression Bonded Encapsulation
• Low Thermal Impedance
• High Surge Current Capability
• Low gate current
• Lifetime Guarantee
Millimeters
Inches
Symbol
45.97
2.79
16.51
13.21
1.78
10.67
4.57
9.14
4.83
1.52
4.57
11.94
5.97
2.03
Applications:
• Phase control. Motor control
• Power supplies. Light dimmers
Approx. Weight-4 oz. (114 g).
1. Basic dimensions of TO-94 and TO-83
are same except as noted.
Creep & Strike Distance.
T500-.50 in. min. (12.85 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-5 oz. (142 g).
1. Complete threads to extend to within
2% threads of seating plane.
2. Angular orientation of terminals is
undefined.
3. Pitch diameter of %-20 UNF-2A
(coated) threads (ASA B1.1-1960).
4. Dimension "J" denotes seated height
with leads bent at right angles.
Ordering Information
Type
I
Voltaqe
I
Current
I
Turn off
Code
and
Code
IT(av)
Code
tq
,usee
(A)
Code
* for 600 volts and below, see T510
"
*·For lower I GT consult factory.
07
08
09
10
11
12
13
14
15
40
40
100
(typ)
Type
I
1a
80
10
~J ~
I
a
a
..
100.
'fI()
Example
Obtain optimum device performance for your
application by selecting proper Order Code.
T
IGT'
(~;
(V)
700
800
900
1000
1100
1200
1300
1400
1500
I edds
I
~.'"~
VRRM
1600
-;
Gdte Current
VORM
,
..
Case
Code
r .•
.',',
..
":.
TO-94
AQ
TO-83
AA
4
'
Type T500 rated at BOA average with VORM
= 1000 volts IGT= 150 rna, and standard
flexible lead order as:
Voltage
8
3!t"'t",,'tNi" ,SIM1"""m
823
Voltage
Blocking State MaximumsiCD
(TJ=125°C)
Symbol
Repetitive peak lorward blocking
voltage, V ...........••......
Repetitive peak reverse voltage ,V.
VORM
VRRM
700
700
800
800
900
900
1000
1000
1100
1100
1200
1200
1300
1300
1400
1400
1500
1500
VRSM
IORM
IRRM
850
950
1100
1200
1300
10
10
1450
1550
1700
1800
Non-repetitive transient peak reverse
voltage, t<5.0 msec,V........•
Forward leakage current, mA peak ••
Reverse leakage current, mA peak ..
•
•
...
Current
Conducting State Maximums (TJ=125°C)
Symbol
RMS lorward current, A ......•.•........••.....
Ave. lorward current, A ••..••...........•......
One-half cycle surge current@, A
3 cycle surge current@, A ....•••...•••.......
10 cycle surge current@, A ......•...•.......•
I't lor lusing (lor times~8.3 ms) A' sec...........•
Forward voltage drop at ITM=500A and TJ=25°C, V.
IT(rms)
IT(av)
ITSM
ITSM
ITSM
Switching
TSOO __ 40
TSOO __ 80
63
40
1200
950
800
6000
3.7
l"t
VTM
125
80
1800
1300
1170
13,500
2.2
Gate
Thermal and Mechanical
(TJ=25°C)
Symbol
Typical turn-off time, IT=50A
TJ=125°C, diR/dt=5 A/p.sec,
reapplied dv/dt=20V/p.sec linear
to 0.8 VORM, p.sec.. . .. . .. .. . .. •
Typ. turn-on-time, IT=100A
VO=100V®,p.sec ...............
Min. critical dv/dt, exponential to
VORM TJ=125°C, V/p.sec@@. ....
Min. di/dt non-repetitive(j)00 A/p.sec
Symbol
Maximum Parameters
~=2rq
~mb~
-40 to +125
-40to+150
Gate current to trigger at Vo
=12V,mA ••.....••..•.• ·•
IGT
130
Gate voltage to trigger at Vo
=12V, V .............•.•.
Non-triggering gate voltage, TJ
=125°C, and rated VORM, V.
Peak lorward gate curre'nt, A •.•
Peak reverse gate voltage, V ...
Peak gate power, Watts ..••.•.
Average gate power, Watts ...•
Min., Max. oper. junction
tq
100
ton
dv/dt
di/dt
4
300
800
temp., °C. . • . . • . . . . . • .
Min., Max. storage temp., °C
Max. mounting torque,
in Ib.<D .............. .
Thermal resistance<D
Junction to case,
°C/Watt •...••......
Case to sink. lubricated
°C/Watt •............•
TJ
Tstg
ReJC
.28
Recs
.12
<D Consult recommended mounting procedures.
@ Applies for zero or negative gate bias.
@'Per JEOEC RS-397, 5.2.2.1.
With recommended gate drive.
See
Ordering
Inlo.
3
VGT
0.16
4
5
16
3
VGOM
IGTM
VGRM
PGM
PG(av)
o
CD Higher dv/dt ratings available. consult lactory.
·CD Per JEOEC STO RS-397, 5.2.2.6.
Transient Thermal Impedance VS. Time
.30 .
Maximum Forward Voltage VS. Forward Current
7
"!,
6
.25
l!l
~
J
ti
5
..
j
5
,;
"';.~.:."
TJ= 12Soe
to
91.
4
.~IIII
II
'E
~0
..,.,
3
,.,
'C
!~= .05
,,,,,,,'. .,;,,
li,~
!e
l
0
.......
2
5
10 20
50 100. 200
Forward Current,lTM,Peak Amperes
;:;
~i°.z.
..... "[
'j(
S24
.10
"c:
,to
2
E
;:>
E
~
.15
C:I
;:>,
...
.
.20
UI
u,
500
lK
21<
5K 10K
.1
o.
.0001
.001
Time.t, Seconds
.01
.1
10
100
Maximum Case Temperature VS, Forward Current
Maximum Power Dissipation VS, Forward Current
130
100
.180·
120 :'.
f.)
0
!::I
1
.
110
E
.
m
!
,
I-
~
100 •
E
::I
E
f.)
.
40
'j(
~
90
20
~~'<
0
<1
"
0
10
20
30
40
50
0
10
20
40
30
50
Average Forward Current, Amperes
Average Forward Current, Amperes
Maximum Power Dissipation VS, Forward Current
Maximum Case Temperature VS, Forward Current
180,
T6oo __ 80
1
'50
.180·
.~
i 120
o
0=
1
90
E
::I
E 60'
'j(
to
~
30.
o
100
Average Forward Current, Amperes
o
20
40
60
Average Forward Current, Amperes
80
100
525
Maximum Power Dissipation VS. Forward Current
Maximum Case Temperature VS. Forward Current
Jfft~ng{t~~
130
o
20
40
Average Forward Current, Amperes
Maximum Case Temperature VS. Forward Current
Average Forward Current, Amperes
526
60
80
20
40
Average Forward Current, Amperes
Maximum Power Dissipation Vs. Forward Current
Average Forward Current, Amperes
60
80
Conforms to TO-94 Outline
Symbol
A
At
B
.pO
E
F
J
M
N
Inches
Min.
5.775
6.850
.055
.860
1.031
.255
2.50
.437
.796
Q
.pT
Z
q,W
Max.
6.265
7.500
.075
1.000
1.063
.400
.650
.827
1.675
.291
.260
.250
11..-20 UNF-2A
Millimeters
Max.
Min.
146.69 159.13
173.99 190.50
1.91
1-.40
21.84
25.40
27.00
26.19
6.48
10.16
63.50
11.10 16.51
20.24
21.01
42.55
7.39
6.60
6.35
Creep & Strike Distance.
T500-.50 in. min. (12.85 mm).
T510-.10 in. min. (2.54 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Appro •. Weight-5 oz. (142 g).
1. Complete threads to extend to within
2% threads of seating plane.
2. Angular orientation of terminals is
undefined.
3. Pitch diameter of %·20 UNF-2A
(coated) threads (ASA B1.1·1960).
4. Dimension "J" denotes seated height
with leads bent at right angles.
Symbol
Inches
Min.
A,
Max.
1.810
.110
.650
.520
C
.070
L
L,
L,
M,
q,T,
q,T,
Zt
q,W
.420
.1BO
.360
.470
.190
.235
.060
.OBO
.1BO
11..-20 UNF-2A
Millimeters
Min.
Max.
45.97
1.78
2.79
16.51
10.67
13.21
4.57
9.14
11.94
4.B3
5.97
1.52
2.03
4.57
Approx. Weight-4 oz. (114 g) .
1. Basic dimensions of TO-94 and TO-83
Features:
• Center fired di/namic gate
• All diffused design
• LowVTM
• Compression Bonded Encapsulation'
• Hermetic glass to metal seal
• Low gate current
• Lifetime Guarantee
Applications:
• Phase control
• Power supplies
• Light dimmers
• Motor control
are same except as noted.
Ordering Information
*for 700 volts and
above see T500
Example
Obtain optimum device performance for your
application by selecting proper Order Code.
Type T51 0 rated at 80A average with V ORM =
300 volts I GT =70ma. and standard flexible
lead order as:
527
Voltage
Sumbol
Blocking Stata Maximurws (1) IT· '" , :i5'Cl .
V DRM
V RRM
Repetitive peak forward blockinCi voltage. V
Repetitive peak reverse vollag. .V
Non-repetitive transient peak reverse voltage.
t:S; 5.0 msec. V
Forward leakagecurrent. rnA peak
Reverse leakage current, rnA peak
50
100
100
200
200
300
300
100
200
300
400
50
V RSM
IDRM
IRRM
~
~
400
400
600
500
600
600
600
600
700
~
~
10
10
Current
Conducting Stata Maximums (TJ
= 125'C)
RMS forward current, A
Ave. forward current, A
One-half cycle surge [email protected]
3 cycle surge [email protected]
10 cycle surge [email protected]
12t for fusing (for times ~ 8.3 ms) A2 sec.
Forward voltage drop at ITM
500A and TJ
=
Symbol
125
80
50
1200
960
1800
1250
1080
10.700
1.8
600
12t.
6000
2.6
VTM
Switching
T510 _ _ 80
80
IT(rms)
IT(av)
ITSM
ITSM
ITSM
= 26'C. V
T610 _ _ 60
Gate
Symbol
(TJ - 25'C)
Msxlmum Parametars
(TJ = 26'C)
=
Typical turn-off time, IT 50A
TJ
125'C, diR/dt = 5
A/p.sec, reapplied dv/di =
20V/ p.sec linear to 0.8 V DR M. P. sec
Typ. turn-on-time, IT
100A
V D = l00V@, p.sec
Min. critical dv/dt, exponential to V DRM
Tu
125·C. V/p.sec~~
Min. di/dt non,(soetitive.
AI p.sec
Q) <D (!)
=
tq
100
ton
4
dv/dt
300
di/dt
100
=
=
Symbol
Gate current to trigger at V D
= 12V. rnA
IGT
Gate voltage to trigger at V D
12V.V
Non-triggering gate voltage. TJ
= 125'C. and rated VDRM. V
Peak forward gate current. A
Peak reverse gate voltage. V
Peak gate power. Walta,
Average gate PClwer. Watte
VGT
See
Ordering
Info.
3
VGDM
IGTM
V GRM
PGM
PG( ••)
0.16
4
6
16
3
=
Thermal and Mechanical
Symbol
Min .• Max. oper. junction
TJ
temp., 'C
Min .• Max. storage temp.,·C Tstg
Max. mounting torque, in Ib.(!)
Max. Thermal res,stance(!)
Junction to case. 'C/Watt . ReJ e
Case to sink,lubricated
'C/Watt
Rees
-40 to
+ 126
-40 to
130
+ 150
(!) Applies for zero or negative gate bias.
~ Consult recommended mounting procedures.
@ Per JEDEC RS-397. 5.2.2.1.
@ Witn recommended gate drive.
~ Higher dv/dt ratings avallabla. consult factory.
(!) Per JEDEC' standard RS-397, 5.2.2.6.
.40
.12
Maximum Forward Voltage VS. Forward Current
~
!
~
4
~-~ -f-~~
r::!
f
"j
i'
~ 3f
~
Transient Tharmallrnpedance VS. Time
!
I
J}:',~ ;~~t~p~lj
\·,.:"1 ;,!!(J"'Ur-Il,
>
'E 2!'''~'--1- ,~,...j"'''':-+''-14-<''i-'
!
;
--I'
_:J ~~~, :~~~l;'~' 1...: :.~~ in •.: l;;T..~i ;,.
~
"~11!ilit;
... -
-r.~..<.1""'~i1·-··
I'
'i:P ..j.o~,.j~1 ~B?j
-r-"'r'
I' ,-.1'1
I,:: !Jti;:;~i:;1r~i~~~;':~tl1lIili
01---- 2
5
10
2.0
Forward Current, IrM. Peak Amperes
828
50
100
200
-500
IK
2K
Tlme,t_
Maximum C_ Temperature VS. Forwerd Current
13O{II.~mmmm~~~
120
~
110
l,oOP'#ft#HM~~~~~~~~+f+H
~ 90~P#lli4H+9H4W¥{~~~~
10
20
30
40
50
Average Forwerd Current. Amperes
Maximum Case Temperature VS. Forward Currant
Maximum Power Dissipation VS. Forward Current
Average Forwara Currant. Amparall
829
Maximum Power Dissipation VS. Forward Current
Maximum Case Temperature VS. Forward Current
130
120
: t--J"'--j
I?}J (TiJ .
120
•
o
t--J60--j
100
~
III
!-..L-cufOl1ull,on
t)
T510_50
li
Anqle6
(TiJ •.
!-..L-conducllOn
Angle"
~
110
r:0 80
~
.~
"
".0;
f .
!IOO
III
i5
60
i 40
." 20
I-
m90
Q.
~
E
E
80
·K
DC
20
40
60
::E
80
0
0
140
20
40
80
60
Average Forward Current, Amperes
Average Forward Current, Amperes
Maximum Power Dissipation VS. Forward Current
Maximum Case Temperature VS. Forward Current
150
120
20
40
60
80
Average Forward Current, Amperes
530
100
120
140
140
160
Average Forward Current, Amperes
160
Millimeters
Inches
Symbol
A
A,
B
q,D
E
F
J
M
N
Min.
Max.
Min.
7.750
7.750
.063
8.100
8.100
.172
196.85 205.74
196.85 205.74
1.60
4.37
.980
1.212
.250
1.090
1.250
.630
24.89
30.78
6.35
27.69
31.75
16.00
3.25
.530
1.040
.755
1.077
82.55
13.46
26.42
19.18
27.36
Q
q,T
.260
.340
Z
2.250
.290
Max.
6.60
8.64
r----'
\\ ; I
57.15
7.37
q,W
%-16 UNF-2A
Creep & Strike Distance:
.69 in. min. (17.60 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-8 oz. (227 g).
1. Complete threads to extend to within
2)(, threads of seating plane.
2. Angular orientation of terminals is
undefined.
3. Pitch diameter of %-16 UNF-2A
(coated) threads (ASA Bl.I-1960).
4. Dimension "J" denotes seated height
with leads bent at right angles.
Features:
• Center fired dilnamic gate
• All diffused design
-. Guaranteed dvldt (300 vips)
• Low gate current
• LOWVTM
• Low thermal Impedance
• High surge current capability
• Compression Bonded Encapsulation
Lifetime Guarantee
•
ot
III
CD
CD
CD
CD
Voltage
CD
Blocking State Maximums (TJ = 125°C)
CO)
Repetitive peak forward blocking voltage, V ,.
Repetitive peak reverse voltage, V ..... , .....
Non-repetitive transient peak reverse voltage,
t!:'5.0 msec,.V ..............••...........
Forward leakage current, mA peak ..........
Reverse leakage current, mA peak ..•.......
C"l
Z
Z
10
CD
CD
CO)
Z
"
10
10
CD
CD
CD
C"l
CO)
N
N
Z
Z
GI
CD
CD
C"l
Z
•
•
•
•
..
GI
GI
N
GI
CO)
M
M
N
N
0
CD
CD
Z
Z
CO)
GI
CIO
Z
Z
VDRM
VRRM
50 200 200 300 400 500 600 700 800
50 100 200 300 400 500 600 700 800
VRSM
IORM
IRRM
N
N
N
ot
CO)
N
N
Phase Control
Power Supplies
Motor Control
Light Dimmers
CD
Symbol
N
eoo
900
III
GI
GI
CIO
C"l
N
N
N
Z
150 200 300 400 500 600 720 850 960 1080
25
~
25
~
Current
CD
Z
1000
1000
1200
1200
1200
1320
...
)
Thermal and Mechanical
Conducting State Maximums
(TJ = 125°C)
Symbol
RMS forward Current, A ..........•....
Ave. forward current. A ..........•...•.
One-half cycle surge current, A0 .......
IT,rms)
IT ,av)
ITSM
I't for fusing (for times 8.3)A' sec .•....
Forward voltage drop at ITM = 625A and
TJ = 25°C, V ........................
Pt
Symbol
275
175
4500
84,000
Min., Max. oper, junction
temp.,oC .....•..•...•.
Min., Max. storage temp.,oC
Max. mounting torque,
in lb. CD
Max. Thermal resistance CD
Junction to case,
1.55
VTM
°C/Watt ...............
Switching
TJ
Tstg
-40 to+125
-40 to + 150
360
ReJc
.13
RecS
.075
Case to sink, lubricated, CD
°C/Watt ...............
Gate
Maximum Parameters
Symbol
Typical turn-off time, IT = 150A
TJ = 125°C, dirRI dt = 12.5A/JJsec,
reapplied dv/dt = 20V/"sec linear
to 0.8 VORM, )Jsec . ... .. . . . . .. . . .
Typ. turn-an-time, IT = l00A
VD = 1OOVCD, "sec.. . .. . .. . .. .. . .
Min. critical dv/dt, exponential to
VORM TJ = 125°C, V/"sec00....
Min. di/dt non-repetitive,
A/,usecCDCD(j).............
Applications:
(TJ = 25°C)
tq
ton
100
5
dv/dt
300
di/dt
800
Gate current to trigger at Vo = 12V,
mA
Gate voltage to triggeratVO = 12V,V
Non-triggering gate voltage,TJ
= 125°C, and rated VORM,V ....
Peak forward gate current. A ..•..
Peak reverse gate voltage, V ....•.
Peak gate power, Watts .... , .••..
Average gate power, Watts ...••..
Symbol
IGT
VGT
VGOM
IGTM
VGRM
PGM
PG,av)
150
3
0.15
4
5
15
3
CD Consult recommended mounting procedures.
o Applies for zero or negative gate bias.
o Per JEDEC RS-397, 5.2.2.1.
o With recommended gate drive.
o
Higher dv/dt ratings available, consult factory.
CD Per JEDEC standard RS-397, 5.2.2.6.
S31
Maximum Forward Voltage VS. Forward Current
Transient Thermal Impedance VS. Time
s.o~
20
!!l
4.5~
lB
:i
4.0~
.16
~
~
II
>ri a.5~
~
.12
:=
E
~
@
'; a.o~
~.
10
~ 2.5
'0
TJ" 126·C
.14
.OB
..
!
~ 1.5~
iii
!:
"
P
.~ I.O~
~
.06
.04
-",!,.-..--:
0 ...
· __
E
o
Forward Current, ITM, Peak Amperes
.!l
I aoo
i
~
200
Je
~
75
100
I
DC
o
so
ISO
100
. Average Forward Current, Amperes
200
100
180~
.~
.oonductio,n anQle
o
10
.1
Maximum Power Dissipation VS. Forward Current
Maximum Case Temperature VS. Forward Current
65
.01
.001
0001
Time,t, Seconds
JO
2150
150
100
SO
Average Forward Current, Amperes
300
200
Maximum Power Dissipation VS. Forward Current
Maximum Case Temperature VS. Forward Current
~ 400
~
60
c·
(.)
.2
0
1
!!::l
:;
;
30
Q
..e
...
Q.
Je
200
I-
(.)
::l
.e
'M 100
. .,.conduction anQle.
:E
0
0
Average Forward Current, Amperes
532
150
100
ISO
Average Forward Current, Amperes
200
Symbol
A
A,
B
</>D
E
F
J
M
N
Inches
Min.
7.750
7.750
.063
.980
1.212
.250
3.25
.530
1.040
Max.
8.100
8.100
.172
1.090
1.250
.630
.755
1.077
2.250
.290
Q
</>T
Z
</>W
Conforms to TO-93 Outline
Features:
• Center fired di/namic gate
• All diffused design
• Low gate current
• LowVTM
• Low Thermal Impedance
• High surge current capability
• Compression Bonded Encapsulation
• Lifetime Guarantee
* for lower IGT
consult factory
.260
.340
%-16 UNF-2A
,
Millimeters
Max.
Min.
196.85 205.74
196.85 205.74
1.60
4.37
27.69
24.89
30.78
31.75
6.35
16.00
82.55
13.46
19.18
27.36
26.42
57.15
7.37
6.60
8.64
Creep & Stnke Distance:
T600-.69 in. min. (17.60 mm).
T610-.12 in. min. (3.05 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-8 oz. (227 g).
1. Complete threads to extend to within
21> threads of seating plane.
2. Angular orientation of terminals is
undefined.
3. Pitch diameter of %-16 UNF·2A
(coated) threads (ASA 81.1-1960).
4. Dimension "J" denotes seated height
with leads bent at right angles.
T600
T610
Ceramic Package Pt (case rupture) rating: 20 x 10· A'sec.
Applications:
• Phase Control
• Motor Control
• Power Supplies
• Welders
• Light Dimmers
Example
Obtain optimum device performance for your
application by selecting proper Order Code.
_
,iJii
ITre
_
0
Type T600 rated at 175A average with VDRM =
1000V, IGT= 150 ma, and standard flexible
lead-order as:
._"m.Fii,."'.•
~
1
I
U
1
_
8
I
'''"C.''••••''''''"••••
0
I
4
I
8
~S33
Voltage
----------------,@.~-------------------------------------,~---------------------------------Blocking State Maximums
Symbol
J=125°C)
Repetitive peak forward blocking voltage. V .•••.
Repetitive peak reverse voltage~ V ..•••••....
,Non-repetitive transient peak reverse voltage.
t ~5.0 msec. V ........................ .
Forward leakage current rnA peak •••••••.....
Reverse leakage current. rnA peak .•••••••.•...
T610
T600
VORM
VRRM
100
100
200
200
300
300
400
400
500
500
600
600
700
700
80d
800
900
900
1000
1000
1100
1100
1200
1200
1300
1300
1400
1400
1600
1600
VRSM
IORM
IRRM
200
300
400
500
600
700
•
850
950
1100
25
25
1200
1300
1450
1650
1700
1800
••
•
•
Current
Conducting Stata Maximums
{TJ=125°C}
RMS forward current A ••.••••••...•••.
Ave. forward current. A ..•••••••....•••
One-half cycle surge current@. A ....•••••
3 cycle surge current@, A ....••..••.•
10 cycle surge current@, A ...•.••••••
l"t for fusing {fortimes>8.3 ms} A" sec...••
Forward voltage drop at ITM=625A and
TJ=25°C. V .••••••••..•.••...•.•.•
Symbol
T600 __ 13
T610 __ 13
T600 __ 15
T610 __ 15
T600 __ 18
T610 __ 18
IT(rms}
IT(av}
ITSM
ITSM
ITSM
l"t
200
125
3300
2400
2000
45,000
235
150
4000
3000
2400
66,000
275
175
5500
3900
3400
120,000
2.05
1.8
1.55
VTM
Switching
Gate
(TJ=25°C)
Maximum Parameters
Typical turn-off time, IT=150A
TJ=125°C, diR/dt=12:5 A/p.sec,
reapplied dv/dt=20V/J.&sec linear'
to 0.8 VORM, J.&sec •••• : •••••••
Typ •.turn-on-time, IT=l OOA
. [email protected] .............
.v1in. critical dv/dt. exponential to
VORM TJ=125°C. V/p.sec(V I(£) .••
Min. di/dl non-repetitive.
A/J.&sec
0200
<D
<D
(i)
(j)
(£)
(i)
Symbol
tq
100
5
ton
dv/dt
300
di/dt
SOo
Thermal and Mechanical
Symbol
(TJ=~5°C)
Symbol
Gate currentto trigger at Vo =12V. rnA
Gate voltage to trigger at VO=12V. V.
Non-triggering gate voltage, TJ
=125°C. and rated VORM. V ....
Peak forward gate current. A ......•
Peak reverse gate voltage, V .......
Peak gate power. Watts ..••••..•..
Average gate power. Watts .•.•....
IGT
VGT
150
3
VGOM
IGTM
VGRM
PGM
PG(av)
0.15
4
5
16
3
TJ
Tstg
-40to+126
-40to+150
Max. mounting torque,
in Ib.(j) ...•...•••••.••
Thermal resistance(j)'
Junction to case.
·C/Watt .....•.......•
Case to sink, lubricated.
·C/Watt .....••••••...
300
ROJC
.13
ROCS
.075
Consultirecommended mounting procedures.
Applies for zero or negative gate bias: Per JEDEC RS-397. 5.2.2.1.
Withl recommended .9.Bte drive.
Higher dv/dt ratings available, consult factory.
Per JEDEC standard RS-397. 5.2.2.6.
Maximum Forward Voltage VS. F'orward Current
Transient Thermal Impedance VS. Time
,001
Forward Current. ITM. Peak Amperes
S34
Min .• Max. oper. junction
temp., °C .... ,..•••••..
Min .. Max. storage temp., °C
Time,t, Seconds
01
.1
10
100
· MaXimum Case Temperature VS. Forward Current
140 .
..,....,,-.,....r-r. .,.......,....,....,...,-.,..,
120
100
20
40
60
80
Average Forward Current, iT CAY)' Amperes
100
120
140
40
20
60
80
o
Average Forward Curr,nl. IT CAY). Amperes
160
100
120
140
120
140
160
Maximum Power Dissipation VS. Forward Current
250 .
=a;$-m:ff
i
i
200
> 150
0.:"-
co
u
"s
.2-
!?
is
E
E
=:
o
"
E
...
j
(!.
::J
....
100
50
E
.~
~
~
40
60
80
100
160
Average Forwar.d Current. iT CAY). Amperes
Average Forward Current. iT CAY). Amperes
Meximum Case Temperatura VS. Forward Current
140
300
i'
i
250
200
o..~
C 150
o
·s
0.
.~
is 100
l"
E
50
::J
E
'j(
III
o
::!:
50
100
150
200
50
100
150
200
835
Maximum Case Temperature VS. Forward Current
Maximum Power Diuipation VS. Forward Current
~Effm~a:ail
300
!!! -250
~
~ 200
,.~
.....
C 150
0
's
,2-
u
'"'" 100
C
0
~
to
;"
. c.
...~
'E
.CD
lCD
E
';(
U
:::ii
E
50
"
.
IV
40
80
160
120
0
0
200
'40
120
80
160
200
160
200
• 250
300
Average Forward Current. IT (Ayj. Amperes
Average Forward" Current. IT (AY). Amperes
' Maximum Power Diuipation VS~ Forward Current
Mllximum Case ,Temperature VS. Forward Current
300
UI
250
t·
..k 200
,.~
~
C 150
,2
liiQ.
'in
u
0
UI
C 100
'';
5
to
c.
to
1ii
~
...
0
E
E
."E
~
.
';(,,-
CD
In
IV
u
:::ii
0
40
80
Average Forward Current. IT(AII).
160
120
100
,0
0
150
40
80
120
Average Forward Current, IT lAY). Amperes
Maximum Power Diuipation VS. Forward Current i
Maximum Case Temperature VS. Forward Current
50
200
Ampe~es,
400
140
836
50
200
,250
o
50
100
. 150
200
Symbol
A
A,
B
</>D
E
F
J
M
N
Q
</>T
Z
</>W
Inches
Min.
Max.
9.76 10.00
10.18 10.42
.172
.063
1'.490
1.620 1.750
.430
.810
4.000
.530
.755
1:04
1.08
3.100
.330
.350
.440
%.-.16 UNF.-2A
Millimeters
Min.
Max.
247.90 254.00
258.57 264.67
1.60
4.37
37.85
41.15
44.45
10.92 20.57
101.60
13.46 19.18
27.43
26.42
78.74
. 8.38
8.89
11.18
Creep Distance-l.76 in. min. (44.91 mm).
Strike Distance- .81 in. min. (20.70 mm).
(In accordance with r4 EMA standards.)'
Finish-Nickel Plate.
Approx. Weight-16 oz. (454 g).
1. Complete threads to extend to within
2% threads of seating plane.
2. Angular orientation of terminals is
undefined.
.
3. Pitch di.ameter of *-16 UNF-2A
(coated) threads (ASA 81.1-1960).
4. Dimension "J" denotes seated height
. with leads bent at right angles.
i
Features:
• Center fired di/namic gate
• All diffused design
• LowTTM
• Compression Bonded Encapsulation
• Guaranteed dv/dt (300 vi ,us)
• l'Iigh surge capability
• Long'creep and strike·
• Westinghouse Lifetime Guarantee'
Package Ilt (case rupture) rating: .
1 5 x 10 6 A 2 sec.
Applications:
•
•
•
'.
Phase Control
Welding
Power Supplies
Motor Control
Ordering Information
I
Type
Voltage
VDRM
and
VRRM
(V)
Code
.T700
~
,
100
200
400
600
800
1000
1200
1300
1400
1500
1600
1700
1800
2000
2200
Current
I
I
Code
I T(av)
(A)
Code
01
Q2
04
06
08
10
12
250
26
300
30
350
36
Turn off
tq
p'sec
150
.(typical)
I
Gate current
Code
IGT
(ma)
Code
0
150
4
*
Leads
I
Case
Code
BY
T70
-
13
14
16
16
17
18
20
22
.• For lower IGT consult factory
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
Type T700 rated at 350 A ave~age with VDRM = 1000V.
IGT = 150 rna, and standard flexible lead-order as:
537
Voltage
CD
Blocking State Maximums ITJ
=125·C}
Repetitive peak forward blocking voltage ,V
Repetitive peak reverse voltage ,V ......... .
Non-repetitive transient peak reverse voltage,
5.0 msec,V ................•.......
Symbol
VORM
t.:s
1000 1200 1300 1400 1500 1600 1700 1800 2000 2200
1000 1200 1300 1400 1500 1600 1700 1800 2000 2200
VRRM
100
100
200
200
400
400
600
600
800
800
VRSM
200
300
500
700
950 1200 1450 1550 1700 1800 1900 2050 2150 2400 2600
Forward leakage current, mA peak ......... .
Reverse leakage current, mA peak .......... .
IORM
I RRM
1~<--------------------------30------------------------+)1
<
30 ------------------------+)
Current
Conducting State Maximums
(TJ == 125·C)
RMS forward current, A ........ .
Ave. forward current, A ........ .
One-half cycle surge current®, A ..
3 cycle surge current®, A ..... .
10 cycle surge current®, A .... .
12 t for fusing (for times> 8.3 ms)
A? sec.
Forward voltage drop at ITM == 3000
and TJ == 25·C, V ......... .
Symbol
T700 __ 26
T700 __ 30
IT(rms)
I nav )
I TSM
ITSM
I TSM
-400
250
7000
5040
4340
470
300
8400
6050
5200
550
350
10,000
7200
6200
205,000
295,000
416,000
3.30
2.75
2.15
\2t.
V TM
Switching
(TJ == 25·C)
Typical turn-off time. IT == 250A,
TJ == 125·C, diRldt == 25
A/llsec, reapplied dvldt ==
20V/Ilsec linear to 0.8 VORM,l'sec ...
Typ. turn-an-time, IT == 100A
VO== 100Ve!), Ilsec ............... .
Min. critical dv/d\, exponential to VORM'
T J == 125·C, V Illsec0 m . .......... .
Min. dildt non-repetitive,
A/llsec
CDCD0 .............. .
Thermal and Mechanical
Symbol
Symbol
tq
150
ton
7
dvldt
300
di/dt
800
Min., Max. oper. junction temp .. °C ......... .
Min" Max. storage temp .. ·C .............. .
Max. mounting torque. In lb. CD lubricated .... .
TJ
Tstg
Gate
Maximum Parameters
(T J == 25·C)
Gate current to trigger at Vo == 12V, mA
Gate voltage to trigger at Vo == 12V, V ...
Non-triggering gate voltage, TJ == 125°C,
and rated VORM ' V . '.............. .
Peak forward gate current, A .......... .
Peak reverse gate voltage, V ..........•
Peak gate power, Watts .•.............
Average gate power, Watts ........... .
Per JEOEC standard RS-397, 5.2.2.6.
360
.10
.05
Symbol
IGT
V GT
VGOM
I GTM
VGRM
PGM
PG(av)
Transient Thermal Impedance VS. Time
Maximum Forward Voltage VS. Forward Current
.1
3.5
c::::===""
10K
Forward Current, ITM' Amperes
538
-40 to +125
-40 to +150
Thermal resistance CD
Junction to case. ·C/Watt ............ .
Case to sink. lubricated. ·C/Watt. ........ .
CD Consult recommended mounting procedures.
CD Applies for zero or negative gate bias.
CD Per JEOEC RS397, 5.2.2.1.
CD With recommended gate drive.
0. Higher dvldt ratings available, consult factory.
o
T700 __ 36
Time, t. Seconds
150
3
0.15
4
5
16
3
Maximum Case Temperature VS. Forward Current
125
u
o
Average Forward Current, AmperE.'s
Maximum Case Temperature VS. Forward Current
u
o
~
::l
1ii
~
!'"
.
u"'
Average Forward Current. Amperes
Maximum Case Temperature VS. Forward Current
Average Forward Current, Amperes
Average Forward Current. Amperes
S39
Maximum Power Dissipation Vs, Forward Current
Average Forward Current, Amperes
Average Forward Current, Amperes
Maximum Case Temperature VS. Forward Current
125~~'~-n~~~Tr~~r--'-
~
.ij$<b':';j5;
, . .t : ~ :or : : " ~
:~ Ei1?tFfll
u
o
~
I"
!:
.
r..-·-+-.....+~<""l.,poiilool,.plllili!..t-ii+++-.-.~."."',~-:: 7:~~~~·L
•
"'.~.
,
t'~'~
;- ,'"
> :
-O-'~:~~~
•
~,
"
r::: ~
i-.j-.,..!I<-~.i'...' .~'.ol:r~~:~: 'l ~ilLUj
,: :'! ::!j
'~$'"
u
Average Forward Current, Amperes
540
, 1 ,
~ ~ "+~ ~
.. 'f· >.o._ .... '-+ ...... ~
""'r t -
+")
Inches
Symbol
cpO
cpO,
cpO,
Millimeters
Min.
Max.
1.610
.745
1.420
1.650
.755
1.460
40.89
18.92
36.07
41.91
19.18
37.08
.500
.135
.072
.560
.145
.082
12.70
3.43
1.83
14.22
3.68
2.08
196.85
.76
215.90
H
cpJ
J,
L
N
7.75
.030
8.50
Min.
Max.
Creep Oistance-.34 in. min. (8.64 mm).
Strike Oistance-.52 in. min. (13.21 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. We,ght-2.3 oz. (66 g).
1. DimensIOn "H" is clamped dimension.
T52
Outline
Package I2t (case rupture)
Voltage
rating:
Blocking State Maximums @1(TJ=125°C)
Symbol
Repetitive peak forward blocking voltage, V . ... .
Repetitive peak reverse voltage ,V .......... .
Non-repetitive transient peak reverse voltage,
t <5.0 msec, V .......................... .
Forward leakage current, rnA peak ........... .
Reverse leakage current, rnA peak ............ .
VORM
VRRM
100
100
VRSM
IORM
IRRM
200
....
RMS forward current, A ........•..•....
Ave. forward current. A ........ , ...... .
One-half cycle surge current@, A ........ .
3 cycle surge current@, A ....•.....•.
10 cycle surge current@, A .....•.....
1'1 for fusing (for times>8.3 ms) A' sec.....
Forward voltage drop at ITM = 50DA and
TJ=25°C,V ....... ............... .
x
106 A 2 sec.
200
200
300
300
400
400
500
500
600
600
700
700
800
800
900
900
1000
1000
1100
1100
1200
1200
1300
1300
1400
1400
1500
1500
300
400
500
600
700
850
950
1100
25
25
1200
1300
1450
1550
1700
1800
•
•
Switching
Current
Conducting State Maximums
(TJ=125°C)
20
Symbol
(TJ=25°C)
T520 --13
IT(rms)
200
125
1600
1250
1080
IT(av)
ITSM
ITSM
ITSM
I't
10,700
2.2
VTM
Gate
<D. Consult recommended mounting procedures.
CD Applies for zero or negative gate bias.
CD Per JED£C RS397, 5.2.2.1.
<D With recommended gate drive.
<D Higher dv/dt ratings available, consult factory.
<D Per JEDEC standard RS-397, 5.2.2.6.
Maximum Parameters
(TJ=25°C)
Gate currentto trigger at Vo = 12V, rnA
Gate voltage to trigger at VD=12V, V.
Non-triggering gate voltage, TJ
=125°C, and rated VORM. V . .•.
Peak forward gate current, A ...... .
Peak reverse gate voltage. V . ..... .
Peak gate power. Watts .•.......•.
Average gate power. Watts ....•.•.
Symbol
Typical turn-off time, IT=150A
TJ=125°C. diR/dt=12.5 A//J.Sec,
reapplied dv/dt=20V/p.sec linear
to 0.8 VORM. p.sec ........... .
Typ. turn-on-time, IT=100A
VO=100V@),p.sec . ........... .
Min. critical dv/dt, exponential to
VORM TJ=125°C, V/p.secCD<D··
·Min. di/dt non-repetitive, JEOEC
A/ p.sec
<D <D <D
tq
100
4
ton
dv/dt
300
di/dt
500
Thermal and Mechanical
Symbol
Symbol
IGT
VGT
100
3
VGOM
IGTM
VGRM
PGM
PG(av)
0.15
4
5
16
3
Example
Obtain optimum device performance for your
application by selecting proper Order Code.
Min., Max. oper. junction
temp., °C ..•..........
Min., Max. storage temp., °C
Max. mounting force
in Ib.(D ...............
Thermal resistance(D
Junction to case,
°C/Watt ..............
Case to sink. lubricated,
°C/Watt .........•....
TJ
Tstg
-40to +125
-40to+150
800 to 1000
ROJC
.12
ROCS
.02
Type T520 rated at125A average with VORM=
1000V, IGT= 100 ma, and standard flexible
lead-order as:
S41
Transient Thermal Impedance VS. Time
.12 r-
I
t.10 fl-
i-'"
V
.08 fi-
-
r-
r-
t-
/
.04-
tv,
.V'
~
r0':::
I-
.0001
.001
.01
.1
ltllIIt1.0
10.0
Time, t, seconds
Average Forward Current, Amperes
Maximum Power Dissipation VS. Forward Current
Average Forward Current, Amperes
542
Average Forward Current, Amperes
100.0
Symbol
.po
.po,
.po,
H
.pJ
J,
L
N
Inches
Min.
1.610
.745
1.420
.500
.135
.072
7.75
.030
Max.
1.650
.755
1.460
.560
.145
.082
8.50
Millimeters
Min.
Max.
40.89 41.91
18.92 19.18
36.07 37.08
12.70 14.22
3.43
3.68
1.83
2.08
196.85 215.90
.76
Creep Distance-.34 in. min. (8.64 mm).
Strike Distance-.52 in. min. (13.21 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-2.3 oz. (66 g).
1. Dimension "Hoi is clamped dimension.
T620utline
Features:
Application ••
• Center fired di/namic gate
• All diffused design
•. Guaranteed dvldt (300 vips)
• Low gate current
• Phase Control
• Power Supplies
• Motor Controls
IPackage 12t (case rupture) rating:
120x 108 A 2sec.
• LOWVrM
• Low Thermal Impedance
• High surge current capability
• Lifetime Guarantee
Ordering Information
Example
Obtain optimum device performance for your application by
selecting proper order code.
=
Type T 620 rated at 300 A average with VDRM
1000V,
IGT
150 rna, and standard flexible lead-order as:
=
S43
Voltage
Blocking State Maxlmums(i) '(TJ
= 12S0C)
Repetitive peak forward blocking voltage ,V
Repetitive peak reverse voltage, 'V, , ......... .
Non-repetitive transient peak reverse voltage.
t: S; 5.0 msec, V .• _....................... ..
Symbol
VORM
VRRM
Forward leakage current. mA peak .......... '
Reverse leakage current: mA peak .......... .
100
100
200
300
400
500
200 300 400 500
200 300 400 500 800
VRSM
600
600
700
700
700 850 950 1100 1200 1300 1450 1660 1700 1800
25
26,
~
IORM
IRRM
800 ,900 1000 1100 1200 1300 1400 1&00
800 900 1000 1100 1200 1300 1400 1600
-<
~
)
c.urrent
Conducting State Maximums
(TJ = 12S0C)
T620 __ 13,
Symbol
RMS forward current, A ........ .
Ave. forward current, A ........ .
One-half cycle surge current@, A ..
3 cycle surge current@. A .....•
10 cycle surge current@, A ..... '
12 t for fusing (for times> 8.3 ms)
.A2 sec.
-,
Forward voltage drop at ITM = 825A
and TJ = 25°C, V ..•...• ',' .
3400
45,000
64,400
120,000
2.6
2.05
1.55
1l!
Typ. turn-an-time, l't = 100A
VO= 100V(i), p.sec ................ .
M in. critical dv / dt, exponen~ial to VORM '
TJ = 125·C, V/p.sec@(j):......•.....
Min. di/ dt, non-repetitive.
,A/p,sec (j),@,(i)
.............. .
:::!i
tq
100
ton
5
dv/dt
300
di/dt
800
>"
Forward Voltage vs. Forward Current
3.5
II'
3.0
2.5
f
T62a._16
L.o'
1.5
"""
15
I""
1.0
Symbol
Gate current'to trigger at Vo = 12V, mA .
'Gate voltage to trigger at Vo = 12V. V ...
Non-triggering gate voltage, TJ = 125·C,
and rated VORM ' V ..•......•....•.
Peak forward gate current, A .......... .
Peak reverse gate voltage, V .......... .
Peak gate power, Watts .............. .
Average gate power, Watts ........... .
Thermal and Mechanical
°c ..... .
Min .. Max. storage temp., ·C .......•...
Min., Max. mounting force, Ib.G) •..•.•..
Thermal resistance
with double sided cooling G)
Junction to case, ·C/Watt ...•.....
Case to sink. lubricated. DC/Watt •.•...
0.5
IGT
VGT
150
3
VGOM
IGTM
VGRM
PGM
PG(av)
0.15
4
.~
o
~
1 2
5 10 20
50 100 200 500 1K 2K
Forward Current, ITM • Peak Amperes
5
16
3
Transient Thermal Imp8dance VS. Time
.10
§
Symbol
TJ
Tstg
--40 to +125
-40 to +150
1000 to 1400
r-
$I
.08 -I-
I
-
:I
'")
ReJC
Recs
Consultlrecommended mounting procedures.
Applies for ,ero or negative gate bias.
Per JEOEC RS-397. 6.2.2.1.
<!J Withlrecomm,nded gate drive.
<D Higher dv/dt ratings avaiflible. conSult faCtory.
<D Per JEOEC standard RS-397. 5.2.2.6.
o
o
5500
3900
! 2.0
12
Maximum Parameters
(TJ = 25·C)
CD
300
4000
-'"
l
Gate
Min., Max. oper. junction temp.,
200
~ 4.0
Symbol
Typical turn-off time, IT _ 150A
TJ = 125°C. diR/dt == 12.5
If.7p.sec, reapplied dv/dt =
20V/p,sec linear to 0.8 VORM,/L sec ...
.08
.02
".
It'
.06
1/
~
t
.04
i~·02
~
t:.'G
uQ)
ON
0
.(00
11
limE!. t. Seconds
844
470
315
2900
2500
Switching
(TJ = 25°C)
T620 __ 30
235
169
3300
2400
2000
IT(rms)
IT(av)
I TSM
ITSM
I TSM
12 t
T620 __ 20
.1
,....
IA"
5K1OK
Maximum Case Temparature VS, Forward Current
Maximum Power Dissipation VS, Forward Current
125~~r---r---r---~--r---~--~--~--'
800
T620--15
720
~~
L.-..l--Cond\.ItlOOl'l
105
........
cO
!::I
560
-
60° L 1
I
L.-..l--c"",",,~
30°
6
'.
~
III
85
I
400
I
i5
I
75
c3•
85
E 160
::I
E
'M
80
55
::ii
..
0
40
360
200
80
~
/
/
1 ILL
1/
/"
"
,
~700-
/
,,~
"DC
"
/
. / ./
//
I
ILL
'LL
L
" "
L
II
~
1 / , , / , I 0;,
/ h -I~
........
00
Average Forward Current. Amperes
~
IL
I2a
....... --
e
320
~
~
a.. 240
!
~ 1?41
,2 480
95
u
0
soo
t-- r-'"'--j
i _
640
3
1 00 1800
T820--15
~
40
~
120
80
160
200
240
280
320 360
Average Forward Current. Amperes
Maximum Case Temperature VS, Forward Current
Maximum Power Dissipation VS, Forward Current
125 . .~--~--~--~~~~--~--~--~--r--'
T620--20
800
l05I--+...J~~~I100.:-~-+--+---+
r-""--j
~~
L.-..l--
!!J 700
1?41 I2a
~
L.-..l--~:~;!.'r'
C
600
........
CondUC:loon
0
u
o
i
'i...
'.
500
lit
400
~
300
i5
:.
!
E
::I
E
.
5
';(
40
::ii
120 160 200 240 280 320 360 400 440
80
Averaga Forward Current. Amperes
Average Forward Current. Amperes
Maximum Case Temperature VS, Forward Current
125~~~~~~~--r-~~--~~-'--~~-'
Maximum Power Dissipation VS, Forward Current
800
r-"T~20.:-3p
720
640
105
560 I-
-DC
, .. .v'0
r-'"'b
~ ,
lon_
L.-..l-- Angle.
:1 __
ConductIOn
480
95
u
0
!::I
e
85
lE
75
{!
:.
85
u
55
I
~o~"'LL",
III.
~
"
'~~ LLL.. L:.
320
II
240
160
'/rf.
I«
-
/
" "
I
"
'/'
~
.L..
80
160
240
Average Forward Current. Amperes
320
400
480
560
0
o
80
160
240
320
400
480
560
Average Forward Current. Amperes
545
Maximum Case Temperature VS, Forward Current
126
Maximum Power Dissipation VS, Forward Current
.
T620_15 -t--1--I---r--r--r--1-_ 1200
680
-+--+---,1--+--+--1-900r-~'-:-~""""
~
600
+--t__t-+--t__t"'rl-of--h"'l.!30°
~ 520
:g1 360~~---+--~--+---~-+~~~~~~~---+--4-~
440
u
o
co
o~
86~-r~r--r~r-~~~~~~~~--r--r~
i 76~-r--~-+--~~--~~--~-+~~~--4-~
280~-r--r--+--~~~~~--+--+--~-i~~~
! 200~~---+--~~~~~-+--~--+-~~~---+--4-~
!'66~-r--t--+--+--t--+--i~+--i~~~~~~
E
~ 120~-t--~~ ~~--~--~-+--+--+--~--r--r~
'M
~
~
4O~~"~--+--+---r--+--+--~--+-~~-r--+-~
o
20 40
60 80 100 120 140 160 180 200 220240
Average Forward Current. Amperes
Aver. Forward Current. Amperes
Maximum Case Temperature VS, Forward Current
Maximum Power Dissipation VS. Forward Current
126
720r---~--~~--~---r----~---r----'---~
T620--20 -r----t---~----1_---r120°-+:.,...--I
640 ~-_t--+---t_-_t----+-900-+~.......~t800
T620--20
~
0.J
1.:
II)
::: 560
~ 480
C
iC:::~on
,2
400 ~--~----~--_300~~~~~----+----t_--_t
!Ii
c.
':0
~
~
320
240
IL.
E 160
E 80
"
'M
II
66~__~__~__~30~O__~~~~~~__~~~~__~
40
80.
120 ·160.
:t
360
200
Average Forward Current. Amperes
160
200
240
280 . 320
Average Forward Current. Amparas
Maximum Power Dissipation VS. Forward Current
Maximum Case Temperature VS. Forward Current
800r---r--'---r---r--~--~--T-~~--r-~
125 . .~r-~~--~~~~~~--~~~~~~~
T620--30
T620--30
~ -+---+---+---+-----=T---,~
~
~
600
C
,2
500
'iii
400
.~
300
!Ii
c.
u
o
1ft
<r..J~ont:
0
!
~
I
.E" 100
~
:t
IL.
E
:
200
"
II
66~~--~--~~~--~~~~--~~~~
o
40,
80
120
160
200
Average Forward Current. Amperes
S46
120
0
240
280
320
360 400
0
40
80
120 160
200
Average Forward Current. Amperes
240
280
320
360 400
Inches
Min.
Millimeters
Min.
Max.
q,D
1.610
1.650
40.89
41.91
q,D,
.745
.755
18.92
19.18
1.460
36.07
37.08
q,D,
1.420
H
.500
.560
12.70
14.22
q,J
.135
.145
3.68
3.43
J,
.072
.082
1.83
2.08
L
7.75
8.50
196.85 215.90
N
.030
.76
Creep Distance-.34 in. min. (8.64 mm).
Strike Distance-.52 in. min. (13.21 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-2.3 oz. (66 g).
Symbol
Max.
1. Dimension "H" is clamped dimension.
T62 Outline
Features:
• Center fired dilnamic gate
• Full 150°C Junction Temperature Rating
• All diffused design
• Low gate current
• Low VTM
• Low Thermal Impedance
• High surge current capability
• Lifetime Guarantee
Package I2t (case rupture)
rating: 20 x 106 A 2 sec.
Applications:
• Phase Control
• Motor Control
• Power Supplies
• Plating supplies
Ordering Information
Example
Obtain optimum device performance for your
application by selecting proper Order Code.
Type
6
2
5
Type T625 rated at 400A average with VDRM=
1000V, IGT= 150 rna, and standard leadorder as:
··'r"i-r":Si'l"nW."i.'i."
•••
M;;i'iijn,10••,
I
I
I
1
0
4
0
0
4
N
547
Voltage
Blocking State Maximums 0 (TJ=150·C)
Symbol
Repetitive peak forward blockinll voltag~e, V .•......••.•
Repetitive peak reverse voltage, V .•.•....••••....•.•
Non-repetitive transient peak reverse voltage,
t~5.0 msec. V ...................................
Forwarci leakage current, rnA peak ........••••...••••
Reverse leakage current, rnA peak •...•...•.....•••••.
VORM
VRRM
100
100
VRSM
IORM
IRRM
200
T625
....
200
200
300
300
400
400
500
500
600
600
700
700
BOO
BOO
900
900
1000
1000
1100
1100
1200
1200
300
400
500
600
700
B50
50
50
950
1100
1200
1300
1450
•
•
Current
Conducting State Maximums
(TJ=150·C)
............
...........
RMS forward current. A •..
Ave. forward current. A •...
One-half cycle surge currenta>. A ...••..••
3 cycle surge current@. A .........•••
10 cycle surge currenta>. A ..•••••••••
l't for fusing (for times>B.3 ms) A' sec ...•
Forward voltage drop at ITM=625A and
TJ=25·C, V ••.••..••••.•....•••.••
Symbol
T626--26
T626--30
T625--40
IT(rms)
IT(av)
ITSM
ITSM
ITSM
l't
390
250
2BOO
2000
1700
32,500
470
300
3600
2600
2250
54,000
625
400
5000
3500
3000
100,000
2.60
2.05
1.55
VTM
Gate
Switching
(TJ=25·C)
Symbol
Typical turn-off time. IT=150A
TJ=150·C. diR/dt=12.5 A/J.'Sec.
reapplied dv/dt=20V/JIosec linear
to O.B VORM, J.'Sec. • • . . . . • • . • .. tq
Typ. turn-on-time. IT=100A
[email protected]'Sec ....••••..•••. ton
~Min. critical dv/dt, exponential to
VORM TJ=150·C, V/JIosec00 .•• dv/dt
Min.'di/dt repetitive,
A/IJ.sec CD CD 0
.. , .... di/dt
Min. di/dt non-repetitive.
A/psec CD CD 0
di/dt
CD
Thermal and Mechanical
Maximum Parameters
(TJ= 25·C)
150
3
300
200
800
Symbol
Symbol
Gate currentto trigger at Vo =12V, rnA IGT
150
Min. Gate Current to trigge. at
VO=12V, rnA ...•••••......•••.. IGT(min)
25
Gate voltage to trigger at VO=12V, V. VGT
3
Non-triggering gate voltage, TJ
0.25
=150·C, and rated VORM, V .•.• VGOM
Peak forward gate current, A ..••••. IGTM
4
Peak reverse gate voltage. V ...•••• VGRM
5
Peak gate power. Watts ...•.••.••• PGM
16
Average gate power. Watts .••••••• PG(av)
3
Min .. Max. oper. junction
temp., ·C .......••••.•
TJ
-40to+150
Min .. Max. storage temp.,·C
Tstg
-40to+150
Min., Max. Mounting Force, Ib(D ..
1000 to 1400
Thermal resistance with
double sided cooling(D
Junction to case,
·C/Watt .•.....•••••••
R8JC
.08
Case to sink. lubricated. CD
·C/Watt ..............
R8CS
.02
Consult recommended mounting procedures.
o Applies for zero or negative gate bias.
o
Per JEOEC RS-397. 5.2.2.1.
CD With recommended gate drive.
Higher dv/dt ratings available. consult factory.
,0 Per JEDEC standard RS-397, 5.2.2.6.
o
Maximum Forward Voltage VS. Forward Current
TranSient Thermal Impedance VS. Time
10·
09
60
5
~
'0
>
>i
50
g
>:
1
tl
c
40
g>
of'
06
05
8. '"
04
iii <:::
03
~.:=.
02
.E ~
20
E 1;'
,E
E
~
..,"
g
.g
30
'E
~
07
.§
~
g
08
gi
10
01
,01
Forward Current. ITM. Peak Amperes
S48
Time. t. Seconds
10
100
Maximum Casa Temperature VS. Forward Current
150
140
,
~ ~ l!...
120
,
,
90
80
J
0-1~;~onl:
~
80
"
120 1800
60
90
I
I
J
I
120
160
200
240
30
40
J
'\ I"l'. ~
\ \ 1\ '" ~ ~
i\. 0 \ 0 '\ 0 I\. "0
\
100
J
, I\. ~ ~ i'.. A.-
'\
110
T625-2&
720 ~-t---1I---t---t--+-t--+--+--+--+--f 1200
f---+-+--+--+-+- 90 0 -M~i--"o~--I
T625--25
C": ~ ~
\ ~~~
130
Maximum Power Dissipation VS. Forward Current
800r-~-r~~~-r~--~'--r~--~'-~-'
160~+--+""'7I':
80~~"~~;--+--~;--+-'r-;--+--~;--i
J
40
280
~
140
130
120
u
o
T625-30
"~ ~ ~ t:-..
~ ~ I" t': ~
,
1\
\
I'
i\.,
"r'\, ~
~
120
720
J
0...J=~H)nt.:
"-
~
'I\.
\.
"\
60 0
_I
160
J
A.---
~ "'- '- ~
.....
~
I
80
I
J
,,
I\.
300
40
200
240
280
800r-~~~-r~~~-,~r-~'-'--r~~-'
~~
110
160
Maximum Power Dissipation VS. Forward Current
Maximum Case Temperature VS. Forward Current
150
120
80
Average Forward Current, Amperes
Average Forward Current, Amperes
90 0
I
200
,
T625-30
+-+--~-r-t--+--r-t--+--r--r1800
~+-+--11-t-~-+--t-+-+--tr-t--t1200 r+-~Y
640
560
480
~:j~:~::~::t::t-~30~0~~~~~~~::t::t::~~~
400~
320~+-~-+~r-~~~~~t-+--r-+~r-+-;--i
~
240t-+-+-~~~~~~+-~-+-4--r-+-+-~-t
~
f'
J
J
1200 1800
1
240
280
I
320
40
80
120
160
200
240
Average Forward Current, Amperes
Average Forward Current, Amperes
Maximum Case Temparature VS. Forward Current
Maximum Power Dissipation VS. Forward Current
280
320
160r-~--~--'---~--~~--~--'---~-'
T625-40
u
l00~--+---ir--~~~~~~~---r---r---+--~
o
~
~
.
~
!
5l
~
80~--+---+-\-+-~rt-~~~~~~---r---+--~
60 I---+--OL-__~__~_L~__&-__~_L~~_L___L__~__~
o 60 120 180 240 300 360 420 480 540 600
Average Forward Current, Amperes
60
120
180
240
300 360 420
480 540 600
Average Forward Current, Amperes
549
Maximum Power Dissipation Vs. Forward Current
Maximum Case Temperature VS. Forward Current
150
~~~
~ ~~ ~~
140
~t:::
s:
,
I'
130
i\ ~ ~
~
o
100
~
90
~
80
;;
c-
3l
~
i\ "\~
110
~
~b-
,
i\ ,r\ r"
120
u
T625J5
I I I I I
40
80
,
~ f"
~
~~
c·
.S!
;;
c·u),
i"oo...
""[\"i\ '"
~ I\.
~
a
l-L...:i=~K!fI :....
~ ...... i"oo...
II>
:::.
:J::'"
"-
,"
II>
400
~
300
0
lii
1'0.. ~
0
0..
~.
E
~
300
1600 90 0 1200 1800 2700 DC
I
I I I I I I I II I
120 160 200 240 280 320 360 400
"E
'j(
::!:'"
40
w~ ~::-..
I
40.....
~
~,
\
~
80
r\.
, ",
\ j\\
\
90
0
31)0
I
o
40
I
I
I
Bfo
_
240
280
320
360 400
l--J,....i=~D'I -
~
.;
0
.~
.!II
400
!
300
0
"\ "O"~"" ~"
~
500
c.;;
i'." "-
9110 l~OO
I
II>
....
lr ; rr
DIC
0..
E 200
E 100
.~
"
::!:
0
0
40
80 120 160 200 240 280 320 360 400 440
~veragelorllV~rd
Average Forward Current, Ampere.$
\is.
200
:::
80 120 160 200 240 280 320 360 400 480
Maximum Case Temperature
160
I
~~
~ '~~~,i'.~"
10
I
r--'Ol---j
~j\~~r-.~,
i'.
20
120
Maximum Power Dissipation VS. Forwa·rd Current
900~-r'-~~~'-~-r~~rT~~r---~~
Maximum Case Temperature VS. Forward Current
30
80
Average Forward-Current, Amperes
Average Forward Current, Amperes
Forward Current
Current, Amperes
Maxf;num Power Dissipation VS. Forward Current
1200r---r-~~~~~--~--~--~--~--~---.
160r-~--~---r--~--'---~--r-~~~---'
T625-40
T625-40
II>
1000
DC
r-- 36" ---j
:::
~~
~
l--J,.... Conduc!on
.; 800
Angle"
.S!
;;
.~ 600~--+---1-~-h~~~~~~'-~--+---4---~--~
..!II
o
DC
CD
II>
co
U
80
160
240
320 400
480
560640 720 890
Average Forward Current, Amperes
5E
2OOJ--~M
::!:'"
o~~~~--~--~--~--~--~--~~--~
o
80
160
240
320
400
Average Forward Current, Amperes
"
550
4oo~--+-~~iS~~~~~----t---+---~--~--~
'j(
o~~--~~~~~~~~~~~~--~~
o
J
.~ .
480
560
640
720 800
Inches
Millimeters
Min.
Max.
Min.
Max.
.pD
2.250 2.290
57.15
58.17
.pD,
1.333 1.343
34.11
33.86
.pD,
2.030 2.090
51.56
53.09
H
1.020 1.060
25.91
26.92
q,J
.135
.145
3.43
3.68
J,
.075
.090
1.91
2.29
8.50
196.85 215.90
L
7.75
N
.040
1.02
Creep Distance-l.00 in. min. (25.40 mm).
Strike Distance-l.02 in. min. (25.91 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-8 oz. (227 g).
1. Dimension ··H'" is a clamped dimension.
Symbol
"
T72 Outline
Features:
• Center fired di/namic gate
• All diffused design
• Low gate current
• LowVTM
• Low Thermal Impedance
• High surge current capability
• Lifetime Guarantee
Package J2t (case rupture)
rating: 80 x 106 A 2 sec.
Applications:
• Phase Control
• .Motor Control
• Power Supplies
• Welding
Ordering Information
Code
T72DN
Example
Obtain optimum device performance for your application by
selecting proper order code.
Type T720 rated at 550A average with VDRM = 1000V,
IGT
150 rna, and standard flexible lead-order as:
=
551
Voltage
(j)
BlocklnllStateMaxlmums ITJ
=
125°C)
Repetitive peak forward blocking voltage ,V .
Repetitive peak reverse voltage', V ••.•.•..••
Non-repetitive transient peak reverse voltage,
tS; 5.0 msec. V··· .....•.•...••......
Symbol
VORM
\fRRM
100
100
200
200
400
400
600
600
800 1000 1200 1300 1400 1500 1600 1700 HIOO 2000 2200
800 1000 1200 1300 1400 1500 1600 1700 1800 2000 2200
VRSM
200
300
500
700
950 1;Z00 1450 1550 1700 18001900 2050 ;2150 2400 2600
T720 __ 55
T720 __ 35, T720 __ 45
Forward leakage current, mA peak •••••....•
Reverse leakage current, mA peak .•....•....
~I
~I
~
~
30
IORM
IRRM
30
Current
Conductin!! Stata Maximums
(TJ == 125 C)
RMS forward current, A •...•....
Ave. forward current, A .•..•.•..
One-half cycle surge current@, A .•
3 cycle surge current@, A .•••••
10 cycle surge current@, A .....
12t for fusing (for times> 8.3 ms)
A2 sec.
Forward voltage drop at'ITM ==3000 A
and TJ == 25°C, V •••••.....
Symbol
T720 __ 35
IT(rms)
IT(av)
I TSM
I TSM
I TSM
12t
VTM
TY~Cal
850
550
10,000
7200
6200
205,000
295,000
416,000
3.30
2.75
2.15
Gate
Maximum Parameters
(T J ==' 25°C)
Symbol
turn-off time, IT == 250A,
A7 ~e2r~:'i;pft~~/3~idt2!
20ft l!lsec linear to O.B VORM,I' sec .•.
Typ. turn-on-time, IT == 100A
VO== 100V@, !lsec ............... .
Min. c~tical ~V/dt, exponential to VO RM '
TJ - 125 C, V/I'seco(lJ® ......... ..
Min. di/dt non-repetitive,
A/!lsec (j)(j)(l)....•.....
Thermal and Mechanical
Min., Max. oper. junction temp .. ·C ••....
Min., Max. storage temp., ·C ......••.•.
Min .. Max. mountIng force, Ib.(j) ••.•••..
Max. Thermal resistance(j)
With double sided cooling
Junction to case, ·C/Watt .......... .
Case to sink, lubricated, ·C/Watt : .... .
tq
150
ton
7
dv/dt
300
di/dt
600
Symbol
TJ
Tstg
Maximum Forward Voltage VS. Forward Current
-40 to +125
-40 to +150
2000 to 2400
Gate current to trigger at Vo '== 12 V, mA
Gate voltage to trigger at Vo == 12V, V ...
Non-triggering gate voltage, TJ == 125°C,
and rated VORM ' V ............... .
Peak forward gate current, A .......•...
Peak reverse gate voltage, V ..••.•.....
Peak gate power, Watts ............... .
Average gate power, Watts ........... .
Consult recommended mounting procedures.
Applies for zero or negative gate bias.
Per JEOEC RS-397, 5.2.2.1.
With recommended gate drive.
<D HIgher dvldt ratings available, consult factory.
(l) Per JEOEC standard RS-397. 5.2.2.6.
(l)
(j)
(j)
(l)
.06
.02
Transient Thermal Impedance VS. Time
.06 1""'-ii'""""'T'm'Ir-l-rrT'Tl'lrr--o-r
Forward Current. ITM' Amperes
852
T720 __ 55
700
450
8400
6050
5200
Switching
(TJ == 25°C)
T720 __ 45
550
350
7000
5040
4340
'Time, 1. Seconds
Symbol
IGT'
V GT
150
VGOM
I GTM
VGRM
PGM
PG(av)
0.15
3
4
5
16
3
Maximum Case Temperature VS. Forward Current
Maximum Power Dissipation VS. Forward Current
125
115
u
o
iii
!;105
I
~ 95
3l
lJ 85
100
50
200
150
250
300
350
Average Forward Current, Amperes
Maximum Case Temparature VS. Forward Current
125 ~~EHffEltmEftimmmffiffimIffiffiSm
75
65~O~~5O==~I00~~15O~~~~~~~~~~~~
Average Forward Current, Amperes
Maximum Case Temperature VS. Forward Current
1251111i1iil:J±F!mmr
u
o
100
200
300
Average Forward Current, Amperes
Average Forward Current, Amperes
553
Maximum Case Temperature VS. Forward Current
Maximum Power Dissipation Vs. Forward Current
u
0
~
::I
~
CD
Q,
E
CD
I-
.
CD
to
u
65
Average Forward Current. Amperes
Average Forward Current. Amperes
Maximum Power Dissipation VS. Forward Current
Average Forward Current, Amperes
554
Average Forward Current, Amperes
Symbol
rJ>D
rJ>D,
rJ>D.
H
Inches
Min.
2.880
1.744
2.580
1.020
.135
.075
Millimeters
Max.
2.920
1.755
2.700
Min.
73.15
44.30
65.53
Max.
74.17
44.58
68.58
26.92
3.68
2.29
1.060
25.91
.145
3.43
.090
1.91
12.50
292.10 317.50
11.50
L
.060
1.27
N
Creep Distance-.SO in. min. (20.32 mm).
Strike Distance-1.02 in. min. (25.91 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-16 oz. (454 g).
1. Dimension "H" is a clamped dimension.
rJ>J
J,
T92 Outline
Features:
• Center fired dilnamic gate
• All diffused design
• Guaranteed dvldt (300 vips)
• Low gate current with soft gate control
• Low 1"f'rM: .
.
• Low Tfiermallmpedance
• High surge current capability
• Westinghouse Lifetime Guarantee
Applications:
• Phase Control
• Motor Control
• Power ,Supplies
Package I2t (Case rupture) rating:
90 x 106 A 2see.
Ordering Information
Note: Lower voltage devices available. Consult factory representative.
Example
Obtain optimum device performance for your application by
selecting proper order code.
Type T920 rated at 600 A average with VDRM = 2600V.
IGT= 200 mao and standard 12 inch leads-order as:
S55
Voltage@
Blocking Stata Maxlmuma tTJ
= 125°C)
Repetitive peak forward blocking voltage ,V •.
Repetitive peak reverse voltage ,V .........•
Non-repetitive transient peak reverse voltage,
t 5.0 msec, V ....... ", ..................... :
'
Voltage vs. Type No. AvailabilitY
Symbol
VORM
VRRM
600
800
1000
1200
1400
1600
1800
2000
600
800
1000
1200
1400
1600
1800
2000 !2200
2400 2600 2800" 3000
VRSM
700
900
1100
1300
1500
1700
1900
2100
2600 3000 3200
2200
2400 2600 '2800 3000
I
~T92(l...()9
2300
3400
T920-10~
T920......08~
T920......07
T92a......oB
Forward leakage current, mA. p,at< ...•.....•
Reverse leakage current, mA peak .......... .
Current
Conducting State Maximum.
(TJ = 125°C)
RMS forward current, A ......•••
Ave. forward current, A ....•••••
One-half cycle surge current@, A ..
3 cycle surge current@, A .•••••
10 cycle surge current@, A ...•.
12 t for fusing (t=8.3 ms),A's~c
Max 12 t of package (t=8,3 ms). A'sec
Forward voltage drop at I TM = 3000
and TJ = 25°<:, V .......... .
Switching
(T j=25°C)
Turn-off time, IT=250A
Tj=125°C. diR/dt=50.
A/p.sec reapplied dv/dt=
20V/p.sec linear to 0.8 VDRM. p.sec ...
Turn-On and Delay Time
ITM=1000A(l), tp=450 p.sec ....... ,
psec
,................
Critical dv/dt expoll.!'ntial to VORM
Tj=125°C. V/P.sec®®I ........... ·
di/dt@non-repetitive.
...............
Q)@@Al'sec
Latching Current
VO=75V. rnA ................... .
Holding Current
VO=75V. rnA ...................
Gate
(Tj=25°C)
Gate current to trigger at Vo =12V, rnA ..
Gate voltage to trigger at Vo = 12V, V....
Non-triggering gate voltage, TJ=125°C,
and rated VORM, V.............•..
Non-triggering Gate Current at
VO=12V, rnA .....•..............
Peak forward gate current, A ..........
, Peak reverse gate voltage, V...........
Peak gate power, Watts ..............
Average gate power, Watts ............
Thermal and Mechanical
60
60
T920.....oe
Symbol
Symbol
Min
3.5
1.5
ton
td
300
600
13,000
9,750
8,000
700,000
90 xl0'
1415
900
. 25,000
18,700
15,400
2,600,000
90 x 10·
3.0
2.55
2.10
1.90
Max
Min
Max
Min
VD
3.5
1.5
= ll00V
300
"'
Typ
1:70
Max
150
2.5
':0 'VO=600'Y
VD = 600V
300
1000
800
1570
1000
27,0.00
20,200
16,700
3,040,000
90 x 10·
1000
800
800
IL
160
500
400
1000
300
500
IH
150
500
150
500
150
,500
Typ
·Max
Symbol
Min
100
1.5
IGT
VGT
20
IGNT
IGTM
VGRM
PGM
PG(av>'
Symbol
200
3.0
.15
VGOM
Oper. junction temp., °c ............... TJ
Storage temp., °c. , .................. Tstg
Mounting force, Ib.(i) .................
4
5
16
3
Min
Typ
-40
-40
5000
Max
125
150
5500
Thermal resistance
with double sided cooling@ ..........
Junction to case, °C/Watt ........... 'RIIJC
Case to sink, lubricated, °C/Walt ........ RIICS
856
Typ
250
1000
di/dt
T920-09 T92()-'-10
1255
800
17,000
12,200
10.200
1,203.000
90 x 10'
400,
tq
dv/dt
Typ
T920-07 T920-08
1100
700
15,000
10,800
9000
937,000
90 x 10·
940
IT(rms)
ITlav )
I TSM
ITSM
I TSM
12 t
12t
.028
.008
.03
.01
Q) Consultlrecommended mounting procedures.
® Applies tor zero or negative gata bias.
® Per JEOEC RS-397, 5.2.2.1.
o With\recommended gate drive.
(j) Higher dv/dt ratln"s available, consult factory.
(l) Per JEOEC standard RS-397, 5.2.2.6.
Maximum Forward Voltage VS. Forward Current
7.0
I
6.0
~
4.0
j
3.0
~
II ~J ~'gfotlll
~
I.
~
6.0
IT9fO~6
I
T920__(17......
11111
II
III I II II
~ .... _I T92
0-10
~~
2.0
~
Ij ~"'T92<>-09
11'920-08 ...
1
,,~
-
1.0
'j(
:;
J
I I
'I
Q
E
I I
o
100
~
~
10,000
1000
Forward Current, ITM, (Amperes)
Maximum Power Dissipation VS. Forward Current
Maximum Case Temperature VS. Forward Currant
1800<r.~~Lr~~~~~~~~~~~~r--'
125
II
120
115
,.~
c-- ·f t.
110
.~
"j'
.-1
105
':..
100
".
95
·..-l-:..:i-,
~
u
o
!
90
.t-.. !,
:t· i!tQ::c~
85
::;\::: !->
~.'"
1:
. ;
rT'
~ 70
".~.,
66 0
..
;.~ t:~:,
.:Ie ,..~
'Ti'
~,
.,..~~
t~
200
: Fe
f-T.:!';':
. r-i"!:
",- ~-'-+
400
:.:;c-
:ji,""'·'1
:+,d '-:.
600
800
J 450~~~~1H~~~~~~~44~~~~fT~~
300~~~~~~~~~~~~~~~~~rlrl
E
'"
E 150
':
~
200
Average Forward Current, Amperes
110
115
105
100
95
~
•
11
9OHij~~~IIII~~~~~~Ii~~~~
~
u 85
J::
~~~~~1±ff~~~~~~~~tE~~~li
a 70~tt~~~~~~~~~~
~
Average Forward Current, Amperes
600
800
Maximum Power Dissipation VS. Forward Current
Maximum Case Temperature VS. Forward Current
2400'r:-1'7:"T:-:--::-r:-r."""''''''''~r.--r.-rr~:-r--r.--'-'-'-'-....,..,
125~~~~~nET2~rt7TnT:D~~~~
120
400
Avarage Forward Current, Amperas
2200 r-:-jf,.pM-~"""':"':
2000~~~~~~~~~~~~~~~~~
1800 i---+-'-++-'-'-o-H-'-++-'-
-:--':+-r-:-~!E:.:+,-y;.."Fo'-t"=-t-..:...j
1600~~~~~~-':+~~~~~~~~~~~
S
.~
-1,000 F'c.,...;=:=':'-:-f~r,..:.:~r-E'h.-E,~~.:-~r--:-::...;:.:+c::.....-=-4
is
J
E
E
'"
'j(
CD
::!
600
400
200
0
0
300
600
900
1200
Average Forward Current, Amperes
857
Maximum Power Dissipation VS. Forward Current
Average Forward Current. Amperes
Average Forward Current. Amperes
Maximum Case Temperature VS. Forward Current
a?t
Maximum Power Dissipation VS. Forward Current
70 ;.; :. 1
65 I:,: ::
t
o 100 200 300 400 500 600 700 800 900 1 000
Average Forward Current. Amperes
Maximum Case Teml?erature VS, F"rward
C~~rent
Maximum Power Dissipation VS. Forward Current
1200,,_
500
Average Forward Current. Amperes
858
Maximum Case Temperature VS. Forward Current
J
E
.'"
E
'j(
:IE
Average Forward Current. Amperes
Average Forward Current. Amperes
Maximum Power Dissipation VS. Forward Current
Maximum Case Temperature VS. Forward Current
25
20
1
1
•
'
::
Imr
'~F:t·;:
:t:::'E
~,
.,
..
~~;
t·, .
[;1£':
:~
'a.'
:::
~ ..
%.
~ l'
~i~
1)0 20
5(
100
0
Average Forward Current. Amperes
0
:,'
!I;: :t.!"'t;
I··.. ~:
~".
)0 800
)Q
Average Forward Current. Amperes
Maximum Power Dissipation VS. Forward Current
Maximum Case Temperatur!l VS. Forward Current
J
'"
I
E
Avera.ge Forward Current, Amperes
S59
1350
1200~~~e';:':-:-:
~1050 ,
3:. 900
.~
!
:;
u
0
e:s
;
0-
E
CD
I-
..31
75
70
u
Average Forward Current, Amperes
Maximum Case Temperature VS. Forward Current
Maximum Power Dissipation VS. Forward Current
120
115
110
105
,100
95
u
0
90
~ 85
:s
;
80
0-
E
75
CD
I-
.
CD
OJ
U
Average Forward Current, Amperes
Average Forward Current, Amperes
S60
Symbol
q,D
q,D,
q,D,
H
q,J
J,
L
N
Inches
Min.
Millimeters
Max.
Min.
Max.
2.850 2.900 72.39 73.66
1.845 1.855 46.86 47.12
2.560 2.640 65.02 67.06
26.92
1.020 1.060 25.91
.145
3.43
3.68
.135
1.91
2.29
.075
.090
11.50 12.50 292.10 317.50
.050
1.27
Creep Distance-1.00 in. min. (25.40 mm).
Strike Distance-1.02 in. min. (25.91 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Appro •. Weight- 1 lb. (454g).
1. Dimension "H" is a clamped dimension.
Features:
Applications:
•
•
•
•
•
•
•
•
• Phase Control
• Motor Control
• Power Supplies
Center fired dilnamic gate
All diffused design
Guaranteed dvldt (300 vips)
Low gate current with soft gate control
LowVrM • Strain Buffer
Low Thermal Impedance
High surge current capability
Westinghouse Lifetime Guarantee
Package I2t (case rupture) rating:
90 x 106 A 2sec.
Note; Lower voltage devices available. Consult factory reprasentative.
Example
Obtain optimum device performance for your application by
selecting proper order code.
Tvpe T9GO rated at 800 A average with VDRM = 26ooV.
IGT = 200 mao and standard' 2 inch leads-order as:
Voltage
I
Current
"Note: For voltage Vs. Current
Availability see next page.
561
Voltage CD TJ = 125°C
Symbol
Repetitive peak forward blocking, V ....•••••
Repetitive peak reverse, V . • • • . . • • • . . . . • • • . •
Non-repetitive transient peak reverse voltage,
1 ~ 5.0 msec, V _....................... _..
VDRM
VRRM
600 BOO 1000
600 800 1000
VRSM
700 900 1100 1300
T9GO-12
Voltage vs. Type No. Availability
Blocking State Maximums
Forward leakage current, mA peak. . . • • . • . . .
Reverse leakage current, mA peak •.••..•..•
1200 1400 1600
1200 1400 1600
1500
2000
2000
2200
2200
2400
2400
2600
2600
1900 2100
2300
2500
2700 2900
1BOO
1BOO
1700
2BOO 3000
2BOO 3000
T9GO-l0
T9GO-OB
60
60
IDRM
IRRM
Current
Conducting State Maximums
Symbol
RMS forward current, A •.•..•..•.•
Ave. forward current, A ..•••.•••.••
One-half cycle surge current,A CD .. .
3 cycle surge current, A CD ...... .
10 cycle surge current, A CD ..... .
I2t for fusing (t = 8.3 ms) A 2 sec
Max. I2t of package t = 8.3 ms), A 2 sec
Forward voltage drop at ITM = 3000A
and TJ = 25°C, V .............. ..
ITlrms)
rnayl
ITSM
ITSM
ITSM
I2t
I2t
T9GO-DB
1250
800
13,000
9,750
B,OOO
700,000
90 x 10·
VTM
T9GO_l0
T9GO_12
1590
1000
17,000
12,200
10.200
1,203.000
90 x 10·
1880
1200
27,000
20,200
16.700
3,040,000
90 x 10·
2.10
3.0
1.70
Switching
(TJ = 25°C)
Symbol
Turn-off time. IT - 250A
TJ = 125°C, diR/dl = 50
A/psec reapplied dv/dt =
20V/~sec linear to 0.8 VDRM,,.sec
Turn-On and Delay Time CD
ITM = 1000A. tp = 450 fJ sec .••.•..
VD = 1500V, psec ...............
Critical dv/dt exponential to VDRM
TJ = 125°C, V IfJsec CD CD
di/dt non-repetitive, A/psec CD(i)(i) ..
Latching Current
VD = 75V, mA ...................
Holding Current
VD = 75V, mA ...................
........
Min.
Typ.
Max.
Min.
Max.
Min.
Typ.
tq
400
250
150
ton
td
3.5
1.5
3.5
1.5
2.5
1.0
dv/dt
di/dt
300
1000
300
1000
800
300
Max.
1000
800
800
IL
500
1250
400
1000
300
500
IH
150
500
150
500
150
500
Gate
(TJ = 25°C)
Symbol
Gate currentto trigger atVD = 12V,mA
Gate voltage to trigger at VD = 12V,V
Non-triggering gate voltage, TJ =
125°C, and rated VDRM, V ....•.•
IGT
VGT
Min.
Typ.
Max.
30
100
1.5
200
3.0
VGDM
.15
VD = 12V, mA ...................
Peak forward gate current,A ..•....
Peak reverse gate voltage, V .•.....
Peak gate power, Watts ............
Average gate power, Watts ...•..•.
IGNT
IGTM
VGRM
PGM
PG(ay)
20
4
5
16
3
Thermal and Mechanical
Symbol
Min.
Oper. junction temp., °C •.•••••••..
Storage temp., °C •..•..•...•......
Mounting force, IbCD ••..•...•....•.
Thermal resistance CD
with double sided cooling
Junction to case. °C/Watt .......
Case to sink, lubricated, °C/Watt ...
TJ
TOl9
-40
Non-tnggring Gate Current at
Typ,
ReJc
Recs
Max.
125
150
5500
-40
5000
CD Consult recommended mounting procedures.
CD Appl ies for zero or negative gate bias.
eD Per JEDEC RS-397. 5.2.2.1.
(i) With recommended gate drive.
o Higher dv/dt ratings available. consult factory.
(i) Per JEDEC standard RS-397. 5.2.2.6.
562
Typ.
.006
.023
.0075
3100
Maximum Forward Voltage VS, Forward Current
7
.l!J
~
i
><i
e
I
5
'"
l!!
I
I
I I fill
,
4
~
-
::::
....
E
E
."
'i(
:! 0
.
.02
v~
-'
"[~
1
V
I
t:
~
g~
-,
:1
~9bri~'~W
2
0
§
IIII'ffl
.
u.
B
~9~J~I~\~
~
'E 3
~
c:
o
~
~9b6~1~~~
0
II>
I
1I1111J1
6
Transient Thermal Impedance VS. Time
.03
E
-
CD
N
~
OJ~
E~
.01
cpU
~
,....
U
o
1---'''-
~/-'
1000
100
Forward Current. ITM, Peak Amperes
o
10,000
.001
\
110
100
90
"
"
\ \ "
\
\ ,"
"
0-.J~~~~
200
300
90 0
60 0
400
l: -
~
\
30 0
1800
I
I
600
500
700
~
1600
C 1400
Q.
1
600
E 400
.."
E
'i(
:!
900 1000
~
......
o ~100
o
200
/
100
V~
90 0 1'200 180),
V ' /
/ / /
/
I/~
/
/ / "/
/ / / V./
/ / ~ .....
i
800
/
I
/
Z
0...J~~~~",n ~
o
'~ 1200
~
1
~A
r-
'~ 1000
1800
800
~
i5
'\
12'00
l!J
600
30 0
2000 t- T~GO_-!l8
A-
~
\ I\.
100
I
I
\ '\
~.
10
Maximum Power Dissipation VS. Forward Current
I
~~
\ \
.1
2200
T9GO_08
\" r\.~ ~
.01
Time, t. seconds
Maximum Case Temperature VS. Forward Current
125
120 ~
,/
g
V-
/
~V
P'
200
300
400
500
600
700
800
900
Average Forward Cu~rent, Amperes
Average Forward Current, Amperes
Maximum Power Dissipation VS, Forward Current
3200 . - - -......- - - . - - -......--"'T"""--.;---..----.
Maximum Case Temperature VS. Forward Current
125
120
T9GO--08
110
iii"'
100
2400
3:
90
.~. 2000
80
:~
1600
70
o
:;;
1200
0
D-
800
E
::J
E
400
t;j
(,J
0
~
;
Q.
E
~
60
....,
50
U
40
II>
..
.
'x
:!
0
200
800
Average Forward Current, Amperes
1000
1200
1400
Average Forward Current, Amperes
563
Maximum Case Temperature ':'5. F~~td Current
Maximum Power DiSSipation VS. Forward Current
125~----~--~-r----~~--~~----~-----'
2400
120. .....\r"'ii!~:1---+----+--~--+- T9GO_10
2200
_I 1 1
2000
~~
1SOO
-
0-1~~~UC~01
I
I
I
T9GO_10
i j
90.0
~oo If
30.0
l
So.~--+-~-~--~-~~~~_4--~
..
/ / I. V)
f
/ Vj ~V
/
c(
I
60.
&
e
~
i
u
600
~
u
o
/ ;j ~
VA ~~
1!
~
5o.~--+--~;_---_r~~~--~---;
400
: J~
tl
II
= ~~----~----~----~----~---~----~
~
0.
200
400
600'
800
1000
1200
/
If
/,1/; I
J
II 1000
a.
E
800
I
/
////
1400
1200
I
120.0
l:
1600
lsclo
200
~
0.
100
300
500
700
900
1100
A~erage Forward Current. Ampere.
Average Forward Current. Amperas
Maximum Power Dissipation Vs. Forward Current
Maximum Case Temperature VS; Forward Current
3200r---r---~--~-~--~---r--~--~--~
125~--~---r--~--~~--~--~---r--~---'
T9GO_10
120.
2Soo
110.
~~
L.-.-l.-.
."' .
COnductIOn
24OOr--r--T--+--;_--r--r-~~_4-~
100
90
So.
~
~
g 1200r---_r--~~~~~f+~~+_--_+----t_--_r--_i
70.
I
u
=
0
r?
,0
60
J
:>
1ii
a;
a.
E
E
50.
.,..
.
E
'K
40.
0.
200
400
600
SOO
1000" 1200 1400 1600 lS00
,.,
Average Forward Current. Amperes
564
4OO~_,~~~-;_-;_-_r-_+-_4-_4-~
:>
~
u
soo~-+_~~~~~-4--~-+_-~-_r--_i
:I
~
400
800
8001000
Average Forward Currant. Ampere.
1~14OO18OO18OO
Maximum Case Temperature VS. Forward Current
Maximum Power DiSSipation VS. Forward Current
125~--r---~--~--~---r--~--~--~---'
2400
120
,
I
J
180°
I
2200, - T9GO_12
I
2000
110
I
lJOO J
i-~
1800, -
90°
0..J~-I::
6QO
100
1600
90
300
1400
!!
~1ooo
~
I
)800
70
u
0
!
!"
•Ea.
~
Q600
60
:#
}
50
300
••
U
60°
90°
1200
~
200
400
600
800
1000
/ /1 /
~
200
i
ID
o
400
E
180°
IJ
I / '1/)'
/ IIJ 'l
/~ 0'
J//A V
1200
80
J
JI(/
200
Average Forward Current, Amperes
400
600
800
1000
1200
1400
1600
Average Forwerd Current, Amperes
Maximum Power Dissipation VS. Forward Current
Maximum Case Temperature VS. Forward Current
T9GO_12
2800~-r--+--+--+--;--~~r--r--r-OT~T--;
110
2400
100
2000,1--+--+--+--+--4
90
80
.~ 1200 1--4--+-*"+-I-J~~~f--+-+-+-+--f---I
70
i
u
~
0
!
60
E
50
I
~
J
300
60°
90° 120°
180° 2700
DC
:
'j
ID
u
E
"E
:I!
40
0
400
Avarage Forward Current, Amperes
2400
o
800
1200
1600
2000
2400
Average Forward Current, Amperes
S65
Now
',AvailBble",From
·W·;··,};;···;"'·"···
. ·:·· '·h· · ·: . . '. .'
_iff. n''g",. 0
'.",1 .'. . use
Introduction to Solid State Power Electronic:s
• 8112 X 11 Format
-144 Pages
• $6.00 U.S. (Includes Book Rate Postage)
- $6.50 Elsewhere (Includes Book Rate Postage)
With. the growing importance of power
electronics, persons with a basic knowledge of electrical er'!gineering, both in
industry and at the university, should find
.
this text a worthwhile inv~stment.
Approved text for IEEE short course in
Solid State Power Electronics ana
numerous college and univers.ity courses.
Volume educational and quantity discounts
are available.
Book describes device char.acteristics
and
....# .• '.' '. . ' .
fundamental circuit principl~~ .needed. to
.fullycomprehend the fiel~~'6f:poVver elec-
tronics. Included are numerous references
for more detailed research and example
problems which illustrate the essential
mathematical relationships in power
. electronics.
To order your copy, send check or money
order (payable to Westinghouse Semiconduotor in U.S. funds) to:
Westinghouse Electric Corporation
Book Order
Semiconductor Divis.ion
Youngwood, Pa. 15697
Symbol
.pD
.pD,
.pD,
H
.pJ
J,
L
N
Inches
Min.
3.910
2.470
3.440
1.260
.135
.075
11.50
.050
Max.
3.950
2.480
3.560
1.300
.145
.090
12.50
Millimeters
Min.
Max.
99.31 100.33
62.74 63.00
87.38 90.42
32.00 33.02
3.43
3.68
1.91
2.29
292.10 317.50
1.27
~
Creep Distance-1.82 in. min. (46.23 mm.)
Strike Distance-1.26 in. min. (32.00mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-2.1 lb. (950 g).
1. Dimension "H" is a clamped dimension.
TA20utiine
Features:
Aplications:
•
•
•
•
•
•
•
• Steel Mill Drives
• Crane Controls
• Motor Controls
di/namic Gate design
All diffused design
Guaranteed dv/dt (300 v/J.ls)
Low gate current with soft gate control
LowVTM
Low Thermal Impedance
High surge current capability
• 12t package rating
.
• Lifetime Guarantee
Package I2t (Case Rupture)
Rating: 125 x 106 A' sec.
Ordering Information
NOTE: LOWER VOLTAGE DEVICES AVAILABLE CONSULT FACTORY REPRESENTATIVE
Example
Obtain optimum device performance for your application by
selecting proper order code.
TVpe TA20 rated 1200 A Average with VDRM=2000v,
IGT=200 ma, and standard 12 inch leads-order as:
567
Voltage
Blocking State Maximums 0 tTJ
=
125'C)
Repetitive peak forward blocking voltage • V
Repetitive peak reverse voltage. V
Non-repetitive transient peak reverse voltage.
t:of: 5.0 msec. V •........•..•.•.•.•.•...•.•.
Forward leakage current. mA peak ......... .
Reverse leakage current. mA peak
Symbol
VORM
600
VRRM
600
VRSM
700
1000
1200
1400
1500
1600
1700
'1800
1900
2000
2100
2200
800
1000
1200
1400
1500
1600
1700
1800
1900
2000
2100
2200
900
1100
1300
1500
1600
1700
1800
1900
2000
2100
2200
2300
800
75
75
IORM
IRRM
Current
Gate
Conducting State Maximums
tTJ = 125'C)
Symbol
TA20-12 TA20-14
(TJ=25°C)
RMS forward current. A .........
Ave. forward current. A .......•.
One-half cycle surge current®. A ..
3 cycle surge current®. A ......
10 cycle surge current®, A .....
I't for fusing (t=8.3 ms) Nsec
Max I't of package (t=8.3 ms). A'sec
IT(rms)
IT(av)
I TSM
I TSM
I TSM
I't
1900
1200
30.000
25.000
18.000
3.75 X 106
125 X 10·
2.200
1400
35.000
30.000
22.000
5.1 X lOS
125 x lOS
Gate current to trigger at Vo = 12V. mA .. IGT
Gate voltage to trigger at VO=1 2V. V .... VGT
Non-triggering gate voltage. TJ=125°C.
and rated VORM. V ................ VGNT
Peak forward gate current, A .......... IGTM
Peak reverse gate voltage, V ........... VGRM
Peak gate power, Watts ......•...•••. PGM
Average gate power. Watts .........•.. PG(av)
2.40
2.00
12 t
Forward voltage drop at I TM = 6000A
and TJ = 25'C, V ...........
V TM
Switching
(TJ = 25°C)
Symbol
Turn-ofhme.IT=250A
TJ =125°C. diR/dt=50
A/"sec reapplied dv/dt=
20V/"sec linear to 0.8 VDRM. "sec.
Turn-On and Delay Trme
ITM = 1000A0. tp = 450 "sec .......
VD=1100V. "sec. ..............
Crrtrcal dv/dt exponentral to VDRM
TJ=125°C. V/"sec®® ............
dr/dt non-repetItive,
Ap.sec ...............
®®®I
Latching Current
VD=75V. mA ...................
Holding Current
VD=75V. rnA ......... ,' .........
Typ
Min
tq
250
4.5
2.5
ton
td
dv/dt
300
dr/dt
400
1000
IH
150
500
I
5
-iluO_14
4
568
®
®
®
®
1,000
.018
.016
.015
.02
.0075
j
Q.
~
-
.012
II>
.,uc
.010
;:
.E ~
iii 'E u0
:;;
100,000
11.000
.006
~
.014
.r:. £
10.000
Max
125
150
ROJC
Rlics
.020
S
l-
.,
0
N
u
100
8500
Typ
Per JEDEC RS·397, 5.2.~.1.
With recommended gate drive.
Higher dv/dt ratings available; consult factory.
Per JEDEC standard RS·397, 5.2.2.6.
u
:::I
~ ::::~
200
3.0
o Consult recommended mounting procedures.
o Applies for zero ornegative gate bias.
..,
I
Forward Current. ITM. Peak Amperes
-40
-40
c
.2
t;
c
2
o
TJ
Tstg
oj
1/
3
Oper. junction temp., °C ............. : .
Storage temp., °C ............•....•..
Mounting force, Ib.(i) .................
Thermal resistance
with double sided cooling0 ..........
Junction to case, °C/Watt ...........
Case to sink, lubricated, °C/Watt ........
!II
III
Max
4
5
16
3
Min
.,
ll~
TA2CL.12
I I
1111
150
1.5
.15
Transient Thermal Impedance VS. Time
,
~ I"
6
Typ
30
Symbol
800
IL
Min
Thermal and Mechanical
1000
Maximum Forward Voltage VS. Forward Current
7
Max
Symbol
e,)
V"
.008
.006
.004
~
.002
0
.001'
.01
Time. t. seconds
.1
10
100
Maximum Case Temperature VS, Forward Current
125
115
~
u
o
I
~
65
~
~o
L
=:
200
400
I
2600 I--
0-1~~V)I\l:
~
~
\
1\ i\,1\
"
~
~-
2800 I--
I
2400 I--
.
iii
u
0
~looo
..
Q.
'iii
0
IL
1\
e::J
-,-
400
.
E 200
'j(
::i;
"
.,e
.,.
I
.
u
55
:T~~I~ 1
~-
3000
0--1~:~~n
200
400
600
, , ,"
I
j
V/
I
J
V
/
V
400
600
800
1000
1200
1400 1600
iA2<L-l~
I
2800
I
~~l:
2600 I - 0--1~~:~MJn
2200
2000
1800
f! 1600
1\
~
~ 1400
C
,2 1200
~
,~ 1000
1/1
i5
~
0
800
..
::i;
90°
J
17
1800
~
1/
I I J 1
1/
j
J
/ 1/
I I / II
I I III /
I /1 //
J / , '/
I / ///
/ IIh V
I/, W
~
/A ~
Q.
"
600
J /~
600
E 400
E
200
'j(
1200
30°
2400
60 0
90 0 1200 1800
30 0
I
I
I
800 1000 1200 1400 1600
Average Forward Current, Amperes
~
3200 I-
L:
1\
65
)
Maximum Power Dissipation VS, Forward Current
"
~
/ VV
II
", ~ V
200
3400
i\
~
\
~ 1\ \ r\
\ ~ 1\i\
1\ r\ 1\'
f\ "
,
,
!?
I
1400
i5 800
CD 600
~
I
1200 1800
I JV /
J //V
I / "/ /
1/ /. lj V
j J ~V
1600
,2
1\
75
I
II II
C 1200
\ '\i\~ ~\: t'~
\ \ ~ \ i\,\.
85
Anqle6
1
r~oo II
Aver age Forward Current, Amperes
1\ 1\~ ~ ~
95
300
O~ConduC,.on~
I-
~
:0 0 1200 1800
I
I
I
I
I
600
800 1000 1200 1400 1600
"~
105
6~0
I
~~
1800
Maximum Case Temperature VS, Forward Current
115
I
2000
Average Forward Currant, Ampares
125
I
2200
~
75
!?
I
3000 I-- f- TA2<L-12
I
1\1\ [\1\ r\r\ ~
\ \ \ "\ \ !\
,
\ " 1\
\ \ r\,1\ ,
95
85
I I I I
JA2Ll11
I
~ ~ ~~ ~
105
Maximum Power Dissipation VS, Forward Current
~
~
~
~
400
600
800
loool~14OO16001800
Average Forward Current, Amperes
S69
Maximum Case Temperature VS. Forward Current
125
~
115
105
I I I I
~
85
~
"
1\r\
~
65
E
~
"
~
300
I
51
~
f\
..
I\~ ~ ~ ~ r\
~ ~
~
1\ I\~ r\ ~ r\1\
I\.
1\ r\' 'f\ 1\ ~
~
:;
600 1900 1200 1800 2700
fl
"
.
1/
1200
1400
·1
J
E
:l
E
1/ Ii
"
""
V
II
II'If'
~
)[1
IV J ~
iV
I
1.ir.l V
1/ If.~ ~V' :
VI) V. i~
II A), ~
I
1000
.!!
0
I I
J V
II JI)
J
.~
~~ ~ P'
800
.~
600
400
200
-
200 400 600 800 1000 1200 14001600 1800 2000'2200
I I I I I
TA20-.14
I I I "
~~
!
,
"
[\\
\
~
65 I
~
I
500
~
\
,
300
I
1000
I
I "
r- r-J"~
L--..L- ConductIOn
Angle A
r-
L--..L-Ca'lductlOl'1
......
,
~
\
r\
i\\\
r\\
90 0 1200 1800 270 0 DC
I I II I I I I I I I I I
2000
1500
2500
600
J
III)
~II
i)
j
II
"III 1/
~V ~~If'
'I
~, ~~
IJ ~~~
800 I
E
:l
E
400 'r-
:i
I)
'K
J
120
ilif Vj j
J
If 111/ 1/1/ J~
1 il Ill'- 1/.1'
.1ZI
~,
600
if
I
.:
\ 1\
\
II
j
,2 1200I
i3
300
t-
.U0 1800 :~~o~C
II II II
V ~ It Il )~
90 0
t-~
2800
2000
\\1\\
[\\ 1\
~\
HiAJa.:l~
2400
\ ,
1\
75 I
55 i
3200
~~
!
Average Forward Current, Amperes
570
DC
\ \i\ r\ \ '1\
~\
\
51
u
II
1800
~
l' r\!';
\
~
E
~
2400
J
1600
~~ \[\,"\\\. ~~
:l
&
300
".
"1
Maximum Power Dissipation VS, Forward Current
--
85 I
~
2600
;:
600
I
A.....
Maximum Case Temperature VS. Forward Current
95 I
a
L--..L-ConducIIOn
Average' Forward Current, Amperes
I
u
2800
I I DC
27~011-
1200 1800
90 0
Average Forward Current, Amperes
125
105
~~
I I
VI I I I I 1
L
"=
::i1
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 I
55
115
3000
2200
~ ~ ~ ~ ~~ [\
10
I I I
I
2000
~~
75
"
Angle • .
~
.;
~A~~I~
L--..L-C~Utloon
"~~~ ~,
1\
3400 /-1
3200
~~-
~~ ~~ ~~
95
I
TA~~12
~
~
Maximum Power Diasipation VS. Forward Current
3600
f-
~~
500
~~
1000
Average Forward Current, Amperes
1500
2000
2500
IncheS'
Symbol"
A
B
C
</>D
J
Max.
Min.
Max.
9.00
.063
2.980
10.00
.172
3.020
228.60
1.60
75.69
254.00
4.37
76.71
1.490
3.750
.272
K
M
.530
2.030
.500
N
p
Q
R
3.937
4.937
.330
S
q,T
U
.970
.470
.440
V
Z
.292
.755
2.150
37.85
95.25
6.91
7.42
13.46
51.56
12.70
19.18
54.61
2.670.
4.063 100.00
5.063 125.40
.350 .
8.38
67.81
103.20
128.60
8.89
24.64
11.94
11.18
26.16
13.46
1.030
.530
Creep Distance-l.76 in. min. (44.91 mm).
Strike Distance-.Sl in. min. (~0.70 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-5 lb. (2.3 kg.,.
1. Angular orientation of terminals ar~
undefined.
2. Pitch diameter of *-20 UNF-2A
(coated) threads (ASA Bl.1-1 ~60).
3. Oimension "J" denotes seated height
with leads bent at right angles.
T76 Outline
Voltage
Millimeters
Min.
®
Blocking State Maximums ITJ "- 125'CI
Repetitive peak forward blocking voltage • V
Repetitive peak reverse voltage • V ...... , . , .
Package J2 (case rupture)
rating: 15 x 106 A 2 sec.
Symbol
VORM
VRRM
100
100
200
200
400
400
600
600
SOO
800
VRSM
200
300
500
700
950 1200 1450 1550 1700 1800 1900 2050 2150 2400 2600
1000 1200 1300 1400 1500 1600 1700 lS00 2000 2200
1000 1200 1300 1400 1500 1600 1700 lS00 2000 2200
Non-repetitive transient peak reverse voltage,
~~
5,Omsec, Vi ...... , .. , .. ,.· .. · .... .
I:
~I
1-+--(- - T I 6 0 __ 30
Forward leakage current, mA peak '" ......•
Reverse, leakage current, mA peak .......... .
:~=~
!~I-------------t
Gate
Current
Conducting State Maximums
(TJ = 125'C)
•
RMS forward current, A .. , ..... .
Ave. forward current, A ........ .
One-half cycle surge current@, A ..
3 cycle surge current@, A ..... .
10 cycle surge current@, A .... .
12t for fusing (for times> S.3 ms)
A2 sec.
Forward voltage drop at I TM = 3000A
and TJ = 25'C, V .......... .
Symbol
T760 __ 30
'T(rms)
'T(av)
I,TSM
'TSM
470
300
8400
6050
5200
' TSM
12t.
295,000
3.30
V TM
Typical turn-off time. IT = 250A,
TJ = 125'C, diR/dt = 25
A7p.sec, reapplied dv/dt =
20V/lJsec linear to O.S VORM,/L sec ...
Typ. turn-on-time, 'T = 100A
VO= 100V@, /Lsec . , .......... , .. .
Min. critical dv/dt, exponential to VO RM '
TJ = 125'C, V/p.sec®(f), •..........
Min. di/dt non-repetitive,
A/lJsec 000. ,
Symbol
Gate current to trigger at Vo = 12V, mA
Gate voltage to trigger at Vo = 12V, V ...
Non-triggering gate voltage, TJ = 125'C,
and rated VORM ' V ............... .
Peak forward gate current, A .......... .
Peak reverse gate voltage, V ...... , ... .
Peak gate power, Watts .......... , ... .
Average gate power, Watts ...... , , ... .
'GT
V GT
VGOM
I GTM
VGRM
PGM
PG(av)
150
3
0.15
4
5
16
3
Thermal and Mechanical
Switching
(TJ = 25'C)
Maximum Parameters
(TJ ;:: 25"C)
Symbol
Symbol
tq
150
ton
7
dv/dt
300
di/dt
800
Example
Min .. Max. aper. junction temp .• ·C ......... .
Min .. Max, storage temp.'. ·C .............. .
Max. mounting torque. In lb.
TJ
Tstg
-40 to +125
-40 to +150
300
Max. Thermal Impedance, 0C/Walt
Junction to Ambient @ 1000 LFM airflow ............ (JJA
0.18
o Consult recommended mounting procedures.
o Applies for zero or negative gate bias.
CD
<D
CD
Per JEOEC RS-397, 5.2.2.1.
With recommended gate drive.
Higher dv/dt ratings available, consult factory.
CD Per JEOEC standard RS-397, 5.2.2.6.
Obtain optimum device performance for your application by
selecting proper Order' Code.
Type T760 rated at 300 A average with VORM = 1000V,
IGT
150 rna, and standard flexible lead-order as:
==
871
Maximum Forward Voltaga VS. Forward Currant
Transient Thermal Impedance VS. Time
3.0
2.5
2.0
1.5
1.0
0.5
o
100
10
.01
Time, t, Seconds
10
100
1
Forward Currant - ITM, Ampares
'11:
Maximum Power Dissipation VS. Forward Current
Maximum Case Tamparatura VS. Forward Currant
600
u 100
0
!
A6O"
400
:)
!
75
f
~
A30·
J
300
I,
SO
U
t+
E
:)
200
E
~
A6O·
25
100
~--::±t
-'-+4-.
~~
....taA
0
100
0
200 .
Avarage Forward Current, Amperes
MaKimum Cata Temparatura VS. ForWard Currant
0
0
100
Maximum Power Dissipation VS. Forward Current
100
U
0
!75
I'
E
~SO
I
~
25
0
0
100
Average Forward Current, Amperes
872
ZOO
Average Forward Current, Amperes
Average Forward Current, Amperes
3I!ll
Inches
Symbol
A
A,
Min.
Millimeters
Max.
Min.
Max.
9.760 10.250 247.90 260.35
10.000 10.750 254.00 273.05
.063
.172
1.60
4.37
B
C
.pD
F
J
.pK
M
Q
S
.pT
U
Z
1.790
.980
.245
1.830.
1.090
.255
45.47
24.89
6.22
46.48
27.69
6.48
4.250
.338
.530
.348
.755
107.95
8.59
13.46
8.84
19.18
2.390
.330
2.750
2.430
.350
60.71
8.38
69.85
61.72
8.89
.280
.440
.320
7.11
11.18
8.13
Creep & Strike Oistance.
.69 in. min. (17.60 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-16 oz. (454 g).
1. Angular orientation of terminals is
undefined.
2. Dimension" J" denotes seated height
with leads bent at right angles.
Voltage
(J)
Blocking State Maximums (TJ=125 C C)
Symbol
Repetitive peak forward blocking voltage, V .....
Repetitive peak reverse voltage" V ...........
Non-reDetitive transient peak reverse voltage,
tS;5.0 msec, V ••••.••••••••••.••.•.....
Forward leakage current, mA peak .......•....
Reverse leakage current. mA peak .............
VORM
VRRM
100
100
VRSM
IDRM
IRRM
200
...
200
200
300
300
400
400
500
500
600
600
700
700
SOO
800
900
900
1000
1000
1100
1100
1200
1200
1300
1300
1400
1400
1500
1500
300
400
500
600
700
850
950
1100
25
25
1200
1300
1450
1550
1700
1800
•
Switching
Current
Conducting State Maximums
(TJ=125 C C)
Symbol
RMS forward current, A .........•..•...
Ave. forward current, A ................
One-half cycle surge current@, A .....•...
3 cycle surge current@. A ............
10 cycle surge [email protected] ...........
1'1 foriusing (for times>S.3 ms) A' sec.....
Forward voltage drop at ITM=625A and
TJ=25 c C, V ....••....••...........
IT(rms)
IT(av)
ITSM
ITSM
ITSM
I't
T680__18
275
175
5500
3900
3400
120,000
1.55
VTM
(TJ=25 c C)
Symbol
Typical turn-off time, IT=150A
TJ=125 c C. diR/dt=12.5 A/p.sec.
reapplied dv/dt=20V/p.sec linear
to O.S VORM, p.sec ............
Typ. turn-on-time.IT=100A
[email protected] .............
tq
ton
150
5
Min. critical dv/dt, exponential to
VORM TJ=125 c C, V/p.sec(J)(J) •.
dv/dt
300
Min. di/dt non-repetitive,
A/p.sec (f) (j)(J)
di/dt
800
Thermal and Mechanical
Gate
CD
•
Symbol
Maximum Parameters
Consult
recommended mounting procedures.
(J) Applies for zero or negative gate bias.
CD Per JEDEC RS-397, 5.~ 2.1.
(j) With recommended, e drive.
(J) Higher dv/dt ratings av"ilable, consult factory.
(j) Per JEDEC standard RS-397, 5.2.2.6.
(TJ=25"C)
Symbol
Gate currenttotrigger atVo=12V, mA
Gate voltage to trigger at VO=12V, V.
Non-triggering gate voltage. TJ
=125°C, and rated VORM, V ....
Peak forward gate current, A .•••...
Peak reverse gate voltage, V .......
Peak gate power, Watts ...........
Average gate power, Watts ........
IGT
VGT
150
3
VGOM
IGTM
VGRM
PGM
PG(av)
0.15
4
5
16
3
Min., Max. oper. junction
temp .. "C .•.........•.
Min., Max. storage temp .. °C
Max. mounting torque
each bolt, in-lb. (f) .....
Thermal resistance(j)
TJ
Tstg
-40 to +125
-40 to +150
25
Junction to case,
°C/Watt ....•...•••...
Case to sink, lubricated,
°C/Watt .......••.....
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
ROJC
.155
ROCS
.05
, Type T680 rated at 175A average with VDRM
l000V, IGT = 150 ma, and standard flexible
lead-order as:
=
573
4.C
3.5
I
1111
3.0
III "
I 111111
TJ
!
= 12&°C
u
S
.§
2.5
t>
~
2.0
..,§
~
1.5
i lii
.Eu,
..... ""
1.0
E
=~
~~
0.5
o
g~
1
2
10 20
50 1()() 200
5
Forward Current. 1TM, Peak Amneres'
500
lK
2K
51< 10K.
.001
Time,l, Seconds
Maximum Case Temp.erature VS. Forward Current
.01
.1
10
100
Maximum Power Dissipation VS. Forward Current
300~~
~"i~~
~ ~l_~~~~~];'
250
~
.~ 200;
.1
.;o
Io
Il.
.
100
E·
.::l
E
'j(
~ 50
o
100
50
150
200
Average forward Current. Amperes
Average Forward Current. Amperes
Maximum Power Dissipation VS. Forward Current
Maximum Case Temperature VS. Forward Current
50
100
150
Average Forward .Current. Amperes
874
200
250
300
o
50
100
150
Average Forward Current. Amperes
200
250
300
Inches
Symbol
A
A,
B
C
q,D
Millimeters
Min.
Max.
Min.
Max.
9.76
10.18
.063
10.00
10.42
.172
247.90
258.57
1.60
254.00
264.67
4.37
2.52
1.490
1.750
62.99
41.15
64.00
37.85
44.45
2.48
E
F
J
q,K
1.620
.430
4.00
.360
M
Q
5.30
q,S
q,T
.810
.400
.755
3.10
1.610
1.590
.330
.440
Z
10.92
101.60
9.14
13.46
40.39
.350
8.38
11.18
20.57
10.16
19.18
78.74
40.89
8.89
Creep Distance-1.76 in min. (44.91 mm).
Strike Distance-.S1 In min. (20.70 mm)
(In accordance with NEMA standards.)
FInish-Nickel Plate.
Approx. Weight-16 oz. (454 g).
1. Angular orientation of terminals are
undefined.
T78
2. Dimension "J" denotes seated height
with leads bent at right angles.
Outline
I
Voltage
(j)
Blocking State Maximums IT J -- 125°C I
Repetitive peak forward blocking voltage ,V
Repetitive peak reverse voltage
V ......... .
Non-repetitive transient peak reverse voltage,
t~ 5.0 msec,V ................... ·.···
Symbol
VDRM
Package I2t (case rupture)
rating: 15 x 1()6 A~sec.
VRRM
100
100
200
200
400
400
600
600
800
800
1000 1200 1300 1400 1500 1600
1000 1200 1300 1400 1500 1600
V RSM
200
300
500
700
950
1200 1450 1550 1700 1800 1900
T780 __ 35
Forward leakage current. mA peak ......... .
Reverse leakage current, mA peak
'DRM
'RRM
+
Symbol
RMS forward current, A ........ .
Ave. forward current, A .......•.
One-half cycle surge current@, A ..
3 cycle surge current@. A ..... .
10 cycle surge current@, A .... .
12t for fusing (for times> 8.3 ms)
A2 sec.
Forward voltage drop at I TM = 3000A
and TJ = 25°C, V .....•.....
)
)
30
Current
Conducting State Maximums
(TJ = 125°C)
)
30
<
T780 __ 35
550
350
10,000
7200
6200
' Tlrms )
'T(av)
' TSM
' TSM
' TSM
12t
V TM
Switching
(TJ = 25°C)
Symbol
Typical turn·off time, IT = 250A,
TJ = 125°C, diR/dt = 25
A~JJsec, reapplied dv/dt =
20V/,..sec linear to 0.8 VORM,JJ sec ...
Typ. turn·on·time, IT = 100A
VO= 100V0. JJsec ............... .
Min. critical dv/dt, exponential to VORM'
TJ = 125°C, V /JJsec@:D ........... .
Min. di/dt non-repetitive, JEDEC Std. #7,
A/,..ser. CDCDCD
.............. .
416,000
2.15
I
tq
150
ton
7
dv/dt
300
di/dt
800
Gate
Thermal and Mechanical
Maximum Parameters
(T J =25°C)
Symbol
Min. Max. oper. junction temp,
°c ......... .
Min. Max. storage temp .. °c .............. .
Max. Thermal resistance Q)
JunctIOn to case. °C/Watt.
. ........ .
Case to sink. lubricated. °C/Watt.
TJ
Tstg
ROJC
ROCS
CD Consult recommended mounting procedures.
(j) Applies for zero or negative gate bias.
(j) Per JEOEC RS397, 5.2.2.1.
CD With recommended gate drive.
(j) Higher dv/dt ratings available, consult factory.
CD Per JEOEC standard RS·397, 5.2.2.6.
Symbol
Gate current to trigger at Vo = 12V, rnA
-40to+125
-40 to +150
Gate voltage to trigger at Vo = 12V, V ...
Non-triggering gate voltage, TJ = 125°C,
and rated VORM ' V ............... .
Peak forward gate current, A .......... .
. 10
.05
Peak reverse gate voltage, V .......... .
Peak gate power, Watts .............. .
Average gate power, Watts ........... .
Example
Obtain optimum dev.ice performance for your
application by selecting proper Order Code.
'GT
VGT
150
VGDM
I GTM
V GRM
PGM
PG(av)
0.15
4
5
16
3
3
Type T780rated at ,50A average with VORM=
1000V, IGT= 150 ma, and standard leadorder as:
_.lla'14I,i.••_*,,,,,i=M;ii,,,';W.,,,,,,."'&.i;ii,,,".*..,
CO=I j D
I
IT""]
7
8
3
5
0
[
4
L'BY _
575
Transient Thermal Impedance VS. Time
N
~
"E
~
E
~
1.5
i--~~-+~+--..i..-.,.-.~"T""-'-'
1.0 !-·..;.-.,.-+-++thl-·--t·--+---'--;-:;::.;;.:i.-""f'
C-·..·-H...;--.
0.5 f-_'';''+'';r-';''';'+H1--+-+-t-c'
.~
:E
Forward Current. ITM. Amperes
lime. t. Seconds
Maximum Case Temperature VS. Forward Current
Average Forward Current. Amperes
576
Average Forward Current. Amperes
Conforms to TO-83 Outline
Conforms to TO-94 Outline
Symbol
A
A,
B
q,D
E
F
J
M
N
Inches
Min.
5.775
6.850
.055
.860
1.031
.255
2.50
.437
.796
Q
q,T
Z
q,W
.260
.250
~-20
Max.
6.265
7.500
.075
1.000
1.063
.400
.650
.827
1.675
.291
Millimeters
Min.
Max.
146.69 159.13
173.99 190.50
'1-.40
1.91
21.84 25.40
26.19 27.00
6.48 10.16
63.50
11.10 16.51
20.24 21.01
42.55
6.60
7.39
6.35
UNF-2A
Symbol
A,
C
L
L,
L,
M,
q,T,
q,T,
Z,
q,W
Inches
Min.
.070
.420
.180
.360
.190
.060
.180
~-20
Millimeters
Min.
Max.
45.97
1.78
2.79
16.51
13.21
10.67
4.57
11.94
9.14
4.83
5.97
1.52
2.03
4.57
!'0ax,
1.810
.110
.650
.520
.470
.235
.080
UNF-2A
Approx, Weight-4 oz. (114 g).
1. Basic dimensions of TO-94 and TO-83
Creep & Strike Distance.
T500-.50 in. mm. (12.85 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate,
Approx. Weight-5 oz. (142 g).
1. Complete threads to extend to w'thin
2% threads of seating plane.
2. Angular orientation of terminals is
undefined.
3. Pitch diameter of %·20 UNF-2A
(coated) threads (ASA B1.1-1960).
4. Dimension "J" denotes seated height
with leads bent at right angles.
no?
Cod.
100
200
300
400
500
600
700
800
900
1000
1100
1200
01
02
03
04
05
06
07
os
I T{avl
(Al
Features:
• Center fired dilnamic
• High di/dt with soft gate control
• High frequency operation
• Sinusoidal waveform operation to 20 KHz
• Rectangular waveform operation to 20 KHz
• Low dynamic forward voltage drop
• Low switching losses at high frequency
• Lifetime Guarantee
Applications:
• Inverters for
UPS
Induction Heating
AC Motor Control
• Switching power supplies
• Cycloconverters
• Choppers
• Crowbars
are same except as noted.
Code
Note: High frequency sine and
square wave data available. consu It factory.
Code -
40
40
to
70
70
15
20
80
so
25
30
40
50
09
10
11
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
Type T 507 rated at 80 A average with VORM = 1000V.
IGT =.150 ma, tq = 30 p,sec max. and flex leads-order as:
S77
Voltage
Blocking State Maximums. ® ITJ = , 25·C)
Repetitive peak forward blotking voltage • V .:
Repemive peak reverse, voltagll; V ........ .
Non-repetitive tranSient peak reverse voltage.
t ~ 6.0 msec. V .......................... .
Symbol
VORM
Forward lea~age' current. mA peak .•..•.•...
Reverse leakage current. mA peak .....•.....
IiRRM
100
100
200
200
300
300
400
'400
500
500
SOO
600
700
700
800
800
900
900
1000 1100 1200
1000 1100 1200
VRSM
200
300
400
500.
600
700
800
900
1000 1100 1200 1300
IORM
'R.RM
~
~
15
. 15
)
)
Current
Conducting State Maxim'ums
(TJ = 125·C)
Symbol
RMS forward current. A ........ .
Ave. forward current. A ....••.•.
One-half cycle surge current(!). A ..
,'ifor fusing '(for times> 8.3 ms)
A'sec.
Forward voltage drop at 'TM = 500A
and TJ = 25·C. V .......•..
Min. repetitive di/dl (])'CDCD A/p.aec ...
T507 __ 40
T507 __ 70
T507 __ 80
63
40
1000
110
70
1200
125
80
1400
4000
6000
8150
4.2
100
3.5
100
3.2
150
iT(rms)
'T(av)
' TSM
I't.
VTM
di/dt
(TJ = 25·C)
~
...
Symbol
Max. turn-off time. IT =50A.
TJ = 125·C. diR/dt = 5
"7p.sec. reapplied dv/dt ==
<D(l)
20V /1' sec linear to 0.8 VORM ,I' sec •.' .
Typ. turn-on-time. IT = 100A
. VO= 100VCD. p.sec ............... .
Min. critical dv/dt. exponential to VORM'
TJ = 125·C. V/p.secfJ)IJ) ....•.......
Min. drl dt non-repedtive.
.A/p.sec 1J)(l)1J)
.............•.
tq
10 to 50
ton
3.5
dv/dt
200
di/dt
800
l
~
6I
0
4
~
3
~
•
~
"E
...!
Gate
Maximum Parameter.
IT J = 25·C)
Gate current to trigger at Vo
Maximum Forward Voltage VS. Forward Current
'l!I
Switching
E
Symbol
=
12V. mA
Gate voitage to trigger at Vo = 12V. V ...
Non-triggering gate voltage. TJ = 126·C,
and rated VORM ' V ............... .
Peak forward gate current. A .......... .
Peak reverse gate voltage. V .: ..... ~ .. .
Peak gate power. Watts .............. .
Average gate power. Watts ........... .
IGT
VGT
VGOM
IGTM
VGRM
PGM
PG(av)
150
3
0.15
4
5
16
3
'"
E
III I
507_~
ill ~~
¥~07~70
6
T607_ ..80
~t:~
,.
p-
'iii
•
:::t
o
10
100
Forward Current. ITM. Peak Amperes
Transient Thermal Impedance VS. Time
-40 to +125
-40 to +150
130
.28
.12
(!). Consult r_mended mounting procedures.
IJ) Applies for zero or neg.tiVe gete bias.
IJ) Per JEOEC RS·397, 6.2.2.1.
(i) Withlr.commended gate drive.
<D ~igher dv/dt ratings available, consult factory.
CD Per JEDEC standard RS·397. 6.2.2.6.
(j). For operetion with antlparallel diode, consult factory.
Time.,. Seconds
578
V
~~
2
Symbol
TJ
Tstg
11)1/
I..t'
1 nermal and Mechanical
Min.. Max. oper. junction temp .. ·C ..... .
Min .• Max. storage temp .. ·C .......... .
Max. mounting torque. in lb. (!) .....•.•.
Max. Ther."al resistance IJ)
Junction to case. °C/Watt
.....•..•
Case to oink. lubricated. ~C/Watt ..... .
1~~
---..
1000
,
10.000
Symbol
A
A,
B
4>D
E
F
J
M
N
Q
4>T
Z
4>W
Features:
• Center fire, di/namic gate
• High di/dt with soft gate control
• High frequency operation
• Sinusoidal waveform operation to 20 KHz
• Rectangular waveform operation to 20 KHz
• Low dynamic forward voltage drop
• Low switching losses at high frequency
• Westinghouse Lifetime Guarantee
Inches
Min.
Max.
7.750
8.100
7.750 8.100
.063
.172
.980 1.090
1.212 1.250
.250
.630
3.25
.530
.755
1.040 1.077
2.250
.260
.290
.340
%-16 UNF-2A
Millimeters
Min.
Max.
196.85 205.74
196.85 205.74
1.60
4.37
24.89
27.69
30.78
31.75
6.35
16.00
82.55
13.46 19.18
26.42
27.36
57.15
6.60
7.37
8.64
Creep & Strike Distance:
.69 in. min. (17.60 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-8 oz. (227 g).
1. Complete threads to extend to within
211.. threads of seating plane.
2. Angular orientation of terminals IS
undefined.
3. Pitch diameter of %·16 UNF·2A
(coated) threads (AS A B1.1-1960).
4. Dimension "J" denotes seated height
with leads bent at right angles.
Note: High frequency sine and square
wave data available, consult factory.
Applications:
• I nverters for
UPS
AC motor control
Induction heating
• Cycloconverters
• Choppers
Ordering Information
100
200
300
400
I Tlav)
(Al
Code
tq
p'sec
125
13
10
'03
150
16
05
06
175
18
01
02
,
04
07
~O,
08,'
1~
\1', '
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
Type T607 rated at175A average wjth VDRM = 1000V,
IGT
150 ma, tq
30 !,sec and standard flex lead - order as
=
=
579
Voltage
Blocking State MaximumsQ)
(TJ = 125°Cl
Repetitive peak forward ,blocking voltage ,V
Repetitive peak reverse voltage ,V, ..•......
Non-repetitive transient peak reverse voltage.
t ~ 5.0 m sec, V ........................ , ••
Symbol
VORM
Forward leakage current, mA peak .........•
Reverse leakage current. mA peak .......... .
VRRM
100
100
200
200
300
300
400
400
500
500
600
600
VRSM
200
300
400
500
600
700
IORM
IRRM
<
<
700
700
SOO
SOO
900
900
1000 1100 1200
1000 1100 1200
SOO
900
1000 1100 1200 1300
~
)
25
25
Current
Conductin'l State Maximums
(TJ = 125 C)
RMS forward current. A .....•.•.
Ave. forward current, A ....•.•..
One-half cycle surge current®. A ..
12t for fusing (for times> S.3 ms),
A2·sec.
Forward voltage drop at ITM = 625·A
and TJ = 25°C. V ... , ..... .
Min. repetitive di/ dt CD CD@ ,A/usee
Symbol
T607 __ 13
T607 __ 15
T607 __ 18
IT(rms)
IT(av)
I TSM
200
125
3500.
235
150
4000
275
175
4500
65,000
S4,000
2.1
250
I.S5
300
lOt •
50,000
2.35
200
VTM
di/dt
Switching
Maximum Forward Voltage VS. Forward Current
(TJ = 25°C)
Symbol
Max. turn-off time. IT -·150A.
TJ = 125°C, diR/dt =12.5
A7usec, reapplied dv/dt =
20V /,. sec linear to .SV ORM, ,.sec CD CD '
Typ, turn-on-time, IT = 100A
VO= 100V@, usee . ......... , .... .
Min. critical dv/dt. exponential to VORM '
TJ = 125°C, V/usec®(J) ........ , .. .
Min. di/dt non-repetitive,
CDQ)@,A/lI-sec .............. .
!!!
'0
>
tq
10t060
3.5
ton
dv/dt
300
di/dt
800
~
~.
.
f
~o·
...
Gate
Symbol
=
Gate current to trigger at Vi>
12V. mA
Gate voltage to trigger at Vo = 12V, V ...
Non-triggering gate voltage, TJ = 125°C.
and rated VORM ' V ........ : ....... .
Peak forward gate current, A .........•.
Peak reverse gate voltage,. V .....•....•
Peak gate power, Watts .............. .
Average gate power. Watts ........... .
IGT
V GT
150
3
6
5
4
{60~ ~~
i j--••
3
1S
T607__
2
~
~
....
7'
..:::!:"
'x
0.15
4
1000
100
10.000
Forward Current. ITM, Peak Amperes
Transient Thermal Impedance VS. Time
5
16
3
I/.
71 I
E
E
10
VGOM
I GTM
VGRM
PGM
PG(av)
'I.
T607__13
I
• I.
Q
'E
Maximum Parameters
(T J = 25°C)
7
20
18
Thermal and Mechanical
Symbol
Min., Max. oper. junction temp.,
Min., Max. storage temp.,
°c ..... .
°c .......... .
Max. mounting torque. in lb. CD ........ .
Max. Thermal resistance (J)
Junction to case. °C/Watt .. , ..... .
Case to sink, lubricated. ·C/Watt ..... .
CD
CD
CD
@
@
@
CD
S80
TJ
Tstg
-40 to +125
-40 to +150
300
ReJC
Recs
Consult recommended mounting procedures.
Applies for zero or negative gate bias.
Per JEDEC RS-397, 5.2.2.1.
With recommended gate drivEi.
.
Higher dv/d! ratings available. consult factory.
Per JEOEC standard RS-397. 5.2.2.6.
For operation with antiparallel diode, consult factory.
.13
.08
oJooi...~~~~0001
.001
.01
Time.t. Seconds
.1
10
100
Symbol
A
A,
B
q,D
E
F
N
Q
q,T
Z
q,W
Millimeters
Min.
Max.
Creep Distance-1.76 in. min. (44.91 mm).
Strike Distance- .81 in. min. (20.70 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-16 oz. (454 g).
1. Complete threads to extend to within
2% threads of seating plane.
2. Angular orientation of terminals is
undefined.
3. Pitch diameter of *-16 UNF-2A
(coated) threads (ASA B 1.1 -1960).
4. Dimension "J" denotes seated height
with leads bent at right angles.
T70 Outline
Features:
Center fired di/namic gate
High di/dt with soft gate control
High frequency operation
Sinusoidal waveform operation to 20 KHz
Rectangular waveform operation to 20 KHz
Low dynamic forward voltage drop
Low switching losses at high frequency
Westinghouse Lifetime Guarantee
I
Applications:
UPS
I nduction heating
AC motor drives
• Cycloconverters
• Choppers
• Crowbar
I
Voltage
Note: High frequency sine and square
wave,data available. consult factory.
• Inverters for
Ordering Information
Type
Max.
9.76 10.00 247.90 254.00
10.18 10.42 258.57 264.67
.063
.172
1.60
4.37
1.490
37.85
1.620 1.750 41.15 44.45
.430
.810 10.92 20.57
4.000
101.60
.530
.755 13.46 19.18
1.04
1.08
26.42 27.43
3.100
78.74
.330
.350
8.38
8.89
.440
11.18
%-16 UNF-2A
J
M
•
•
•
•
•
•
•
•
Min.
I
Current
Turn off
I
Gatp current
I
Leads
,
VDRM
Code
T707
and
VRRM
(V)
100
200
300
400
500
600
700
1000
1100
1200
Code
01
02
03
04
06
06
07
I T(av)
(A)
Code
IGT
(ma)
150
Case
4
T70
275
325
250
300
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
=
Type T 707 .rated at 300A average with VORM
1000V.
IGT = 150 ma.tq = 30 psec and standard flex lead - order· as
581
Voltage
Blocking State Maximums0 (TJ
7_
125"C!
Symbol
VORM
Repetitive peak forward blocking voltage • V
Repetitive peak reverse voltage V
......... .
VRRM
100
100
200
200
VRS M
200
300
300
300
400
400
500
500
SOO
SOO
700
700
,400
500
SOO
700
800
. Boo
1000' 1100 1200
1000 1100 1200
800
900
900
900
1000 1100 1200 1300
Non-repetitive transient peak reverse voltage,
t ::; 5.0 msec,v ....................... .
Type designation vs. Voltage availability
T707_.28;T707_-33
T707_.25;T707_-30
Forward leakage current, mA peak ......... .
Reverse leakage current. mA peak
~
IORM
IRRM
30
30
<
Current
Conducting State Maximums
(TJ == 125"CI
RMS forward current, A ........ .
Ave. forward current. A ........ .
One-half cycle surge currentCD, A ..
12t for fusing (for times> B.3 msl
A2 sec.
Forward voltage drop at ITM == 3000A
and TJ == 25"C, V .......... .
Min. repetitive di/dt • A/p.sec
(i)@0
Symbol
T707 __ 28
ITlrms)
ITlavl
I TSM
T707 __ 33
430
275
7000
500
325
8000
I2t •
20&000
2S&000
V TM
di/dt
250
300
T707 __ 25
T707 __ 30
400
,250
7000
475
300
8000
205,000
265,000
2.30
2:90
2:S0
400
300
400
Switching
ITJ == 25"CI
Max. turn-off time, IT ==400A,
TJ == 125"C, diR/dt =25
A7p.sec, reapplied dv/dt =
20V / p,sec. linear to .8V DRM. p,secCD0,
Typ. turn-an-time. IT = l000A
VD= 3OOV@. p.sec ..... , .... , , ....
Min. critical dv/dt. exponential to VORM '
TJ = 125"C, V/p.secCDCD ........... .
Min. di/dt, non-repetitive.CD0CD
A//olsec , , . , , .. " .... , , .
Maximum Forward Voltage Drop. Vs. Forward Current
Symbol
!!l
tq
10 to 60
ton
dv/dt
di/dt
3.0
>ci
e
5
300
4
800
'"
!!l
"E
.,
3
Gate current to trigger at Vo = 12V, mA
Gate voltage to trigger at Vo = 12V, V , ..
Non-triggering gate voltage, TJ = 125"C.
and rated VORM • V ......... , , .... .
Peak forward gate current. A .... , . , . , ..
Peak reverse gate voltage, V .... , , : , , ..
Symbol
IGT
V GT
Average gate power, Watts ........... .
Thermal and Mechanical
Symbol,
Min., Max. oper. junction temp., QC ..... .
Min .. Max. storage temp., "C .......... .
Max. mounting torque, in Ib, CD . , . , .••.•
Max. Thermal resistance (i)
Junction to case, "C/Watt , .... , , , .
Case to sink. lubricated, "C/Watt . , , , , .
~
~
"E
E
3
:J
0.15
4
:!
'j(
VGOM
I GTM
V GRM
PGM
PG(avl
Peak gate power, Watts . . . . . . . . . . . . . . .
150
.,
TJ
Tstg
6
1.6
co
1111\ II
6
c
Gate
Maximum Parameters
IT J == 25"C)
~
i
7
H~~:~~o
I III I
I
I I
T707':"_~~
2
;JIIII'
[j
~
T707__ 33
II IIII
10
100
1,000
Forward Current, ITM. Peak Amperes
10,000
3
Transient Thermal Impedance VS. Time
-40 to +125
-40 to +150
360
.10
.05
(i) Consult recommended mounting procedures,
o Applies for zero or negative gate bias.
Per JEOEC RS-397. 5.2.2.1.
With recommended gate drive.
CD Higher dv/dt ratings available, consult factory.
Per JEOEC standard RS-397. 5.2.2.S,
For operation with antiparaliel diode, consult factory.
o
o
o
o
lime. t. Seconds
S82
h
1'111 t I I
gb~~~45
100,000
Inches
Millimeters
Min.
Max.
Min.
Max.
1.610 1.650
40.89
41.91
</>D
.745
</>D,
.755
18.92 19.18
</>D,
1.420
1.460
36.07
37.08
H
.500
.560
12.70
14.22
.135
.145
3.43
3.68
</>J
J,
.072
.082
1.83
2.08
L
7.75
8.50
196.85 215.90
N
.030
.76
Creep Distance-.34 in. min. (8.64 mm).
Strike Distance-.52 in. min. (13.21 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-2.3 oz. (66 g).
Symbol
1. DImension "H" is clamped dimension.
T52 Outline
Features:
• Center fired di/namic gate
• High dil dt with soft gate control
• High frequency operation
• Sinusoidal waveform operation to 20 KHz
• Rectangular waveform operation to 20 KHz
• Low dynamic forward voltage drop
• Low switching losses at high frequency
• Lifetime Guarantee
Note: High frequency sine and square
wave data available, consult factory.
Applications:
• I nveners for
UPS
Induction Heating
Motor Control
• Choppers
• Crowbars
Orde.ring Information
'Cod.
TS27
Code
100
200
300
400
500
600
700
800
900
1000
1100
1200
01
02
03
04
05
06
07
08
I T(av)
(A)
10
15
20
30
40
50
60
115
125
( GT
,,'COde,
(rna)
Code
Case
Code
8
150
4
T62
DN
1.
<.~,
6
4'
.3
",:,
09
10
11
12
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
=
Type T527 rated at 115 A average with VDRM
800V,
IGT
150 rna, tq
20l'sec max. and flex leads-order as:
=
=
583
Voltage
CD
Blocking State Maximums ITJ _" 125"C}
Repetitive peak forward blocking voltage ,V
Repetitive peak reverse voltage ,V ......... .
Symbol
VORM
1000 1100 1200
1000 1100 1200
VRRM
100
100
200
200
300
300
400
400
500
500
600
600
700
700
800
800
900
900
50 msec, V ........................... .
V RSM
200
300
400
500
600
700
800
900
1000 1100 1200 1300
Forward leakage current, rnA peak ......... .
Reverse leakage current. rnA peak
IORM
IRRM
~
~
Non-repetitive transient peak reverse voltage.
t
25
25
Current
Conducting State Maximums
ITJ = 125"C)
Symbol
T527 __ 60
T527 __ 12
T527 __ 13
IT(rms)
I Tlav )
I TSM
95
60
1000
180
115
1200
200
125
1400
4000
6000
8150
4.2
100
3.5
100
3.2
150
RMS forward current. A ........ .
Ave. forward current, A ........ .
One-half cycle surge current(i), A ..
12t for fusing (for times> 8.3 ms)
A2 sec.
Forward voltage drop at ITM = 500A
and TJ = 25°C, V •.........
VTM
Min. repetitive di/dt ,A/p.sec CD0CD
di/dt
12 t
Maximum Forward Voltage VS. Forward Current
Switching
(TJ
=
25°C)
>r:i.
Symbol
IJ/p.~e~,2r~:~'p~~~ 3~/dt5=
tq
10 to 50
3.5
ton
dv/dt
300
di/dt
400
=
Vo
= 12V, rnA
Gate voltage to trigger at Vo = 12V, V ...
Non-triggering gate voltage, TJ = 125"C,
and rated VORM ' V .... -........... .
Peak forward gate current, A .......... .
Peak reverse gate voltage, V .......... .
Peak gate power, Watts .............. .
Average gate power, Watts ........... .
IGT
V GT
150
VGOM
I GTM
V GRM
PGM
PG(av)
0.15
4
5
16
3
3
Min., Max. oper. junction temp., "C ..... .
Min., Max. storage temp., °C .......... .
Ma J(. mounting force, lb. leD
........ .
Max Thermal resistance doubled side cooled
JunctIon to case, 0 ClWatt ............ .
Case to sink, lubricated, °C/Watt ..... .
584'
-40 to +125
-40 to +150
800 to 1000
RaJC
Racs
Consult recommended mounting procedures.
Applies for zero or negative gate bias.
Per JEOEC RS-397, 5.2.2.1.
With recommended gate drive.
Higher dv/dt ratings available, consult factory.
Per JEOEC standard RS-397, 5.2.2.6.
For operation with antiparallel diode, consult factory.
~~
2
~
0
10,000
1000
100
10
Forward Current, ITM, Peak Amps
c:
o
Transient Thermal Impedance VS Time
'ilc:
..,.,
.14
~
.10
:l
~
.12
.,g
,/
~~
TJ
Tstg
T527__ 12
T527__13
/y
3
LI-
/
II"
:;ij ~
Symbol
eD
'E
.,
~
0
~
Thermal and Mechanical
CD
>
.>
Symbol
T527_..60
4
';(
Maximum Parameters
(T J
25"C)
I/J ,,~
VV
5
E
:l
E
Gate
CD
CD
CD
CD
.,
!'l
'"
'0
0
20VI/l.sec I.inear to 0.8 VORM,/L secCD0
Typ. turn-an-tIme, IT = 100A
VO= 100VeD, p.sec ............... .
Min. critical dv/dt. exponential to VORM '
TJ = 125°C, VI/Lsec®IJ) .......... __
Min. di/dt non-repetitive,
A//l.sec
0'0CD
........... _ .. .
eD
6
e
Max. turn-off time, IJ -50A,
Gate current to trigger at
7
~
.1135
.02
.09
EU
.. 0
~ ; .06
L
1--
E~
.!!! ~ .04
~ cD
~
.02
a
U
0
01-0.00 ~
.001
.01
Time, t, sec.
.1
10
100
Case Temperature vs, FOtWard Current - Double Sided Cooling
1~rrn~~~~~Tr:nT~"~'~'~'~~0~~~~
Average Forward Current,IT(AV),Amperes
1000
~
x
~750
~
0..:
,~
~500
'(jj
is
~~
~
250
E
::J
E
~
Average Forward Current. IT(AV). Amperes
1000
P
~
i
x
~ 750
~
~
~
120 ~~Iib~1+·"':"""~·L
100
80
~
F-!:+~~"""':~~"';;:{-·
0..:
R-~"+';:::':"~'h-,l\,,''-.
~
~
60
p.-.:.::+:::...j•• ::......:.. ,-'\
j ~ I--db;:;C-!'·.~·+":'':::+
~~~~~~~-~~~
o
50
100
Average Forward Current, iT(AV). Amperes
150
200
50
100
150
200
250
300
Average Forward Current. ITfAV). Amperes
585
Power loss vs. Forward Current
600~
¥l
~ 5OO1::l:~+-~
~
~400Fi4*m~
~
c:
:1
300
.!!l
0200
~
c.. 100
§
j
o
o
50
Average Forward Current,IT(AV). Amperes
o -==:.;u;_u_r:.....":l;,;;;;:.-:.•.
o
w..:;...r..;;;;..~.c;;;;..;-.:L;..;;..;~""'_
100
200
Average Forward Current.IT(AV). Amperes
Average Forward Current. IT(AV). Amperes
686
Inches
Millimeters
Min.
Max.
Max.
Min.
1.610
1.650
40.89
41.91
cl>D
cl>D,
.745
.755
18.92
19.18
1.420
1.460
cl>D,
37.08
36.07
H
.500
.560
12.70
14.22
.135
.145
3.43
3.68
cl>J
J,
.072
.082
2.08
1.83
L
7.75
8.50
196.85 215.90
N
.030
.76
Creep Distance-.34 in. min. (8.64 mm).
Strike Distance-.52 in. min. (13.21 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-2.3 oz. (66 g).
Symbol
1. Dimension "H" is clamped dimension.
T62 Outline
Features:
•
•
•
•
•
•
•
Note: High frequency sine and
square wave data available. consult factory.
Applications:
Center fired dilnamic gate
High di/dt with soft gate control
High frequency operation
Sinusoidal waveform operation to 20 KHz
Rectangular waveform operation to 20 KHz
Low dynamic forward voltage drop
Low switching losses at high frequency
• Inverters for
Ups
Induction Heating
Motor Control
• Choppers
• Crowbars
Ordering Information
Code
Code
T-827
100
200
300
400
500
600
700
800
900
1000
1100
1200
01
02
03
04
06
08
07
08
09
10
11
I T(av)
(A)
Code
150
200
250
16
2G
26
tq
(usee)
10
15
20
30
40
50
~.
8
7
I GT
(ma)
150
e
I
4
3
12
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
=
Type T627 rated at 200 A average with VORM
1000V.
IGT = 150 rna. tq = 20 psec max. and flex leads-order as:
587
Voltage
Blocking Stata Maximums
CD
ITJ
_0
125°CI
Repetitive peak forward blocking voltage • V
Repetitive peak reverse voltage • V ......... .
Non-repetitive transient peak reverse voltage.
t:S 5.0 msec. V ...................... .
Symbol
VORM
Forward leakage current. mA peak ...•......
Reverse leakage current. mA peak .......... .
VRRM
100
100
200
200
300
300
400
400
500
500
600
600
700
700
800
800
900
900
1000 1100 1200
1000 1100 1200
VRSM
200
300
400
500
600
700
800
900
1000 1100 1200 1300
IORM
IRRM
~
~
+
>
25
25
Current
Conducting State Maximums
(TJ = 125°C)
T627 __ 25
Symbol
T627 __ 15
T627 __ 20
IT(rms)
235
150
3500
315
200
4000
400
250
4500
50.000
65.000
84.000
2.35
200
2.1
250
1.85
300
RMS forward current. A ........ .
Ave. forward current. A ........ .
One-half cycle surge current®. A ..
12t for fusing (for times> 8.3 msl
A2 sec.
Fe, ,.ard voltage drop at 'TM = 625A
and TJ = 25°C. V ......... .
V TM
Min. repetitive di/dt@. A/J.lsecQ)@®
di/dt
' nav )
I TSM
Switching
(TJ = 25°C)
Max. turn-off time. IT = 150A.
TJ = 125°C. diR/dt =12.50
A7J.1sec. reapplied dv/dt ==
20V/J.lsec ® linear to 0.8 VORM,!, sec.
Typ. turn-on-time. IT = 100A
VO= 100V@. J.lsec . " ............ .
Min. critical dv/dt. exponential to VORM'
TJ = 125°C. V/J.lsec®® ........... .
Min.di/dt A/J.lsec0®® ..........•.
Symbol
Maximum Forward Voltage VS Forward Current
tq
10 to 50
l!l
"0
7
i
6
t
5
>
ton
3.5
dv/dt
300
di/dt
800
>
CD
0>
l!!
Gate
Maximum Parameters
(TJ = 25°C)
Gate current to trigger at Vo = 12V. mA
Gate voltage to trigger at Vo = 12V. V ...
Non-triggering gate voltage. TJ = 125°C.
and rated VORM ' V ............... .
Peak forward gate current. A .......... .
Peak reverse gate voltage. V .......... .
Peak gate power. Watts .............. .
Average gate power. Watts ........... .
'''1111
T621~20
IGT
V GT
VGOM
IGTM
V GRM
PGM
PG(av)
"E
150
3
1~dt!..25 -
0.15
4
5
16
3
ReJC
R aCS
~
2
~
10
100
Forward Current. ITM. Peak Amperes
-40 to +125
-40 to +150
1000 to 1400
.08
.02
Q) Consult recommended mounting procedures:
CD Applies for zero or negative gate bias.
eD Per JEOEC RS-397. 5.2.2.1.
® With'recommended gate drive.
® Higher dv/dt ratings available, consult factory.
® Par JEOEC standard RS-397. 5.2.2.6.
For operation with antiparallel diode. consult factory.
o
Time. t. Seconds
S88
~ ~lI
V
.~
Transient Thermal Impedance vs. Time
.10,.....,...,....M'TT!'I'....,...
Symbol
TJ
Tstg
./
3
'"
.....~
E
"E
1/11
IIIII
4
"0
>
Symbol
. Thermal and Mechanical
Min., Max. oper. junction temp., °C ..... .
Min .. Max. storage temp .. °C .......... .
Min .• Max. Mounting Force. Ib.0 ... .
Max. thermal resistance. Double side cO"led
Junction to case. °C/Watt ........ .
Case to sink. lubricated. °C/Watt ..... .
IIIII
~JH:15
1000
10.000
Symbol
rj>D
rj>D,
rj>D,
H
q,J
J,
L
N
Inches
Min.
2.250
1.333
2.030
1.020
.135
.075
7.75
.040
Max.
2.290
1.343
2.090
1.060
.145
.090
8.50
Millimeters
Min.
Max.
57.15 58.17
33.86 34.11
51.56 53.09
25.91
26.92
3.43
3.68
1.91
2.29
196.85 215.90
1.02
Creep Distance-1.00 in. min. (25.40 mm).
Strike Distance-1.02 in. min. (25.91 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plale.
Approx. Weight-8 oz: (227 g).
1. Dimension "H" is a clamped dimension.
T72 Outline
Features:
• Midway, di/namic Gate structure
• Hard Commutation Turn-Off
• Forward Blocking Capabilities
to 1200 Volts
• 'Low Switching Losses at High
Frequency
• Soft Commutation (Feedback Diode)
Testing Available
Applications:
• Induction Heating
• Transportation
• Inverters
Note: High frequency sine and
square wave data available, consult factory.
Ordering Information
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
Type T72H rated at 450 A average with VORM = 1000V,
I GT = 150 ma, 19 = 30 !lsec max. and flex leads -order as:
S89
Voltage 0
BlocklngStateMaximums (TJ
=
125°CI
Symbol
VORM
Repetitive peak forward blocking voltage • V
Repetitive peak reverse voltage. V ......... .
Non-repetitive transient peak reverse voltage.
t ~ 5.0 msec. V _........................ _•
Forward leakage current. mA peak ......... .
Reverse leakage current. mA peak .......... .
VRRM
100
100
200
200
300
300
400
400
500
500
600
600
VRSM
200
300
400
500
600
700
IORM
'RRM
~
~
1000 1100 1200
1000 1100 1200
700
700
800
800
900
900
800
900
1000 1100 1200 1300
+
35
35
Current
Conducting State Maximums
ITJ = 125°C)
T72H_..35
Symbol
RMS forward current. A ........ .
Ave. forward current. A ........ .
One-half cycle surge current®. A ..
3 cycle surge current®. A ..... .
10 cycle surge current®. A .... .
I't for fusing (for times> 8.3 ms)
A2 sec.
Forward voltage drop at 11M = 3000A
and TJ = 25°C. V .......... .
Min. repetitive di/dtCD<D<D A/p.sec
ITlrms)
I Tlav )
I TSM
ITSM
I TSM
I't •
T72H_.A5
400
250
6000
550
350
7000
700
450
7500
4320
3720
5040
4340
5300
4650
150.000
205.000
234.000
3.80
3.45
500
3.10
600
VTM
di/dt
400
Switching
ITJ
=
25°C)
=
delay time.
":D = .8 VDRM0. J/sec
7
=
Max. turn-off time. IT 1000A. TJ 125°C
tp = 100 /Jsec. dirRIdt =~ 50
A//Jsec .• reapplied dv/dt =
50 V//Jsec. linear to 0.8 VDRM. /Jsec.
CD CD
TVp.
Maximum Forward Voltage VS. Forward Current
Symbol
ITM
6 l--f--i+++tHl--t--I-+-Htttlif-+--i +tfitll-+-i+HtlHI
tq
= 1000A
T72H-25
25 to 50
5
.5
td
T72H-45
Min. critical dv/dt exponential
VDRM. TJ = 125°C. V/jlsec 0(D
to
4
.8
Min. dild!. non-repetitive. A/J/sec CD<D <D
dv/dt
300
di/dt
1200
3
Gate
2
Maximum Parameters
ITJ
=
Symbol
25°C)
=
Gate current to trigger at Vo
12V. mA
Gate voltage to trigger at Vo = 12V. V ...
Non-triggering gate voltage. TJ = 125·C.
and rated VORM • V ............... .
Peak forward gate current. A .......... .
Peak reverse gate voltage. V .......... .
Peak gate power. Watts .............. .
Average gate power. Watts ........... .
'GT
VGT
VGOM
I GTM
V GRM
PGM
PGlav)
150
3
.25
Forward Current. ITM. Peak Amperes
4
5
16
3
Transient Thermal Impedance VS. Time
::l
Thermal and Mechanical
u
Symbol
Min .• Max. oper. junction temp .• ·C ..... .
Min .• Max. storage temp .• °C .......... .
Max. mounting force. lb. . •• CD .......•.
Thermal resistance CD. doubleside cooling. junction to case.
TJ
Tstg
°C/Watt
Case to sink. lubricated. ·C/Walt ..... .
CD Consult recommended mounting procedures.
o Applies for zero or negative gate bias.
Per JEOEC RS-397. 5.2.2.1.
<D With recommended gata drive.
CD Higher dv/dt ratings available. consult factory.
<D Per JEOEC standard RS-397. 5.2.2.6.
CD For operation with antiparallel diode. consult factory.
S90
""""""""'''''''''''''''''TI'
.06
.,;
o
"T'TTr."I......-r-TT"nTlrD
-40 to +125
-40 to +150
2000 to 2400
·21 .04f.~~~~~~!
.,
:l
~
c:
.06
.02
!~'021111111
E--
a;5-J
.t:":'
I- ::
~:
c
N
0.0001
.001
lime. t. Seconds
.01.1
10
100 .
Inches
Millimeters
Min.
Max.
Min.
Max.
2.250 2.290
</>0
57.15
58.17
</>0,
1.333 1.343
33.86
34.11
2.030 2.090
</>0.
51.56
53.09
H
1.020 1.060
25.91
26.92
¢J
.135
.145
3.43
3.68
J,
.075
.090
1.91
2.29
L
7.75
8.50
196.85 215.90
N
.040
1.02
Creep Distance-1.00 in. min. (25.40 mm).
Strike Distance-1.02 in. min. (25.91 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-a oz. (227 g).
1. Dimension "H" is a clamped dimension.
Symbol
D2 Outline
Features:
• Center fired di/namic gate
• High di/dt with soft gate control
• High frequency operation
• Sinusoidal waveform operation to 20KHz
• Rectangular waveform operation to 20KHz
• Low dynamic forward voltage drop
• Low switching losses at high frequency
• Lifetime Guarantee
Note: High frquency sine and
square wave data available.
consult factory.
Applications:
• Inverters
UPS
Induction heating
AC motor drives
• Cycloconverters
• Choppers
• Crowbars
Ordering Information
Example
Obtain optimum device performance for your application by
selecting proper Order Code.
Type T727 rated at 450 A average wjth VDRM = 1000V.
IGT
150 ma.tg 30 J.lsec max. and flex leads-order as:
=
=
891
Voltage
®
Blocking State Maximums ITJ
= 125°C)
Symbol
VORM
Repetitive peak forward blocking voltage ,V
Repetitive peak reverse voltage ,V ......... .
Non~repetitive
VRRM
transient peak reverse voltage.
t::; 5.0 msec, V
VRSM
...................... .
type designation vs. voltage
availability
Forward leakage current, mA peak ......... .
Reverse leakage current, mA peak .......... .
100
100
200
200
200
~
300
300
400
400
500
500
600
600
700
700
800
800
900
900
300
400
500
600
T727_..4D-T727_..4B
700
800
900
1000 1100 1200 1300
IORM
IRRM
1000 1100 1200
1000 1100 1200
T727_-36--T727_..45
30
30
.
Current
Conducting State Maximums
(TJ = 125°C)
Symbol
T727--40
RMS forward current, A ........ .
Ave. forward current, A ........ .
One-half cycle surge current@, A ..
IT(rms)
I Ttav )
I TSM
625
400
750
475
7000
205,000
2.50
300
8000
265,000
2.30
I2t for fusing (for times> 8.3 ms)
A2 sec.
Forward voltage drop at I TM == 3000A
and TJ = 25°C, V .......... .
Min. repetitive di/dt A/!,sec
(i)<D<D
I't
V TM
di/dt
T727--48
400
T727--35 T727--45
700
450
550
350
7000
205,000
2.90
300
8000
265,000
2.60
400
Switching
(TJ == 25°C)
Max. turn-off time, IT == 400A
TJ == 125°C, diR/dt = 25
A7!,sec, reapplied dv I dt =
CD CD
20V/!'sec linear to 0.8 VORM,I' sec ...
Typ. turn-an-time, IT = l000A
VO==3OOV®,!,sec ............... .
Min. critical dv/dl. exponential to VORM '
TJ == 125°C, V/!,sec®CD ........... .
Min. di/dt non-repetitive,
A/!,sec 0<D®' . " ..•...
Maximum Forward Voltage Orop VS Forward Current
Symbol
l!l
'0
tq
IOta 60
>
3.0
>
ton
Gate current to trigger at Vo == 12V, mA
Gate voltage to trigger at Vo == 1'2V, V ...
Non-triggering gate voltage, TJ == 125°C,
and rated VORM ' V ............... .
Peak forward gate current, A .......... .
Peak reverse gate voltage, V ..........•
Peak gate power, Watts .............. .
Average gate power, Watts ........... .
~
>-
6
ci.
5
0
dv/dt
300
0
di/dt
800
01
Q)
!!l
ill~72L1J
~127'li
T727• ..40
4
T727• ..48
'0
>
Gate
Maximum Parameters
(T J == 25°C)
7
'E'III
~0
Symbol
IGT
VGT
VGOM
I GTM
VGRM
PGM
PG(av)
150
3
u..
0.15
4
5
16
3
'xIII
3
~ ~~
2
p
E
E
"
~
10
100
1,000
Forward Current, ITM, Peak Amperes
I
Thermal and Mechanical
Symbol
Min" Max. oper: junction temp., °C ..... .
Min" Max. storage temp., °C .......... .
Max. mounting torque, in lb. CD ........ .
Max. Thermal resistance (i) Double side cooled
Junction to case, °C/Watt ... .
Case to sink, lubricated, °C/Watt ..... .
TJ
Tstg
TranSient Thermal Impedance VS. Time
-40 to +125
-40 to +150
2000 to 2400
,;
'"
III
U
RSJC
Recs
.06
.02
0
l-
e
0
(j) Consult recommended mounting procedures.
"ne
..,"
.04
<D
<D
<D
<D
<D
Applies for zero or negative gate bias.
Per JEDEC RS-397, 5.2.2.1.
With recommended gate drive.
Higher dv/dt ratings available, consult factory.
Per JEDEC standard RS-397, 5.2.2.6.
(j) For operati"n with antiparallel diode, consult factory.
lime, t, Seconds
892
10,000
100,000
Symbol
</>0
</>0,
</>0,
H
</>J
J,
Inches
Min.
Millimeters
Max.
Min.
Max.
2.850 2.900 72.39 73.66
1.845 1.855 46.86 47.12
2.560 2.640 65.02 67.06
1.020 1.060 25.91
26.92
.135
.145
3.43
3.68
.075
.090
1.91
2.29
11.50 12.50 292.10 317.50
.050
1.27
L
N
Creep Distance-l.00 in. min. (25.40 mm).
Strike Distance-l.02 in. min. (25.91 mm).
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-2 lb. (908 g).
1. Dimension "H" is a clamped dimension.
T9G Outline
Features:
• Midway, di/namic Gate Structure
• Hard Commutation Turn-Off
• Forward Blocking Capabilities to 2200V
• Low Switching Losses at High
Frequency
• Soft Commutation (Feedback Diode)
Testing Available
Applications:
• Induction Heating
• Transportation
• Inverters
Note: High frequency Sine and
Square wave data available, consu It factory.
Ordering Information
Example
Obtain optimum device performance for your application by
selecting proper order code.
Type T9GH rated at 800A average with VORM = 1aOOv
tq = 50 usee.
IGr = 300 rna, and standard 12 inch leads -- order as:
*for lower voltages consult factory
893
Voltage
(l)
Blocking State Maximums (TJ
= 125° C)
Repetitive peak forward blocking voltage ,V
Repetitive peak reverse voltage, V
Non-repetitive transient peak reverse voltage,
t ~ 5.0 msee, V ..... , .................... .
Symbol
VORM
VRRM
600
800
1000
1200
1400
1500
1600
1700
1800
1900
2000
2100
2200
600
800
1000
1200
1400
1500
1600
1700
1800
1900
2000
2100
2200
VRSM
700
900
1100
1300
1500
1600
1700
1800
1900
2000
2100
2200
2300
(TJ=25°C)
Symbol
Min
Gate current to trigger at Vo =12V, mA ..
Gate voltage to trigger at Vo = 12V, V ....
Non-triggering gate voltage. TJ=125°C,
and rated VORM, V ................
Non-triggering Gate Current at
VO=12V, rnA ....................
Peak forward gate current, A ..........
Peak reverse gate voltage, V ...........
Peak gate power, Watts ..............
Average gate power, Watts ............
IGT
VGT
Forward leakage current, rnA peak ......... .
Reverse leakage current, rnA peak .......... .
60
IORM
IRRM
60
Current
Conducting State Maximums
(TJ= 125°C)
.
RMS forward current, A ........ .
Ave. forward current, A .......••
One-half cycle surge current®, A ..
3 cycle surge current®, A ..... .
10 cycle surge current®, A .... .
I't for fusing (t=8.3 ms) A'sec
Max I't of package (t=8.3 ms). A'sec
Forward voltage drop at ITM = 3000A
and TJ = 25°C, V .......... .
Min. Repetitive di/dt
Gate
Symbol
IT(rms)
.1T(av)
I TSM
I TSM
I TSM
I't
J2 t
T9GH_.o9
1250
1400
800
900
10,000
7,500
6,200
416,000
90 x 10·
13,000
9,750
8,000
700,000
90 x 10·
2.95
2.50
300
400
A/usec. CD CD· CD di/dt
Switching
(Tj=25'C)
Symbol
Min
Typ
7
40
ton
dv/dt
./ ~
400
IL
500
1000
IH
300
800
II J
~/
~T9GH_.09
Min
Oper. junction temp., ·C ...............
Storage temp., ·C ....................
Mounting force, Ib.(i) ................ .
Thermal resistance
with double sided cooling(i)
Junction to case, ·C/Watt ...........
Case to sink, lubricated, ·C/Watt ........
TJ
Tstg
-40
-40
5000
125
150
5500
.006
.023
.0075
Typ
o
1000
Forward Current, ITM, Peak Amperes
10,000
Consult;recommended mounting procedures.
Applies for z'ero or negative gate bias.
Per JEDEC RS-397, 5.2.2.1.
With recommended gate drive.
.
Higher dv/dt ratings availabla, consult factory:
Per JEDEC standard RS-397, 5.2.2.6.
For operation with antiparallel diode, consult factory.
100,000
Transient Thermal Impedance VS. Time
Max
.03
~
Q)~•
u
.02
~
~~
~cD
E ::
-u
~ S
'/
.01
_..
,~.~
uC:
c~
~ ....
o
.0001
.001
Time, t, Seconds
S94
60
3
;;.;
100
Symbol
<D
<D
CD
<D
CD
<D
10
5
1000
Thermal and Mechanical
o
20
100
di/dt
ROJC
RlIcS
3.0
.15
IGNT
IGTM
VGRM
PGM
P9(av)
"
3.0
1.5
td
300
VGOM
T~G~__bal
50V~VR~VRRM
tq
Max
200
1.5
Maximum Forward Voltage Orop Vs. forward Current
Max
HARD COMMUTATION: (l)
Turn-off time, IT = 500A,
TJ = 125'C, diR/dt = 25
A/llsec, reapplied dv/dt =
<D
20V/usee linear to 0.8 VDRM, }-Isec
Turn-On and Delay Time <D
ITM = l000A, tp = 450, Jlsec
VD = 11 OOV, Jlsec
Critical dv/dt exponl'"tial to VDRM
TJ = 125°C, V/Jlsec<D<D
di/ dt @ non-repetitive,
<D CDCD AllJsec
Latching Current
YO = 75V, mA
Holding Current
YO= 75V, mA
Typ
.01
.1
10
Symbol
Inches
Min.
A
E
</>T
Conforms to 00-5 Outline
Futures
•
•
•
•
•
di/dt of 2000 to 4000 A/us
compression Bonded Enespsulation
All Diffused Design
LowVrM
JEDEC 00-6 Package
Min.
.450
.080
.667
B
</>0
F
J
M
N
Millimeters
Max.
.667
.060
.422
.140
.687
.200
1.000
.375
.453
.175
z
.156
</>W
%-28 UNF-2A
Max•
11.43
2.30
16.94
16.94
1.52
10.72
3.56
17.45
5.08
25.40
9.53
11.51
4.45
3.96
Glass To Metal SealCreepage & Strike Distance =
.09 in. min. (2.46 mm)
(In accordance with NEMA standards.)
Finish-Nickel Plate.
Approx. Weight-.6 oz (18g)
NOTES:
1. Complete threads to extend to within
2Y.i threads of seating plane.
2. Angular orientation of this terminal is
undefined.
3. }4-28 UNF-2A. Maximum pitch diameter
of plated threads shall be basic pitch
diameter (.2268", 5.74 mm) Ref.
(Screw thread standards for federal
services 1957) Handbook H28 1957 P1.
Appllcetlonl:
• Radar Modulators
• Laser Pulsers
Application
The reverse blocking diode thyristor is a twoterminal, four-layer PNPN switch. In the forward direction, the device will initially block
voltage to its rated V DRM • However, upon
application of a trigger voltage, it switches to
a low impedance state where it remains until the anode current is reduced below the
holding current.
The T40R· employs an all diffused design and
is packaged in the standard 00-6 outline
case. The exclusive Westinghouse CBE (compression bonded encapsulation) construction
technique is employed to eliminate solder
joints and, thereby, failures caused by thermal
fatique.
Example
Obtain optimum device performance for your
application by selecting proper Order Code.
Type T40R rated at 22A average with V DRM
800V, and di/dt = 2000A/us - order as.
=
These deviess are ideal for pulse work because
of their high di/dt and fast switching capabilities. Radar modulators and laser pulsers
are two prime examples of the kinds of applications particularly suited to the Westinghouse L-_'--_ _..L.._ _..L.._ _..L.._ _......._ _...._ _......_ _ _ _ _---'_ _ _ _......_ _- - I
T4OR.
S95
Voltage
Blocking State
Symbol
Repetitive Peak Forward Blocking Voltaga
V ORM
Repetitive Peak Forward Leakage Current
at V ORM
Holding Current
TJ ('C)
25 to 125
Max.
IH
Symbol
TJ ('C)
IT{rmo)
IT{oY)
ITIM
I"t
125
125
125
125
Units
V
V
V
600
800
1000
25
125
25
IORM
Typ.
Min.
300
3
15
500
5
100
1'8
ma
ma
Current
CDnducting Stete
RMS Forward Current at Tc .. 4O'C CD
Average Forward Current at Tc
4O'C CD
Ofl1l-half Cycle Surge Current at T c .. 4O'C
I~t For Fusing (For Times ~ 8.3 mil
Forward Voltage Drop
at ITM = 1oo0A. Pul.. Width .. 3001'8.
Duty Cycle = 2%
=
CD
VTM
Typ.
Min.
Max.
35
22
300
370
25
Unit.
A
A
A
A"sac.
V
4
6
Typ.
Max.
Units
20
40
A/I'8
A/I'8
A/I'8
V
1050
1500
Switching
Symbol
Rate of Rise of Current. Sine Wave CD
at Pulse Width/2
0.51'8 to 800A
at Pul.. Width/2 = 0.51'8 to 1200A
at Pulse Width/2 .. 0.251'8 to 800A
Dynamic Forward Voltage Drop
at ITM = 1000A Sine Wave.
Pulse Width/2 .. 41'8. Duty Cycle ...25%
Pulse Trigger Voltage
at dv/dt ii; 5000 V/I'8. Pulaa Width iI; 200 ns
Pulse Trigger Current
at VT (Circuit dependant value)
Trigger Response Time
at VT• IT for 90% to 10% of V ORM
Turn-Off Time
at ITM = 300A Sine Wave. Pulse Width .. 81'8
dv/dt = 20 V/I'8 to 800V
Rate of Change of Voltege
Exponential to VORM
=
TJ ('C)
Min.
di/dt
di/dt
di/dt
VTM (OYN)
25
25
25
25
2000
3000
4000
VT
25 to 125
VORM
+ 50
IT
25 to 125
t ••
25
100
10
25
50
dv/dt
100
25
100
10
A
200
ns
I's
100
200
20
V
1'8
V/I'8
V/I'8
400
100
Thermal and Mechanical
Symbol
Operating Junction Temperature
Storage Temp_ure
Mounting Torque CD
Thermal Resiatance, CD
Junction to Case
Ca.. to Sink, Lubricated
()) At 60 Hertz.
CD Consult recommended mounting procedures.
896
TJ
T....
RaJc
Reel
Min.
-40
-40
Typ.
Max.
Units
125
150
30
'C
'C
in.lb.
1.25
.25
'C/W
'C/W
Symbol
</>0
</>0,
</>0,
H
</>J
J,
Inches
Millimeters
Min.
Max.
Min.
Max.
1.6iO
.745
1.420
1.650
.755
1.460
40.89
18.92
36.07
41.91
19.18
37.08
.500
.135
.072
.560
.145
.082
12.70
3.43
1.83
,76
14.22
3.68
2.08
N
.030
Creep Dlstance-.49 In, min. (12.60 mm).
Stnke Dlstance-.52 In. min. (13.21 mm).
(In accordance with NEMA standards).
Finish-Nickel Plate.
Approx. Welght-2.3 oz (66g).
1. Dimension "H" IS clamped dimension.
T62R Outline
Features:
•
•
•
•
di/dt of 2000 to 3000 A/}Jsec
All diffused Design
Low VTM
High peak switching currents
Application
The reverse blocking diode thyristor is a twoterminal, four-layer PNPN switch. In the forward direction, the device will initially block
voltage to its rated V DRM' However, upon
application of a trigger voltage, it switches to
a low impedance state where it remains until the anode current is reduced below the
holding current.
These devices are ideal for pulse work because
of their high di/dt and fast switching capabilities. Radar modulators and laser pulsers
are two prime examples of the kinds of applications particularly suited to the Westinghouse
T62R.
Ordering Information
"Average current rating assigned for ordering information only.
Example
Obtain optimum device performance for your
applicetion by selecting proper Order Code.
Type T62R rated at 125 A average, with VDRM = 800V, order as:
897
Blocking State
Repetitive Peak Forward Blocking Voltage
Symbol
VDRM
T~
(OC)
Min.
26 to 126
Typ.
Max.
UnlW
V
V
V
600
600
1000
Repetitive Peak Reverse Blocking Voltage
Repetitive Peak Forward Leakage Current
at VORM
Repetitive Peak Reverse Leakage Current
VRRM
Holding Current
VRRM
IORM
IRRM
IH
26 to 176
26
126
26
126
26
100
3
V
ma
ma
ma
ma
ma
6
10
10
16
16
7
16
16
26
100
Current
Conducting Stat.
Peak Forward Pulse Current CD
RMS Forward Current
One·half Cycle Surge Current (For Times:s8.3 ms)
I't For Fusing (For Times:s8.3 ms)
I't of package (For Times = 8.3 ms)
Symbol
ITM
IT{RMS)
ITSM
12t
I"t
T~
Max.
("C)
126
125
126
125
126
2600
200
3000
37,500
20 x 10'
UnlW
A
A
A
A"sec.
A2sec.
Switching
Symbol
Current Rate of Rise
Code 2, 2000 A @ 1 psec
Code 3, 2000 A @ .667 JAsec
Energy per Pulse
at ITM = 2500A Square Wave
Pulse Width = 3 ps
Pulse Trigger Voltage
at dv/dt..tt 5000 V/JJs, Pulse Width
~. 200 ns
Pulse Trigger Currant
at VT (Circuit dependent value)
Peak Dynamic Forward Voltage Drop
at ITM = 2500A
Turn-Off Time
at ITM = 2500A Square Wave
Pulse Width = 3.os, dv/dt = 20 VII's
to 600V
Critical Rate of Change of Voltage
Exponential to VORM
T~
(OC)
Min.
Typ.
Max,
UnlW
.30
.19
W.S/Pulse
W.S.lPulse
AlPS
AlPS
di/dt
di/dt
W.S.I
Pulse
25
25
126
25
2000
3000
VT
25 to 125
VDRM + 150
IT
25 to 125
70
VTM IOYN)
25
8
10
V
tq
25
100
50
100
250
200
ps
ps
dv/dt
125
20
100
1050
1600
V
A
VIps
Thermal and Mechanical
Symbol
Operating Junction Temperature
Storage Temperature
Mounting ForceCD
Thermal Resistance, double-sided cooling, CD
Junction to Case
Case to Sink, Lubricated
1)
Tstg.
598
-40
-40
1000
R9JC
R9CS
CD This value is for·a 3 JJsec, 400 Hz pulse, 2500 A peak. Consult factory for other pulse ratings.
CD Consult recommended mounting procedures.
Min.
MIx.
UnlW
125
150
1400
°C
°C
lb.
.095
.02
°C/W
°C/W
INTRODUCTION
@offers a wide range of power transistors designed to match the equipment manufacturer's technical and
economic requirements. The designer
can choose from various processes,
ratings, and package styles to optimize
an application: general purpose singlediffused types for economical ruggedness; high S.O.A. alloy types for the
ultimate in reliability; and high power,
fast switching tripled-diffused types for
"state-of-the-art" voltage and power
capability.
For linear applications (amplifiers and
regulators), general purpose transistors
in TO-66 and TO-3 packages offer the
most "watts per dollar" value. Excellent
Safe Operating Area (SOA) make these
types ideal for inductive loads such as
DC motor controls or 60 and 400 hertz
inverters.
High S.O.A. alloy process transistors
from@have been used in numerous
critical aerospace and defense programs. Alloy construction, hard solder /
moly bondi ng, and hermetic,copper stud,
cases have generated a record of
superb performance and reliability. For
inductive load switching, the forward
and reverse bias Safe Operating Areas
(SOA) of these devices make alloy the
clear choice over other processes.
The newest addition to the@transistor
line is the super-powered family of
triple-diffused switching types. Up to
500 volts of sustaining voltage capability is coupled with a gain rating at 50
amperes; but brute power is not the only
feature of the D60Tfamily- switching
times under a microsecond and Compression Bonded Encapsulation (CBE)
open a new area of application for
designers of high speed inverters,
switching regulators, AC motor drives
and VLF radio transmitters.
Complete test facilities are available for
matching, special selection, or high
reliability screening.@offers a Lifetime
Guarantee on all transistors bearing
this symbol+. Specify Westinghouse
Power Transistors.
TRANSISTOR PRODUCT INDEX
Type Number
Page
151
152
153
154
163
164
T15
T15
T17
T17
T23
T23
2Nl 015, A,B,C,D
2N1 016, A,B,C,D
T19
T19
2N2226-29
2N2230-33
2N2757-61
2N2763-66
2N2769-72
2N2775-78
T25
T25
T29
T29
T29
T29
2N3054
2N3055
2N3429-32
2N3441
2N3442
2N3470-73
2N3474-77
2N3771
2N3772
2N3773
T5
T7
T21
T5
T7
T27
T27
Ttl
Tt1
Tt1
2N6254
2N6262
T9
T9
D60T
D62T
T33
T33
T1
GENERAL PURPOSE
NPN POWER TRANSISTORS
.5 -
15 Amperes (Gain Rated)
C'l
I'
I'
0
Z
~u:
C'l
'z
150
140
N
w 120
0
c[ 100
or
III
N
~
0
or
>
80.
...0
60
u:
(,)
III
III
III
C'l
C'l
N
N
CD
Z
Z
•
4
5
N
0
0
Z
w
::j
0
40i
(,)
20'
.5
.5
3
3
10
8
15
GAIN RATED COLLECTOR CURRENT
•
DIAMOND PACKAGE TO-3/TO-66
HIGH S.O.A. &. HIGH POWER SWITCHING
NPN POWER TRANSISTORS
460
o
z
~u:
1 .5 -
t
- -
200 I-
u: 100
e
ui
ui
...
III
C'l
III
N
III
or
III
cj
<i
<i
(;
0
Lfi
...
....D
,...
o
2
5
en
N
t:'?
N
N
N
N
N
cD
en
or
C'l
z
N
60 1-""-""1-""1--""1- Zt- ~t-"NI40
30
1.5 1.6' 1.5 1.5
T2
e
cj
~
::j
[t
* * * *
I--
~
o
(,)
**
260
240
w
~ 160
~
w
50 Amperes (Gain Rated)
5
CD
or
CD
5
5
C'l
'-t-.-
z
C'l
I'
6
I'
or
C'l
N
z
N
10
10
C'l
C'l
I'
I'
6C'l
.t
I'
z
N
C'l
z
N
10
10
N
N
or
...
CD
N
co
I'
CD
I'
I'
I'
I'
til
z
N
z
10
16
I'
N
z
GAIN RATED COLLECTOR CURRENT
STUD MOUNT
CD
CD
I'
r:.
III
* DARLINGTON ** HIGH POWER SWITCHING
M
N
en
CD
N
N
20
.;.,
N
Z
N
26 50
GENERAL PURPOSE NPN POWER TRANSISTORS
4 - 30 Amperes
JEDECTYPE
2N30154
2N8282
2N8254
2N3772
PEAK CURRENT
4
15
30
30
PEAK CURRENT
GAIN RATED CURRENT
4
.5
15
3
15
5
30
10
VOLTAGE 40
80
80
140
150
.2N3054
1 MHz
1 MHz
PACKAGE TYPE
TO-86
TO-3
TO-3
TO-3
PAGE NUM8ER
T5
T9
T9
TIl
HIGH S.O.A. NPN POWER TRANSISTORS
6 - 20 Amperes
MT-52
153
154
2Nl016.
A.B.C.D
163
7.5
1.6
7.5
1.5
7.5
5
20
5
153-04
153-05
153-06
163-07
153-08
153-09
153-10
153-12
153-14
154-04
154-05
154-06
154-07
154-08
154-09
154-10
154-12
154-14
163-16
153-18
153-20
153-22
153-24
154-16
154-18
154-20
154-22
154-24
2Nl016D
163-16
163-18
163-20
CUTOFF FREQUENCY
.5 MHz
.5 MHz
.5 MHz
.5 MHz
PACKAGE TYPE
MT-52
MT-52
TO-82
MT-33
PAGE NUMBER
T17
T17
T19
T23
90
100
120
140
150
180
180
200
220
240
250
~
TO-82
2N6262
1 MHz
VOLTAGE 30
40
50
80
70
80
TO-3
TO-66
2N3772
1 MHz
PEAK CURRENT
GAIN RATED CURRENT
"
2N6254
CUTOFF FREQUENCY
JEDEC,IITYPE
-l;at."
.
'f
MT-33
2Nl016
2Nl016A
2Nl016B
163-04
163-05
163-06
163-07
163-08
163-09
163-10
163-12
163-14
2Nl016C
T3
HIGH S.O.A. and HIGH POWER SWITCHING NPNPOWER TRANSISTORS
TO-82
10 - 200 Amperes
2N2775-78
MT-33
060
10
10
30
15
30
2N3474
2N3475
2N3476
2N3477
2N2763
2N2764
ZN2765
2N2766
2N2775
2N2776
2N2777
2N2778
.5MHz
.5 MHz
.5 MHz
MT-33
MT·33
MT·33
T27
T29
T29
"Darlington
**Aloo Available in Diac Package - D62T
T4
25
Symbol
A
q,b
q,D
e
e,
F
L
q,P
q
Inches
Min.
.250
.028
.470
.190
.095
.050
.360
.142
.950
R,
R,
S
.570
Max.
.340
.034
.500
.210
.105
.075
.152
.970
.350
.145
.590
Millimeters
Min.
Max.
6.35
8.64
.71
.86
11.94 12.70
4.83
5.33
2.67
2.41
1.91
1.27
9.14
3.61
3.86
24.64
24.13
8.89
3.68
14.48 14.99
Finish-Nickel Plate.
Approx. Weight-.25 oz. (7 g).
Features:
• No forward bias secondary breakdown
up to full voltage rating
• High reverse bias S.O.A. for inductive
loads
• Low thermal resistance
• Hermetically sealed
.. 25 watt dissipation
• 100% Power tested
• Lifetime Guarantee
Maximum Ratings and Characteristics
Tc = 25°C unless specified
*
*
*
*
*
*
Operating and storage temperature
Collector-emitter sustaining voltage
collector-base voltage
Emitter-base voltage
collector-emitter voltage V BE= -1.5V.
Continous collector current
* Continous base current
* Thermal resistance
* Power dissipation
Applications:
• Series and shunt regulators
• High-fidelity amplifiers
• Power switching circuits
• Solenoid drivers
Symbol
VCEO(sus)
VCBO
VEBO
V:CEV
IC
I
JEDEC 2N3054
-65 To 200
55
90
7
90
4
I
JEDEC 2N3441
-65 To 200
140
160
7
160
3
I
UnIts
I
°C
Volts
Volts
Volts
Volts
Amps
2
2
Amps
R9JC
6
7
°C/W
PT
25
25
Watts
Ie
*JEDC registered parameters.
T5
Electrical Specifications
T C = 26°C unles. otherwise specified
Test
Unit.
* D.C. Current Gain
h'FE
V CE = 4V I c = 0.5A
* Collector-Emitter Saturation Voltage
VCE,..t)
Ic = 0.5A B = O.05A
1.0
.1.0
V
* Base-Emitter Saturation Voltage
V,BE
Ic=0.5AV CE = 4.0V
1.7
1;7
V
* Emitter Cutoff Current
lEBO
ViEB = 7.0V
1.0
1.0
mA
150
25
100
25
Turn-On Time
ton
Ic = 0.5A
4
4
~sec
Storage Time
ts
Vlcc= 30V
2
2
~sec
Fall Time
~f
I B(on) = I B(off) = 0.05A
4
4
~sec
Output Capacitance
C~
VCB = 10V, f= lMH Z
375
375
pF
Gain-Bandwidth
FT.
VCE - 10V,I c = 0.2A
800
800
KHz
Beta Cutoff Frequency
f
Vce = 4V, I c =.lA
25
25
KHz
Second Breakdown Collector
Current
VCE = 60V
VCE = 120V
.42
ISIB
.21
A
hfe
4
~
T
'\
~,.
~,
100
V
,
,
~ 60
'0;
(!)40
E
~
'~.t:-J
C'
c..i
ci 0
i
10-2
Collector Current, IC, Amperes
,
.
I\.
1\
, "
I'\. 1\
1\
1\
~
t\.
i\
1\
I' \
I'l\'
I' 1\',
""
~
~
~
::l
U
I
10-3
i\
'\.
«
'~(I
<3 20
.2
Q.
E
'" ~d'.
~
~
~
~
1\ I\:(I~
./
'"
Safe Operating Area
I-- Single Non-repetitive Pulse
.4
Tc = 25°C
These forward Bias Curves
may bs used for all
.3 ~ Transistors except the
maximum collector-emitter
voltage cannot be exceeded
.
1\ I\.
I\.
\I'
1\
.5 ~Maximum Forward Bias
w
c;
"'I
.6
V I',
80
~~
..
~..
.7
..
IS'
0.,0'''
.8
(Vce) =4V
120
\
"~c>
.9
~
;
~.
'\~
~ ~"
-q, ~.. \
I I II
'\;\: \
""""".,.;'"'"'
2
140
··rl\
~~kl)L1~ ~\ '\~'\ \~ ~
2N3441
~
10
E
..!1
'0
u
.1
".
4
6
10
Collector Emitter Voltage, VCE, Volts
T6
2N344f
Min
Max
2N3054
Max
Min
Test Conditions
Symbol
50
100
140
Symbol
A
<l>b
Inches
Min.
.250
.038
Max.
.450
.043
.875
.440
.225
.135
<l>D
e
e,
F
L
<l>P
q
.420
.205
.312
.151
1.177
R,
R,
S
.655
.161
1.197
.525
.188
.675
Millimeters
Max.
Min.
11.43
1.09
22.23
11.18
5.72
3.43
6.35
.97
10.67
5.21
7.92
3.84
29.90
4.09
30.40
13.34
4.78
17.15
16.64
Finish-Nickel Plate.
Approx. Weight-.58 oz. (16.5 g).
Conforms to TO-3 Outline
F..tu....:
Application.
• High raverse bias S.O.A. for inductive
loads
• Low thermal resistance
• Hermetically sealed TO-3 type package
• 117 watt dissipation
• 100% Power tested
• Lifetime guarantee
•
•
•
•
Series and shunt regulators
High-fidelity amplifiers
Power switching circuits
Solenoid drivers
Voltage Matrix
Maximum Ratings and Characteristics
Tc=25°C unless specified
*
*
*
*
Syrnbol
Operating and storage temperature
Collector-emitter sustaining voltage
Vceo(sus)
I
2N3055
I
2N3442
I
Units
°C
-65TO 200
-65 TO 200
60
140
Volts
Collector-base voltage
VCBO
100
160
Volts
Emitter-base voltage
VeBO
7
7
Volts
Collector-emitter voltage VBe = -1.5V
Vcev
100
160
Ie
15
10
I.
7
7
* Continuous collector current
* Continuous base current
Linear power derating factor from Tc =25°C
* Thermal resistance
* Power dissipation
Power dissipation Tc = 100°C
R&Jc
Volts
Amperes
Amperes
W/oC
.67
.67
1.5
1.5
°CIW
Pr
115
117
Watts
Pr
67
67
Watts
• JEDEC Registered Parameters
T7
CHARACTERISTIC
SYMBOL
DC
DC
COLLECTOR EMlnER
OR BASE
VOLTAGE
VOLTAGE
V
V
VICE
*
Collector-Cutoff Curent:
With base open
ICED
With base-emitter junction
reverse-biased
*
Emitter-Cutoff Current
DC Forward Current
Transfer Ratio
-1.5
-1 5
I CEV
140
100
-1.6
-1.6
lEBO
Base-to-Emitter Voltage
Collector-to-Emitter
. Saturation Voltage
hFE
4
MIN.
MAX.
-
5
-
10
-
mA
30
30
-
6
6
-
--
20
70
0.4
0.3
4
3
V CE
MAX.
--
-
3
4
4
MIN.
0.7
3
4
<D
<D
IB
UNITS
2N3442
2N3066
7
V BE
*
UMITS
0
0
140
100
<D
IC
30
120
I CEV
= 150°C
At Tc;
VEB VBE
DC
CURRENT
A
mA
70
20
-
-
-
1.7
1.8
-
1.1
-1.0
-
V
V
(satj
Gain-Bandwidth Product
Forward-Bias Second Breakdown Collector Current
fT
10
IS/b
60
78
1
800
800
kHz
1.95
1.6
1
--
sec.
-
1
* JEDEC Registered Parameters
<D Pulse Test 300 microsecond, 2% Duty Cycle
16
Ie MAX. 2N3055
Ic ,Max. 2N3442
10
8
Typical Characteristics
"
6
~
~~
"
~'k"
" ~~"
x..<bS: 1\:-<-"
~.o 0.0 J:~
4
'1~ ~
O~
~a
~'"
~~
~ 80~-+~~~~~~~---+--~--4---~-+~
.2
~
~
1
60
S
c40t--+---+-+--+--t~~r-"IIt---*--t--+----t
~
8
~ 20~-t---t--+-+-~~-+---p~'~r-~~--~
j
g
~
....
~,
()
~
.!!
.4
ou
2N3055
2N 3442
.2
O:'--A.-........--...- __--'__....._ ........_+__.l.--~--..
o
0.5
.2
.4
.6
.8
Collector Current, ie, Amperes
5
0:1
t
T8
ot
2
468
10
Collector-Emitter Voltage, VCE, Volts
2
4
6 8 100
140
Symbol
A
c/lb
c/lD
e
et
F
L
c/lP
q
Inches
Min.
.250
.038
.420
.205
.312
.151
1.177
Rt
R,
Max.
.450
.043
.875
.440
.225
.135
.161
1.197
.525
.188
.675
Millimeters
Max.
Min.
6.35
.97
10.67
5.21
7.92
3.84
29.90
16.64
S
.655
Finish-Nickel Plate.
Approx. Weight-.58 oz. (16.5 g).
11.43
1.09
22.23
11.18
5.72
3.43
4.09
30.40
13.34
4.78
17.15
Conforms to TO-3 Outline
Features:
• No forward bias secondary breakdown to
80 Volts
• High reverse bias S.O.A. for inductive
loads
• Low thermal resistance
• Hermetically sealed TO-3 type package
• 150 watt dissipation
• 100% Power tested
• Lifetime Guarantee
Applications
• High Power Switching
• Amplifiers
• Servo Systems
• Regulators
• Modulators
Voltage Matrix
Maximum Ratings and Characteristics
Tc = 25°C unless specified
Symbol
* Operating and storage temperature
'sus,
I
2N6254
I
2N6262
I
UnIts
-65 To 200
-65 To 200
°C
Volts
* Collector-emitter sustaining voltage
V CEO
80
150
* Collector-base voltage
VCBO
100
170
Volts
* Emitter-base voltage
VEBO
7
7
Volts
* collector-emitter voltage V BE = - 1.5.
VCEV
90
170
Volts
* Continuous collector current
Ie
15
15
Ampere
* Continous base current
IB
7
7
Ampere
.855
.855
w/oc
* Linear power derating factor from T c = 25°C
* Thermal resistance
R9JC
1.17
1.17
°C/W
* Power dissipation
PT
150
150
Watts
PT
86
86
Watts
Power dissipation T c = 100°C
T9
• JEOEC Registered Parameters
ELECTRICAL CHARACTERIESTICS
SYMBOL
CHARACTER ISTIC
DC
EMITTER
OR BASE
VOLTAGE
V
DC
COLLECTOR
VOLTAGE
V
Vee
Vce
*
Collector-Cutoff
Current:
with base open
I ceo
With base-emitter junction
reverse-biased
IcEV
100
150
At Tc = 150°C
leEv
30
150
Emitter-Cutoff Current
leeo
*DC Forward Current
Vee
Ie
MIN.
MAX.
h
Forward-Bias Second Breakdown Collector Current
I Sib
2N6262
MIN.
MAX.
1.0
1.0
0.5
-1.5
-1.5
mA
0.1
-1.5
-1.5
5.0
2.0
0.5
2
2
3
5
2
5
2
3
4
Gain-Bandwidth Product
UNITS
2N6254
0
0
VCE(sat)
Saturation Voltage
*
Ic
LIMITS
7
hFe
•Colleetor-to-Emitter
Vee
60
110
Transfer Ratio
*Base-to-Emitter Voltage
. DC
CURRENT
A
20
70
70
20
1.5
1.0
5
0.5
3
0.3
1
80
100
mA
0.2
0·5
V
0.5
800
800
'kHz
1
1.92
1.5
s
1
JEDEC Registered Parameters.
10~----~-4~~--~-4--~~~~-P~~~
8!----+---+--+-+---~~-
6
~~:~~rP~~~~
~
., 41-----+--+----1-+-----1-Maximum Forward Bias
Safe Operating Area
Single Non-repetitive Pulse
Co
~
_u
E
~
2
Tc = 25°C
1
a8
These forward Bias Curves
may be used for all
---+---+--+--+-+~-"'t
Transistors except the·
maximum collector-emitter
voltage cannot be exceeded
S6
---+---+--+-+--+---'1
"
VCEO =80V
~4~--4---+-~~----~-----+-2N6254
U
I
I
21-----+--+--+--+---+---+-VCEO =150 V
2N6262
T10
2
4
68
2
0.1
Collector Current, Ie, Amperes
0.Q1
4
6 8
1
2.
468
10
2
4
6 8 10
2
Collector Emitter Voltage, VCE, Volts
Inches
Min .
.250
.038
Symbol
A
c/>b
c/>D
e
e,
F
L
c/>P
.420
.205
.312
.151
1.177
q
R,
'R,
S
.655
Millimeters
Max.
Min.
6.35
11.43
.97
1.09
22.23
11.18
10.67
5.72
5.21
3.43
7.92
4.09
3.84
29.90 30.40
13.34
4.78
16.64 17.15
Max.
.450
.043
.875
.440
.225
.135
.161
1.197
.525
.188
.675
Finish-Nickel Plate.
Approx. Weight-.58 Oz. (16.5 g).
Conforms to TO-3 Outline
Features:
• No forward bias secondary breakdown to
100 volts:o;C,
• High reverse bias S.O.A. for inductive
loads
• Low thermal resistance
• Hermetically sealed TO-3 type package
• 150 watt dissipation
• 100% Power tested
• Lifetime Guarantee
Applications:
• Series and shunt regulators
• High-fidelity amplifiers
• Power switching circuits
• Solenoid drivers
Maximum Ratings and Characteristics
Tc=25°C unless specified
Symbol
Collector-base voltage
2N3771
·.:.65 to 200'
Operating and storage temperature
Collector-emitter sustaining voltage
I
I
2N3772
I
2N3773
*-65 to 200
*-65 to 200
I
Units
°C
Vceollllsl
'40
. *60
*140
Volts
V eBo
'50
' *100
'160
Volts
V EIO
'5
*7
*7
Volts
V e,.
*50
*100
*160
Volts
Continuous collector current
Ie
*30
*20
Continuous base current
I,
*7.5
* .855
Emitter-base voltage
Collector-emitter voltage V"
=
-1.5V
Linear power derating factor from Tc
=
25°C
.
*.16
Amperes
'5
'4
Amperes
*.855
".855
wrC
I,
Thermal resistance
RSJC
1.17
1.17
1.17
°C/W
Power dissipation
Pr
*150
"150
*150
Watts
Pr
86
86
86
Watts
Power dissipation Tc
= 100'C
... Qt:loistered Parameters
T11
ELECTRICAL CHARACTERISTICS
(Tcl =26°C
LIMITS
TEST CONDITIONS
Characteriltic
Symbol
DC
Collector
Voltage
(V)
Vca
• DC Forward Current Transfer
Ratio
• Collector- Cutoff Current:
With emitter open
Second-Breakdown Energy
With base reverse biased &
L =40 mH, RBE =100
ElYb
u
cB
5
7
4
4
4
Min.
Max.
-5
-15
-
--
--
--
--
60
-
Units
5
-
15
--
60
2
mA
--2
mA
---
mA
--
mA
--
-
mA
--
-
-5
----
--
--
-
10
5
--
15
10
B
-
60
40
-----
-2.5
5
2.6
30
10
r---r---t-----t----+---±;111-.....
.
!!
500
500
--
2.2
V
-
-1.4
V
1.5
-
-
3.75
-1.5
-4.0
5
2.2
1.4
-
2
100
10
5
2.7
1.5
1
O.B
10
10
-
0
0
15.
10
B
.5t---t---::::;i;--+~~r-+----t
~
Max.
10
0
0
0
30
50
120
Maximum Transient --+----+----4---~
Thermal Impedance
(All types)
u 1.0
5
- --15 60-- --
Min.
10
10~--T-----'-----'------r-----r----~
5
Max.
2
VCE(..,)
ISlb
2N3773
5"
-1.5
-1.5
-1.5
Second-Breakdown Collector
Current
With base forward-biased &
1-s, non repetitive pulse
2N3772
2"
30
30
140
" Collector-to-Emitter Saturation
Voltage
Min.
I.
Rated
VCEO
ICEV
VBE
Ie
30
20
16
15
10
B
With base-emitter junction
reverse- biased & Tc =150° C
• Base-to-Emitter Voltage
°E
VSE
-1.5
-1.5
-1.5
lEBO
~
VEa
50
100
140
" Emitter- Cutoff Current
=
VeE
IcEV
ICEO
2N3771
(V)
With base-emitter junction
reverse-biased
With base open
DC
Current
(A)
4
4
4
4
4
4
HFE
ICBO
DC
Emitter
or 8 _
Voltage,
-
-
-
125
10
30
A
mJ
6
3
!
c
~
1
.§
1-• .
Maximum Forward Bias
Safe Operating Area
Single Non-repetitive Pulse
Tc = 25°C
These forward Bias Curves
may be used for all
Transistors except the
maximum collector-emitter
voltage ca nnot be exceeded
5i
~
01~---i----+---~---~---~--~
~.OO6~---i~---+---~---~---+---~
~
"
u
~
1;
.!!
·1
i.OO1~----~----~~--~~----~~----~-----'
101
10
1()-6
T12 ~
Time, t, Seconds
15
u
.1
1
3
5
Collector-Emitter Voltage, VeE, Volts
50
100 140
Typical Characteristics 2N3771
20
100
\\
\
60
~
"
1\
\ \
f\.'
40
Te =
c'
'"
...
- -----
VeE=4Volt.
~
t
,e=2S"C
~ .......
~
:::-o
15
10
S
V
I
1
j,/J
c.i
o
20
Collector Current. Ie. Amperes
char.ct.).tiC.
VeE = 4 Volts
l/ ~ /
o
-
6
'~
8
"-
5
Typical VCE(satl Versus Ie
le/I!I= 10
/
I
I
J
\
6
"-
./
---- -
./
..--
/'
4
I I 1.1 I I
"
""
~
P-
I
15
10
o
20
Collector Current. Ie. Amperes
3
Typical Switching Characteristics -
=
=
le/IBlonl
10
le/IBloffl
10
Vee
30 Volts
=
........
r-.....
./
.........
r-......
If
,,/
V
I,
V
./
................
........
Te-160'~
Tr =-6S·C ........ Te=~
2.5
1.5
.S
Base Emitter Voltage, VeE. Volts
10
~
Tc- 16O' C
/ IIV
-
il t
]
0
V 1/ V
Typical hFE Versus Ie
1: 20
ci
1/ v1
J
15
i/ e=~6S":/
./
-6S'~"",~
~
/'
J
Te=2S"C/
r-e= lS0'C
\~
80
w
J
,_w.¥_
.......
~
o
4
8
Collector Current, Ie. Amperes
~
--;><:"'12
..
........ r-....
16
..........
20
r--....
24
Typical Characteristics 2N3772
20r---~-'--r--'~----~---~
j
~
c'
~
!
20
r----+----4---~~~~----4---~~--_+--~
c.i
0L-__
o
~
__- L__
~
____4 -__J -___L__
5
Collector Current, Ie. Amperes
10
lS
~L_~
20
f-----i----i-
5
~
u
J
u
ci
~
10
"0
u
0
L..._.Jt!:.._.u~..L_.L..._L-_L-_..L_._J......._J......._J
o
.S
Base Emitter Voltage, VeE. Volts
1
l.S
2.5
T13
Typical Characteristics 2N3772
4
i"
8
Typical VCE(sat! Versus Ie
lellB = 10
-f-'--
Te=150~
~
I I I
\ ['... -..!f
6
I
i'-- ......
o
-
o
~ I--
---'---
5
10
o
15
Collector Current. Ie. Amperes
-
4
V
,-
..,...V
~ ~'...-I
I-CC
i
I
o
i--"""
~
f--
--
5'C
I I
-I............
V~~
I
Vee ,= 301"118
Te=~
~ ~P"'"Te=
le/lB(onl = 10
le/lBloffl = 10
.........
I
"- ,",'.....
4
,
.....
\
I
Typical Switching Characteristics _ _
-
6
10
12
Coliector CUrrent. Ie. Amperes
Typical Characteristics 2N3773
.-
80
20
I~
60
,
~e=25'C
Vce=4Volts
I~
..... Te=
~
5'C
"~ ~ ~
w
1-
'"
Te = 150'C"'-
i
u
u
o
o
4
Collector Current, Ie;:. Amperes
8
10
r-- -
fi?
~
.~ 20
ci
Te=-65'»
~
40
"/
15
Typical hFE Versus Ie
/'
/J'I
/ VI
u
j
;3
.... Te= 25'C
VCE = 4 Volts
i
----
~V
Characteristics
/
/~
' " Tc = 150'C
o
12
/1 I
o
•
1.5
1
2,5
2
Base Emitter Voltage, VaE. Volts
4 r---~----~----r----'-----r--'-'
Typical Switching Characteristics
6
1-"-11----'1--1--+ lellBlonl =
10
le/IB(oftl = 10
Vee = 30 Volts
Typical VCE(sat) Versus Ie
+_+_+_+_+_.,
lellB = 10
4
~u
I
g
t,
~
,;
E
i=
4
T14
Collector Current. Ie. Amperes
8
12
0
0
2
4
Collector Current. Ie. Amperes
6
8
10
12
Symbol
Inches
Millimeters
Min.
Max .
.500
.045
.140
.560
.060
.170
12.70
1.14
3.56
14.22
1.52
4.32
1.240
.730
1.280
.770
1.125
31.QO
18.54
32.51
19.56
28.58
e
e,
H
.360
.180
.014
.400
.200
.025
9.14
4.57
.36
10.16
5.08
.64
j
.140
.130
.550
.170
.190
.590
3.56
3.30
13.97
4.32
4.83
14.99
Q
.550
.810
.105
.590
.850
.140
13.97
20.57
2.67
14.99
21.59
3.56
S
<jlT
.480
.050
.520
.070
12.19
1.27
13.21
1.78
A
<jlB
'd
<jlD
<jlD,
<jlD,
K
l
N
q
Min.
Max.
<jlW
0/,0-24 UNF-2A
Finish-Nickel Plate.
Approx. Weight-.9 oz. (25 g).
1. Complete threads to extend to within
Conforms to MT-l Outline
Features:
• Gold Alloy Process
• No forward bias secondary breakdown to
150 volts
• High reverse bias S.O.A. for inductive loads
• Low thermal resistance with copper base
• 175 watt dissipation
• Protection from ther\11al fatigue with hard
solder and molybdenum construction
• 25 volt VEBO
• Low VCE(sat)
• Lifetime Guarantee
Maximum Ratings and Characteristics
Tc = 25°C unless specified
2% threads of seating plane.
2. Contour and angular orientation of
terminals is undefined.
3. Pitch diameter of ';',-24 UNF-2A
(coated) threads (ASA 81.1-1960).
Applications:
• High Power Switching
• Amplifiers
• Servo Systems
• Regulators
• Modulators
151 152 -
Low Gain Series
High Gain Series
Maximum Ratings
Voltage
Type
VCBO
VCEO
151-04
151-06
151-08
151-10
152-04
152-06
152-08
152-10
65
85
105
125
40
60
80
100
151-12
151-14
151-16
151-18
152-12
152-14
152-16
152-18
145
165
185
205
120
140
160
180
151-20
151-22
151-24
152-20
152-22
152-24
225
245
265
200
220
240
Symbol
Operating and storage temperature
Units
-65 to 150
°C
40 to 240
Volts
VCBO
VCEO (sus) + 25
Volts
Collector-emitter sustaining voltage
VCEO (sus)
Collector-base voltage
Emitter-base voltage
VEBO
25
Volts
Continuous collector current
Ie
6
Amps
Continuous base current
IB
3
Amps
1.4
W/oC
Linear power derating factor from Tc = 80°C
Thermal resistance
R9JC
.71
°C/W
Power dissipation
PT
175
Watts
Power dissipation TC = 100°C
PT
70
Watts
115
Electrical Characteristics
Symbol
Tc=25"C unless otherwise specified
TYpe 151
Min.
Max.
Collector cut-off current at VCEX=max. rating, VaE=-1.5 Vdc, mAdc .••..•.••.. ICEX
Collector cut-off current at VCEX=max. rating, Tc=150·C, VaE = -1.5 Vdc, mAdc •.• ICEX
Emitter cut-off current at VEa=25 Vdc, Ic=O, Tc=150·C, mAdc .•...•......... IEao
Turn-on time at Vcc=12 Vdc. Ic=1.5A. la=.4A, microseconds .••....••.•.•.•. ton
Turn-on time at Vcc=12 Vdc. Ic=1.5A, la=.25A, microseconds .•..•..•.....•. ton
Turn-off time at Vcc=12 Vdc, VaE= -25 Vdc, Ic=1.5A.la= -.4A, microseconds .. tot!
Turn-off time atVcc=12 Vdc, VaE= -25 Vdc, Ic=1.5A, la= -.25A, microseconds .. tot!
Collector-emitter saturation voltage at Ic = 1.5 Adc, I a = 0.25 Adc, Vdc .....•...•. VCE(sat)
Base-emitter voltage at Ic=1.5 Adc, la=0.25 Adc, Vdc •.•••...•.•.•.•..•.••. Va E(sat)
Dc current gain at VCE=4 Vdc. Ic.=1.5 Adc ................................ hFE
Collector-emitter sustaining voltage, base open, Ic = 200ma ......................... VCEO (sus)
Second breakdown Collector Current, VCE = 150V, Tc = 80a C
(one second test), forward bias, Amperes ...................... ; ................... IS/B
Second breakdown energy, base reverse biased, L =250 mh,
RB = 50 ohms, VBE = -6.0 volts, Ic = 2.0 Amperes, Joules ............................ ES/B
Gain-bandwidth, VCE = 10 Volts, Ic = 0.5 Amps, Kilohertz ............................. ft
Type 152
Min •.
Max.
10
20
20
10
20
20.
7
7.
.'.
14
14
1.25
2.0
1.30
2.5
11
See Voltage Table
18
.68
.68
.50
.50
250
250
Safe Operating Area
Typical Characteristics
10
50
"1\.:."-, """-
5
152
40
.;>~.
......
~~
~
~ \r\ ,~~'§.~
"
"\
30
\..
151
1.0
10
II00
1
2
Collector Current, Ie, Amperes
3
4
5
6
Typical dc gain versus collector current at Tc =25'C,
I(II
I'! 0.5 f~
IE
«
_si
I-
i
~,,,~~
"q,~-t;~ ......
4""~
'1 ", ~
Maximum Forward bias
Safe Operating Area
Singe Non-repetitive Pulse
TC = eooc
These forward Bias Curves
may be used for all
t ra nsistors except the
maximum collecor-emitter
voltage ca nnot be exceeded.
"-
\.
~
~::I
5
ow
~
U
~
4
:au
151 and 152
~
o. 1
::!l
10
3
50
Collector Voltage VCE, Volts
Tc = BO°C
2
00
.25
.5
.75
Bose Voltage, VBE,Volts
Typical base voltage vs. collctor current
Characteristics at Tc = 2.5°C
116
1.0
1.25
1.5
"-
"'- "
100
2.00
Millimeters
Min.
Max.
8.64 10.31
10.16 11.18
4.83
4.06
2.03
2.41
13.82 14.27
2.54
3.56
18.03
10.72 11.51
1.02
1.40
Inches
Min.
.340
.400
.160
.080
.544
.100
Symbol
Max.
.406
.440
.190
.095
.562
.140
.710
.422
.453
.040
.055
%-28 UNF-2A
A
.pO
e
e,
E
F
J
N
.pT
.pW
Finish-Nickel Plate.
Approx. Weight-.25 oz. (7 g).
1. Complete threads to extend to within
2'1.. threads of seating plane.
2. Contour and angular orientation of
terminals is undefined.
3. Pitch dia. of %-28 UNF-2A (coated)
threads (ASA B1.1-1960).
Conforms to MT-S2 Outline
Features:
• Gold Alloy Process
• No forward bias secondary breakdown to
150 volts
• High reverse bias S.O.A. for inductive loads
• Low thermal resistance with copper base
• 150 watt dissipation
• Protection from thermal fatigue with hard
solder and molybdenum construction
• 25 volt V ESO
• Low VeE (sat)
• Lifetime Guarantee
Maximum Ratings and Characteristics
Tc = 25° C unless specified
Maximum Ratings
Applications
• High Power SWitching
• Amplifiers
• Servo Systems
• Regulators
• Modulators
Voltage
Type
153 - Low Gain Series
154 - High Gain Series
Symbol
I
Type 153
154
-65 To 175 -
Operating and storage temperature
40 To 240
I
VCEO (BUB)
153-04
153-06
153-08
153-10
154-04
154-06
154-08
154-10
65
85
105
125
40
60
80
100
153-12
153-14
153-16
153-18
154-12
154-14
154-16
154-18
145
165
185
205
120
140
160
180
153-20
153-22
153-24
154-20
154-22
154-24
225
245
265
200
220
240
u or., 5
°C
Collector-emitter sustaining voltage
VCEO (sus)
Collector-base voltage
VCBO
VCEO (SU8' + 25
Volts
Emitter-base voltage
VEBO
25
Volts
Continuous collector current
Ie
7.5
Amps
Continuous base current
IB
3.
Amps
Linear power derating factor from Te = 25°C
VCBO
Volts
1.33
W/oC
.75
°C/W
Thermal resistance
ROJC
Power dissipation
Pr
200
Watts
Power dissipation Tc = 100°C
Pr
100
Watts
T17
Electrical Characteristics
Tc = 25° C unless otherwise specified
All Types
Test
Test Conditions
Symbol
D.C. Current Gain (153 types)
hFE
VCE =4;lc = 1.5A
15
D.C. Current Gain (154 types)
hFE
VCE = 4, Ie = 1.5A
25
Units
Max.
Min.
Collector-Emitter Saturation Voltage (153)
VCE
(sat)
Ic = 1.5A, Is = 250 mA
13
V
COllector-Emitter Saturation Voltage (154)
VCE (sat)
Ic = 1.5A, Is = 250 mA
1.25
V
V
Base-Emitter Saturation Voltage (153)
VBE (sat)
Ic = 1.5A, Is = 250 mA
2.5
Base-Emitter Saturation Voltage (154)
VBE
Ie = 1.5A, Is = 250 mA
2.0
V
Emitter Cutoff Current
lEBO
VES = 25V, Tc = 175°C
20
mA
Turn-On Time
ton
Ic = 1.5A
5
I'sec
Storage Time
Is
Vcc = 12V,
5
I'sec
Fall Time
tI
Is (ON)
5
).(sec
Output Capacitance
Cob
Vcs = 10V.f = 1 MHz
fT
=10V, I c =0.5A
=1.5A
VCE = BOV., t =1.0 second
Tc =25°C
L =ImH, Vss =- V,
Rs =200 ' Ie = 5.6A
. Gain-Bandwidth
Beta Cutoff Frequency
fhle
Second Breakdown Forward Biased,
ISB
(sat)
Collector Current Second Breakdown,
Reversed Biased
=I s rOFF) =0.3A
pF
750
VCE
250
KHz
VCE = 12V,Ic
14
KHz
A
2.5
mJ
15.5
Typical Characteristics
10
MAJI. Ie
~
""r'\.
5
40
""-
"",
~
:!l
;;;
153
E
£i
I
2
3
Collector Current,Ie,Amperes
4
7
6
8
Typical dc gain versus collector current Tc = 25°C.
E
\~t,,~
1.0
~
\.
"
u
5
11
\.
0.5
'5
_
-
u
6
, 1+
~o~'\."
\\
Co
«
00
-
/~
"".I.~.r
~o~.r -
-
r530nd 154
\
Maximum Forward Bias
Safe Operating Area
Single Non-repetitive Pulse
Tc = 25°C
These forward Bias Curves
may be used for all
Transistors except the
maximum collector-emitter
voltage cannot be exceeded
\
w
U
>
x
«
:e
0.1
r
10
50
100
VeE
+
.+
T18
H
°0
~
·f
+:1
.5
Base 10 Emitter Voltage, VeE ,Volts
.~
1.5
it
Collector Emitter Voltage, VCE, Volts
Inches
Min.
.500
.045
.140
1.240
.730
Symbol
A
cpS
d
cpD
cpD,
cpD,
e
e,
.360
.180
.014
.140
.130
.550
.550
.810
.105
.480
.050
0/,6-24
H
j
K
L
N
q
Q
S
cpT
cpw
Conforms to TO-82 Outline
Features:
• Gold Alloy Process
• No forward bias secondary breakdown to
100 Volts
• High reverse bias S.O.A. for inductive loads
• Low thermal resistance with copper base
• 150 watt dissipation
• Protection from thermal fatigue with hard
solder and molydenum construction
• 25 volt V EBO
• Low V CE (satl
• Lifetime Guarantee
Max.
.560
.060
.170
1.280
.770
1.125
.400
.200
.025
.170
.190
.590
.590
.850
.140
.520
.070
UNF-2A
Millimeters
Min.
Max.
12.70 14.22
1.14
1.52
3.56
4.32
31.&0 32.51
18.54 19.56
28.58
9.14
10.16
4.57
5.08
.36
.64
3.56
4.32
3.30
4.83
13.97 14.99
13.97
14.99
20.57
21.59
2.67
3.56
12.19 13.21
1.27
1.78
Finish-Nickel Plate.
Approx. Weight-.9 oz. (25 g).
1. Complete threads to extend to within
2% threads of seating plane.
2. Contour and angular orientation of
terminals is undefined.
3. Pitch diameter of 0/..·24 UNF·2A
(coated) threads (ASA 61.1·1960).
Maximum Ratings
Voltage
JEDEC
2N1015 +
2Nl015A+
2Nl015B+
2Nl015C+
2N10150+
2Nl0l5E+
Applications:
• High Power Switching
• Amplifiers
• Servo Systems
• Regulators
• Modulators
VCEO(SOSI
2Nl0l6 + ............ 30
2N1016A+ .1 ••••••••••• 60
2Nl016B+ .•.......... 100
2Nl016C+ ............ 150
2N10l60+ ...........• 200
2Nl 016E + .\........... 250
Maximum Ratings and Characteristics
T c
=25°C unless specified
Symbol
* Operating and storage temperature
Collector-emitter sustaining voltage
* Emitter-base voltage
* Continous collector current
. * Continous base current
* Thermal resistance
=45°C
Power dissipation. Tc =100°C
* Power dissipation Te
\JEDEC 2N1015.1
2N1016
I
- 65 TO 150
VCEO(suSI
VeBO
Ic
IB
Re.Jc
Pr
Pr
UnIts
°C
30 TO 250
Volts
25
Volts
7.5
Amps
5
Amps
.87
°C/W
150
87
Watts
Watts
• JEDEC Registered Parameters
T19
Electrical Characteristics
Tc=25·C unless otherwise specified
Symbol
2N1015/2N1016
Collector current at VCEX=VCE (from max.' ratings), TJ =150·C, VBE= -1.5 Vdc ..... . ICEX
Emitter current at VEB = 25' Vdc, Ic =0, TJ = 150·C .. ' •..................•....... lEBO
Switching time, delay pills rise time ..' ...•..•..••..................•.••...•.. td+tr
Storage plus fall time ................................................... '.• ts+tf
Second breakdown, Collector Current, VCE = 100 V., Tc = 45°C
(one second test), forward bias. Amperes
'
IS/8
Second breakdown energy. base reverse biased, L = 250 mh .•
ES/8
RB = 50 ohms. V8E =-6.0 volts. Ic = 2.0 Amperes. Joules
Gain-bandwidth. VCE = 10 volts. Ic = 0.5 Amps. Kilohertz
ft
2N1016
Dc current gain at VCE =4 Vdc, Ic =2 Adc .....•....•.•..•...•......•...••.•.. hFE
Base voltage, at Ic=2 Adc, 18=300 mAdc .......•............•.•...•.••...... VBE (S8t)
Beta cut-off frequency ...........•.....••..............•.......•.••..•... fhfe
2N1016
Dc current gain at VCE=4 Vdc, Ic=5 Adc ...................•.....•..•.•..... hFE
Base voltage, at Ic=5 Adc, 18=750 mAdc ................•.........•..•.•...• VBE (S8t)
Beta cut-off frequency ..........•..•........•.....••.......•.. " ....•....• fhfe
Max.
Minimum Typical
2
3
3
7
Units
mAdc
mAdo
I'sec
I'seo
*20
*20
Adc
Joule
1.5
0.5
250
Khz.
*10
*10
14
1.15
25
Vdc
kHz
18
1.25
30
Vdc
kHz
*J EDC registered parameters.
Typical Characteristics
SAFE OPERATING AREA
10
80
MAX. Ie
......
2N1016-
60
~~t---'--Series
5
,
I"
~q, 30 /J._s_
......
"'"~'" I"" """~ 1)0" u:.~~f(1i.s> "'"
~
.c
~I" ~q, ~.s>~
~
40
.e
~
I"~" ~
~
2NI015
Q.
~
l=I=Series
00
I
2
3
4
6
5
7
Collector Current.ie.Amperes
Typical dc gain versus collector current at Tc = 25°C.
8
sf
,
1.0
i
i!!
~
u
0
..
'a
t;
5
u
4
J
l'\:
~~
'" I'
"I>
3
2
\.
-
Maximum Forward Bias
Safe Operating Area
- Single Non-repetitive Pulse
Tc = 45°C
_ These forward Bias Curves
may be used for aII
Transistors except the
maximum collector-emitter
voltage cannot be exceeded.
I
I
I I I
O. 1 10
50
w
~
><
0(
~
100
Collector Emitter Voltage. VeE, Volts
00
.25
.5
.75
1.0
Bose Voltage. VeE.Volts
Typical base voltage vs. Collector Current
characteristics at Tc = 25°C.
T20
1.25
1.5
,
\.
0.5
200
Millimeters
Max.
Max.
Min.
8.64 10.31
.406
A
.pO
.440
10.16 11.18
4.06
.190
4.83
e
e,
.095
2.03
2.41
E
.562
13.82 14.27
3.56
.140
2.54
F
.710
18.03
J
.453
10.72 11.51
N
.422
.pT
.055
1.02
1.40
.040
.pW
%-28 UNF-2A
Finish-Nickel Plate.
Approx. Weight-.25 oz. (7 g).
1. Complete threads to extend to within
2% threads of seating plane.
2. Contour and angular orientation of
terminals is undefined.
3. Pitch dia. of 14-28 UNF-2A (coated)
threads (ASA B1.1-1960).
Symbol
Feature.:
Conforms to MT-52 Outline
Test
I
Inches
Min.
.340
.400
.160
.080
.544
.100
• Gold Alloy Process
• No forward bias secondary breakdown to
150 volts
• High reverse bias S.O.A. for inductive loads
• Low thermal resistance with copper base
• 150 watt dissipation
• Protection from thermal fatique with hard
solder and molybdenum construction
• 25 volt B EBO
• Low V CE (sa')
• Lifetime Guarantee
SYI11'lOi
I
C nne
1"1Itr()IlS
«t
*Collector- Emitter
Sustaining
Voltage
VCEO(sus)
Base Open
L=1H
Ic=200mA
*Collector Cutoff
Voltage
VCEV
ICEv=2mA
VEB=,1.5V
*Collector Cutoff
Voltage
VCEV
ICEv=10mA
VEB=1.5V
Tc=175°C
I
7N3429
I
2N3430
50
I
nJ3431
SYlllbol
"Operating and storage temperature
I
2N3432
I
200
150
100
Maximum Ratings and Characteristics*
Tc=25°C unless specified
Application.:
• High Power Switching
• Amplifiers
• Servo Systems
• Regulators
• Modulators
I
2N3433
250
All Types
-65°C to 175°C
.. Collector-emitter sustaining voltage
VCEO(sus)
50 volts to 250 volts
* Emitter-base voltage
VEBO
25 volts
.. Collector-emitter voltage,VEs=1.5V, Tc=175°C
VCEV
'50
* Continuous collector current
Ic
7.5 amperes
* Continuous base current
Is
3 amperes
vol~
to 250 volts
1.33 W 1°C
• Linear power derating factor from Tc=60°C
.. Thermal resistance
R6 JC
P,.75°C/W
• Power dissipation ,Tc=60°C
Pr
150 watts
*JEDEC registered parameters
T21
All Types
Test
Test Conditions
Symbol
*D,C, Current Gain'
Min.
Max.
10
35
Units"
hFE
VCE=2V, Ic=5A
*Collector- Emitter Saturation Voltage
VCE(sa!)
Ic=5A,IB=750mA
1,0
V
* Base- Emitter Saturation Voltage
VBE(sa!)
It=5A, IB=750mA
2.0
V
*Emitter Cutoff Current
lEBO
VEB=25V, Tc=175°C
*Turn-On Timei
ton
Ic=5A,
*Storage Time
ts
Vcc=12V,
4
"sec
*Fall Time'
tf
IB{on)=IB{off)=1,5A
8
,usee
10
mA
5
,usee
"
Output Capacitance
Cob
VCB=10V,f=1 MHz
Gain- Bandwidth
fr
VCE=10V,lc=O,5A
*Beta Cutoff Frequency
750
fhfe
VCE=12V,lc=5A
Second Breakdown forward
Biased, collector current
I,I"SB'
Vce=30V, Ic=5A
t= I second, TC == 25°C '
Second Breakdown
reversed biased
E'SB
L=lmH, VBs=-2V,
Rs= 201l, Ic=5,6A
pF
250
KHz
20
KHz
A
1.5
15.5
mJ
*JEDEC registered data.
12
10
..
,.
.. -+::
-r:
.. .
,.
7.5
•
5
4
~
3
2
ef
tO
.8
C[
.S
•. s
U
...-t...4
1:
I
10~s~
..
.~~
-
.\ ,t~ ~........ -~~
r-
-f-
.0
-
- I-
,
2
3
4
•
!\
1\~
.. f~
.. .-"
111 . 1
20
8 10
Collector Emitter Vollao~,VCE,VolI.
... -
f--;
.,
_0
~
.
I
.1:- _.11 rTl III! i I I rL.
80 I
'\.
~
.._.
These Sofe 0g::ratin~ Area Curves
may be used r 2N 429-33
transistors except the minimum
collector-emitter voltQge ratinos
cannot be exceeded
._.
m
~
"~~
.1'
-
Tc=25OC
--- t-LJJ·~
,
!\,Q('
! I
~ SinOIe Nonrep"itive Pulse
-
~.-:
,!'.
1
.'.J...
..
".~
Maximum Forward Bios
Safe Operatino Area
==
=
U .2 ..
,
l i-H
-+-.
- r-
~. 3
"
~.!!
•
.'
.w ••
,
30 40
I
eo
I
80 100
200250
Collector Current,Ic, Amperes
10'
1.5,··-,-'·
60-
i Tc=150oC
I I.ol--~
I
' 1
ITc.
Tc" slIoe I
~ r·-II .Ty~n~t j
!'r
: ~+
.
I
oL ___ L..-L_--L-.:
e
.
u.
o
.5
1.0
f"t
""'T..·
1.5
2.0
2.
3.0
Base-Emitter Voltaoe,VSE ,Volts
T22
i
.
...r
....
.j.
40;....
250C
C[
~
...
.
:~1:~ ~ '11"\11 VealHt)
.
20·I
,.:
"•
I
VC[{ •• tl.Voll.
~
r'
.
~
.,.
1· .....
L,,+""
Symbol
A
</>D
e,
e
E
F
J
N
</>T
</>T,
</>W
Inches
Min.
Max.
.600
.650
.650
.700
.185
.205
.390
.410
.855
.875
.25Q
.156
1.016 1.076
.560
.600
.090
.100
.060
.080
0/,.-24 UNF-2A
Millimeter
Min.
Max.
15.24 16.51 .
16.51
17.78
4.70
5.21
9.91
10.41
21.72 22.23
3.96
6.35
25.81
27.33
14.22 15.24
2.29
2.54
1.52
2.03
Finish-Nickel Plate.
Appro •• Weight-1 oz (28 g).
1. Complete threads to extend to within
2* threads of seating plane.
2. Contour and angular orientation of
terminals is undefined.
3. Pitch dia. of 0/,.·24 UNF-2A (coated)
threads (ASA 81.1-1960).
Conforms to MT-33 Outline
Features:
• Gold Alloy Process
• No forward bias secondary breakdown to
67 volts
• High reverse bias S.O.A. for inductive loads
• Low thermal resistance with copper base
• 160 watt disSipation
• Protection from thermal fatigue with hard
solder and molybdenum construction
• 26 volt VEBO
• Low VCE (8811
• Lifetime Guarantee
Applications:
Maximum Ratings
•
•
•
•
•
Voltage
Type
High Power Switching
Amplifiers
Servo Systems
Regulators
Modulators
163 - Low Gain Series
164 - High Gain Series
Maximum Ratings and Characteristics
Tc = 2&OC unl... specified
Symbol
Operating and storage temperature
I
Type 163
164
I
VeBO VCEO (SUI)
163-04
163-06
163-08
163-10
164-04
164-06
164-08
164-10
55
75
95
115
40
60
80
100
163-12
163-14
163-16
163-18
164-12
164-14
164-16
164-18
135
155
175
195
120
140
160
180
163·20
164-20
215
200
Unots
-66TO 176
°C
40 TO 200
Volts
Collector-emitter sustaining voltage
VCEq(sUS)
Collector-base voltage
VCBO
VCEO (suo) + 16
Volts
Emitter-base voltage
VEBO
16
Volts
Continuous collector current
Ic
30
AMPS
Continuous base current
Ie
7.6
AMPS
Thermal resistance
ReJc
.5
°C/W
Power dissipation Tc
= 76°C
Pr
200
Watts
Power dissipation Tc
= 100°C
Pr
160
Watts
T23
Electrical Specifications Tc=25°C unless otherwise specified
16i3-
Teat
Symbol
Teat Conditions
D.C. Current Gain
hFE
VCE=4V. Ic=5A
Collector-Emitter Saturation Voltage
VkElsat)
Ic=5A. la=O.5A
Base-Emitter Saturation Voltage
VaEI"')
Emitter Cutoff Currl!nt
Turn-On Time
Min.
16['4
Max.
15
,
Min.
25
1.1
1.0
V
Ic=5A. la=O.5A
2.2
2.0
V
lEW
VEBr 15V. Tc=175°C
25
25
mA
t.on
1c=5A
6
6
Storage Time
to
Vcc=12V.
5
5
posec.
Fall Time
tf
IB(on)=IB(off)=O.6A.
7
7
l'lIec.
'"
Qutput Capacitance
l'lIec.
Cob
VCB F1 OV.f=1 MHZ
Gain-Bandwidth
h
VCE=1Ov. 1c=1.0A
250
~eta
f'hfe
VlCEI=12V. 1c=5A
10
I S8
"'cEF67V. 1 second
Tc=75°C
3
3
A
Es/b
Vcc=30V
L=.4H
1
1
J
Cutoff FreQuencV
Second Breakdown Forward Biased.
Collector Current
Second Breakdown Energy
Revers8lBiased
1500
1c=5A
Tc= 25°C
1500
10
60
164
40
163
00
5
10
15
20
Collector Current,Ie.Amperes
Maximum Forward Bias
Safe Operating Area
Single Non-repetitive Pulse
15
Tc=75°C
, VCE=4Volts
f
!.
10
I
163 and 164
E
E
~
<I:
.!i
f
~
~
s
I
(.,)
voltage cannot be exceeded
'i
5
(.,)
15
These forward Bias Curved
may be used for all
Transistors except the
maximum collector-emitter
u
.!!
00
;g
.5
1.0
Base to Emitter Voltage, VBE , Volts
1.5
2.0
.T
7
Collector
pF
KHz
250
Typical Characteristics
T24
Units
Max.
KHz
Inches
Min.
.500
.045
.140
1.240
.730
Sy.mbol
A
.pB
d
.pD
.pD,
.pD,
e
e,
H
Max.
.560
.060
.170
1.280
.770
1.125
.400
.200
.025
.170
.190
.590
.590
.850
.140
.520
.070
UNF-2A
.360
.180
'.014
j
.140
" .130
K
L
.550
.550
N
q
.810
Q
.105
S
.480
.pT
.050
.pW
0/,.-24
Finish-Nickel Plate.
Approx. Weight-.9 oz. (25 g).
Millimeters
Max.
Min.
12.70 14.22
1.14
1.52
3.56
4.32
32.51
31.5.0
18.54 19.56
28.58
9.14 10.16
4.57
5.08
".36
.64
3.56
4.32
3.30
4.83
13.97
14.99
13.97 14.99
21.59
20.57
2.67
3.56
12.19 13.21
1.27
1.78
1. Complete threads to extend to within
2% threads of seating plane.
2. Contour and angular orientation of
Conforms to TO-82 Outline
Features
• Gold Alloy Process
• No forward bias secondary breakdown
to 100 volts
• High reverse bias S.O.A. for inductive loads
• Low thermal resistance with copper base
• 150 watt dissipation
• Protection from thermal fatigue with hard
solder and molybdenum construction
• 25 volt VEBO
• Low VCE(s.t)
• Lifetime Guarantee
Test
Collector
Voltage
Sustaining
I
Symbol
I
2N2226
2N2230
VCEO(sus)
50
Maximum Ratings and Characteristics
Tc = 25°C unless specified
I
terminals is undefined.
3. Pitch diameter of 'A0-24 UNF-2A
(coated) threads (ASA 81.1·1960).
Applications
• High Power Switching
• Amplifiers
• Servo Systems
• Regulators
• Modulators
2N2227
2N2231
I
2N2228
2N2232
100
Symbol
* Operating and storage temperature
I
I
2N2229
2N2233
150
200
JEDEC
2N2226.33
I
U't
nl 5
-65 To 150
°C
VeEO (sus)
50 To 200
Volts
* Emitter·base voltage
VEBO
15
Volts
* Continuous collector current
Ie
10
AMPS
* Continuous base current
IB
* Thermal resistance
R9Je
.5
* Power dissipation Te = 75°C
Pr
150
Watts
Pr
100
Watts
Collector-emitter sustaining voltage
Power diSSipation Te = 100°C
AMPS
°C/W
• JEDEC Registered Parameters
T25
Electrical Characteristics
TC=25'C unless otherwise specified
Symbol
Minimum
2N2226-29
Collector current at VCEX=VCE (from max. ratings), Tc=150'C, VBE=-1.5 Vdc ...
Emitter. current at VBE = -15 Vdc, Ic =0. . . . . . • . . . . . . . . • . . . . . . . . . • . . . . . . . ..
Emitter current at VBE=-15 Vdc, Ic=O, TC=150'C ............•............
Gain bandwidth product at Ic=10 Adc ................•..•..••.•.••••...•
Saturation voltage at Ic=10 Adc, IB=150m Adc
..........................
Dc current gain at VCE=6 Vdc, Ic=10 Adc ..........•.....................
Base voltage, at Ic=10 Adc, IB=150 mAdc .............•..................
Beta cut-off frequency at VCE=12 Vdc, Ic=7 Adc .......•..................
Turn-on time at Ic=10 Adc, IB on=400 mAdc, VCE=12 Vdc ..................
Turn-off time at Ic=10 Adc, IB off=-400 mAdc, VCE=12 Vdc, VBE off=-15 Vdc.
Electrical Characteristics
ICEX
lEBO
lEBO
fT
VCE(sat}
hFE
VBE (sat)
fhfe
td+tr
ts+tf
100
TC= 25'C unless otherwise specified
Symbol
Minimum
2N2230-33
Collector current at VCEX=VCE (from max. ratings), Tc=150'C, VBE=-1.5 Vdc ...
Emitter current at VBE=-15 Vdc, IC=O ...................................
Emitter current at VBE=-15 Vdc, Ic=O, Tc=150'C .......................•.
Gain bandwidth product at Ic=10 Adc .........•......•........•••......•
Saturation voltage at Ic = 10 Adc, IB = 150m Adc
. . . . . . . . . . . . . . . . . . . . . . . . ..
Dc current gain at VCE=6 Vdc, Ic=10 Adc ..............•.................
Base voltage, at Ic=10 Adc, IB=40 mAdc .......................•...•.....
Beta cut-off frequency at VCE=12 Vdc, Ic=7 Adc ..........................
Turn-on time at Ic=10 Adc, IB on=200 mAdc, VCE=12 Vdc ..................
Turn-off time at Ic=10 Adc, IB off=-200 mAdc, VCE=12 Vdc, VBE off=-15 Vdc.
ICEX
lEBO
lEBO
fT
VCE(sat)
hFE
VBE (sat)
fhfe
td+tr
ts+tf
Typical
500
2_2
360
3.0
10
4.5
25
Typical
500
2.2
660
3.0
7
400
Max.
Units
20
15
30
mAdc
mAdc
mAdc·
kc
Vdc
3.5
4.0
Vdc
kc
ILsec
ILsec
Max.
Units
20
15
30
mAdc
mAdc
mAdc
kc
Vdc
3.5
4.0
5
29
Vdc
kc
ILsec
ILsec
10.000
Square Wave Pulse
60 Cps RepelltlOn Rate
1.75% Duty Cycle
VCE,6 Volts
7000
TC=150°C
5000
Tc=150OC
B
3000
TC=25OC
2000 Tc=25°C
6
II>
!
!.
E
«
2N2230'33
Squore Wove Pulse
60 Cps Repetition Rote
1.75% Duty Cycle
4
1000
Tc =25'C
:; 700
VcE =6Volts
<:
8
2
500
Tc =150'C
i
_ 300
2N2226·29
U
00
5
10
Bose Current. lB' Milliamperes
Forward current transfer characteristics.
15
20
I'
o 200
o
2
4
1IIIIIIIlllilii rIIIIITI
6
e
Dc gain versus collector current.
40 "S
2N2226-29
TC=150·C
B
TC=25OC
6
Square Wave Pulse
60 Cps Repetition Rate
1.75% Duly Cycle
4
VCE =6Volts
2
%
T26
5
D
Bose Current. lB. Milliamperes
Forward current transfer characteristics.
2N2230-33
10
Collector Current, Ic. Amperes
15
20
COl lector to Emitter Voltage, veE. Volts
12
Symbol
A
<pD
e,
e
Inches
Min.
.600
.650
.185
.700
.205
.410
.875
.390
.855
.156
1.016
E
F
J
N
<l>T
<l>T,
<l>W
Millimeter
Min.
Max.
15.24 16.51
16.51
17.78
4.70
5.21
10.41
9.91
21.72
22.23
3.96
6.35
25.81
27.33
14.22 15.24
2.29
2.54
1.52
2.03
Max.
.650
.250
1.076
.600
.100
.560
.090
.060
.080
0/,.-24 UNF-2A
Finish-Nickel Plate.
Approx. Weight-I oz (28 g).
1. Complete threads to extend to within
211. threads of seating plane.
2. Contour and angular orientation of
terminals is undefined.
3. Pitch dia. of '/,.-24 UNF-2A (coated)
. threads (ASA B1.1·1960).
Conforms to MT-33 Outline
F.ature.:
Application.:
• Gold Alloy Process
• No forward bias secondary breakdown to
100 volts
• High reverse bias S.O.A. for inductlve loads
• Low thermal resistance with copper base
• 150 watt dissipation
• Protection from thermal fatigue with hard
solder and molybdenum construction
• 25 volt VEBO
• Low VCE lsat)
• Lifetime Guarantee
•
•
•
•
•
Voltage Matrix
Test
Collector *
Voltage
Isustaining)
= 25°C
Tc
I
2N3470 12N3471
2N3475
Symbol 1 2N3474
VCEO lsus)
Maximum Ratings and Characteristics
Tc
25°C unless specified
=
* Operating and storage
I
*
2N3474
2N3475
2N3476
2N3477
200
150
Symbol
t~mperature
Collector-emitter sustaining voltage
High
Gain
Series
2N3472/2N3473
2N3476 2N3477
100
50
Low
Gain
Series
2N3470
2N3471
2N3472
2N3473
High Power Switching
Amplifiers
Servo Systems
Regulators
Modulators
I
JEDEC
2N3470-77
- 65 TO 150
VCEO Isus)
I
Units
°C
50 TO 200
Volts
* Emitter-base voltage
VEBO
15
Volts
* Continuous collector current
Ic
10
AMPS
* Continous base current
* Thermal resistance
I.
R&Jc
1
.5
AMPS
°C/W
* Power dissipation Tc = 75°C
PT
150
Watts
* P.ower dissipation Tc = 100°C
PT
100
Watts
*Jedec Registered Parameters
T27
Electrical Characteristics
2N3470-73
Tc =25'C unless otherwise specified
Symbol
Collector current at Vcex=Vce (from max. ratings), Tc=150'C, VBE= -1.5 Vdc ...
Emitter current at VBe = -15 Vdc, Ic =0. . . . . . . . . . . . . . . . . . . . . . . • . • . . . . . . . ..
Emitter current at VBE=-15 Vdc, Ic=O, Tc=150'C ...............•.........
Gain bandwidth product at Ic = 10 Adc. . . . . . . . . . • • . . . . . . . . . . . . . . . . . . . . . .•
Saturation voltage at Ic==10 Adc, le=150m Adc
...... , ...................
Dc current gain at Vce=6 Vdc, Ic=10 Adc .............................•..
Base voltage, at Ic=10 Adc, 18=150 mAdc ................................
Beta cut-off frequency at Vce=12 Vdc, Ic=7 Adc ..........................
Turn-on time at Ic=10 Adc, Ie on=400 mAdc, Vce=12 Vdc ..................
Turn-off time at Ic=1 0 Ado, Ie off= -400 mAdc, Vce=12 Vdc, VBe off = -15 Vdc.
Electrical Characteristics
Minimum
Icex
leBO
leBO
fT
VCE(sat)
hFe
VeE (sat)
fhfe
td+ t,
t.+tf
Tc = 25'C unless otherwise specified
Symbol
2N3474-77
Collector current at Vcex=Vce (from max. ratings), Tc=150'C, Vee=-1.5 Vdc ...
Emitter current at VeE=-15 Vdc, Ic=O ..................••...............
Emitter current at VBe=-15 Vdc, Ic=O, Tc=150'C .......•............•..•.
Gain bandwidth product at Ic = 10 Adc. . . . . . • . • . . . . . . . . . . . . . . . • . • • . . . . . ..
Saturation voltage at Ic=10 Adc, le"'150m Adc
..........................
Dc current gain at Vce=6 Vdc, Ic=10 Adc .....•..............•...........
Base voltage, at Ic=10 Adc, le=40 mAdc .........•....••.....•.....•.....
Beta cut-off frequency at Vce=12 Vdc, Ic=7 Adc ...............••....•...•
Turn-on time at Ic=10 Adc, Ie on=200 mAde, Vce=12 Vdc ..................
Turn-off time at Ic=10Ade, IB off=-200 mAdc, Vce=12 Vde, VBe off=-15 Vdc.
10
500
2.2
360
3.0
10
4.5
25
...
100
Minimum
ICEX
leBO
leeo
fT
VCE(sat)
hFe
Vee (sat)
fhfe
td+t,
ts+tf
Typical
Max.
Units
20
15
30
mAdc
m'Ade
mAdc
kc
Vdc
3.5
4.0
Vdc
kc
#,sec
#,sec
VCE::6 Volts
5000
Tc=15O"C
Vdc
kc
#,sec
#,se,c
Square Wave Pulse
60 Cps Repetition Rate
1.75% Duty Cycle
7000
a
4.0
Typical
10.000
Tc=25"C
Units
mAdc
mAdc
mAdc
kc
Vdc
3.5
500
2.2
660
3.0
7
5
29
400
Max.
20
15
30
TC"5O"C
3000
2000 Tc '25'C
6
!
2N3474-77·
8E
oCt
i>
i!!
5
I.>
2N3470-73
4
1000
2
2
~
500
a~
300
TC '5O'C
2N3470-73
I'
j
8
TC 25'C
'$700
Square Wave Pulse
60 Cps Repetition Rate
1.75% Duty Cycle' '
Vce=6Volts
o
00
20
Base Cu,rent. lB' Milliamperes
10
40
30
50
2000
2
4
1111111111111111111111
Forwerd current transfer characteristics.
40 j..LS
Tc=1500C
8
TC'25"C
6
2N3474-77
Square Wave Pulse
60Cps Repetition Rate
1.75 % Duty Cycle
VCE =6 Volts
4
2
00
5
10
Base Currant. lB' Milliamperes
T28
Forward currant transfar characteristics.
10
Collector Current. Ie. Amperes
Figure 10. Dc gain versus collector current.
15
20
1
ColleClor 10 EmItter Voltage, VeE, volts
12
Symbol
A
.pD
e,
e
E
F
J
N
.pT
.pT,
.pW
Inches
Min.
Max.
.600
.650
.650
.700
.185
.205
.390
.410
.855
.875
.156
.250
1.016 1.076
.560
.600
.100
.090
.060
.080
710-24 UNF-2A
Millimeter
Min.
Max.
15.24 16.51
16.51
17.78
4.70
5.21
9.91
10.41
21.72 22.23
3.96
6.35
25.81
27.33
14.22 15.24
2.29
2.54
1.52
2.03
Finish-Nickel Plate.
Approx. Weight-1 oz (28 g).
1. Complete threads to extend to within
2% threads of seating plane.
2. Contour and angular orientation of
terminals is undefined.
3. Pitch dia. of '/.,-24 UNF-2A (coated)
threads (ASA 81.1-1960).
Conforms to MT -33 Outline
Features:
• Gold Alloy Process
• No forward bias secondary breakdown to
67 volts
• High reverse bias S.O.A. for inductive loads
• Low thermal resistance with copper base
• 150 watt dissipation
• Protection from thermal fatigue with hard
solder and molybdenum construction
• 25 volt VEBO
• Low VeE (saIl
• Lifetime Guarantee
Maximum Ratings and Characteristics
Tc = 25°C unless specified
Applications:
• High Power Switching
• Amplifiers
• Servo Systems
• Regulators
• Modulators
Symbol
* Operating and storage temperature
Collector-emitter sustaining voltage
VCEO Isusl
I
JEDEC
2N2757-78+
Maximum Ratings
Voltage
JEDEC
2N2757 2N2763 2N2769 2N2775... 50
2N2758 2N2764 2N2770 2N2776 ... 100
2N2759 2N2765 2N2771 2N2777 ... 150
2N2760 2N2766 2N2772 2N2778 .. 200
2N2761 ........................... 250
I
Units
- 65 to 175
°C
50 to 250
Volts
* Emitter-base voltage
VEBO
15
Volts
* Continuous collector current
Ie
30
AMPS
* Continuous base current
IS
7.5
AMPS
* Thermal resistance
Reue
.5
°C/W
* Power dissipation Te = 75°e
Pr
200
Watts
Pr
150
Watts
Power dissipation Te = 100°C
VCED Isusl
• JEDEC Registered parameters
T29
Electrical Characteristics, 2N2757-61 Series
TC=25'C unless otherwise specified
Minimum
Symbol
Min. collector-emitter sustaining voltage at Ic=200 ma, le=O ................
Collector current at VCEX=VCE (Ref. voltage ratings), Tc=175'C, VeE=-1.5 Vdc.
Emitter current at VeE=-15 Vdc, Ic=O, Tc=175'C ........................
Saturation voltage at Ic=10 Adc, le=2 Adc ...........................
Dc current gain at VCE=4 Vdc, Ic=10 Adc ..............................
Base voltage, at Ic=10 Adc, IB=2 Adc ..................................
Beta cut-off frequency at Vce=12 Vdc, Ic=2.5 Adc ........................
Turn-on time at Ic=10 Adc, IB on=.3 Adc, Vce=12 Vdc .....................
Turn-off time at Ic=10 Adc, Ie off=-3 Adc, Vce=12 Vdc, VBE off=-15 Vdc ....
Typical
Max.
Refer voltage ratings
VCEO(5U5)
30
8
ICEX
4
25
IEeo
0.4
1.5
VCE (sat)
10
14.0
hFE
1.35
2.5
VBE(sat)
14.0
fhle
3.0
td+ t,
9.0
t.+tl
Units
mAdc
mAdc
Vdc
Vdc
kHz
!,sec
!,sec
Typical Characteristics, 2N2757-61 Series
TC=-65°C
100
Tc=25°C
\
70
50
" '"'
30
25
Te=J5"C
VeC4VoltsDc
\
20
too...
20
---
2N275t;;;--
10
7
5
15
.....
r--
3
5
.. TC=25'C, .'
2
.
1
o
5
15
10
20
25
00
.5
1.0
Base to Emiller Voltage. VBE , Volts
30
Collector Current, Ie. Amperes
Electrical Characteristics, 2N2763-66 Series
Tc =-65OC
1.5
2.0
2.5
T C= 25'C unless otherwise specified
Symbol
Min. collector-emitter sustaining voltage at Ic=200 ma, IB=O ................ .
Collector current at VCEX=VCE (Ref. voltage ratings), Tc=175'C, VBE=-1.5 Vdc.
Emitter current at VBe=-16 Vdc, Ic=O, TC=175'C ......................... .
Saturation voltage at Ic=15 Adc, IB=3 Adc .......................... ..
Dc current gain at VCE=4 Vdc, Ic=15 Adc' .............................. .
Base voltage, at Ic=15 Adc,IB=3 Adc ................................. .
Beta cut-off frequency at VCE=12 Vdc, Ic=3.75 Adc ....................... .
Turn-on time at Ic=15 Adc, leon=4.5 Adc, Vce=12 Vdc ................... .
Turn-off time at Ic=15 Adc, IB off = -4.5 Adc, Vce =12 Vdc, VBE off = -15 Vdc .. .
VCeO(5US)
ICEX
leeo
VCE (sat)
hFE
VBe (sat)
fhls
td+1,
1.+tl
Minimum
Typical
Max.
Units
30
25
1.5
mAdc
mAdc
Vdc
Refer voltage ratings
8
4
0.63
13.5
1.50
14.5
3.8
10
10
25
Vdc
kHz
!,sec
!,sec
Typical Characteristics, 2N2763-66 Series
100
70
- Te =-65°C
'\
"
50 I
30
Te=~5"C
"
10
25
VCE =4 Volt. Dc
Vce=4 Volts
1---2N276~ ...............
20
---
t'---
7
3
!
......
!
15
E
C(
~
'i
10
~
"
u
2
Su
TC=I75°C
5
o
5
10
Collector Current, I c , Amperes
15
20
25
30
Tc=-~5°
TC=25°C
.!!
1
Te=175OC
20
5
1'30
Te=25OC
15
u
00
.5
Base to Emiller Voltage,
_.
--------
1.0
VeE. Volts
1.5
2.0
2.5
Electrical Characteristics, 2N2769-72 Series
Tc=25"C unless otherwise specified
Min. collector-emitter sustaining voltage at Ic=200 rna, Is=O ............... .
Collector current atVcEX=VCE (Ref. voltage ratings), Tc=175"C, VSE=-1.5Vdc ..
Emitter current at VSE=-15 Vdc, Ic=O, Tc=175"C ....................... .
Saturation voltage at Ic=20 Adc, Is=4 Adc .......................... ..
Dc current gain at VCE=4 Vdc, Ic=20 Adc .............................. .
Base voltage, at Ic=20 Adc, Is=4Adc ................................. .
Beta cut-off frequency at VCE=12 Vdc, Ic=5 Al'c ..................... : .. .
Turn-on time at Ic=20 Adc, Is on=6 Adc, VCE=12 Vdc .................... .
Turn-off time at Ic=20 Adc, Is 011=-6 Adc, VCE=12 Vdc, VSE 011=-15 Vdc ... .
Symbol
Minimum
VCEO(SUS)
ICEX
IESO
VCE (sat)
hFE
VSE (sat)
fhfe
Refer voltage ratings
Typical
8
4
0.74
12.5
1.8
16.0
4.0
10.0
10
td+t~
ts+tf
Max.
Units
30
25
1.5
mAdc
mAdc
Vdc
2.5
Vdc
kHz
ILsec
ILsec
Typical Characteristics, 2N2769-72 Series
t
\
100
70
" .........
50
30
20
Tc '25"C
VcC4"Volts Dc
\.
""'-
,
..........
/0 Ii
"
-r---.
2N2769-72
""'-
r----
7
5!
3
2
'0
5
/0
15
Collector Current. Ie. Amperes
25
20
30
Electrical Characteristics, 2N2775..:78 Series
TC=25"C unless otherwise specified
Min. collector-emitter sustaining voltage at Ic=200 ma, IB=O .... , ......... .
Collector current at VCEX=VCE (Ref. voltage ratings), TC=175"C,VSE= -1.5 Vdc. "
Emitter current at VBE= -15 Vdc. Ic=O. Tc=175°C, ..............•.........
Saturation voltage at Ic=25 Adc. IB=5 Adc ............................ .
Dc current gain at VCE=4 Vdc.lc=25 Adc .............................. .
Base voltage. at Ic=25 Adc. IB=5 Adc ................................ .
Beta cut-off frequency at VCE=12 Vdc. Ic=5 Adc ......................... .
Turn-on time at Ic=25 Adc. IB on=7.5 Adc. VCE=12 Vdc .......•...........
Turn-off time at Ic=25 Adc. IB off=-7.5 Adc. VCE=12 Vdc. VBE off=-15 Vdc ..
Typical
Symbol
Minimum
Max.
VCEO(SUS)
ICEX
lEBO
VCE (sat)
hFE
VBE (sat)
fhle
1d+t,
ts+tf
Refer voltage ratings
8
30
4
25
0.87
1.50
12.0
10
1.9
2.5
14.0
4,5
10.0
Units
mAdc
mAdc
Vdc
Vdc
kHz
ILsec
ILsec
Typical Characteristics, 2N2775-2778 Series
\.
/00
TC'-65"C
"-
70
50I
!
30
"~
20
TC' 25"C
.
2~2775-78. f - - Te=15"C
VCE=4VoIIS
---
f""'...-
10I
7'
15
r--
,TC=175"C
10
~
TC=I75°C
5
3
TC'-65°C
2
10
5
10
Collector Current,Ic,Amperes
15
20
25
30
00
.5
Bose to Emili" Volla\le, VBE' Valls
1.0
/.5
2.0
T31
Safe Operating Information. 2N2767 through 2N2778
Second Breakdown. forward bias. collector current ••••••..•••••••••••••••••
(VCE =67V.• One Second. Tc 75°C)
Second Breakdown. reverse bias. energy .••••••••••••••••••....•••••••••••.
(VeE = 30V.• Ie = 5.0A., L = 0.4 mH .• Te = 25°C)
=
ES/B
Maximum
3:0
Units
Amperes
1.0
Joule
Maximum ForWard Bias
Safe Operating Area
Single Non-repetitive Pulse
Tc = 75°C
All types
These forward Bias Curves
may be used for all
Transistors except the
maximum collector-emitter
voltage cannot be exceeded
.7
.5r---_.~~--_.~--T-----+---+_--;_----~
.3~__~7-
.7
10
______~__~~____~__~__~~____~~
20
'30
Collector to Emitter Voltage, VCE' Volts
T32
50
70
lOO
200
Inches
Symbol Min.
A,
C
L
.110
L,
L,
M,
.500
.250
.440
.260
.145
.640
</>T,
</>T,
Z,
</>w
Millimeters
Max.
Min.
Max.
2.500
63.50
.140
2.79
3.55
.812
20.62
.600 12.70 15.24
6.35
.560 11.17 14.22
.290
6.60
7.36
.160
4.06
3.68
16.25
%-16 UNF-2A
Creep 8t Strike Dilllance.
D6OT· .690 in. min. (17.80 mm).
(In accordance with NEMA lllandards.)
Finish-Nickel Plate.
Approx. Weight-8 oz. (227 g).
1. Complete threads to extend to within 2Y.o
threads of seating plana.
2. Angular orientation of terminals is
undefined.
3. Pitch diameter of 3/4-16 UNF-2A
(COATED) threads (ASA Bl.I-1960).
Maximum Ratings
Collector Current (peak): 200 Amperes
Collector Current (continuous): 100 Amperes
Base Current (continuous): 20 Amperes
Power Dissipation: 625 Watts at Tc = 75°C
Operating and Storage Temperature: -500 C to
+2oo·C
Applications
• High Frequency Inverters
• Motor Controls
• Switching Regulators
• VLF Transmitters
Features
• Triple Diffused Design
• CBE Construction
• 625 Watt Power
Capability
*Note: Disc package (D62T) available. consult factory.
Example:
Obtain device performance for your
application by selecting proper Order Code.
DEVELOPMENTAL PRODUCT
These devices are developmental types intended for engineering evaluation.
Specifications and data are subject to change without prior notice.
Westinghouse assumes no obligation for notice of change o~ future
manufacture of these products.
The above number describes a stud mount transistor.
rated at 400 volts, with a gain of 10 at 60 amperes.
T33
Electrical Charactaristics· (TeASE
=26°C un Ie•• otherWise specHled)
Min.
Test Conditions
VCEO (SUS)
Collector-Emitter Sustaining Voltage
IC = 200mA
IB = 0
3OO~s Pulse
See Page T33
Collector Cutoff Current
(Base Emitter. Reverse Biased)
At RatedVcE
VBE (OFF) = -1.5V,
10
100
ICEV
Collector Cutoff Current
(Base Emitter Reverse Biased)
.B
3
mA
lEBO
Emitter Cutoff Current
At Rated VCE
VBE(OFF) = -1.5V, Tc = 150°C
VEB -7V
1
mA
HFE
DC Current Gain
Ie = 5OA, VCE = 2.5V
hFE
DC Current Gain
Ic
VCE (SAT)
Collector-Emitter Saturation Voltage
IC = 50A, IB = 6A
.75
1.25
:
IC = 50A, IB = 6A
1.0
1.5
\
VBE(SAT)
Base-Emitter Saturation Voltage
Output Capacitance
frEST = 1 MHZ, VCB
Gain-Bandwidth Product
frEST
R9JC
Thermal Resistance Junction to Case
VCE
1\)
Turn-On Delay
VCC = 200v, Ie = 50A
Rise Time
,
~
;
___I
7
= 20V
= looJls
2%
Fall Time
IITn
30
20
~
-
......... ....
~ 10
100
25°C
1000 C
1:
~
"
U
ci
"
i1
10
Collector Current. Ie. Amperes
Ji!
Typical Input
4--A--4--I---I
Maximum Forward Bias
Safe Operating Area
One Second Non-Repetitive Pulse
i\
100
0."
10
,"
" '"
"'-,
100
10
Collector-Emitter Voltage. VeE. Volts
c~:~e:,:~cs-l-~~_-I-_~_~
~--r--r--r-4-~4--4--+-~
"j!'
6~-+--~--~-+f-~--~-+--~
E
~
~
u
J
2~-+--~--~~--~--~-+--~
0~~---.·5~~--~--~--'~.5--~--~2
Ba.. Emitter Voltage. VBE. Volts
T34
Consult factory for additional
pulsed S.O A. capability curves.
~A
I
\
..
..
Volts
Volts
ppf
10
MHZ
\
0.2
Duty Cycle <
Typical hFEIIS. Ie
VCE = 2.5V
TC = 25°C
i
2500
= 1 MHZ, IC = SA, VCE = lOV
IBI = IB2 = SA, tp
Resistive Load
Switch Times
Storage Time
15
5
= 10V
COB
i
10
= gOA. VCE = 2.5V
fr
~r
w
Units
Characteristic
ICEV
Typ.
Mex.
Symbol
I
°C/W
100
ns
0.5
ps
2.5·
Jls
0.5
~s
•
DB 54-000
A8
PRINTED IN U.S.A.
Descargar