Westinghouse Power Semiconductor User's Manual and Data Book Assemblies/Rectifiers/Thyristors/Transistors @ POWER SEMICONDUCTOR USER'S MANUAL AND DATA BOOK Editor: Woodson J. Savage III WESTINGHOUSE ELECTRIC CORPORATION SEMICONDUCTOR DIVISION YOUNGWOOD, PENNSYLVANIA 15697 ACKNOWLEDGEMENTS This book is the result of the efforts of a number of dedicated individuals. Contributing authors include: J.D. R.L. R.F. P.J. J.F. Balenovich Bonkowski Chick DeIPalazzo Donlon T.B. Geary W.H. Karstaedt R.J. Lambie K.G. Longenecker M. Morozowich W.S. Przybocki D.E. Rieth G. M. Sherbondy J.E. Steiner K.S. Tarneja It is hoped that the @Power Semiconductor User's Manual and Data Book will enable anyone using power semiconductors to do so more effectively. Any suggestions on how future editions of this book can be improved to better serve your needs will be greatly appreciated. Westinghouse Electric Corporation Semiconductor Division Youngwood,Pa.15697 January 1978 COPYRIGHT@ 1978 BY WESTINGHOUSE ELECTRIC CORPORATION All Rights Reserved Information furnished in this book is believed to be accurate and reliable. However, Westinghouse can assume no responsibility for its use, nor any infringements of patents, or other rights of third parties which may result from its use. No license is granted by implication or other use under any patent or patent rights of Westinghouse. ® POWER SEMICONDUCTOR USER'S MANUAL Authors R.S. Harm H.R. Emerick W.J. Savage WESTI NGHOUSE ELECTRI C CORPORATION SEMICONDUCTOR DIVISION YOUNGWOOD, PENNSYLVANIA 15697 @ POWER SEMICONDUCTOR USER'S MANUAL TABLE OF CONTENTS CHAPTER 1 1. 2. 3. 4. 5. INTRODUCTION Purpose.................................................................... 9 Power Semiconductor Overview ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9 @Power Semiconductor Product Line ...........•............................ 10 Importance of Power Semiconductors •....•............•..................... 11 Manufacturer/OEM/End User Relationship ................................... 12 CHAPTER 2 SELECTING THE PROPER POWER SEMICONDUCTOR FOR YOUR APPLICATION 1. 2. 3. 4. Basic Semiconductor Parameters Defined .................................... 15 Confusing Terminology - Manufacturer Versus User Interpretation ..........• 18 How To Use The Westinghouse Data Book ................................... 19 Know Your Application Requirements .......................................• 19 CHAPTER 3 1. 2. 3. 4. 5. 6. CHAPTER 4 1. 2. 3. 4. 5. 6. 7. 8. 9. SEMICONDUCTOR PROCUREMENT Spend Semiconductor Dollars Wisely ....•................................... 27 Evaluating A Power Semiconductor Supplier ................................. 28 Buyer's Checklist .•......................................................... 31 Entering An Order ...•...................................................... 31 In-Process Order Information ....•........................................... 32 Shipping Methods and Insurance ...........•................................ 38 STANDARD OPERATING PROCEDURES FOR THE POWER SEMICONDUCTOR USER Receiving ..•.................•.............................................. 41 Incoming Inspection ........................................................ 41 Claims ..........•............•............................................. 41 Installation, Mounting, and Cooling Considerations ........................... 42 Operating Power Semiconductor Equipment ................................. 43 Preventative Maintenance .......•............•.............................. 46 Trouble Shooting and Servicing ............................................. 47 Identification and Replacement .............................................. 52 Safety .........................•............................................ 55 7 CHAPTER 5 RELIABILITY 1. Understanding Semiconductor Reliability .................................... 57 2. Quality Control ............................................................. 63 3. Responsibilities .....................................•....................... 65 CHAPTER 6 1. 2. 3. 4. APPENDIX MANUFACTURING @ POWER SEMI CONDUCTORS Facilities ................................................................... 67 Product Breakthroughs ......•............................................... 68 Key Manufacturing Innovations .............................................. 72 Technology Leadership ..................................................... 75 SEMICONDUCTOR GLOSSARY Begins on page ............•..............•.................................... 77 INDEX Begins on page ................................................................ 79 Jill' 1 INTRODUCTION 1. PURPOSE The purpose of this book is to enable persons in any job function (Le. Purchasing, Design, Production, Engineering, Plant operation and maintenance, Quality Control, Marketing, etc.) to deal with power semi conductors more effectively, regardless of his or her technical background or experience level. Every effort has been made to present this material ina straightforward, easy-to-use format so that the reader can readily apply many of these practical suggestions and ideas directly to his or her job. The reader should note that, although Westinghouse forms and procedures are highlighted in the User's Manual, the information being presented is generally applicable to any manufacturer of power semiconductors. The term "user" in this book refers to both the Original Equipment Manufacturer (OEM) who manufactures equipment utilizing power semiconductors and the End User who purchases, uses, and maintains this equipment. Engineering terms and other "jargon" perculiar to power semiconductors are used only when needed in the User's Manual and are usually defined within the text or in the appendix. Note: No effort is made in this book to "educate" the reader on how a power semiconductor "operates" in a circuit or how a power semiconductor "works". There are many fine texts on these subjects for those persons interested in these engineering and physics phenomena. The User's Manual and Data Book is actually two books in one! A brief description of howthesetwo books are organized: The User's Manual is arranged in a somewhat natural sequence of events-Selecting the Proper Power Semiconductor, Semiconductor Procurement, Incoming Inspection, Testing, Device Installation, Equipment Operation, Preventative Maintenance, Troubleshooting, Replacements, Safety, Reliability and Quality Control plus a special section on the manufacture of @ Power Semiconductors. Sections can be read independently or in any desired sequence depending upon the reader's interest and need. The Data Book offers detailed specifications on the complete line of Westinghouse Power Semiconductors. The General section includes a master cross reference type number index by JEDEC 1N, 2N, and 3N part numbers and industry alpha and numeric part numbers. Using this index, the reader can rapidly locate any power semiconductor part number for which Westinghouse offers an exact or suggested replacement along with the page number of the data sheet for the recommended Westinghouse device. I n addition, this section contains the@Selling Policy, Warranty I nformation, Delivery Lead Time Guide Lines, Military/Hi-Rei Product Capabilities, General Application Data Sheets, a Quick Service Directory listing key contacts for special assistance, and a complete listing of@Semiconductor Sales Offices and Authorized@Semiconductor Distributors. The remaining four product sections-Assemblies, Rectifiers Thyristors (SCR's and RBDT), and Transistors each are subdivided into their respective major product subgroups. Easy-ta-use Product Capability Graphs and Product Selector Guides are provided at the beginning of each product section to enable the reader to quickly locate technical data for any given product. 2. POWER SEMICONDUCTOR OVERVIEW Westinghouse is a world leader in the manufacture of high power semiconductors. In 1952, Westi nghouse introduced the first silicon rectifier; in 1957, the first high voltage rectifier stack assemblies were introduced; in 1958, silicon transistors were added, followed by a line of SCR's in 1959. Fromthis infancy, the semiconductor market has mushroomed into virtually every industrial, military, and consumer market. These markets include steel mill drives, space vehicles, and calculators, to name just a few. Even though Westinghouse was a pioneer in many areas of semiconductor development and currently holds basic patents used today by almost every semiconductor manufacturer, the strategic decision was made to concentrate efforts in the power segment (1 ampere and above) of the semiconductor spectrum (see figure 1.1) with primary emphasis on the 40 ampere and above market. The semiconductor industry's business spectrum is not as homogeneous as one might expect. Each of these power segments represent different technologies, industries, applications, and markets. One popular 9 Industry/Applications Spectrum -----Power Semiconductors-------- o 1 Amp 40 Amp 100 Amp 3000 Amp Figure 1.1 Semiconductor Business Spectrum misconception about the semiconductor industry involves pricing. Integrated circuits, for example, have generally exhibited tremendous price declines-often tenfold or more. People usually assume that since integrated circuits exhibit this type of falling price phenomenon so should all other semiconductors. A little analysis wi II show why this theory does not hold. I ntegrated circuit prices, as well as all discrete product prices, fluctuate with volume-not with time as many people mistakenly observe. Integrated circuits serve very high volume markets and are made and tested with highly automated equipment. The power semiconductor market (especially the higher power areas), by comparison, is a much smaller, lower volume market serving primarily industry and military needs. These products are more custom made and tested to a customer's specification than to common generic type number. Historically, power semiconductor prices did show modest declines as new products were brought on the market initially at premium prices so the semiconductor manufacturers could attempt to recoup the substantial R&D expenses necessary to develop these products. Now, however, many new products-especially higher current and/or voltage extensions of existing products are priced more consistent with prevailing market prices. Today, many power semiconductor types are in the mature stage of their product life cycles. As a result, there are less cost reduction possi bilities to offsetthe ever increasing inflation caused by higher material, labor, and factory expense costs. Therefore, price trends on many power semiconductors now and in the future will be upward instead of downward. 3. @ POWER SEMICONDUCTOR PRODUCT LINE Westinghouse offers a comprehensive line of power semiconductors including rectifiers, thyristorsSCR's (silicon controlled rectifiers) and RBDT (reverse blocking diode thyristor), transistors, and assemblies. • General Purpose Rectifiers 1-2200 Amperes Up to 4KV • Fast Recovery Rectifiers 6-1400 Amperes Up to 3.2 KV .2-5JLS • Phase Control SCR's 10-1400 Amperes Up to 3 KV 10 40-900 Amperes Up to 2.2KV • Fast Switching SCR's 10-80,us • Reverse Blocking Diode Thyristor (RBDT) 22-80 Amperes Up to 1 KV 2,000-4,000A/,us • General Purpose Transistors .5-15 Amperes 3D-150V • High S.O.A. Transistors 1.5-25 Amperes 30-250V • High Power Switching Transistors 50 Amperes 400-500V Many of these products are available in a variety of packages including axial lead mount, diamond mount, flat base, stud less, stud mount, and disc mount. All of these products are available mounted on air, oil, or water cooled heat sinks in a variety of circuit configurations; these assemblies offer average current ratings from .5 amperes to 10,000 amperes or more with voltage capabilities as high as 688 KV for some high voltage stack designs. The @ Data Book covers the vast majority of products and assemblies currently available; however, increased current ratings, voltage ratings, and/or improved turn-off and reverse recovery times will continueto evolve as a result 6f new product developments and improved production yields. Therefore, the reader is encouraged to contact a Westinghouse sales representative regarding any application(s) that might fall into any of these "fringe" areas. 4. IMPORTANCE OF POWER SEMICONDUCTORS Power semiconductors have grown from laboratory curiosities to brute-force industrial components which have become competitive necessities in the marketplace. The potential advantages of solid-state power electronics over electromechanical equipment are well known: increased reliability and service life, reduced size and maintenance. In some cases, there is a sizeable cost advantage, while in other cases the performance capabilities can be achieved in no other way. Table 1.1 shows a complete matrix of industrial applications that can use Westinghouse Power Semiconductors (See page 13). At least three current trends indicate that power semiconductors will become even more important to the user: 1. The growing shortage of oil and gas and the growing environmental concern will stimulate the utilization of clean electrical power in countless new areas now predominantly served by other forms of energy. 2. Efficiency in the manipulation and control of electrical power will have increasing priority as the rising cost of power forces the abandonment of techniques which are "short-term cheap but long-term wasteful." 3. The evolution of present applications and the creation of new applications will cause increasing demands for speed, precision, and reliability in power control that can be satisfied by no other technology. For these reasons, power semiconductors are penetrating many new application areas and outmoding many traditional design approaches. Product engineering departments accustomed to well established design procedures involving Ward-Leonard drives, relay logic, or selenium rectifiers are faced with extinction overnight if they cannot adapt to the higher levels of complexity and analytical sophistication made possible and made necessary by solid-state electronics. While many technologies evolve over a period of decadesleaving adequate reaction time for business planning-this is not usually the case with power electronics. Solid state technology typically moves from an insignificant share of a market to a dominant share in a period of only 2 to 4 years. The universal S-curve showing the capture of a market by a product which takes advantage of power electron ics is shown in Figure 1.2. Thus, a company which does not keep up-to-date in this new technology can easily lose a secure market position because of inadequate reaction time. 11 " of Annual Market 1~ ICompetitive • Necessity Laboratory 2~ Curio.~i;.;.otY~_---I Time Maximum Time Allowable To Defend Your Share of the Market (Typically 2-4 Years) Figure 1.2 Universal s-curve showing market penetration by a product which takes advantage of power electronics. 5. MANUFACTURER IOEMI END USER RELATIONSHIP Historically, this relationship has tended to be split into two independent relationships: (1) The semiconductor manufacturer and the customer, the original equipment manufacturer (OEM). (2) The OEM and the customer, the end user., With the growth and acceptance of power semiconductors into virtually every market segment, as well as the emergence of trends brought on by energy, environmental, and safety considerations, Semiconductor Manufacturer I OEM .... l.. I~ \ End User Figure 1.3 Semiconductor M/ianufacturer, OEM, En,d User Relationship. 12 the manufacturer, OEM, and end user relationship has become much more dynamic and comprehensive (shown by the diagram in Figure 1.3). The semiconductor manufacturer has come to recognize that both the OEM and the end user are "Users" of power semiconductors, whether directly or indirectly. The end user is really the ulti mate customer-the one who purchases, uses, and maintains the equipment that was built and sold by the OEM who, in turn, purchased power semiconductors from the component manufacturer. The end user wants reliable, efficient, easy-to-maintain equipment that will meet the necessary environmental and safety standards while providing maximum performance at minimum cost. Not until the semiconductor manufacturer, the OEM, and the end user collectively work together can a semiconductor be produced and a piece of equipment be designed that will fulfill all of the end user's needs. This is a shared relationship that, if properly performed, will be mutually rewarding for all concerned. ....,. , ftl:"urlUD 1== , ...... EQUIPMENT Fusion Energy Research .v. uc ear Fission ,Oil Supplies (uFfs~wer Wind TRANSPORTATION SYSTEMS Electric Vehicle : Stairway Mass rranslt People Movers INDUSTRIA<. CONTROLS AC Motor Controls AC Motor starters 1\lr conveyor gr~lIe Il Holst DC Io1otor Control EI~ ~~h~~c:~~~M) Elec trlc SDace Heatlnll . Fumace Heating Il Melting Lin rruckS _l,ilIhting. Machine T()ol Off Road Vehicles !' • Off~~If;~~ Oil Wen . ,,_..... Aircr, Alum num Heauctlon Anod izing Arc eaters latte 'gers ompUler onSU/ll8r ielE ctrlC Heating lac tron ~eam.weldil1g = Radio & lreatment ,ArC • • • • • • • • • • • • • • • • • est ..,~ • _.· Inauctlon Heating Ulser Military MIning I"'Ower Qlntars rv • • • • • • · General HIgh HIgh ..... RBDT I'urpo8e SOA Swltcltlng Modu.... ·• · · • • ·• • • • • • • • · ! • • • • • -". • • • • • • • • • • • • • • • • ..• • • • • • . !. • • • • • • • ..• · · • • ·• ·• • ·• ·• •• • ·• ·•• ·•• •• · • • • • • • ·•• •• • • • ·• • • • • ·•• • • • • • • power Factor Pum & I"'lpellne IOlie State ilee MIIIRrive~. Vele ng, capaCitor Discharge Ville InJl. , • • • • • • F••t Ph... Fut Recove'Y Control Swltchlnll '. • • • • • • • • • • • • · • • • • ..• • • ·• • • • • • • • • • .. • • • DIec DlIC H.Y. StIIc:U • • • • • • • • • • • • • • • • • • • • • • • • • • • • • It • • • • • • • • • ·•• • • • • • • • • • • • • ..•• ...• • • • Table 1.1 APPLICATIONS FOR@POWER SEMICONDUCTORS • • • · · .. • - It ..• • • • • · • • • • • • • ·• • o. 13 • • • • • .! • • Air • • • • • · LIquid ~:.':.' · · ·•• ·• ·• ·• • • • • • • • • • --_.... • • • • • • • • • • • 14 2 SELECTING THE PROPER POWER SEMICONDUCTOR FOR YOUR APPLICATION 1. BASIC SEMICONDUCTOR PARAMETERS DEFINED The pri mary tool for selecting the proper semiconductor to meet a given requirement is the technical data sheet. In order to use the data sheets effectively, one must first understand the significance of some of the more important parameters used in rating these semiconductors. The following apply to all types of semiconductors: TJIMAX) -Maximum allowable junction temperature. This is a very critical parameter upon which all device ratings are based. Typically, most SCR's have an upper operating junction temperature limit of 1250 C(with some high temperature series up to 150°C capability); most transistors have an upper operating junction temperature limit in the range of 150°C to 175°C; and most rectifiers have an upper operating junction temperature limit in the range of 175°C to 20OOC. If these respective values are exceeded, the device becomes vulnerable to rapid failure. Of course, proper derating below these maximum limits is necessary in the actual application to assure reliable performance. TciMAX I-Maximum allowable case temperature. Since the user of semiconductors has no way of actually measuring the junction temperature inside of a device package, the case temperature becomes a practical, useful value which can be measured and monitored. As a result, data sheets usually showthe current carrying capability of a device as a function of its case temperature. The case temperature is directly , related to the junction temperature by the device characteristic, R8JC (thermal impedance). RaJc -Thermal impedance, junction to case. RaJc is measured in degrees centigrade per watt and is determined by the device construction and materials used. This parameter indicates the ability of the device to transfer heat away from the junction and out through the device case-the lower the value, the better. Other basic device parameters by family type that are essential for the semiconductor user to know in the selection effort are as follows: Family Type InpuV Control RECTIFIERS NONE SCR's I GT (6) (1) (2) IF (av) V RRM I T(av), Overload Losses Output (1)V RRM (2) (5) TRANSISTORS B (6) I FSM (3) (4) V TM , 'RRM (5) di/dt, (7) dv/dt, (8) I TSM ton, (9) t q (10) (4) V BE (SAT), t rr SOA, (7) ton, (8) VCE (SAT), I C, (1) V CE (2) (6) V (3) I (4) FM, RRM (3) I Other Special (5) ' CEO NONE t off, (9) h FE (10) Table 2.1 BASIC SEMICONDUCTOR DEVICE PARAMETERS The following expansion of the items in the table explain their importance: RECTIFIERS (1) IF(avl-Maximum full cycle average forward current (measured with an average reading meter) at 15 a specified case temperature. This is the maximum amount of current that can be controlled or rectified by any given device. (2) V RRM -Maximum repetitive peak reverse voltage. This is the maximum allowable voltage that a device will block in the reverse direction. An associated parameter, V RSM ,defines the device capability to withstand non-.repetitive reverse voltage peaks of less than-.five millisecond duration. This parameter typically ranges from zero to 25% above the repetitive values. (3) V FM -Maximum forward voltage drop at a specified forward current and device case temperature. The large majority of the losses in a rectifier are due to the forward voltage drop. Therefore, low forward drops are very desirable in high power devices because less power is dissipated (P=VfM X IFlav)' (4) IUM -Maximum reverse leakage current at V RRM . Low reverse leakage currents are desirable forthe same reason as a low VFM ,less power (watts) to be dissipated (P=VRRM X I RRM ). (5) I FSM -Maximum one-half cycle (60H z ) peak surge current (under load). Ability to withstand current surges in excess of the rated operating current extends the application capability of a rectifier. This characteristic is non-repetitive in nature and, by definition, may occur only 100times within the life ofthe device. An associated parameter, 12 t, is used to coordinate sub-cycle fuse clearing time with sub-cycle fault rating of a rectifier. (6) trr -Maxi mum reverse recovery time relates to the time required forthe reverse current spike to dissipate after a rectifier stops conducting forward current. This characteristic is especially important on a class of rectifiers called "fast recovery" devices. Because all rectifiers are essentially "self-operated" switches, they have finite switching times. This characteristic becomes important when one wishes to rectify (or switch) at high frequencies. seR's (1) IT (av) -Maximum allowable average forward current at a specified conduction angle and case temperature. If a conduction angle of 1800 is specified, this parameter wouid bethe same as IF (av ) in a rectifier. However, unlike a rectifier, the conduction angle of an SCR can be controlled from 0 to 1800 (typicalIy, a data sheet lists five or six of these angles). The conduction angle defines that part of the sine wave during which the device is conducting current. (2) V RR M -Maximum repetitive reverse blocking voltage. The same comments apply here as for V RRM of a rectifier. The SCR in addition to having reverse blocking capability will also block voltage in the forward direction. V DRM is the designation for the maximum value of repetitive forward blocking voltage. Most SCR designs are symmetrical in nature-that is, the forward and reverse repetitive blocking voltage capabilities for a given device are equal (V DRM =V RRM ). Both repetitive voltage ratings (V UM V DRM ) have corresponding non-repetitive voltage ratings, V RSM and V DSM (3) V TM -Maximum forward voltage drop at a specified forward current and device case temperature. The same comments apply here as for V FM in a rectifier. (4) IUM -Maximum reverse leakage current at VRRM . Again, as with a rectifier, low leakage currents, IUM , are desirable as less power will be dissipated in the blocking (off-state) mode. In addition, as an SCR has repetitive forward voltage capability, V DR M ,it also has a forward leakage current, I DR M (5) I TSM -Maximum peak surge current for a given number of cycles at 60Hz. As with a rectifier, this characteristic is by definition non-repetitive and may occur only 100 times within the life of the device. In addition, following this current surge, the repetitive forward blocking voltage, V DRM ,is not guaranteed. This subject is treated in more detail in the @ Thyristor Surge Suppression Ratings Application Data Sheet in the General section ofthe Data Book. An associated parameter, 12 t, is used forfuse coordination. (6) IGT -Minimum DC gate current to trigger (turn-on) an SCR at stated conditions of temperature and forward blocking voltage. This characteristic specifies the absolute minimum amount of current that must be provided from a logic source to switch an SCR from blocking voltage (off-state) to conducting current (on-state). For more information, see the SCR Gate Turn-on Characteristics Application Data Sheet in the General section of the Data Book. (7) di/dt-Maximum rate of rise of peak current allowable with respect to time during SCR turn-on. Because an SCR requires a finite time to turn on, only a very small area of the junction is conducting current at the instant the deyice is triggered on. If the current is building up very quickly, it must all go through this very small area. When the specified di/dt limit is exceeded, the device can develop a hot spot which can destroy the unit. This is generally not a problem in60H z phase control applications but becomes a problem in DC switching applications (e.g. inverters) or in capacitor discharge circuits. When comparing di/dt ratings of different manufacturers be sure the ratings are both repetitive or non repetitive and that the ratings are based on the same set of test conditions. 16 (8) dv/dt-Minimum rate of rise of peak voltage with respect to time which will cause switching from the offstate to the on-state. When the dv/dt limit is exceeded, the potential danger exists of turning the SCR back on when it should remain off. As with di/dt this is generally only a problem in square wave or stepfuilction applications. Review all test conditions when comparing dv/dt ratings of different manufacturers-dv/dt can be expressed as either a linear or an exponential function. (9) ton -Time required for the forward current to reach 90 percent of its final (or maximum) value when switching from the off-state to the on-state under specified conditions. Switching times are important for two reasons-they affect the upper frequency at which the device may be operated and to some degree they determine the system efficiency. When considering frequency of operation (or i n pulse applications, the desired pulse width), it becomes simply a matter of whether or not the device can be turned on and off fast enough to satisfy the requirements. Power losses when switching from blocking voltage to conducting current can be a significant consideration for determining system efficiency. (10) tq. -Turn-off time relates to the time required for an SCR to switch from conducting current to blocking forward voltage. Turn-off ti me is important for essentially the same reasons as turn-on time. Turn-off ti me is not critical in most 60 cycle phase control applications; however, a special class of SCR's called "fast switching" devices are used in inverters, choppers, and other high frequency circuits. In these types of applications, the designer must be careful to select a device offering the optimum combination of current handli ng capability, voltage blocking capability, and turn-off time capability. Due tothe wide variety of fast switching applications, data sheet turn-off conditions do not necessarily reflect actual circuit operating conditions. Contact ® if help is needed in selecting the proper device. TRANSISTORS (1) Ic -Collector current. In most applications, this is the current that is manipulated to perform some desired function. In a series regulator, for example, the collector current can be increased or decreased by base current control, depending upon what the load requires. (2) VCE -Collector-to-emitter voltage. This is similar to V RRM in rectifiers and SCR's in that it represents the device blocking capability in the off-state. There are many related designations: Vc EO ,Vc ES ' V CER ,etc. They differ only in the third subscription letter which indicates the condition of the base: 0open, R-resistor, S-shorted, etc. (3) V CE (SAT) -Collector-emitter saturation voltage. When driving the base of a transistor, a point is reached where increased base current no longer results in decreased collector-emitter voltage. This is saturation. VCE (SAT) is a measure of the voltage across that junction under saturation and is comparable to forward voltage drop in rectifiers and SCR's. VCE (SAT) and Ic lead to power losses in the transistor during saturated operation and therefore, are important considerations. (4) VB E (SA T\ -Base-emitter saturation voltage. The same general comments apply here as for V CEI SA T) except the comments now refer to a base-emitter rather than a collector-emitter condition. High V Be (SAT) or large variations in VBE (SAT) will cause corresponding changes in VCEISATl (5) I Ceo -Collector-to-emitter leakage current with the base open. This is usually the pri mary leakage loss in a transistor. This characteristic is comparable to I RRM in rectifiers or SCR's. While low values of leakage are desirable to minimize power losses, low leakage is not necessarily synonymous with reliability. (6) IB -Base current. The function of the base current ina transistor is similar to that of the gate current in an SCA. However, in a transistor, current must be provided into the base as long as the transistor is to be kept on, whereas, the SCR only requires an initial pulse of current to turn it on. (7) SOA-Safe Operating Area. SOA is a voltage-current plot which describes an area in which the transistor can operate safely. A time limit is given for the collector voltage and collector current that can occur simultaneously in the transistor. Forward bias SOA ratings require the base-emitter to be forward-biased throughout the time that the peak power condition exists and is usually measured in a resistive circuit. A related term is forward current stability, denoted by the symbol I SB . Safe operation of a transistor during inductive switching when a transistor in series with an inductor is turning off necessitates consideration of additional characteristics. The inductance will keep current flowing for some period of time. During this time, the voltage is increasing across the transistor creating a Vxl product or power dissipation. Because the base-emitter is reverse-biased, the transistor cannot dissi pate as much power. The energy that a transistor can support is denoted by the abbreviation E SB . Inductive switching ratings can be used as a guide to compare transistor capabilities, but actual capabilities must be verified in the actual circuit. (8) & (9) ton & toff -Turn-on time and turn-off time. These are important parameters in transistors for essentially the same reasons given in the SCR remarks. 17 (10) hF£ -DC current gain under.specified conditions of collector current and collector-emitter voltage. This transistor characteristic is the ratio of DC collector current to DC base current. This amplification factor determines the amount of output (I e ) that is generated by a given input (I B ). For example, if hfE is 20 at I B =1 ampere, then Ie is 20 amperes. 2. CONFUSING TERMINOLOGY-MANUFACTURER VERSUS USER INTERPRETATION Many users and designers have either been lucky or have learned the hard way howto properly interpret a semiconductor manufacturer's data sheet. Unfortunately, many conventional semiconductor terms and definitions can have double meanings, depending upon whether they are being interpreted from the manufac-· turer's or the user/designer's point of view. What a semiconductor manufacturer might define as a maximum (minimum) value on a data sheet could well be a minimum (maxi mum) value for the designer and user. A few examples utilizing SCR terminology will illustrate this dilemma: Data Sheet Terminology User or Designer's Interpretation Might Be Semiconductor Mfgr's Actual Meaning (1) MaximumlGT=150 ma Does this mean that no more than 150 ma is needed to turn-on these SCR's? All SCR's supplied will have gate currents less than or equal to 150 mao User must supply more than 150 ma to assure proper SCR turn-on. In fact, 3 to 5 ti mes as Max. IGT is desirable for SCR turn-on in certain applications. Here, a value defined as maximum by the manufacturer is for the user or designer, an absolute minimum design limit. (2) Maximum blocking or off-state voltage V DIM ,VRRM =1200 volts. Does this mean that some devices received will block or support less than 1200 volts? All devices supplied will support at least 1200 volts; however, this limit cannot be exceeded in the application. In this case,the manufacturer's maximum is also, the deSigner's or user's maximum limit. (3) Minimum di/dt - 200 Alp.s Does this mean that 200 A/p.s can be exceeded ina given application? . All devices supplied will withstand a rate of current rise (di/dt) of at least 20 0 AI p. s ; however, this limit cannot be exceeded in the application. Here, the manufacturer's minimum value becomes the user's or designer's maximum design limit. (4) Typical turn time t q =40p.s Can this typical turnoff time be relied on in a given application? This 40p.s turn-off time only represents an average value for the product family and is not a guaranteed limit. Typical values should not be relied upon by the designer or user as guaranteed values. off Table 2.2 Confusing Data Sheet Terminology 18 Remarks Realistically, data sheets should be written from the user and designer's view point rather than the manufacturer's device-oriented point of view-however, since most users and designers have been "weaned" on this existing terminology, a change in philosophy would create only more confusion. To help those who have yet to conquer data sheet terminology, the following suggestions are offered: The safest way to interpret a maximum or minimum data sheet limit is to recognize that (1) they both represent worst case designer or user conditions, (2) they both are guaranteed by the semiconductor manufacturer. As for "typical" values, don't rely on them as maximum or mini mum design limits in an application. If a "worst case" limit rather than a "typical" value is needed for a particular application, have the semiconductor manufacturer guarantee the design limit needed either by actual testing or written certification. If still in doubt about how to interpret a given data sheet parameter, call the semiconductor manufacturer for clarification. 3. HOW TO USE THE WESTINGHOUSE DATA BOOK There are four easy ways to locate technical data in the Westinghouse Data Book: Device Type Number Search (1) IF ONLY THE PRODUCT TYPE NUMBER IS KNOWN: Go to the Master Cross Reference Type Number Index in the GENERAL section of the Data Book. Using this JEDEC and alpha/numeric industry index, the reader can rapidly locate any power semiconductor product type number for which Westinghouse offers an exact or suggested replacement along with the page number of the recommended Westinghouse product data. (2) IF BOTH THE PRODUCT FAMILY AND THE PRODUCT TYPE NUMBER ARE KNOWN: Go the the alpha/numeric Product Type Number index at the beginning of the approprate generic PRODUCT section (Assemblies, Rectifier, Thyristor-SCR's and RBDT, or Transistors). Using this index, the reader can turn directly to the page location of a given product type number. General Application Search (3) IF A SPECIFIC PRODUCT APPLICATION REQUIREMENT IS KNOWN: Go to the appropriate PRODUCT section (Assemblies, Rectifier, Thyristor-SCR's and RBDT, or Transistors), look under the appropriate product subgroup (Le. General Purpose or Fast Recovery for Rectifiers). and scan the Product Capability Graphs and Product Selector Guides. These graphs and guides are presented in order of increasing average current so the reader can quickly locate a suitable Westinghouse product type and corresponding page number data location. (4) IF BOTH A SPECIFIC PRODUCT APPLICATION REQUIREMENT AND THE DESIRED PRODUCT PACKAGE IS KNOWN: Go to the @ Data Book Table of Contents forthe location of the appropriate PRODUCT section, product subgroup, and package type. The page number shown marks the beginning of the desired data section; the data for a given package type is listed in order of increasing average current rating to simplify the reader's search. 4. KNOW YOUR APPLICATION REQUIREMENTS Many applications using general purpose rectifiers or transistors and phase control SCR's require the user only to consider such basic parameters as current, voltage, and temperature when developing a new design, working on a conversion or an equipment upgrade, or looking for a replacement device. However, there can be many secondary parameters which can adversely affect desired equipment operation-especially if devices are used in series and/or parallel combinations. Most fast recovery rectifiers, high power switchi ng transistors, and fast switching SCR's require close scrutiny by the user on essentially all device parameters to assure proper equipment operation. To assist the user in selecting the proper power semiconductor for a given application, Westinghouse has developed a series of Appl ication Checklist/Work Sheets in the following areas: (1) General Purpose and Fast Recovery Rectifiers (2) Phase Control SCR's (3) Fast Switching SCR's (4) Power Transistors (5) Assemblies. To use a particular form, simply make a xerox copy and fill it out. With your application requirements down on paper in a logical order, it will be easier to locate a suitable device by self-selection or by calling or writing the semiconductor manufacturer for a device recommendation. 19 P.S. Even if you have already selected a device yourself, it might be worthwhile getting a confirmation from the manufacturer. To assist the user in searching for replacement devices, a ha:ndy Device Identification Checklist has been developed. A copy of this form is presented on page 54. 20 @ GENERAL PURPOSE AND FAST RECOVERY RECTIFIER APPLICATION CHECKLIST (Make copy for each use) 1. APPLICATION: _ _ _ _ _ _ _ _ _ _ _ _ __ o LEAD MOUNT 1 STANDARD POLARITY OR o REVERSE POLARITY 0 o STUD MOUNT o DISC MOUNT 2. CIRCUIT: o OTHER Sketch circuit (showing all component values including inductences) or attech drawing o NO PREFERENCE • Special size, weight, or other restrictions _ _ _ _ _ __ 3. CIRCUIT VOLTAGE: FOR APPLICATIONS REQUIRING FAST RECOVERY CHARACTERISTICS, COMPLETE THE FOLLOWING SECTION - • Maximum reverse voltage across rectifier v • Maximum expected transient voltage 7. RECOVERY CHARACTERISTICS: (If required, sketch waveform(s) on back of page) ___v • Maximum reverse recovery time allowable, t r r - - - - • Desired voltage safety factor • Recovery time, to _ __ • Preferred rectifier device voltage rating ___ v • Recovery time, t b _ _ __ • Other _ _ _ _ _ _ _ __ • Maximum overshoot current, IR(REC}---./!,A 4. CIRCUIT CURRENT: (sketch waveform(s) on back of page) • Peak current, IFM _ _ _ A A • Average forward current" • Pulse width, tp _ __ • Rate of current fall,d;R/dt ~ - Waveform and frequency --"- - Duty cycle • Waveform _ _ _ __ ___ A • Overload peak current (waveform) • Maximum junction temperature ~ ---" - Duty cycle - Pulse width - Resume operation following overload DYES • Peak surge current (waveform) oNO _ _ _A_ TIME - Pu lse width ', ___011\ i ~EC) ~R(REC)-:r-I~~' .. - - Number of cycles • Other _ _ _ _ _ _ __ *If paralleling is required, state method of current sharing __ 5. THERMAL: 8. PROJECT REQUIREMENTS: Quotetlon Due Date _ _ __ • Cooling Medium (check one) o AIR - 0 • Quantity Required__ Natural Convection, altitude _ _ feetor o Forced' _ _ _ LFM _ _ _ CFM** **Duct cross-sectional area _ _ Person Requesting Information • Timeteble _ _ _ __ Name _ _ _ _ _ _ __ Long-range Potential _ _ Phone _ _ _ _ _ _ X __ • Other Remarks _ _ _ Job Function - - - - - Company _ _ _ _ _ __ o WATER - _ _ _ GPM flow rate Address _ _ _ _ _ _ __ o OIL (Immersed) - Type _ _ Manufacturer _ _ __ o Special screen ing and/or h igll reliability test requirements are attached. o Also quote on this app licat ion using @ assemblies. o OTHER _ _ _ _ _ _ _ __ • Cooling medium maximum temperature, 'C _ __ • If heat sink Is known, specify R9sA _ _ _ 'CIW. • Other thermal considerations City _ _ _ _ _ Stete_ Bldg. _ _ _ __ Zip __ Please complete a copy of this form foreach different application. Forward this form to Westinghouse Electric Corporation, Semiconductor Division, Attention: Sales Department, Youngwood, Pa. 15697 for complete quotation. If you need faster service, please call (412) 925-7272 for a quote. 6. MECHANICAL: • Desired package type (check one) - 21 @ PHASE CONTROL SCRAPPLICATION CHECKLIST (Make copy for each use) 6. THERMAL: 1. APPLICATION: • Cooling Medium (check one) - [] AIR - [] Natural Convection, altitude_ _feet or [] Forced ___ LFM _ _ _ CFM * * 2. CIRCUIT: Sketch circu it (showing all component values including inductances) or attach drawing **Duct cross-sectional area _ __ o Water - _ _ _ GPM flow rate o OIL (immersed) - Type _ _ _ Manufacturer o OTHER- 3. CIRCUIT VOLTAGE: • Cooling medium maximum temperature, 'C _ __ • Maximum peak forward and/or reverse voltage across SCR ___v • Maximum expectad transient voltage ___v • If heat sink is known, specify Re SA _ _ _ ooIW. • Other thermal considerations _ _ _ _ _ _ _ _ __ • Desired voltage safety factor 7. MECHANICAL: ___v_ • Preferred SCR voltage rating • Desired package type (check one) - • Other _ _ _ _ _ _ _ _ __ o STUD MOUNT 4. CIRCUIT CURRENT: (sketch waveform(s) on baCk of page) o DISC MOUNT • Maximum continuous SCRcurrent"DOC, oAVERAGE, or oRMS ___ A o INTEGRAL HEAT SINK • Phase - 014>.03<1>, 061/>, or oOTHER _ _ _ _ _ __ o FLAT BASE • Conduction angle - oSlne or oSquare, degrees o OTHER _ _ _ _ _ __ o NO PREFERENCE • Current waveform, frequency, and duty cycle _ _ _ __ • SpeCial size, weight, or other restrictions _ _ _ _ __ • Overload peak current (waveform) --"- - Duty Cycle 8. PROJECT REQUIREMENTS: Quotation Due Date - - - - Pulse Width - Resume Operation Following Overload DYES oNO • Quantity Required__ Person Requesting Information • Timetable _ _ _ __ Name Long-range Potential _ _ Phone _ _ _ _ _ _ X __ • Other Remarks _ _ _ Job Function - - - - - - _ _ _A_ • Peak surge current (waveform) - Pulse Width - Number of Cycles Company _ _ _ _ _ __ - Assymetry (LIR ratiO) Addr~s • Other _ _ _ _ _ _ _ _ __ o Special screening and/or high reliability t~t requirements are attached. o Also quote on this application using @ aasemblies. "If paralleling is required, state method of current sharing: 5. GATE DRIVE AVAILABLE: • IG2---------~A • tGR u, • IGT (maXI 2500 I I I I --~--'l~--------_t I I I I I I , Bldg. - - - - - - Zip_ Please complete a copy ofthls form for each differentapplication. Forward this form to Westinghouse ElectriC Corporation, Semiconductor Division, Attention: Sales Department, Youngwood, Pa. 15697 for complete quotation. If you need faster service, please call (412) 925-7272 for a quote. I I I I State __ • tGP _ _ _ _ _ _~u=. tGS _ _ _ _ _ _--''''".. ma ------ IGT(maxI,.. __ ----- • • Forward gate source voltage _ _ _ _ _ _ _ _ _ _-'-v 'G2 City _ _ _ _ _ _ __ I 22 @ FAST SWITCHING SCR APPLICATION CHECKLIST (Make copy for each use) 1. APPLICATION: 5. SWITCHING: • 2. CIRCUIT: [J Soft Commutation or Hard Commutation [J • Maximum available tum-off time, tq-lAs@TJ _ _ _ DC Sketch circu it (showing all component values Including Inductances) or attach drawing vi",. • Reapplied dv/dt • Maximum operating frequency _ _ _ or duty cycle ___%_ •. GATE DRIVE AVAILABLE: • IG2 _ _ _ _ _ _ _0..1. • tGR • tGP _ _ _ _ _ _ _-"fJ.=S II-S • tGS ________ ....!:fJ.=S ma • IGT (maXI @ 25 DC 3. CIRCUIT VOLTAGE: • Peak forward blocking voltage, VO RM • Peak reverse blocking voltage, V RRM • Maximum expected transient voltage ___v ___v ___v • Forward gate sou rcevoltage _ _ _ _ _ _ _ _ _ _-'-v 7. THERMAL: • Cooling Medium (check one) [J • Desired voltage safety factor ___v • Preferred SCR voltage rating AIR - [J Natural Convection, altitude _ _ feetor [J Forced _ _ _ LFM _ _ _ CFM ** • Other _ _ _ _ _ _ _ _ _ _ _ __ * * Duct cross-sectional area _ __ ~=,(1!j~ xgt-~E~~:r VDRM MINIMUM CIRCUIT TlJRN-llfF T I 7 f REAPPLIED dvldt [J [J \ [J WATER - _ _ _ GPM flow rate OIL (immersed)- Type _ _ _ Menufacturer OTHER - ______________________________ • Cooling medium maximum temperature, DC _ __ • If heat sink is known, specify R eSA _ _ _ DC/W. • Other thermal considerations _ _ _ _ _ _ _ _ ___ •• MECHANICAL: r-- • Desired package type (check one) tp ----+/Y""JJ:-IR (REC) to-l i [...."tb [J STUD MOUNT [J DISC MOUNT [J INTEGRAL HEAT SINK [J FLAT BASE 4. CIRCUIT CURRENT": (if required, sketch waveform(s) on back of page) Worst Ceae Pullewldth CondlUona • Maximum peak current, I TM - Pulsewidth, tp _ _ _A_ ---"'-' - Waveshape OTHER - - - - - - - - - - [J NO PREFERENCE • Special size, weight, or other restrictions _ _ _ _ __ 9. PROJECT REQUIREMENTS: Quotation Due Date _ __ • In itial rate of current rise, d i /dt • Rate of current fall, diR/dt • Reverse recovered charge,QRR - Max, overshoot current I R(RECI [J • Quantity Required__ Person Requesting Information • Timetable ______ Name Long-range Potential _ _ Phone _______ X __ • Other Remarks _ _ _ Job Function - - - - - - - _ _ _A_ - Recovery time, ta Company _ _ _ _ _ _ __ - Recovery time t b Address ___________ • Peak surge current (waveform) ___ A [J Special screen ing and/or high reliability test requlrements are attached. [J Also quote on this application using @ assemblies. - Pu Isewidth - Number of cycles - Assymetry (L/R ratio) City - - - - - State Bldg. - - - - - - - Zip_ Please complete a copy ofthis form foreach different application. Forward this form to Westinghouse Electric Corporation, Semiconductor Division, Attention: Sales Department, Youngwood, Pa. 15697 for complete quotation. If you need faster service, please call (412) 925-7272 for a quote. • Other _ _ _ _ _ _ _ _ _ _ _ __ 'If paralleling is required, state method of current sharing: 23 @ TRANSISTOR APPLICATION CHECKLIST (Make copy for each use) • Turn-off storage time, t, 1. APPLICATION: 2. CIRCUIT: Sketch circuit (show all component values including inductances) or attach drawing • Turn-off fall time, tf --_1.1._, • Maximum junction temperature ___oc_ 6. THERMAL: • Cooling Medium (check one) o AIR - 0 Natural Convection,altitude _ _ feetor oForced _ _ LFM _ _ CFM** 3. CIRCUIT VOLTAGE: ** Duct cross-sectional area _ __ v • Source voltage • Maximum circuitvottageacross transistor o clamped or 0 o WATER - _ _ _ GPM flow rate ___v o OIL (immersed) - Type _ _ _ Manufacturer _ _ __ unclamped • Maximum expected transient voltage oOTHER- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ ___ v • Cooling medium maximum temperature,·C _ __ • Maximum emitter base reverse • If heat sink is known, specify Re SA _ _ _ ·CIW. ___v voltage during operation • Other thermal considerations ______________ • Desired voltage safety factor • Preferred transistor voltage rating ___ v 7. MECHANICAL: • Other • Desired package type (check one) o DIAMOND MOUNT (TO-66/TO-3) 4. CIRCUIT CURRENT: (Include load line sketch w/unclamped o STUD MOUNT inductances specified) o DISC MOUNT _ _ _A_ • Maximum collector current' o OTHER • Collector current duty cycle __% and Irequency _ _ Hz o NO PREFERENCE • Current gain • Special size, weight, or other restrictions _ _ _ _ __ • Other '11 paralleling is required, state method of current sharing __ 5. SWITCHING: 8. PROGRAM REQUIREMENTS: Quotation Due Date_ __ • Quantity Required__ Person Requesting Information • Timetable Name Long-range Potential _ _ Phone _ _ _ _ _ _ X __ • Other Remarks _ _ _ Job Function - - - - - Company _________ Address _ _ _ _ _ _ __ 90o;;--Zo o Special screening and/or high reliability test requirements are attached. o Also quote on this application using @ assemblies. 10'. t , TURN ON TIME • Maximum base current, I a{ON) • Maximum base current, I a {OFF) • Turn-off base supply voltage TURN OFF TIME City Bldg. State __ Zip - - Please comp lete a copy of th is form 10 reach different application. Forward this form to Westinghouse Electric Corporation, Semiconductor Division, Attention: Sales Department, Youngwood, Pa. 15697 for complete quotation. If you need faster service, please call (412) 925-7272 lor a quote. A ___ A ___v_ • Turn-on delay time, td • Turn-on rise time, tr 24 @ASSEMBLY APPLICATION CHECKLIST (Make copy for each use) 1. APPLICATION: _ _ _ _ _ _ _ _ _ _ _ _ _ __ o WATER - _ _ _ GPM flow rate o OIL (immersed) - Type _ _ _ Manufacturer OOTHER- _ _ _ _ _ _ _ _ _ _ _ _ _ __ • Cooling medium maximum temperature, DC _ __ 2. CIRCUIT: Sketch circuit (showing all component values includ ing inductances) or attach drawing • Other thermal considerations _ _ _ _ _ _ _ _ __ 6. MECHANICAL: • Special semiconductor device package requirements oYESo NO 3. CIRCUIT VOLTAGE: If YES, specify desired package type _ _ _ _ _ _ __ • Maximum forward and/or reverse voltage across • List any size, weight, mounting, or other requirements _ assembly ---y- ___ v • Maximum expected transient voltage • Desired voltage safety factor ___v • Preferred assembly voltage rating 7. PROJECT REQUIREMENTS: Quotation Due Date _ __ • Other • Quantity Required__ 4. CIRCUIT CURRENT: (sketch waveform(s) on back of page) • Timetable A • Maximumoutputcurrent*- Long-range Potential _ _ oAVG., 0 RMS, or 0 PEAK • Other Remarks _ _ _ - Waveform and frequency Person Requesting Information Name _ _ _ _ _ _ _ __ Phone _ _ _ _ _ _ X __ Job Function Company _ _ _ _ _ __ - Duty cycle • Overload peak current (waveform) ___ A Address _ _ _ _ _ _ __ % o Special screening and/or City State __ high reliability test re-----quirements are attached. Bldg. _ _ _ _ _ _ Zip __ - Duty cycle - Pulse width - Resume operation following overload DYES • Peak surge current (waveform) oNO ___ A - Pulse width Please complete a copy ofthis form foreach different application. Forward this form to Westinghouse Electric Corporation, Semiconductor Division, Attention: Sales Department, Youngwood, Pa. 15697 for complete quotation. If you need faster service, please Clili (412) 925-7272 for a quote. - Number of cycles • Transformer KVA and percent impedance • Other _ _ _ _ _ _ _ _ _ _ _ __ 'Ifparalleling is required ,state method of currentsharing: 5. THERMAL: • Cooling Medium (check one) o AIR - 0 Natural Convection, altitude _ _ feetor o Forced _ _ _ LFM ___ CFM *'* **Duct cross-sectional area _ _- 25 MONEY " Opportunity Costs" Wise Semiconductor Procurement Means Good Resource Management and That Involves Everyonel 26 3 SEMICONDUCTOR PROCUREMENT 1. SPEND SEMICONDUCTOR DOLLARS WISELY. Each user must consider several facets of device and supplier capability in order to make intelligent procurement decisions concerni ng power semiconductors. Suggestions for eval uation of the "total" value of a power semiconductor supplier are provided in Section 2. Section 1 deals briefly with other suggestions for consideration prior to selecting a device and placing an order: (1) "total" cost, including costs over and above the price of the device and (2) engineering-related financial considerations, such as efficiency, reliability, and device availability versus electrical capability. Total Cost. The price of a power semiconductor is certainLy one of the major items for consideration prior to selection of a device to satisfy the user's needs. However, a user must also consider other costs in order to optimize "total" cost. Packaging, transportation, insurance charges, and hardware requirements associated with a device are easily measurable, although often disregarded. Other total cost considerations are not measured as easily, but can prove to be very significant alternatives. For example, blanket contracts, blanket orders, letters of intent, and other types of purchase agreements are generally vehicles used to obtain lower device prices, however, these agreements help to reduce other cost factors. When a power semiconductor manufacturer has advance knowledge of on-going user requirements, better planning is possible. The net resu It is improved reproducibility, reduced delivery lead time which helps to mini mize user safety stock, and better on-time shipping performance. . Often when a user buys several different semiconductor type numbers in the same product family, a savings can be obtained by ordering only the best rated unit (current, voltage, etc.) for all needs, thus qualifying for a larger volume price discount. Combining purchases for device types of different voltage ratings is usually the most practical way to achieve a higher volume price discount (this is especially true for the lower voltage ratings of a given product type); sometimes combining various current ratings of the same package type will also result in savings. If in doubt, ask the manufacturer to review your semiconductor procurement list and reco mmend the most economical purchase option. The manufacturer will be glad to help since it is easier to fill one large order for a single device type than many small orders for different part numbers. In addition, the user saves ti me and money in i ncomi ng inspection, inventory costs, improved delivery performance, and standardization of parts. Another frequently overlooked cost factor relates to special handling. Costly set-up charges can be avoided and better price stability and shorter delivery lead times can be realized if the user limits the number of releases and maximizes release quantities for each device. A d.ecision to enter an order through an authorized distributor to avoid the generally higher minimum release of a manufacturer can often be a reduction in total cost even though the individual device price may be higher; however, beware of counterfeit rebranded devices. Deal only with authorized distributors. Trying to save a few dollars on a unit price basis can add significantly to total costs if the devices are determi ned to be defective at a later date. Extra i nspecti on steps, such as a req u i rement for government source inspection, also can cause delayed shipments and increased costs because of delays incurred while waiting for arrival of inspectors. Engineering Related Financial Considerations. Efficiency of equipment, cost of maintenance, reliability. and the cost of auxi Iiary and protective circuitry are significant items for review in order to obtai n a true picture of the cost of a particular power semiconductor. It is often difficult to determine a dollar value for each of these factors, but each item must be considered. nonetheless, ifan intelligent procurement decision isto be made. In a field of rapid technological improvement such as power semiconductors, new devices are introduced at frequent intervals. Asingle new device often replaces two or more existing device types and/or procurement of new completely tested assemblies of devices on heat sinks (where semiconductor purchase dollars may rise, but total equipment costs decline) is often more economical for the user than handling individual parts. Review of the latest available devices is, therefore, an essential ingredient in wise power semiconductor procurement. The user must also determine the optimum trade-off between electrical parameters as these parameters relate to the ability of the device manufacturer to reproduce devices consistently. For example, selection of a fast switching SCR often requires trade-offs among blocking voltage. current rating, and turn-off time to assure availability in large quantities. 27 Adequate safety factors on device ratings are another significant cost-related design consideration. Manufacturers of power semiconductors normally warrant products to meet specific electrical parameters. The designer must apply safety factors to assure the integrity~of the application, but application of excessive safety factors can be costly. Power semiconductor manufacturers spend considerable time and rrloneyto develop device families with useful, user-acceptable, ratings. When possible, users should attemptto incorporate these "standard" devices into applications to assure themselves of the best price and product availability. Special electrical test requirements and/or mechanical modifications normally add to cost and delivery lead times. 2. EVALUATING A POWER SEMICONDUCTOR SUPPl.IER , . The traditional method for evaluating the value of a supplier-price, delivery, service (P,D,S)-is a gross oversimplification of the measurement criteria. The P,D,S rule could cause one to "short change" oneself and prevent the company from realizing the total value of capabilities and services offered by truly good suppliers. Eighteen key items to be used for comparing suppliers have peen identified and discussed below under four major categories-General Support, Pre-Order Period, Order Period, and Post-Order Period (see Table 3.1). Each of the categories (or each of the individual items) must be weighted according to the needs or requirements of each user organization. That user must then eval uate each available supplierfor the most important categories (or items). The manufacturer(s) scoring the, highest total rating represents the best "total value" supplier to the user. This method for evalution is presented as a tool to aid in the selection of a supplier. The method is not simply a means of reducingthevalues ofasuppliertoa numerical score; the purpose isto identify and quantify the key areas where potential power semiconductor supplier(s) can represent real value to a user. GENERAL SUPPORT -Sales coverage -Distributor support -Technological leadership -Product reproducibility: PRE-ORDER PERIOD -Technical information support -Application engineering assistance -Sample/prototype service -Quotation response , -Competitive price and delivery ORDER PERIOD -Order acknowledgement -Customer information service -On-ti me shipments -Advance warning of shipping delays -Condition of shipments POST-ORDER PERIOD -Reliability -Settlement of claims -Warranty -Replacement of obsolete device types Table 3.1 Supplier Evaluation Checklist 28 GENERAL SUPPORT Sales coverage is the primary link between a power semiconductor manufacturer and the user. A good factory salesperson or manufacturer's representative is a problem solver, not merely an "order taker". A good salesperson is knowledgeable about the total product offering and service capability of the manufacturer and can therefore resolve pre-order, order, or post-order problems or obtain anwers to questions that might arise during these periods. Distributor support is an important factor in complete service support. Authorized distributors supply local, reliable service for production as well as emergency requirements by providing ample inventories and many value-added features. In addition, these distributors offer a broad spectrum of complimentary products. Technological leadership assures the user that product which is purchased is manufactured with modern techniques and exhibits state-of-the-art electrical parameters and mechanical configurations. Power semiconductor manufacturers invest millions of dollars annually to keep products and processes up-ta-date. New generations of devices or redesigned, upgraded versions of existing products can drastically affect the competitive market position of the user. New power semiconductors can lower or at least maintain equipment costs, offer improved energy utilization, support a cleaner, quieter environment, provide greater system reliability, reduce equipment size and weight, provide increased safety to equipment operators and employees, and can offer new and expanded operating capabilities. Since successful users must incorporate new technologies in equipment in order to remain competitive, they must be extremely conscious of the technological leadership qualities of their power semiconductors suppliers. Product reproducibility is an often overlooked, but extremely important term for evaluation of power semiconductor manufacturers. Many design engineers have experienced the unfortunate situation of designing a system which incorporates a new state-of-the-art device sample produced under laboratory conditions and then be unable to obtain the device in sufficient volume and/or at a reasonable price. The yield-dependent nature of power semiconductor production dictates the necessity for a manufacturer to maintain a wellcontrolled production process in order to provide adequate quantities at acceptable price levels. A total value power semiconductor supplier must combine those controls with a full understanding of user requirementsdevice specifications, required quantities, production timetables. PRE-ORDER PERIOD Technical in'ormatlon support includes such items as product data sheets, application data sheets, seminars, technical papers, application handbooks, product newsletters, price lists, cross reference guides, and other semiconductor information. These written communications are the user's most reliable and most comprehensive source of information regarding a given manufacturer's products, services, and capabilities. The completeness and accuracy of the material presented, its perti nence to the user's application, and the rate of response in supplying the requested information are all important factors in providing meaningful, technical information. Application engineering assistance can be a valuable resource if properly used. While application engineers cannot be expected to design a customer's circuit, they can help a customer avoid misapplication of devices or can assist in solving many different product-related application problems. Frequently, special ratings and other data can be generated for particular customer applications. Failed semiconductors can be examined to determine the cause of failure so that corrective action(s) can be taken. Good application assistance means easy access to engineers who possess a high level of expertise and a willingness to help solve a problem for the customer. Sample/prototype service relates to the semiconductor manufacturer's willi ngness to provide samples for qualification for new designs as well as for second source approval. The delivery of the sample(s) must be prompt, with test data when appropriate. Prompt sales follow-up to assure satisfactory performance in the application is required for "total-value" service. Quotation response refers to such items as speed, accuracy, and completeness of quotation information. Good performance at this phase of a negotiation is essential to prevent serious errors in the order processing and post-order periods. Competitive price and delivery are treated as a single entity because both items usually must fall within some pre-determined maximum allowable user limit in order to be considered as a valid quotation. The price quoted must fairly reflect the product and services being provided by the semiconductor manufacturer. The delivery time quoted must be realistic; and when a fast delivery is required, the delivery time quoted must truly reflect a best effort from the manufacturer. ORDER PERIOD Order acknowledgement must be prompt and accurate to assure timely shipment. Delays atthis point are 29 totally unnecessary and are completely avoidable if the items in the General Support and Pre-Order Periods . have been treated properly by the power semiconductor manufacturer. Customer Information service reduces user cost when provided promptly in a complete and accurate r:nanne.r. Little or no effort on the part of the user should be required to determinethestatus of most orders. On-time shipments are a true measure of the stated capability of a power semiconductor manufacturer. Historical on-ti me shipment performance becomes a benchmark for determination of supplier "believability" in all facets of service. Willingness to recognize and discuss reasons for missed delivery promises is another item to consider when evaluating a power semiconductor supplier. . Advance warning of shipping delays is essential if a user is to have time to adjust equipment production schedu les to accommodate the delay. Major causes of late semiconductor deliveries are usually the result of shifts in production yields, testcorrelation problems, production and/or equipment through-put limitations, and/or out-of-spec incoming material component parts. Knowledge of an impending delay must be transmitted to the user immediately. Condition of shipments when received at the user's plant, to a great extent, depends upon how the product was packaged for shipment and the quality control procedures observed prior to and during shipment. Experienced packers using specially designed cartons and packing material for power semiconductors can make the difference as to whether or not a shipment of product will survive the trip from supplier to user. However, condition of shipments is also a function of the freight carrier employed to move the product and the types of carriers available from the supplier's facility to the user's facility is an important conSideration. POST-ORDER PERIOD Reliability generally refers to long term product performance - actual field service experience. Reliability is a shared responsibility among the semiconductor manufacturer, the original equipment manufacturer, and the end user and is often regarded as the single most important item by all three groups. Settlement of claims is often not considered as being very important; however, one only needs to have a single bad experience to really appreciate its value. Settlement of claims includes such things as shipment shortages, incorrect pricing and invoicing, rejected material, transportation charges, customer rework orders; and cancellation charges. There can be a wide discrepancy among various semiconductor manufacturers as to how promptly, effiCiently, and fairly such claims are handled. / Warranty is like insurance - no one ever needs it until it is too late. If nothing else, a warranty is at least an indication of the confidence a manufacturer has in the products and services provided. A warranty should define the extent of coverage and the time span of the guarantee. The size of a semiconductor manufacturer and more importantly, the ability to financially hand Ie a large clai m must be consi dered - especially on certai n jobs where a high percentage of the equipment cost is due to the power semiconductors. Replacement of obsolete device types is a continuous problem forthe user - both the original equipment manufacturer and the end user of the equipment. Although a fairly high degree of standardization exists within the power semiconductor industry, new designs are evolving constantly, often with slightly different mechanical dimensions and configurations and more often with improved electrical ratings. A "total value" manufacturer provides information and, whenever possible, product as replacement for old or obsolete designs. Since the end user of equipment is usually attempting to procure a few spare parts to get equipment back into operation, it is important for the OEM to maintain a small inventory of replacement semiconductors to support renewal parts business or to support orders for old equipment designs without expensive and lengthy engineering redesign. The ability of the power semiconductor manufacturer to support those needs is another significant criteria for selecting a supplier. Several precautions must be taken when evaluating suppliers using this or any other method. The person (s) responsible for evaluating suppliers must recognize that within the organization different departmental functions (purchasing, engineering, production, maintenance, general management, research and development, etc.) will place a different degree of importance on each of the items under consideraton. Therefore, an attempt should be made to at least subjectively provide a composite weighting for each of the items that reflects the needs of the total organization. One should also recognize that the type of product or services being sought (commodity-type device versus special device type) as well astheamount of business to be placed (quantity required, lead time, second source requirements) can significantly alter the choice of suppliers. Thus, the best supplier choice under one set of conditions may not be the best choice under a different set of conditions. Finally, nothing is really ever stagnant. User needs change ... Supplier's products, services, and capab iI ities also change over time. Therefore, a user must periodically (every 18 months to 2 years) re-eval uate .or review the situation to determine whether or not the existing lineup of suppliers is still the besttotal value. 30 3. BUYER'S CHECKLIST PRE-ORDER Having selected the product required for a given application and having chosen the supplier, the following checklist will help to make the buyer's job easier and to minimize errors and delays: • If a new customer, establish credit with the supplier prior to placing the purchase order. • Identify the required device by describing with a single term, either drawing number pll,Js revision, JEDEC number, or manufacturer part number. • Establish total quantity required. • Optimize total cost and delivery by conSidering available purchase agreements, minimum releases, authorized distributors, hardware, packaging and data requirements, standard catalog items versus specials. • Specify requested shipping date or in-plant date. • Provide complete and accurate "Ship To" and "Bill To" information. • Specify shipping method (consider cost, transmit time, traceability, insurance cost.) • Reference negotiation number or quotation number, if applicable. • Specify tax exemption status. • Send purchase order directly to manufacturer or authorized distributor. ORDER • Proofread acknowledgment. • Contact supplier directly concerning order status. POST-ORDER • Contact the Returned Material Coordinator at the manufacturer concerning administrative errors, such as discrepancies on packing lists or invoices. • Contact the Returned Material Coordinator at the manufacturer for authorization and specific return instructions prior to returning any material. 4. ENTERING AN ORDER After selecting a device and a supplier, speed and accuracy are primary factors to consider when placing a purchase order. If a power semiconductor manufacturer can translate the information on the purchase order into factory working language quickly and accurately, the user has a much greater chance to receive the required parts in a timely manner. Chances for production line shutdowns and/or decreased production rates due to parts shortages are greatly reduced. A concise, but complete, description of the following information on each purchase order will mini mize supplier translation time and enhance translation accuracy. Remember that too much information can create as many translation errors as too little information. 1. "Ship To" address. Be sure to include company name, street, plant, department or building number, if applicable, city, state, and zip code. 2. "Charge To" or "Bill To" address. Provide the same information as in (1) above. 3. Purchase order number in a conspicuous location. 4. Note any special marks required on order acknowledgements. packing lists, or invoices. 5. Tax information concerning exemption from state and local taxes. Taxes must be charged ifexemption information does not appear on the purchase order or if an exemption certificate, resale certificate. or direct pay permit is not on file with the supplier. Remember that state taxes are based on the "Ship To" address. 6. Description of parts required. In order of preference the best method for part description is (1) user part number or drawing number; specifying most recent revision, (2) JEDEC number, (3) manufacturer part number. Only one of the methods should be used for a single item on a purchase order. Use of more than one method of description (e.g. XYZ Corp. part number 378A94 Revision Cor 1N1203) requires order entry personnel to cross check to assure that both descriptions identify exactly the same device. Avoid listing deviations to the device specified on the purchase order. If a JEDEC or supplier part number does not adequately 31 describe the required part, agree upon the deviations and assign a part number prior to entering the purchase order. 7. Quantity of parts required. 8. Unit price of parts required. 9. Special charges. List charges for environmental testing, special tooling, and/or service charges as separate items if pre-order quotation specified them in that manner. 10. Shipment method preferred. Remember that "best way" or "cheapest way" for the supplier may not be the best or cheapest method for the user. 11. Requested shipping date or in-plant date. Be certain to explain which date is being specified. 12. Negotiation or quotation number. If the supplier has assigned a numbertothe pre-order discussions, it is always good practice to repeat the number on the purchase order. 13. Special insurance charges, if applicable. If accurate information is supplied in each of the categories above, entering the order and shipping product will be handled more smoothly. However, the user must consciously make an effort to reducethetime required to transmit an order to the supplier, while minimizing the possibility of interpretation and transmission errors. The best solution is obviously to eliminate extra steps in the order entry process. Time delays and the possibility of errors are automatically inserted when a purchase order is routed through a sales office or through some other intermediate mail stop. Transmission of order information via wire or telephone introduces additional possibilities for interpretation and transmission errors and legally, a manufacturer cannot begin work on an order without the confirming order document. Therefore, for most accurate and efficient order processing, a user should send the purchase-order directly to the manufacturer or authorized distributor, when possible. 5. IN-PROCESS ORDER INFORMATION Significant time intervals occur between the time a user generates a purchase order and the timethe user receives the parts against that order. During that period of time it becomes the responsibility of the power semiconductor manufacturer or authorized distributor to keep the user advised of the status of the purchase order. Presentation of order status information by the manufacturer minimizes the ti me and expense that the user must incur to determine "what's happening." Order Acknowledgement. The first step the supplier must take is to properly acknowledge receipt of a purchase order and advise the user of a shipping schedule. Although the manufacturer generally checks for accuracy, the user, upon receipt of the acknowledgement, should compare the information to the original order to determine if the order entry process was correct. Many production, shipping, receiving, and incoming inspection problems can be avoided by careful review of documents at this stage of the order. Order Status. Information to the user does not stop at the order acknowledgement stage. In order to reduce expediting time and expense the manufacturer must continually reconfirm shipping schedules and provide advance warning for shipping delays that may occur. . The manufacturer must also establish a contact point at the factory so that schedule changes and/or questions that do arise can be handled quickly and effectively. The responsible salesperson is a good contact point, however, travel schedules often make that individual difficult to reach and a designated contact at the supplier is most often more convenient for the user. Invoicing. The invoiCing process differs slightly from supplier to supplier, however, a few key items must be presented: • Invoices must be traceable to the original purchase order of the user. User purchase order number, device type, and unit price are normally considered critical criteria. • Specific payment terms and address to which payment is to be remitted . • Delineation of charges not specifically covered by the original purchase order such as transportation charges, insurance charges, special handling fees, etc. • Date of invoice and date of shipment. These dates normally coincide, however, deviations do occur and must be presented clearly in order to prevent problems with terms of payment. Test Data. User specifications sometimes specifically require the manufacturer to serialize devices and record test results on a sample basis or for 100% of the devices shipped. Additional requirements, such as a mercury exclusion clause or a certificate of compliance, are often specified. The manufacturer must present such information clearly and include the data with each sh ipment to reduce receiving and incomi ng inspection delays at the user's facility. 32 @ Order Acknowledgement. After a purchase order has been entered at the factory, a computergenerated order acknowledgement (yellow) for each item is sent to the customer. (A sample acknowledgement is shown in Figure 3.1). f?; terms and conditions of sale are printed on the reverse side of the form. Orders generally are acknowledged within twenty-four hours after receipt at the factory. ( 1) ( 2) ( 3) ( 4) ( 5) ( 6) ( 7) ( 8) ( 9) (10) (11) (12) (13) (14) (15) (16) Date that order was entered at the factory by ®. Customer purchase order number. "Charge To" address. "Ship To" address. Special remarks required on shipping or invoice documents. Shipment method if specified on purchase order. Item number. Quantity for specified item. Product type, part number. Unit price. Total value of specified item. Administrative notes. Requested ship date. @ scheduled ship date. Customer Services Representative responsible for this order. ® telephone number. Any inquiries conceming an open purchase order should be directed to the designated Customer Services Representative at the factory. @ Purchase Order Status Report. ~ publ ishes an open purchase order status report to each customer on a weekly basis. The report has been designed to reduce expediting time and expense by providing timely order information and is mailed each Friday (with an identical copy to the responsible ® sales representative). A sample of the order status report appears in Figure 3.2. (1) Customer purchase order number. (2) Quantity of parts on open order on the date of the report. (3) JEDEC number, ® type, or customer drawing number and revision as specified on the purchase order. (4) Date that the order was entered at the ® factory and the requested ship date. (5) Original ® scheduled ship date and advance warning for revised schedule date, if required. (6) Quantity of parts shipped by item since previous report, date of shipment, and shipment method. (7) Pertinent product and/or planning information. (8) Name of Customer Services Representative responsible for these orders. Any inquiries concerning an open purchase order should be directed to the designated Customer Services Representative. In addition to the order status information, this report enables each customer to quickly identify any errors which may have occurred in the order entry process. Early detection of such errors can reduce postshipment problems. Each ® authorized distributor receives a copy of the order status report for purchase orders which they have placed with the factory so that the ultimate customer can receive quick order status information about ® power semiconductors whether the order is placed directly with ® or through an authorized ® distributor. 33 W8&tinghouse EIKtric Corporation ACKNOWLEDGEMEN';" . ORDER IS ACCEPTED SUB,lECT TO THE CONDITIONS OF SALE NOTED ON THE REVIllE IZ~~~~~~~~~~~~~__~r-____~~~S~I~~O~F~TH~I~S~k)~RM~.____~________~ i.'"= II . ccar. rwrr 1 . ~.X!Z , 1268; IflU S'f. ~ (';\4 \;!J CIIlCAGO. lLLD'OlS 68609 c pm ccu. , 1234 lam r.t\ \!J ft. : C'IIlClGO. lLLDOlS 60609 o CD3 75 COV'T. SOO1lCl DSPICTICil DQ'D. @ 12" AT lWD. ... . , ,';;",'"'' (6. ..,.. . ~<. . ,J' WESTINGHOUSE CUSTOMER. ~ECEipT THIS FORM IS, ISSUED ..td':CKNi:iirIlDGE OF THe' A8QVESTED ORDER AND TO PROVIDE YOU WITH A COpy OIiPUR WRITEUP WHICH INCLUD RICE" HIPPING PROMISES, PRODUCT DESCRIPTIO!;,!S AND OT~ATA .... " / . IF -ANY PART OF OCl'NTERPRETATION APPEARS TO INCORRECT 1M', DIATE CLARIFICAT!2tI, FROM THE~'PERSON WHO BELOW. (PHONE 41 25-7272) ~1' 1.,'- t;;\ Pl!ASE OBTAIN \!I THANK YOU FOR TH , ® WILLSIiIP CON'T ON PAGE_ R QUESTIONABLE, NAME IS SHOWN 11116 U976H Figure 3.1 @ Order Acknowledgement 34 1"(.&0A1li '0 ." '0-02-123 'l-Ol-l~S 1113294 '1-01-155 '7-06-J.43 1.S4tHi 'lSJ.006'007AO ,~.,. ,,,-'r:" , .". ,.. SBlIICONDUC'lOR PLAN'l IIIPOllrAN'l R1lIlINDIIR: 8IR1'.rIK1R l1I/IC. 23 'lBRI1 DBC. 31 n.aaP.UJr~ , I " ., CURRENT OPEN PURCHASE ORDER STATUS xrz CORP. • 1234 IlAIN S'l. CHICAGO, ILLINOIS 60609 Westinghouse Electric Corporation Semiconductor Division Youngwood, Pennsylvania 15697 PREPARED BY BOB BAftBELS CUSTOMER SERVICE REPRESENTATIVE PHONE 412-295-7272 L TWX 51o-.t68-2840 DATE OF REPORT FORM l03A ® 10/2'/76 Figure 3.2 @ Current Open Order Status Report @ Packing List. The sample packing list in Figure 3.3 accompanies each shipment of @ power Semiconductors, This document serves as the shipping label and provides the following information. ( 1) Shipping date. ( 2) Customer purchase order number, ( 3) "Ship To" address. ( 4) "Charge To" address. ( 5) Special remarks required on shipping or invoice documents. ( 6) Shipment method if specified on purchase order. ( 7) Freight charges. ( 8) Gross shipping weight. ( 9) Carrier. (10) Item number. (11) Quantity of specified item in this shipment. (12) Product type, part number. (13) Administrative notes. (14) Certificate of Compliance signed by a @ Quality Investigator. Note: A Certificate of Compliance accompanies each shipment. No special request for this information is necessary! 35 westinghouse Electric Corporation CD SHIPPING DATE 28 OC'I '76 SHIPMENT NUMlER 721t8 1A @3 00v 'T.SOURCBDfSPlC'llClfUQ'D. AT YWD. WESTINGHOUSE CUSTOMER RECEIVING NOTE: PLEASE EXAMINE THIS SHIPMENT IMMEDIATE~Y TO BE SURE THERE ARE NO DISCREPANCIES. WESTINGHOUSE WILL NOT BE RESPONSIBLE FOR SHORTAGES OR OTHER RECEIVING CLAIMS WHICH ARE ENTERED AFTER 30 DAYS FROM DATE OF SHIPMENT. IF THIS SHIPMENT SHOWS ANY EVIDENCE OF CARRIER DAMAGE, YOU SHOULD IMMEDIATELY FILE A CLAIM AGAINST THE CARRIER. WESTINGHOUSE DOES NOT ACCEPT RESPONSIBILITY FOR FILING. DAMAGE CLAIMS OF THIS NATURE. Figure 3.3 @ Packing List 36 @ Invoice. Three copies of each invoice are sent to the customer at the time of shipment. A sample invoice is shown in Figure 3.4. INVOICE ® fORM 33275C westinghouse Electric Corporation· .ACCOUNTS REMIT TO P.O. BOX 146, PITTSBURGH, PA., 15230 ~ECEIVABLE ·4 DUNS 4· 174-2040 :J INVOICE NO. & DATE + EB-57364 81-01-155 SEE ITBHS CHARGED TO I 006870 I 10/28/76 SHIPPED TO PAGE 1 XYZ C<BP. • XYZ CORP. CD 1234 MUN ST. f4\ 1268 MAIN \..:!..J PlANT 1 CHICAGO. ILLINOIS 60609 ST. CHICAGO, ILLINOIS 60609 TERMS: N Net Within 30 Days ~ i I I ®CD 1A 1000 i 1N5406 CUST PART SRPD COLL UPS @ iii I ARIZONA CALIFORNIA DIST. OF COLUMBIA PiiNi;;SYlviiiiA' N. Y. ~n.EERr:r.:it~fZT~~TEl~U~E~L~i f:s0J:6'ij8~li~\"~,~ ~m~~ APPUCAlI! REQUIREMENTS OF SECTIONS 6, 7 AND 12 Of THE fAIR LABOR STANDARDS ACT. AS AMEND£D, ANDOF RfGUlAl'IONS ANI) OIDDS NOTICE, '.'CE(5) HEREON. FOLLOWING OUR COMPANY POlICY, IMY Ie IASID UPON PRICE{S} IN EffECT AT nME OF SHIPMENT, THSIfFORf MAY NOT BETHE SAME AS THE !'RICErsl ON raUl OlDER. THE $All! OF TtlIS AtTICLl DOES NOT CONVEY AHY LICENSE. EXPlESS4,Y OR IMPLIED, UNDlIIIttHt PAT!NT CLAIMS ON CIRCUfTS 01 SYSTEMS, Olt ON ANY COMIINATION Of THIS ARTICLE WITH OTHER DEVtCES 01 ElfMINTI,. IIETUItNfD GOODS WlLLNor. ACaPTED UNLESS 1'1101 AUTHORIZATION AND SHIPPING ADDRESS HAVE I!!N SECURED fROM LOCAL WESTINGHOUSE SALES OFfICE. Figure 3.4 @ Invoice (1) (2) (3) (4) (5) (6) (7) (8) Customer purchase order number and date that order was entered at the factory by @ Invoice number and date of shipment. "Charge To" address. "Ship To" address. Terms of sale. Item(s) included in this shipment. Quantity shipped against specified item. Part number. 37 (9) Product type. (10) Unit price. (11) Total value shipped agai nst specified item. (12) Shipment method. (13) Gross shipping weight. (14) Total value of items shipped on this invoice. (15) Transportation charges, if applicable. (Note: (16) Total value of invoice. (17) Address to which payment must be sent. ® sales policy is freight collect.) @ Test Data. The documents in Figure 3.5 illustrate the ® method used to present test data when requested by the user. It should be noted that a Certificate of Com pi iance appears on the ® packing list and accompanies each shipment. Therefore, no special request for this information is necessary. --- Test # FromCQve' Page Page~ XVI<. M tG>T ;-1'- -,~",'---;f-':C"",,:--+-"'~--'-;+"'~'~:=-:+'7~;'+--r---+---+----1 "u~ u/( '/.7 " Zv ,~, Symbol G'i' --+--I--+---+--t---t--I-- f-- Spec,QI EJ o o Te.t. 0 E1 He(lumlea~ X-Ray lOO%Elact"cal Group AlCoS! S~ec 0 Cerro/rcal" of Compl'Mce DOIller Bum-In 0 0 [3 8 0 GronLeak Group S!Cust Sp« HI Temp Baka 0 0 PhYS,e8lo,m Temp Cycle Group Cleu.t Spec M<lrclJ'YEXClus'onCert,ftcaj'on ;:~~r::~:~:-rl1t~~-~~-:7o~-sra;-~~-,~:~,t-~~~':"-u~~-:;:-~~~:-~'~-o,,:-m,,-o",-uctor-"O-o",-!sar.," ~ -=,~"o'm"" '1m 1M ~"""""~ ::~3'~~'~;~:;:;;~:~;~:'~:~~~:~~":'"~'~:;::;::;:'.";;7~:::;:.m;:;;::~;:':.::~":: QUel'tYln\te.tjg.tor--.!~Da!a~7 Figure 3.5 Standard @ Test Data Documents 6. SHIPPING METHODS AND INSURANCE Power semiconductors vary in size and weight from a small axial lead rectifier (.1 oz.) to large assemblies ,of devices on heatsinks (50 Ibs.) This wide spectrum of sizes and weights enables the supplier to use several different types of shipping methods to transport the devices. However, these methods differ widely in cost, speed, size and weight limits, geographic coverage, traceability, and available insurance coverage. Since most power semiconductors are shipped on an f.o.b., point of shipment, freight collect basis, the supplier normally honors any specified routing from the user. If the user does not specify a preferred shi pping method, the supplier will pick the most economical carrier who provides good service to the shipping facility. Remember, however, that "Best Way" or "Cheapest Way" to the supplier may not be best or cheapest to the user; all services are not available between.all points. Therefore, it is a good practice to specify a particular shipment method on all purchase orders. 38 A brief description of the most common methods for shipping power semiconductors is given below. See Table 3.2 for a comparison of these methods relative to geographic coverage, size and weight Ii mits, insurance, etc. UPS This carrier is probably the most popular for small parcel shipments. Transport is handled via truck and/or air (UPS Blue Label), depending upon distance. UPS limits shipments to 50 pounds per carton and 100 pounds per day to a single location. PARCEL POST Parcel Post is a branch of the U.S. Postal Service. The service is available to any domestic location with postal service. Packages are transported via truck and/or air. Weight is limited to 50 pounds per carton. AIR PARCEL POST Same as Parcel Post except with guaranteed air service. Rates are slightly higher than Parcel Post. TRUCK This method is the most economical for shipments over 100 pounds. Trucking firms are licensed to pick up and to deliver to specific states. Care must be taken when routi ng shipments to assure that the specified carrier can/will deliver to the desired destination. Transfers from one trucking firm to another are common. AIR FREIGHT Air shipments can be made via air freight forwarders or via conventional air lines cargo. Air freight forwarder~, such as Emery, use any number of airline carriers and, therefore, can route packages quickly to almost any location. Some ai r forwarders, such as Federal Express, use their own fleet of aircraft to provide the same services. The forwarders are usually more expensive than conventional air lines cargo; however, specific airlines serve limited areas because of federal route restrictions and usually restrict service to scheduled flights of their own airline. Time is the big factor favoring air freight; most carriers offer next-day service to any served location for specific fee. BUS This method is seldom used, but is required when quick deliveries from other carriers is not available to remote areas. Method Weight Limits Geographic Coverage from Youngwood. Pa. Traceability Insurance t-requency of Service From@Factory In Youngwood. Pa. UPS 50 Ibs./carton. 100 Ibs. to a single location per day. Contlnentsl U.S. Must be traced from point of shipment. Takes from 1 to 3 weeks. Automatic $50. Available up to $5.000 maximum. 1 pickup per day. UPS Blue 50 Ibs./carton. 100 Ibs. to a single location per day. California. Oregon. Washington. Georgia. Florida. Must be traced from point of shipment. Takes from 1 to 3 weeks. Automatic $50. Available up to $5.000 maximum. 1 pickup per day. Parcel Post!Air Parcel Post 50 Ibs./carton. Worldwide. Can only trace i nsured cartons. Takes from 4 to 8 weeks. None automatic. Check Postal Service for rates. 2 pickups per day. Truck None. Contlnentsl U.S. Can be traced from either direction. Takes less than 1 week. Depends on commodity rate. No extra available. On demand. Air Freight None. Worldwide. Can be traced from either direction. Takes less than 1 week. Full value coverage possible. 3 pickups per day. Bus 50 Ibs./carton. Continentsl U.S. Must be traced from Automatic $50.00. point of shipment. lAvailable up to $250.00 maximum. Table 3.2 Comparison of shipping methods for power semiconductors. 39 Must deliver to terminal. Receiving Incoming Inspection Installation Cleaning Trouble Shooting Identification and Replacement 40 4 STANDARD OPERATING PROCEDURES FOR THE POWER SEMICONDUCTOR USER. 1. RECEIVING Most users have a fixed procedure for receiving shipments of power semiconductors. If a procedure does not exist, one should be established as quickly as possible to avoid receipt of damaged goods into inventory. An important item to remember is to examine each shipment carefully forevidence of rough handling and container damage. Most power semiconductor manufacturers ship on an f.o.b. point of shipment basis and, therefore, responsibility for the material is transferred at time of shipment. Users must note package damage when signing for a shipment and file a claim against the carrier. Accepting a damaged shipment without noting this fact when signing for the shipment practically eliminates the possibility of a successful claim at a later date. 2. INCOMING INSPECTION After material has been accepted from the carrier, each shipment normally is examined for administrative, physical, and/or electrical discrepancies. Suggested inspection criteria include: (1) (2) (3) (4) Match packing list with purchase order to assure compliance. Validate quantity. Visually inspect parts for physical damage and proper marking. Sample check critical mechanical dimensions, if applicable. Extensive electrical testing normally is not necessary since the manufacturer has fully tested product prior to shipment. If some electrical testing is desired, the tests should be conducted on a sample basis at room temperature (25°C). Caution is advised when testing electrical parameters because devices can be damaged and/or inaccurate data obtained by: (1) Exceeding maximum operating temperatures with poor test procedures and/or improperly calibrated equipment. (2) Poor test methods or inexperienced personnel. (3) Use of different test circuits and/or conditions than used by the manufacturer. 3. CLAIMS Administrative errors, such as discrepancies on packing lists or invoices, can best be treated by contacting the Returned Material Coordinator at the supplier. Any decision to return product must be properly authorized in advance. Contact the Returned Material Coord inator at the manufacturer for authorization and specific return instructions. Product should be returned in the original shipping container, when possible. Receipt of unauthorized returns at the manufacturer's location often results in delay of resolution of invoices as well as potential loss of material and loss of time required to retest and reship. The minimum information requested prior to authorization includes: (1) SPECIFIC REASON FOR REJECTION AND RETURN ("does not work" or "failed" is not an adequate explanation). (2) Quantity and description (part number) of product. 41 (3) (4) (5) (6) (7) Original Original Original Material Detailed order number. ship date. invoice number. and financial disposition requested. replacement instr.uctions, if applicable. 4. INSTALLATION, MOUNTING, AND COOLING CONSIDERATIONS Before installing power semiconductors, it is important to understand why so much emphasis is placed on using proper mounting techniques. 1n order to obtain maximum efficiency and greater reliability in the use of power se miconductors, it is imperative that the heat developed by power dissipation at the j unction be removed as fast as possible. There are usually three distinct obstacles in the path of this heat transfer: (a) interface and material between the semiconductor element and the semiconductor device mounting surface (b) interface between the device mounting surface and the heat sink (c) transfer of heat through the heat sink tothe ambient, which might be natural convection air, forced air, oil, or water. These "obstacles" are referred to as thermal resistances: (a) R6JC Junction-to-Case(b) ROcs-Case-ta-Sink (c) ROsA-Sink-ta-Ambient.Thisthermai transfer is depicted using an electrical analog in Figure 4.1. , Figure 4.1 Conventional thermal circuit using an electrical analog. The junction-to-case thermal resistance is generally a function of device construction and design and is determined by the semiconductor manufactu rer. Except for disc mount devices which require the userto apply the correct mounting force to assure the proper R6Jc, the user has no control over R6JC once a device has been selected. The user's only option then is to select semiconductors that offer low junction-ta-case thermal resistances. The other two thermal resistances, however, are quite variable, and the user must carefully consider the various methods and techniques available to insure long life and efficiency. Primary considerations in obtaining a low case-ta-sink thermal resistance are the degree of flatness and surface finish of the device and heat sink mating surfaces, the use of a thermal joint compound, and the proper amount of force (torque) applied. A complete discussion of these considerations and others are presented in the Westinghouse application data sheet "Mounting Power Semiconductors" in the General section of the Data Book. Every user is encouraged to read this application data sheet as it offers many practical suggestions on mounting and remounting all types of power semiconductors - stud mount, disc mount, flat base, etc. A couple of suggestions are worth highlighting: Use a torque wrench to insure proper mounting force. Usethermal jOint compounds sparingly - it only takes a thin film between the device and heat sink mounting interface 42 - most people apply too much compound! Remember, when using insulating hardware, that the case-ta-sink thermal resistances will increase about tenfold! The final obstacle in the heat removal path is the sink-ta-ambient thermal resistance. The semiconductor user can minimize this value by choosing the proper heat sink and most effective cooling method. Asemiconductor can be no better than its heat sink! A wide range of heat sink materials, configurations, sizes, and finishes are available that will meet almost any space, cost, and"heat dissipation requirement. The most cost effective and popular air cooled heat sinks are made from aluminum extrusion. For natural convection air, aluminum heat sinks can be black anodized or painted black to optimize their ratings. For example, painting heat sinks black improves natural convection ratings by as much as 25% compared to unpainted heat sinks of equivalent size. For higher output current at less cost, forced convection is the answer. Forced air can frequently allow the user to more than double the output current of a given device/heat sink assembly over natural convection rating capability. Why buy more semiconductors than are really needed to do the job? A few fans and some baffling may provide a substantial savings in system design costs. Use forced air in lieu of natural convection air when possible. Water cooling is the most efficient type of cooling in general use today. I n order to optimize the thermal efficiency of a water-cooled heat sink, pure copper heat si nks should be used. Copper alloys, bronze, aluminum, etc. generally have much lower thermal conductivities and thus are not as efficient. Figure 4.2 shows 1000 ampere SCR's mounted on comparable air cooled and water cooled heat sinks. The water cooled assembly offers from 1.5 to 4 times more output current than the air cooled assembly, weighs only one-third as much, occupies about 40% of the space, and costs about the same. Therefore, when heat sinks are compared, water cooling (if available) is usually the most economical choice; forced convection air is next; and natural convection air is last. Figure 4.2 1,OOOA Disc SCR's mounted on comparable water cooled and air cooled heat sinks. A final consideration when installing power semiconductors is to place them where the surrounding ambient temperature is as low as possible. Do not mount semiconductors near or above transformers or other heat generating components in a cabinet and avoid "dead air" pockets. Mount semiconductors heatsinksvertically so as to take advantage of the natural chimney-effect or up-draft of,air flow. When using forced air or water to cool various components in a cabinet, make sure the cooli ng mediu m reaches the power semiconductors first. Good installation practices when mounting and cooling power semiconductors will insure good operating performance and long life. 5. OPERATING POWER SEMICONDUCTOR EQUIPMENT There is still a tendency to consider the "state-of-the-art" in the design, manufacture, and application of power semiconductors as something new, mysterious, and glamorous. Not so! Industry has long been using 43 silicon power semiconductors and a vast knowledge in the use of these devices has evolved. Along with this knowledge has come a new "state-of-the-art" for using and maintaining semiconductor equipment. The emphasis placed on selecting, purchasing, and installing devices is part of it, but of equal importance is the proper use and maintenance of equipment employing power semiconductors. Protect power semiconductors from excessive heat. Semiconductors are composed of materials having different rates of thermal expansion. Therefore, both short and long term temperature excursions not only i mpair the electrical characteristics of these devices, but also set up internal mechanical stresses at each of the material interfaces. These combined effects of high temperature excursions can ultimately lead to device malfunction and destruction. The maximum temperature limits of various materials used in semiconductors vary from 1500C for soft solder to 13000 C for silicon. Once these materials are combined into a fabricated device, however, electrical deterioration begins at lower temperatures. For example, forward and reverse blocking capability of a junction begins to decrease and leakage currents increase when allowable maximum junction temperatures are exceeded. (These temperatures are generally between 125°C and 200°C, far below the maximum temperature limit of silicon itself.) Periodic monitoring of ambient temperatures, cooling fan operation, cooling water temperatures, and case temperatures of the semiconductors themselves will pinpoint many malfunctions before they cause catastrophiC failures. Because of the importance of preventing high temperatures from developing, this monitoring must be emphasized in the operating procedures for the equipment operator . . Avoid overloading eqUipment. Avoid overloading the semiconductor, which in effect, means protect against overload ing the-equipment that the semiconductors are feeding and/or controlling. For example, overloading a motor operated with semiconductor controls puts a direct overload on the semiconductors. Even if this overload is only for a short time,.the semiconductor's useful life can be shortened. Controls are designed to include motor overloads and the maximum values of overload should never be exceeded. Continued short term overloads above the control specifications can cause undetectable additive damage resulting in random, often unexplainable semiconductor failures.: Operator induced overload conditions that could result in excessive semiconductor currents include high on/off duty cycle or jogging for high production needs, rapid reversing, motor jam, and long acceleration time. Some mechanical problems that can cause motor overloads are high equipmenttemperature dueto lack of cooling, wiring or bearing failure due to improper installation or maintenance, phase failure dueto blown fuses or loose connections, phase imbalance, overvoltage, transient overvoltage and contaminants or dirty environment. Table 4.1 shows various motor stress conditions and the common protection. This table can be used to determine adverse load conditions and the type of protection that should be used. In properly designed system, overload conditions are considered and provisions are made to accommodate the overloads. The user or operator has an obligation to operate the equipment within the design ratings. The table shows the equipment user and designer methods to prevent overloading a motor, and hopefully, to avoid the situation that would cause semiconductor failure or reduce semiconductor life. Protect power semiconductors from transient overloads. Silicon semiconductors are inherently long life devices if they are adequately protected against surge currents and transient voltage spikes. The protection against failure due to these phenomena are relatively simple and normally this protection is designed into the circuit. In industrial plant environments, most voltage transients in semiconductor circuits arise from three major causes: Switching is the most common source. Whenever current is switched on or off in an inductive circuit, a transient voltage is generated at the switch terminals. Transformers and motor windings are highly inductive components, and the circuit wiring itself is inductive. Surges caused by lightning contri bute to switching transients. These transients can originate in remote circuits and still feed back to the semiconductor circuit through the supply line. Protection of semiconductors from such transients is pri marily a matter of attenuating the surge to a level the semiconductor can tolerate. Commutation transients are associated with the reverse recovery characteristic of a rectifier junction. Since, in normal use, a semiconductor is continually switching from a conducting state to a non-conducting state, there are rapid changes of current (high di/dt). For this reason, and especially where fast switching rectifiers are used, it is imperative to keep circuit inductance at a minimum. Here again, suitable suppression networks should be designed into the circuit. Regenerative surges in inductive or dynamic loads is the third major source of reverse voltage transients. Such loads include motors, lifting magnets, solenoids, relays, and many other devices involving stored inductive energy in the form of high induced voltage. Suppression of these transient voltages usually requires protective devices with high energy storage capacity. . 44 Semiconductor Pro"'lem Molar Curnnt Variance Common Semlconductar Proteclon CUrnntor Voltage V....nce OVerload Operators Choice Increases threa phase current approaching 200%. Increases semiconductor current, eventual motor burnout can cause surge on semiconductors. Thermal overload on semiconductors and motors. Design forsemiconductor current overload. Motor Jam Load Blockage High operating time at locked rotor current to 600%. I ncreases semiconductor current, eventual motor burnout can cause surge on semiconductors. Thermal overload on semiconductors and motors. Designforsemiconductor current overload. High On/Off Duty Cycle Jogging for High Production Needs Increases semiconductor current, eventual motor burnout can cause surge on semiconductors. Thermal overload on semiconductors and motors. Designforsemiconductor current overload. Rapid Reversing Production Needs Increases semiconductor current, eventual motor burnout can cause surge on semiconductors. Thermal overload on semiconductors and motors. Design for semiconductor current overload. Long Acceleration Time High inertia slow starting loads Increases semiconductor current, eventual motor burnout can cause surge on semiconductors. Thermal overload on semiconductors and motors. Design for semiconductor current overload. Increases semiconductor current, eventual motor burnout can cause surge on semiconductors. Thermal overload on semlconductors and motors. Design for semiconductor current overload. High operating time at locked rotor current to 600%. High operating time at locked rotor current to 600%. High operating time at locked rotor cu rrent to 600% High Equipment Temperature. High ambient temperatures. Lack of cooling. No increase but can cause wiring and insulation failure. Motor Wiring or Bearing Failure. Overcurrent, Improper Installation or Maintenance. Locked rotorcurrentt0600%. Increases semiconductor current, eventual motor burnout can cause surge on semiconductors. Thermal overload on semiconductors and motors. Design for semiconductor current overload. Phase Failure Blown Fuse, Loose Cpnnectlon Decrease in current until motor core reaches saturatlon and current increases. Increases semiconductor current, eventual motor burnout can cause surge on semiconductors. Thermal overload Phase failure relay. Unbalanced single phase loads on same line, poorly regulated service. Decrease in one phase and increase in the other two phases of current. Increases semiconductor current, eventual motor burnout can cause surge on semiconductors. Thermal overload Phase failure relay. Slight voltage increase decreases current. Large increase may saturate core and increase current. Decrease or Increase semiconductor current. Overvoltage relay. High transient voltages across semiconductor when semiconductor is in the off position. Capacitor-Resi stor Voltraps, MOV, etc. ~ C1I Callie Phase Unbalance Com_ta Operation at thermal overload conditions can reduce semiconductor life. Depending on the design up to 600% Increases in semiconductor currents are possible resulting in reduced life or shorted semiconductorI' Surge currents can also reduce semiconductor lifetime and cause semiconductor failures. High ambient temperatures produce the same results as high currents i.e., reduced life and failed semiconductors. Never operate semiconductors without proper cooling. Increase of currents can cause semiconductor failure and reduced life. OVervoltage High source Transient OVervoltage Lightning, opening Inductive switches etc. Underload Operators choice Decrease in motor current. Decrease in semiconductor current. None Light load increases semiconductor life. Contaminants Dirty environment Causes corona Causes corona Clean room filters Clean equipment periodically even with filtars. Slight average current increases. Networks, Short duration high transients can cause semiconductor failure. Corona carbonizes dirt and causes eventual semiconductor shorts. Table 4.1 Motor Overloads and Their Effects on Semiconductors Some of the common devices used for transient protection are capacitors, zener'diodes; freewheeling diodes,@Voltraps, and varistors (MOV/ZNR). . Protect power semiconductor circuits from current overloads. The power semiconductor'circuit must be protected from heavy current loads caused by short circuits or other component breakddiNhs; Several methods are available for this type of protection. / Fuses - Semiconductor fuses protect against overloads and, when properly applied, remove the semiconductor from the power source when an overload occurs. However, the result is downtime and higher operating costs. Therefore, fusing is generally limited to applications where the power source can damage components before slower breakers remove the power. Mechanical breakers - Magnetically operated breakers provide an inexpensive means of Ii miting cur~ent. This type of breaker operates !:lest under short circuit conditions and offers speedy, low-cost restarting and relatively fast circuit interruption. Thermal breakers - These employ heating elements to operate bimetallic contact actuators. This type of breaker offers reasonable protection for wires and good protecti on for components with high thermal capacity. Their ability to protect semiconductors is, however, limited. " Overrated semiconductors - Semiconductors with current ratings high enough to accommodate anticipated current overloads is another method of protection. This approach allows the.cost 9f fuse~, wiring, and mounting to be put into the semiconductor. It also allows mini mal protection, so safety considerations reqUire a conventional circuit breaker to disable the circuit in extreme malfunctions. . . Combinations - Combining circuit breakers with fuses, oversized semiconductors,or curr~nt feedback circuits are frequently applied techniques. Another approach is using special branch protection. For example, each leg of a single phase bridge might be separately protected instead of using asinglefuseor breakerforthe entire converter; a motor armature circuit can be protected by a breaker, while the mains are fused. This arrangement prevents overstressing a motor while the semiconductor devices are operating at high current peaks that are within fuse limits.. . .. " Keep power semiconductors clean. Semiconductors and semiconductor equipment mustbe ke.pt clean. Why? Because on high power semiconductors, the glass or ceramic seal on the semiconductor package csn be a source of trouble when dirt accumulates. Even when good engineering practices are followed in the positioning of components and support material to reduce or eliminate excess voltage stress and voltage gradients, these gradients can change with moisture, dirt, pressure, temperature and aging. With a clean system, high transients can initiate corona which will then be extinguished upon return to normal voltage. However, with any accumulation of moisture or dirt on the insulating glass or ceramic suiface, the corona will remain when the voltage returns to normal, and can cause extensive damage tothecircuit. Evensemiconductors without a visible layer of contaminants maybe covered with conductive particleS that can cause corona. Therefore, periodic cleaning is advisable. The time between cleanings could be lengthened by the proper use of filters, but filters will noteliminatethe need for cleaning. Agood maintenance progratnisessentialto proper operation of semiconductors. " 6. PREVENTATIVE MAINTENANCE The key to successful and efficient operation of high power semiconductors is·a .good, well .. planned maintenance program. Routine maintenance of semiconductor equipment involves putting into actual practice the good operating procedures listed in section 5 with emphasis placed on (a) temperature build-up, (b) dirt accumulation, and (c) loose mounting and/or connections. A regular schedule should be followed for checking and eliminating these conditions. (a) Temperature build-up may be caused by excess ambient temperature, poor or blocked air circulation, failure of cooling devices, such as fans or water ci rculati ng equi pment, dirty heatsi nks, and air filters, or equipment overloading. Since temperature build-up is usually gradual, it should be constantly m6Mtbred with strategically placed thermocouples. A suggested method of affixing a thermocouple to asemiconductor baseor heat sink is to drill a small shallow hole, fit the thermocouple into it, and then peen the surface around the hole to secure it. Equipment designed for forced air cooling or water cooling should never be energized without proper air or water flow. (b) Dirt accumUlation on the glass or ceramic surfaces of semiconductor packages must be1leriQdically and thoroughly removed. WMn cleani ng semiconductors, the safest cleaning method consislent with desired 46 results should be used. Solvents can be hazardous and should be used with care. Even a solvent that is considered non-toxic can kill or injure when used with improper ventilation. One oft he safest methods of cleaning Is by wiping with clean cloths. Often due to space limitations, the areas that need to be cleaned cannot be properly reached and, therefore, a liquid cleaner must be used. Table 4.2 lists solvents that could be used as cleaners. Attacks Rubber InsulaUon Precautions Rinse with distilled water, dry thoroughly 80lnnt Hazard HUllrd Hazard Electrically Conductive water. tap None None None Ves None Water. distilled Water/detergent Mathyl alcohol None None High None None High None None High No None Dry thoroughly Ves No None Slight Rinse with distilled water, dry thoroughly Avoid skin contact, use ventilation Elhylalcohol Isopropyl alcohol Paint thinner (mlneNlsplrilB) High High High High No Slight High High No Slight Can cause internal damage; ingestion can cause blindness Mix with distilled water to reduce hazards Low Low Low No FIN Explosion Toxicity Use proper ventilation; Ii mit exposure to rubber Acetone High Moderate Low No Slight Slight Perchlofoethylene (dry-cl_nlng IOlvent) Low Low Moderate No Slight Trichloroethylene Low Low Moderate No Slight Limit exposure to prevent rubber degeneration Use short exposure to prevent rubber damage; irritates eyes and causes headaches; heating causes fumes Use adequate ventilation; limit exposure time to prevent rubber damage Freon Mailier XL-l00 Low Low Low Low Low Low No No Slight Slight Use adequate ventilation; limit exposure time Use adequate ventilation; limit exposure time Low Low Low No Slight Use adequate ventilation; limit exposure time Miller Stephenson MS-180 Table 4.2 Semiconductor Cleaning Solvent Characteristics The safest method of cleaning semiconductors, as shown in Table 4.2, is to use a detergent wash and then flush with distilled water. The system must be completely dry before the reapplication of power. Regular tap water can contain many conductive impurities and should not be used as a final rinse. Methyl, Ethyl, or Isopropyl alcohol could be used for cleaning, but they can attack sleevings and insulations. Before using alcohol or any solvent, its use should be checked on a small sample of sleeving and insulation to determine if they are attacked. Since time of exposure to a solvent determines any adverse effects, the time of exposure during the test should be the same as the time expected during actual cleaning. Any elongation, softening or actual decomposition could eliminate the use of the solvent. A temporary softening may not be detrimental. Remember that alcohol is toxic and should be used with care. Follow all safety precautions when using any solvents. Read the labels on all the chemicals. Do not mix solvents (or any chemicals) unless recommended. The information regarding solvents, their fire, explosion and toxicity hazards, etc., are believed to be accurate, but it cannot be guaranteed. This information is given as a general recommendation for information only. (c) Along with scheduled periodic cleaning, a systematiC checking of mounting and terminal connection tightness should be specified. If a loosely mounted device is discovered, it should be removed, both mounting surfaces thoroughly cleaned, thermal compound reapplied, and then remounted with the specified torque. 7. TROUBLE SHOOTING AND SERVICING Properly protected semiconductor devices incorporated in well-designed circuits should last for the life of the equipment. Semiconductors should not be a major problem for the maintenance engineer. However, experience shows that up to a 10-15% failure rate can occur during equipment lifetime, due chiefly to misuse, misapplication, or neglect of the equipment and overloads caused by natural forces, such as lightning. Therefore, to operate efficiently, the maintenance department must have the proper tools and equipment. Most 47 of these essential items are elementary and relatively inexpensive when compared to the wide array of measuring devices and instrumentation availabl~ for the study of power semiconductors and associated circuitry. Suggested equipment for moderate service work: 1. 2. 3. 4. 5. . 6. 7. Volt-ohmmeter (voltmeter) Clamp-on ammeter Probe-type temperature indicator SCA/Rectifier blocking voltage test circuit (see Figure 4.3) Transistor blocking voltage and gain test circuits (see Figures 4.4 and 4.5) Torque wrench and complete standard tool kit Oscilloscope An oscilloscope is used for viewing the current and voltage waveshapes within asemiconductorcircuit. Eventually, all technicians become familiar with a "scope". It is the most important and useful tool available to the troubleshooter. Equipment Breakdowns and Malfunctions. What shou Id maintenance personnel look for when equipment breaks down? Are there visual signs to indicate why a semiconductor failed? As with any other type of equipment, there is much that can be learned from one's own senses and experience. With electronics, heat is still the number one symptom of impending failure. So be alert for charred or discolored components-that is a sign that too much current flows or has flowed through the component, and if it has not failed, it soon will. Although the trouble could be limited to the failed component, it is possible that some other component is at fault through fai lu re or misadjustment. A thorough knowledge of the theory of operation of the equipment will be invaluable in tracking down real causes of component failure. Voltage related failu res, on the other hand, are a b it more d ifficu Itto locate because there is usually no outward sign of failure. However, this type of failure is, more often than not, catastrophic, and shorted devices result. Shorted devices are much easier found than downgrades or control malfunctions. One of the most destructive causes of failed semiconductor components is Iightning storms. The electrical forces generated by nature are enormous, so watch for equipment malfunctions during and just after an electrical storm. The maintenance engineer should also monitor closely any equipment that is pushed to its operating limit, thereby increasing the possibility of failures. As a general procedure for checking out a suspect semiconductor, the following sequence of test checks should be performed: (1) Look at the suspect device(s) [with the system power off]using a volt-oh mmeter-check for shorts. (2) If no short exists, apply power (reduce power, if possible) and using a voltmeter or scope, check to see if the suspect device is blocking voltage. (3) If the unit is blocking voltage, the user should then check to see whether or not any current is flowing. This current flow can be measured with a Clamp-on ammeter, voltmeter in conjunction with a current shunt or resistor that is in series with the suspect unit, or a scope. (4) Finally, the suspect unit should be checked along with the other power semiconductor components in the circu it to confi rm that the devices are all operati ng with in thei r maxi mu m allowable case temperature. This mli)(imum allowable case temperature can be determined from the manufacturer'S technical data sheet by knowing the device's circuit configuration and actual current magnitude and waveform. A probe-type temperature indicator can be used for making case temperature measurements. If the suspect device(s) fail any of the above test checks, the system power should be turned off and the suspect devices removed from the circu it for fu rther test and eva Iuation. I n some instances, the devices can be tested without the need of removal, test, reinstallation, and down ti me. However, the user should make certain that the measurement being taken is that of the device under test by disconnecting one power lead (also gate lead in case of SCR) for circuit isolation. Disc devices, because of their double-sided mounting, may be difficult to isolate and may have to be removed from the circuit. In this case, the disc device must be clamped vvjth sufficient force (approximately 200 Ibs.) to get a valid reading. Rectifler/SeR Testing Volt-ohmmeter-An ohmmeter can be used to check rectifier polarity or as a quick check to determine whether an SCR or rectifier (diode) has failed open or short. Note: An ohmmeter is not a valid tester for measur48 ing blocking voltage capability. If an SCR anode-cathode measurement shows a short in either direction or if the gate-cathode measurement shows a short in both directions, then the SCR is a short. For an SCR to be open, the anode-cathode measurement as well as the gate-cathode measurement must show an infinite resistance in both directions. Likewise, a rectifier must show zero resistance in both directions for a short and infinite resistance in both directions for an open. A rectifier normally shows low resistance in the forward direction and high resistance when the ohmmeter probes are reversed. Thus, the ohmmeter can be a check for rectifier polarity. An open failure on a @ high power SCR or rectifier is a rare event due to compression bonded encapsulation (CaE) device construction. SCR/Rectifier Blocking Voltage Test Circuit-The following test circuit (Figure 4.3) describes a simple blocking voltage tester that is capable of testing devices up to 1800 volts and can be built for about $1 00.00. The (cathodel J3 Q * I VRiiM device under I test V M2 BILL OF MATERIALS S1- Switch ON-OFF -SPST S2 - Switch N.O. Push Button SPST F1- Fuse 1.5 A. 120V 11- Trans. PC 8302 - Variac T2- Trans. T-21P89 Thordarson 01.02 - Diodes @ 1N5054 R1- Res. 1.0ll. PreciSion Non Inductive R2- Res. 220 K.a.. 2Watt Carbon R3- Res. 1K.n.. 10 Watt Carbon JI. J3 - Banana Jack (Red) Johnson J2. J4 - Banana Jack (Black) Johnson M1-Meter 0'5 Milliamp D.C. (2.n.) M2 - Voltmeter WARNING: ALL TEST POINTS. J1 TO J4 HAVE HAZARDOUS VOLTAGES PRESENT DURING TEST. SYMBOLS lcathode ~ Anode RECTIFIER Gate i Cathode Anode SCR Figure 4.3 SCR/Rectifier Blocking Voltage Test Circuit safety switch S2 must be depressed to allow voltage application and the variac controls the amount of voltage to the device under test. After each device is tested, the variac setting should be returned to zero so as not to risk damag ing a subseq uent device under test that might have a lower voltage rati ng. Never exceed the device's rated voltage when testing. Since this test is conducted at room (ambient) temperature, the measured maximum allowable leakage limit should not exceed one-half the maximum junction temperature leakage current value listed on the manufacturer's technical data sheet. When testing an SCR, the gate lead must be left open (Note: Some non-Westinghouse devices may require a gate bias termination to meet rating). V!tIM (reverse voltage) is measured when SCR cathode is connected to J3 and SCR anode is connected to J4; VORM (forward voltage) is measured when SCR anode and cathode terminals are reversed. The voltage is read indirectly by M2 voltmeter (VRRM = 3.14 X DC meter reading). IRRM or IORM leakage current is monitored directly with a scope across J2 and J1 or indirectly by M1 milliamp meter across 02 (IRRM or I ORM ~ 3.14 X average leakage over full cycle meter reading). For rectifiers (diodes), the VR \\M (reverse blocking voltage) is tested the same as an SCA. Since most rectifiers are available in standard or reverse polarity, be sureto check the polarity symbol device marking to identify the anode and cathode. Transistor Testing The following simple test circuits can be used for a quick check of transistor parameters but are not recommended for classifying devices. Other, more accurate, measuring equipment that has a pulsed duty cycle should be used for incoming inspection. A good curve tracer such as the Tektronix 576 will measure gain, 49 ~urrents, and voltages at a pulsed duty cycle. Other, less accurate, measuring instruments, some in kit form, esn be obtained from electronic supply stores for use in troubleshooting a circuit. Volt-ohmmeter-The only valid ohmmeter measurements on transistors are short or open determinations. A shorted transistor will show a short (resistance approaches zero) in both directions across the base-emitter, collector-emitter orcollector-baseterminals. This test is accomplished by removing the transistor from the circuit and first measuring the resistance in one direction and then reversing the ohmmeter probes across theterminals. A good transistor will show a low resistance (conduction) in one direction and a high resistance when the probes are reversed. If any ofthe three tests (i.e., collector-base, collector-emmitter, or base-emmitter) are faulty, then the transistor is faulty. A faulty transistor will have either a low resistance in both directions (shorted) or a high resistance (open). Note: This ohmmeter test is correct when it indica~es a shorted or open transistor, but when it shows a good transistor, it may not be correct because of the low voltages used in the ohmmeter test. Further tests must be made to determine the condition of the transistor. Transistor Blocking Voltage Test Circuit-The voltage capability of a transistor is measured using the circuit in Figure 4.4. The transistor is connected in one of the three desired modes (i.e., VeE' Vca or VEl). The v Figure 4.4 Transistor Blocking Voltage Test Circuit current meter shou Id be capable of 1 ma to 10 ma, the voltmeter and power supply to hundreds of volts and the load resistors shou Id Iimit the current to about 10 ma if the transistor shorts. The voltage is set to the data sheet limits and the current is read. Any current reading within data sheet limit would indicate a good transistor. If a data sheet is not available then set VeE and Vca to the circuit voltage using 10 ma maximum as an acceptable current. When measuring V Ea ,if no data sheet is available, set the voltage at 4 volts and use 10 ma as a maximum acceptable current. Transistor Gain Test Circuit-Gain measurements should be made on a curve tracer or a high current pulsed test set. A D.C. gain measurement can be made if precautions are taken to limit the power dissipation and a heat sink is used. The case temperature should be monitored. A resistor to drop about 2 volts is used in the base as shown in Figure 4.5. The base voltage is slowly increased until the desired collector current is v Figure 4.5 Transistor Gain Test Circuit 50 -=-4V reached. The collector and base currents are then read. The collector-emitter voltage of 4 volts is usually used. This test is a continuous power test and should be done as quickly as possible to limit internal junction temperature. The gain (h FE ) is calculated as follows: hFE = leila Common Causes of Power Semiconductor Failure. Most of the advice given thus far deals with the proper installation and operation of power semiconductors. However, in the event all of this advice was not followed or accidentally missed, the knowledgeable maintenance person has a good jump on discovering the reason a particular device has failed by pursuing the following checklists. Many power semiconductor failures are the result of improper mounting and electrical application. The first step in evaluating any failure should be to assure that good engineering practices have been used in both mechanical as well as the electrical application of the semiconductor. Faulty mechnical practices often result in eventual electrical failures. the MECHANICAL CHECKLIST 1. 2. 3. 4. 5. 6. 7. Torque-are semiconductors torqued properly? Flatness-are mounting surfaces flat and free of defects? Thermal Compound-is thermal compound used properly? Stress-is there any undue stress placed on the semiconductors? Insulation-are the terminals or case contaminated causing electrical conductive paths? Heat Sink-is it large enough and is it clean and efficient? Other pertinent mechanical details. Torque-torque wrenches must be used, and the maximum torque rating must not be exceeded. Some semiconductors can be mechanically damaged by too much torque or thermally damaged by too little. Flatness-heat sink must be flat, free of burrs and ridges, with holes and edges chamfered. These defects could prevent the proper seating of the semiconductor, resulting in thermal or mechanical damage. Thermal Compound-should always be used according to the manufacturer's instructions. Either too little ortoo much compound could result in poor thermal impedance. When applying thermal compound, be certain that the threads remain dry. Lubricated torque specs mean that the mating surfaces are lubricated. Apply thermal compound to both sides of insulating washers, when used. Stress-semiconductor should not be used as a support for heavy electrical leads. Lead stress can cause mechanical seal cracks resulting in hermeticity problems. Mechanical stess can also be transmitted to the junction causing cracks in the element or solders, resulting in failures. Insulation-insulation between semiconductor terminals or terminals and case is often very small. When operating the semiconductors in moist or contaminated areas where voltage creepage can become a problem, additional protection should be used against such electrical conductive paths. Heat Sink--should be large enough for proper heat transfer. Undersize heat sinks often cause junction temperature to exceed maximum ratings. All types of corrosion and oils should be removed with solvents or emery cloth to insure the lowest possible thermal impedance between mounting surface and heat sink. ELECTRICAL CHECKLIST 1. 2. 3. 4. 5. 6. 7. Overcurrent-is current exceeding maximum ratings? Overvoltage-are maximum voltage ratings exceeded? Surge Current-is there a possibility of a fault that could cause a one-time.surge? Transient Voltage-are transient suppressors used? Power-is the semiconductor operated within rated power? Testing-is the testing damaging the semiconductor? Specs-is the semiconductor operated within the data sheet? Overcurrent and overvoltage-absolute maximum ratings should never be exceeded under worst case operating conditions. For reliable operation with a minimum number of failures, current, voltage and temperature should be derated. Usually the greater the derating, the more reliable the semiconductor becomes. The semiconductor manufacturer should be contacted for assistance in derating specific semiconductors. Load, component, and environmental variations (especially temperature) should be investigated as probable causes of voltage or current problems. Surge-surge current is a fault rating that the semiconductor may see under a fault condition. This fault could happen perhaps only once in the lifetime of the equipment. Surge currents and in-rush currents should 51 .be limited to semiconductor capability or, semiconductors with greater capability should be chosen. Since the thermal time constant of the elementis small, even a very sl10rt surge current can damage a semiconductor. The surge can cause a 10ca1ized (hotspot) junction temperature to' be exceeded even though the case temperature is cool. These localized hot spots can result in degraded or shorted semiconductors. Transient Voltage-should never exceed maximum rated voltages. These transients can cause a semiconductor to conduct when it should be in a nonconducting period, causing catastrophic failure. Transients that exceed the maximum rated voltage can cause a ~Iowdowngrading of the semiconductor spec. Transient protection should be used if occasional or constant transients are suspected. Power-check power rating for current, voltage and temperatu re of operation. Power, voltage and current must be derated with an increase In temperature. Never exceed junction temperature even though case temperature is within spec. Testing-never insert or remove a semicond.uctor from a test circuit with the power on. Never exceed maximum ratings. when testing. Always use proper, calibrated test .equipment. Specification-special characteristics of a semiconductor can be specified to reduce or avoid failures. Burn-in and other hi-rei testing is available to reduce. failures. . If after a thorough mechanical and electrical investigation, the user is unable to determine the cause of ·failure, he should contact the. original equipment man\Jfacturer (OEM) for assistance. Any unusual operating or mechanical conditions found in the above investigation, along with a history of use, should be given to the OEM for review. HISTORY OF USE CHECKLIST 1. 2. 3. 4. 5. 6. When was the semiconductor purchased? What is the date code? . How many were purchased? How many failed? How many were installed In equipment? Other history. The history of the semiconductor's use helps in failure analysis. Was the semiconductor used previously, how much, and with what failure rate? What is the failure rate with the present group? What is the date code? Have other components been changed? What were the operating conditions at the ti me of failure? These types . of questions 'help isolate a problem and result in an accurate fail ure analysis. At this point, ifthe OEM is unable to determine the probable cause of failure for the user, the OEM can have the semiconductor manufacturer perform a failure analysis. Analysis of the failed semiconductor, along with the information collected above, should aid In a prompt and accurate diagnosis of the cause of the failure. Semiconductor reliability is a shared responsibility among the semiconductor manufacturer, the circuit and equipment aesign engineer, and the end userof the equipment. The manufacturer must design and build a reliable semiconductor, the engineer must use good engineering practices when designing the equipment, and the user must operate the equipment within its ratings and see that it is running properly and that its environment is .clean. If these conditions are met, high power semIconductors will be reliable. 8. IDENTIFICATION AND REPLACEMENT Many semiconductors are identified by a JEDEC number. JEDEC numbers for rectifiers begin with a "1 N" prefix (i.e. 1N4001, 1N1206A, etc.) whereas SCR's and transistors begin with a "2N" prefix (i.e. 2N681 , 2N3055, etc.). A JEDEC numberisan attempt by the industry (Joint Electronic Device Engineering Council) tostandardize electrical and mechanical parameters so that products of one manufacturer will be interchangeable with those of another manufacturer. The user should, however, be careful when making a direct JEDEC substitu. tlon of another manufacturer because the JEDEC registered parameters do not always cover all of the critical parameters. As a result, manufacturers using completely different manufacturing processes often sell devices to meet the same JEDEC number. While this may not pose a problem in most general purpose and phase control applications, the user must recognize that various manufacturer's devices marked with the same JEDEC number can exhibit completely different secondary characteristics and safety margins. An engineer may have unknowingly designed his, circuit around a particular JEDEC type number from a manufacturer with process A 52 and a big safety factor (i.e. 6 ampere rated device that really has a 12 ampere actual capability). Everything works fine until the user chooses a replacement JEDEC from another manufacturer ... then the new devices keep failing in the circuit. Therefore, to be safe, all JEDEC substitutions should be evaluated thoroughly before use. Most power semiconductors (especially those rated over the 40 to 100 ampere range) are marketed under their respective manufacturer's part number. Even though each manufacturer uses its own device nomenclature, the mechanical packages and electrical ratings are reasonably well-standardized throughout the industry. Therefore, second sourcing and device substitution is not difficult providing the user has a good cross reference guide and the technical data sheets forthe devices being evaluated. The Westinghouse Master Cross Reference Type Number Index is located in the General section of this User's Manual and Data Book. Using this JEDEC and alpha/numeric industry index, the user can rapidly locate any power semiconductor product type number for which Westinghouse offers an exact or suggested replacement along with the page number of the corresponding Westinghouse technical data sheets. As with ANY cross reference guide, the user MUST determine the ultimate substitution acceptability by reviewing the detailed electrical and mechanical characteristic of the devices being considered. This comparison will assure that the manufacturer's suggested replacement will perform properly in the given application. In the event that the device type number being sought is either unknown (marking is obliterated) or not listed in the@Master Cross Reference Type Number Index, a copy ofthe Replacement Device Identification Checklist should be completed. Chances are Westinghouse can help identify the part and provide a direct or equivalent replacement. Si mply call the nearest authorized@distributor or local sales representative for a fast response and prompt delivery. See page 54 for checklist. Replacement. Be sure to orderthe exact part number-if in doubt, include the entire device marking on your order. The most likely place to get "off the shelf" delivery of an exact replacement is directly from the equipment manufacturer. The OEM normally carries an ample supply of renewal parts to service its equipment market. In the event a replacement cannot be obtained from the OEM, the user should contact a local industrial or electronic distri butor that handles power semiconductors. A user should only buy a given manufacturer's type number from the manufacturer's authorized distributor outlet or directly from the manufacturer's factory. To do otherwise, the user could receive inferior and/or counterfeit devices from an unknown source. Play it safe ... deal only with a manufacturer or an authorized distributor. The maintenance engineer must be thoroughly familiar with equipment service manuals, with the power semiconductors and their technical data sheets, and with the various tools and instruments available for testing and replacing semiconductors. It is wise to carry spare semiconductor components in stock in case of equipment breakdown-especially for critical pieces of equipment. Many phase control appl ications-i .e. weldi ng, battery chargers, DC motor controls, and general purpose power supplies can utilize rectifiers, SCR's and/or transistors with fairly broad parameters so long as the device selected has an adequate current and voltage rating and fits mechanically. The user must be extremely carefu I in selecting a replacement semiconductor when general purpose or phase control devices are used in series and/or parallel combination, when fast recovery rectifiers and fast switching SCR's are used in inverters, choppers, etc. or when semiconductor devices are marked with special (non-catalog) part numbers. Specially selected, tested, and/or matched units may be requi red for the semiconductor to operate properly in the equ ipment. Failure to use the correct semiconductor device could result in device failures, equipment damage, and plant downtime. When selecting a device for replacement, the user can always use one with a higher voltage rating provided all other device ratings are equal or better. Likewise, a higher current rated unit can be selected so long as all of the other ratings are equal or better and the mechanical package is the same. By following these guidelines, the user can often locate a suitable replacement faster, reduce spare parts inventory by standardizing on a fewer number of replacement semiconductors, and gain increased reliability with greater voltage and/or current safety factors. Of course, the additional cost for the higher rated semiconductor must be weighed against the savings in inventory reduction, fewer failures, and reduced down time. In the absence of any other information, a good "rule ofthumb" for specifying the proper device voltage rating (based upon the supply voltage to the semiconductor equi pment) is as follows: 11 OV line-use a 300 volt device, 220V line-use a 600 volt device, and a 440V line-use a 1200 volt device. If in doubt about what device to use, call the semiconductor manufacturer and ask for a recommendation. The user must realize that power semiconductors, like any other component, fail for a reason. It is acceptable to just replace a suspect semiconductor if that is all that is wrong. However, frequently a suspect semiconductor fails as a result of a current or voltage overload elsewhere in the circuit. Simply replacing the suspect semiconductor in these instances will only result in destroying more semiconductors. Therefore, always look for the cause of failure before replacing any devices. 53 ® Replacement Device Identification Checklist (make copy for each use) If you have been unable to locat"e your power semiconductor part number in the @ Master cross reference index, simply complete a copy of this form. Chances are @can help you identify the part and provide you with a direct or equivalent replacement. Call your nearest authorized distributor or your local sales representative for a fast response and prompt delivery. o Rectifier o Thyristor (SCR) c Transistor PRODUCT CLASSIFICATION DEVICE MARKING ____________________________ o Other: o Do not know. Example: @ t R404i040 7710 1 2 3 o 1. Semiconductor manufacturer's name, symbol or identification: '. D@ DOther: _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ 2. Prodlltt and/or polarity symbol: o ... Rectifier (Standard Polarity) o t Rectifier (Reverse Polarity) SCR 4 D Other: _ _ _ _ __ Sketch o No symbol 3. Complete Device part number: _ _ _ _ _ _ _ _ _ __ 4. Manufacturer!s date and/or lot code: _ _ _ _ _ _ _ __ 0., PHYSICAL DESCRIPTION 3. Lead Terminal Description: 1. Package Type: o o STUD MOUNT o DISC MOUNT o INTEGRAL HEATSINK 2. Approximate Sizes: CD ~ o o o o .190"-32 .25"-28 .312"-24 .375"-24 0 0 .50"-20 .75"-16 o Other ~ Mounting surface diameter (d): _ _ (Smallest diameter) Package height (H): _ _ _ _ __ rn Fin size (LxWxH) [IJ 1 H +L+ - " SruDLESS Stud Size (A) 0 0 o o 0 !~ r --e- 5"x4"x2" Other: _ _ _ _ _ _ _ _ __ o Distance across the flats of the hex: o 1.25" o 1.75" FLEX (CABLE) LEAD o STUD TOP LEAD o PIN LEAD OTHER: f~ f / FLAG LEAD STANDARD TERMINAL LEAD AXIAL LEAD Power and/or Control Lead Lengths: _ _ _ _ _ _ _ __ o Other: o OTHER: D List critical dimensions: Sketch 4. Physical Appearance (i .e. ceram ic or g lass-to-metal seal, color of seal or package, nickel plating, etc.): Sketch DEVICE ELECTRICAL RATINGS EQUIPMENT DESCRIPTION 1. Current _ _ _ _ _ _ _ _ _ 2. Voltage: _ _ _ __ 1. Type: _ _ _ _ _ _ _ _ 2. Manufacturer: _ _ _ __ 3. Other spl. characteristics (surge current, ton, toll, etc.): ___ 3. Approximate age: _ _ _ _ _ _ _ _ _ _ _ _ _ __ CURRENT REQUIREMENT REQUESTED 1. Application: 0 Replacement BY 0 New Design 0 Name: _ _ _ _ _ _ _ _ _ _ _ _ Job Functlon: _ _ __ Conversion 2. Quantity required: _ _ 3. Required deiivery:_ _ _ __ Company: _ _ _ _ _ _ __ 4. Other considerations: _ _ _ _ _ _ _ _ _ _ _ _ __ Address: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ Phone No.: (_ _) _ _ __ Ci!y: _ _ _ _ _ _ _ _ _ _ _ _ _ State:_ _ _ _ Zip: _ _ 54 When removing a defective semiconductor, care must betaken so as notto marthe mounting contact surfaces or damage adjacent components and to preserve all identifying device markings. It is wise to tag the smaller leads (Le. gate, cathode potential, etc.) for ease of identification. Installing a replacement power semiconductor is discussed in the Westinghouse application data sheet NMounting Power Semiconductors"located in the General section oftheWestinghouse Data Book. The most important considerations in remounting or replacing devices are to maintain clean mounting and contact surfaces, to continue using a good thermal compound at the mounting interfaces, and to apply the specified torque. 9. SAFETY Safety in operating and servicing solid state equipment is espeCially important. Unlike mechanical equipment which has rotating parts, moving contactors, etc., there is nothing to warn one that the equipment is energized. There is also a tendencyforthe uninitiated to believe that voltage and current levels associated with semiconductor electronics are too low to be dangerous-don't bet your life on it! Obvious safety measures must be carefully observed. Most high powerequipment includes built in safety interlocks to make certain that the equipment is turned off before anyone can gain access to the circuit areas. However, maintenance personnel often defeat these interlocks to simplify their service work. This is both careless and stupid. In cases when circuits must be checked while energized there are a·few simple rules which could save both personal pain and equipment damage. First, if possible, always work with another person present-one who knows how to shut-down the equipment in a hurry. Second, when working around high voltages, be sure that the floor is covered with a rubber mat, and follow the good practice of working with one hand in your pocket. This sounds simple, but it could prevent one from completing a circuit through the body. Finally, always use insulated tools to avoid short circuits that could further damage electronic components. Some of the common shop practices for safety are too often overlooked or ignored. To name a few: 1. Always wear safety glasses-hot metal from a short or a soldering iron can ruin an eye as quickly as a metal chip. 2. Keep long hair contained with a cap or net. 3. Lock out the disconnect or breaker for the circuit you are about to service. 4. Check with a voltmeter to be sure the circuit is completely dead. 5. Maintain "off limit" areas for high voltage equipment. Access'should be allowed only to authorized personnel. Too many accidents are caused by carelessness or laziness. Bear in mind that it can happen, so be careful. 55 Westinghouse Semiconductor Lifetime Guarantee • Westinghouse warrants to the original purchaser that it will correct any defects. in workmanship or material, by repair or replacement, F.O.B. factory or, at its option, issue credit at the original purchase price, for any silicon power semiconductor bearing this symbol ... during the life of the equipment in which it is originally installed, provided said device is used within manufacturer's published ratings and applied in accordance with good engineering practice. The foregoing warranty- is exclusive and in lieu of all other warranties of quality whether written, oral, or implied (including any warranty of merchantability or fitness for purpose) . • IS ave nosecon source. 56 5 RELIABILITY 1. UNDERSTANDING SEMICONDUCTOR RELIABILITY Explanation of reliability. Much has been written about reliability, and it usually ends up in mountains of charts, tables, graphs, curves, and equations which require a mathematical background plus several good courses in statistics to understand. Of cou rse, a great deal of reliabi lity is expressed in statistical terms, such as AQL (Acceptance Quality Level), LTPD (Lot Tolerance Percent Defective), MTBF (Mean Time Between Failures), etc. It will be the object of this section to discuss reliability so thatthe user, the supplier, the purchasing agent, the salesman and the engineer can understand just what is required and what can be supplied in terms of a reliable product, and to what degree, and at what cost. The age old requirements of a good newsworthy article are: Who, What, Why, When, and Where. Then, to make this a technical discussion, we add the word, "How". The Who in reliability must refer to the manufacturer. Is the manufacturer dependable? Does back-up data and a good "history" of product usage in the field exist? Can the manufacturer speak knowledgeably in the realm of reliability? These things must be considered when an MTBF figure is discussed or when an L TPD value is specified. Next, we come to the big question: What is Reliability? The dictionary describes it as "worthy of confidence; trustworthy." From the word rely, "to depend on; trust; repose confidence upon". This is all quite graphic and needs no further explanation. However, another parameter enters the picture here and that is the degree of reliability. It has become customary in the semiconductor industry to refer to any device which is a cut above the standard as a Hi-Rei device, no matter how reliable (or unreliable) the standard product is or to what deg ree it has been improved. So now it becomes necessary to define degree or level of reliability required and to do so in a universal language which will put us all in the same ball park. For this reason we turn to the common denominator of statistics. In the field of semiconductors, the standard for quality has been set by the military, and rightly so, since in many of their applications life itself depends upon the reliability of the device being used. The basic document is Specification MiI-S-19500, "Semiconductors, General Specifications For." This specification provides an excellent table for evaluating or planning device reliability. Table 5.1 provides a sampling plan for testing a lot of devices with a reasonable assurance (90% confidence level) that, 9 out of 10 times, the number of defective units that may be found in the lot (regardless of size) will not exceed the percentage indicated by the chosen LTPD number. As an example, let us assume that a certain lot of units has been processed to meet an LTPD of 10. From the table we select a testsampleof38 devices, which allows one failure (a= 1). This would bean actual failure rate for the test sample of 2.63%. The difference between 10% and 2.63% takes into account a statistical probability of picking out defective units in the same proportion as they may appear in a lot, with a small random sample. Note that the larger the sample the greater the percent defective allowed; if we select a sample size of 326 (in the 10% column), the acceptance number is 25. This gives an actual percent defective in the test samp Ie of 7.67%. In other words, if we continue testing the entire lot the acceptance nu mber approaches 10%. This means that if the acceptance number is not exceeded in the first test sample (usually small), one may be su re (90%) that the number of defective units in this particular lot (one manufacturing run) will not exceed the LTPD to wh ich we are testing. Usually, the actual quality of a group of devices is much better than is indicated by the L TPD to which they have been tested, for the simple reason that a manufacturer cannot afford to process devices to the exact degree where each test sample will produce the allowable number of defectives and no more. A rejected lot can be very expensive. Note also that, as data accumUlates in "small sample" testing, the better the overall LTPD becomes. In the example justcited, ifalot is tested toan LTPDof10with a sample size of 38, the lot is accepted atthis level (10% LTPD) with one reject. If 10 lots in a row are accepted, each with maximum allowable failures, the total sample size becomes 380 and the acceptance number is 10. From the table this would indicate (by extrapolation) an LTPD of 3.7 for the total product. It is evident that a product with a history of lot acceptances must be considered more reliable than a similar new product, even though both are tested to the same specifications and at the same level; hence, there is a definite resistance to change by users of proven semiconductor products, even though the manufacturer has devised numerous tests to show that the product has been improved. Another reason for this "resistance" is the fact that very often changes in product are instituted for 57 Max.Percent Defective (LTPD) orA Acceptance Number (c) 50 30 5 (1. 03) 8 (4.4) 11 (7.4) 13 (10.5) 16 (12.3) 19 (13.8) 21 (15.6) 24 (16.6) 26 (18. 1) 28 (19.4) 31 (19.9) 33 21. 0) 36 (21. 4) 38 (22.3) 40 (23.1). 43 (23.3) 45 24.1) 47 (24.7) 50 (24.9) 52 25.5) 54 26.1) 65 (27.0) 1 2 3 4 5 6 7 8 9 10 g: 11 12 13 14 15 16 17 18 19 20 25 --- ... ----- ---- 10 15 5 7 3 2 1.5 1 0.7 0.5 0.3 0.2 Minimum Sample Sizes (For device-hours required for life test, multiply by 1000) 1r=c+ll 0 20 ------- 15 8 11 22 (0.64) (0.46) (0.34) (0.23) 18 38 13 25 (1.4) (0.94) (2.7) (2.0) :Ill: lIS Z:I 34 (4.5) (3.4) (2.24) (1. 6) 32 43 65 22 (6.2) (4.4) (3.2) (3.1) 78 27 38 52 (7.3) (5.3) (3.9) (2.6) 91 45 60 31 (8.4) (6.0) (4.4) (2.9) 104 51 35 68 (9.4) (6.6) (4.9) (3.2) 116 57 77 39 (10.2) (7.2) (5.3) (3.5) 128 43 63 85 (10.9) (7.7) (5.6) (3.7) 69 140 47 (11.5) (8.1) (:.30). (3.9) 75 100 152 51 (12.1) (8.4) (6.3) (4.1) 166 83 III 54 1(12. ID. J8.3t .(6.2) 1(4.2) 178 89 119 59 (13.0) (8.6) (6.5) (4.3) 126 - 190 95 63 (13.4) (8.9) (6.7) (4.5) 134 201 67 101 (13.8) (9.2) (6.9) (4.6) 142 213 71 107 (14.1) (9.4) (7.1) (4.7) 112 150 225 74 1(14. 6) (9.7) (7.2) (4.8) 158 79 118 236 (14.7) (9.86) (7.36) (4.93) 124 248 83 165 (15.0) (10.0) (7.54) (5.02) 173 259 86 130 (15.4) (10.2) (7. 76t (5.12) 180 135 271 90 1(15.6) (10.4) (7.82) (5.19) 163 217 326 109 (16.1) (10.8) (8.08) (5.38) -------- ----- ~--- 45 76 116 32 153 (0.16) (0.11) (0.07) (0.04) (0.03) 77 llJ5 55 1ZD Z58 (0.65) (0.46) (0.28) (0.18) (0.14) -(:I IHi Ztiti IU:I 3:14 (1. 1) (0.78) (0.47) (0.31) (0.23) 132 221 333 94 444 (1.5) (1.0) (0.62) (0.41) (0.31) 113 158 398 531 265 (1. 8) (1. 3) (0.75) (0.50) (0.37) 131 184 617 308 462 (2.0) (1.4) (0.85) (0.57) (0.42) 149 209 349 :100 (2.2) (1. 6) (0.94) (0.47) 166 234 589 783 390 (2.4) (1. 7) (1. 0) (0.67) (0.51) 431 184 258 648 864 (2.6) (1.8) (1.1) (0.72) (0.54) 201 282 (~.Oi7) (2.7) (1. 9) 7-(0 102:1 218 306 511 (2.9) (2.0) (1. 2) (0.80) (0.60) 555 832 332 11~!j 1_(2. !l l(1. 2) (0.83) (0.62) _1187 356 890 254 594 (3.0) (2.2) (1. 3) (0.86) (0.65) 379 271 632 948 1264 (3.1) (2.26) (1. 3) (0.89) (0.67) 1007 288 403 672 1343 (3,2) (2.3) (1. 4) (0.92) (0.69) 426 711 305 !422 (3.3) (2.36) (1.41) (~?;~) (0.71) (8~:2) (r:8) (i~~) J~~ _!l 2l (3.37) 338 (3.44) 354 (3.51) 370 (3.58) 386 (3.65) 466 (3.76) 1(i.5~1) 473 (2.46) 496 (2.51) 518 (2.56) 541 (2.60) 652 (2.69) 231 (0.02) 3DO (0.09) :133 (0.15) 668 (0.20) 798 (0.25) 927 (0.28) (0.31) 1178 (0.34) 1300 (0.36) (0.22) 1680 (0.24) 1854 (0.25) 461 767 1152 (0.01) (0.007) (0.005) 778 1296 11146 (0.045) . (0.027) (0.018) J.,(,(3 lUti:l 'ZtitiZ (0.080) (0.045) (0.031) 1337· 2226 3341 (0.10) (0.062) (0.041) 1599 3997 2663 (0.12) (0.074) . (0.049) 1855 3090 4638 (0.14) (0.085) (0.056) 2107 5267 3509 (0.155) (0.093) (0.062) 2355 3922 - 5886 (0.17) (0.101) (0.067) 2599 4329 6498 (0.18) (0.108) (0.072) (~~~~) (~?~~) (~~t~) (~~~:) 30~2 328 (0.02) 555 (0.06) -(:Ill (0.11) 953 (0.14) 1140 (0.17) 1323 (0.20) 10~ 150~ 1:141 (0.40) 1664 (0.42) 1781 (0.43) 1896 (0.44) 2015 (0.46) 23~~ (0.2 2544 (0.3) 2709 (0.31) 2878 (0.32) (~~~~) (g?~~) (1.1I~) (~~~~ (~~;~ (~~::) 788 (1. 48) 826 (1. 51) 864 (1.53) 902 (1. 56) 1086 (1.61) 2364 (0.49) 2478 (0.50) 25!j1 (0.52) 2705 (0.52) 3259 (0.538) 1182 (0.98) 1239 (1. 0) 1296 (1. 02) 1353 J1. 04) 1629 (1.08) 1576 (0.74) 1652 (0.75) 1728 (0.77) 1803 l(0.78) 2173 (0.807) . - (g.Z;:7) 3377 (0.344) 3540 (0.351) 3702 (0.358) 3864 (0.364) 4656 (0.376) (0.20) 3323 (iJ. 21) 3562 (0.22) 3793 (0.22) 40~~ (0.23) 0.15 0.1 I 1 1534 2303 I (0.003) . (0. 0021 '3891 2592 (0.013) (0.009) 3:>1'( 1I3Z3 (0.022) (0.015) I 6681 4452 (0.031) (0.018) I 5327 7994 (0.037) (0.025) 6181 9275 (0.042) (0.028) 7019 10533 (0.047) (0.031) 7845 11771 (0.051) (0.034) 12995 8660 (0.054) (0.036) (~:::4) (~.lg:7) (~g:7) (~~~g~) (g.l:io) (J::O) 5546 (0.12) 5936 (0.13) 6321 (0.134) 6716 (0.138) (~~::5) (~.lf21) 102~~_ ~~07 (0.060) (0.040) 8319 11092 16638 (0.083) 1(0. 062) {0.042) 11872 17808 8904 (0.086) (0.065) (0.043) 18964 9482 12643 (0.089) (0.067) (0.045) 10073 20146 13431 (0.092) (0.069) (0.046) 1061.>2 (0.094) (~~~~;) (~~~~~>" (i:i~l) (~.4i~) (~~~~ (~~~;~ (~~:~) 4728 (0.246) 4956 (0.251) 51~~ (0.256) 5410 (0.260) 6518 (0.269) 7880 (0.148) 8260 (0.151) 8638 (0.153) 9017 (0.156) 10863 (0.161) 11819 (0.098) 12~90 (0.100) 12957 (0.102) 13526 (0.104) 16295 (0.108) 15759 (0.074) 16520 (0.075) 17276 (0.077) 18034 _(0.078) 21726 (0.081) 23639 (0.049) 24780 (0.050) 25!j~4 (0.051) 27051 (0.052) 32589 (0.054) - TABLE 5.1 LTPD sampling plans 11 21 Minimum size of sample to be tested to assure, with a 90 percent con- Poisson exponential binomial limit. 21 The minimum quality (apfldence, that a lot having percent-defective equal to the specified LTPD prOXimate AQL) required to accept (on the average) 19 of 20 lots Is will not be accepted (Single sample). 1/ Sample sizes are based upon the. shown In parenthes" for Information only. the sole purpose of cost reduction; then the change is made on an "as good as" basis, and only a similar history of successful usage will convince a user. In this respect, the market is often fickle because it forces many reliable manufacturers to compete with "junk dealers" on price alone, and then it pays a high price to have reliability processed into the device. In spite of this resistance to changing an established product, it is necessary for a manufacturer to keep abreast of the state-of-the-art and, as is usually the case, an old (and proven) line of devices must be discontinued in favor of the new before enough data has been accumulated to call it equivalent. In these instances, one has to use a "projected" failure rate rather than an actual failure rate. As an example, if wetakethefactual LTPD of 3.7 as determined above and go back to the Table (by extrapolation), we find that we may expect one failure in 111 units; if the test is a 1000-hour operation life test, we may now say that the product has an established MTBF of 110,000 hours. For the new product, we claim the same MTBF, on the basis of starting with the same test level and including enough processing to give a reasonable assurance that the succeeding lots will pass operating life test. This is considered a projected MTBF. When the LTPD figure is applied to 1000hour life tests or LTPD per thousand hours, it becomes the life test failure rate, (Lambda), which is expressed as percent defective per 1000-hour operation. To sum up what is meant by reliability in semiconductors, we find that: • The degree of reliability must be defined; the term "hi-rei" device is meaningless by itself. • Degree or level is definecf(usually) by a Mean Time Between Failure figure, along with a given confidence level. • There is a distinction between High Reliability and Established Reliability. A device may be designed for High Reliability, but Established Reliability is achieved only from actual data covering hundreds of thousands of device hours of actual use. • A good yardstickforestimating a "projected reliability" is the LTPD figure to which the device lot is tested, as set forth in the Table of Mil-S-19500 with a 90% confidence level. Why is so much emphasis being placed on reliability? As semiconductors are being designed into more complex and sophisticated equipment, it becomes more and more essential to avoid "down" time or malfunctions. Also, in the missile and space program, "expected" failures cannot be tolerated. Although the greatest Hi-Rei requirements are found in such applications as aircraft, military and space projects, the equipment manufacturers and industrial users are beginning to demand more reliability in the semiconductors which they use. Here again, the cost of replacing a component must be weighed against the cost of procuring a sufficiently high reliability device to minimize or eliminate the need for replacement. This becomes our when of reliability; when the cost of processing a manufactured lot of semiconductors is attractive when compared to a possible malfunction of a standard device, or when the added reliability of a piece of equi pment enhances the manufacturer's reputation for dependability. Where is reliability introduced into a device-from beginning to end. It starts with the choice of suppliers of component parts and continues with incoming inspection, in-line processes and controls, processing after construction, end of line screening and testing, quality assurance testing, storage and marking methods and controls, and shipping tests and it ends with the user's incoming inspection and application with special emphasis on conformance to the parameters as set forth for the device. Th is method of using actual test failures, together with a history of (accumulated data) similar devices, to obtain a projected MTBF is probably an over-simplification, but it does provide a ball park figure which, if anything, would be conservative. No matter what complicated and time consuming system is used, the results will still be an approximation. How to achieve reliability. How is this "extra" reliability to be obtained? We have often heard it stated that one cannot test quality into a product. This is very true; however, we can process non-quality out. First, let us consider some of the possible causes of semiconductor failure, not necessarily in order of importance: • • • • • • • Excessive junction temperature Thermal fatigue Aging Poor construction, misalignment of parts Foreign particles Mechan ical stress Lack of hermeticity 59 • Inconsistencies in crystal, doping, element • Improper curing of junction coating • Improper use-nonconformance to limiting parameters assigned to the device No doubt there are many other causes of fallures,but these are the ten most obvious. Many of these "faults" can be. greatly minimized by rigid incoming inspections and constant monitoring of fusion furnace temperatures, etching processes, assembly practices, soldering temperature, junction coating and curing, and visual inspection up to encapsulation. This in-line control is essential for good reliability in a product and is a "must" if we are to "aintain a reasonable confidence level. However, even the best controls cannot enable one to predict the effect of electrical, mechanical, andemiironmental stresses upon a device. For this reason, various conditioning procedures have been developed to simulate some ofthe above listed causes of failure. It is an attemptto prevent and/or weed out devices which may be subjectto "i nfant mortality"-that is, failure in the first week or two of operation. It has been found ~rom experience and many thousands of hours of operation that once a semiconductor survives the first w~ek or two of operation,its chance of reaching the expected lifetime is more than doubled. Normally, one would believe that with exacting in-line controls,such faults as misalignment, foreign particles, hermeticity, and improper .curing would be eliminated, but this is not so. Many things can happen to a device during the encapsulation procedure which usually involves heat stresses from welding and soldering temperatures and mechanical stresses from pressures on the internal lead and pinch-off and crimping operations. Also, the amount of in-line controls must be dictated by the quality and cost required to meet competition in the volume market. Once this criterion is met, we start considering the various procedures for producing a high reliability product. There are three major contributing factors in planning a Hi-Rei program: (a) Level of reliability required; (b) Cost of achieving the required level of reliability and (c) Volume-number of units to be processed. Naturally, the customer wants the most reliability for the least cost and the customer must decide what level can be tolerated. Before going into the various levels of reliability, it would be wise to look into the various tests and procedures that are available to achieve these levels and to consider the good . and bad features of each. 1. Temperature Cycling: Cycles from minimum to maxi mum rated junction temperatures and back again in a specified time. This operation is done on a batch basis and is relatively inexpensive.lt is designed to weed out those devices that may have a tendency to fail due to expansion and contraction of the various materials in the device package which could crack an element or break a solder connection. 2. Stabilization Bake: A bake at the maximum rated temperature. The purpose of this step is to stabilize the device by further curing of the junction coating. This is also an inexpensive procedure. These first two steps are essential before proceeding with further processing. In many instances, especially in the case of military products, it is included in the standard procedure. 3. X-Ray Examination: A very expensive operation, made more so because of the elaborate requirements of some semiconductor X-ray specifications which require that all devices be serialized. Film must be process. ed and examined and careful lot control maintained so that corresponding units and film are shipped together.. The equipment is expensive and the operators must be well~trained. This is the only way, however, by which faulty construction or the presence of foreign particles can be detected after encapsulation. The test becomes much more effective if performed after shock and/orvibration te~ts. Needless to say, the sooner this procedure'· can be changed from a 1000/0 basis to a sample basis withou.t jeopardizi ng the confidence level, the happier all concemed will be. 4. Operating Life: Perhaps the best single process for improving the reliability of a device. This process consists of actually operating the unit at stated parameters for a specific period oftime. Usually, the operating conditons are the maximum rated forward current, reverse voltage, and case temperature. Times vary depending on need. This operation is expensive because every device must be handled separately, it ties up life test equipment for long periods, and scheduling times are often prohibitive. The cost of building special equipment for any particular order is also prohibitive. For this reason, volume and delivery requirements are important conSiderations in using this procedure. The reason Operating Life is so highly regarded is graphically illustrated by"a Failure Rate versus Operating Ti me Cu rve, Figure 5.1. This curve falls very steeply during the initial operati ng ti me, then gradually levels out to the inherent value for the device. 5. Blocking Life: This process has the rated peak reverse voltage (either full or half wave rectified) applied to the un its whi Ie in an ambient equal to the maximum rated j unction temperature for a determi ned time period. This is often done in conjunction with Stabilization Bake with a moderate increase in cost because a connec- 60 CD Standard Product -- ta One Week Bum-in ~ ! --__ ...1 ~ = II II If ---t-T-I Two Week Bum-in .Inherent Failure Rate I Operating Time Figure 5.1 Effect of operating life burn-In on semiconductor failure rate over time. tion must be made to each device, which then limits the number of devices that can be handled at one time. It is no longer a "batch" operation. Blocking Life is a very good alternative for Operating Life. 6. Power Cycling (Thermal Fatigue): The Power Cycling test may also be used as a substitute for Operating Life. However, care must be taken as to the number of cycles specified for conditioning because this is a severe test and probably reduces the actual lifetime of the device. The test consists of heating the device up to its operating case temperature by the application of forward current and then force-cooling it back to approximately room temperature. The device under test is ,subjected to a continuous expansion and contraction of materials which sets up stresses in the soldered and brazed connection within the device package and simulates, in an accelerated manner, the effects of actual usage. Reverse voltage is usually not applied during this test. Here again, a great deal of equipment is involved, depending on the quantities (and size) of units to be conditioned. The equipmentis not very complicated and should be relatively inexpensive when compared to operating life test equipment. 7. Monitored Shock and Vibration: Used to determ ine the mechanical stability of the device. The units are subjected to specified vibrations and lor shocks while in an operating state. The current, either forward or reve rse, is mon ito red to detect instantaneous opens or shorts or electrical "noise". This is a slow, therefore expensive,. test since only a few units can be process.ed at a time. When this procedure is called for, it should be done before X-Ray and Hermeticity tests. 8. Hermeticity Test: This test is used to determine the effectiveness of the package seal which protects the element. The entranoe of damaging contaminants will reduce the effective life of a semiconductor, hence, a good package seal is imperative in a high reliability device. This is afairly expensive test when done on a 100% basis. It requires a good commercial tester and is not a batch operation. Of these procedures, you will note that 1,2,4,5, and 6 are conditioning processes, while 3, 7, and [~'~re selection or "weeding out" type of tests. Naturally, any conditioning should be done before the select; .,;: ;.:"IS. The monitored shock and vibration tests can be considered as both conditioning and selecting, and!':; IQwd be performed before hermeticity tests or X-Ray. All of these procedures become more effective when accompanied by limitations on changes in characteristics, that is, maximum allowable AVFand AIR. This assures a more stable end product but may also eliminate a lot of good devices and prove quite expensive. After a lot of semiconductors has been stabilized and most of the "weak sisters" removed by some combination of the above mentioned procedures, there is a final process which will enhance reliability tremendously and that is "derating" the device in some (or all) of its parameters. For instance, an 800 volt, 12 amp at Tc =1500 C rectifier will be more rei iable if rated as a 600 volt device and even more rei iable as a 600 volt, 6 amp at Tc =125°C device. The intended application of the rectifier wouid dictate which parameters should be derated for the best results. If the unit may be subjected to high transient voltages, then the voltage should be derated. If the unit is to be used in a circuit with frequent on-off operations or subjected to many temperature excursions, then the current andlor temperature should be derated. To illustrate to the semiconductor equipment designer and user the value of derating as a reliability tool, graphs of the failure rates per 1000 hours for thyristors, transistors, and rectifiers are shown in figures 5.2, 5.3, and 5.4. 61 Failure Rate (% per 1000 hours) % V DRM and/orVRRM 3r---~----------~ Failure Rate (% per 1000 hours) 10 % VeE Failure Rate (%pe!1000hours) 3~'--------------~~~ 5 3 2 0.5 0.5 0.1 0.3 0.2 0.05 0.5 0.1 0.1 0.05 0.04 0.03 0.02 0.01 '--:.':~------==-----:-:'-:-----,-J SO . 75 100 125 Junction Temperature, 0 C Figure 5.2 Estimated degradation failure rate for thyristors at less than 50 amps per j.tsec. For catastrophic failures, use 10% of these values. 0.01 0.05 0.005 0.004 0.003 0.002 0.03 0.02 0.01 '---:':SO:-L----::!::---~--:7=---:-:'. junction Temperab,lre, 0 c Figure 5.3 Estimated failure rate for transistors. For catastrophic failures, use 10% of these values. 0.001 '--'SO----"71.5 -1-'-00--'125--1SO'--1.....75 Junction Temperature, 0 C ' Figure 5.4 Estimated failure rate for rectifiers. For catastrophic failures, use 10%' of these values. ' These graphs show that one key to enhancing reliability is derating. Derate any of the reliability sensitive parameters, such as the temperature and the voltage to which the semiconductor is subjected, and derate the related parameters of current, power, thermal impedance; and time, and the reliability will be increased. A study ofthederating curves shows that a reduction of the junction temperature gives a larger reduction inthe failure rate than a similar reduction in applied voltage.Also;a largerpercentageoffailures is expected at 100% of rated voltage than at a lower (derated) voltage. Using figure 5.2, the failure rate for 125°C and 100% rated voltage is 3%. If the voltage is lowered to 75% of rated value and the junction temperature is decreased to 75°C, the failure rate is 0.15%, or 20 times lower. Th is discussion has endeavored to reduce the complicated business of semiconductor reliability, whether achieving, proving, calculating or projecting, to a few undeniable truths, as follows: ' • The chief reasons for unreliability must be recognized and dealt with. • There are only a certain number of processes or procedures that can be applied to a semiconductor device to enhance its quality, once manufacturing is completed. • There are so many variables in both the manufacture and use ofthese devices that each type has an inherent degree of reliability which cannot be improved upon with any amount of processing. • Because cf economic and practical considerations, one must sample test to determine and project reliability.Use of Table 5.1 provides a good method for this.· . • Expense must be balanced with need in specifying a degree of reliability. Reliability can be a practical1hing; i~ does not have to be a tool for statisticians, nor doeS it require exotic computer programming. , , So let us keep in mind, whether buying or selling reliability, that a Hi-Rei product is a good thing, but the degree of reliability must be hand.led intelligently. We do not want to waste money, but we dowant a device we can depend on-a reliable device. 62 2. QUALITY CONTROL To insure reliability, the Westinghouse Semiconductor Division uses a quality control program, a statistical method that monitors the manufacture and testing of semiconductors. The quality of a semiconductor is determined by quality controls, such as incoming materials inspections, control ofthe silicon processing and chemical purity, electrical tests, environmental tests, packaging and many other controls used in the manufacturing process. These controls are inserted to insure uniform quality. Teltlng for reliability During the design of a semiconductor, and particularly before final manufacturing approval is given, operating, storage, and environmental tests are conducted to determine the integrity and reliability of the semiconductor. The tests can be operated at accelerated stress levels to help determine margins in the device design and to predict the reliability at low application stress levels. A partial list of these tests follows: • Centrifuge, shock, and thermal shock are evaluated to determine the mechanical features of a design .• • Operating and storage life tests are used to evaluate the physical and chemical stability of the semiconductor design. • Current surge data is gathered to verify the semiconductor current handling capability and the short, high current capability of the internal connections, • Thermal fatigue data is used for checking element mounting integrity. • Thermal impedance measurements are made to insure proper junction temperature during operation. • Blocking life tests are used to determine if reliability is affected by junction temperature and voltage. • Step stress testing can be run to show the threshold of failure and the accelerated stress areas such asjunction temperature, voltage or environment. During the manufactured I ife, a family plan oftesting determines if the reliability test results are still valid. The goal of the family plan is to achieve maximum device yield economy consistent with sufficient assurance that end-of-life I imits will not be exceeded during the semiconductor equipment lifeti me. These results can be used as an interpretation of the reliability of similar device families. Other voltage and current parameters can be extrapolated from similar device characteristics. Improved reliability is achieved through many corrective actions involving the design, process, fabrication, material, and device assembly inspections. Before any of these are changed, the reliability impact is stud ied and appropriate testing is instituted. Over the years, there have been improvements in the element surfaces, the element material, and the packaging that have resulted in generally lower failure rates. Testing to determine the quality of the semiconductors is done on various parameters. This testing is repeated many times as the semiconductor element continues through the manufacturing cycle and is repeated again when the element is assembled in a package. Reliability testing, such as blocking life, is done on a sampling basis in the element state, as well as in the completed package. Surge capability and thermal i mpedance are used as reliabil ity measurement tools. Types of failures Quality is closely related to reliability, which in turn, is dependent on failure rate. There are three types of semiconductor failures: the early or freak failures, the chance failures, and the wearoutfaiI ures. These fail ures are shown in Fig. 5.5 in relation to semiconductor lifetime. Early failures result when semiconductors have some production defect, material defect, or other deficiency. Even with good quality control, semiconductors will always have a small percentage of early failures, but these can be eliminated by doing quality conformance testi ng on all the units or by sample testing. One or more of the following tests, which could take from 2 hours to 168 hours or more, could be chosen: stabilization bake, operation life, or blocking life. Tests that are nottime dependent could include temperature cycling, salt spray and hermeticity. Wearout failures are practically non-existent in properly applied semiconductors during the normal life of a system. Where they do occur, wearout mechanisms exist both in structural flaws and in internal encapsulated contaminants. Because semiconductors cannot be made completely free of these flaws or contaminants, early failures can happen. But in well-designed, properly applied semiconductors, the wearout should occur long after the useful life of the system itself. Chance failures occur between the early failures and the much later wearout period. This is the long period of useful life of a semiconductor during which there is small expectation of failures. The failures that do occur are time, temperature, current, and voltage dependent. 63 Figure 5.5 The probability of failure as a function of semiconductor lifetime. Quality and reliability testing defined Testing for quality and reliability is usually divided into four catagories; Group A, Group B, Group C, and Special. • Group A includes all the standard electrical tests requ ired to assure that a semiconductor meets the voltage, current, switching times, control functions, etc. as stated in the device specification. Group A is performed on every lot. • Group B testing provides assurance that the semiconductor is properly constructed, durable, and will operate under extreme environmental conditions. These tests include operating life tests, stabilization bake, hermeticity tests, humidity, shock and vibration, etc. Once a manufacturer has established a consistent parts supplier and fabrication cycle, group Btesting (which is expensive) may be performed on combined lots or alternate lots. • Group C testing, in essence, checks whether or not the semiconductor is properly designed to meet certain special criteria. These tests include such things as high altitude test, salt atmosphere test, and thermal resistance tests. Usually, these tests are necessary only when there is a change of material, design, or process in the manufacturing cycle. • Special testing. In some instances, a customer application puts unique stresses on semiconductors so that extra testing of certain parameters, or even specially designed testing, is required to assure that the semiconductor will perform as required. Table 5.2 on page 65 illustrates a typical test plan and preferred order of grouping as recommended in Mil-S-19500. 3. RESPONSIBILITIES User responsibility: The user has the responsibility of insuring proper operation of the equipment. The maximum rating of the equipment must never be exceeded. The voltage and current must never be raised above maximum ratings to increase production. The cooling system must be monitored periodically to insure proper cooling at all times. The semiconductors and associated equipment must be kept clean. It is imperative to reliable operation that a schedule be set up for cleaning, tightening connections, etc. I n short, exercise good operating and maintenance procedures. 64 Shared responsibility: Semiconductor reliability is a shared responsibility among the semiconductor manufacturer, the original equipment manufacturer (OEM), and the end user oftheequipment. The manufacturer must design and build a reliable semiconductor, the OEM must use good engineering practices when designing the equipment, and the user must operate the equipment within its ratings and in a clean environment. If these conditions are met, power semiconductors will be reliable. Failure analysis as a reliability tool: Failure analysis involves the gathering and analyzing of all possible information about the cause of a failed semiconductor. Knowing the reason for failure, the user can modify the circuit to eliminate any repetitions of this failure mode, or the manufacturer can take corrective action in device fabrication or testing. Proper analysis may determine if a failure is due to voltage, current, over-temperature or surge. However, a failed semiconductor may show more than one mode of failure; a history ofthe use ofthe device is then necessary. For instance, if the installation was trouble-free until a certain point in time, when new or different equipment was added or a new operator was being trained, the problem may be easily resolved. Thus, failure analysis can often be specific and give the actual failure mode but, just as often, the actual cause of failure is masked, and help in the form of historical data is needed. A "burn-out" of a semiconductor is often violent enough to mask out much, if not all, of the original cause of failu reo So, the more background furnished, the more meaningful the analysis. A good failure analysis will determine the reason for failure and corrective action can then be taken. • Group A Inspection Visual & mechanical examination Electrical performance tests • Group B Inspection Subgroup 1 Physical dimensions Subgroup 2 Solderability Terminal strength Temperature cycling Hermetic Seal Thermal shock Misture resistance Subgroup 3 Shock Vibration fatigue Vibration, variable frequency Constant acceleration Subgroup 4 Terminal strength Subgroup 5 High temperature life, non-operating Subgroup 6 Operating life • Group C Inspection Barometric pressure (altitude) Salt atmosphere Other periodic tests Table 5.2 Typical Test Plan 65 slicing ... From silicon rod ... " '~ '~~-'- ... ,:. . . . ',-.~ .:. ,~. diffusion ... element testing ... . ' package assembly ... to finished devices. 66 6::~:MANUFACTURING @POWER SEMICONDUCTORS 1. FACILITIES The Westinghouse Semiconductor Divi$ion facility (Figure 6.1) in Youngwood, Pa. is the most modern high power semiconductor manufacturing plant in the world. At the Youngwood facility, nestled in the foothills of the Allegheny Mountains, the silicon elements whic.h house all the electrical characteristics of the power semiconductor component are made. This single location for element production extends its capability for supplying superior high power semiconductor devices to identical assembly facilities in Le Mans, France (Figure 6.2) and San Juan, Puerto Rico (Figure 6.3) with a new facility opening in Brazil to serve the Latin American market. Figure 6.2 Westinghouse, LeMans, France-power semiconductor manufacturing in Europe. Figure 6.3 Westinghouse, Puerto Rico-power semiconductor assembly in Gurabo (San Juan). Figure 6.1 Westinghouse-Youngwood, Paemploying the most modem, up-to-date techniques In high power semiconductor manufacturing. 67 2. PRODUCT BREAKTHROUGHS Several product breakthroughs have been instrumental in making the@manufacturingconceptareality. One key to success is theabiJ~tyto manufacture, test, and sforethesemiconductorelement independent ofthe device package. First, element sizes have been standardized forrectifiers, SeR's and transistors. Comparable semiconductor element sizes for@high power rectifiers and SeR's are shown in Figure 6.4. The early process- Figure 6A Westinghouse Power Semiconductor 68 Element~ ing stages for slicing and diffusing the silicon are identifical for rectifiers and SeR's. An all-diffused process for making rectifiers and SeR's offers good reproducibility and process precision. All Westinghouse high power SeR designs feature center-fired, di/namic gate structures forfast turn-on capability,high repetitive di/dt capability, and low switching losses. This gate structure is comparable to a device built with a pilot SeR to turn on a main SeR (Figure 6.5). Westinghouse developed a special di/namic mid-gate SeR for high peak ANODE G CATHODE Figure 6.5 Equivalent electrical circuit for the dl/namlc gate design. current and narrow pulse width fast switching applications. By using an irradiation process (see Figure 6.6) to produce fast recovery rectifiers and fast switching SeR's, Westinghouse has the advantage of being able to Figure 6.6 Exclusive @ Irradiation procell for manufacturing Fast Switching SCA's and Fast Recovery Rectifiers. 69 apply this technique after the semiconductor element has completed its processing cycle. This process promotes greater manufacturing flexibility and better control in producing fast switching and fast recovery characteristics. Westinghouse's special emitter shunt designs make possible dv/dt capabilities of 300 to 1000 volts per microsecond-the highest available in the industry. Exclusive@processesfor passivating semiconductor elements, enabling sealing and stabilization of the elements with no danger of degradation, complete the element breakthroughs necessary to establish a World Element Bank (Figure 6.7)-an inventory center for storing completely tested and passivated elements. Figure 6.7 The World Element Bank, an inventory center for storing completely tested, passivated semiconductor elements, ready for assembly anywhere In the world. 70 Originally, power semiconductors were offered only in stud mount packages. Later, by placing the same element in an integral heat sink package, (Figure 6.S), a 40% improvement in current rating was obtained ', .. , Figure 6.8 An integral heat sink package offers up to a 40% Improvement In current rating over the same element size in a stud mount package. because one thermal interface (case to sink) was eliminated. However, the real innovation in packaging was the disc; with double-sided cooling (Figure 6.9), the same element offers uptoan SO% improvement in current rating over the same element in a stud mount package. An additional benefit is that it is easy to stack these disc devices in a series arrangement or a back-to-back arrangement and devices can simply be "flipped over" for reversing polarity. Initially low power semiconductor elements were bonded to the device package with a low temperature or soft solder. Later, hard solder or high temperature soldering techniques were used, and they improved device thermal cycling capabilities by an order of magnitude. However, as element sizes increased and applications became more severe, a more fatigue-free construction was required and compression bonded encapsulation (CBE) was developed. This CBE technique completely eliminates solder connections 71 .Flgure 6.9 Disc packages offer up to 80% improvement In current rating over the same element size .In a stud mount package. between the element and the package. The metallic bond is replaced by a constant-pressure spring washer system (Figure 6.10) which supplies a constant load force to the element. Today, this technique is used to manufacture thermal fatigue free SCR's, rectifiers, and transistors that are magnitudes better than hard solder devices. CBE simplifies the manufacturing process and improves semiconductor reliability. Thissame design philosophy is employed in the disc package except that the spring clamp system is supplied externally by the user. The Westinghouse worldwide assembly concept owes its success to this patented CBE product breakthrough. 3~ KEY MANUFACTURING INNOVATIONS At the Westinghouse Semiconductor plant, innovative manufacturing procedures are the cornerstone of a large scale manufacturing concept, wherein power semiconductor elements, the heart of the semiconductor device, are the common denominator among worldwide manufacturing plants. This concept is being used to serve the power semiconductor user by guaranteed element availability from an element bank, independent of package requirements. By making package commitment at the last moment, faster delivery, at the required ratings. is made, and an inventory reduction on the part of the user can be realized. Applications, today, require a wide variety of electrical needs. In addition, regional demands require these ratings in an even wider range of 72 Figure 6.10 Compression Bonded Encapsulation (CBE) packages or assemblies. This function is well served by the Westinghouse element-oriented manufacturing system wherein the optimum application charcteristics are ensured in processing, test, and package assembly. Several basic techniques (Figure 6.11) support this element manufacturing system. The spreading resistance probe, developed to predict a product's characteristics instantly, weeks before the product is completed, means better visibility of design characteristics early in the manufacturing cycle. A Westinghouse 2500 process control computer plays an important role in the diffusion cycle by monitoring furnace temperature cycles and cool-down rate to indicate when a deviation from profile occurs. Through the effective use of the computer, the various process cycles are more controllable and predictable, providing a distri bution and yield of products to match requirements. A high volume paced conveyor element test line is used to fully characterize an element before committing it to a device package. All standard and special hot or cold tests can be performed on various size elements simultaneously on this test line. After testing, these passivated elements are .quality checked and bubble-packed for storage in the World Element Bank until needed. Fundamental to the element system is Compression Bonded Encapsulation (CBE)-a pressure-mounted contacting means for assembling semiconductor elements into a variety of packages-stud, disc, integral heat sink, or flat base. CBEensures reliability and flexibility in assembly while eliminating thermal fatigue problems inherent in conventional solder construction designs. Accurate and sophisticated testing have made Westinghouse high power semiconductors among the most reliable to be found anywhere. All this adds up to the advantages of predictable, reproducible element characteristics, World Bank stocking, guaranteed emergency delivery, and reduced inventory and cash flow for users of Westinghouse power semiconductors. 73 Spreading resistance probe. High power conveyor. Paced element test line. In-line product marking. Patented compression bonded encapsulation. Bubble-packed elements completely identified, quality checked and ready for World Bank. Figure 6.11 Key manufacturing Innovations. - 74 4. TECHNOLOGY LEADERSHIP Indicative of Westinghouse's leadership role in manufacturing high power semiconductors, UNITRA of Poland selected Westinghouse from among suppliers worldwide to provide them with semiconductor technology, facilities, and training. This agreement, for Westinghouse the largest sale oftechnology ever, was the first of its type by a U.S. manufacturer. The Semiconductor Division also enjoys the support of the Westinghouse Research and Development Center (Figure 6.12) located in Churchill, Pennsylvania, only twenty-five miles from Youngwood. Thus, a continuous program to provide long range product development and the latest technology and manufacturing techn iques is carried on from year to year. Westinghouse invests millions of dollars each year to provide the user with products which offer more efficient energy utilization, promote a cleaner environment, result in greater reliability, reduce size and weight, provide for increased safety, and offer new and expanded capabilities at the lowest possible cost. Figure 6.12 Westinghouse Research and Development Center located in nearby Churchill, Pa. @ Westinghouse A powerful part of your life. 75 76 User's Manual SEMICONDUCTOR GLOSSARY End User-Refers to individuals andlor companies who purchase, use, and maintain equipment utilizing power semiconductors. Failure-Termination of ability of a device to perform its required function. Also see failure mode. Failure Mode-Refers to type of failure rather than to cause of failure. Component failures are generally either catastrophiC (sudden and complete) failures or degradation (parameter drift) failures. Short- and open-circuit failures are ca~~strophic and usually occur - at - random. OegradatiOillailures resuh in deviations from acceptable limits without complete cessation of the function required. Fast Recovery Rectifier-Term used to describe rectifiers characterized for fast operating response. This class of devices is used for free wheeling diodes and a variety of high frequency applications. Fast SWitching SCRs-Term used to describe SCRs characterized for turn-off time capability and other speed characteristics. This class of devices is used in choppers, inverters, and other high frequency applications. Flag Lead-Term used to describe top terminal on some stud mount devices. Terminal is a rigid, metal, flagshaped connection. Flat Base-Commonly used to describe a studless (clamp down) or a square base (bolt down) device package. Flex Lead-Term used to describe top terminal on some stud mount devices. Terminal is made from flexible stranded cable. Forward Direction-The direction of current flow in a semiconductor. Forward Polarity-See standard polarity rectifier. Free Wheeling Rectifier (Dlode)-Rectifier that is used to bypass the current due to the stored energy in the inductance. Full Control-Circuit utilizing all SCR's for controlling both half-cycles in an A.C. circuit. Fusion-See element. GPM-Gallons per minute. Water flow rate through liquid cooled heat sink. Gain-The ratio of output to input. Normally used to characterize amplification properties of a transistor. Gate-Control terminal of an SCA. General Purpose Rectifier-Term used to describe rectifiers for conventional power control applications where operating speed is not a prime consideration. Half Control-An arrangement of rectifiers and SCRs that controls only half the cycle in A.C. circuits. Hard Solder-A high temperature solder having an expansion coefficient very compatible to the element and package base material. High Voltage Stack-An assembly of a number of semiconductors connected in series to obtain extra high voltage ratings. HI-Rel-Abbreviated version of high reliability. Denotes a device having an established level of reliability above that of standard production line product. AQL-Acceptance Quality Level. Ambient Temperature-Medium or free air temperature in which device is being operated. Anode-One of two high current terminals of rectifier or SCR; other terminal is cathode. Assemblies-Combination of discrete devices on heat sinks connected in various circuit configurations. Average Current-Current integrated over a full cycle. Current measured on DC ammeter. Base-Control terminal of a transistor. Beta-See gain. Blocking Voltage-Ability of a semiconductor to withstand a specific voltage stress without conducting current. Breakdown Voltage-Maximum voltage a semiconductor can support in its nonconducting direction. Bridge-Combination of discrete devices on heat sinks; generally in circuit configurations to change A.C. current to D.C. current. CBE-Encapsulation technique which replaces conventional solder, metallic bonds with a constantpressure, spring, washer system. This technique eliminates thermal fatigue due to solder jOints. CFM-Cubic feet per minute - amount of air being moved (CFM = LFM x cross-sectional area of heat sink). Case Temperature-Temperature of package measured at a specific location. Indirect method for determining junction temperature. For stud devices, proper thermocouple location is center of any hex flat - for disc devices, mount thermocouple on rim (radial edge) of pole face. Cathode-One of two high current termi nals of rectifier or SCR; other terminal is anode. In electronic symbol for rectifier or SCR, arrow points toward cathode. Chip-Smail semiconductor element, usually for one to forty amp discrete device ratings. Collector-One of high current terminals of a transistor; other terminal is emitter. Commutation-Transfer of current flow from one circuit element to another. Conduction Angle-Number of electrical degrees that current flows. A full cycle of A.C. voltage or current is 360 electrical degrees. Creepage Distance-Shortest distance across surface of an insulator between positive and negative terminals. Dice-See chip. Diode-See rectifier. Disc-Semiconductor package that can be cooled from both sides.' Various industry names include Pow-RDisc, Press Pak, Hockey Puck, etc. Duty Cycle-Ratio of operating time to total operating plus nonoperating time. Element-Sil icon wafer that has been processed to create a semiconductor junction(s), passivated, tested and ready for assembly into a device package. Emitter-One of high current terminals of a transistor; other terl'l1inal is collector. Encapsulation-Refers to process of assembling a semiconductor element into device package. 77 Reverse Polarity Rectifier-Denotes the direction of current flow where stud mount base is the anode and the top terminal is the cathode. SCR-Silicon Controlled Rectifier-Principal memb~r of the thyristor family - is basically a rectitierwith a control feature added. This three-terminal device (anode, cathode, and gate) is a controllable on-off switch. Soft Solder-Any solder that is not "hard solder". USlJally has a melting pOint of approximately 230DC, as compared to the melting pOint of hard solder which is in excess of 4000C. Solid State-An electrical device or circuit using semiconductor devices. (Uses no tubes and has no moving parts.) Mechanical relays, switches, rotaries, m-g sets, thyratrons, ignitrons, and vacuum tubes are replaced by semiconductors. ' Spike-An unintended flow of electrical energy of short duration. Graphically displayed on a scope as a very high voltage or current having a very short durationusually in the microsecond range. Standard Polarity Rectifier-Denotes direction of curr~nt flow where stud mount base is the cathode and the top terminal is the anode. Strike Distance-The shortest distance in air between points of opposite potential. It is the distance through which arcing might o,ccur. Stud Top-Term used to describe top terminal on some stud mount devices. Terminal is a threaded stud., Supplier-Power semiconductor manufacturer or authorized distributor. Thennal Fatigue-The mechanical stress placed on semiconductor interfaces due to the different expansion rates of the various metals being joined .. Thennallmpedance (Resistance)-The resistance to heat flow through a material or from one material to another. The unit is DC/W, which means the centig rade degrees of temperature rise of the material per each watt of power dissipated at the source. , Thennal Shock-Mechanical stresses placed on ,mat~rial or, more expressly, where two different materials are joined together, due to a sudden large change in temperature. Can be destructive. Thyristor-One of three primary gro.ups of solid state power devices - rectifiers, transistors, and thyristors. Principal members of the thyristor family includes SCR, triac, RBDT, GATT, GCS, GTO, etc. TranSient (Surge) Suppressor-An electrical device used to absorb the energy of extraneous high peaks of voltage or current. Used to protect semiconductors from ruinous overloads. , Transient VOltages-Extraneous spikes of high voltage which appear across a device due to switching, commutating, interruptions, etc. in associated circuitry or by natural forces such as lightning. Transients are of very short duration, usually in the microsecond range. Transistor-Three-tt)rminal (base, collector, emitter) , device used primarily for switching and amplification applications. User-Refers to both the original equipment marlUfacturer (OEM) who manufactures eqUipment utilizing power semiconductors and the end user who purchases, uses, and maintains this equipment. Vendor-See supplier. Wafer-A very thi n disc of silicon that has been cut from a silicon rod. Hockey Puck-See disc. Integral Heat Sink-Refers to a device package which incorporates its own heat sink. Package is very efficient as the element is mounted directly to the heat sinkeliminating the case to sink thermalJesistance. JAN-Refers to device specifications for military use, with , Joint Army and Navy sponsorship. JEDEC-Joint Electronic Device Engineering Council. Sets parameters and specifications for a standard line of devices throughout the industry. Junctlon-A transition region between the positive and negative layers of a semiconductor. LFM-Linear feet per minute. Rate of air flow moving across a cooling surface. LTPD-Lot Tolerance Percent Defective. Leakage Current-The small currents which get through or around the blocking characteristic of a semiconductor device, capacitor, or insulator. MRO-Term stands for Maintenance, Repair, and Operations of a factory, plant, hospital, etc., and refers to the industrial replacement and retrofit market. MTBF-Mean Time Between Failures. OEM-Original Equipment Manufacturers who build and sell equipment utilizing power semiconductors. OSHA-Occupational Safety and Health Administration. Establish and enforce national standards of safety and health in industry. Parameter-A value, condition, or characteristic that is a measurable property of a device. It may be electrical, mechanical, or thermal and can be expressed for a given set of operational and environmental conditions. Passivatlon-A process by which a semiconductor junction is protected against oxidation and contamination. Pellet-See element. Phase Control SCR's-Term used to descri be SCRs where fast turn-off time is not a prime requirement. Pole Face-Mounting surface on a disc device; each disc has two pole faces. Pow-R-Disc-See disc. Press-Pak-See disc. Procurement-Overall process of obtaining a semiconductor. Period between selection of required device and receipt of that device. Pulse-A flow of electrical energy of short duration which is deliberately generated. RBDT-Reverse Blocking Diode Thyristor. Two-terminal thyristor, ideal for pulse applications because of its high di/dt and fast switching capabilities. RMS-Abbreviation stands for root-mean-square and refers to the effective heating value of current. Rating-The ulti mate or limiting condition stated for a 'given device parameter (either maximum or minimum) beyond which the device will not operate properly and/or is not guaranteed by the manufacturer. Rectlfier-A two-terminal device where current can flow in only one direction - from anode to cathode. Low current rectifiers are frequently called diodes. Reliability-The probability that a system or device will operate for a given period of time and under given operating conditions. Reproducibility-The ability to produce a group of semiconductors having the exact characteristics of previously produced groups. Reverse Direction-Describes the direction in which a semiconductor is nonconducting. 78 SUBJECT INDEX Distributors 27,29,53 (see Data Book G61, G62) Expediting Orders 30,32-39 Failure causes of 51,52 protection from 43-47 rates of 61,62 replacing 30,52-55 trouble shooting 47-52 types of 63,64 Failure Analysis checklist 51,52 procedure 30,31,41,42,52 reliability tool 65 Firing Circuits, SCR (see Data Book G51-G54) Heat 15,41-46,48,51, 52,59-62 effects of protection from 42-46, 52, 61, 62,65 (see Data Book G43-G49) Incoming Inspection 41 Insurance 38, 39 Installation mounting considerations 42, 55 cooling considerations 43. (see Data Book G43-G49) Invoicing 32,37,38 JEDEC 52, 53 LTPD 57-59 MTBF 57, 59 Maintenance preventative 46, 47 replacement 52-55 servicing 47-52 testing 47-52 trouble shooting 47-55 Manufacturing facilities 67 innovations 72-74 product breakthroughs 68-72 technology leadership 75 Military 57-59,65 (see Data Book G42) Mounting 42,43,51,55 (see Data Back G43-G49) Overload current 46, 51, 52 equipment 44 motor 44, 45 voltage transient 44,46,51,52 (see Data Book G55-G60) Packing List 35, 36 Parameters basic 15-18 confusing terminology 18, 19 cost trade-ofts 27,28,52,53 Acceptance Quality Level (AQL) 57,58 Applications 19-25 checklists engineering assistance 19-25,29 uses 13 Assemblies advantages 27 application checklist 25 product line 10, 11 uses 13 (see Data Book A1-A80) Checklist assembly applications 25 buyer's 31 device identification 54 failure analysis 51,52 rectifier application 21 replacement device 54 scr application, fast switching 23 scr application, phase control 22 supplier evaluation 28-30 transistor application 24 trouble shooting 47, 48 Claims 30,31,41,42 Cleaning 46,47,51 Cooling cost 42,43 need for 42-46,48,51,52,65 reiiability 52, 59-62, 65 types of 42-44 (see Data Book G43-G49) Cost cooling 42-44 engineering 27, 28 expediting 30,32-39 insurance 38, 39 parameter trade-off 27,28,52,53 procurement 26-42 reliability 59-62 safety factor 28,53,62 shipping 38,39 testing 28, 41,47-51, 60-65 total 27 Cross Reference Guide 9, 19, 53 (see Data Book G3-G37) Damage see shipments Data product 9, 10, 19 technical 9, 10, 15-19 test 32, 38 (see Data Book) Delivery 27-39 (see Data Book G41, G61) Diode see rectifier 79 Pricing (see Data Book G61, G62) Procurement Protection see overload Prototype Purchase Order acknowledgement entering expediting status Quality Control Quotation Response (see Data Book G61, G62) RBDT (see Data Book S1, S95-S98) Receiving Rectifier (diode) application checklist parameters product line testing uses (see Data Book R1-R78) Reliability cost definition responsibility testing (see Data Book G42) Repair see replacements Replacements checklist procedures (see Data Book G43-G49) Reproducibility Returned Material SCR application checklists parameters product line testing uses (see Data Book 81-S94) Safety Safety Factor Sales Coverage (see Data Book G62) Samples Shipments advance warning of delays condition cost damage methods on-time receipt of return of 9,10,27-29 Standardization JEDEC manufacturing value of Supplier Evaluation Table appl ications cleaning solvents group A, B, and C. testing LTPD sampling plans motor overloads parameters, basic shipping method supplier evaluation terminology, confusing Terminology basic confusing glossary rectifier (diode) scr transistor Test cost data equipment incoming inspection rectifier (diode) reliability scr transistor Thyristor see SCR Traceability Transistor application checklist parameters product line testing uses (see Data Book T1-T34) Trouble Shooting checklist equipment procedures Vendor Evaluation see supplier evaluation Warranty (see Data Book G39, G40, A2, R2, S1, T1) Weights (see Data Book) 26-42 29 29, 30, 32-35 31,32 30,32-39 29, 30, 32-35 41, 63-65, 73 29 11 30,41 21 15, 16 10,11 48, 49 13 59-62 57, 59 52,65 59-65 54 42,43,51-55 29,68-70, 72-75 30,31,41,42 22, 23 15-17 10,11 48,49 13 55 28, 51-53, 62 29 29 30,32,33,35 30,41 38, 39 30,41,42 38,39 30,33-39 30,41 30,31,41,42 80 52,53 68-7027,28, 62, 53' 28-30 13 47 65 58 45 15 39 28 18 15-18 18, 19 77, 78 15, 16 15-17 15,17,18 28,41,47-51,~ 32,38 47-51 41 48,49 57.;es 48, 49 49-51 38, 39 24 15, 17, 18 11 49-51 13 47,48 47-51 47-55 28,30,41,42,56 38,39 , ,t-. • POWER SEMICONDUCTOR DATA BOOK Assemblies, Rectifiers, Thyristors, and Transistors How To Use This Book DEVICE TYPE NUMBER SEARCH • If only a JEDEC or Industry Type Number is known: Go to the Master Cross Reference Type Number Index (GENERAL section Page G3). Using this index, the reader can rapidly locate any power semiconductor JEDEC or industry type number for which Westinghouse offers an exact or suggested replacement along with the page number of the referenced technical data. or • If both the Product Family and the JEDEC or ® Type Number are known: Go to the Type Number Index at the beginning of the appropriate PRODUCT section. Using this index, the reader can turn directly to the page location for any JEDEC or ® type number that is listed. GENERAL APPLICATION SEARCH • If a Specific Product Application Requirement is known: Go to the appropriate PRODUCT section and scan the Product Capability Graphs and Product Selector Guides under the appropriate product subgroup. These graphs and guides are presented in order of increasing current rating so the reader can quickly locate a suitable Westinghouse product type along with the page number of the referenced technical data. or • If both a Specific Product Application Requirement and the Desired Device Package are known: Go to the Table of Contents (GENERAL section - Page G2) for the location of the appropriate PRODUCT section, product subgroup, and device package type. The page number reference marks the beginning of the desired data section; the data for a given device package type is presented in order of increasing current rating to simplify the reader's search. The @ Power Semiconductor Data Book supersedes all loose-leaf technical data issued prior to January 2, 1978. This technical data is applicable for all @ power semiconductors manufactured in Youngwood, Pennsylvania. The semiconductor devices and arrangements disclosed herein may be covered by patents of Westinghouse Electric Corporation or others. Neither the disclosure of any information herein nor the sale of semiconductor devices by Westinghouse Electric Corporation conveys any license under patent claims covering combinations of semiconductor devices with other devices or elements. In the absence of an express, written agreement to the contrary, Westinghouse Electric Corporation assumes no liability for patent infringement arising out of any use of the semiconductor devices with other devices or elements by any purchaser of semiconductor devices or others . TABI,.E O,F, CONTE~TS GENERAL • Master Cross Reference Type Number Index - JEDEC 1 N, 2N, 3N Part Numbers - Alpha Industry Part Numbers - Numeric Industry Part Numbers G2 G3 G4 G6 G22 • Westinghouse Selling PolicylWarranty G39 • Delivery Lead Time Guidelines G41 • Military and High Reliability Products G42 • Application Data - Mounting Power Semiconductors - SCR Gate Turn-On Characteristics - Thyristor Surge Suppression Ratings G43 G51 G55 • Westinghouse Quick Service Directory G61 ASSEMBLIES Introduction. Product Family Index. Selector Guide • Modular Rectifier Bridges • Gold Line, Stud Mount Devices • Air and Liquid Cooled Disc • Manifold AC Switch, Liquid Cooled • Kits and Sinks • High Voltage Rectifier Stacks A1 Introduction. Type Number Index. Selector Guides RECTIFIER • General Purpose - Axial Lead Mount - Stud Mount - Disc Mount • Fast Recovery - Stud Mount - Disc Mount R1 A3 A5 A37 A52 A65 A69 R9 R13 R39 R55 , R67 THYRISTOR Introduction. Type Number Index. Selector Guides • Phase Control SCR's - Stud Mount - Disc Mount - Integral Heat Sink - Flat Base • Fast Switching SCR's - Stud Mount - Disc Mount • Reverse Blocking Diode Thyristor (RBDT) - Stud Mount - Disc Mount $1 TRANSISTOR Introduction. Type Number Index. Selector Guides • NPN Power - General Purpose (TO-66/TO-3) - High S.O.A. (Stud Mount) - High Power Fast Switching (Stud and Disc Mount) T1 S9 541 S71 S73 S77 S83 S95 S97 T5 T15 T33 MANUFACTURER'S CODES ATS-Atlantic Semiconductor IOiodes, Inc. PSI-Power Semiconductors, Inc. DEL-Delco Electronics RCA-RCA EDI-Electronic Devices, Inc. SAR-Sarkes Tarzian EDL-Edal Industries SET-Semtech GE-General Electric SOL-Solitron GI-General Instrument SSD-Solid State Devices IR-International Rectifier SYN-Syntron (FMC) JAN-JAN (Military) TUN-Tungsol JED-JEDEC (E.I.A. PIN) UNI-Unitrode MOT-Motorola VAR-Varo NAT-National Electronics WCE-Westcode WES-Westinghouse Electric PPC-Power Physics Corp. The@replacements represent what we believe to be equivalents for the products listed. Emphasis has been placed on providing the user with a replacement device of the same current and voltage rating when possible. The user must determine the substitution acceptability by reviewing the electrical mechanical. and thermal characteristics presented in the referenced technical data sheets. Westinghouse assumes no responsibility for guaranteeing the acceptability of any suggested replacement in this master cross reference type number index. PRODUCT TYPE NOTES A-Assembly D-Drawing (Consult Factory) R-Rectifier S-SCR T-Transistor REPLACEMENT NOTES CF-Consult Factory SO-Special Order-limited availability XX(5th & 6th digits of @ Product Description Number)-Replace with appropriate twodigit numeric voltage code. G3 Part Number Type Mfgr, $1IlIr,elted@ RaJ> .cement Suggested@ Pege Part Number IN248A IN248B IN248C IN249A IN248B R R R R R JED 1N248A JED IN248B JED 1N248C 'JED IN249A JED IN249B CF CF CF 'CF CF INI281 INI282 INI283 INI284 INI285 IN249C IN260A IN260B IN260C R R R R JED IN249C JED IN260A JED IN260B JED IN260C CF CF CF CF INI286 INI287 INI291 INI292 INI293 l~m:A R R R R JED JED JED JED JED IN1t24 INII24A INI126 1N1125A IN112S CF CF CF CF, CF INI294 INI296 INI296 INI297 IN1330 R R :lEg IN1128A INI127 INII27A INII28 IN1128A CF CF CF CF CF INI331 INI332 :lE8 JED JED JED INII83 IN1183A IN1184 INII84A IN1185 INII25 IN1126A) INII28 Type Mfgr, Replacement R JED CF R 'JED CF R JED CF ,R ' JED CF R JED CF Suggelted@ Page CF CF Cf CF CF INI676 IN2054 IN2054R IN2055 IN2965R Type R R R R R Part Number Page Mfgr, JED JED JED ,JED JED IN3169 IN2054 11112054R IN2055 IN2055R CF CF CF CF CF Replacement R R R R R JED JED JED JED JED, CF CF CF CF CF CF CF CF CF CF IN2056 IN2056R IN20S7 IN2057R IN2058 R R R R R JED JED JED JED JED IN2066 IN2066R IN2067 IN2067R IN2058 CF CF CF CF CF R R R R JED JED JED JED JED CF CF CF CF CF CF CF CF CF CF IN2068R IN2059 IN2059R IN2060 ' -,"IN2060R R R R R R JED JED JED JED JED IN2068R IN2059 IN2069R IN2060 IN2060R CF CF CF CF CF CF CF CF CF CF IN2061 IN2061R :~a3~ JED JED JED JED JED CF INI3~3 R R R R R JED JED JED JED JED IN2061 IN2081R IN2063 IN2083R IN2064 CF CF CF CF CF RI5 RI5 RI6 RI5 RI5 INI336 INI341 INI341A INI3418 INI342 R R, R R R JED JED JED ,JED JED CF INI341 INI34IA INI34IB INI342 R CF IN2084 R R R R R !:F R'13 RI3 RI3 RI3 IN2064R IN2066 IN2065R IN2086 IN2086R R R R R R JED JED JED JED JED IN2064R IN2065 IN2085R IN2086 IN2086R CF CF CF CF CF JED 'INI342A JED INI342B JED INI343 JED INI343A JED INI343B RI3 RI3 RI3 RI3 AI3 IN2087 IN2087R IN2088 IN2088R IN2128 R R R R R JED JED JEb JED JED IN2087 IN2087R A4040060 CF CF CF CF R17 R R R R R JED JED JED JED JED INI344 INI344A INI344B INI345 INI346A RI3 RI3 RI3 RI3 RI3 IN2129 IN2130 IN2131 IN2132 IN2133 R R R R R JED JED JED JED JED R4040160 R4040260 R4040260 R4040380 A4040360 AI7 RI7 R17 R17 1117 INI345B INI346 INI346A INI346B INI347 R A R R R JED JED JED JED JED INI345B IN I 346 INI346A INI346B INI347 RI3 RI3 RI3 RI3 RI3 IN2135 IN2137 IN213B IN2154 IN2155 R R R R R JED R4D40480 JED R4040580 JED R4040860 JED IN2164 JED IN2155 RI7 RI7 R17 RI5 RI5 Rt'!; RI6 RI5 RI5 RI5, INI347A INI347B INI34B INI348A INI348B R R R R R JED JEd JED JED JED INI347A INI347B INI34B INI348A INI348B RI3 RI3 RI3 RI3 RI3 IN2166 IN2167 IN2168 IN2169 IN2180 R R R R R JED JED JED JED JED IN2156 IN2157 IN216B IN2159 IN2160 RI6 RI6 RI6 RI5 RI6 JED IN1195A JED IN1196 JED INII96A JED IN1197 JED IN1197A RI5 RI6 RI5 AI5 AI5 INI376 INI377 IN1378 INI379 INI380 R R R R R JED JED JED ~~g CF CF CF CF CF CF CF CF CF CF IN3OB5 IN3065R IN3OB8 IN3066R IN3OB7 R R R R R JED JED JED JED JED A5OOO115 A5DI0115 R5000215 R5Dl0215 R5OOO316 R23 R23 R23 R23 R23 R R R A JED JED JED JED IN1198 INII9BA IN1199 INII99A RI5 RI5 RI3 RI3 INI3BI INI382 INI396 INI397 INI39B R R R R R JED JED JED JED JED CF CF R51000l0 R51OOll0 R510+Il0 CF CF R23 R23 R23 IN3OB7R IN3OB8 IN3OB8R IN3OB9 IN3OB9R R R R R R JED JED JED JEI) JED R6D1.0315 R5000415 R6DI0416 R6D00616 R5DI0615 R23 R23 R23 R23 R23 INII99B INl200 INl200A INl200B INI201 R R R R R :l~g JED IN1199S JED JED I=U88A INl200B INI201 RI3 RI3 RI3 RI3 RI3 INI399 INI400 INI401 INI402 INI403 R R R R R JED JED JED JED JED R51OO210 R51oo310 R6100410 R51oo610 R6100610 R23 R23 R23 A23 R23 IN3090 IN3090R IN3091 IN3091R IN3092 R R R R R JED JED JED JED JED R5000815 R5DI0815 R6DOOBI6 R6DIOSl5 R6DOI015 R23 R23 R23 R23 R23 INI20lA INI20lB INI202 INI202A A R R R JED INI20lA JED INI2DI8 JED INI202 JED INI202A RI3 ' RI3 RI3 RI3 INI581 INI582 INI583 INI584 INI585 R R R R R JED JED JED JED JED INI581 INI6S2 INI583 INI584 INI686 CF CF CF CF CF IN3092R IN31" R IN3161R l=ml R R n R5DIIOl5 R5DOOOl5 R JED JED JED JED JED rrr:ft1<f"5 IN3161R A23 R23 R23 CF CF INI202B INI203 INI203A INI203B INI204 R R R R R JED INI202B JED INI203 JED INI203A JED IN1203B JED IN1204 RI3 RI3 RI3 RI3 RI3 INI586 INI587 INI612 INI613 INI614 R R R R R JED JED JED JED JED INIS86 INI587 INI612 INI613 INI614 CF CF RI3 RI3 RI3 IN3162 IN3162R IN3163 IN3163R IN3164 R R R R R JED JED JED JED JED IN3162 IN3162R IN3163 IN3163R IN3164 CF CF CF CF CF INI204A INI2048 INI206 INI20SA IN12D68 R R R R R JED JED 'JED JED JED INI204A INI204B INI205 INI20SA INI20SB RI3 RI3 RI3 RI3 RI3 INI615 INI616 INl860 INI6S1 INISS2 'R R R R R JED JED JED JED JE,D INI615 INl6T6 IN3260 IN3261 IN3262 RI3 RI3 R27 R27 R27 IN3164R JAN IN31S4 JAN IN3164R IN31SS IN31SSR R R R R R JED IN3164R JAN JANIN3164 JAN JAN IN3164R JED IN3186 JED IN316SR INI206 INI20BA INI2OB8 INI271 INI272 R A A R R J~D JED JED JED JED INI20B INI208A INI206B CF CF RI3 RI3 RI3 CF CF INISS3 INI664 IN1SS5 INI666 INI670 R R R R R JED IN3263 JED IN3265 JED IN3267 JED IN326S JED IN3161 R27 R27 R27 R27 CF IN3166 IN316SR IN3167 IN3'187R IN316a R R R R R JED JED JED JED JED INI273 INI274 INI27S INI27S INI277 R R R R R JED JED JED JED JED CF CF CF CF CF CF CF CF CF CF INI671 INI672 INI673 INI674 INIS75 R R R R JED JED JED JED JED CF CF CF CF CF IN3168R JAN IN3168 JAN IN3168R IN3101l IN3169R R R R R R JED IN3168R JAN JAN IN31S8 JAN JAN IN3168R JED IN3169 JED IN3169R I~H~A IN1127A INII28' INI128A II R R JED JED JED INI183 IN1183A INl184 INl184A IN1185 R R R lIil1185A INII86 INII86A IN1187 INII87A R R R R A JED JED JED JED JED IN1185A IN1186 IN1188A INII87 INII87A RI5 lil5 RI5 • RI& AI5 INI342A INI342B INI343 INI343A INI343B 'R R R R R INl18B IN1188A IN1189 INII89A INl190 R A A R II JED JED JED JED JED INl18B IN1188A INII89 IN1189A INl190 AI5 AI5 RI5 RI5 RI6 INI344 INI344A INI344B INI345 INI345A IN1190A IN1191 INII91A IN1192 IN1192A R R R R R JED JED JED JED JED INII90A INII91 INII91A INII92 IN1192A ,RI6 RI6 RI5 RI5 RI6 IN1193 IN1193A INI194 IN'I194A INII96 R R A R A JED JED JED JED JED INII93 INII93A INl194 INllMA INII95 INI;95A INl196 IN1196A INI197 INII97A A A R A R INI198 INII98A INII99 INII99A R R !! IN3162 IN3163 IN31S4 IN3166 IN3lS8 g~ 1~~~~R 1~~ggIR IN3166 IN3186R IN3167 IN31S7R IN31SS Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on pageG3 04 --~---- CF G42 G42 CF CF CF CF CF CF CF CF G42 G42 CF CF Part Number Type Mfg.. Sugga.tad@ Replacement Page Part Number Type Mfg.: Sugllestad@ Replacement Page Plrt Numbe. Type Mfg.. Suggestad@ Repl.comant Paga IN3170 IN3170R JAN IN3170 JANIN3170R IN3171 JED JED JAN JAN JED IN3170 IN3170R JAN IN3170 JAN IN3170R IN3171 CF CF G42 G42 CF JANIN3293R IN32MA IN32MAR ~~=I=I~tR R R R R A JAN JED JED JAN JAN JAN IN3293R IN32MA IN32MAA JAN IN3294 JAN IN3294A G42 R19 R19 G42 G42 IN4007 IN4044 IN4044A R R R R R JED JED JED JED JED IN40d7 IN4044 IN4044A IN4045 IN4046A R29 R29 A29 R29 R29 IN3171R IN3172 IN3172R JAN IN3172 JAN IN3172R JED JED • JED JAN JAN IN3171R IN3172 IN3172R JAN IN3172 JAN IN3172R CF CF CF G42 G42 IN3295A IN3295AR JAN IN3295 JAN IN3295R IN3298A A R A R A JED IN3295A JED IN3295AR JAN JAN IN3295 JAN JAN IN3295A JeD IN3296A R19 R19 G42 G42 R19 IN4046 IN4046A IN4047 IN4047R IN4048 R A A JED JED JED JED JED IN4046 IN4046A IN4047 IN4047R IN4048. R29 R29 R29 R29 R29 1~=iR IN3173 IN3173R IN3174 IN3174R JANIN3174 JED IN3173 JED IN3173R JED IN3174 JED IN3174R JAN JAN IN3174 CF CF CF CF G42 IN329BAR IN3297A IN3297AR IN3615 IN3616 R JED R JED R JED R JED A ,·.JED IN3296AA IN3297A IN3297AR IN3616 IN3616 R19 R19 R19 A13 R13 IN4048A IN4049 1N4049R IN4050 IN4050R JED JED JED JED JED IN4048R IN4049 IN4049R IN4050 IN4050R R29 R29 R29 R29 R29 JAN IN3174R IN3208 IN3209 IN3210 IN3211 R JAN JED JED JED JED JAN IN3174R IN3208 IN3209 IN3210 IN3211 G42 R15 R15 R15 R15 IN3617 IN3618 IN3819 IN3620 IN3621 R R R R R JED JED JED JED JED IN3617 IN3B18 IN3B19 IN3B20 IN3621 R13 R13 R13 R13 R13 IN4051 IN4051R IN4052 IN4052R 1N4053 JED JED JED JEd JED IN4051 IN4D51R IN4052 IN4052A IN4D53 R29 R29 R29 R29 R29 IN3212 IN3213 IN3214 IN3260 IN3260R R R R R R JED JED JED JED JED IN3212 IN3213 IN3214 IN3260 IN3260R R15 R15 R15 R27 R27 IN3822 IN3B23 l1li3624 IN3670 IN3670A R R R R R JED JED JED JED JED IN3622 IN3B23 IN3B24 IN3670 IN3670A A13 R13 R13 R13 R13 IN4053R IN4054 IN4054A IN4055 IN4055A R R A A JED JED JED JED JED IN4053R IN4064 IN4054R IN4055 IN4D55R R29 R29 R29 R29 R29 IN3261 1"3261R IN3262 IN3262R IN3263 R R R R R JED JED JED JED JED IN3261 IN3261 R IN3262 IN3262R IN3263 R27 R27 R27 R27 R27 IN3671 IN3671A IN3672 IN3672A IN3673 R R R A R JED JED JED JED JED IN3671 IN3B71 A IN3672 IN3672A IN3673 R13 R13 R13 R13 R13 IN4056 IN4056A IN413B IN4137 IN4138 R R R R R JED JED JED JED JED IN4D56 IN4056A A404021O R4040470 R4040670 R29 R29 R17 R17 R17 IN3263R JAN IN3263 JAN IN3263R IN3264 IN3264R R R R R. R JED JAN JAN JED JED IN3263R JAN IN3164 JAN IN3164R IN3264 IN3264R R27 G42 G42 R27 R27 IN3673A IN3735 IN3735A IN3736 IN3736R R R R R R JED JED JED JED JED IN3673A IN3735 IN3735A IN3736 IN3736R A13 CF CF CF CF IN4458 IN4459 IN4587 IN4587R IN4588 R R R R A JED JED JED JED JED IN4458 IN4459 l1li4687 IN4687R IN4588 R13 R13 R21 R21 R21 IN3265 IN3265R IN3266 IN3266R IN3267 R R R R R JED JED JED JED JED IN3265 IN3265R IN3266 IN3266R IN3267 R27 R27 R27 R27 R27 IN3737 IN3737A IN3738 IN3738R IN3739 R R R R R JED JED JED JED JED IN3737 IN3737R IN3738 IN3738R IN3739 CF CF CF CF CF IN"588R IN4589 IN4589R IN4590 IN4590R A R A R R JED JED JED JED JED IN4588A IN4689 IN4589R IN4590 IN4590R R21 R21 R21 R21 R21 IN3267R JANIN3267 JANIN3267R IN3268 IN3268R R R R R R JED JAN JAN JED JED IN3267R JAN IN3168 JAN IN3168R IN3268 IN3268R R27 G42 G42 R27 R27 IN3739R IN3740 IN3740A IN3741 IN3741R R R R R R JED JED JED JED JED IN3739A IN3740 IN3740R IN3741 IN3741R CF CF CF CF CF IN4591 IN4591R IN4592 IN4592R IN4593 R R R R R JED JED JED JED JED IN4591 IN4591 R IN4592 1N4592R IN4593 R21 R21 R21 R21 R21 IN3269 IN3269R JAN IN3269 JAN IN3269R IN3270 R A A A A JED IN3269 JED IN3269R JAN JAN IN3170 JAN JAN IN3170A JED IN3270 A27 A27 G42 G42 A27 IN3742 IN3742A IN3743 IN3743R IN:t744 R R R R R JED JED JED JED JED IN3742 IN3742R IN3743 IN3743R IN3744 CF CF CF 'CF CF IN4693R IN4694 IN4594R IN4596 IN4595R R R R R A JED IN4593R JED IN4594 JED IN4594A JED IN4595 JED IN4595R R21 R21 R21 R21 R21 IN3270R IN3271 IN3271R JAN IN3271 A A A A JED IN3270A JED IN3271 JED rN3271A JAN JAN IN3172 R27 R27· R27 G42 IN3744R IN3765 IN3766 IN3767 IN3768 R R R R R JED JED JED JED JED IN3744R IN3765 IN3766 IN3767 IN3768 .cF IN4596 IN4596R IN4816 IN4817 IN4818 R R R R R JED JED JED JED JED IN4596 IN4696R IN4816 IN4817 IN4818 R21 R21 R9 R9 R9 JAN IN3271R IN3272 IN3272R IN3273 IN3273R R R R A R JAN JED JED JED JED JAN IN3172R IN3272 IN3272R IN3273 IN3273R G42 R27 R27 R27 R27 IN3879 IN3880 IN3881 IN3882 IN3.883 R R R R R JED JED JED JED JED IN3879 IN3860 IN3881 IN3882 IN3883 R55 R65 R55 R56 R56 IN4819 IN4820 IN4821 1~38~~ R R R R R JED JED JED JED JED IN4819 IN4820 IN4821 IN4822 IN6052 R9 R9 R9 R9 R9 JAN IN3273 J..... N IN3273R IN3274 IN3274R IN3275 R R R R R JAN JAN JED JEl> JED JAN IN3174 JAN IN3174R IN3274 IN3274R IN3275 G42 G42 R27 R27 R27 IN3889 IN3890 IN3891 IN3892 IN3893 R R R R A JED JED JED JED JED IN3889 IN3890 IN3881 IN3892 IN3893 R55 R55 R66 A65 IN6053 IN6D54 IN5162 IN5162A IN5331 R R R R R JED JED JED JED JED IN5053 IN5054 R6C01216 R5C11216 IN5331 R9 R9 CF CF CF IN3275R IN3276 IN3276R IN3288A IN3288AR R R R R II JED JED JED JED JED IN3276R IN3276 IN3276R IN3286A IN32B8AR R27 R27 R27 R27 R19 IN3899 1N3900 IN3901 IN3902 IN3903 R R R A A JED JED JED JED JED IN3899 IN3900. 1N3901 IN3902 IN3903 A67 R67 R57 R57 R57 IN5332 IN5391 IN6392 IN6393 In5394 R R A R R JED JED JED JED JED IN5332 IN5391 IN6392 IN5392 IN6394 CF R9 R9 R9 R9 IN3289A IN3289AR JAN IN3289 JAN IN3289R IN3290A R R A R A JED JED JAN JAN JED IN3289A IN32B9AR JAN IN3289 JAN IN3289R IN3290A R19 R19 G42 G42 R19 IN3909 IN391 0 IN3911 IN3912 IN3913 R A R R A JED JED JED JED JED IN3909 IN3910 IN3911 IN3912 IN3913 R57 A57 R57 R57 R57 IN5395 IN5396 IN5397 IN5398 IN5399 R R A R R JED JED JED JED JED IN6395 IN5396 IN5397 IN5398 IN5399 A9 R9 R9 R9 R9 IN3290AR IN3291A IN3291AR JAN IN3291 JAN IN3291R R R R R R JED JED JED JAN JAN IN3290AR IN3291 A IN3291AR JAN IN3291 JAN IN3291 R R19 R19 R19 G42 G42 IN3987 IN3988 IN3989 IN3990 IN4001 R R R R R JED JED JED JED JED IN3987 IN3988 IN39B9 IN3990 IN4001 1113 R13 R13 R13 R9 IN5400 IN5401 IN5402 IN5403 IN6404 R R R R R JED JED JED JED JED IN5400 IN5401 IN5402 IN5403 IN5404 R9 R9 A9 A9 A9 IN3292B IN3292BR IN3293A IN3293AR JAN IN3293 R R R R R JED IN3292B JED IN3292BR JED IN3293A JED IN3293AR JAN JAN IN3293 R19 R19 A19 R19 G42 IN4002 IN4003 IN4004 IN4005 IN4006 A R R R A JED JED JED JED JED IN4002 IN4003 IN4004 IN4005 IN4006 R9 R9 A9 R9 R9 IN6405 IN5406 IN5407 IN5408 2N681 R R R R S JED JED JED JED JED IN5405 IN6406 IN5407 IN6408 2N681 R9 R9 A9 A9 R15 R15 R15 R15 AIlS Sll Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are listed on page,G3 G5 Suggested@ Part Number Type Mfgr. Replacement Page Part Number Suggested@ Type Mfgr. Replacement Page 2N682 2N683 2N686 2N687 2N688 S S 5 5 5 JED JeD JED JED JeD 2N882 2N883 2N686 2N687 2N688 SII 511 SII SII SII 2N2113 2N2114 2N2116 T T T JED JED JED CF CF CF CF CF CF ~~m~ f ~~8 8~ 2N689 2N690 2N691 2N692 2Nl016 5 5 5 5 T JED JED. JeD JED JeD 2N688 2N690 2N691 2N692 2Nl015 511 511 511 511 Tl9 2N2119 2N2120 2N2123 2N2124 2N212S T T T T T JED JED JED JED JED 2Nl016A 2Nl0158 2Nl015C 2Nl015D 2Nl016E T T T T T JED JeD JeD JED Jeo 2Nl015A 2Nl015B 2N1016C 2Nl01SD CF Ti9 Tl9 Tl9 Tl9 CF 2N2126 2N2130 2N2131 2N2132 2N2133 T T T 2Nl016 2Nl016A 2Nl016B 2Nl016C 2Nl016D T T T T T JeD JeD JED JeD JED 2Nl016 2Nl016A 2Nl016B 2Nl016C 2Nl016D Tl9 Tl9 Tl9 Tl9 Tl9 2N2226 2N2227 2N2228 2N2229 2N2230 T 2Nl016E 2N1792 2N1793 2N1794 2N1795 T 5 5 5 5 JED JED JED JED JED CF 2N1792 2N1793 2N1794 2N1795 CF 519 S19 S19 519 2N1796 2N1797 2N179B 2N1799 2N1BOO 5 5 5 5 5 JeD JED JED JED JED, 2Nj796 2N1797 2N1798 2N1799 2NI600 2NI601 2NI602 2NI603 2N1804 2N1805 5 5 5 5 JED JED JED JED JED Sugguted@ Part Number 8~ 2N3772 2N3773 2N3884 2N3885 2N3886 T S CF CF CF CF CF CF CF CF CF CF 2N3887 2N3888 2N3889 2N3890 2N3891 JED JED JED JED JED CF CF CF CF CF CF CF CF CF CF T JED JED JED JED JED 2N2226 2N2227 2N2228 2N2229 2N2230 2N2231 2N2232 2N2233 2N2739 2N2740 T T T T T JED JED JED JED JED 519 519 519 S19 519 2N2741 2N2742 2N274S 2N2746 2N2747 T T T 2N1BOl 2N1802 2NI603 2N1B04 2NI605 519 519 519 519 519 2N27S1 2N27S2 2N2753 ~~m1 T JED JED JED JEO JED 2N1806 2NI607 CF CF CF 519 519 CF CF CF 2N1812 2N1813 2N1814 2N1816 2N1817 T T T T T JED JED JED JED JED CF CF CF CF CF 2N1818 2N1819 2N1820 2N1823 2N1824 T T T T T JED JED JED JED JED 2N1825 2N1826 2N1830 2N1831 2N1832 T T T T, T 2N1833 2NI842A 2N1843A 2NI844A 2N1845A T Page 2N3772 2N3773 2N3884 2N3885 2N3886 S 5 S JED JED JeD JED JED 2N3887 2N3888 2N3889 2N3890 2N3881 531 531 531 531 531 2N3B92 2N3B93 2N3894 2N3895 2N3896 S S S 5 5 JED JED JED JED JED 2N3892 2N3893 2N3894 2N3895 2N3896 531 531 531 531 531 T25 T25 T26 T25 T26 2N3B96 2N3897 2N3898 2N3899 2N4347 S 5 5 5 T JED JED JED JeD JED T4OOO12208 T4OOO22208 T400032208 T400042208 2N4347 513 513 513 513 CF 2N2231 2N2232 2N2233 CF CF T25 T25 T25 CF CF 2N4348 2N4361 2N4362 2N4363 2N4384 T 5 5 5 JED JED JED JED JED 2N4348 2N4361 2N4362 2N4363 2N4364 CF 521 521 521 521 T JeD JED JED JeD JED CF CF CF CF CF CF CF CF CF CF 2N4365 2N4366 2N4367 2N4388 2N4371 S 5 5 S S JED JED JeD JED JED 2N4366 2N4366 2N4367 2N4368 2N4371 521 521 521 521 521 T T T T T JED JED JED JED JED CF CF CF CF 2N2767 CF CF CF CF T29 2N4372 2N4373 2N4374 2N4375 2N4376 5 S 5 5 5 JED JED JED JED JED 2N4372 2N4373 2N4374 2N4376 2N4376 521 521 521 2N2758 2N2759 2N2760 2N2761 2N2763 T JED JED JED JeD JED 2N2768 2N2759 2N2760 2N2761 2N2763 T29 T29 T29 T29 T29 2N4377 2N4378 2N5168 2N5169 2N5170 5 5 5 5 5 JED JED JeD JED JED 2N4377 2N4378 T400001608 T4OOO21608 T400041608 521 T T T T CF CF CF CF CF 2N2764 2N2765 2N2766 2N2769 2N2770 T T T T T JED JED JED JED JED 2N2764 2N2765 2N2766 2N2769 2N2770 T29 T29 T29 T29 T29 2N5171 2N5204 2N5205 2N5206 2N5207 S 5 5 5 5 JED JED JED JED JED T4OOO61608 2N5204 2N5206 2N5205 2N5207 513 513 513 513 513 CF CF CF CF CF CF CF CF CF CF 2N2771 2N2772 2N2776 2N2776 2N2777 T T T T T JED JED JED JED JED 2N2771 2N2772 2N2776 2N2776 2N2777 T29 T29 T29 T29 T T T T T JED JED JED JED JED 2N3056 2N6254 2N3771 2N6262 2N3441 . TIl 129 2N6253 2N6254 2N6257 2N6262 2N6263 JED JED JED JED JED CF CF CF CF CF CF CF CF CF CF 2N2778 2N3064 2N3065 2N3232 2N3233 T T T T T JED JeD JED JED JED 2N2778 2N3064 2N3055 2N3232 2N3233 T29 T5 T7 CF CF 2N6371 3N221 3N222 A28A A28B T A A R R JED JED JED GE GE 2N6264 3N221 3N222 IN3890 IN3891 T9 A52 AS2 R5S R56 JED JED JED JED JED CF 2NI842A 2NI843A 2NI844A 2NI846A CF 59 59 59 59 2N3234 2N3236 2N3429 2N3430 2N3431 T T T T T JED JED JED JED JED 2N6262 2N3236 2N3429 2N3430 2N3431 T9 CF T21 T21 T21 A28C A28D A28F A29A A29B R 5 5 S S GE GE GE GE GE IN3892 IN3893 IN3898 IN3890R IN3891R R56 R5S R5S .RSS R5S 2N1846A 2N1847A 2NI848A 2N1849A 2N1850A 5 5 S S 5 JED JED JED JED JED 2NI846A 2NI847A 2NI848A 2N1849A 2N1850A 59 59 59 59 59 2N3432 2N3433 2N3441 2N3442 2N3470 T T T T T JED JED JED JED JED 2N3432 2N3433 2N3441 2N3442 2N3470 T21 CF T6 T7 T27 A29C A29D A29F A40A GE GE GE GE IN3892R IN3893R IN3889R IN3209 RS6 RS6 R5S RIS 2NI909 2N1910 2N1911 2N1912 2N1913 S 5 S 5 5 JED JED JED JED JED 2NI909 2N1910 2N1911 2N1912 2N1913 519 519 519 519 519 2N3471 2N3472 2N3473 2N3474 2N3475 T T T T T JED JED JED JED JED 2N3471 2N3472 2N3473 2N3474 2N3475 T27 T27 T27 T27 T27 A40B A40C A40D A40E A40F GE GE GE GE GE IN3210 IN3211 IN3212 IN3213 IN3208 RI6 RI6 RI6 RI6 R15 2N1914 2N1915 2N1916 2N2023 2N2024 S 5 JED JED JED JED JED 2N1914 2N1915 2N1916 2N2023 2N2024 519 519 519 CF CF 2N3476 2N3477 2N3630 2N3631 2N3532 T T S 5 5 JED JED JED JED JED 2N3476 2N3477 2N3530 2N3631 2N3632 T27 T27 CF CF CF A40M A41A A41B A41C A41D R GE GE GE GE GE IN3214 IN3209R IN3210R IN3211R IN3212R RI5 R16 R15 R15 R15 2N2025 2N2026 2N2027 2N2028 2N2029 5 S 5 S 5 JED JED JED JED JED 2N2025 2N2026 2N2027 2N2028 2N2029 CF CF CF CF CF 2N3533 2N3634 2N3536 2N3636 2N3537 5 S S 5 S JED JED JED JED JED 2N3633 2N3534 2N3535 2N3536 2N3537 CF CF CF CF CF A41 E A41 F A41 M A50HXX0210 A50HXX0510 R R R T T GE GE GE WE5 WE5 IN3213R IN3208R IN3214R A50HXX0210 A60HXX0610 R15 RIS RIS CF CF 2N2030 2N2109 2N2110 2N2111 2N2112 5 T T T T JED JED JED JED JED 2N2030 CF CF CF CF CF CF CF CF CF 2N363B 2N3539 2N3540 2N3541 2N3771 5 S S 5 T JED JED JED JED JED 2N3538 2N3539 2N3540 2N3541 2N3771 CF CF CF CF TIl' A51 HXX051 0 A6OGXX1010 A6OGXX1040 A60HXX10l0 A60HXX1510 T T T T T WE5 WE5 WE5 WE5 We5 A61HXX0610 A6OGXX1010 A60GXX1040 CF CF CF CF CF CF CF 5 5 ,~ T 5 5 5 T T T T T T Note: Manufacturer's Codes, Product Type Note5 and@Replacement Notes are listed on pageG3 T Replacement JED JED JED JED JED 2N1806 2NI607 2NI809 2N1810 2N1811 G6 Type Mfgr. 5 5 5 5 S R R R R R R R R R R R R R R R R R TIl TIl 531 531 531 521 521 521 513 513 513 T7 T9 T9 T6 Pert Numbat' Tvpe Mfg.. SU99ested@ Replacement Page Part Number A60HXX2010 A61 HXXI 010 A61HXX1610 A61HXX2010 A61HXX2610 T T T T T WES WES WES WES WES CF CF CF CF CF CF CF CF CF CF Al800 Al60E Al80M Al80N Al80P A67GXX10l0 A67GXX1040 A67HXX1010 A67HXX1610 A67HXX2010 T T T T T WES WES WES WES WES A67GXX10l0 A67GXX1040 A67HXX1010 A67HXX1610 A67HXX2010 CF CF CF CF CF Al80PA .A180PB A67HXX2510 A70A A70B A70C A700 T R R R R WES GE GE GE GE A67HXX2510 R5100110 R5100210 R5100310 R5100410 A70E. A70M A70N A70P A70PB R R R R R GE GE GE GE GE A70S A7ar A71A .A71B A71C R R R R R A710 A71E A71M A71N A71P A71PB A71S Tvpe Mlgr. A SUggasted@ Replacement Page Part Number Tvpe Mfgr. Suggested@ Replacement Page GE GE GE GE GE A5100415 R5100B15 A5100B16 R5100815 R6101015 A23 R23 A23 A23 R23 A197B A197C A1970 A197E A191M R R A A R GE GE GE GE GE A6020225FJ A6020326FJ A6020425FJ A6020626FJ R6020625FJ AB3 R63 RB3 RB3 A63 !l:g~g R A A A A GE GE GE GE GE R5001115 A5001215 A5001315 A5001415 SO R23 A23 A23 R23 A23 A197N A197P A197PA A197PB A197PC R A A R R GE GE GE GE GE A6020825FJ A6021026FJ R6021125FJ A6021226FJ A6021325FJ R63 R63 AB3 A63 A63 CF R23 R23 R23 R23 Al80RA A180RB A180RC A180RO A180RE R A A A A GE GE GE GE GE A6110115 R5110215 A5110315 A5110415 R5110515 A23 R23 R23 R23 R23 A197PO A197PE A197AA A197RB A197RC R R A R R GE GE GE GE GE R8021425FJ R8021526FJ A6030125FJ R6030226FJ A8030325FJ RB3 A63 RB3 R63 RB3 R6100510 R&1 OOBI 0 R6100Bl0 R5101010 R5001210 R23 R23 R23 R23 R23 Al80AM A180RN A180RP A180RPA A180APB A A A A A GE GE GE GE GE A6110815 A5110615 A5111015 A5011115 R5011215 R23 A23 R23 R23 A23 A197AO A197AE A197AM A191AN A197AP R R R R R GE GE GE GE GE R6030425FJ R6030525FJ R6030825FJ R6030825FJ R6031025FJ A63 R63 A63 RB3 R63 GE GE GE GE GE R5100710 R6100910 R5110110 R6110210 R5110310 R23 R23 R23 R23 R23 A180RPC A180RPO A180APE Al80RS Al80RT A R R A R GE GE GE GE GE R5011315 R5011415 SO A5110715 R5110915 A23 R23 A23 R23 A23 A197RPA A197APB A197APC A191RPO A197APE R R R R R GE GE GE GE GE R6031125FJ R6031225FJ R8031325FJ R8031425FJ R6031525FJ R63 R63 R63 A63 R63 R R R R R GE GE GE GE GE R5110410 R5110510 R6110610 R511OB10 R5111010 R23 R23 R23 R23 Al80S Al8ar A187A A187B A187C R GE GE GE GE GE R5100715 R5100915 A6020110FJ R6020210FJ R5020310FJ A23 R23 R59 A59 R59 A197AS A197RT A197S A197T A291 PC R R R R R GE GE GE GE GE R6030725FJ R6030925FJ A8020725FJ R6020925FJ R6011325 A63 R63 A63 A63 R31 ABOA A90B A90C R R R R R R 6GE R5111210 GE R5110710 GE R5110910 GE R6100125 GE R6100226 GE R6100326 R23 R23 R23 R31 R31 R31 A1870 A187E A187M A187N A187P GE GE GE GE Ge R5020410FJ A5020510FJ R5020610FJ R502OB1OFJ R5021010FJ A69 R59 A69 R69 A69 A291PO A291PE A291 PM A291PN A291PS R R R R R GE GE GE GE GE R8011425 R8011525 A6011625 R6011825 R6011725 A31 A31 R31 A31 R31 ABOO ABOE A90M ABON ABOP R R R R R GE GE GE GE GE R6100425 R6100525 R6100626 R6100826 R6101025 R31 R31 R31 R31 A31 A187PA A187PB A187PC A187PO A187PE GE GE GE GE GE A5021110FJ R6021210FJ R5021310FJ A5021410FJ SO A59 A59 R59 A69 A59 A295B A296C A2950 A295E A295M R R R R R GE GE GE GE GE R7010206 A7010305 R7010405 R7010506 R7010605 R35 A35 A35 A30 A35 ABOPA ABOPB A90S ABOT A91A A A R R A GE GE GE GE GE A8001125 R8001226 R6100725 A6100925 A6110125 R31 R31 R31 R31 R31 A91B A91C A910 A91E A91M A R A R A GE GE Ge GE GE A6110226 R6110326 R6110425 R6110525 A6110625 A31 A31 R31 A31 R31 A91N A91P A91PA A91PB A91S A R R R R GE GE GE GE GE R611OB25 R6111025 R6011125 R6011225 R6110726 R31 R31 R31 R31 R31 A9H A96A A96B A96C A960 R R R R R GE GE GE GE GE R6110925 R6020125FJ R6020225FJ R6020325FJ A6020425FJ R31 R63 A63 R63 R63 A96E A96M A96N AS6P A96S R A A A A GE GE GE GE GE A6020525FJ A6020625FJ A6020825FJ A6021025FJ A6020725FJ A63 R63 A63 A63 A63 A GE GE GE GE GE R6020925FJ A6030125FJ A6030225FJ A6030325FJ R6030425FJ R63 A63 A63 A63 A63 GE GE GE GE GE R6030526FJ R6030625FJ R6030825FJ R6031025FJ R6030725FJ R63 A63 A63 R63 Ril3 GE GE GE GE GE R6030925FJ A5001310 A5001410 SO A5011310 A63 A23 R23 A23 A23 A7H A96T A97A A97B A97C A970 A97E A97M A97N A97P A97S A97T A170PC A170PO A170PE A170RPC A170APO A 170APE Al80A Al80B A180C A A A A A R A R A A R A A A A A A R R GE GE GE GE GE R5011410 SO A5100115 R5100215 A5100316 A23 R23 R23 R23 R23 A180PE A A A A A187RA A187RB A187RC A187RO A187AE R A R A A GE GE GE GE GE R5030110FJ A5030210FJ R5030310FJ R5030410FJ A5030610FJ A69 A59 R59 R59 A59 A296N A295P A295PA A295PB A295PC R R R R R GE GE GE GE GE R7010806 A7011005 R7011106 R7011205 A7011305 A35 A35 A35 A35 A35 A187RM A187RN A187RP A187RPA A187RPB R A R R A GE GE GE GE GE R5030610FJ R5030810FJ R5031010FJ A5031110FJ A5031210FJ A59 A69 A59 R59 A59 A295PO A295PE A296PM A295PN A295PS R A A A R GE GE GE GE GE R7011405 A701160b A7011805 R7011705 A35 A35 A35 A35 A35. A187RPC A187APO A187APE A187RS A187RT R A R R GE GE GE GE GE R5031310FJ A5031410FJ SO R5030710FJ A5030910FJ A59 A69 A69 A59 A59 A295S A295T A296S A296C A2960 R R R R R GE GE GE GE GE R7010705 R7010905 CF CF CF R35 A35 CF CF CF A187S A187T Al90C A A A GE GE GE A5020710FJ R5020910FJ A6100325 A296E A296M A296N A296P R ~tlggm A69 A59 A31 A31 A31 GE GE GE GE CF CF CF CF CF CF CF CF GE GE GE GE GE A6100625 R6100825 R6101025 R6001125 A6001225 R31 A31 A31 A31 A31 A296PA A296PB A296PC A296PO R R R R GE GE GE GE CF CF CF CF CF CF CF CF R8001325 A8001425 A8001525 R6110326 R31 R31 A31 R31 A296PE A296PM A296PN A296PS R GE 8~ CF CF CF CF mg~ Al90M A190N A190P A190PA A190PB A ~ A R A A A g~ R R R A7011&~5 A190PC A190PO AI90PE Al90RC R GE GE GE GE R GE CF CF CF CF Al90RO Al90AE AI90AM A190AN A190AP R A A A A GE GE GE GE GE A6110425 A6110525 A6110625 A6110825 R6111025 A31 R31 R31 R31 R31 A296S A296T A390A A390B A390C R GE GE GE GE GE CF CF R6200140 R6200240 R6200340 CF CF A39 A39 A39 A190APA Al90APB A190APC A190APO A190APE A GE GE GE GE GE A6011125 A6011225 R6011325 A6011425 A6011525 A31 R31 R31 A31 R31 A3900 A390E A390M A390N A390P R R R GE GE GE GE GE R6200440 R6200540 A6200640 R6200840 A6201040 A39 A39 A39 R39 R39 A190AS Al90AT Al90S AI90T A197A A R R GE GE GE GE GE RB110725 R6110925 R6100725 RB 100925 R6020125FJ R31 R31 R31 A31 R63 A390PA A390PB A390S A390r A39BA GE GE GE GE GE R6201140 R6201240 R6200740 R6200940 RB220140FJ R39 R39 R39 R39 RB7 A A A R A A R R A ~ R A R R R A R R R R R Note: Manufacturer's Codes, Product Type Notes 8nd@ Replacement Notes are listed on page G3 G7 Part Number A396B A396C A3960 A396E A396M Type Mfg,. 5ugge.ted@ Replacement Page Part Number R R R R R GE GE GE GE GE R6220240FJ R6220340FJ R6220440FJ R6220540FJ R6220640FJ R67 R67 R67 R67 R67 AS40LA A540lB A540lC A540l0 A540M R R GE GE GE GE GE R622OB40FJ R6221040FJ R6220740FJ R6220940FJ R6220140FJ R67 R67 R67 R67_ R67 A540N A540P A540PA A540PB A540PC A397B A397C A3970 A397E A397M GE GE GE GE GE R6220240FJ R6220340FJ R6220440FJ R6220540FJ R6220640FJ R67 R67 R67 R67 R67 A540PO A540PE A540PM A540PN A540PS A397N A397P A397PA A397PB A397PC GE GE GE GE GE R6220840FJ R6221040FJ R6221140FJ R6221240FJ R6221340FJ R67 R67 R67 R67 R67 A397PO A397PE A3975 A397T A430A GE GE GE GE GE R6221440FJ R6221540FJ R6220740FJ R6220940FJ R72oo112 A430B A430C A4300 A430E A430M GE GE GE GE GE A430N A430P A430PA A430PB A430PC Type Mfg,. R R SUggestad@ Replacement Page Part Number GE GE GE GE GE CF CF CF CF R7200612 CF CF CF CF R43 B500 BSOF B50Z 855-14 Bl10-14 GE GE GE GE GE R72oo812 R7201012 R7201112 R7201212 R7201312 R43 R43 R43 R43 R43 GE GE GE GE .GE R7201412 SO SO SO SO A540PT A5405 A540T A570A A570B GE GE. GE GE GE R67 R67 R67 R67 R43 A570C A5700 A570E A570M A570N R72oo212 R7200312 R7200412 R72oo512 R7200612 R43 R43 R43 R43 R43 GE GE GE GE GE R72oo812 R7201012 R7201112 R7201212 R7201312 A430PO A430PE A4305 A430T A437A GE GE GE GE GE A437B A437C A4370 A437E A437M A3 A3 A3 523 523 B0125-01 B0125-02 B0126-04 B0125-06 B0125-08 PSI PSI PSI PSI PSI R51OO110 R51oo210 R5100410 R5100610 R51oo810 R23 R23 R23 R23 R23 R43 R43 R43 R43 R43 B0125-10 B0125-12 B0125-14 B0150-01 B0150-02 PSI PSI PSI PSI PSI R5101010 R5OO1210 R5OO1410 R51oo115 A51OO215 R23 R23 R23 R23 R23 50 R72OO712 R7200912 R92OO111 R92oo211 R43 R43 R43 R47 R47 B0150-04 B0150-06 B0150-08 B0150·10 B0150-12 PSI PSI PSI PSI P51 R5100415 R51OO615 R51oo815 R5101015 R5OO1215 R23 R23 R23 R23 R23 GE GE GE GE GE R92oo311 R9200411 R92oo511 R9200611 R92OO811 R47 R47 R47 R47 R47 B0150-14 C30A C30B C30C C300 PSI GE GE GE GE R5OO1415 T4OO011608 T4ooo21608 T4ooo31608 T400041608 R23 513 513 513 S13 A570P A5705 A570T A596N A596P GE GE GE GE GE R9201011 R92oo711 R9200911 R722OB08EJ R722100BEJ R47 R47 R47 R71 A71 C30F C35A C35B C35C C350 GE GE GE GE GE T4oooo1608 T4ooo12208 T4ooo22208 T4ooo32208 T400042208 513 513 513 513 513 R43 R43 R43 R43 R43 A596PA A596PB A596T A640l A640LA GE GE GE GE GE R7221108EJ R7221208EJ R7220908EJ R9202016 R9202116 R71 R71 A71 R47 R47 C35E C35F C35M C35N C355 GE GE GE GE GE T4ooo52208 T4oooo2208 T40008220B T4ooo82208 T4ooo72208 513 513 513 513 513 R7201412 50 R7200712 R7200912 R722010BEJ R43 R43 R43 R43 R71 A640N A640P A640PA A640PB A640PC GE GE GE GE GE R92oo816 R9201016 R9201116 R9201216 R9201316 A47 A47 R47 R47 A47 C36A C36B C36C C360 C36E GE GE GE GE GE T4ooo11008 T4ooo21008 T4ooo31 008 T4ooo41 008 T4ooo51008 513 513 513 513 513 GE GE GE GE GE R7220208EJ R7220308EJ R7220408EJ R722050BEJ R722060BEJ R71 R71 R71 R71 R71 A640PO A640PE A640PM A640PN A640P5 GE GE GE GE GE Rsio1416 R9201516 R9201616 R9201816 R9201716 R47 R47 R47 R47 R47 C36F C36M C36N C36S C37A GE GE GE GE GE T40000 1008 T4OO061 008 T4ooo81 008 T4OO071OO8 T4ooo11608 513 513 513 513 513 A437N A437P A437PA A437PB A437PC GE GE GE GE GE R722OBOBEJ R722100BEJ R722110BEJ R722120BEJ R722130BEJ R71 R71 R71 R71 R71 A640PT A6405 A640T A670XX0515 A670XX0525 GE GE GE WES WES R9201916 R92oo716 R92OO916 A670XX0515 A670XX0525 R47 R47 R47 CF CF C37B C37C C370 C37E C37F GE GE GE GE GE T4ooo21608 T4ooo31608 T4oo041608 T4ooo51608 T4oooo1608 513 513 513 513 513 A437PO 'A437PE A4375 A437T A500l GE GE GE GE GE 50 R7221508EJ R722070BEJ -R7220908EJ R7202009 R71 R71 R71 R71 R43 A045-01 A045-02 A045-04 A045-06 A045-OB PSI PSI PSI PSI PSI IN1184A IN1186A IN11B8A IN1190A R41oo840 R15 R15 R15 R15 R15 C37M C37N C37S C38A C38B GE GE GE GE GE T4oo081608 T4OO08160B T4OOO71608 CF CF "513 513 513 CF CF A500LA A500lB A500lC A5OOl0 A500lE GE GE GE GE GE R7202109 R7202209 R7202309 R7202409 R7202509 R43 R43 R43 R43 R43 A045-10 A045-12 A065-01 A065-02 A065-04 PSI PSI PSI PSI P51 R4101040 R4101240 R4040170 R4040270 R4040470 R15 R15 C38C C380 C38E C38M C45A GE GE GE GE GE CF CF CF CF T51OO15004AB CF CF CF CF 527 A500lM A500LN A500lP A5OOl5 A500lT GE GE GE GE GE R7202609 R7202809 R7203009 R7202709 R7202909 R43 R43 R43 R43 R43 A065-06 A065-OB A065-10 A065-12 Al-l0-5 PSI PSI PSI PSI EOl R4040870 R4048070 R4041070 R4041270 MB12A25V05 R17 A3 C45B C45C C450 C45E C45F GE GE GE GE GE T51OO25004AB T51oo35004AB T510045004AB T51oo55004AB T51ooo5004AB 527 527 527 527 527 ASOOP A500PA A500PB A500PC A5OOPO GE GE GE GE GE R7201OO9 R7201109 R7201209 R7201309 R7201409 R43 R43 R43 R43 R43 Al-l0-l0 Al-l0-20 Al-l0-30 Al-10-40 Al-iO-so EOl EOl EOl EOl EOl MB12A25Vl0 MB12A25V20 MB12A25V30 MB12A25V40 MB12A25V50 A3 A3 A3 A3 A3 C45G C45H C45M C45N C45P GE GE GE GE GE T51OO25004AB T51 oo35004AB T51OO65004AB T5OO084004AA T5OO104004AA 527 527 527 523 523 ASOOPE A500PM A500PN A500PS A500PT GE GE GE GE GE R7201509 R7201609 R7201809 R7201709 R7201909 R43 R43 R43 R43 R43 Al-l0-60 Al·25-5 Al-25-10 Al-25-20 Al-25-30 EOl EOl EOl EOl EOl MB12A25V60 MB12A25V05 MB12A25Vl0 MB12A25V20 MB12A25V30 A3 A3 A3 A3 C45PA C45PB C45S C45T C45U GE Ge GE GE GE T5OO114004AA T5OO124004AA T5OO074004AA T5OOO94004AA T51ooo5004AB 523 523 523 523 527 A5OOXXOlll A500XXOl18 A510XXOl15 A510XX0125 A540A WE5 WE5 WE5 WE5 GE A6OOXXOlll A5OOXX0118 A510XXOl15 A510XX0125 R72oo112 CF CF CF CF R43 Al-25-40 Al-25-SO Al-2.5-60 Bl0A BlOB EOl EOl EOl TUN TUN MB12A25V40 MB12A25V50 MB12A25V60 MB12A25Vl0 MB12A25V20 A3 A3 A3 A3 A3 C46A C46B C46C C460 C46E GE GE GE GE GE T51 00 15004AO T51OO25004AO T51oo36004AO T510045004AO T51OO55004AO 527 527 527 527 527 GE GE GE GE GE R72oo212 R72oo312 R7200412 R72oo512 CF R43 R43 R43 R43 CF Bl00 Bl0F Bl0Z B50A B50B TUN TUN TUN TUN TUN MB12A25V40 MB12A25V60 MB12A25V05 MB12Al0Vl0 MB12A1OV20 A3 A3 A3 A3 A3 C46F C46G C48H C46M C46N GE GE GE GE GE T51ooo5004AO T51oo25004AO T51OO35OO4AO T510085004AO T5OOO84004AO 527 f:27 527 527 523 A540B A540C A5400 A540E A540l R R R R R R R R R R R R R R R R R R R R R A A A A A R17 R17 R17 R17 R17 R17 A3 Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are-listed on page·G3 A A A S 5 Suggested @ Replacement Page TUN MB12Al0V40 TUN MB12A1OV60 TUN MB12Al0V05 PSI T5OO144003AO PSI T5OO148004AO A396N A396P A3965 A396T A397A G8 Type Mfg,. 5 S 5 5 5 Part Number Type Mfg., Suggested@ Replacement Pege Part Number C152P C152PA C152PB S 5 5 GE GE GE Type Mfg., Suggested@ Replacement Suggested@ Replacement Page Page Part Number T500108004AA T500118004AA T50012OO04AA 523 523 523 ClOOA ClOOB C180C ClOOD ClOOE 5 5 5 5 5 GE GE GE GE GE T610011504BT T610021504BT T61003f504BT T610041504BT T610051504BT 533 533 533 533 533 Type Mfg., C46P C46PA C46PB C465 C46T 5 5 5 5 5 GE GE GE GE GE T500104004AO T500114004AO T500124004A( T5OOO74004AO T5OOO94004AO S23 523 523 523 523 C46U C50A C50B C50C C50D 5 5 5 5 5 GE GE GE GE GE T51ooo5004A T510018004AO T510028004AO T510038004AO T510048D04AO 527 527 527 527 527 C152PC C1525 C152T C153E C153M C153N C153P 5 5 5 5 5 5 5 GE GE GE GE GE GE GE T500138004AA T5OOO78004AA T600D98004AA T507058054AA T507068054AA T507088054AA T507108D54AA 523 523 523 577 577 577 577 ClOOM ClOON C180P C180PA ClOOP8 5 5 5 5 5 GE GE GE GE GE T610061504BT T600081504BT T800101504BT T800 111504BT T600121504BT 533 533 533 533 533 C50E C50F C50G C50H C50M 5 5 5 5 5 GE GE GE GE GE T51 0058004AO T51ooo8004AO T510028004AO T51003OO04AO T510068004AO 527 527 527 527 527 C153PA C1535 C153T C154A C154B 5 5 5 5 5 GE GE GE GE GE T60711OO54AA T507078054AA T50709OO54AA T50701OO84AO T50702OO84AO 577 577 577 577 577 C180PC ClOO5 C180T C185A C185B 5 5 5 5 5 GE GE GE GE GE T800131504BT T6ooo71504BT T600091504BT T6D7011864BT T607021864BT 533 533 533 579 579 C50N C50P C50PA C50PB C505 5 5 5 5 5 GE GE GE GE GE T500088004AO T500108004AO T500118004AO T500128004AO T500078004AO 523 523 523 523 523 C154C C154D Cl54E C154M C155A 5 5 5 5 5 GE GE GE GE GE T50703OO84AO 577 T507048084AO 577 577 U8~8~i8Wa 577 T50701OO64AO 577 C185C C185D C185E C185M C185N 5 5 5 5 5 GE GE GE GE GE T607031864BT T6070418648T TOO7051864BT T607061864BT T607081864BT 579 579 579 579 579 C50T C50U C5lA C52B C52C 5 5 5 5 5 GE GE GE GE GE T500098004AO T51ooo8004AO T510018004AB T510028004AB T510038004AB 523 527 527 527 C155B C155C C155D C155E C155M 5 5 5 5 5 GE GE GE GE GE T507028064AO T5070311064AO T50704OO64AO T50705OO64AO T50706OO64AO C1855 C186N-30 CI86N-40 CI86P-30 CI86P-40 5 5 5 5 5 GE GE GE GE GE T6D7071864BT T607081554BT T607081544BT T6071015548T T667101544BT 579 579 579 579' 579 C52D C52E C52F C52G C52H 5 5 5 5 5 GE GE GE GE GE T510018D04AB T510058004AB T51ooo8004A8 T51002OO04AB T510038004AB 527 527 527 527 527 C156A C156B C156C C156D C156E 5 5 5 5 5 GE GE GE GE GE T50701OO84AA 577 T50702OO84AA 577 T50703OO84AA 577 T507048084AA 577 T507058084AA 577 C186PA-30 CI86PA-40 C186PB-30 CI86PB-40 C1865-30 5 5 5 5 5 GE GE GE GE GE T607111554BT T6071115448T T607121554BT T607121544BT T607071554BT 579 579 579 579 579 C52M C52N C52P C52PA C52PB 5 5 5 5 5 GE GE GE GE GE T510068004AB 527 T5OOO88004AA 523 T500108004AA 523 T500 l1OO04AA 523 T500 12OO04AA 523 C156M C157A C167B C157C C157D 5 5 5 5 5 GE GE GE GE GE T60708OO84AA 577 T50701OO64AA 577 T50702OO64AA 577 T507038064AA 577 T50704OO64AA 577 C1865-40 C186T-30 C186T-40 C220A C220B 5 5 5 5 5 GE GE GE GE GE T607071544BT T607091554BT T607091544BT T4ooo11 008 T400021008 579 579 579 513 513 C525 C52T C52U C60A C608 C60C C60D C60E 5 5 5 5 5 5 5 5 GE GE GE GE GE GE GE GE T5OOO78004AA T50009OO04AA T51 0008004AB T515018004AO T51 502OO04AO T51503OO04AO T515048004AO T51505OO04AO 523 523 527 CF CF CF CF CF C157E C157M C158E C158M C168N 5 5 5 5 5 GE GE GE GE GE T5D7058084AA T507068064AA T507058054AO T507068054AO T507088054AO 577 577 577 577 577 C220C C220D C220E C220F C220M 5 5 5 5 5 GE GE GE GE GE T400031008 T400041008 T4OOO51 008 T4oooo1008 T4ooo61008 513 513 513 513 513 C60F C60G C60H C60U C62A 5 5 5 5 5 GE GE GE GE GE T515008004AO T515Q2OO04AO T51503OO04AO T515008004AO T515018004AB CF CF CF CF CF C158P C158PA C168PB C158S C158T 5 5 5 5 5 GE GE GE GE GE T50710OO54AO T507118054AO T507128054AO T507078054AO T507098054AO 577 577 577 577 577 C235-15 C280N C200P C280PA C200PB 5 5 5 5 5 P51 GE GE GE GE T6001515038T T700082504BY T700102504BY T700112504BY T700122504BY 533 537 537 537 537 C159E C159M C159N C159P C159PA 5 5 5 5 5 GE GE GE GE GE T50705OO54AA 577 T50706OO54AA 577 T507088054AA 577 T507108054AA 577 T507118054AA 577 C200PC C 80PE C200PM C200PN 5 5 5 5 5 GE GE GE GE GE T700132504BY T700142504BY T700152504BY T700162504BY T700182504BY 537 537 537 537 537 0159PB CI595 C169T CI60-15 C164A 5 5 5 5 5 GE GE GE P51 GE T5071'28054AA T507078054AA T507098054A." T600151303BT T507017084AO 577 577 577 533 577 C280P5 C2805 C280T C281N C281P 5 5 5 5 5 GE GE GE GE GE T700172504BY T7000725048Y T700092504BY T680083504BY T780103504BY 537 537 537 575 575 CI648 C164C CI84D CI84E CI64M 5 5 5 5 5 GE GE GE GE GE T507027084AO T507037084AO T507047084AO T507057084AO T507067084AO 577 577 577 577 577 C281PA C281PB C281 PC C281PD C281PE 5 5 5 5 5 GE GE GE GE GE T780113504BY T780123504BY T780133504BY T780143504BY T7801535C48Y 575 575 575 575 575 C165A C1658 C165C C165D C165E 5 5 5 5 5 GE GE GE GE GE T507017064AO T507027064AO T507037064AO T507047064AO T507057064~O 577 577 577 577 577 C281 PM C281 PN C281P5 C2815 C281T 5 5 5 5 5 GE GE GE GE GE T780163504BY T780183504BY T780173504BY T780073504BY T780093504BY 575 575 575 575 575 C165M 0165N C1655 C178A CI78B 5 5 5 5 5 GE GE GE GE GE T507067064AO T507087064AO T507077064AO T6100115048T T61D0215048T 577 577 577 533 533 C282N C282P C282PA C282PB C282PC 5 5 5 5 5 GE GE GE GE GE T7000825048Y T700102504BY T700112504BY T700122504BY T700132504BY 537 537 537 537 537 C178C C178D CI78E CI78M C178N 5 5 5 5 5 GE GE GE GE GE T6100315048T T610041504BT T610051504BT T610061504BT T600081504BT 533 533 533 533 533 C282PD C282PE C282PM C282PN C282P5 5 5 5 5 5 GE GE GE GE GE T700142504BY T700152504BY T700162504B't T7001825048Y T700172504BY 537 537 537 537 537 C178P 5 5 5 5 5 GE GE GE GE GE T600101504BT T600 111504BT T600 121504BT T600071504BT 533 533 533 533 533 C2825 C282T C283N C283P C283PA 5 5 5 5 5 GE GE GE GE GE T7000725C48Y T70009025048Y T7800835048Y T780103504BY T7OOl13504BY 537 537 575 575 575 C283PB C283PC C283PD 5 5 5 5 5 GE GE GE GE GE T7801 i35048Y T7801335048Y T7OO143504BY 575 575 575 575 575 SiP C628 C62C C62D C62E C62F 5 5 5 5 5 GE GE GE GE GE T515028004AB T515038004AB T515048004AB T51 5058004AB T515008004AB CF CF CF CF CF C62G C62H C62U C702LC C702LD 5 5 5 5 5 GE GE GE GE GE T51 5028004AB T51503OO04AB T515008004AB T9G0231003DH T9G0241003DH CF CF CF 561 561 C137E C137M C137N CI37P C137PB 5 5 5 5 5 GE GE GE GE GE T4ooo62208 T400062208 T400082208 T400102208 T400122208 513 513 513 513 513 C1375 C137T C150E C150M C150N 5 5 5 5 5 GE GE GE GE GE T4ooo72208 T400D92208 T51 D058D04AO T510068004AO T5OOO88004AO 513 513 527 527 523 CI50P C150PA C150PB C150PC C1505 5 5 5 5 5 GE GE GE GE GE T500108004AO T500118004AO T500,128004AO T500138OO4AO T5OOO78004AO 523 523 523 523 523 C150T CI51E CI51M C151N C151P 5 5 5 S 5 GE GE GE GE GE T500098004AO T507058054AO T50706OO54AO T50708OO54AO T:;0710OO54AO 523 577 577 S77 577 CI51PA CI51PB CI515 C151T CI52E 5 5 5 5 GE GE GE GE GE T50711OO54AO T50712OO54AO T507078054AO T507098054AO T510058004AB 577 577 577 577 527 CI52M CI52N S 5 GE GE T510068004AB T500D88004AA 527 523 S '/ ~178PA C178PB CI785 C178T T6ooo91504~T 577 577 577 577 577 C~OOPD C28~PE C283PM T~01535048Y T 0163504BY Note: Manufacturer's Codes, Product Type Notes and® Replacement Notes are listed on pageG3 G9 Part Number C283PN C283P5 C2835 C283T C286N Sugge.tod@ Suggo.ted@ Type Mfgr. S Replacement Page Part Number Type Mfgr. Suggested @ Replacement Page T6270220840N T6270320840N T627042084DN T6270520840N T6270620840N 587 587 587 587 587 C393A C393B C393C C3930 C393E GE GE GE GE GE T7270140740N T7270240740N T7270340740N T7270440740N T7270540740N 591 591 591 591 591 Part Number Replacement Page 5 5 5 5 GE GE GE GE GE T780183504BY T780173504BY T7BD073504BY T78OO93504BY T7DOO825C4BY 575 575 575 575 537 C364B C364C C3640 C364E C364M 5 5 5 5 5 GE GE GE GE GE C286P C286PA C286PB C286PC C286PD 5 5 5 5 5 GE GE GE GE GE T700102504BY T7oo112504BY T7oo122504BY T700132504BY T7oo142504BY 537 537 537 537 537 C365A C3658 C365C C365D C365E 5 5 5 5 5 GE GE GE GE GE T627012054DN T627022064DN T6270320640N T627042064DN T627052064DN 587 587 587 587 587 C393M C394A C394B C394C C3940 GE GE GE GE GE T7270640740N T7270148840N T7270248840N T7270348840N T727044884DN 591 591 591 591 591 C286PE C286PM C286S C286T C287N 5 5 5 5 5 GE GE GE GE .GE T700152504BY T700162504BY T7DOO72504BY T700092504BY T780083504BY 537 537 537 537 575 C365M C380A C3808 C380C C3800 5 5 5 5 5 GE GE GE GE GE T627062064DN T620013OO4DN T62oo23004oN T6200330040N T62oo430040N 587 543 543 543 543 C394E C394M C395A C395B C395C GE GE GE GE GE T727054884DN T7270648840N T727014874DN T727024874DN T7270348740N 591 591 591 591 591 C287P C287PA C287PB C287PC C2B7Po 5 5 5 5 5 GE GE GE GE GE T780103504BY T780113504BY T7BD123504BY T780133504BY T780143504BY 575 575 575 574 575 C380E C380M C380N C380P C380PA 5 5 5 5 5 GE GE GE GE GE T620053OO40N T62oo63004oN T6200830040N T6201030040N T6201130040N 543 543 543 543 543 C3950 C395E C395M C397E C397M GE GE GE GE GE T7270448740N T727054874DN T727064874DN T727054544DN T727064544DN 591 591 59'591 591 C287PE C287PM C2875 C287T C290A 5 5 5 5 T7BD153504BY T780163504BY T780073504BY T780093504BY T7oo013504BY 575 575 575 575 537 C380PB C380PC C3805 C380T C384A 5 .5 S GE GE GE GE GE C290B C290C C290D 5 GE 5 GE 55 GE T7oo023504BY T100033504BY T700043504BY 537 537 537 C290E C290F C290M C290N C290P 5 5 5 5 5 GE GE GE GE GE T7DOO53504BY T7DOO13504BY T700063504BY T700083504BY T7oo103504BY 537 537 537 537 537 C290PA C290PB C2905 C290T C291A 5 5 5 5 5 GE GE GE GE GE T700113504BY T7oo123504BY T7oo073504BY T7oo093504BY T7800135C4BY 537 537 537 537 575 C291 B C291C C291D C291E C291M 5 5 5 5 5 GE GE GE GE GE T78oo23504BY T780033504BY T780043504BY T7B0053504BY T780063504BY 575 575 575 575 575 C291N C291P C291PA C291PB C2915 5 5 5 5 5 GE GE GE GE GE T780083504BY T780103504BY T780113504BY T780123504BY T78oo73504BY 575 575 575 575 575 .C291T C350A C350B C350C C350D 5 5 5 5 5 GE GE GE GE GE T78oo93504BY T520012004DN T5200213040N T5200313040N T520041304DN 575 541 $41 541 541 C350E C350M C350N C350P C350PA S 5 5 5 5 GE GE GE GE GE T520051304DN T52(!061304DN T5200813040N T5201013040N T520111304DN 541 541 541 5'11 541 C350PB C350PC C3505 C350T C354A 5 5 5 5 5 GE GE GE GE GE T5201213040N T5201313040N T520071304DN T5200913040N T5270113840N 541 541 541 541 583 C354B C354C C354D C354E C354M 5 5 5 5 5 GE GE GE GE GE T5270213840N T527031384DN T527041384DN T527051384DN T527051384DN 583 583 583 583 583 C355A C355B C355C C355D C355E 5 5 5 5 GE GE GE GE GE T527011364DN T527021364DN T5270313640N T527041364DN T5270513640N 583 583 5B3 583 583 C355M C35BE C35BM C358N C358P 5 5 5 5 5 GE GE GE GE GE T527051364DN T5270513540N T5270613540N T527051354DN T527101354DN 583 SB3 583 583 583 C358PA C358P8 C3585 C358T C364A 5 GE GE GE GE GE T527111354DN T527121354DN T527071354DN T527091354oN T627012084DN 583 583 583 583 587 5 5 S 5 5 GE GE GE GE GE T620123OO40N T620133OO40N T6200730040N T62oo93004oN T6270125840N 543 543 543 543 587 C397N C397P C397PA C397PB C3975 GE GE GE GE GE T727084544DN T727104544DN T727114544DN T727124544DN T727074544DN 591 591 591 591 591 C384B C384C C384D C384E C384M 5 5 5 5 5 5 5 5 GE GE GE GE GE T6270225840N T627032584DN T6270425840N T6270525840N T6270625840N 587 587 587 587 587 C397T C39BE C398M C398N C398P GE GE GE GE GE T7270945440N T7270545540N T7270645540N T7270845540N T7271045540N 591 591 591 591 591 C385A C385B C385C C3850 C385E 5 5 5 5 5 GE GE GE GE GE T6270125640N T6270225640N T6270325640N T6270425640N T6270525640N 587 587 587 587 587 C398PA C398PB C3985 C39ST C400 GE GE GE GE GE T7271145540N T7271245540N T7270745540N T7270945540N CF S91 591 591 591 CF C385M C385N C3855 C386N·30 C386N·40 5 GE GE GE GE GE T6270625640N T6270825640N T6270725640N T6270825540N T6270825440N 587 587 587 587 587 C440 C441 C445 C448 C501N GE GE GE GE GE CF CF CF CF T7200555040N CF CF CF CF 551 GE GE GE GE GE T6271025540N T6271025440N T6271125540N T6271125440N T6271225540N 587 587 587 587 587 C501P C501PA C501PB C501PO GE GE GE GE GE T7201055040N T7201155040N T7201255040N T7201355040N T7201455040N 551 551 551 551 551 C386P·30 C386P·40 C386PA·30 C386PA·40 C386PB·30 5 5 .5 5 5 5 5 5 5 C~OlPC C386PB·40 C3865·30 C3865-40 C386T·30 C386T·40 5 5 5 GE GE GE GE GE T6270725440N T6270725540N T6270725440N T6270925540N T6270925440N 587 587 587 587 587 C501PE C501PM C5015 C50H C502PE GE GE GE GE GE T72015550401\! T7201655040N T72oo755040N T72oo95504oN T7201555040N 551 551 551 .551 551 C387E C387M C387N C387P C387PA 5 5 5 5 5 GE GE GE GE GE T7270535540N T7270635540N T7270835540N T7271035540N T7271135540N 591 591 591 591 591 C502PM C509 C520A C520B C520C GE GE GE GE GE T7201655040N CF T72oo155040N T72OO255040N T7200355040N 551 CF 551 551 551 C387PB C3875 C387T C388E C388M 5 5 5 5 5 GE GE GE GE GE T7271235540N T727073554DN T727093554DN T7270540640N T727054064DN 591 591 591 591 591 C520D C530A C530B C530C C5300 GE GE GE GE GE T7200455040N T72oo155040N T72OO255040N T72OO355040N T7200455040N 551 551 551 551 551 C388N C388P C388PA C388PB C3885 5 5 5 5 5 GE GE GE GE GE T7270840640N T727103564DN T727113564DN T7271235640N T727074064DN 591 591 591 591 591 C530E C530M C600 C601 C602 GE GE GE GE GE T720055504No T72oo655040N CF CF CF 551 551 CF CF CF C388T C390E C390M C390N C390P 5 5 5 5 5 GE GE GE GE GE T727093564DN T7200555040N T720065504DN T720085504DN T720105504DN 591 551 551 551 551 C609 C612 C701PA C701 PB C701 PC GE GE GE GE GE CF CF T9G01112030H T9G01212030H T9G01312030H CF CF 561 561 561 C390PA C390PB C390PC C3905 C390T 5 5 5 5 5 GE GE GE GE GE T720115504DN T7201255040N T720135504DN T720075504DN T72oo95504 DN 551 551 551 551 551 C701PD C701PE C701PM C702l C702LA GE GE GE GE GE T9G01412030H T9G01512030H T9G01612030H T9G0201OO30H T9G02110030H 561 561 561 561 561 C391 PC C391PD C391PE C391 PM C392A 5 5 5 5 GE GE GE GE GE T720135504DN T7201455040N T720155504DN T7201 655040 N T727014084DN 551 551 551 551 591 C702lB C712l C712PE C712PM C712PN GE GE GE GE GE T9G0221OO30H CF CF CF CF 561 CF CF CF CF C392B C382C C392D C392E C392M 5 5 5 5 5 GE GE GE GE GE T727024084DN T727034084DN T727044084DN T727054084DN T727064084DN 591 591 591 591 591 C712P5 C712PT C0160-01 C0160-02 CD160·04 GE GE PSI P51 P51 CF CF IN3261 IN3263 IN3267 CF CF R27 R27 R27 5 5 5 Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on pageG3 G10 Type Mfgr. Part Numbe, Type Mfg,. Suggested@ Replacement Page Part Number Type Mfg,. Suggested@ Replacement Page Part Number Type Mfg,. Suggested @ Replacement Page COl SO-OS COleO-OB COl60-10 COl60-12 C01S0-14 R R R R R PSI PSI PSI PSI PSI IN3269 IN3271 IN3273 IN3274 IN3275 R27 R27 R27 R27 R27 0470 0480XX0320 0480XX0420 0480XX0520 0480XX0815 S T T T T PSI WES WES WES WES T7oo-3004BT 0480XX0320 0480XX0420 0480XX0520 0480XXOB16 S37 CF CF CF CF ESP05Bl ESP181 ESP281 ESP481 ESPS81 A A A A A SYN SYN SYN SYN SYN MBllA02V05 M811A02Vl0 M811A02V20 MBllA02V40 MBllA02VSO A3 A3 A3 A3 A3 COI60-1S C0250-01 C0250-02 C0250-04 C0250-06 R R R R R PSI PSI PSI PSI PSI IN327S R6100125 RS100225 RS100425 R6100625 R27 R31 R31 R31 R31 0480XXl015 01197 01245 0240SA ·0240SAR T S S R R WES WCE WCE RCA RCA 0480XX1015 T9GHXXOB-4 CF IN3880 IN3880R CF S39 CF R55 R55 ESP8Bl ESP1081 Fl80 F220 F300 A A S S S SYN SYN PSI PSI PSI MBllA02V80 MBllA02Wl0 CF CF CF A3 A3 CF CF CF C0250-OB C0250-10 C0250-12 C0250-14 C0250-16 R R R R R PSI PSI PSI PSI PSI R61OO825 R6101025 R6001225 R6001425 R6oo1625 R31 R31 R31 R31 R31 02406B 02406BR 02406C 02406CR 0240S0 R R R R R RCA RCA RCA RCA RCA IN3881 IN3881R IN3882 IN3882R IN3883 R55 R55 R55 R55 R55 F400 F500 F600 FOSoo-05 FOSoo-l0 5 S S R R PSI PSI PSI PSI PSI CF CF CF R7200S0S R720100S CF CF CF R43 R43 C03OO-01 C03OO-02 C03OO-04 C0300-06 C03OO-OB R R R R R PSI PSI PSI PSI PSI RS100130 RS100230 R6100430 RS100630 R6100630 R31 R31 R31 R31 R31 0240S0R 0240SF 0240SFR 0240SM 0240SMR R R R R R RCA RCA RCA RCA RCA IN3883R IN3879 IN3879R R3020S0S R3030S06 R65 R55 R55 R55 R65 F0600-12 F0600-16 F0600-18 FOSOO-20 F06oo-22 R R R R R PSI PSI PSI PSI PSI R720120S R7201S0S R720180S R7202oo6 R720220S R43 R43 R43 R43 R43 C03OO-10 C03OO-12 C03OO-14 C03OO-16 CH119A R R R R R PSI PSI PSI PSI TUN R6101030 RSoo1230 R6001430 R6001630 R5100115 R31 R31 R31 R31 ~23 02412A 02412AR 024128 024128R 02412C R R R R R RCA RCA RCA RCA RCA IN3890 IN3890R IN3891 IN3891R IN3892 R55 R55 R55 R65 R55 FOSoo-24 F0600-30 F0900-06 F0900-10 F09OO-12 R R R R R PSI PSI PSI PSI PSI R7202406 R7203006 R7200610 R7201010 R7201210 R43 R43 R43 R43 R43 CH119AR CHl19AZ CHl19AZR CHl19B CHl198R R R R R R TUN TUN TUN TUN TUN R5110115 R5,0.,15 R5".,,6 R5100215 R5110215 R23 R23 R23 R23 R23 02412CR 024120 024120R 02412F 02412FR R R R R R RCA RCA RCA RCA RCA IN3892R IN3893 IN3893R IN3889 IN3889R R55 R55 R55 R55 R55 F0900-16 F09OO-18 F0900-20 G3OO-1 G300-2 R R R S 5 PSI PSI PSI PSI PSI R7201610 R7201810 R7202010 T72oo135040N T72oo235040N R43 R43 R43 551 551 CHl19C CH119CR CHl190 CHl190R CHl19E R R R R R TUN TUN TUN TUN TUN R5100315 R5110315 R5100415 R5110415 R51OO515 R23 R23 R23 R23 R23 02412M 02412MR 02520A 02520AR 02520B R R R R R RCA RCA RCA RCA RCA R3020612 R3030S12 IN3900 IN3900R IN3901 R55 R55 R57 R57 R57 G300-3 G3OO-4 G3OO-5 G300-S G3OO-7 5 5 5 5 5 PSI PSI PSI PSI PSI T72oo335040N 551 T7200435040N 551 T7200535040N 551 T7200635040N S51 T72oo735040N 551 CH119ER CHl19F CH119FR CHl19Z CHl19ZR R R R R R TUN TUN TUN TUN TUN R5110515 R5100S15 R5110S15 R5100015 R5110015 R23 R23 R23 R23 R2l 02520BR 02520C 02520CR 025200 025200R R R R R R RCA RCA RCA RCA RCA IN3901R IN3902 IN3902R IN3903 IN3903R R57 R57 R57 R57 R57 G3OO-8 G3OO-9 G3OO-10 G3OO-12 G3OO-14 5 5 S S 5 PSI PSI PSI PSI PSI T7200835040N T72oo935040N T7201035040N T7201235040N T7201435040N 551 551 S51 S5.1 551 CH10912A CH1OB12AR CH10912AZ CH10912AZR CH109128 R R R R R TUN TUN TUN TUN TUN R5100115 R5110115 R5,0.,,5 R511+115 R5100215 R23 R23 R23 R23 R23 02520F 02520FR 02520M 02520MR 02540A R R R R R RCA RCA RCA RCA RCA IN3899 IN3899R R4020S20 R4030S20 IN3910 R57 R57 R57 R57 R57 G3OO-1S G3OO-18 G3OO-20 G300-22 G4oo-1 5 S 5 S 5 PSI PSI PSI PSI PSI T7201635040N T7201835040N T7202035040N T7202235040N T7200135040N 551 S51 551 S51 S51 CH10912BR CH10912C CH10912CR CH109120 CH10912DR R R R R R TUN TUN TUN TUN TUN R5110215 R5100315 R5110315 R5100415 R5110415 R23 R23 R23 R23 R23 02540AR 02540B 025408R D2540D D2540DR R R R R R RCA RCA RCA RCA RCA IN3910R IN3911 IN3911R IN3913 IN3913R R57 R57 R57 R57 R57 G400-2 G400-3 G400-4 G400-5 G400-S 5 5 S S 5 PSI PSI PSI PSI PSI T72oo235040N T72oo335040N T7200435040N T72oo53504DN T72ooS3504DN 551 551 551 S51 S51 CH10912E CH10912ER CH10912F CH10912FR· CH10912Z R R R R R TUN TUN TUN TUN TUN R510P515 R5110515 R51OOS15 R5110S15 R5100015 R23 R23 R23 R23 R23 D2540F D2540FR D2540M D2540MR D3S10 R R R R R RCA RCA RCA RCA SYN IN3909 IN3909R R4020630 R4030630 R4040160 R57 R57 R57 R57 R17 G400-7 G4oo-8 G4oo-9 G4oo-10 G400-12 S S S S 5 PSI PSI PSI PSI PSI T72oo73504DN T72oo83504DN T7200935040N T7201035040N T7201235040N 551 S51 S51 S5l S51 CH10912ZR CS131A CS131AR CS131AZ CS131AZR R R R R R TUN TUN TUN TUN TUN R5110015 IN4045 IN4046R IN4046 IN404SR R23 R29 R29 R29 R29 DRS·250 ORS·250R ORS·251 DRS·251 R DRS·252 R R R R R DEL DEL DEL DEL DEL RSloo825 RSll0825 R6101025 RSlll025 R6001225 R31 R31 R31 R31 R31 G400-14 G400-1S G400-18 G400-20 G400-22 5 S 5 S 5 PSI PSI PSI PSI PSI T7201435040N T7201635040N T7201835040N T7202035040N T7202235040N 551 551 551 551 S51 CS131B CS131BR CS131C CS131CR CS1310 R R R R R TUN TUN TUN TUN TUN IN4047 IN4047R IN4049 IN4049R IN4050 R29 R29 R29 R29 R29 DRS·252R ORS·253 DRS·253R DRS·254 DRS·254R R R R R R DEL DEL DEL DEL DEL RSOl1225 RSoo1425 R6011426 R6001625 RSOllS25 .R31 R31 R31 R31 R31 G500-1 G5OO-2 G5OO-3 G5OO-4 G500-5 S S 5 5 5 PSI PSI PSI PSI PSI T72oo136040N T720023504DN T7200335040N T720043504DN T7200535040N 551 S51 551 551 551 CS1310R CS131E CS131ER CS131F CS131FR R R R R R TUN TUN TUN TUN TUN IN4050R IN4051 IN4051R IN4052 IN4052R R29 R29 R29 R29 R29 EI80 E220 E300 E400 E500 5 S S S 5 PSI PSI PSI PSI PSI CF CF CF CF CF CF CF CF CF CF G500-S G500-7 G5OO-8 G5OO-9 G500-10 S 5 5 S S PSI PSI PSI PSI PSI T72oo63504DN T7200735040N T72oo835040N T720093504DN T7201035040N S61 551 551 551 551 CS131Z CS131ZR 080T405010 0601455010 060T505010 R R T T T TUN TUN WES WES WES IN4044 IN4044R OSOT405010 060T455010 OSOT505010 R29 R29 T33 T33 T33 EHF1BI EHF2Bl EHF3Bl EHF4Bl EHF581 A A A A A SYN SYN SYN SYN SYN MB12A1OV10 MB12A1OV20 MB12A1OV30 MB12A1OV4O M812A1OV50 A3 A3 A3 A3 A3 G5OO-12 G5OO-14 G5OO-IS G500-18 G600-20 S 5 S S S PSI PSI PSI PSI PSI T720123504DN T7201435040N T720163504DN T7201835040N T7202035040N S51 S51 S51 551 551 0235 0350 0390XX0520 0390XX0525 0400 S S T T S PSI PSI WES WES PSI T600-1804BT T6oo-1804BT 0390XX0520 0390XX0525 TSoo--18048T S33 S33 CF CF S33 EHFSBI EMF1Bl EMF281 EMF481 EMF681 A A A A A SYN SYN SYN SYN SYN M812A1OVSO MB12A25Vl0 M812A25V20 M812A25V40 M812A25V60 A3 A3 A3 A3 A3 GS50-1 GS50-2 G650-3 G660-4 G650-5 S S S S S PSI PSI PSI PSI PSI T7200145040N T7200245040N T7200345040N T7200445040N T7200645040N S61 S51 S51 S51 S51 Note: Manufacturer's Codes, Product Type Notes and® Replacement Notes are listed on page·G3 G11 Part Number Type Mfgr. Suggested@ Replacement Pege Part Number Type Mfgr. Suggested@ Replacement Page Part Number Sugge.ted@ Replacement Pege G650-6 G650-7 G650-8 G650-9 G650-1D 5 S 5 S S PSI PSI PSI PSI PSI T72oo645040N T72oo746040N T7200646040N T7200946040N T72D1046040N 561 S51 551 S51 S51 HIIDD·12 H8DD·14 H80D 16 H8oo·18 H8oo·2D S S S S S PSI PSI PSI PSI Pi?l T92D12D6D20W T92D1406D20W T92D1606D20W T92D1806D20W T92O'2006D20W S55 S55 555 S55 S55 KBH25OO5 KBPC1D2 K8PC104 K8PC1D6 K8PC1D8 A A A A A GI GI GI GI GI MB12A26VD5 MB11AD2V2D MB11AD2V4D MB11AD2V6D M811AO'2V8D A3 A3 A3 A3 A3 G650-12 G650-14 G650-16 G65O'-18 G850-1 S S '5 5 PSI PSI PSI PSI PSI T72D1245040N S51 T72DI445040N 561 T72O'I645040N 561 T72D1845040N ·551 T72oo155040N 551 H8oo·22 H8oo·24 H800·26 H80D·28 H8DD·3D S 5 5 5 5 PSI PSI PSI PSI PSI T92O'2206D20W T92O'2408020W T92O'26D6D20W T92O'2806D20W T92O'3OO6D20W S55 S55 565 555 S55 K8PCllD KBPC810' KBPC 10'0'5 KBPC8oo5 KBPC8D25 A A A A A GI GI GI GI GI M811AD2W1D MB11AD6W1D MB11AD2VD5 MB11A06VD5 MBllA06V2O' A3 A3 A3 A3 A3 G85D-2 G85D-3 G850-4 G85D-5 G850-6 5 5 5 5 S PSI PSI PSI PSI PSI T72oo255040N T72oo355040N T7200455040N T72oo555040N T72oo655040N 551 551 551 551 551 Hl0oo·6 Hl000 12 Hl000·18 Hl000 20' Hl000 22 5 5 5 5 5 PSI PSI PSI PSI PSI T92oo6D7D20W T92O' 120'70'2 OW T92D18D7D20W T92O'2O'D7O'20W T92O'22D7D20W 555 555 555 555 555 KBPC8045 KBPC8D65 KBPC8D85 KD6000·2 KD60oo-4 A A A R R GI GI GI PSI PSI MBllA06V40 MB11AO'6V6D MB11AO'6V8D CF CF A3 A3 A3 CF CF G85D-7 G85D-8 G85D-9 G85D-ID G85D-12 ,5 '5 5 .5 is PSI PSI PSI PSI PSI T72oo755040N 551 T72oo855040N 551 T72oo955040N 551 T72D1D55040N 551 T72D1255040N '551 H12oo·6 H12oo·10 H1200 12 H1200 14 H1200 16 S 5 5 S 5 PSI PSI PSI PSI PSI T92O'0609D20W T92O'loo9D20W T92O'12O'9D20W T92O'14D9D20W T92D16D9D20W S55 555 555 555 555 KD60oo-6 MB11AO'2VXX MB11A06VXX MB12A1DVXX MB12A25VXX R A A A A PSI WES WES WES WES CF MB11AO'2VXX MB11AD6VXX MB12A1DVXX M812A25VXX CF A3 A3 A3 A3 G85D-14 G85D·16 G85D-18 G85D-2D .5 '5 5 '5 5 PSI PSI PSI PSI PSI T72D1455040N T72D1655040N T72D1855040N T72D2D5504DN T72DD1S5040N 551 551 551 551 551 H14oo·6 H1400 8 H1400 10' H1400 12 H1400 14 5 5 5 5 5 PSI PSI PSI PSI PSI T920061OO20W T92oo81oo20W T92O'I0'1 OO20W T92O'121oo20W T92O'141oo20W 555 555 555 555 555 MB13A1O'VOS MB13A1DV1D MB13A1DV2D MB13A1DV3D MB13A1DV40 A A A A A WES WES WES WES WES MB12A1DVD5 MB12A1DV1D MB12A1DV2D MB12A1DV3D MB12A1O'V4D A3 A3 A3 A3 A3 5 5 T72DD255040N T72DD35504DN T72D045604DN T72oo55504DN T72D0655040N 551· 551 551 S51 561 H14oo·16 H1600 6 H16oo·8 H16DD 10' ><1600 12 5 S 5 5 5 PSI PSI PSI PSI PSI T92O'161DO'20W T92oo61oo20W T920061oo20W T92O'I 0'1 DD20W T92O'121DD20W 555 S55 555 555 555 MB13A1DV5D MB13A1DV6D MB13A15Vl0 MB13A15V20 MB13A15V3D A A A A A WES WES WES WES WES MB12A1DV6D MB12A1DV6D MB12A25V1D MB12A25V2D MB12A25V3O' A3 A3 A3 A3 A3 PSI PSI PSI PSI PSI T92O'141DD20W CF R92oo611 R92D1Dll R92D1211 555 CF R47 R47 R47 MB13A15V4D M813A15V5D MB13A15V6D MB13A2DVID MB13A2DV2D A A A A A WES WES WES WES WES MB12A25V40 MB12A25V6D MB12A25V60 MB12A25V1D MB12A25V2D A3 A3 A3 A3 A3 G95D·l S G95O'-2 G95D-3 G95D-4 G95D-5 G950-6 I~.5 PSI PSI PSI PSI PSI G950-7 G95D-8 G95D-9 G95D-ID G95D-12 5 5 5 S 5 PSI PSI PSI PSI PSI T72oo755040N T72D065504DN T72D0955040N T72D1D55040N T72D1255040N 551 551 551 551 551 H1600 14 H1800 HD150012 5 5 R R R G950-14 G95D-16 G95D-18 GA2 ...... GA3 ...... 5 5 5 A A PSI PSI PSI WES WES T72D145504DN T72D1655040N T72D1855040N GA2 ........ GA3 ........ 551 551 551 A19 A28 HD15OO-16 H015OO-18 HD15OO-2D H015OO-22 H01500-24 R R R R R PSI PSI PSI PSI PSI R92D1611 R92O'1811 R92O'2Dll R92D2211 R92O'2411 R47 R47 R47 R47 R47 MB13A2DV30 MB13A2DV4D MB13A2DV5D MB13A2DV6D MCR39-35 A A A A 5 WES WES WES WES MOT MB12A25V3D MB12A25V4D MB12A2SV60 MBl2A25V60 T4oooo22D8 A3 A3 A3 A3 513 GBI GB2 GB3 GC1 G01 ...... ...... ...... ...... ...... A A A A A WES WES WES WES WES GB1 GB2 GB3 GCl G01 ........ ........ ........ ........ ........ A12 A2D A29 AID A9 HD15DD-30 H021 00-6 HD21oo-1D H021DD-12 H021oo-16 R R R R R PSI PSI PSI PSI PSI R92D3Dll R920062D R92O'1D2D R92O'122D R92D162D R47 R47 R47 R47 R47 MCR45-DS MCK45-1D MCR45-15 MCR45·2D MCR45-25 5 5 5 5 5 MOT MOT MOT MOT MO'T T51 0'0050'0'7 AB T51DD15OO7AB T51 0'0'250'0'7AB T51 0'0'250'0'7AB T51DD35DD7AB 527 527 527 527 527 G02 ...... G03 ...... GG8oo-D6 G080D-ID G08DD-12 A A ,R ,R R WES WES PSI PSI PSI GD2 ........ G03 ........ R7200609 R72Dl009 R72DI2D9 A18 A27 R43 R43 R43 H021oo-18 H021oo-2D HD25OO-2 H025OO-4 H025OO-6 R R R R R PSI PSI PSI PSI PSI R92O'182D R92O'2D2D R92O'D22O' R92O'042D R92O'062D R47 R47 R47 R47 R47 MCR45-3D MCR45-4D MCR45-5D MCR45-60 MCR45·70 5 5 5 5 5 MOT MOT MOT MOT MO'T T51 0'0'350'0'7AB T51 0'0450'0'7AB T51DD55DD7AB T51 0'0'650'0'7AB T5OOD74004AA 527 527 527 527 523 'R R R 'R :R PSI PSI PSI PSI PSI R72DI6D9 R72DI8D9 R72D2009 R72D22D9 R72D2409 R43 R43 R43 R43 R43 H025OO-8 H025OO-1D H025OO-12 H03000-1 HD3DOO-2 R R R R R PSI PSI PSI PSI PSI R920062D R92O'1D2O' R920122D CF CF R47 R47 R47 CF CF MCR45-8D MCR45-9D ,MCR4S·1oo MCR45-11D MCR4S-12D 5 5 S 5 5 MOT MOT MOT MOT MOT T5OOD84004AA. T5OOD940D4AA TSoolD40D4AA TSoo 114DD4AA TSoo1240D4AA 523 523 523 523 523 G08oo-3D GO 1400-0'6 G014oo-1D G014oo-12 G014oo·16 R R R R R PSI PSI PSI PSI PSI SO R72oo612 R72D1D12 R72D1212 SO R43 R43 R43 R43 R43 HI;l3OOD-4 H03OOD-6 HH ....... J3OOD-2 J3OOD-4 R R A 5 S PSI PSI WES PSI PSI CF CF HH ........ CF CF CF CF A76 CF CF MCR46-DS MCR46·1D MCR46-1S MCR46-2D MCR46-2S 5 5 5 5 5 MOT MOT MOT MOT MOT T51 0'0050'0'7AO T51DD15DD7AO T51 DD2SDD7AO TSI 00250'0'7AO T51 DD3Soo7AO 527 527 527 527 527 GD14oo-18 G014oo·20 GEl ....... GE2 ........ GE3 ........ R :R A A A PSI PSI WES WES WES SO SO GEl ......... GE2 ......... GE3.. ....... R43 R43 A13 A21 A3D .J3OOD-6 J3000-8 J3000-1D J3000-12 JD45OO-2 5 5 5 5 R PSI PSI PSI PSI PSI CF CF CF CF CF CF CF CF CF CF MCR46-3D MCR46-35 MCR46-40 MCR46-SD MCR46·60 5 5 5 5 5 MOT MOT MOT MOT MOT TSI OD3SD07 AO TSI 0'045007AO T51 0'045007AO' T51 0'0'550'0'7AO TSI 0'0'650'0'7AO 527 527 527 527 527 G0800-16 .G08OD-18 G0800-2D G0800-22 G0800-24 HD150Q 6 HD150D 10 GEB10D GEB101 GEB1D2 GEB1D4 GEB1D6 A A A A A GE GE GE GE GE MB11A02VD5 MB11AD2V1D MB11AD2V2D MB11AD2V4D MBllAD2V6D A3 A3 A3 A3 A3 J046oo-4 J045OO-6 J045OO-8 J045OO-1D J045OO-12 R R R R R PSI PSI PSI PSI PSI CF CF CF CF CF CF CF CF CF CF MCR46·7D MCR46-8D MCR46-9D MCR46-1oo MCR46·11D 5 5 5 5 5 MOT MOT MOT MOT MOT T5OOD740D4AO T5OOD84DD4AO T5OOD940D4AO T5OO1D40D4AO T5OO114DD4AO 523 523 523 S23 523 GEB1D8 GEB11D GF2 GF3 ....... GNI A A A A A GE GE WES WES WES MBllAD2V8D MBllAD2W1D GF2 ......... GF3 ......... GNI A3 A3 A22 A31 All J06000-2 J06000-4 JD6000-6 KBHD2 KBH04 R R R A A PSI PSI PSI GI GI CF CF CF MB12A1DV2D MB12A1DV4D CF CF CF A3 A3 MCR46·12D MCR5D-DS MCR5D·1D MCRSD-IS MCRSD-2D S 5 5 S 5 MOT MOT MOT MOT MOT TSoo1240D4AO TSI 0'0080'0'7AB TSI 0'0'180'0'7 AB TSI 0'0'280'0'7 AB T51DD280D7AB 523 S27 527 S27 527 GRI G51 GT3 GYI. HBOO-6 A A A A S WES WES WES WES PSI GRI ....... GSI ........ GT3 ......... GY1 ......... T92oo606D2DW AS A14 A26 A15 555 KBH06 KBH005 KBH2502 KBH2504 KBH2506 A A A A A GI GI GI GI GI MB12A1DV6D MB12A1DBD5 MB12A2SV20 MB12A2SV40 MB12A2SV6D A3 A3 A3 A3 A3 MCRSD-2S MCR5D-30 MCR5D-35 MCRSD-4D MCR50-50 5 5 5 5 5 MOT MOT MOT MOT MOT TSI 0'0'3800'7 AB T51 OD3BD07 AB T51 00'48007 AB T51 00'480'07 AB T51 00580'07 AB 527 527 S27 527 527 NDte: Manufacturer's Codes, Product Type Notes and@ Replacement NDtes are listed on page G3 G12 Type Mfgr. 5uggested@ Part Number Type Mfg •. Page Replacament Part Number Type Mfg •. 5uggested@ Replacament Page Part Number Type Mfg•• Sugr,ested@ Rep ........nt Pag. MCRSO-60 MCR50-70 MCR50-80 MCR50-90 MCRS2-10 5 5 5 5 5 MOT MOT MOT MOT MOT T510066007AB T500076007AA T500086007AA T5000116007AA TS07017044AA 527 523 523 523 577 MCR157-20 MCR157-30 MCR157-40 MCR1S7-50 MCR157-60 5 5 5 5 5 MOT MOT MOT MOT iIIIOT T507027064AA 577 TS07037064AA 577 TS07047064AA 577 TS070S7064AA 577 TS07067064AA 577 :;:g:Ug::g8 MCR2S08-130 MCR2508-140 MCR250B-150 5 5 5 5 5 MOT MOT MOT MOT MOT T500118OO6AQ T50012B005AQ T500138OO6AQ T500148OO6AQ T500158OO6AQ 523 523 523 523 523 MCR52-20 MCRS2-30 MCR52-40 MCR52-S0 MCRS2-60 5 5 5 5 5 MOT MOT MOT MOT MOT TS07027044AA TS07037044AA TS07047044AA T507057044AA T507067044AA 577 577 577 577 577 MCR158-10 MCR158-20 MCR1S8-30 MCR158-40 MCR168-50 5 5 5 5 5 MOT MOT MOT MOT MOT TS070170S4AQ TS070270S4AQ TS07037054AQ TS070470S4AQ TS07057054AQ 577 577 577 577 577 MCR25Ol-10 MCft250L-20 MCR250L-30 MCR25OL-40 MCR2SOL-50 5 5 5 5 5 MOT MOT MOT MOt MOT 1510018OO6AB T51002800SAB T510038OO6AB TSl004600SAB T510011B005AB 527 527 527 527 527 MCRS2-70 MCRS2-BO MCRS2-90 MCR60·0S MCR60-10 5 5 5 5 5 MOT MOT MOT MOT MOT TS07077044AA TS07087044AA TS07097044AA TS10008007AQ TS10016007AQ ·577 577 577 527 527 MCR158-60 MCR1S8-70 MCR1S8-BO MCR1S8-90 MCR1S8-100 5 5 5 5 5 MOT' MOT MOT MOT MOT TS07067054AQ TS07077054AQ TS070870S4AQ TS070970S4AQ TS07107054AQ 577 577 577 577 577 MCR250L-60 MCR250L-70 MCR250L-BO MCR250L-SO MCR250L-l00 5 5 5 5 5 MOT MOT MOT MOT MOT T5 I OOII800SAB 527 T500078OO4AA 523 T500088OO5AA 523 T5000118OO5AA 523 TSOO108006AA 523 MCR60-1S MCR60-20 MCR60-25 MCR60-30 MCR60-40 5 5 5 5 5 MOT MOT MOT MOT MOT TS10028007AQ TS10026007AQ TS10036007AO TS10038007AO TS10048007AO 527 527 527 527 527 MCR158-110 MCR1S8-120 MCR158-130 MCR159-10 MCR159-20 .s 5 5 5 5 MOT MOT MOT MOT MOT TS07117054AQ TS071270S4AO TS071370S4AO TS07017054AA TS070270S4AA 577 577 577 577 577 MCR2S0L-ll0 MCR250L-120 MCR250L-130 MCR250L-140 MCR250L-1S0 5 5 5 5 5 MOT MOT MOT MOT MOT rsool I BOO5AA T50012B005AA T50013B005AA TSOOl4600SAA T50015B005AA 523 523 523 523 MCR60-50 MCR62-0S MCR62-10 MCR62-1S MCR62-20 5 5 5 5 5 MOT MOT MOT MOT MOT TS100S8007AO TS10008007AB TS10018007AB TS10028007AB TS10026007AB 527 527 527 527 527 MCR159-30 MCR159-40 MCR1S9-50 MCR159-60 MCR1S9-70 5 5 5 5 5 MOT MOT MOT MOT MOT TS07037054AA 577 TS070470S4AA 577 TS070S7054AA 577 TS07067054AA 577 TS07077054AA 577 MCR2S1B-l0' MCR251B-20 MCR2S1B-30 MCR2S1B-40 MCR251B-50 5 5 5 5 5 MOT MOT MOT MOT MOT T510015005AO T510025005AO TS10035005AO TSl0045005AO TSl00S5005AO 527 527 527 527 527 MCR62-2S MCR62-30 MCR62-40 MCR62-S0 MCR1S0-05 5 5 5 5 5 MOT MOT MOT MOT MOT TS10038007AB TS10038007AB TS10048007AB TS100S8007AB TS1000BOOSAO 527 527 527 527 527 MCR159-BO MCR159-90 MCR159-100 MCR159-110 MCR159-120 5 5 5 5 5 MOT MOT MOT MOT MOT TS07087054AA TS070970S4AA TS07107054AA TS071170S4AA T507127054AA 577 577 577 577 577 MCR251B-60 MCR2S1B-70 MCR2S1B-BO MCR2S1B-SO MCR251B-l00 5 5 5 5 5 MOT MOT MOT MOT MOT TS'100115005AO TSOOO7400SAO TSOOOII4005AO T500011400SAQ TS00104006AO 527 523 523 523 523 MCR1S0-l0 MCR150-20 MCR150-30 MCR150-40 MCR1S0-S0 5 5 5 5 5 MOT MOT MOT MOT MOT TS1001800SAO T51002600SAO TS1003BOO5AO :rSl004800SAO T5100S600SAO 527 '527 527 527 527 MCR1S9-130 MCR23S-10 MCR23S-20 MCR235-30 MCR23S-40 5 5 5 5 5 MOT MOT MOT MOT MOT TS071370S4AA T620012004DN T620022004DN T620032004DN T620042004DN 577 543 543 543 543 MCR2S1B-l10 MCR251B-120 MCR251B-130 MCR2S1B-140 MCR2S1B-1S0 5 5 5 5 5 MOT MOT MOT MOT MOT T500114005AO T500124005AO T500134005AO TSOOl4400SAO T500154005AO 523 523 523 523 523 MCR1S0-60 MCR1S0-70 MCR150-BO MCR15D-SO MCR150-100 5 5 5 5 5 MOT MOT MOT MOT MOT TS10011BOOSAO TSOOO78004AO T5000118004AO T500098004AO T500108004AO 527 523 523 523 523 MCR235-50 MCR235-60 MCR235-70 MCR_235-BO MCR23S-90 5 5 5 5 5 MOT MOT MOT MOT MOT T620052004DN T620062004DN T620072004DN T620082004DN T620092004DN 543 543 543 543 543 MCR2S1L-l0 MCR2S1L-20 MCR251L-30 MCR251L-40 MCR251L-50 S 5 5 5 5 MOT MOT MOT MOT MOT T510015005AB T510025005AB T510035005AB T510045005AB T510055005AB 527 527 527 527 527 MCR15D-110 MCR15D-120 MCR150-130 MCR1S0-140 MCR150-150 5 5 5 5 5 MOT MOT MOT MOT MOT TSOOll8004AO T500128004AO TSOO138004AO T500148004AO T500158004AO 523 523 523 523 523 MCR235-100 MCR235-110 MCR235-120 MCR23S-130 MCR23S-140 5 5 5 5 5 MOT MOT MOT MOT MOT T620102004DN T620112004DN T620122004DN T620132004DN T620142004DN S43 543 543 543 543 MCR2S1L-60 MCR2S1L-70 MCR251L-BO MCR251L-SO MCR251 L-l00 5 5 5 5 5 MOT MOT MOT MOT MOT T5100115005AB TSOOO74005AA T500084005AA T500094005AA T500104005AA 527 523 523 523 523 MCR152-OS MCR1S2-10 MCR152-20 MCR152-30 MCR152-40 5 5 5 5 5 MOT MOT MOT MOT MOT TS10008004AB T51001B004AB T510028004AB T510038004AB TS1004B004AB 527 527 527 527 527 MCR235-1S0 MCR23SA-l0 MCR235A-20 MCR235A-30 MCR235A-40 5 5 5 5 5 MOT MOT MOT MOT MOT T620152004DN T627011584DN T627021584DN T627031S84DN T627041584DN 543 587 587 587 587 MCR251L-ll0 MCR251L-120 MCR251L-130 MCR251·L-140 MCR251L-150 5 5 5 5 5 MOT MOT MOT MOT MOT T500114005AA T500124005AA T500134005AA T500144005AA T500154005AA 523 523 523 523 523 MCR1S2-S0 MCR1S2-60 MCR152-70 MCR1S2-BO MCR152-SO 5 5 5 5 5 MOT MOT MOT MOT MOT TS100S8004AB T51006800fAB T500078004AA TS00088004AA TS000II8004AA 527 527 523 523 523 MCR235A-50 MCR235A-60 MCR23SB-l0 MCR23SB-20 MCR23SB-30 5 5 5 5 S MOT MOT MOT MOT MOT T6270S1584DN T627061584DN T627011574DN T627021S74DN T627031574DN 587 587 587 587 587 MCR3BO-l0 MCR380-20 MCR38D-30 MCR380-40 MCR38D-50 5 5 5 5 5 MOT MOT MOT MOT MOT T620013004DN T620023004DN T620033004DN T620D43004DN T620053004DN 543 543 543 543 543 MCR1S2-100 MCR1S2-110 MCR1S2-120 MCR152-130 MCR152-140 5 5 5 5 5 MOT MOT MOT MOT MOT TS00108004AA T500118004AA TSOO12B004AA T500138004AA T500148004AA 523 523 523 523 523 MCR23SB-40 MCR23SB-SO MCR23SB-60 MCR235B-70 MCR23S8-BO 5 5 5 5 5 MOT MOT MOT MOT MOT T627041S74DN T6270S1S74DN T627061S74DN T627071574DN T627OB1574DN 587 587 587 S87 587 MCR380-BO MCR380-70 MCR3BO-BO MCR3BO-SO MCR380-100 5 5 5 5 5 MOT MOT MOT MOT MOT T820063004DN T820073004DN T820083004IJN T8200930040N T620103004DN 543 543 543 543 543 MCR1S2-150 MCR1S4-10 MCR1S4-20 MCR1S4-30 MCR1S4-40 5 5 5 5 5 MOT MOT MOT MOT MOT T5001S8004AA T507017084AO TS07027084AO T507037084AO T507047084AO 523 577 577 577 577 MCR23SC-l0 MCR23SC-20 MCR235C-30 MCR235C-40 MCR23SC-SO 5 5 5 5 5 MOT MOT MOT MOT MOT T627011S84DN T627021584DN T627031564DN T627041564DN T627051564DN 587 587 587 587 587 MCR380-110 MCR3BO-120 MCR380-130 MCR380-140 MCR380-150 5 5 5 5 5 MOT MOT MDT MOT MDT T620113004DN 543 T620123004DN 543 T620133004DN 543 T62D143004DN 543 T6201S3D04DN 543 MCR1S4-50 MCR154-60 MCR155-10 MCR155-20 MCR155-30 5 5 5 5 5 MOT MOT MOT MOT MOT T507057084AO T507067084AO TS07017064AO T507027064AO T507037064AO 5n 577 577 577 577 MCR235C-60 MCR235C-70 MCR235C-BO MCR235C-90 MCR235C-l00 5 5 5 5 5 MOT MOT MOT MOT MOT T627OB1564DN T627071564DN T627081564DN T627091564DN T627101564DN 587 587 587 587 587 MCR3BOB-l0 MCR38OB-20 MCR3B08-30 MCR3808-40 MCR3BOB-5D 5 5 5 5 5 MOT MOT MOT MOT MOT T627012574DN .587 T627022674DN 587 T627032674DN 587 T627042574DN 587 T627052S74DN 587 MCR1S5-40 MCR1S5-50 MCR1S5-60 MCR1S6-10 MCR1S6-20 5 5 5 5 5 MOT MOT MOT MOT MOT T507047064AO TS070S7064AO T507067064AO TS07017084AA TS07027084AA 577 577 577 577 577 MCR2508-10 MC$2S0B-20 MCR250B-30 MCR2S08-40 MCR2SOB-50 5 5 5 5 S MOT MOT MOT MOT MOT TS1001800SAO TS10028005AO TS10038005AO TS1004800SAO TS10058005AO 527 527 527 527 527 MCR38OB-BO MCR38OB-70 MCR380B-80 MCR38DC-l0 MCR3BOC-20 5 5 5 5 .5 MDT MOT MOT MOT MOT T627062S74DN 587 T627072574DN 587 T827082574DN 587 T827012564DN 587 T627022564DN 587 MCR1S6-30 MCR1S6-40 MCR1S6-50 MCR156-60 MCR157-10 5 5 MOT MOT MOT MOT MOT TS07037084AA TS07047084AA T5070S7084AA TS07067084AA TS07017084AA 577 577 577 577 577 MCR25OB-60 MCR25OB-70 MCR25OB-BO MCR2SOB-SO MCR2S08-100 5 5 S 5 5 MOT MOT MOT MOT MOT TS10068005AO TSOOO78005AO T500088005AO TSOOOII8005AO TSOO10800SAO 527 523 523 523 523 MCR38DC-30 MCR380C-40 MCR38DC-50 MCR38DC-60 MCR380C-70 .~ 5 5 MOT MOT MOT MOT MOT T621032564DN T627042S64DN T637052564DN T627062S64DN T627072564DN S 5 5 . 5 5 587 587 S87 587 587 Note: Manufacturer'5 Codes, Product Type Note5 and@Replacement-Note5 are listed on page'G3 G13 Part Number Type Mfgr, Sugge.t~d@ Replacement ':Page Part Number Type Mfgr, 'Suggested@ Replacement Pege Part Number Suggested @ Replacemant Page MCR5500·110 MCR5500·120 MCR800-10 MCR800-20 MCR800-30 S 5 5 5 5 MOT MOT MOT MOT MOT T72711 35540N T7271235540N T720016604DN T7200265040N T72OC355040N 591 591 551 55! 551 MPOllBBH MPOII8BK MP0118BM MPOllBBP MPOllBB5 A A A A A WE5 WE5 WE5 WE5 WE5 MBllA02V4O MBllA02V60 MBllA02V80 MB11A02V80 MBllA02V80 A3 A3 A3 A3 A3, T6270326540N 587 T6270425540N '587 T6270525540N 587 T6270625540N 587 T6270725540N 587 MCR800·4O MCR800-60 MCR800-60 MCR800-70 MCR800-80 5 5 5 5 5 MOT MOT MOT MOT MOT T7200455040N T720065604DN T7200655040N T7200755040N T7200B55040N 561 561 561 561 551 MP011BBV MP011BBZ MP012JBA MP012JBB MP012JBO A A A A A WE5 WE5 WE5 WE5 WE5 MBllA02Wl0 MBllA02Wl0 MBI2Al0v06 MB12A1OV10' MB12Al0V20 A3 A3 A3 A3 A3, MOT MOT MOT MOT MOT T6270825540N T6270925540N T6271025540N T6271125540N T6271225540N 587 587 587 587 587 MCR800·90 MCR8oo·1oo MCR8oo·110 MCR800·120 MCR800·130 5 5 5 5 5 MOT MOT MOT MOT MOT T7200985040N 561 T7201055040N 551 17201155040N 551 T7201256040N 561 T7201355040N 551 MP012JBF MP012JBH MP012JBK MP012JBM MP013MBB A A A A A WE5 WE5 WE5 WE5 WE5 MB12Al0V30 MB12A1OV40 MB12A1OV60 MB12Al0V60 MB12A25Vl0 A3 A3 A3 A3 A3 5 5 5 5 5 MOT MOT MOT MOT MOT T6270525540N 587 T6270625540N 587 T6270725540N 587 T627P825540N 587 T6270925540N 587 MCRBOO·'40 MCR800·150 MCRlSI8-1 MCR2918-2 MCR2918·3 5 ' MOT T7201466040N MOT T7201555040N 5 MOT T4OOOD1608 5 MOT T4OOOD1608 5 MOT T4OO011608 5 561 551 513 513 513 MP013MBO MP013M8F MP013MBH MP013MBK MP013MBM A A A A A WE5 WE5 WE5 WE5 WE5 MB12A25V20 MB12A25V30 MBI2A25V40 MB12A25V60 MBI2A25V60 A3 A3 A3 A3 A3 MCR4200·100 MCR470·10 MCR470·20 MCR470·30 MCR470·4O 5 5 5 5 5 MOT MOT MOT MOT MOT T6271025540N T620013OO40N T62oo230040N T62oo33OO40N T6200430040N 587 543 543 543 543 MCR2918-4 MCR2918-5 MCR2918-6 MCR2918·7 MCR29'8-8 MOT T4ooo21608 5 5 , MOT T4OOO31608 MOT T400041608 5 5 MOT T400051608 MOT T4ooo81608 5 513 513 513 S13 513 MP013RBB MP013RBO MP013RBF MP013RBH MP013RBK A A A A A WE5 WE5 WES WE5 WE5 MB12A25Vl0 MB12A25V20 MB12A26V30 MB12A25V4O MB12A25V60 A3 A3 A3 A3 A3 MCR470·60 MCR470·60 MCR470·70 MCR470-80 MCR470·90 5 5 5 5 5 MOT MOT MOT MOT MOT T6200530040N T62oo630040N T6200730040N T6200830040N T62oo930040N 543 543 543 543 543 MCR3918-1 MCR3918-2 MCR3918-3 MCR3918-4 MCR3918-5 5 5 5, 5 5 MOT MOT MOT MOT MOT T4OO001608 T4OO001608 1400011608 T4OO021608 T4ooo31608 513 '513 513 513 513 MP013R8M MR681 MR860 MR860R MR861R A R R R R WE5 MOT MbT MOT MOT MBI2A25V60 IN3910 IN3909 IN3909R IN3910R A3 R57 R57 A57 R57 MCR470·1oo MCR470·110 MCR470·120 MCR470·130 MCR470·140 5 5 5 5 5 MOT MOT MOT MOT MOT T6201030040N T6201130040N T6201230040N T6201330040N T6201430040N 543 543 543 543 543 MCR3918-6 MCR3918-7 MCR3918·8 MCR3935·2 MCR3935·3 5 5 5 5 5 MOT MOT MOT MOT MOT T4OO041608 T400051608 T400061608 T4OO002208 T400012208 513 513 513 513 513 MR862 MR862R MR864 MR864R MR866 R R R R R MOT MOT MOT ~OT MOT IN3911 IN3911R IN3913 IN3913R R4020630 R57 R67 R57, MCR470·150 MCR470C-l0 MCR470C-20 MCR470C·30 MCR470C-4O 5 5 5 5 5 MOT MOT MOT MOT MOT T6201530040N T6270125640N T6270225640N T6270325640N T6270425640N 543 587 587 587 587 MCR3935·4 MCR3935·5 MCR3935-6 MCR3935-7 MCR3935·8 5 5 5 5 5 MOT MOT MOT MOT MOT 1"400022208 T4OOO32208 T400042208 T4OOO62208 T4OO082208 513 513 513 S13 513 MR866R MR1120 MR1120R MR1121 MR1121R R R R R R MOT MOT MOT MOT MOT R4030630 IN1199A IN1199AR IN1200A IN1200AR R67 :R13 R13 R13' R13 MCR470C·60 MCR470C·60 MCR470C·70 MCR470C·80 MCR4700·10 5 5 5 5 5 MOT MOT MOT MOT MOT T6270525640N T6270625640N T6270725640N T6270825640N T6270125540N 587 587 587 587 587 MOA922·2 MOA922-3 MOA922-4 MOA922-5 MOA922·6 A A A A A MOT MOT MOT MOT MOT MBllA02V06 MBllA03Vl0 MBllA02V20 MBllA02V30 MBllA02V40 A3 A3 A3 A3 A3 MR1122 MR1122R MR1124 MRl124R MR1126 R R R R R MOT MOT MOT MOT MOT IN1202A IN1202AR IN1204A IN1204AR IN1206A R13 R13 R13 R13 R13 MCR4700·20 MCR4700·30 MCR4700·4O MCR470E-l0 MCR470E-20 5 5 5 5 5 MOT MOT MOT MOT MOT T6270225540N T6270325540N T6270425540N T6270125440N T6270225440N 587 587 587 587 587 MOA922-7 MOA922·B MOA922·9 MOA952·1 MOA952·2 A A A A A MOT MOT MOT MOT MOT MBllA02V60 MBllA02V80 MBllA02Wl0 MBllA06V05 MBllA06Vl0 A3 A3 A3 A3 A3 MRl126R MRl128 MR1130 MR12105B MR12105L R R R R R MOT MOT MOT MOT MOT IN1206AR IN3671A IN3673A CF CF R13 R13 RIS CF CF MCR470E·30 MCR470E·4O MCR470E-50 MCR470E-60 MCR470E-70 5 5 5 5 5 MOT MOT MOT MOT MOT T6270325440N T6270425440N T6270525440N T6270625440N T6270725440N 587 587 587 587 587 MOA952·3 MOA952·4 MOA952·5 MOA980·1 MOA980-2 A A A A A MOT MOT MOT MOT MOT MBllA06V20 M811A06V30 M811A06V4O MB12Al0V05 MB12Al0Vl0 A3 A3 A3 A3 'A3 MR12105LR MR12115B MR12115BR MR12115L MR12115LR R R R R R MOT MOT MOT MOT MOT CF CF CF CF CF CF' CF CF CF CF MCR470E-80 MCR470E-90 MCR470E·l00 MCR470E·l10 MCR470E·120 5 5 5 5 5 MOT MOT MOT MOT MOT T6270825440N T6270925440N T6271025440N T6271125440N T6271225440N 587 587 587 587 587 MOA980·3 MOA980-4 MOA980-5 MOA980·6 MOA990-1 A A A A A MOT MOT MOT MOT MOT MB12Al0V20 MB12Al0V30 MBI2Al0V40 MB12Al0V60 MB12A25V05 A3 A3 A3 A3 A3 MR12125B MR121258R MR12125L MR12125LR MR12135B R R R R R MOT MOT MOT MOT MOT CF CF CF CF CF CF CF CF CF CF MCR550C-l0 MCR550C-20 MCR550C-30 MCR550C·4O MCR550C·50 5 5 5 5 5 MOT MOT MOT MOT MOT T7271040640N T6270240640N T7270340640N T7270440640N T7270540640N 591 591 591 591 591 MOA990·2 MOA990·3 MOA990-4 MOA990-5 MOA990-6 A A A A A MOT MOT MOT MOT MOT MB12A25Vl0 MB12A25V20 MB12A251130 MB12A25V4O MB12A25V60 A3 A3 A3 A3 A3 MR12135BR MR12135L MR1213SLR MR12145B MR12145BR R • MOT CF R MOT CF R MOT CF R MOT CF R MOT CF CF CF CF', CF MCR550C-60 MCR550C-70 MCR550C-80 MCR550C·90 MCR550C-l00 5 5 5 5 5 MOT MOT MOT MOT MOT T7270640640N T7270740640N T7270840640N T7270935540N T7271036640N 591 591 591 591 591 MP010ABA MP010ABB MP010A80 MP010ABF MP010ABH A A A A A WE5 WE5 WE5 WE5 WES MBllA02V05 MBllA02Vl0 MBllA02V20 MBllA02V30 MB11A02V40 A3 A3 A3 A3 A3 MR12145L MR12145LR MR1215SB MR12155BR MR12155L R R R R R MOT MOT MOT MOT MOT CF CF CF CF CF CF CF CF CF CF MCR5500:,0 MCR5500·20 MCR5500·30 MCR5500·40 MCR6500·50 5 5 5 5 5 MOT MOT MOT MOT MOT T7270140540N T7270240540N T7270340540N T7270440540N T7270540540N 591 591 591 591 591 MP010ABK MP010ABM MP010ABP MP010AB5 MP010ABV A A A A A WE5 WE5 WE5 WES WE5 MBllA02V60 MBllA02V60 MBllA02V80 MBllA02V80 MBllA02Wl0 A3 A3 A3 ,MR12155LR MR12165B MR12165BR MR12165L MR12165LR R R R R R MOT MOT MOT MOT MOT CF CF CF CF CF CF CF CF "CF CF MCR5500·60 MCR5500-70 MCR550D-80 MCR5500·90 MCR5500·100 5 5 5 5 5 MOT MOT MOT MOT MOT T7270640540N T7270740540N T727084054DN T7270935540N T727103554!lN 591 591 591 591 591 MP010ABZ MP011BBA MPOllBBB MPOllBBO MPOllBBF A A A A A WE5 WE5 WES WE5 WE5 MB11A02Wl0 MBllA02V05 MB11A02Vl0 MBllA02V20 MBllA02V30 A3 A3 A3 A3 A3 R R R R R MOT MOT MOT MOT MOT CF CF CF CF CF CF CF CF CF CF MCR3BOC-80 MCR3BOC·90 MCR3BOC·loo MCR38oo-10 MCR3800-20 S S 5 5 5 MOT MOT 'MOT MOT MOT MCR3BOO-30 MCR3800-4O MCR3800-4O MCR3800-60 MCR3800·70 5 5 5 5 5 MOT MOT MOT MOT MOT MCR3800·80 MCR3800-90 MCR3BOO·loo MCR3800·110 MCR3800·120 5 5 5 5 5 MCR4200-50 MCR4200·60 MCR4200·70 MCR4200·80 MCR4200·90 T6270826640N T6270826640N T6271025640N T6270125540N T6270225540N S87 587 587 587 587 AS AS Note: Manufacturer'5 Codes, Product Type Notes and@ Replacement Notes are listed on page G3 G l..t Type Mfgr. MRI2175B MR12175BR MR12175L MRI12175LR MR12185B ~~~ tF Part Number Type Mfgr. Sugge.ted@ Replacement Pege Part Number Type Mfgr. Suggested@ Replacement Page Part Number Type Mfgr. Sugg_@ Replacement P - MR1218S8R MR1218SL MR1218SLR MR1219SB MA1219SBR MOT MOT MOT MOT MOT CF CF CF CF CF CF CF CF CF CF MR1231SL MR1231SLR MR1232FB MR1232FBR MR1232FL R R R R R MOT MOT MOT MOT MOT CF CF CF CF CF CF CF CF CF CF MR1245FLR MR1245SB MR1245SBR MR1245SL MR1245SLR R R R R R MOT MOT MOT MOT MOT CF R7ooo304 R7010304 CF CF CF R35 R35 CF CF MR1219SL MR1319SLR MR1220FB MR1220FB MR1220FBR MOT MOT MOT MOT MOT CF CF CF CF CF CF CF CF CF CF MR1232FLR MR1232SB MR1232SBR MR1232SL MR1232SLR R R R R R MOT MOT MOT MOT MOT CF R610+130 R611+130 CF CF CF R31 R31 CF CF MRi247FB MR1248FBR MR1247FL . MR1247FLR MR1247SB R R R R R MOT MOT MOT MOT MOT CF CF CF CF R7000404 CF CF CF CF R35 MR1220FL MR1220FLR MR1220SB MR1220SBR MR1220SL MOT MOT MOT MOT MOT CF CF R610oo20 R611oo20 CF CF CF R31 R31 CF MR1233FB MR1233FBR MR1233FL MR1233FLR MR1233SB R R R R R MOT MOT MOT MOT MOT CF CF CF CF R6100230 CF CF CF CF R31 MR1247SBR MR1247SL MR1247SLR MR1248FB MR1811SBR R R R R R MOT MOT MOT MOT MOT R7010404 CF CF CF CF R35 CF CF CF CF MR1220SLR MR1221FB MR1221FBR MR1221FL MR1221FlR R R R R R MOT MOT MOT MOT MOT CF CF CF CF CF CF CF CF CF CF MR1233SBR MR1233SL MR1233SLR MR1235FB MR1236FBR R R R R R MOT MOT MOT MOT MOT R6110230 CF CF CF CF R31 CF CF CF CF MR1248FL MR1248FLR MR124BSB MR1248SBR MR1248SL R R R R R MOT CF MOT CF MOT R7ooo504 MOT R7010504 6MOTCF CF CF R35 R35 CF MR1221SB MR1221SBR MR1221SL MR1221SLR MR1222F8 R R R R R MOT MOT MOT MOT MOT R6100120 R6110120 CF CF CF R31 R31 CF CF CF MR1235FL MR1235FLR MR1235SB MR1235SBR MR1235SL R R R R R MOT MOT MOT MOT MOT CF CF R6100330 R6110330 CF CF CF R31 R31 CF MR1248SLR MR1249FB MR1249FBR MR1249FL MR1249FLR R R R R R 6MOTCF 6MOTCF MOT CF MOT CF MOT CF CF CF CF CF CF 1IIIR1222FBR MR1222FL MR1222FLR MR1222SB MR1222SBR R R R R R MOT MOT MOT MOT MOT CF CF CF R610+120 R611+120 CF CF CF R31 R31 MR1235SLR MR1237FB MR1237FBR MR1237FL MR1237FLR R R R R R MOT MOT MOT MOT MOT CF CF CF CF CF CF CF CF CF CF MR1249SB MR1249SBR MR1249SL MR1249SLR MR1260FL R R R R R MOT MOT MOT MOT MOT R7000604 R7010604 CF CF CF R35 R35 CF CF CF MR1222SL MR1222SLR MR1223FB MR1223FBR MR1223FL R R R R R MOT MOT MOT MOT MOT CF CF CF CF CF CF CF CF CF CF MR1237SB MR1237SBR MR1237SL MR1237SLR MR1238FB R R R R R MOT MOT MOT MOT MOT R6100430 R6110430 CF CF CF R31 R31 CF CF CF MR1260FLR MR1261FL MR1261FLR MR1262FL MR1262FLR R R R R R MOT MOT MOT MOT MOT CF CF CF CF CF CF CF CF CF CF MR1223FLR MR1223SB MR1223SBR MR1223SL MR1223SLR R R R R R MOT MOT MOT MOT MOT CF R6100220 R6110220 CF CF Cf. R31 R31 CF CF MR1238FBR MR1238FL MR1238FLR MR1238SB MR1238SBR R R R R R MOT MOT MOT MOT MOT CF CF CF R6100530 R6110530 CF CF CF R31 R31 MR1263FL MR1263FLR MR1265FL MR1265FLR MR1267FL R R R R R MOT MOT MOT MOT MOT CF CF CF CF CF CF CF CF CF CF MR1225FB MR1225FBR MR1225FL MR1225FLR MR1225SB R R R R R MOT MOT MOT MOT MOT CF CF CF CF R6100320 CF CF CF CF R31 MR1238SL MR1238SLR MR1239F8 MR1239FBR MR1239FL R R R R R MOT MOT MOT MOT MOT CF CF CF CF CF CF CF CF CF CF MR1267FLR MR1268FL MR1268FLR MR1269FL MR1269FLR R R R R R MOT MOT MOT MOT MOT CF CF CF CF CF CF CF CF CF CF MR1225SBR MR1225SL MR1225SLR MR1227FBR MA1227FL R R R R R MOT MOT MOT MOT MOT R6110320 CF CF CF CF R31 CF CF CF CF MR1239FLR MR1239SB MR1239SBR MR1239SL MR1239SLR R R R R R MOT MOT MOT MOT MOT CF R6100630 R6110630 CF CF CF R31 R31 CF CF MRf810SB MR1810S8R MR1810SL MR1810SLR MR1811SB R R R R R MOT MOT MOT MOT MOT R510oo10 R5110010 CF CF R5100110 R23 R23 CF CF R23 MR1227FLR MR1227SB MRt227S8R MR1227SL MR1227SLR R R R R R MOT MOT MOT MOT MOT CF R6100420 R6110420 CF CF CF R31 R31 CF CF MR1240FB MR1240FBR MR1240FL MR1240FLR MR1240SB R R R R R MOT MOT MOT MOT MOT CF CF CF CF R7ooOOO4 CF CF CF CF R35 MR1811SBR MR1811SL MR1811SLR MR1812SB MR1812SBR R R R R R MOT MOT MOT MOT MOT R5110110 CF CF R510+110 R511+110 R23 CF CF R23 R23 MR1228FB MR1228FBR MR1228FL MR1228FLR MR1228S8 R R R R R MOT MOT MOT MOT MOT CF CF CF CF R6100520 CF CF CF CF R31 MR1240SBR MR1240SL MR1240SLR MR1241FB MR1241FBR R R R R R MOT MOT MOT MOT MOT R701ooo4 CF CF CF CF R35 CF CF CF CF MR1812SL MR1812SLR MR1813SB MR1813SBR MR1813SL R R R R R MOT MOT MOT MOT MOT CF CF R5100210 R5110210 CF CF CF R23 R23 CF MR1228S8R MR1228SL MR1228SLR MR1229FB MR1229FBR R R R R R MOT MOT MOT MOT MOT R6110520 CF CF CF CF R31 CF CF CF CF MR1241FL MR1241FLR MR1241SB MR1241SBR MR1241SL R R R R R MOT MOT MOT MOT MOT CF CF R7oo0104 R7010104 CF CF CF R35 ~~5 MR1813SLR MR1814SB MR1814S8R MR1814SL MR1814SLR R R R R R MOT MOT MOT MOT MOT CF R510+210 R51 I +210 CF CF CF R23 R23 CF CF R R R R R MOT MOT MOT MOT MOT CF CF CF CF CF CF CF CF CF CF MR1815S8 MR1815SBR MR1815SL MR1815SLR MR1816SB R R R R R MOT MOT MOT MOT MOT R5100310 R5110310 CF CF R510+310 R23 R23 CF CF R23 MR1229FL MR1229FLR MR1229SB MR1229SBR MR1229SL R R R R R MOT MOT MOT MOT MOT CF CF R6100620 R6110620 CF CF CF R31 R31 CF MR1241SLR MR1242FB MR1242FBR MR1242FL MR1242FLR MR1229SLR MR1230FB MR1230FBR MR1230F8R MR1230FL R R R R R MOT MOT MOT MOT MOT CF CF CF CF CF CF CF CF CF CF MR1242S8 MR1242SBR MR1242SL MR1242SLR MR1243FB R R R R R MOT MOT MOT MOT MOT R7oo+104 R701+104 CF CF CF R35 R35 CF CF CF MR1816SBR MR1816SL MR1816SLR MR1817SB MR1817S8R R R R R R MOT MOT MOT MOT MOT R511+310 CF CF R5100410 R5)10410 R23 CF CF R23R23 MR1230SB MR1230SBR MR1230SL MR1230SLR MR1231FB R R R R R MOT MOT MOT MOT MOT R61ooo30 R6110030 CF CF CF R31 R31 CF CF CF MR1243FBR MR1243FL MR1243FLR MR1243SB MR1243SBR R R R R R MOT MOT MOT MOT MOT CF CF CF R7oo0204 R7010204 CF CF CF R35 R35 MR1817SL MR1817SLB MR1818S8 MR1818SBR MR1818SL R R R R R MOT MOT MOT MOT MOT CF CF R5100510 R5110510 CF CF CF R23 R23 CF CF CF' CF R31 R31 MR1243SL MR1243SLR MR1245FB ' MR1245FBR MR1245FL R R R R MOT MOT MOT MOT MOT CF CF CF CF CF CF CF CF CF CF MR1818SLR MR1819SB MR181SSBR MR181SSL MR1819SLR R R R R MOT MOT MOT MOT MOT CF R51oo610 R5110610 CF CF CF R23 R23 CF CF MR1231FBR MR1231FL . MR1231FLR MR1231SB MR1231SBR R MOT CF . R .' MOT 'CF' ., R MOT CF R MOT R6100130 R MOT R6110130 R Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are listed on page G3 R G15 5uggested@ Part Number ~=~~? R R R R R MOT MOT MOT MOT MOT N5082A N50828 N5082C N50820 N5082E R R R R R N5082F N5082G N5082H NK511-3 NL36N R ? Replacement R3400006 R3400106 R3400206 Page Part Number Type Mfg •. 5uggested@ Replacement Page Suggested Part Number Type Mfgr. @ Replacement Page R3400606 R9 R9 R9 R9 R9 NL-C50G NL-C50H Nl-C50M NL-C50N NL-C505 5 5 5 5 5 NAT NAT NAT NAT NAT T510028OO7AO T510038007AO T510068007AO T500088007AO T5OOO78007AO 527 527 527 523 523 NL·C154A NL-C1548 NL-C154C NL-C1540 NL-C154E S 5 5 5 5 NAT NAT NAT NAT NAT WE5 WE5 WE5 WE5 WE5 N5082A N50828 N5082C N50820 N5082E CF CF CF CF CF NL-C50T NL-C52A NL-C52S NL-C52C NL-C52D 5 5 5 5 5 NAT NAT NAT NAT NAT T5OOO98007AO 523 T51 001 8007A8 527 T510028007AB 527 T510038007A8 527 T510048007AB 527 NL·C154M NL-C156A NL-C1568 NL-C156C NL-C1560 5 S S 5 S NAT T507068083AO NA r T507018083AA NAT T507028083AA NAT T610011302BT NAT T507048083AA R R 5 5 WE5 WE5 WE5 NAT NAT N5082F N5082G N5082H T4OO082008 T400082008 CF CF CF 513 513 NL-C52E NLC52G NL-C52H NL-C52N NL-C525 5 5 5 5 5 NAT NAT NAT NAT NAT T510058007A8 527 T51 0028007AB 527 T510038007AB 527 T500088007AA 523 T500078007AA 523 NL-C156E NL-C156M NL-C157A NL-C157S NL-C157C 5 5 5 5 5 NAT NAT NAT NAT NAT T507058083AA 577 T507068083AA 577 T507018063AA 577 T507028063AA 577 T507038063AA 577 NLC365 NL511-4 NL511-S NL570A NL5708 5 5 5 5 5 NAT NAT NAT NAT NAT T400072008 T400102008 T400121008 CF CF 513 513 513 CF CF NL-C52T NL-C55A NL-C55B NL-C55C NL-C550 S 5 5 5 NAT NAT NAT NAT NAT T5OOO98007 AA T507018067 AO T507028067AO T507038067AO T507048067AO 523 577 577 577 577 NL-C1570 NL-C157E NL-C157M NL-C178A NL-C1788 5 5 5 5 5 NAT NAT NAT NAT NAT T507048063AA T507058063AA T507068063AA T610011302BT T610011302BT 577 577 577 533 533 NL570C NL5700 NL570E NL570M NLC35A 5 5 5 5 5 NAT CF NAT CF NAT CF NAT CF NAT T4ooo12208 CF CF CF CF 513 NL-C55E NL-C55G NL-C55H NL-C55M NL-C56A NAT NAT NAT NAT NAT T507058067AO T507028067AO T507038067 AO T507068067AO T507018067AA 577 577 577 577 577 NL-C178C NL-C178D NL-C178E NL-C178M NL-C178N 5 5 5 5 S NAT NAT NAT NAT NAT T610031302BT T610041302BT T610051302BT T610061302BT T6ooo813028T 533 533 533 533 533 NLC35B NLC35C NLC350 NLC35E NLC35F 5 5 5 5 5 NAT NAT NAT NAT NAT T400022208 T4OO032208 T400042208 T400052208 T400002208 513 513 513 513 513 NL-C56B NL-C56C NL-C56D NL-C56E NL-C56G NAT NAT NAT NAT NAT TS07028067AA T507038067AA T507048067AA T507058067AA T507028067Aa 577 577 577 577 577 NL-C178P NL-C178PA NL-C178P8 NL-C1785 NL-C178T S 5 5 5 5 5 5 5 NAT NAT NAT NAT NAT T600101302BT T6001113028T T600121302BT T600071302BT T6000913028T 533 533 533 533 533 NLC35M NLC35N NLC35P NLC35T NLC3SA 5 5 5 5 5 NAT NAT NAT NAT NAT T400062208 T400082208 T400072208 T400092208 T4ooo12008 513 513 513 513 513 NL-C5SH NL-C5SM NL-CSOA NL-C60S Nt-C60C 5 5 5 5 NAT NAT NAT NAT NAT T507038067AA T507068067AA T515018007AO T515028OO7AO T515038007AO 577 577 CF CF CF NL-CIBOA NL-C1808 NL-C180C NL-CIBOD NLC180E 5 5 5 5 5 NAT NAT NAT NAT NAT T6100115048T T610021504BT T610031504BT T610041504BT T610051504BT 533 533 533 533 533 NLC3SB NLC3SC NLC360 NLC36E NLC36F 5 5 5 5 5 NAT NAT NAT NAT NAT T4OOO22008 T400032008 T400042008 T4OO052008 T400001008 513 513 513 513 513 NL-C60D NL-C6DE NL-C6DG NL-C60H NL-CSOI 5 5 NAT NAT NAT NAT NAT 151 5048007 AO T5 I 5058007 AQ T515028007AO T515038007AO CF CF CF CF CF CF NL-C180M . NL-CIBON NL-CIBOP NL-CIBOPA NL-C180PB 5 5 5 5 5 NAT NAT NAT NAT NAT T6100615048T T6ooo815048T T600101504BT T60011 15048T T8OO1215049T 533 533 533 533 533 NLC36M NLC36N NLC365 NLC37A NLC37B 5 5 5 5 5 NAT NAT NAT NAT NAT T400062008 T400082008 T400072008 T4ooo11608 T400021608 513 S13 513 513 513 NL-C62A NL-C62B NL-C62C NL-CS2D NL-CS2E 5 5 S 5 5 NAT NAT NAT NAT NAT T515018007A8 T5 I 5028007 AB T515038007AB T515048007 AB T515058007AB CF CF CF CF CF NL-CIBOPC NL-C1805 NL-C180T NL-C181A NL-C1818 5 5 5 5 5 NAT NAT NAT NAT NAT T6001315048T T600071504BT T600091504BT T6100115029T T6100215028T 533 533 533 533 533 NLC37C NLC370 NLC37E NLC37F NLC37M 5 5 5 5 5 NAT NAT NAT NAT NAT T400031608 T400041608 T4OO051S08 T400001608 T400061608 513 513 513 513 513 NL-C62G NL-C62H NLC137E NLC137M NLC137N S 5 5 5 5 NAT NAT NAT NAT NAT T515028007A8 T515038007A8 T400062208 T400062208 T4oooB2208 CF CF' 513 513 513 NL-C181C NL-C181D NL-C181E NL-C181M NL-C181N 5 5 5 5 5 NAT NAT NAT NAT NAT T6100315028T T61004150281 T610051502BT T6100615028T T6ooo815028T 533 533 533 533 533 NLC37N NLC375 NLC38A NLC38B NLC38C 5 5 5 5 5 NAT NAT NAT NAT NAT T4ooo81608 T400071608 CF CF CF 513 513 CF CF CF NLC137P NLC137PB NLC1375 NLC137T NL-Cl50E 5 5 5 5 5 NAT NAT NAT NAT NAT T400102208 T400122208 T400072208 T400092208 T510058004AO 513 513 513 513 527 NL-C181P NL-C1815 NL-C181T NL-C185A NL-C1858 5 S 5 5 5 NAT NAT NAT NAT NAT T600101502BT 533 T6000715028T $33 T600091502BT 533 T607011564BT 579 T607021564BT 579 NLC380 NLC38E NLC38M NL-C45A NL-C458 5 5 5 5 5 NAT NAT NAT NAT NAT CF CF CF T510015007AB T510025007AB CF CF CF 527 527 NL-C150M NL-C150N NL-0150P NL-Cl50PA NL-C150P8 5 5 5 5 5 NAT NAT NAT NAT NAT T510068004AO T500088004AO T500108OO4AO T500118004AO T500128004AO 527 523 523 523 523 NL-C185C NL-V286F NL-C185E NL-C185M NL-C2BOA S S S S NAT NAT NAT NAT NAT T6070315648T T6070415648T T607051564BT T60706 I 5548T T700013004BY 579 579 579 579 537 NL-C45C NL-C450 NL-C45E NL-C45G NL-C45H 5 5 5 5 5 NAT NAT NAT NAT NAT T510035007A8 T510045007AB T510055007AB T510025007AB T510035007AB 527 527 527 527 527 NL-C150PC NL-C1505 NL-C150T NL-C151 E NL-C151M 5 5 5 NAT NAT NAT NAT NAT T500 138004AO T5OO078004AO T500098004AQ T507058034AQ T507068034AO 523 523 523 577 577 NL-C2908 NL-C2BOC NL-C2900 NL-C290E NL-C290M S 5 S 5 S NAT NAT NAT NAT NAT T7oo0230048Y T7ooo33004BY T7ooo43004BY T7OOO530048Y T7OO0630048Y 537 537 537 537 537 NL-C45M NL-C45N NL-C455 NL-C45T NL-C46A 5 5 5 5 5 NAT NAT NAT NAT NAT T51 0065007 AB 527 T5OOO84007AA 523 T5OOO7 4007AA 523 T5OOO94OO7 AA 523 T510015007AO 527 NL-C151N NL-C151 P NL-C1515 NL-C151T NL-C1520 5 5 5 5 5 NAT NAT NAT NAT NAT T507088034AQ 577 T507108034AO 577 T507078034AO 577 T507098034AO 577 T510048004AB 527 NL-C290N NL-C290P NL-C290PA NL-C290P8 NLC290S 5 S 5 S 5 NAT NAT NAT NAT NAT T7ooo83004BY T700103004BY T700113004BY T7001230049Y T7ooo73004BY 537 537 537 537 537 NL-C468 NL-C46C NL-C460 NL-C46E NL-C46G 5 5 5 5 5 NAT NAT NAT NAT NAT T510026007AO T510035007AO T510045007AO T510055007AO T510025007AO 527 527 527 527 527 NL-C152E NL-C152M NL-C152N NL-C152P NL-C152PA 5 5 5 5 5 NATT510058004AB NAT T510068004A8 NAT T500088OQ4AA NAT T500108004AA NAT T5OO118004AA NL-C290T NL-C291A NL-C2918 NL-C291C NL-C2910 5 5 S S NAT NAT NAT NAT NAT T700093004BY T7800135048Y T780023504BY T7800335049Y T7800435049Y 537 575 575 575 575 NL-C46H NL-C46M NL-C46N NL-C465 NL-C4ST 5 5 5 5 5 NAT NAT NAT NAT NAT T510035007AO T510065007AO T5OOO84007AO T5OOO74007AO T5OOO94007AO 527 527 523 523 523 NL-C152P8 NL-C152PC NL-C1525 NI.-C152T NL-C153E 5 5 S NAT NAT NAT NAT NAT T5OO128004AA 523 T500138004AA 523 T500078004AA 523 T5OO098004AA 523 T5070G8034AA 577 NL-C291E NL-C291M NL-C291N NL-C291 P NL-C291PA S NAT NAT NAT NAT NAT T7800535048Y T780063504BY T780083504BY T780103504BY T780113504BY 575 575 575 575 575 NL-C50A NL-C508 NL-C50C NL-C500 NL-C50E 5 5 5 5 5 NAT NAT NAT NAT NAT T510018007AO T510028007AO T51 0038007 AO T51 0048007AO T510058007AO 527 527 527 527 527 NL-C153M NL-C153N NL-C153P NL-C1535 NL-C153T 5 5 5 8 NAT NAT NAT NAT NAT T507068034AA T507088034AA T507108034AA T507078034AA T507098034AA NL-C291P8 NL-C2915 NL-C291T NL-C295A NL-C2958 NAT NAT NAT NAT NAT T780123504BY T780073504BY T780093504BY T707013364BY T707023364BY 575 575 575 581 581 MR752 MR754 MR756 G16 Type Mfgr. R3~00406 S 5 5 5 S S 5 S 5 5 5 5 ~ S 5 5 527 527 523 523 523 577 577 577 577 577 Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on page G3 S S S 5 S S 5 5 5 5 S T507018083AQ 577 T507028083AQ 577 T507038083AO 577 T507048083AO 877 T507058083AO 577 577 577 577 577 577 Part Number Type Mfgr. 5uggested@ Replacement Page Part Number Type Mfgr. SUggested@ Replacement Page Part Number Type Mfgr. 5uggested@ Replacement Page Nl-C296C Nl-C2950 Nl-C296E Nl-C296M 5 5 5 5 NAT T707033364BY NAT T707043364BY NAT T707053364BY NAT T707063364BY 581 581 581 581 Nl·C16805 Nl·C158o:r NL·FI60B Nl·FI50C Nl·F1600 5 5 5 5 5 NAT NAT NAT NAT NAT T72oo745040N T72oo945040N T51oo28004AO T51OO38004AO T510048OO4AO 551 551 527 527 527 Nl·F1BOE Nl·F1BOM Nl·F1BON Nl·F1BOP Nl·FI905 5 5 5 5 5 NAT NAT NAT NAT NAT T6000515048T T80006 I 504BT T600081504BT T600101504BT T6ooo71504BT 533 533 533 533 533 Nl-C297A Nl-C2978 Nl-C297C Nl-C2970 Nl-C297E 5 5 5 5 5 NAT NAT iliAT NAT NAT T787013064BY T787023064BY T787033064BY T787043064BY T787053064BY CF CF CF CF CF NL·FI50E Nl·FI50M Nl·F150N Nl-FI50P Nl·F1505 5 NAT 5 NAT 5 NAT 5 NAT 5' . NAT T61oo58004AO T510068OO4AO T500088004AO T5OO108OO4AO T5OOO78004AO 527 527 523 523 523 Nl·F18,OT Nl·F1B5A Nl·FI85B Nl·F185C Nl·F1850 5 5 5 5 5 NAT NAT NAT NAT NAT T6000915048T T607011 564BT T607021564BT T6070315648T T60704 I 564BT 533 579 579 579 579 Nl-C297M Nl-C35OA Nl-C360B Nl-C36DC Nl-C3600 5 5 5 5 5 NAT NAT NAT NAT NAT T7870630648Y T52oo113040N T6200213040N T5200313040N T5200413040N CF 541 541 541 541 Nl·FI50T Nl·F1518 Nl·FI51C Nl·F1510 Nl·FI51E 5 5 5 5 5 NAT NAT NAT NAT NAT T500098OO4AO T507028034AO T507038034AO T507048034AO T607058034AO 523 577 577 577 577 Nl·F185E Nl·F185M Nl·F290A Nl·2OOB Nl·F2OOC 5 S 5 5 S NAT NAT NAT NAT NAT TB07051564BT T607061564BT T7000130048T T7ooo23004BY T7ooo33004BY 579 579 537 537 537 Nl·C360E Nl·C360M Nl·C360N Nl·C350P Nl'C360PA 5 5 5 5 5 NAT NAT NAT NAT NAT T5200613040N T5200613040N T6200613040N T5101013040N T5201113040N 541 541 541 541 541 Nl·FI51M Nl·FI51N Nl·F151P Nl·F1515 Nl·F15tT 5 5 5 5 5 NAT NAT NAT NAT NAT T50706B034AO T607088034AO T50710B0341<0 T507078034AO T50709B034AO 577 577 577 577 577 Nl·F2OO0 NL·F2OOE Nl·F290M Nl·F290N Nl·F2OOP 5 5 5 5 5 NAT NAT NAT NAT NAT T700043004BY T700053OO4BY T7ooo63004BY T7ooo83004BY T7oo103004BY 537 537 537 537 537 Nl·C360PB Nl·C360PC Nl·C3505 Nl·C360T Nl·C354A 5 5 5 5 5 NAT NAT NAT NAT NAT T5201213040N' T5201313040N T52oo713040N T5200913040N T5270113840N 541 541 541 541 583 Nl·F1528 Nl·FI52C Nl·FI52E Nl·FI52M Nl·FI52N 5 5 5 5 5 NAT NAT NAT NAT NAT T51oo28004A8 T510038004AB T51oo58OO4AB T51006BOO4AB T50008BOO4AA 527 527 527 527 523 Nl·F2905 Nl·F290T Nl·F291A Nl·F291S Nl·F291C 5 5 S 5 5 NAT NAT NAT NAT NAT T7ooo73004BY T7OO0930048Y T78oo13504BY T780023504BY T7800335048Y 537 537 575 575 575 Nl'C3648 Nl·C364C Nl-C3640 Nl·C354E Nl·C364M 5 5 5 5 5 NAT NAT NAT NAT NAT T5270213840N T6270313840N T5270413840N T5270513840N T5270613840N 583 583 583 583 583 Nl·FI52P Nl·F1525 Nl·FI52T Nl·F1538 Nl·F163C 5 5 5 5 5 NAT NAT NAT NAT NAT T500l08OO4"" TS0007BOO4AA T5OOO98004"" T50702B034"" T6070380341<A 523 523 523 577 577 Nl·F2910 Nl·F291E Nl·F291M Nl·F291N Nl·F291P 5 5 5 5 5 NAT NAT NAT NAT NAT T7800435048Y T780053504BY T780063504BY T7B00835048Y T7B0103504BY 575 575 575 575 575 Nl·C365A Nl·ca66B Nl'C355C Nl·C3660 Nl·C365E 5 5 5 5 5 NAT NAT NAT NAT NAT T5270113640N T5270213640N T5270313640N T5270413640N T5270513640N S83 583 583 583 583 Nl·F1530 Nl-F153E Nl·FI53M Nl·F153N Nl·FI63P 5 5 5 5 5 NAT NAT NAT NAT NAT T50704B034"" 577 T50705B034"" 577 T50706B034"" 577 T50708B034"" 577 T60710B034"" 577 Nl·F2915 Nl·F29tT Nl-F295A Nl·F295B Nl-F295C 5 5 5 S 5 NAT NAT NAT NAT NAT T780073504BY T780093504BY T707013364BY T707023364BY T707033364BY 575 575 581 581 581 Nl-C356M Nl·C390A Nl·C3BOB Nl·C3BOC Nl·C3BOO 5 5 5 5 5 NAT NAT NAT NAT NAT T5270613640N T62oo130040N T62oo230040N T6200330040N T6200430040N 583 543 543 543 543 Nl·F1535 Nl·FI53T Nl·FI54A Nl·F154B Nl·FI54C 5 5 5 5 5 NAT NAT NAT NAT NAT T507079034"" T507098034"" T507019084AO T607028084AO T50703B084AO 577 577 577 577 571 Nl·F2950 Nl·F295E Nl·F295M Nl·F297A Nl·F297B 5 5 5 5 5 NAT NAT NAT NAT NAT T707043364BY T7070533648Y T707063364BY T787013064BY T787023064BY 581 581 581 CF CF Nl·C3BOE Nl·C3BOM Nl·C3BON Nl·C390P Nl·C3BOPA 5 5 5 5 5 NAT NAT NAT NAT NAT T62oo530040N T6200630040N T6I200830040N T620103OO40N T6201130040N 543 543 543 543 543 Nl·F1540 Nl·F154E Nl·FI54M .Nl·FI55A Nl·FI55B 5 5 5 5 5 NAT NAT NAT NAT NAT T507048084AO T50705B084AO T507068084AO T507018064AO T607028064AO 577 577 577 577 577 Nl·F297C Nl-F2970 Nl·F297E Nl·F297M Nl·F350A 5 5 5 5 5 NAT NAT NAT NAT NAT na7033064BY T787043064BY T787053064BY T787063064BY T52oo113040N CF CF CF CF 541 Nl·C390PB Nl·C390PC Nl·C3B05 Nl·C3BOT Nl·C385A 5 5 5 5 5 NAT NAT NAT NAT NAT T620123OO40N T6201330040N T6200730040N T620093OO40N T6270130640N 543 543 543 543 587 Nl·FI55C Nl·F1650 Nl·FI55E Nl·FI55M Nl·FI5BA 5 5 5 5 5 NAT NAT NAT NAT NAT T507038064AO T50704B064AO T507058064AO T50706B064AO T607018084"" 577 577 577 577 577 Nl·F350B Nl·F350C Nl-F3500 Nl·F350E Nl·F350M 5 5 5 5 5 NAT NAT NAT NAT NAT T52oo213040N T5200313040N T5200413040N T5200513040N T52oo6 I 3040N 541 541 541 541 541 Nl·C386B Nl·C385C Nl·C3850 Nl·C385E Nl·C385M 5 5 5 5 5 NAT NAT NAT NAT NAT T6270230640N T6270330640N T6270430640N T6270530640N T6270630640N 587 587 587 587 587 Nl·FI56B Nl·FI56C Nl·F1560 Nl·FI56E Nl·FI56M 5 5 5 5 5 NAT NAT NAT NAT NAT T507028084"" T507038084"" T507048064"" T507059084"" T507068084AA 577 577 577 577 577 Nl·F350N Nl·F360P Nl·F3505 Nl-F360T Nl·F354A 5 5 5 5 5 NAT NAT NAT NAT NAT T52oo813040N T5201013040N T52oo7 I 3040N T5200913040N T5270113640N 541 541 54 I 541 583 Nl·C601A Nl·C601B Nl·C501C Nl'C6010 Nl·C501E 5 5 5 5 5 NAT NAT NAT NAT NAT T72oo155040N T72oo255040N T72oo355040N T7200455040N T7200555040N 551 551 551 551 551 Nl·FI57A Nl·FI57B Nl·FI57C Nl·F1570 Nl·FI57E 5 5 5 5 5 NAT NAT NAT NAT NAT T507018064"" T507028064AA T507039064"" T507049064"" T507058064"" 577 577 577 577 577 Nl·F354B Nl·F354C Nl·F3640 Nl·F354E Nl·F364M 5 5 5 5 5 NAT NAT NAT NAT NAT T5270213840N T5270313840N T5270413840N T5270513840N T5270613840N 583 583 583 583 583 Nl·CS01M Nl-C501N Nl·CS01P Nl·C501PA Nl·C501PB 5 5 5 5 5 NAT NAT NAT NAT NAT T72oo655040N T7200855040N T7201055040N T7201155040N T7201255040N 551 551 551 551 551 Nl·FI57M Nl·FI58A Nl·FI58B Nl·FI58C Nl·F1580 5 5 5 5 5 NAT NAT NAT NAT NAT T507068064"" T507018044AQ T507028044AO T507038044AO T507048044AO 577 577 577 577 577 Nl·F355A Nl·F3558 Nl·F355C Nl·F3550 Nl·F355E 5 5 5 S 5 NAT NAT NAT NAT NAT T5270113640N T5270213640N T5270313640N T5270413640N T5270513640N 583 583 583 583 583 Nl·C501PC NL-C601PO Nl·C60lPE Nl·C6015 Nl·CS01T 5 5 5 5 5 NAT NAT NAT NAT NAT T7201355040N T7201455040N T7201555040N T72oo755040N T7200955040N 551 551 551 551 551 Nl·FI58E Nl·FI58M Nl·FI58N Nl·F158P Nl·F1585 5 5 5 5 5 NAT . NAT NAT NAT NAT T507058044AO T507068044AO T507088044AO T507 I 08044AO T507078044AO 577 577 577 577 577 Nl·F355M Nl·F355N Nl·F355P Nl·F3555 Nl·F355T 5 5 5 5 5 NAT NAT NAT NAT NAT T5270613640N T5270813640N T5271013640N T5270713640N T5270913640N 583 583 583 583 583 Nl·CI5BOA NL·CI5BOB Nl-C1580C Nl·CI5Boo Nl-CI5BOE 5 5 5 5 5 NAT NAT NAT NAT NAT T72oo145040N T72oo245040N T72oo345040N T7200445040N T7200545040N 551 551 551 551 551 Nl·FI58T Nl·F159A Nl·FI59B Nl·FI59C Nl·F1590 5 5 5 5 5 NAT NAT NAT NAT NAT TS07098044AO T507018044"" T507028044"" T507038044"" T507048044"" 577 577 577 577 577 Nl·F358A Nl·F358B Nl·F35BC Nl·F3580 Nl·F358E 5 5 5 5 5 NAT NAT NAT NAT NAT T5270113440N T5270213440N T5270313440N T52704 I 3440N T52705 I 3440N 583 583 583 583 583 Nl-C1580M Nl·CI5BON NL·CI5BOP NLCI590PA Nl·CI58OPB 5 5 5 5 5 NAT NAT NAT NAT NAT T72oo645040N T7200845040N T7201045040N T7201145040N T7201245040N 551 551 551 551 551 Nl·FI59E Nl·FI59M Nl-FI59N Nl-FI59P Nl·F1595 5 5 5 5 5 NAT NAT NAT NAT NAT T50705B044"" 577 T507068044"" 577 T507088044"" 577 T507108044"" 577 T507078044"" 577 Nl·F358M Nl·F358N Nl·F358P Nl·F3585 Nl-F358T 5 5 5 5 5 NAT NAT NAT NAT NAT T5270613440N T5270813440N T5271013440N T5270713440N T5270813440N 583 583 583 583 5B3 NL·CI580PC Nl·CI580PO Nl·CI58OPE Nl·CI58OPM NL·CI580PS 5 5 5 5 5 NAT NAT NAT NAT NAT T7201345040N T7201445040N T7201545040N T7201645040N T7201745040N 551 551 551 551 551 Nl·F159T Nl·F180A Nl·F1BOB Nl·FI8DC Nl·Fl800 5 5 5 5 5 NAT NAT NAT NAT NAT T507098044"" T6ooo115048T T6ooo21504BT T6ooo31504BT T60004 I 504BT NL·F380A Nl·F380B Nl·F3BOC Nl·F3BOO Nl·F380E 5 5 5 5 5 NAT NAT NAT NAT NAT T62oo130040N T63OO230040N T62oo330040N T6200430040N T62oo530040N 543 543 543 543 543 Note: ManufBcturer's Codes, Product Type Note5 and@ Replacement Notes are listed 577 533 533 533 533 on page G3 G17 Part Number NL-F3SOM NL-F3SON NL-F3SOP NL-F3S05 NL-F38OT A303XX06 A303XX12 A310XX03 A310XX05 A310XX06 Page Part Number Type Mfgr. Suggested@ Replacement Page R600XX25 R600XX28 A600XX30 A601XXI6 A601XX20 WE5 WE5 WES WES WE5 A600XX25 A600XX28 R600XX30 A601XX16 A601XX20 R31 CF R31 CF R31 A3205 A3210 R3215 R3220 A3225 A A NAT NAT NAT NAT NAT T720066604DN T7200B5504DN T7200B5504DN T720105504DN T720115604DN 551 S51 561 561 551 R601XX24 R601XX26 R601XX28 R601XX30 R602XX20 WE5 WES WES WE5 WE5 R601XX24 A601XX25 A601XX28 A601XX30 A602XX20 CF A31 CF A31 R63 1'13230 1'13240 1'13245 R3250 1'13260 A A NAT NAT NAT NAT NAT T720126604DN T720135504DN T720075504DN T720095504DN T727014B73DN 551 551 551 S51 591 R602XX25 R603XX20 R603XX25 R610XX16 R610XX20 WE5 WE5 WES WES WES A602XX25 R603XX20 A603XX25 R610XX16 R610XX20 A63 A63 A63 CF A31 R3270 1'13280 1'13290 R3405 R3410 5 5 NAT NAT NAT NAT NAT T727024B73DN T727034873DN T727044B73DN T727054B73DN T727064873DN S91 S91 591 591 S91 R610XX24 R610XX25 R610XX28 R610XX30 R611XX16 WE5 WE5 WE5 WE5 WE5 R610XX24 A610XX25 A610XX28 R610XX30 A611XX16 CF A31 CF A31 CF - NL-F397PB NL-F3975 NL-F397T NL-F398A NL-F398B 5 5 5 5 5 NAT NAT NAT NAT NAT T727124544DN T727074544DN T7270945440N T727014554DN T727024554DN S91 S91 S91 591 S91 5 NAT T727014863DN NAT T727024863DN NAT T727034B63DN IiIAT NAT R611XX20 R611XX24 A611XX25 R611XX28 R611XX30 WE5 WES WE5 WE5 WE5 A611XX20 A611XX24 A611XX25 R611XX28 R611XX30 A31, CF A31 CF A31 NL-F398C NL-F398D NL-F398E NL-F398M NL-F398N 5 ~m=~~g~ 591 591 S91 S91 S91 5 5 5 NAT NAT NAT NAT NAT T7270345540N T7270445540N T727054554DN T727064554DN T727084554DN S91 591 S91 591 S91 NAT NAT NAT NAT NAT T727064B63ON T727014544DN T727024544DN T727034544DN T727044544DN S91 S91 S91 S91 S91 A620XX30 R620XX40 R620XX50 A622XX35 A622XX40 WE5 WE5 WE5 WE5 WE5 A620XX30 A620XX40 R620XX50 R622XX35 R622XX40 R39 R39 A39 R67 R67 NL-F398P NL-F398PA NL-F398PB NL-F3985 NL-F398T 5 5 5 5 5 NAT NAT NAT NAT NAT T727104554DN T727114554DN T727124554DN T7270745540N T727094554DN S91 S91 591 591 S91 5 NAT NAT NAT NAT NAT T727054544DN T727064544DN T727OB4544DN T727104544DN T727114544DN 591 S91 591 591 591 A700XX03 A700XX04 A700XX05 A701XX03 A701XX04 WE5 WE5 WE5 WE5 WE5 R700XX03 A700XX04 A700XX05 R701XX03 A701XX04 A35 R35 R35 1'135 1'135 NL-F70IE NL-F70IM NL-F70IN NL-F701P NL-F701PA 5 5 5 5 5 NAT NAT NAT NAT NAT T9GOO512030H T9GOOB12030H T9G00812030H T9G01012030H T9G01112030H 561 S61 S61 S61 S61 A A WE5 A303XX06 WE5 A303XX12 WE5 A310XX03 A310XX05 WE5 A310XX06 A55 A55 CF CF CF A701XX05 A720XX06 A720XXOB R720XX12 A722XX05 WE5 WE5 WE5 WE5 WE5 R701XX05 R720XX06 R720XXOB R720XX12 A722XX05 A35 R43 R43 1'143 R17 NL-F70IPB NL-F70IPC NL-F70IPO NL-F70IPE NL-F70IPM 5 NAT NAT NAT NAT NAT T9G0121203DH T9G01312030H T9G01412030H T9G01512030H T9G01612030H 561 S61 561 561 561 5 NL-F397E NL-F397M NL-F397N NL-F397P NL-F397PA Type Mfgr. S43 S43 S43 543 543 NL-F390PB NL-F3SOPC NL-F3905 NL-F390T NL-F394A NL-F395M NL-F397A NL-F397B NL-F397C NL-F397D Part Number T6200B3004DN T6200B3004DN T620103004DN T620073004DN T620093004DN 5 5 5 NL-F395A NL-F395B NL-F395C NL-F395D NL-F395E Page NAT NAT NAT NAT NAT 5 5 5 5 5 NL-F390E NL-F390M NL-F390N NL-F390P NL-F390PA NL-F394B NL-F394C NL-F394D NL-F394E NL-F394M G18 Suggested@ Type Mfgr..' Replacement 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 '5 5 5 5 5 5 R A A A310XX12 A310XX16 A311XX03 A311XX05 A311XX06 R A311XX12 A311XX16 A340XX06 A402XX20 A402XX30 R A403XX20 A403XX30 A404XX60 A404XX70 A405XX60 A A405XX70 A410XX15 A410XXIB A410XX20 A410XX22 A A A410XX25 A410XX35 R410XX40 A411XX16 A411XXIB A A A411XX20 A411XX22 A411XX25 A411XX36 A411XX40 A wes A A A A A R A A R R A 5 5 5 5 5 SYN SYN SYN SYN SYN IN1184A IN1184A INI186A INI186A INI187R 1'114 R15 R15 R15 R15 SYN SYN SYN SYN SYN IN1187A IN1188AR IN1189AR IN1189A IN1190A 1'115 A15 R15 1'115 A15 SYN 5YN SYN 5YN 5YN IN3765R IN3766A IN3767 IN1184AA IN1184AA 1'115 A15 A15 A15 A15 WES WE5 WES WES WES A310XX12 A310XX16 A311XX03 A311XX05 A311XX06 CF CF CF CF CF A722XX06 R722XX08 R7SOXX03 A780XX04 A780XX06 WE5 WE5 WE5 WES R71 R71 CF CF CF NL-F7015 NL-F70IT PA .......... . PB .......... . PBOS 5 5 we5 R722XX06 R722XX08 CF CF CF NAT NAT WE5 WE5 EOI T9GOO712030H T9GOO912030H PA ......... . PB ........ .. MB12A25V05 561 561 A37 CF A3 WES WES WES WES WES A311XX12 A311XX16 R340XX06 A402XX20 A402XX30 CF CF R9 A57 R57 R781XX03 R781XX04 R781XX05 R920XXll A920XX16 WE5 WE5 WE5 WE5 WE5 CF CF CF R920XXll A920XX16 CF CF CF R47 R47 PBIO PB20 PB40 PB60 PC .......... . A A A A EOI EOI EOI EOI WE5 MB12A25Vl0 MB12A25V20 MBI2A25V40 MB12A25V60 PC ........ .. A3 A3 A3 A3 CF WES WES WE5 WES WE5 A403XX20 A403XX30 A404XX60 R404XX70 R405XX60 , R57 R57 A17 R17 R17 A920XX20 A2005 A2010 A2015 A2030 WE5 5YN 5YN 5YN 5YN R920XX20 IN1199AR IN1200AR IN1202AR IN1203AR A47 1'113 A13 RI3 R13 PO .......... . POO5 POlO P020 PD40 A A A A A WE5 EOI EOI EOI EDJ PO ........ . MB11A02V05 MB11A02Vl0 MB11A01V20 MB11A02V40 A37 A3 A3 A3 A3 . WES WES WES WES WE5 R405XX70 R410XX15 R410XX18 R410XX20 A410XX22 A17 CF CF CF CF R2060 A2070 R2OBO A2090 R2100 5YN 5YN 5YN 5YN 5YN IN1206AA IN3670AA IN3671AR IN3672AA IN367.3AA- R13 R13 R13 P060 PjlS9- A A A MB11A02V60 MB11A02VSO MBllA02Vl0 PE ......... MB11 A06V05 A3 A3 A3 CF A3 WES WE5 WE5 WE5 WE5 R410XX26 R410XX36 R410XX40 R411XX15 A411XX18 CF CF A15 CF CF A2105 R2110 R2115 A2120 R2125 5YN IN3615R 5YN 5YN 5YN 5YN WE5 WES WES WES WES R411XX20 A411XX22 R411XX26 A411XX35 R411XX40 CF CF CF CF A16 A2130 R2140 R2150 A2160 A2170 A500XX10 A500XX15 R501XX10 A501XX15 A502XXOB R WES AWES A 'WE5 AWES R WES ASOOXX10 A500XX16 R501XX10 R501XXI5 R502XX08 A23 A23 R23 A23 A59 A21SO A2190 R3105 A3110 A3115 A502XX10 A503XXOB R503XX10 A510XX10 A510XX16 AWES R WES AWES R WE5 R WE5 R502XX10 R503XX08 R503XX10 A510XX10 A5,10XX15 ,RS9 A59 A69 A23 A23 R611XX10 A511XX16 A600XXI6 A600XX20 A600XX24 AWES AWES R WE5 R WE5 AWES R511XX10 R511XX15 R600XX16 A600XX20 R600XX24 A23 A23 CF A31 CF R A A A A A A A A R A A A A A A A A A A A A A A A A -~ PE .......... . PE05 A A13 A EOI EOI EOI WE5 EOI IN3616R IN3618A IN3618R IN3619R R13 A13 A13 R13 A13 PEIO PE20 PE40 PE60 PF .......... . A A A A A EOI EOI EOI EOI WES MB11A06Vl0 MBllA06V20 MBllA06V40 MBll A06V60 PF ........ . A3 A3 A3 A3 CF WE5 5YN 5YN 5YN 5YN IN3619R IN3620A IN3621R IN3622R A3110716 A13 R13 R13 RI3 CF PH .......... . PM ........ .. PN .......... . PP .......... . PO .......... . A WES WES WE5 WE5 WES PH ....... .. PM ...... .. PN ........ . PP ........ . PO ........ . CF CF CF Cf CF R R A A A SYN 5YN SYN 5YN SYN IN3632A A3110916 IN1191AR IN1192AR IN1194AA A13 CF A15 R15 R15 PR .......... . P5 .......... . PT .......... . PW ........ .. 0220A AWES AWES A WE5 AWES 5 WCE PA ........ . PS ........ . PT ........ . PW ...... .. CF A37 A37 A37 CF CF R3120 R3125 R3190 A3140 R3145 R A A A R SYN SYN 5YN SYN SYN IN1194AR IN1195AR IN1195AR IN1196AA IN1197AR R15 R15 AI5 A1SR15 A5COXX10 A5COXXl5 A5C1XX10 R5CIXXl5 A500XXIO A WE5 AWES AWES AWES R WE5 A5COXX10 A5COXX15 A5C1XX10 R5C1XX15 A5DOXX10 A23 A23 A23 A23 A23 A3150 R3160 R3170 R3180 R3190 A R A R R 5YN SYN SYN SYN SYN IN1197AR IN1198A A4110722 R4110822 R4110922 R15 R15 CF CF CF A5DOXXI5 R501XX10 R5DIXX15 A9GOXX13 A9GOXX18 AWES R WES R WE5 AWES R WE5 A5DOXX15 R501XX10 A501XX15 R9GOXX13 R9GOXX18 R23 1'123 A15 A51 ~OIOO Note: Manufacturer's .Codes. PrOduct, Type Notes and ® Replacement Notes are listed on page G3 A A A A A23 Part Number Type Mfg •. Suggested@ Replacement Page Part Number Type Mfgr. Suggested@ Replacement Page Part Number Type Mfg •. ® Suggested Replacement Page A R R A R SYN SYN SYN SYN SYN A5110715 R5110815 R5l109l5 R51l0015 R51101l5 A23 R23 R23 R23 R23 R50420 A50425 A50430 A50435 R50440 A A A A A SYN SYN SYN SYN SYN RSl 10230 ASll +230 A6110330 ASl 1+330 ASll0430 A31, A3l R31 R3l R31 A9GOXX22 A9G2XX09 A9G2XXll A9G2XX14 A9HOXX15 R WES AWES AWES AWES R WES A9GOXX22 R9G2XX09 A9G2XXll R9G2XX14 R9HOXX15 A5l R75 R75 A75 CF A4270 A4280 R4290 R4305 R43l0 A9HOXX24 A040XX10 A050B A050C A050E R WES R WES AWES AWES AWES A9HOXX24 R040XX10 CF CF CF CF CF CF CF CF R4320 R4330 R4340 A4350 R4360 A R R R R SYN SYN SYN SYN SYN R5l10215 R5110315 R5l104l5 A51105l5 R5110615 R23 R23 A23 A23 R23 R50445 R50450 R504S0 A50470 A50480 A A A A A SYN SYN SYN SYN SYN ASl 1+430 ASl 10530 ASl 10630 ASll0730 AS110830 A31 R3l A3l R3l R3l A050N A051B A051C A051E A051N AWES AWES AWES AWES AWES CF CF CF CF CF CF CF CF CF CF R4370 A4380 A4390 A5ll0 A5l20 A A A A R SYN SYN SYN SYN SYN A5l10715 R5110815 R51109l5 IN3261 R IN3263A R23 A23 A23 R27 R27 R50490 A51100 R53100 R53120 A541 00 A A A A A SYN 5YN 5YN SYN 5YN AS110930 ASll101S A61 1 1025 ASOl 1225 AS11 1030 A31 CF A31 R31 A31 A052B A052C A052E R052N R052S AWES AWES AWES AWES AWES CF CF CF CF CF CF CF CF CF CF A5l30 R5l40 A5l50 R5l60 A5l70 R R A R A SYN SYN SYN SYN SYN IN3265A IN3267A IN3268A IN3269A IN3270A R27 R27 R27 A27 A27 A503100 A503110 A503120 R504100 A504110 A A A A A SYN 5YN SYN SYN SYN AS111025 ASOl 1 1 25 AS011225 A6111030 AS011 130 A31 A31 A31 A31 A31 A052Y R053B A053C ROS3E A053N AWES AWES AWES AWES AWES CF CF CF CF CF CF CF CF CF CF A5l80 A5l90 A5305 A53l0 A5320 A A A A A SYN SYN SYN SYN SYN IN3271 A IN3272A A6ll0025 A61l0l25 A6110225 A27 R27 R31 A31 R31 A504120 5S12·3 5612·5 S622·4 52005 A A A A A 5YN 5AA SAA SAA SYN R6011230 MB 1 1 A06V40 MB11A06VSO MBllA02Wl0 IN1199A A31 A3 A3 A3 A13 R053S R053Y A054B A054C R054E AWES AWES AWES AWES AWES CF CF CF CF CF CF CF CF CF CF A5330 A5340 A5350 A53S0 A5370 A A A A A SYN SYN SYN SYN SYN A6l10325 A6ll0425 A6110525 A6l10625 A6110725 A31 R31 R31 A31 A31 52010 S2015 S2030 52060 S2070 A A A R R SYN SYN 5YN SYN 5YN IN1200A IN 1 1 201 A IN1203A IN120SA IN3670A A13 A 13 A13 A13 A13 A054N R054S A054Y R055E R055S AWES AWES AWES AWES AWES CF CF CF CF CF CF CF CF CF CF A5380 A5390 A54l0 A5420 A5430 R R A R R SYN SYN SYN SYN SYN A6110825 A6110925 A6l10130 A6ll0230 A61l0330 R31 R3l R31 A31 R31 52080 S2090 S2100 52105 52110 A R A R A SYN SYN SYN SYN SYN IN3S71A IN3S72A IN3S73A IN3S15 IN3S16 R13 A13 A13 A13 R13 R055Y R061B R061C R061E R061N AWES AWES AWES AWES AWES CF CF CF CF CF CF CF CF CF CF A5440 A5450 A5460 A5470 A5480 R A A A A SYN SYN SYN SYN SYN R61l0430 A6110530 A6110630 A6110730 R6110830 A3l A31 R31 A31 R31 52115 S2120 52125 S2130 S2140 A R A A A SYN 5YN 5YN SYN SYN IN3617 IN3S18 R3l0+216 IN3619 IN3620 A13 A13 CF A13 A13 R061S R061Y R062E R062Y R063B AWES AWES AWES AWES AWES CF CF CF CF CF CF CF CF CF CF A5490 A20020 A20025 A20040 A20050 A A A A A SYN SYN SYN SYN 5YN A6110930 IN1202AR IN 1203AA IN1204AR IN 1205AR R31 R13 R13 R13 R13 52150 521S0 52170 52180 52190 A R A A A SYN SYN SYN 5YN SYN IN3621 lN3622 R3100716 IN3623 R310091S A13 R13 CF A13 CF R063C R063E R063N R063S R063Y AWES AWES AWES AWES AWES CF CF CF CF CF CF CF CF CF CF R2ll00 A23l30 A23l40 A23l50 R23l SO R R R R R SYN SYN SYN SYN 5YN IN3624R R6011325 A6011425 R6011525 R6011625 R13 R31 R31 A31 R31 53105 53110 S3115 S3130 53125 R R A R R SYN SYN SYN SYN SYN IN1191A IN1192A IN1193A IN1194A R410+222 R15 R15 A15 R15 CF R140XX15 A150XX15 A240XX30 R302XX06 A302XX12 R R R R R WES WES WES WES WES R140XX15 R150XX15 A240XX30 A302XX06 A302XX 12 CF CF CF R55 R55 A3ll00 R32l00 R34l 00 A36l00 R42l 00 R R R R R SYN SYN SYN 5YN SYN R4111022 R4111030 R4111040 R4051060 R5111015 A15 CF R15 A17 A23 53130 53135 S3140 S3145 53150 A R A A R SYN SYN SYN SYN SYN IN1195A R410+322 IN1196A R410+422 IN1197A R15 CF R15 CF R15 A3420 R3425 'R3430 A3440 R3445 A R R R A SYN SYN SYN SYN SYN INl186AR INl187AR IN1187AR IN1188AA IN1189AR R15 A15 A15 A15 R15 A42ll0 A42l20 R42l30 R42l40 A42l50 R R R R R SYN 5YN SYN SYN SYN R5011l15 R5011215 R5011315 R5011415 SO A23 A23 R23 R23 R23 S3160 S3170 S3180 S3190 S3205 R· A A R 5YN SYN SYN SYN SYN lN1198A A4100722 R4100822 R4100922 R41 00030 R15 CF CF CF CF R3450 R3460 R3470 R3480 A3490 A A R A A SYN SYN SYN SYN SYN IN1189AA INl190AR R4110740 A4110840 A4110940 R15 R15 CF R15 CF R42l60 A43100 A43ll0 R43120 R43l30 R R R R R SYN SYN SYN SYN SYN SO R5111015 A50111l5 R5011215 R501l315 R23 R23 A23 R23 A23 S3210 S3215 53220 S3225 S3230 R A R R R SVr-, SYfII 5VN 5YN SYN R4100130 R410+130 R4100230 R4l0+230 R4100330 CF CF CF CF CF A3605 A36l5 A3620 R3625 A3630 R R R A R 5YN SYN SYN SYN SYN R4050060 A4050260 R4050260 R4050360 A4050360 A17 A17 A17 R17 R17 A43140 A43l50 R43160 R50305 A503l0 A R A A R SYN SYN SYN SYN SYN A5011415 SO 50 R6110025 R6110125 A23 A23 A23 A31 A31 S3235 S3240 S3245 S3250 S3260 R R A A R SYN SYN SYN SYN SYN R41 0+330 R4l00430 A410+430 A4l00530 A4100630 CF CF CF CF CF R3635 R3640 R3645 R3650 R3660 R A A R A SYN SYN SYN SYN SYN R4050460 A40504S0 A4050560 R40505S0 R4050S60 R17 R17 R17 R17 A17 R503l5 R50320 A50325 A50330 R50335 R A A A R SYN SYN 5YN SYN SYN A611+125 R6110225 R611+225 A6110325 A611 +325 A31 A31 A31 R31 R31 53270 53280 S3290 53410 53415 R A R R R SYN SYN SYN SYN SYN R41 00730 A4100830 A41 00930 INl 184A IN1185A CF CF CF R15 R15 A3670 R3680 R3690 A4205 A42l0 R R R A R SYN SYN SYN SYN SYN A40507S0 A40508S0 A40509S0 A5110015 R51 101 15 A17 A17 A17 R23 R23 R50340 A50345 R50350 A50360 R50370 A A R A A SYN SYN SYN SYN SYN R6110425 A611+425 A6110525 A6110625 A6110725 R31 R31 R31 A31 A31 53420 S3425 53430 ,S3435 53440 R R R R R 5YN SYN SYN SYN SYN INll86A A410+240 IN1187A R410+340 INl 188A R15 CF R15 CF R15 R4220 A4230 R4240 A4250 R4260 R R A A A SYN SYN SYN SYN SYN R5110215 R5110315 A5110415 A5110515 R5110S15 A23 A23 A23 A23 R23 R50380' A50390 R50405 A5041 0 A50415 R R A R R 5YN SYN SYN SYN SYN A6110825 A6110925 A6110030 R6110130 A611 +130 A31 'A31 A31 A3l A31 53445 53450 'S34S0 S3470 S3480 R R R R R SYN 5YN SYN SYN SYN R410+440 IN11S9A IN1190A R4100740 A41 00840 CF R15 R15 CF R15 Note: Manufacturer's Codes, Product Type Notes and® Replacement Notes are listed on page G3 R G19 Part Number Suggeated@ Replacement Type Mfg,_ Page Part Number Type Mfg,_ 53490 53605 53615 53620 53625 5YN 5YN 5YN 5YN 5YN R4100940 R4040060 R404+160 R4040260 R404+260 CF R17 R17 R17 R17 56230-2 56230-3 56230-4 56305 56310 A A A R R 5AR SAR SAR 5YN 5YN 53630 53635 53640 53645 53650 5YN SYN 5YN 5YN 5YN R4040360 R404+360 R4040460 R404+460 R4040560 R17 R17 R17 R17 R17 56315 56323-1 56323-2 56323-3 R A A A 53660 53670 53680 53690 54205 5YN 5YN 5YN 5YN 5YN R4040660 R4040760 R4040660 R4040960 R5100015 R17 R17 R17 R17 R23 56323-4 56323-5 56323-6 56324-2 56324-4 54210 54220 54230 54240 54250 SYN SYN SYN SYN 5YN R5100115 R5100215 R5100315 R5100415 R5100515 R23 R23 523 R23 R23 SYN 5YN 5YN 5YN 5YN R5100615 R5100715 R5100B15 R5100915 R5100015 5YN 5YN 5YN 5YN 5YN 5YN 5YN 5YN 5YN 5YN 54260 54270 S4280 54290 54305 R 54310 54320 54330 54340 54350 R 54360 54370 54380 54390 55110 R 55120 55130 55140 55150 55160 55170 55180 55190 55305 55310 55320 55330 55340 55350 55360 R R R R R R R R R R R R R R R R R R R R R R R R R R R 5uggested@ Replacement MB11A02V60 MB11A02VBO MB11A02Wl0 CF CF Page A3 Part Number 550430 550435 Suggested@ Replacement Page 550445 S50450 R R A R R 5YN 5YN 5YN 5YN 5YN R6100330 A610+33O R6100430 R610+430 R6100530 R31 R31 A31 A31 R31 CF A3 A3 A3 550460 S50470 S50480 S50490 551100 A R R A R 5YN R6100630 5YN A6100730 SYN R6100630 SYN R6100930 5YN IN3273 R31 R31 R31 A31 R27 MB12Al0V40 MB12Al0V50 MB12Al0V60 MB11A02V20 MB11A02V40 A3 A3 A3 A3 A3 553100 553120 S54100 560100 S631 00 R R R 5YN SYN SYN SYN SYN A6101025 R6001225 R6101030 CF CF A31 R31 R31 CF CF 5AR 5AA 5AA 5YN 5AR MB11A02V60 MB11A02V80 MB11A02Wl0 CF MB11 A06Vl0 A3 A3 A3 CF A3 S63110 S63120 S63130 S63150 S63160 R R R R SYN 5YN SYN SYN SYN CF CF CF CF CF CF CF CF CF CF A A A A A SAR 5AA 5AA SAR 5AA MB11A06V20 MBllA06V4O MB11A06V60 MBll A06V80 MB11A06WIO A3 A3 A3 5503100 5503110 S503120 S504100 S504110 R R R R R SYN SYN SYN SYN SYN R6101025 R6001125 R6001225 R6101030 A6001130 R31 R31 R31 R31 A31 R CF CF CF CF CF 5504120 SB _._ .. :_ ...••. _. SBR05 SBRIO SBR10A05 R R R SYN CF SYN CF 5YN CF SYN CF SYN CF SYN WES SET SET SET R6001230 SB .... _........ MBllA02V05 MBllA02VI0 MBI2AIOV05 R31 A69 A3 56360 56370 S63BO 56390 56458-05 R R A R A 5YN CF 5YN CF 5YN CF 5YN CF 5AR MB12A25V05 CF CF CF CF A3 SBR10Al SBR10A2 SBR10A4 SBRIOA6 SBR15 A A A A A SET SET SET SET SET MB12A1OV10 MB12AIOV20 MB12AIOV40 MBI2AIOV60 MBllA02VI0 A3 IN3263 IN3265 IN3267 IN326B IN3269 R27 R27 R27 R27 R27 56458-2 56458-4 56458-6 520020 520025 A A A R R 5AR MB12A25V20 5AR MB12A25V4O 5AR MBI2A25V60 5YN IN1202A 5YN R310+212 A3 A3 A3 R13 CF 5BR25 SBR45 SBR65 SBR85 SC ............... A A A A A SET SET SET SET WES M811A02V20 MB11A02V40 MBllA02V60 MB11A02V80 SC ............. A3 A3 A3 A69 5YN 5YN SYN 5YN 5YN IN3270 IN3271 IN3272 R6100025 R6100125 R27 R27 R31 R31 S20040 520050 521100 523130 523140 R R R R A 5YN INI204A 5YN IN 1205A 5YN IN3624 5YN A6001325 SYN IN3744 R13 R13 R13 R31 R31 SCBA05 5CBAI SCBA2 SC8A4 SCBA6 A A A A A SET SET SET SET SET MB12A25V05 MB12A25Vl0 MB12A25V20 MB12A25V4O MB12A25V60 A3 A3 A3 A3 A3 SYN 5YN 5YN 5YN 5YN R6100225 R6100325 R6100425 R6100525 R6100625 R31 R31 R31 R31 R31 523150 523160 531100 532100 534050 R R R R31 R31 R15 CF R15 50 .............. _ SOA117A SOA117B SOA117C SOA1170 A A A A A WES SSD 5SD SSD SSO SO ............. MB11A02V05 MB11A02Vl0 MBllA02V20 MBllA02V4O A3 R 5YN R600 1525 5YN R6001625 5YN R4101022 SYN R4101030 5YN IN11B3A R6100725 R6100B25 R6100925 R6100130 R6100230 R31 R31 R31 R31 R31 534100 536100 S42100 S42110 542120 R R R R R SYN SYN SYN 5YN 5YN R4101040 A4041060 A5101015 A!i'OO1115 R6001215 R15 R17 R23 R23 R23 SOAI17E 5DAI17F SDAI17G SDA13BA SOA13B8 A A A A A SSD SSD SSD SSD SSD MB11A02V60 MBIIA02V80 MBllA02WI0 MBllA06V05 MBIIA06Vl0 A3 5YN R5001315 SYN R5001415 SYN 50 5YN 50 5YN R5101015 R23 R23 R23 R23 R23 SDA138C SDA138D SDAI38E SDA138F SDA138G A A A A A SSD SSD SSD SSD SSD MB11A06V20 MBIIA06V40 MBllA06V60 MBllA06VBO MB11A06Wl0 A3 A3 A3 A3 A3 R5001115 R5001215 R5001315 R5001415 SE ............... A SH ...... _........ A so R23 R23 R23 R23 R23 SN ............... SQ_ .............. SS .... _.......... A A A WES SE ............ _ A69 WE5 WES WE5 SQ ............. A69 WE5 S5 .... _........ A69 A3 A3 CF CF S50440 SYN CF 5AA MB12Al0Vl0 5AR MB12A1OV20 SAR MB12A1OV30 A A A A A 5AR 5AR 5AR 5AR 5AR 56324-6 56324-8 56324-10 56325 56327-1 A A A R A R23 R23 R23 R23 R23 56327-2 S6327-4 56327-6 56327-B S6327-10 R5100115 R5100215 R5100315 R5100415 R5100515 R23 R23 R23 R23 R23 S6330 56335 56340 56345 56350 R R5100615 R5100715 R5100615 R5100915 IN3261 E12 R23 R23 R23 R27 5YN 5YN 5YN 5YN SYN H~7 R A A3 A3 R A A A A A A A3 A3 A3 A3 A3 A3 A3 A69 A3 A3 ~ 55370 55380 55390 55410 55430 R R 5VN 5YN 5YN 5YN 5YN 55430 55440 55450 55460 55470 R R R R R 5YN 5YN 5YN 5YN 5YN R6100330 R6100430 R6100530 R6100630 R6100730 R31 R31 R31 R31 R31 542130 S42140 S42150 542160 543100 R A R -A A 55480 55490 56010 56020 56030 R R 5YN 5YN 5YN 5YN 5YN R6100B30 R6100930 CF CF CF R31 R31 CF CF CF S43110 543120 S43130 543140 543150 R R A A 5YN 5YN 5YN 5YN 5YN 56040 56050 56060 56070 56080 R R R 5YN 5YN 5YN 5YN SYN CF CF CF CF CF CF CF CF CF CF 543160 550305 550310 S50315 550320 R A A R A 5YN 5YN 5YN 5YN 5YN 50 R6100025 R6100125 R610+125 R6100225 R23 R31 R31 R31 R31 ST2FR10P ST2FR20P ST2FR30P ST2FR4OP ST2FR60P R R A R R SAA IN3890 SAR IN3B91 SAR IN3892 SAR IN3893 SAR R3020612 A57 R57 A57 R57 AS5 5YN CF 5AR MB11A06Vl0 5AR MBllA06V20 SAR MB11A06VBO 5AR MB11A06Wl0 Cf A3 A3 A3 A3 550325 550330 S50335 S50340 550345 R R A R R 5YN R610+225 5YN A6100325 5YN R610+325 5YN R6100425 5YN R610+425 R31 R31 R31 R31 R31 ST3FR20 ST3FR30 ST3FR4O ST3FR60 ST3FRIOOP R R R R R SAR IN3911 SAR IN3912 SAA IN3913 SAR A4020630 SAR IN3910 R57 A57 RS7 A57 R57 RCA RCA RCA RCA 5AR T40001160B T4OOO21606 T400041608 T40006160B MB II A02V20 513 513 513 513 A3 550350 S50360 S50370 550380 S50390 R A R A A SYN 5YN 5YN 5YN 5YN R6100525 R6100625 R6100725 R6100625 R6100925 R31 _ R31 R31 R31 R31 ST4FRIOP 5T4FR20 ST4FR30 ST4FR4O ST4FR60 R R R R R SAR SAR SAA SAR SAR IN3910 IN3911 IN3912 IN3913 R4020630 R57 A57 R57 RS7 R57 5AA 5AR SAR 5AR SAR MBllA02V40 MB11A02V60 MB11A02V80 MB11A02V20 MBllA02V4O A3 A3 A3 A3 A3 550405 550410 550415 550420 S50425 R A A R R SYN R6100030 SYN R6100130 5YN R610+13O 5YN R6100230 5YN R610+230 R31 R31 R31 R31 R31 ST5Al0P ST5A20P ST5A3DP ST5A40P ST5A50P R R R R A SAR SAR 5AR SAR SAR R4040160 R4040260 R4040360 R4040460 A4040560 RI7 A17 R17 RI7 A17 R R R R R R R 56090 56121 56121-1 56121-6 56121-7 A 56210A 56210B 562100 56210M 56211 5 5 5 56211-1 56211-2 56211-3 56230 56230-1 A A A A 5 A A A A A A A R Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on page G3 G20 Type Mfg,. A3 A3. A3 A3 ~~::::::::::::: ~:~ Suggested@ Replacement Part Number Type Mfg.. Suggested@ Replacement Part Number Type Mfgr. ST5A60P ST6A80P ST6AlOOP ST5AI20P ST6AION R R R R R SAR SAR SAR SAR SAR R4040680 R4040660 R4041060 R4041280 CF RI7 R17 RI7 RI7 CF STS80P ST910N ST910P ST920N ST920P R R R R R SAR CF SAR IN4045R SAR IN4045 SAR IN4047R SAR IN4047 ST6AIOP ST6A20N ST6A20P ST6A30N ST6A30P R R R R R SAR SAR SAR SAR SAR CF CF CF CF CF CF CF CF CF CF ST930N ST930P ST940N ST940P ST950N R R R R R ST6A40N ST6A40P ST6A50N ST6A50P ST6A60N R R R R R SAR SAR SAR SAR SAR CF CF CF CF CF CF CF CF CF CF ST950P ST960N ST960P ST980N ST980P ST6A60P ST6A80N ST6A80P ST6AlOON ST6AlOOP R R R R R SAR SAR SAR SAR SAR CF CF CF CF CF CF CF CF CF CF ST6AI20N ST6AI20P ST6AI40N ST6AI40P STI6AION R R R R R SAR CF SAR CF SAR CF SAR CF SAR CF STI6AIOP ST16A20N STI6A20P STI6A30N ST16A30P R R R R R SAR SAR SAR SAR SAR ST16A40N ST16A40P ST16A50N , ST16A5OP ST16A60N R R R R R STI6A60P STI6A80N ST16A80P ST16AlOON ST16AlOOP Page Page Suggested@ Replacement Page Part Number Type Mfg.. CF R29 R29 R29 R29 ST16100P ST16120N STI61 20P STI6140N STISI40P R R R R R SAR R610l016 BAR R6011215 SAR R6001215 SAR R5011415 SAR R5001415 R23 R23 R23 R23 R23 SAR IN4049R SAR IN4049 SAR IN4050R SAR IN4050 SAR IN405 I R R29 R29 R29 R29 R29 ST20l00N ST20100P STZOl20N ST20120P ST20140N R R R R R SAR SAR SAR SAR SAR R611 1030 R610l030 R60 II 230 R6001 230 R6011430 R31 R31 R31 R31 R31 R R R R R SAR IN4051 SAR IN4052R SAR IN4052 SAR IN4054R SAR IN4054 R29 R29 R29 R29 R29 ST20140P ST22100N ST22100P ST22120N ST22120P R R R R R SAR SAR SAR SAR SAR R6001430 R70ll005 R7001005 R7011 205 R7001205 R31 R36 R36 R35 R35 STIIIOP STII20P STII30P STII40P STII50P R R R R R SAR SAR SAR SAR SAR R4040170 R4040270 R4040370 R4040470 R4040570 RI7 R17 RI7 R17 RI7 ST22140N ST22140P T4V0XX22 T9G9XXOS T9GOXXIO R R 5 5 5 SAR SAR WES WES WES R7011405 R7001405 T400XX22 T9GOXXOa T9GOXXIO R35 R35 513 561 561 CF CF CF CF CF STIISOP STIISOP ST1610N STISIOP ST1620N R R R R R SAR SAR SAR SAR SAR R404OS70 R4040670 R5110115 R510011 5 R5110215 RI7 R17 R23 R23 R23 T9GOXXI2 T9GHXXOS T9GHXX09 T40RXX22 T72HXX25 5 5 5 5 5 WES WES WES WES WES T9GOXXI2 T9GHXXOS T9GHXX09 T40RXX22 T72HXX25 561 561 561 595 589 CF CF CF CF CF CF CF CF CF CF ST1620P ST1630N STIS30P ST1640N ST1640P R R R R R SAR SAR SAR SAR SAR R5100215 R5110315 R5100315 R5110415 R5100415 R23 R23 R23 R23 R23 T72HXX35 T72HXX45 T92HXX08 t92HXX07 T400XXIO 5 5 5 5 5 WES WES WES WES WES T72HXX35 T72HXX45 T9GHXX08 T9GHXX09 T400XXIO 589 589 593 593 513 SAR SAR SAR SAR SAR CF CF CF CF CF CF CF CF CF CF ST1660N STIS60P ST1S80N ST1680P ST20l0N R R R R R SAR SAR SAR SAR SAR R511OS15 R510OS15 R5110815 R5100815 RSIIOl30 R23 R23 R23 R23 R31 T400XXIS T400XX22 T500XX40 T500XX80 T507XX40 5 5 S 5 S WES WES WES WES WES T400XXl6 T400XX22 T400XX40 T500XX80 T507XX40 513 513 523 523 523 R R R R R SAR SAR SAR SAR SAR CF CF CF CF CF CF CF CF CF CF ST20l0P ST2020N ST2020P ST2030N ST2030P R R R R R SAR SAR SAR SAR SAR R6100130 R611 0230 R6100230 RSII0330 R6100330 R31 R31 R31 R31 R31 T507XX70 T507XX80 t~:g~~ T520XXl3 5 5 S 5 5 WES WES WES WES WES T507XX70 T507XX60 T610XX50 T510XX80 T520XXl3 577 577 S27 S27 541 ST16A120N ST16A120P STI6AI40N ST16AI40P ST210E R R R R R SAR SAR SAR SAR SAR CF CF CF CF IN3616 CF CF CF CF RI3 ST2040N ST2040P ST2060N ST2050P ST2060N R R R R R SAR SAR SAR SAR SAR R6 II 0430 R6100430 RSII0530 R6100530 R611OS30 R31 R31 R31 R31 R31 T527XXl2 T527XXl3 T527XX60 TSOOXXl3 T600XXl5 S 5 5 5 5 WES WES WES WES WES T627XXl2 T527XXl3 T527XX60 T600XX I 3 TSOOXXl5 583 583 583 S83 533 ST210P ST220E ST220P ST230E ST230P R R R R R SAR SAR SAR SAR SAR INl200A IN3617 INI20lA IN3619 INI203A RI3 RI3 RI3 RI3 RI3 ST2060P ST2080N ST20S0P ST2100E ST2100P R R R R R SAR R6100630 SAR R6 II 0830 SAR R6 I 00830 SAR IN3S24 SAR IN3673A R31 R31 R31 RI3 RI3 T600XXIS T607XXI3 T607XXl5 TS07XXla TSIOXXI3 5 5 5 5 S WES WES WES WES WES TSOOXXla T607XXl3 T607XXl5 TS07XXl8 TSIOXXl3 533 579 S79 579 S33 ST240E ST240P ST250E ST250P ST260E R R R R R SAR SAR SAR SAR SAR IN3620 INI204A IN3621 INI205A IN3622 RI3 RI3 RI3 RI3 RI3 ST2120E ST2120P ST2210N ST2210P ST~220N R R R R R SAR R310121S SAR R3101212 SAR R70l0l05 SAR R7000l06 SAR R70l0205 RI3 RI3 R35 R35 R35 TSIOXXl5 TSIOXXla T620XXl3 TS20XXI5 TS20XX20 5 5 5 5 5 WES WES WES WES WES TSIOXXl5 T610XXla TS20XXl5 T620XXl5 T620XX20 533 533 S43 543 543 ST260P ST280E ST280P ST310P ST320P R R R R R SAR SAR SAR SAR SAR INI206A IN3622 IN367 I A IN2156 IN215S RI3 RI3 RI3 RI3 RI3 ST2220P ST2230N ST2230P ST2240N ST2240P R R R R R SAR R7000205 SAR R70l0305 SAR R7000306 SAR R70l0405 SAR R7000405 R35 R35 R36 R35 R35 TS20XX30 T625XX25 T625XX30 T625XX40 T627XXl5 S 5 5 S 5 WES WES WES WES WES T620XX30 T625XX25 T625XX30 T625XX40 T627XXl5 543 547 547 547 587 ST330P ST340P ST350P ST360P ST380P R R R R R SAR SAR SAR SAR SAR IN2157 IN215S IN2159 IN2160 R4100S25 RI3 RI3 RI3 RI3 CF ST2250N ST2250P ST2260N St22SOP ST2280N R R R R R SAR SAR SAR SAR SAR R70l0505 R7000505 R70l0605 R7000605 R70l0805 R35 R35 R35 R35 R35 T627XX20 T627XX25 T6S0XXIS T700XX25 T700XX30 5 5 5 S S WES WES WES WES WES T627XX20 T627XX25 T680XX I a T700XX25 T700XX30 587 587 573 537 537 ST410P ST420P ST430P ST440P ST450P R R R R R SAR SAR SAR SAR SAR INIIS4A INII86A INII 87A INII88A INIIS9A RI5 RI5 RI5 RI5 RI5 ST2280P ST3I00P ST3120P ST4 I OOP ST4120P R R R R R SAR SAR SAR SAR SAR R7000805 R410l025 R4101225 R410l040 R4101240 R35 CF CF RI5 CF T700XX35 T707XX20 T707XX25 T707XX2a T707XX30 5 5 5 5 5 WES WES WES WES WES T700XX35 T707XX25 T707XX25 T707Xx28 T707XX30 537 SSI 581 SSI 581 ST460P ST460P ST610N ST810P ST620N R R R R R SAR SAR SAR SAR SAR INII90A R4100640 CE CF CF RI5 RI5 CF CF CF ST8100N ST8100P STSI20N STSI20P STSI40N T707XX33 T720XX35 T720XX45 T720XX55 T727XX35 581 551 551 551 591 CF CF CF CF CF ST8140P ST9100N ST9100P ST9120N ST9120P CF CF CF CF CF CF R29 R29 CF CF WES WES WES WES WES SAR CF SAR CF SAR CF SAR CF SAR CF CF CF CF CF CF CF IN405SR IN4056 RSOII 22S RSOOl228 5 5 5 S S R R R R R SAR SAR SAR SAR SAR SAR SAR SAR SAR SAR T707XX33 T720XX35 T720XX45 T720XX55 T727XX25 ST820P ST830N ST830P ST640N ST640P R R R R R R R R R R T727XX35 T727XX40 T727XX45 T727XX48 T760XX30 5 5 S 5 5 WES WES WES WES WES T727XX35 T727XX40 T727XX46 T727XX48 T760XX30 591 591 591 591 571 ST850N ST850P STS60N STS60P STS80N R R R R R SAR CF SAR CF SAR CF SAR CF SAR CF CF CF CF CF CF ST9140N ST9140P STlllOOP STIII20P ST16100N R R R R R SAR SAR SAR SAR SAR R6011428 R600142S R4041070 R4041270 R511 1015 CF CF RI7 RI7 R23 T780XX35 T920XXOS T920XX07 T920XX08 T920XX09 5 S S 5 S WES WES WES WES WES T780XX35 T920XXOS T920XX07 T920XX08 T920XX09 575 555 555 555 555 Note: Manufacturer's Codes, Product Tvpe Notes and@ Replacement Notes are listed OR page G3 G21 5uggetlted@ Part Number Type Mfg,. Replacement Part Number Page Typo Mfg,_ Suggested@ Replacement Page Part Numbe, IN3881R 'IN3882R IN3883R R3030S06 R3030606 R55 R55 R55 R55 R65 22RCIO 22RC20 22RC30 22RC40 22RC50 IR IR IR IR IR IN1341AR INI342AR INI344AR INI34SAR IN1346AR R13 R13 R13 R13 RI3 22RCSO 25PP5 25PPIO 25PP20 25PP40 R R R R A IR IR IR IR PPC IN1347AR IN1348AR IN3988AR IN3990 M811A06VOS R13 R13 R13 R13 A3 SPP10 SPP20 6PP40 6PP60 6PP80 A A A A A PPC PPC PPC PPC PPC MBllA06Vl0 MBliAOSV20 MBII AOSV40 MBllA06VSO MB11AOSV80 A3 A3 A3 A3 A3 SPP100 SVL50 10H3P 10HR30 10RC10A A R R R S IN3879 IN3S80 IN3881 IN3882 IN3889 RS5 R5S RS5 R55 RS5 10RC20A 10RC30A 10RC40A 10RC50A 10RCSOA SOL SOL SOL SOL SOL IN3890 IN3891 IN3892 IN3899 IN3900 RS5 R5S R55 RS7 R57 R R A A A SOL SOL PPC PPC PPC IN3S01 IN3S01 MBllA02VOS MB11A02Vl0 MBll A02V20 2PP40 2PPSO 2PP80 2PP100 55CBR05 A A A A A PPC PPC PPC PPC PPC 55CBRI 55CBR2 5SCBR4 55CBRS SAl SA2 5 IR IR IR IR IR 8uggetlted@ Rep'-"t P_ CF CF CF CF CF CF CF CF CF CF SIR A PPC A PPC A PPC A PPC CF M812A25V05 MBI2A25VIO M812A25V20 MB12A25V40 CF A3 A3 A3 A3 25PP60 30DBIT 30DB2T 30DB3T 30DB4T A A A A S PPC IR IR IR IR MBI2A2SVSO MBllA02Vl0 MB11A02V20 MB11A02V30 MBllA02V40 A3 A3 A3 A3 A3 A3 A3 300B5T 30DB6T 30DB8T 30DBOST 30DBIOT A A A A A IR IR IR IR IR MBllA02V50 MBllA02V60 MB11A02V80 MBllA02Vl0 MB11A02Wl0 A3 A3 A3 A3 A3 PPC MB11A06WIO IR R3020S06 SAR R3100106 SAR R30201 06 IR T4OOO11S06 A3 RSS CF CF 513 30H3P 30HR30 3SRASO 3SRASO 3SRA80 R R 5 5 5 5AR SAR IR IR IR IN1345 IN3882 T51005SOO4AO T510066004AO T500088004AO R13 R55 S27 527 523 S S S S R IR IR IR IR IR T4OOO21608 T400031608 T400041606 T400051606 T400061608 S13 S13 S13 S13 513 36RA100 3SRAIIO 3SRAI20 3SRA130 36RAI40 5 5 5 5 5 IR IR IR IR IR T500108004AO T5001 18004AO TS00128004AO T500138004AO TS00148004AO 523 523 523 523 523 10RC7OA 10RC80A 10RCSOA 10RC100A 10RC110A S S S 5 S IR IR IR IR IR T400071S08 T400081608 T4OO091S06 T400101S08 T4001I 160B S13 S13 513 SI3 513 3SRA150 3SRC10A 3SRC20A 3SRC30A 3SRC40A 5 5 5 5 5 IR IR IR IR IR T500158004AO TS10015007AO T5 I 0025007 AO T510036007AO T5 I 0045007 AO 523 527 527 527 527 RS7 ilS7 A3 A3 A3 10RC120A 12A700 12A800 12A900 12Al000 S R R R R IR SOL SOL SOL SOL T400121606 IN3S70A IN3671A IN3S72A IN3673A 513 RI3 R13 R13 R13 3SRC50A 3SRCSOA 36RC80A 36REH60 3SREH80 5 5 5 5 5 IR IR IR IR IR TS10055007AO TS10065007AO T500086007 AO TSI5068004AO T505068004AO 527 527 523 CF CF M811A02V40 MBllA02V60 MBllA02V80 MBll A02Wl0 MB11A06V05 A3 A3 A3 A3 A3 12FSA 12Fl0A 12F20A 12F30A 12F4OA R R R R R IR IR IR IR IR INI199A IN1200A IN1202A INI203A IN1204A R13 R13 R13 R13 R13 3SREHlOO 3SREHIIO 3SREHI20 3SREHI30 37RA50 5 5 S 5 5 IR IR IR IR IR T505108004AO T505 I 18004AO T50S128004AO T505138004AO T5 I 0055004AB CF CF CF CF 527 A . SET A SET SET A SET A RATS MBI1AOSV10 MB11AOSV20 MBllAOSV40 MB11AOSV60 R34OO106 A3 A3 A3 A3 R9 12F50A 12FSOA 12F8OA 12Fl00A 12FL5 R13 R13 R13 RI3 R55 37RA60 37RABO 37RA100 37RA110 37RA130 5 5 RATS RATS RATS RATS R SOL R34OO206 R34OO406 R34OOS06 R34OOO06 INI341A R9 R9 R9 R9 R13 12FL10 12FL20 12FL30 12FL40 12FL50 37RAI40 37RA160 37RC1OA 37RC2OA 37RC3OA S 6AS SA05 SA15 6A30 SA50 SAl 00 SA200 SA300 R R R R R SOL SOL SOL SOL SOL INI341A IN1341A IN t 342A IN 1344A INI34SA R13 R13 R13 RI3 RI3 SA400 6A500 SA600 SA700 SABOO R R R R R SOL SOL SOL SOL SOL INI346A IN1347A IN1348A IN3987 IN3988 SA900 SAl 000 _6A12Ge SF5A 6Fl0A R 6F2OA S630A SF~OA R R R SF50A 6F60A R T&20XX10 TA20XX12 TA20XX14 VH048 VH148 S S S A A WES WES WES VAR VAR 556 567 567 A3 A3 6FLR20 6FLR30 SFLR40 6FLR50 6FLR60 R R R R R IR IR IR IR IR VH248 VH448 VH648 .VH848 VJ048 A A A A A VAR ~BllA06V20 VAR MB11A06V40 VAR MBllA06V60 VAR MBliAOSV80 VAR MB12A1OVOS A3 A3 A3 A3 A3 6FR5A 6FR10A 6FR20A SFR30A 6FR40A R R R R R VJ148 VJ248 VJ448 VJ648 VK048 A A A A A VAR MB12Al0Vl0 VAR MB12Al0V20 VAR MBI2A1OV40 VAR MB12A1OVSO VAR MB12A25V05 A3 A3 A3 A3 A3 6FR50A 6FR60A SFR80A SFR100A SPP5 VK148 VK248 VK448 VKS48 VS048 A A A A A VAR VAR VAR VAR VAR MB12A25Vl0 MB12A25V20 MBI2A2SV40 MB12A2SV60 MB11A02V05 A3 A3 A3 A3 A3 V5148 V5248 VS448 V5648 V5848 A A A A A VAR MB11A02Vl0 VAR MBI 1 A02V20 VAR MB11A02V40 VAR MBll A02V60 VAR MB11A02V80 ZBCP-05 ZBCP-l ZBCP-2 ZBCP-3 ZCCP-05 R R R R R SOL SOL SOL SOL SOL ZCCP-l ZCCP-2 ZCCP-3 ZECN-05 ZECN-l R R R R R ZECN-2 ZECN-3 2PP5 2PP10 2PP20 6M '~~~~A 6FK20 SFL5 SFL10 SFL30 6FL40 6FL60 SFLR5 SFLR10 R R R R R R R R R R 5 5 S 5 R R IR IR R R IR IR R IR IN1205A IN120SA IN3671A IN3S73A IN38B9 R R IR IR IN38SO IN3891 R IR IN389~ R R IR IR IN3893 R3020512 R55 RS5 RSS R55 RS5 12FLSO 12FLR6 12FLR10 12FLR20 12FLR30 R R R R R IR IR IR IR IR R3020612 IN3889R IN38SOR IN3891R IN3892R RS5 RSS R55 RS5 R55 37RC40A 37RC50A 37RC60A 37RC90A 37REH60 5 5 IR R13 R13 R13. R13 R13 12FLR40 12FLR50 12FLR60 12FR5A 12FR10A R R R R R IR IR IR IR IR IN3893R R3030512 R3030S12 IN1199AR IN1200AR R56 R55 R55 CF CF 37REH80 37REH100 37REH110 37REH120 37REHI30 5 IR SOL IN3989 SOL IN3990 SOL R310120S IR INI341A IR IN1342A R13 R13 CF R13 R13 12FR20A 12FR30A 12FR40A 12FRSOA 12FRSOA R R R IR IR IR IR IR IN1202AR IN1203AR INI204AR IN1205AR INI20SAR CF CF CF CF CF 37T 38T 39T 40A50 4OA100 5 5 5 IR INI344A IN1345A IN134SA INI347A IN3988 R13 R13 R13 R13 R13 12FR8OA 12FR100A 15PP5 lSPP10 1SPP20 R R A A A IR CF CF A3 A3 A3 40A150 4OA200 40AJOO 40A4QO 40A600 R PPC PPC PPC IN3S71AR IN3S73AR MBI2Al0V05 M812Al0Vl0 M812Al0V20 IN3988 IN3990 IN3881 IN3879 IN3880 R13 R13 R5S R5S R55 1SPP40 15PP60 1SRCIOA 16RC20A 1SRC30A A A PPC PPC IR IR IR MB12Al0V40 MB12Al0VSO T400012208 T400022208 T400032208 A3 A3 -513 513 513 4OA600 4OH3P 4OHF5 40HFIO 40HF20 R R R IN3882 IN3883 R3020606 IN3879R IN3880R R55 R55 R5S R5S RS5 16RC40A ISRCSOA 5 5 5 SI3 513 S1.3 R13 R55 40HF30 4OHF40 4OHFSO 4OHF60 4OHF80 IR IR IR IR IR IR IR IR IR R R IR R IR IR IR R R T920XXIO TA20XX12 TA20XX14 M811A06V05 MBllA06Vl0 IR 16~CSOA 20H3P 20HR3P R R 5 5 5 R R III IR T400042208 IR T400052208 IR T400062208 5AR IN1344 SAR IN3881 I It G22 Typo Mfll'_ Note: Manufacturer's Codes, Product Type 'Notes and@ Replacement Notes are listed on page G3 5 5 8 5 5 5 5 5 5 5 5 5 5 5 IR IR IR IR IR IR IR IR IR IR IR IR IR IR IR IR IR IR AS A3 A3 TS100S5004AB 527 TSOOO88004AA 523 T500 I 08004AA 523 T500118004AA 523 T600138004AA S23 T600148OO4AA T600168004AA T610016007A8 T510026007A8 T510036007AB 823 823 S27 827 827 TSI 0045007AB TS10055007AB TS10065007AB T500088007AA TS1'5068004AA S27 S27 S27 S23 CF T505OB8004AA T505108004AA T60S118004AA T50S128004AA TS05138004AA CF CF CF CF CF WCE T500XX4005AA S23 WCE T500lQ(4005AA S23 WCE T500lOOlOO5AA S23 CF CF ~ if~gt :~m~ R R R R R R R R R R R SOL SOL SOL SCI,L SOL IN1185A IN1186A IN1187A IN1188A IN1188A CF CF CF CF CF SOL 5AR IR IR IR IN1190 R310040B IN1183A INII84A IN1188A CF CF R15 R15 R15 IR IR IR IR IR IN1187A IN1188A IN1189A INll90A R4100840 R15 R15 R16 R15 R15 Part Number 4OHF100 40HFR5 . 40HFR10 40HFR20 40HFR30 Type Mfgr. Suggested@ Replacement Page Part Number Type Mfgr. 5uggested@ Replacement Page Part Number Type Mfgr. 5uggested @ Replacement Page R R R R R IR IR IR IR IR R4101040 INl183AR IN11 B4AR INl186AR INl187AR R15 R15 R15 R15 R15 55C40B 65C40F 55C401L 55C46 55C46B 5 5 5 5 5 5YN 5YN 5YN 5YN SYN T510048005AQ T510048005AB T510048006AQ T510058006AQ T510058005AQ 527 527 527 S27 527 70C251L ·70C30 7OC30B 7OC30F 7OC30lL S 5 5 5 5 SYN SYN SYN SYN 5YN T51003B005AQ T510038005AQ T510038005AQ T507088044AO T510038005AQ S27 S27 527 S27 527 4OHFR40 40HFR50 4OHFR60 4OHFR80 40HFR100 R R R R R IR IR IR IR IR IN11BBAR INl189AR INl190AR R4110840 R4111040 R15 R15 R16 R15 R15 55C45F 55C451L 55C50 55C50B 55C60F 5 5 5 5 5 5YN 5YN 5YN 5YN 5YN T510068005AB T510058005AQ T510058005AQ T510068005AQ T610058005AB 527 527 S27 527 S27 70C35 70C35B 7OC35F 70C361L 70C40 5 S 5 S 5 5YN 5YN 5YN 5YN 5YN T51004B005AQ T510048005AQ T510048005AB T510048005AQ T510048005AQ 527 527 527 527 527 40HR3P 45KL10A 45KL20A 45KL30A 45KL40A R R R R R 5AR IR IR IR IR IN3883 R5100115 R5100215 R5100315 R5100415 R55 R23 R23 R23 R23 55C50lL 55C60 55C80B 55C6OF 55C601L 5 5 5 5 S SYN SYN SYN SYN 5YN T510068005AQ T510068005AQ T510068005AQ T510068005AB T60006BOO6AQ 527 S27 527 S27 S27 70C40B 70C40F 70C40lL 7OC45 70C45B S S S 5 5 5YN 5YN SYN SYN SYN T510048005AQ T510048005AB T510048006AQ T510058005AQ T510058005AQ S27 527 527 527 527' 45KL50A 45KL60A 45KL60 45KL100A 45KL120A R R R R R IR IR IR IR IR R5100515 R5100615 R5100B15 R5101015 R5001215 R23 R23 R23 R23 R23 55C70 55C70B 55C70F 55C70lL 55C80 5 5 5 5 5 SYN 5YN 5YN 5YN 5YN T500078006AQ T60007B006AQ T500078005AA T50007B005AQ T60008BOO5AQ S23 S23 523 S23 523 7OC45F 7OC451L 70C50 70C50B 7OC50F S S 5 5 5 5YN SYN SYN 5YN 5YN T510058005AB T510068005AQ T510058005AQ T510058005AQ T51005B005AB 527 527 527 527 527 45KLR10A 45KLR20A 45KLR30A 45KLR40A 45KLR5OA R R R R R IR IR IR IR IR R5110115 R5110215 R5110315 R5110415 R5110515 R23 R23 R23 R23 R23 55C80B 55C80F 55C80IL 55C90 55C90B 5 5 5 5 5 5YN 5YN SYN 5YN 5YN T500088005AQ T6000B8005AA T50008B005AQ T500098005AQ T500098005AQ 523 523 523 523 523 70C50lL 70C60 7OC60B 70C60F 70C6701L 5 5 5 5 5 5YN T510058005AQ S27 5YN T510068005AQ S27 5YN T510068005AQ 527 5YN T510068005AB S27 5YN T51006B005AQ 527 45KLRSOA 45KLR80A 45KLR100A 45KLR120A 45L5 R R IR IR IR IR IR R5110615 R5110815 R5111015 R5011215 R5DOOO15 R23 R23 R23 R23 R23 55C90F 55C90lL 55Cl00 56Cl00B 55Cl00F 5 5 5 5 5 5YN T500098005AA 5VN T500098006AQ 5YN T50010BOO6AQ 5YN T50010B005AQ SYN T50010B005AA 523 523 523 523 523 70C70 7OC70B 7OC70F 70C70lL 7OC80 S S 5 5 5 SYN 5Y N 5YN SYN 5YN 45Ll0 45L15 45L20 45L25 45L30 IR IR IR IR IR R5DOO115 R5DO+l15 R5D00215 R5D0+215 R5D00316 R23 R23 R23 R23 R23 55Cl00IL 55Cll0 55Cll0B 55Cll0F 55CllOiL 5 5 5 5 5 5YN 5YN SYN 5YN 5YN T500l0B006AQ T50011 BOO6AQ T500118005AQ T500118006AA T50011 BOO6AQ 523 523 523 523 523 70C80B 7OC80F 70C80lL 7OC90 70C908 5 S 5 S S 5YN T500088005AQ S23 5YN T50008B005AA 523 5YN T500088005AQ 523 5YN T500098004AQ 523 SYN T500098005AQ 523 45L35 45L40 45L45 45L50 45L60 IR IR IR IR IR R5DO.316 R5D00415 R5D0+415 R5D00515 R5D00615 R23 R23 R23 R23 R23 55C120 55C120B 55C120F 55C120lL 55C130 5 5 5 5 5 5YN 5YN 5YN 5YN 5YN T500128006AQ T500128005AQ T500128005AA T500128005AQ T50013B006AQ 523 523 523 523 523 7OC90F 7OC90IL 70Cl00 70Cl00B 7OC100F 5 S 5 5 5 SYN SYN SYN 5YN 5YN T50009B006AA T500098OC5AQ T600108004AQ T500108005AQ T60010B006AA 523 523 S23 523 523 IR IR IR IR IR R5D00715 R5D00615 R6DOO915 R5D01015 R5C01215 R23 R23 R23 R23 R23 55Cl30B 55Cl30F 55C130lL 55Cl40 55Cl40B 5 5 5 5 5 5YN 5YN 5YN 5YN 5YN T500138006AQ T500138005AA T500138005AQ T500148006AQ T50014BOO5AQ 523 523 S23 523 S23 7OC100IL 70Cll0 7OCll0B 70Cll0F 7OCll0lL 5 5 5 S 5 5YN SYN 5YN SYN SYN T500108006AQ T500118004AQ T50011B006AQ T500118006AA T50011 BOO6AQ S23 S23 S23 S23 S23 IR IR IR IR IR R5Dl0015 R5Dl0115 R5Dl.116 R5Dl0215 R5Dl.215 R23 R23 R23 R23 R23 56Cl40F 55Cl40IL 55C15 55C15B 55C15F 5 5 5 5 5 5YN 5YN 5YN 5YN 5YN T500148005AA T5Q0148006AQ T510028005AQ T510028005AQ T510028005AB 523 523 527 527 527 70C120 7OCl20B 70CI20F 7OCl20IL 7OCl30 5 S 5 5 5 SVN SVN 5VN SYN 5VN T600128004AQ T500128006AQ T50012B006AA T600128006AQ T500138004AQ S23 523 523 523 523 IR IR IR IR IR R5Dl0315 R5Dl.315 R5D10415 R5Dl+415 R5Dl0515 R23 R23 R23 R23 R23 55C151L 55Cl50 55Cl50B 55C150F 55C1501L 5 5 5 5 5 5YN T510028005AQ 527 5YN T500158005AQ 523 5YN T500158005AQ 523 5YN T500158005AA 523 5YN T500158005AQ 523 7OCl30B 7OCl30F 70Cl30IL 7OCl40 7OCl4OB 5 5 5 5 5 5VN 5VN 5VN 5VN 5VN T500138005AQ T600138006AA T50013B006AQ T500148004AO T500148005AO 523 S23 S23 S23 523 IR IR IR IR IR R5Dl0615 R5Dl0715 R5Dl0B15 R5Dl0915 R5Dll015 R23 R23 R23 R23 R23 60FB05L 60FBIL 60;oB2L 60FB4L 60FB6L A IR IR IR IR IR 7OC14OF 7OC14OIL 7OCl50 7OCl508 70C1EOF 5 5 5 5VN SYN 5VN 5VN 5VN T500148006AA T500148005AQ T500158004AQ T500158005AQ T500158005AA 523 523 523 523 523 R 45L70 45L80 45L90 45Ll00 45L120 R R R R 45LR5 45LR10 45LR15 45LR20 45LR25 R R 45LR30 45LR35 45LR40 45LR45 45LR50 R R R R R R R R R 45LR60 45LR70 45LRBO 451R90 45LR100 R R 45LR120 46T 47T 50H3P 55Cl0 R S IR WCE WCE 5AR SYN 55Cl08 55Cl0F 55Cl01L 55C20 55C20B 5 5 ., 5 5 SYN T5l001B005AQ 527 5YN T510018005AB 527 5YN T510018005AQ $27 5YN T510028005AQ 527 5YN T5l0028005AQ 527 55C20F 55C201L 55C25 55C25B 55C25F 5 5 5 5 5 5YN 5YN 5YN 5YN 5YN T5l0028005AB T510028005AQ T510038005AQ T510038005AQ T510038006AB 527 527 527 527 527 55C251L 55C30 55C30B 55C30F 55C301L 5 5 5 5 5 5YN 5YN 5YN 5YN 5YN T510038005AQ T5l0038005AQ T5l0038005AQ T510038005AB T510038005AQ 55C35 55C35B 55C35F' 55C351 L 55C40 5 5 S 5 5 5YN 5YN 5YN 5YN 5YN T510048005AQ T510048005AQ T510048006AB T510048005.6.Q T510048005AQ R R R S 5 R R5C11215 T680XX2504BT T680XX2504BT IN1347A T5l0018005AQ A A A A MBllA06V05 MB11A06Vl0 MB11A06V20 MBllA06V40 MB11A06V60 A3 A3 A3 A3 A3 R R R IR 5AR 5AR IR IR MBllA06V80 IN134BA R3020608 R34001 06 R3400206 A3 R13 R55 R9 R9 7OC161L 7OCl50ll 7OH10 70H20 7OH30 R R R R 5 IR IR IR IR WCE R3400406 R3400606 R3400806 R3400006 T680XX 1804BT R9 R9 R9 R9 CF 70H4O 7OH50 7OH60 70H80 70Hl00 62T 70Cl0 70Cl0B 70Cl0F 70Cl0lL 5 5 5 5 5 WCE 5YN 5YN 5YN 5YN T680XXl804BT T51001B006AQ T510018006AQ T510018005AB T510018005AQ CF 527 527 527 527 70HR10 7OHR20 7OHR30 7OHR4O 7OHR50 527 527 527 527 527 70C15 7OC15B 70C15F 7OC20 7OC20B 5 5 5 5 5 SYN SYN 5YN 5YN 5YN T510028005AQ T510028005AQ T510028005AB T510028005AQ T51002B006AQ 527 527 527 527 527 7OHR60 7OHR80 7OHR100 705T 70T 527 527 527 527 527 7OC20F 7OC201L 7OC25 7OC25B 70C25F 5 5 5 5 5 5YN T51002B006AB 5YN T510028005AQ 5YN T510038005AQ 5YN T510038006AQ 5YN T510038005AB 527 527 527 527 527 7CU6 7OU10 7OU15 70U20 7OU25 R23 CF CF R13 527 60FBBL 60H3P 60HR3P 6051 6052 . 6054 6056 6058 60505 6IT A R 5 5 5 5 R R R R R R R R R T500078004AQ T500078005AQ T500078005AA T50007BOO5AQ T50008BOO4AQ 523 523 S23 S23 S23 5VN T61002800bAU 527 5VN T500158005AQ S23 IR R4040170 . R17 IR R4040270 R17 IR R5040370 R17 IR IR IR IR IR R4040470 R4040670 R4040670 R4040870 R4041070 R17 R17 R17 R17 R17 IR IR IR IR IR R4050170 R4050270 R4050370 R4050470 R4050570 R17 R17 R17 R17 R17 R R R 5 IR IR IR WCE WCE R4050670 R4060870 R4Q61 070 T600XX1804BT T780XX3604BV R17 R17 R17 533 575 R IR IR IR IR IR R6100030 R6100130 R610.130 R8100230 R610+230 R31 R31 R31 R31 R31 R R R R 5 R R R R Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on page'G3 G23 Suggested@ 5uggested@) Part Number Type Mfgr. Replacement Page Part Number Typ~ Mfgr. ~ 5 Replacemant 5uggested@) Page Part Number Replacement Page T5OO138004AA 523 T5OO148004AA 523 T5OO158004AA 523 T510018004A8 527 T510018004AB 527 82RM60 82RM100 84T 91T 94T 5 5 5 5 5 IR IR· WCE wee WCE IR IR IR IR IR T51 0018007AB T510018004AB T510028004AB T51 0028007AB T510028004AB 527 527 527 527 527 lOOCl0 looCl08 IOOC15 IOOCl58 tOOC20 5 5 5 5 5 5YN T610011304BT 5YN T610011304BT 5YN T610021304BT 5YN T610021304BT 5YN T610021304BT 533 533 533 533 533 5 5 5 5 5 IR IR IR IR IR T510038004AB TS10036007AB T510038004AB T51 0046007 AB T510048004AB 527 527 527 527 527 IOOC208 looC25 looC25B l00c30 lOOC30B 5 5 5 5 5 5YN 5YN 5YN 5YN 5YN T610021304BT T610031304BT T6100313048T T610031304BT T610031304BT 533 533 533 533 533 72RC5OA 72RC50B 72RC6OA 72RC60B 72RC6OA 5 5 5 5 5 IR. IR IR IR IR T510058007AB T510088004AB T51 0068007AB T510088004AB T500086007 AA 527 527 527 527 523 1OOC3S 1ooC35B 100C40 l00c4OB looC45 5 5 5 5 5 5YN 5YN 5YN 5YN 5YN T610041304BT T610041304BT T61 004' 304BT T610041304BT T610051304BT . 533 533 533 533 533 R31 R31 R31 R31 R31 72REH60 72REHBO 72REHloo 72REH\10 72REHI20 5 5 5 5 5 IR IR IR IR IR T515068004AA T605088004AA T505108004AA T505118004AA T505128004AA CF CF eF CF CF looC45B looC50 looC50B lOOC60 l00c60B 5 5 5 5 5 5YN 5YN 5YN SYN 5YN T610051304BT T610051304BT T610051304BT T61'0061304BT T6100813048T 533 533 533 533 533 R6011230 T510058004AQ T510068004AQ T500088004AQ T500I08004AQ R31 527 527 523 523 72REHI30 73T 74T 80H3P BOT 5 5 5 R 5 IR WCE Wee 5AR WCE T505138004AA CF T760XX3504BY 575 T760XX3504BY 575 RI3 IN39B8 T7S0XX3504BY 575 looC70 l00c70B 100C60 100C60B 100C90 5 5 5 5 5 5YN T800071304BT 5YN T6ooo71304BT 5YN T6ooo81304BT 5YN T600081304BT 5YN T600091304BT 533 533 533 533 533 IR IR IR IR IR T5OO1I 8004AQ T5OO12SOO4AQ T5U0138004AQ T500148004AQ T500158004AQ 523 523 523 523 523 81RLI0 B1RL20 B1RL30 SIRL40 SIRL50 5 5 5 5 5 IR IR IR IR IR T507018064Aq T50702S054AQ T50703B054AQ T50704B054AQ T50705B054AQ 5277 577 577 577 577 looC90B 100Cl00 100ClOOB looCll0 I OOCI1 OB 5 5 5 5 5 5YN 5YN 5YN 5YN 5YN T600091304BT T600101304BT T800101304BT T6oo111304BT T6oo111304BT 533 533 533 533 533 5 5 5 5 5 IR IR IR IR IR T510058004AQ 527 527 523 T5OOI0B004AQ 523 T6ool1 BOO4AQ 523 8IRL60 SIRLBO SIRLIOO SIRLA50 81RLA60 5 5 5 5 5 IR IR IR IR IR T50706B054AQ T50708B054AQ T507106054AQ T510058004AQ T51006B004AQ 577 577 577 527 527 IOOC120 IOOCl20B l00c130 IOOCI30B IOOCl40 5 5 5 5 5 5YN 5YN 5YN 5YN 5YN T6oo121304BT T6oo121304BT T6oo131304BT T6oo131 304BT T6oo141304BT 533 533 533 533 533 "'RBI20 7IRBI30 71RB14O 71RBI50 71RC5B 5 5 5 5 5 IR IR IR IR IR T5oo12B004AQ T5oo138004AQ T5OO148004AQ T5OO16B004AQ T510018007AQ 523 523 523 523 527 81RLA60 81 RLAI 00 81RLAll0 81RLA120 BIRLB50 5 5 6 5 5 IR IR IR IR IR T600088004AQ T5OO10B004AQ T5oo118004AQ T5OO128004AQ T60705B044AQ 523 523 623 523 577 IOOCl4OB looCI60 l00CI50B l00H3P looPB1P 5 5 5 R A 5YN T6oo141304BT 5YN T6oo151304BT 5YN T6oo151304BT 5AR IN3B90 IR MB12A1OV10 533 533 533 R13 A3 71RClOA 71RC10B 71RC15B 71 RC20B 71 RC20A 5 '5 5 5 5 IR IR IR IR IR T51 0016007 AO T510016007AQ T510026007AQ T510028007AQ T51 0028007AO 527 527 527 527 527 81RLB60 81RLB60 81RLBloo 81 RLBl1 0 B1RLB120 5 5 5 5 5 IR IR IR IR IR T50706B044AQ T50708B044Aq T50710B044AO T507118044AO T507128044AQ 577 577 577 577 577 looPB2P lOOP83P looPB4P lOOPBSP looPB6P A A A A A IR IR IR .IR IR MB12Al0V20 MB12Al0V30 MB12A101140 MB12A101160 MB12A1OV60 A3 71 RC25B 71RC3OA 71 RC30B 71RC4OA 71RC40B 5 5 5 5 5 IR IR IR IR IR T51003Soo7AQ T510038007AQ T610036007AQ T510048007AQ T51004Soo7AQ 527 527 527 527 527 S1RM10 81RM20 B1RM30 81RM4O SIRM50 5 5 5 5 5 IR IR IR IR IR T50701 BOB4AQ T507026064AO T50703B0B4AQ T50704B0B4AQ T507056064AQ 577 577 577 577 577 looP606P 101KL40515 101KL40520 101KL40530 10lKL60515 A R R R R IR IR IR IR IR MBI2Al0v05 R5020410FJ R5020410EJ R5020410CJ R5020610FJ A3 71 RCSOA 71 RC60B 71 RC60A 71 RC60S 5 5 5 5 IR IR IR IR TSI0058007AO T510058007AQ T510068007AO T510068007AQ 527 527 527 527 SIRM60 SIRM60 S1RM100 81T 82RLI0 5 5 5 5 5 IR IR IR WCE IR T50706B0B4AQ T507OB8064AQ T50710B0B4AQ T7BOXX3504BY T607018054AA 577 577 577 575 577 101KL60520 101KL60530 101 KLB051 5 101KL60520 ·1 01 KL60530 R R R R R IR IR IR IR IR R5020610EJ R50208IOCJ R6020810FJ R5020810EJ R5020810CJ R5B R5B R5B R59 RSB 71 RCSOA 71REH60 71REH80 71REH100 71REHI10 5 5 5 5 5 IR IR IR IR IR T600088007AQ TSI5068004AQ T505088004AO T50510B004AQ T605118004AQ 523 CF CF CF CF 82RL20 82RL30 S2RL4O 82RLSO 82RL60 5 5 5 5 5 IR IR IR IR IR TS0702S054AA TS07038054AA T507046054AA T507056054AA T50706B054AA 577 577 577 577 577 101KL10051S 101KLl00520 101 KL 100530 101 KL 120520 101KL120530 R R R R R IR IR IR IR IR RS021010FJ R5021010EJ R5021010CJ R5021210EJ RS021210CJ RSB R5B R59 R5B R5B 71REH120 71REHI30 7IT 72RA60 72RA60 5 5 5 5 5 IR IR WCE IR IR T505128004AQ T505138004AQ T7BOXX3604BY T510068004AB T510068004AB CF CF 575 527 527 82RLBO 82RL100 82RLA50 82RLA60 82RLA60 5 5 5 5 5 IR IR IR IR IR T507088054AA T50710B054AA T510058004AS T510068004AB T5ooo88004AA 577 577 527 527 523 101 KL 130530 101KL140530 101 KL 150530 101 KL 160530 101 KLR40515 R R R R R IR IR IR IR IR R5021310CJ R5021410CJ 50 R5030410FJ RS9 R6B R59 R5B R5B 72RA60 72RA60 72RABO 72RAl00 72RAI1 0 5 5 5 5 5 IR IR IR IR IR T5OOO8B004AA T510068004AB T500088004AA T5OOI06004AA T5OO116004AA 523 527 523 523 523 B2RLAloo B2RLA110 82RLA120 82RLB50 82RLB60 5 5 5 5 5 IR IR IR IR IR T6ool08004AA T5oo118004AA T6oo128004AA T50705B044AA T507066044AA 523 523 523 577 577 101 KLR40520 101 KLR40S30 101KLR60515 101 KLR60520 101 KLR60530 R R R R R IR IR IR IR IR R5030410EJ R50304IOCJ R50306 I OFJ R5030610EJ R5030610CJ R5B R5B R5B R5B R5B 72RA120 72RA130 72RAI4O 72RA150 72RB50 5 5 5 5 5 IR IR IR IR IR T50012B004AA 523 T600138004AA 523 T50014B004AA 523 TSOOI58OO4AA 523 T510056004AB 527 82RLBBO 82RLBloo B2RLB110 82RLB120 B2RM10 5 5 5 5 5 IR IR IR IR IR T507088044AA 577 T507I OB044AA 577 T50711 B044AA 577 T507126044AA 577 TS0701 6064AA 577 101KLRB0515 1011<LRB0520 101 KLR60530 101KLR100515 101 KLR 100520 R R R R R IR IR IR IR IR R5030610FJ R5030810EJ R5030610CJ R5031010FJ R5031010EJ R5B R5B RSB R5B RSB 72RB60 72RBBO 72RBloo 72RB110 72RB120 5 5 5 5 5 IR IR IR IR IR TS10066004AB T500088OO4AA T500106004AA T5oo11 BOO4AA T500128OO4AA B2RM20 82RM30 B2RM4O B2RM50 B2RM60 5 S 5 5 5 IR IR IR "lR IR T507026064AA T50703B064AA T50704B064AA T50705B0B4AA T50706B064AA 101 KLR 100530 101 KLR 120520 101 KLR 120530 101 KLR 130530 101 KLR 140530 R R R R R IR IR IR IR IR RS031010CJ R5031210EJ R5031210CJ R5031310CJ R5031410CJ RSB R5B R5B R5B R59 7OU30 70U4O 70U45 7OU50 7OU60 R R R R R IR IR IR IR IR R6100330 R6100430 R610+430 R6100530 R6100830 R31 R31 R31 R31 R31 72RBI30 72RBI4O 72RBI50 72RC2B 72RC5B IR IR 5 . IR IR 5 IR 5 7OU70 7OU60 7OU90 70Ul00 7OUl20 R R R R R IR IR IR IR IR R6100730 R6100830 R6100930 R6101030 R6oo1230 R31 R31 R31 R31 R31 72RC10A 72RC10B 72RCI5B 72RC20A 72RC208 5 5 5 5 5 7OUR5 70UR10 7OURI5 70UR20 70UR25 R R R R R IR IR IR IR IR R611OO30 R6110130 R611+130 R6110230 R611+230 R31 R31 R31 R31 R31 72RC25B 72RC30A 72RC30B 72RC40A 72RC40B ?OUR30 7OUR35 7OUR4O 70UR45 7OUR50 R R R R R IR IR IR IR IR R6110330 R611+330 R6110430 R611+430 R6110530 R31 R31 R31 R31 R31 70UR60 70UR70 7OURBO 7OUR90 7OUR100 R R R R R IR IR IR IR R6110630 R6110730 R6110830 R6110930 R6111030 70UR120 71RA50 71RA60 71RA60 71RA100 R 5 5 5 5 IR IR IR IR IR 71 RAllO 71RA120 7IRAI30 71 RAI 40 71RAI50 5 5 5 5 5 71RB50 11RB60 71RBBO 71RBloo 71RSll0 IR i~J88:=:8 527 523 523 523 523 577 577 577 577 577 Note: Manufacturer's Code5, Product Type Notes and@ Replacement Notes are li5ted on page G3 G24 Type Mfgr. T507088084AA 577 T507108064AA 577 T760XX3504BY 575 T760XXU04BY 575 T760XX3504BY 575 SO A3 A3 A3 A3 R5B R59 R59 R5B 5uggested@ Part Number . Type Mfg •. Replacement Page Part Number so 5 lR lR IR IR IR T610051303BT T610061303BT T600061303BT R59 R69 533 533 533 140PM60 141AZN 141AZP 141ZNP 141ZP 101RAloo 101RA110 101RA120 107 ............... 108 ............... 5 5 5 T T IR IR IR WE5 WE5 T6oo1013038T T6oo1113038T T6001213038T CF CF 533 533 533 CF CF 150Cl0 150Cl0B 15OC15 15OC15B 150C20 lIB ............... llBUA33 llBUM6 llBZN llBZP T T T R R WE5 WE5 WE5 TUN TUN CF CF CF W118ZN W118ZP CF CF CF CF CF 119ZN 119ZP 120H3P 125PAL10 125PAL20 R R R 5 5 TUN TUN 5AR IR IR 125PAL3O 125PAL50 125PAL80 125PALSO 125PALloo 5 5 5 5 5 125PALB50 125PALB80 125PALB80 125PALBloo 5 5 iOl KLRI60S30 101 KLR 160530 101RA50 101RA60 lQ1RABO RR 5 125P~L8110 5 5 5 5 125PAL8 I 20 . 125PAM10 125PAM20 125PAM30 125PAM50 5 5 5 125PAM60 126PAM80 125PAMloo 125PL10 125PL20 5 5 5 5 5 5 5 Type Mfg.. 5 R 5ugge.ted@ Replacement Page Part Numbe. Type Mfg.. 5uggested@ Replacement Page IR TUN TUN TUN TUN T6270620840N W141AZN .lN141AZP W141ZN W141ZP S87 CF CF CF CF 16OLR25A 16OLR3OA 150L40A 150LR50A 150LR60A R R R R R IR IR IR IR IR R5Dl +215 R5010315 R5D'0415 R5Dl0515 R5Dl0615 R23 R23 R23 R23· R23 5VN 5VN 5VN 5VN 5VN T81OO115048T T81oo115048T T61OO215048T T61oo21504BT T810021504BT 533 533 533 533 533 150LR70A 150LR80A 16OLR90A 150LR100A l5OLR120A R R 5 5 5 R R R IR IR IR IR IR R5Dl0715 R5Dl0815 R5010915 R5011015 R5C11215 R23 R23 R23 R23 R23 150C20B 150C25 150C258 150C30 15OC30B 5 5 5 5 5 5VN 5VN 5VN 5VN 5VN T81oo215048T T61oo31504BT T61oo315048T T6100315048T T61oo315048T 533 533 533 533 533 151-XX 151RA60 151RA60 151RABO 151RAloo T 5 5 5 5 WE5 IR IR IR IR 151.-XX T6100515048T T6100615048T T6000615048T T6001015048T CF 533 533 533 533 W119ZN CF W119ZP CF R3101206 CF 1627012054DN 5B7 T627022054DN 5B7 150C35 150C35B l5OC40 150C40B 150C46 5 5 5 5 5 5VN 5VN 5VN 5VN 5VN T610041504BT T6100415048T T6100415048T T6100415048T T61OO515048T 533 533 533 533 533 151RA110 161RAl20 161RA13O 151RAI40 151RAI50 5 5 5 5 5 IR IR IR IR IR T6001115048T 533 T6001215048T 533 T6001315048T 533 T6001415048T .533 T6001515048T 533 IR IR IR IR IR T6270320540N T627052054DN T827062054DN T627082054DN T627102054DN 5B7 587 5B7 5B7 S87 150C45B 150C50 15OC50B l5OC60 150C80B 5 5 5 5 5 5VN T61OO515048T 5VN T81oo515048T 5VN T81oo51504BT 5VN T6100615048T 5YN T610061504BT 533 533 533 533 533 151RB50 151RB60 151R860 151R81oo 151R8110 5 5 5 S IR IR IR IR IR T810061503BT T810061503BT T800081503BT T600101503BT T8oo1115038T 533 533 533 533 533 IR IR IR IR 18 T6270520440N T827062044DN T627082044DN T627102044DN .T621112044DN 587 587 587 587 587 150C70 150C70B 150CBO 150C80B 150CSP S 5 5 5 5VN 5VN 5VN 5VN 5VN T6000715048T T6ooo715048T T600061504BT T6000815048T T6oo0915048T 533 533 533 533 533 151R8120 151R813O 151RBI40 151RB150 151.RC10 5 5 5 5 5 . IR IR IR IR IR T600121603BT T8oo131503BT 16oo141603BT T6001515038T T61oo1·160481: 533 533 533 533 533 150C90B 150Cloo 150ClooB 15OC110 150Cl10B 5 S 5 5 S 5VN T6000915048T 5VN T6001015048T 5VN T6oo1015048T SVN T6oo1015048T SVN T6oo1115048T 533 533 533 533 533 151RC10A 151RC20 151 RC20A 151RC3O 151 RC30A 5 5 5 5 5 IR IR IR IR IR T61oo115048T T61OO216048T T61OO216048T T81oo315048T T61oo31504BT 533 533 533 533 533 5 5 5 ·IR 'IR IR IR IR SO T6271220440N 587 . T627012064DN 5B7 T6270220640N 587 T6270320640N 587 T6270520640N 5B7 R R R 5 5 S. 5 IR IR IR IR IR T627062064DN T6270820640N T627102064DN T6270120540N T627022054DN 587 587 5B7 587 587 150C120 150C120B 150C130 150C130B 150Cl40 S 5 5 5VN SVN 5VN 5VN 5VN T600 1215048T T6oo1215048T T6oo1315048T T6oo131Q04I!T T6001415048T 533 533 533 533 533 151RC40 151 RC40A 161RC50 151 RC50A 151RC80 S 5 5 IR IR IR IR IR T6100415048T T6100415048T T61oo515048T T8100515048T T810061504BT 533 533 533 533 533 5 125PL30 125PL60 125PL60 125PL80 125PLloo 5 5 5 5 5 IR IR IR IR IR T627032054DN T6270620540N T627062054DN T6270820540N T627102064DN 5B7 587 5B7 587 587 150Cl40B 150Cl50 l5OC150B 160Kl0A 150K15A 5 5 5 R R 5VN T6oo141604BT 5VN T6oo1515048T 5VN T6oo1515048T IR R51oo115 IR R510+115 533 533 533 R23 R23 151 RC60A 151RC80 151 RCBOA 151RF5 151RF10 5 5 5 S 5 IR IR IR IR IR T610061504BT T6ooo815048T T6000616048T T607oo15838T T8070115638T 533 533 533 579 579 125PL110 125PL120 125PLB50 125PLB60 126PLBBO 5 5 5 5 5 IR IR IR IR IR T6271120540N T627122054DN T627052044DN T627062044DN T627082044DN 587 587 587 587 587 150K20A 150K25A 150K3OA 150K40A 150K50A R R R R R IR IR IR IR IR R51OO215 R510+215 R51oo315 R5100415 R5100515 R23 R23 R23 R23 R23 151RF15 151RF20 151RF25 151RF3O 151RF40 5 5 5 5 5 IR IR IR IR IR T6070215638T T6070215638T T8070315838T T6070315638T T607041583BT S79 579 579 579 579 125PLBloo 125PLB110 125PlB120 125PM10 125PM20 5 5 5 5 5 IR IR IR IR IR T6271020440N T62711 20440N T627122044DN T6270120640N T627022064DN 587 587 587 587 587 150K80A 150K70A 150K60A 150K90A 150Kl00A R R R R R IR IR IR IR IR R5100615 R51OO715 R5100815 R5100915 R5101015 R23 R23 R23 R23 R23 151RF50 151RF60 151Rl50 151Rl80 151RL80 5 5 5 5 S IR IR IR IR IR T5070515838T T6070615838T T6070515638T T6070616638T T6070615538T 579 579 579 579 579 126PM3O 125PM50 125PM80 126PM80 . 126PMloo 5 IR IR IR IR IR T827032064DN T627052064DN T6270620640N T6270B20640N T627102064DN 587 587 587 587 5B7 150K12OA 150KR10A 150KR15A 150KR20A l5OKR25A R R R R R IR IR IR IR IR R5001215 R5110115 R511+115 R5110215 R511+215 R23 R23 R23 R23 R23 151RLIoo 151R110 151RL120 151RM50 151RM60 S 5 5 5 5 IR IR IR IR IR T6071015538T T6071115538T T6071215538T T8070515638T T6070615638T 579 579 579 579 579 5 IR IR IR IR IR T627112064DN T6271220640N T62701 2064DN T627022064DN T6270320640N 587 587 587 587 5B7 150KR3OA 150KR40A 150KR50A 150KR60A 150KR7OA R R R R R IR IR IR IR IR R5110315 R5110415 R5110616 R6110615 R5110715 R23 R23 R23 R23 R23 151RM80 151RMloo 151RM110 151RM120 151-XX 5 5 S 5 T IR IR IR IR WE5 T8070815638T T6071015638T T5071115638T T6071216638T 151-XX 579 579 579 579 T15 140PAL40 140PAl50 140PAL80 140PAM10 140PAM20 5 IR IR IR IR IR T827042064DN T8270520640N T827062064DN T6270120640N T627022084DN 587 5B7 5B7 587 587 150KRBOA 150KR9OA 160KR100A 160KR120A 150Ll0A R R R R R IR IR IR IR IR R5110815 R5110915 R5111015 R5011215 R5OOO115 R23 R23 R23 R23 R23 152-XX 153-XX 154-XX 156H21 161Rll0 T T T T 5 WE5 WE5 WE5 WE5 IR 152-XX 153-XX 154-XX CF T607011 B648T 115 117 117 CF 579 140PAM30 140PAM40 140PAM50 140PAM80 140Pll0 5 5 IR IR IR IR IR T627032084DN T627042084DN T8270520840N T827062084DN T627012064DN 5B7 587 587 5B7 5B7 150L15A 16OL20A 150L25A 150L3OA 150L40A R R R R R IR IR IR IR IR R500+115 R50oo215 R500+216 R5D00315 R5D00415 R23 R23 R23 R23 R23 161RL20 161Rl30 161Rl40 161Rl50 161RL80 5 5 5 S 5 IR IR IR IR IR T6070218648T T6070318648T T8070418848T T607051864BT T6070818648T 579 579 579 579 579 140PL20 140PL30 140PL40 140PL60 140PL60 5 IR IR IR IR IR T6270220640N T627032064DN T6270420640N T627052064DN T827082084DN 5B7 5B7 587 5B7 5B7 150L50A 150L80A 150L70A 150L80A 150L90A R R R R R IR IR IR IR IR R5000515 R5D00615 R5OOO715 R5000815 R5000915 R23 R23 R23 R23 R23 161RM10 161RM20 161RM30 161RM40 161RM50 5 5 5 5 5 IR IR IR IR IR T607011884BT T807021884BT T6070318848T T607041 B848T T8070518848T 579 579 579 579 579 140PM10 140PM20 140PM3O l4OPM40 140PM50 5 IR IR IR IR IR T827012084DN T8270220840N T8270320B4DN T827042084DN !8270520840N 5B7 5B7 587 5B7 5B7 150LlooA 150L120A 150LR10A 150LR15A 150LR20A R R R R R IR . lR IR IR IR R5OO1015 R5C01215 R5Dl0115 R501+116 R6Dl0215 R23 R23 R23 R23 R23 161RM60 163-XX 164-XX 171Cl0 171Cl08 5 T T 5 5 IR WE5 WE5 5VN 5VN T6070618848T 579 163-XX T23 184-XX T23 T62oo120040N 543 T62oo12004DN 543 125PM110 126PM120 140PAll0 140PAL20 140PAL3O 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on page G3 G25 Part Numbe, SUllgelted@ Replacement Type Mfg'. Page Part Numbe, Type Mfg'. T820022004DN S43 T820022004DN S43 T6200220040N S43 T620022004DN S43 T620032004DN S43 202V 202Z 202Z0 203A 203B R R R R SYN SYN SYN SYN SYN SYN SYN SYN SYN SYN T620032OO4DN S43 T6200320040N 543 T620042OO40N 543 T620042OO40N 543 T6200420040N S43 T620042OO40N S43 T620052004DN 543 T620052OO40N S43 T620062OO40N 543 T620052004DN 543 2030 203F 203H 203K 203M R R R 203P 2035 203V 203Z 203Z0 5 5 5 5 5 SYN SYN SYN SYN SYN T620062004DN T620062004DN T6200720040N T820072004DN T620082004DN 543 543 543 543 543 171C80B 171C90 171C90B 171Cl00 171Cl00B 5 5 S S 5 SYN SYN SYN SYN SYN T6200820040N T620092OO40N T620092OO4DN T620102OO40N T6201020040N 543 543 S43 543 S43 171Cll0 171Cll0B 171C120 171C120B 171Cl30 S 5 5 5 5 SYN SYN 5YN SYN SYN 171Cl30B 171Cl40 171Cl40B 171C150 171C160B S S 5 5 5 175PA50 175PAOO 175PAOO 175PA100 176PA110 171C15 171C15B 171C20 171C20B 171C25 171C25~ 5 5 5 5 5 5 SYN SYN SYN SYN SYN SYN 171C30 171C30B 171C35 171C35B 171C40 171C40B 171C45 171C45B 171C50 171C5OB 5 5 5 5 5 5 5 5 5 5 171 COO 171COOB 171C70 171C7OB 171 COO Suggelted@ Replacement P8ge Part Number Sugg_@ Replacement Page WES WES WES WES WES 202V 202Z 202Z0 203A 203B CF CF CF CF CF 213P51 2135 213551 213V 213V51 5 5 5 5 5 WES WES WES WES WES 213P51 2135 213551 213V 213V51 CF CF CF CF CF R WES WES WES WES WES 2030 203F 203H 203K 203M CF CF CF CF CF 213Z 213Z51 21SA 21SB 21SC 5 5 5 5 5 WES WES WES WES WES 2132 213251 21SA 21SB 218C CF CF CF CF CF R R R R R WES WES WES WES WES 203P 2035 203V 203Z 203Z0 CF CF CF CF CF 21S0 21BE 21SF 21SH 218K 5 5 5 5 5 WES WES WES WES WES 21S0 21SE 218F 218H 218K CF CF CF CF CF 209A 209B 209C 2090 209E 5 5 5 5 5 WES WES WES WES WES 209A 209B 209C 2090 209E CF CF CF CF CF 21SM 21SP 21SS 21BV 21SZ 5 5 5 5 5 WES WES WES WES WES 218M 218P 2185 21SV 2182 CF CF CF CF CF 209F 209H 209K 209M 209P 5 5 S S 5 WES WES WES WE5 WES 209F 209H 209K 209M 209P CF CF CF CF CF 218ZB 218Z0 218ZF 21S2H 218lK 5 S S 5 S WES WES WES WES WES 218ZB 21810 2182F 218ZH 21SZK CF CF CF CF CF T6201120040N 543 T6201120040N S43 T6201220040N S43 T6201220040N 543 T6201320040N 543 209S 209V 208Z 208ZB 20920 S 5 S 5 5 WE5 WE5 WES WES WES 209S 209V 2092 2092B 208Z0 CF CF CF CF CF 218ZM 219A 219A51 219B 219B51 5 5 S S S WES WE5 WES WES WES 218ZM 219A 219A51 219B 219B51 CF CF CF CF CF SYN SYN SYN SYN SYN T6201320040N T6201420020N T6201420040N T620162004DN T6201520040N 208ZF 208ZH 2092K 209ZM 211A S S 5 5 5 WES WES WES WES WES 2092F 209ZH 208ZK 209ZM 211A CF CF CF CF CF 219C 219C51 2190 219051 2l9E S 5 5 5 5 WES WE5 WES WE5 WES 219C 219C51 2190 219051 219E CF· CF CF CF CF 5 5 5 5 5 IR IR IR IR IR T6200520030N T6200620030N T6200820030N T620102003DN T620112003DN 543 543 543 543 S43 211B 211C 2110 211E 211F 5 5 5 5 5 WES WES WES WES WES 211B 211C 2110 211E 211F CF CF CF CF CF 219E51 219F 219F51 219H 219H51 5 S 5 5 5 WE5 WES WES WES WES 219E51 219F 219F51 219H 219H51 CF CF CF CF CF 175PA120 175PA130 175PAl40 175PA150 175RA50 5 5 5 5 5 IR IR IR IR IR T6201220030N S43 T6201320030N S43 T6201420030N 543 T6201520030N 543 T61 0051 S04BT 533 211H 211K 211M 211P 2115 5 5 5 5 5 WES WES WES WES WES 211H 211K 211M 211P 2115 CF CF CF CF CF 219K 219K51 219M 219M51 219P 5 S 5 5 S WES WES WES WE5 WES 219K 219K51 219M 219M51 219P CF CF CF CF CF 175RAOO 175RASO 175RA100 175RAll0 175RAl20 5 5 5 5 5 IR IR IR IR IR T6100B1804BT T6000818048T T600101804BT T600111804BT T600121804BT 533 533 533 533 533 211V 211Z 211lB 21110 211lF 5 5 5 5 5 WES WES WES WES WES 211V 211Z 211Z8 211Z0 211ZF CF CF CF CF CF 219P51 2195 219551 219V 219V51 S 5 5 5 5 WES WES WE5 WES WES 219P51 2195 219551 219V 219V51 CF CF CF, CF CF 2OOUB5 200UB10 200UB20 200UB30 200UB40 R R R R R IR IR IR IR IR R6100020 R6100120 R6100220 R6100320 R6100420 R31 R31 R31 R31 R31 211ZH 2112K 2112M 212A 212B 5 5 5 5 5 WES WES WES WES WES 211ZH 211ZK 211ZM 212A 212B CF CF CF CF CF 219Z 219Z51 219Z8 WES WE5 WES WES WES 219Z 219Z51 219Z0 5 5 5 S 5 2192B51 219Z0 CF CF CF CF CF 200UB50 200U860 200UBR5 200UBR10 200UBR20 R R R R R IR IR IR IR IR R6100620 R6100620 R6110020 R6110120 R6110220 R31 R31 R31 R31 R31 212C 2120 212E 212F 212H 5 5 5 5 S' WES WES WES WES WES 212C 2120 212E 212F 212H CF CF CF CF CF 219Z051 219ZF 219ZF51 219ZH 219ZH51 5 5 S 5 5 WES WE5 WES WES WE5 2192051 219ZF 219ZF51 219ZH 219ZH51 CF CF CF CF CF 200UBR30 200UBR40 200UBR50 200UBR60 201A R R R R R IR IR IR IR WES R6110320 R6110420 R6110520 R6110620 201A R31 R31 R31 R31 CF 212K 212M 212P 2125 212V 5 5 S 5 5 WES WES WES WES WES 212K 212M 212P 2125 212V CF CF CF CF CF 219ZK 219ZK51 219ZM 219ZM51 220A 5 5 5 5 5 WES WE5 WES WE5 WE5 219ZK 219ZK51 219lM 219ZM51 220A CF CF CF CF CF 201B 2010 201F 201H 201K R R R R R WE5 WES WES WE5 WES 2018 2010 201F 201H 201K CF CF CF CF CF 212Z 213A 213A51 213B 213B51 5 5 5 5 5 WES WES WES WE5 WES 2122 213A 213A51 213B 213B51 CF CF CF CF CF 2208 2200 220F 220H 220K 5 5 5 5 5 WE5 WES WE5 WE5 WES 2208 2200 220F 220H 220K CF CF CF CF CF 201M 201P 2015 201V 2012 R R R R R WES WE5 WES WES WES 201M 201P 2015 201V 213C 213C!>1 2130 213051 213E 5 5 5 5 5 WES WES WES WES WES 213C 213C51 2130 213051 213E CF CF CF CF CF 220M 2205 201l CF CF CF CF CF nop nov 220Z 5 5 5 5 5 WES WES WES WES WES 220M 220P 220S 220V 220Z CF CF CF CF CF 20120 202A 202B 2020 202F R R R R R WES WES WE5 WES WES 20120 202A 2028 2020 202F CF CF CF CF CF 213E51 213F 213F51 213H 213H51 5 S 5 5 S WES WES WES WES WES 213E51 213F 213F51 213H 213H51 CF CF CF CF CF 220ZB 220Z0 220ZF 220ZH 220ZK 5 5 S S S WES WES WES WES WE5 220ZB 22OZ0 220ZF 220ZH 220ZK CF CF CF CF CF CF CF CF CF 213K 213K51 213M 213M51 213P S S S S 5 WES WES WES WES WES 213K 213K51 213M 213M51 213P CF CF CF CF CF 220ZM 221ZB 2212F 221ZH 221ZK 5 S 5 S S WES WES WES WES WES 220ZM CF CF CF CF CF CF CF CF CF 202H 202K 202M 202P 202S R R R R R T62Q03~ON WE5 WES WES WES WES 202H 202K 202M 202P 202S S43 S43 543 S43 S43 543 R R 2191851 Note: Manufacturer"s Codes, Product Type Notes and@Replacement Notes are listed on page G3 G26 Type Mfg'. 21918 CF Sugge.ted@ Sugge.ted@ Part Number 221ZM 222A 222B 222C 2220 Type Mfgr. Replacement Page Part Number Type Mfgr. Replacement Suggested@ Page Part Number Type Mfgr. Replacement Page S 5 S 5 S WES WE5 WES WES WES CF 222A 222B 222C 2220 CF CF CF CF CF 229E 229F 229H 229K 229M S S 5 S S WES WE5 WE5 WES WE5 229E 229F 229H 229K 229M CF CF CF CF CF 242T 244T 250A 250A51 250B S 5 5 S S WCE WCE WE5 WES WES CF CF 250A 250A51 250B CF CF CF CF CF 222F 222H 222K 222M 222P S 5 S 5 S WES WES WES WES WES 222F 222H 222K 222M 222P CF CF CF CF CF 229P 2295 229V 2292 2292B 5 5 5 5 5 WE5 WE5 WE5 WES WE5 229P 2295 229V 229Z 229ZB CF CF CF CF CF 250B51 250C 25OC51 2500 250051 S S 5 S S WE5 WES WE5 WES WES 250851 250C 250C51 2500 250051 CF CF CF CF CF 222S 222V 2222 2222B 222Z0 S S S 5 5 WES WES' WES WES WES 222S 222V 222Z 222ZB 222Z0 CF CF CF CF CF 229Z0 229ZF 2292H 229ZK 229ZM 5 5 S 5 S WES WE5 WE5 WE5 WE5 229Z0 229ZF 229ZH 229ZK 229ZM CF CF CF CF r.F 250E 250E51 250F 250F51 25OJB1P S S S S A WES WES WES WES IR 250E 250E51 250F 250F51 MB12A25Vl0 CF CF CF CF A3 222ZF 222ZH 222ZK 222ZM 2230 S S S S 5 WES WES WES WES WES 222ZF 222ZH 222ZK 222ZM 2230 CF CF CF CF CF 231T 233T 234T 240A 2408 5 5 5 5 S WCE WCE WCE WE5 WES CF CF CF T4OOoo22 T4OO0122 CF CF CF 513 S13 25OJB2P 25OJB3P 25OJB4P 25OJB5P 25OJB6P A A A A A IR IR IR IR IR MB12A25V20 MBl2A25V30 MB12A25V40 MB12A25V50 MBI2A25V60 A3 A3 223F 223H 223K 223M 223P 5 S S S 5 WES WE5 WES WES WE5 223F 223H 223K 223M 223P CF CF CF CF CF 2400 240F 240H 240M 240P S S S 5 5 WES WE5 WE5 WE5 WE5 T4oo0222 T4oo0322 T4000422 T4000622 T4ooo722 S13 S13 S13 513 513 25OJB05P 250K 250K51 250M 250M 51 A 5 5 5 S IR WES WE5 WE5 "",E5 MB12A25V05 250K 250K51 250M 250M51 A3 CF CF CF CF 223S 223V 223Z 223ZB 223Z0 5 S 5 S S WES WES WES WES WES 223S 223V 223Z 223ZB 223Z0 CF CF CF CF CF 240PAL10 240PAL20 240PAL30 24OPAL4O 24OPAL50 5 5 S S 5 IR IR IR IR IR T6270125640N 587 T6270225640N 587 T6270325640N 587 T6270425640N 587 T6270525640N S87 250P 250P51 250PA50 250PA60 250PA80 5 5 5 5 5 WE5 WES IR IR IR 250P 250P51 T62oo530040N T6200630040N T6200830040N CF CF S43 543 S43 223ZF 223ZH 223ZK 223ZM 224B S 5 S S S WE5 WES WES WES WES 223ZF 223ZH 223ZK 223ZM 224B CF CF CF CF CF 24OPAL60 24OPAL80 24OPALloo 240PAM10 24OPAM20 5 S 5 5 S IR IR IR IR IR T6270625640N T6270825640N T6271025640N T6270125840N T6270225840N SB7 5B7 587 587 587 250PAloo 250PAll0 250PA120 250PA130 250PA14O 5 5 5 5 5 IR IR IR IR IR T6201030040N T620113OO40N T6201230040N T6201330040N T6201430040N S43 543 543 543 543 2240 224F 224H 224K 224M 5 S S 5 5 WES WES WES WES WES 2240 224F 224H 224K 224M CF CF CF CF CF 240PAM30 24OPAM40 24OPAM50 24OPAM60 24OPAM80 5 S 5 5 5 IR IR IR IR IR T6270325840N T6270425B40N T6270525B40N T6270625840N T6270825840N 587 587 S87 587 S87 250PA150 250PA160 250PAC10 250PAC20 250PAC30 5 S S 5 S IR IR IR IR IR T6201530040N T6201630040N T6200130040N T6200230040N T6200330040N 543 S43 S43 S43 543 224P 224S 224V 224Z 224Z0 5 S 5 5 5 WES WES WE5 WE5 WE5 224P 224S 224V 224Z 224Z0 CF CF CF CF CF 2405 240V 240M 240Z 240ZB 5 5 5 5 5 WE5 WE5 WES WES WES T4000822 T4ooo922 T4oo0622 T4oo1022 T4oo1122 513 S13 S13 513 513 250PAC4O 250PAC50 250PAC60 250PAL10 250PAL20 S S S 5 5 IR IR IR IR IR T6200430040N T6200530040N T6200630040N T6270125540N T6270225540N 543 S43 543 587 S87 224ZH 224ZM 227A 2278 227C S S S S 5 WE5 WES WE5 WE5 WE5 224ZH 224ZM 227A 227B 227C CF CF CF CF CF 24OZ0 241Cl0 241Cl0B 241C15 241C15B 5 5 5 5 S WE5 5YN 5YN 5YN SYN T4oo1222 T62oo130040N T62oo130040N T6200230040N T6200230040N 513 543 S43 543 543 250PAL30 250PAL4O 250PAL50 250PAL60 250PAM10 5 5 5 S S IR IR IR IR IR T6270325540N T6270425540N T6270525540N T6270625540N T6270125B40N 587 587 587 587 S87 2270 227E 227F 227H 227K 5 5 S S 5 WE5 WE5 WE5 WE5 WES 2270 227E 227F 227H 227K CF CF CF CF CF 241C20 241C20B 241C25 241C25B 241C30 5 5 S 5 5 5YN T62OO230040N 543 5YN T62oo230040N 543 5YN T62oo330040N 543 5YN T62oo330040N 543 SYN T62oo330040N 543 250PAM20 250PAM30 250PAM40 250PAM50 250PAM60 S S 5 5 5 IR IR IR IR IR T6270225B40N T6270325B40N T6270425B4DN T6270525B40N T6270625B40N 587 587 587 587 587 227M 227P 2275 227V 227Z S S 5 S S WE5 WE5 WES WE5 WE5 227M 227P 2275 227V 227Z CF CF CF CF CF 241C30B 241C35 241C35B 241C4O 241C4OB 5 S S 5 S SYN 5YN 5YN SYN SYN T62OO330040N T6200430040N T6200430040N T6200430040N T6200430040N 543 543 S43 S43 S43 250RA10 250RA20 250RA30 250RA40 250RA50 5 5 S S S IR IR IR IR IR T7ooo12504BY T7oo022504BY T7ooo32504BY T7oo042504BY T700052504BY 537 537 S37 S37 S37 227ZB 227Z0 227ZF 227ZH 227ZK 5 S S 5 S WE5 WES WE5 WE5 WES 227ZB 227Z0 227ZF 227ZH 227ZK CF CF CF CF CF 241C45 241C45B 241C50 241C50B 241C60 S S 5 5 5 5YN T62OO530040N SYN T62OO530040N 5YN T6200530040N 5YN T6200530040N 5YN T62oo630040N 543 S43 543 543 S43 250RA60 250RA80 250RA100 250RAll0 250RA120 S 5 S 5 5 IR IR IR IR IR T700062504BY T7oo082504BY T7oo102504BY T7oo112504BY T7oo122504BY S37 537 537 537 S37 228A 2288 2280 228F 228H 5 S S 5 5 WE5 WE5 WE5 WE5 WE5 228A 228B 2280 22SF 228H CF CF CF CF CF 241C60B 241C70 241C70B 241C80 241C80B 5 5 5 5 5 5YN T6200630040N 5YN T6200730040N 5YN T6200730040N 5YN T6200830040N 5YN T6200830040N 543 S43 543 543 543 250RAl30 250RA14O 250RA150 250RAl60 250RA170 5 S 5 5 5 IR IR IR IR IR T700132504BY T7oo142504BY T7oo152504BY T7oo162504BY T7oo172504BY S37 S37 537 S37 537 228K 228M 228P 228S 228V S S 5 5 5 WE5 WE5 WE5 WE5 WES 228K 228M 228P 2285 228V CF CF CF CF CF 241C90 241C90B 241Cl00 241ClOOB 241Cl10 S 5 S S S 5YN T62oo930040N 5YN T62oo930040N 5YN T6201030040N 5YN T620 1030040N SYN T620113OO40N 543 543 543 S43 543 250RL60 250RL80 250RLloo 250RL 110 250RL120 S 5 S 5 S IR IR IR IR IR T707063024BY T707083024BY T707103024BY T707113024BY T707123024BY 581 SBI S81 SBI 581 228Z 228ZB 228Z0 228ZF 228ZH 5 5 5 5 5 WE5 WE5 WES WE5 WE5 228Z 228ZB 228Z0 228ZF 228ZH CF CF CF CF CF 241Cl10B 241C120 241C1208 241C130 241C130B 5 S S SYN 5YN SYN SYN SYN T6201130040N T6201230040N T6201230040N T6201330040N T6201330040N S43 S43 543 S43 543 250S 250551 250V 250V51 250Z S S 5 S S WES WE5 WES WES WES 250S 250S51 250V 250V51 250Z CF CF CF CF CF 228ZK 228ZM 229A 229B 2290 5 WES WE5 WE5 WE5 WE5 228ZK 228ZM 229A 229B 2290 CF CF CF CF CF 241C14O 241C140B 241C150 241C150B 241T S 5 SYN SYN SYN SYN WCE T6201430040N T620143004DN T6201530040N T6201530040N CF 543 S43 543 S43 CF 250Z51 250ZB 25OZB51 250Z0 25OZ051 S S S S 5 WES WES WES WES WES 25OZ51 250ZB 250ZB51 25OZ0 25OZ051 CF CF CF CF CF S 5 5 5 i" \' 1 S S S S S A3 A3 A3 Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are li5ted on pageG3 G27 Suggested@ Replacement Type Mfg,. Suggested@ Replacement Part Number Type Mfg,. 254851 254C 254C51 2540 254051 CF CF CF CF CF 263V 263Z 263Z8 263Z0 263ZF S S S S 5 WES WES WE5 WE5 WES 263V 263Z' 263Z8 263Z0 263ZF CF CF CF CF CF WES WE5 WES WES WES 254E 254E51 254F 254F51 254H CF CF CF CF CF 263ZH 263ZK 263ZM 270A 2708 5 S 5 5 5 WES WES WE5 WES WES 263ZH 263ZK 263ZM 270A 2708 CF CF CF CF CF 5 S S S S WES WES WES WES WES 254H51 254K 254K51 254P 254P51 CF CF CF CF CF 270C 270P 270S 270V 270Y30860 5' S S S S WES WES WES WES WES 270C 270P 270S 270V 270Y30860 CF CF CF CF CF 254V 254V51 254Z 254Z51 254Z8 5 S S S S WES WES WES WES WES 254V 254V51 254Z 264Z51 254Z8 CF CF CF CF CF 270Y30870 270Y30880 270Y30890 270Y3OC10 270Y30Cl1 S S S S S WES WES WES WES WES 270Y30870 270Y30880 270Y308go 270Y3OC10 270Y30Cl1 Cf CF CF CF CF CF CF CF CF CF 254Z851 254ZF 254ZF51 254ZH 254ZH51 S S 5 5 S WES WES WES WE5 WE5 254Z851 264ZF 254ZF61 254ZH 254ZH61 CF CF CF CF CF 270Y3OC12 270Y30C13 270Y30C14 270Y3OC15 270Y3OC16 S S S S 5 WES WES WE5 WE5 WE5 270Y30C12 270Y30C13 270Y3OC14 270Y30C16 270Y30C16 CF CF CF CF CF 251M51 251P 251P51 251S 251551 CF CF CF CF CF 254ZK 254ZK51 Z56T 258T 280A S S S 5 S WE5 WE5 WCE WCE WE5 254ZK 254ZK51 CF CF 260A CF CF CF CF CF 270Y30C17 270Y30C18 270Y30C19 270Y30C20 270Z S S 5 S 5 WES WE5 WES WES WE5 270Y3OC17 270Y3OC18 270Y3OC19 270Y30C20 270l CF CF CF CF CF IR IR IR IR IR R6020425FJ R6020425EJ R6020425CJ R6020625FJ R6020625EJ R63 R63 R63 R63 R63 2808 2600 280F 260H 260K S S S S S WE5 WE5 WES WES WES 2608 2600 280F 260H 280K CF CF CF CF CF 27Ol8 27Ol0 270lF 270ZH 270ZK 5 5 5 5 S WE5 WE5 WE5 WES WES 270Z8 27Ol0 270ZF 270ZH 270ZK CF CF CF CF CF R R R R R IR IR IR IR IR R6020625CJ R6020825FJ R6020825EJ R6020825CJ R6021025FJ R63 R63 R63 R63 R63 280M 260P 280RL10 280RL20 260RL3O 5 S S S S WES WES IR IR IR 280M 280P T7070133648Y T7070233648Y T7070333648Y CF CF 581 581 581 i71A 2718 271C 2710 271F S 5 S S S WES WES WES WE5 WE5 271A 2718 271C 2710 271F CF CF CF CF CF 251 UL100S20 251 UL100S3O 251UL120520 251UL12OS3O 251 UL130530 R R R R R IR IR IR IR IR R6021025EJ R6021025CJ R8021225EJ R8021225CJ R6021325CJ R63 R63 R63 R63 R63 280RL4D 260RL60 280RL80 280RM10 280RM20 S S 5 5 5 IR IR IR IR IR T7070433648Y T7070633648Y T7070633648Y T7070133848Y T7070233848Y S81 581 581 581 S81 271H 271K 271M 271P 2715 S S 5 S 5 WES WE5 WE5 WE5 WE5 271H 271K 271M 271P 2715 CF CF CF CF CF 261 UL140530 251 UL150S3O 251UL 160530 251 ULR40S16 261ULR40S20 R R R 'R R IR IR IR IR IR R8021425CJ R8021525CJ R6021625CJ R6030425FJ R8030425EJ R63 R63 R63 R63 R63 260RM30 260RM40 260RM50 260RM60 260V 5 5 5 S 5 IR IR IR IR WE5 T7070333648Y T7070433848Y T7070633848Y T7070633648Y 260V 581 581 S81 581 CF 271V 271Z 271Z8 271Z0 271ZF 5 5 5 S 5 WES WE5 WE5 WE5 WE5 271V 271Z 271Z8 271Z0 271ZF CF CF CF CF CF 251 ULR40S30 251 ULR60S15 251 ULR60S20 251 ULR60S30 251 ULR60S15 R R R R R IR IR IR IR IR R8030426CJ R6030625FJ R6030625EJ R6030625CJ R8030825FJ R63 R63 R63 R63 R63 260Z 260Z8 260Z0 260ZF 260lH 5 5 5 5 S WES WES WES WES WES 260Z 26Ol8 26Ol0 260ZF 260ZH CF CF CF CF CF 271ZH 272 .............. 272A 2728 272C 5 5 S 5 5 WES WES WE5 WES WES 271ZH CF 272A 2728 272C CF CF CF CF CF 251 ULR60S20 251 ULR80530 251ULR100516 251ULR100S20 251ULR100S30 R R R R R IR IR IR IR IR R6030825EJ R6030625CJ R8031025FJ R6031025EJ R6031025CJ R63 R63 R63 R63 R63 260lK 260ZM 261 •......•...•.• 261A 2618 S S 5 5 5 WES WES WES WES WES 260ZK 260ZM CF 261A 2618 CF CF CF CF CF 2720 272F 272H 272K 272M S S 5 5 S WES WE5 WES WE5 WE5 2720 272F 272H 272K 272M CF CF CF CF CF 251ULR 120520 251 ULR12OS30 261 ULR 130530 261ULRl40S30 251ULR160S30 R R R R R IR IR IR IR IR R8031225EJ R6031225CJ R6031325CJ R6031425CJ R6031525CJ R63 R63 R63 R63 R63 2610 261F 261H 261K 261M 5 5 5 5 5 WES WES WES WES WES 2610 261F 261H 261K 261M CF CF CF CF CF 272P 272S 272V 272Z 272Z8 S 5 5 S 5 WES WE5 WES WE5 WES 272P 2725 272V 272Z 272Z8 CF CF CF CF CF 261 ULR 160530 261V 261V51 261Z 261Z61 R 5 5 5 5 IR WES WES WES WES R6031625CJ 251V 251V51 251Z 261Z51 R63 R63 CF CF CF 261P 2615 261V 261Z 261Z8 S S S S 5 WES WES WES WES WES 261P 2615 261V 261Z 261Z8 CF CF CF CF CF 272Z0 272ZF 272ZH 273 .............. 273A 5 S 5 5 5 WE5 WE5 WES WES WE5 272Z0 272ZF 272ZH CF 273A CF CF CF CF CF 251Z8 251Z851 251Z0 251Z061 261ZF S 5 5 5 5 WE5 WE5 WE5 WE5 WE5 251Z8 261Z861 251Z0 251Z051 251ZF CF CF CF CF CF 261Z0 261ZF 261ZH 261ZK 261ZM S S S 5 5 WES WES WES WES WES 261Z0 261ZF 261ZH 261ZK 261ZM CF CF CF CF CF 2738 2730 273F 273H 273K 5 5 5 5 5 WE5 WES WE5 WE5 WE5 2738 2730 273F 273H 273K CF CF CF CF CF 261ZF61 261ZH 261ZH61 251ZK 251ZK51 5 S 5. 5 5 WE5 251ZF51 WE5 251ZH wes 261ZH51 WE5 251ZK WE5 251ZK51 CF CF CF CF CF 263A 2638 263C 263E 263F S 5 S S 5 WES WES WES WES WES 263A 2638 263C 263E 263F CF CF CF CF CF 273M 273P 2735 273V 273Z 5 S 5 5 5 WES WES WE5 WE5' WES 273M 273P 2735 273V 273Z CF CF CF CF CF 261ZM 251ZM51 254A 254A51 2548 S 5 S S 5 WE5 WES WES WES WE5 CF CF CF CF CF 263H 263K 263M 263P 2635 S 5 S 5 5 WES WES WES WES WES 263H 263K 263M 263P 2635 CF CF CF CF CF 273Z8 273Z0 273ZF 273ZH 273ZK S S S S S WES WE5 WES WES WES 273Z8 273Z0 273ZF 273ZH 273ZK CF CF CF CF CF Type Mfg,. 250ZF 25OlF51 250ZH 250ZH61 250lK S S S 5 S WES WES WES WE5 WES 250ZF 250ZF61 250lH 250ZH51 250lK CF CF CF CF CF 254851 254C 254C51 2540 254051 S S 5 5 S WES WES WES WE5 WE5 250ZK51 250ZM 250ZM51 251A 251A51 S S S S S WES WES WES WES WES 250ZK61 250ZM 250ZM51 251A 251A51 CF CF CF CF CF 254E 254E51 254F 254F51 254H S 5 S S S 2518 251861 251C 251C51 2510 S S S S S WE5 WES WES WES WES 2518 251861 251C 251C51 2510 CF CF CF CF CF 254H51 254K 254K51 254P 254P51 251051 251E 251E51 261F 251F51 S S S S S WES WES WES WES WES 251051 251E 251E51 251F 251F51 CF CF CF CF CF 251H 251H51 251K 261K61 251M S S S 5 5. WES WES WES WES WES 251H 261H61 261K 261K51 251M 251M51 251P 251P51 251S 251561 S' S 5 5 S WES WE5 WE5 WE5 WE5 251UL40515 251UL40520 251UL40S30 251UL80515 251UL80520 S R R R R 251UL6OS30 251UL80515 251UL80S20 251UL80S30 251UL100515 251ZM 251ZM51 254A 254A51 2548 Page Note: Manufacturer's Codes, Product Tvpe Notes·.and@ Replacement Notes are listed on page G3 G28 Sugge.ted @ Replacement Page Part Number Part Number Pege Suggested@ Suggested@ Part Number Type Mfgr. Replacement Page Part Number Type Mfg •. Replacement Page Part Number 273ZM 275U5A 275Ul0A 275U15A 275U20A S R R R R WE5 IR IR IR IR 2732M IN4044 IN4045 IN4046 IN4047 CF R29 R29 R29 R29 283Z0 283ZF 283ZH 2868 2860 S S 5 S 5 WE5 WES WES 2832H WES 2868 WES 2860 ~:~~ CF CF CF CF CF 3OORAI30 3OORAl40 3OORAl50 3OORAl60 3OORA170 275U25A 275U30A 275U40A 275U5OA 275U60A R R R R R IR IR IR IR IR IN4048 IN4049 IN4050 IN4051 IN4052 R29 R29 R29 R29 R29 286F 286H 286K 286M 286P S S S S 5 WE5 WES WE5 WE5 WE5 286F 286H 286K 286M 286P CF CF CF CF CF 3OORB10 3OORB20 300RB30 3OORB40 3OORB50 275U70A 275U8OA 275U9OA 275UlOOA 275Ul lOA R R R R R IR IR IR IR IR IN4053 IN4054 IN4055 IN4056 R6oo1 I 28 R29 R29 R29 R29 CF 286S 286V 286Y30860 286Y30B70 286Y30880 S 5 5 5 5 WES WE5 WE5 WE5 WE5 2865 286V 286Y30B60 286Y30B70 286Y308BO CF CF CF CF CF 300RB60 3OORBBO 300RBIOO 300RB110 3OORB120 275U120A 275UR5A 275UR10A 275UR15A 275UR20A R R R R R IR IR IR IR IR R6oo1228 IN4044R IN4045R IN4046R IN4047R CF R29 R29 R29 R29 286Y3OB90 286Y30Cl0 286Y3OCI I 286Y3OC12 286Y3OC13 5 5 5 5 5 WE5 WE5 WE5 WE5 WE5 286Y30B90 286Y3OC10 286Y3OC11 286Y3OCl2 286Y30C13 CF CF CF CF CF 3OORB130 300RBl40 300RB150 300RBI60 300RB170 275UR25A 275UR3OA 275UR4OA 275UR50A 275UR6OA R R R R R IR IR IR IR IR IN4048R IN4049R IN4050R IN4051R IN4052R R29 R29 R29 R29 R29 286Y3OC14 286Y3OC15 286Y3OC16 286Y3OC17 286Y3OC18 5 5 5 5 5 WE5 WE5 WE5 WE5 WE5 286Y30C14 286Y30C15 286Y30C16 286Y30C17 286Y30C18 CF CF CF CF CF 275UR70A 275UR8OA 275UR9OA 275URlooA 275URI lOA R R R R R IR IR IR IR IR IN4053R IN4054R IN4055R IN4056R R601 I I 28 R29 R29 R29 R29 CF 286Y30C19 286Y3OC20 286Z 286Z0 286ZH 5 5 5 5 S WE5 WE5 WE5 WES WE5 286Y30C 19 286Y3OC20 2862 286Z0 286ZH 275UR120A 276A 2768 2760 276F R 5 5 S S IR WES WES WE5 WES R601 I 228 276A 2768 2760 276F CF CF CF CF CF 286ZM 286ZP 2888 2880 288F 5 5 S 5 S WE5 WE5 WE5 WE5 WE5 276H 276K 276M 276P 276S S S 5 5 5 WES WE5 WE5 WE5 WES 276H 276K 276M 276P 2765 CF CF CF CF CF 288H 288K 288M 288P 288S S S S 5 5 276V 276Z 276ZB 276ZF 2762H S 5 5 S S WES WES WES WE5 WES 276V 276Z 27628 276ZF 2762H CF CF CF CF CF 288V 286Z 286Z0 288ZH 286ZM 276ZK 276ZM 2788 2780 278F S S 5 S 5 WE5 WE5 WES WES WES 276ZK 276ZM 2788 2780 278F CF CF CF CF CF 278H 278K 278M 278P 278S S S S S 5 WE5 WE5 WES WE5 WES 278H 2781( 278M 278P 2785 278V 276Z 278ZH 276ZM 282A S S 5 5 S WE5 WE5 WE5 WES WES 2828 2820 282H 282K 282M S S 5 S 5 282P 2825 282V 282Z 282Z8 Type Mfg •• 5 Suggested@ Replacement Peg. IR IR IR IR IR T7oo133004BY T700143004BY T7oo153004BY T7oo183004BY T7oo173004BY 537 537 537 537 S37 IR IR IR IR IR T700013004BY T700023004BY T700033004BY T700043004BY T700053004BY 537 537 537 537 537 IR IR IR IR IR T700063004BY T700083004BY T700103004BY T700113004BY T7oo123004BY 537 537 537 537 537 5 5 5 IR IR IR IR IR T7001330048Y T7oo143004BY' T7oo153004BY T700163004BY T7OO1730048Y 537 537 537 537 537 3OOU1OA 3OOU15A 300U20A 3OOU25A 3OOU30A R IR IR IR IR IR R8100130 R610+130 R6100230 R610+230 R6100330 R31 R31 R31 R31 R31 CF CF CF CF CF 3OOU40A 3OOU5OA 3OOU6OA 300U7OA 3OOU80A R IR IR IR IR IR R6100430 R6l00530 R6loo630 R61oo730 R6100B30 R31 R31 R31 R31 R31 286ZM 286ZP 2888 2880 288F CF CF CF CF CF 300U9OA 3OOUlOOA 3OOU120A 3OOURl0A 3OOURI5A R IR IR IR IR IR R6100930 R6101030 R6001230 R6ll0130 R611+130 R31 R31 R31 R31 R31 WE5 WE5 WE5 WE5 WE5 288H 288K 288M 288P 2885 CF CF CF CF CF 3OOUR2OA 3OOUR25A 300UR3OA 3OOUR40A 3OOUR5OA R R R IR IR IR IR IR 'R6l10230 R611+230 R6110330 R6110430 R6110530 R31 R31 R31 R31 R31 S S S 5 S WES WES WE5 WE5 WE5 288V 286Z 286Z0 286ZH 286ZM CF CF CF CF CF 300UR60A 300UR7OA 300UR8OA 3OOUR9OA 300URlooA R R R R R IR IR IR IR IR R611OB30 R6110730 R611OB30 R6110930 R6111030 R31 R31 R31 R31 R31 300A 300AR 300B 3OO8R 300C R R R R R WE5 WE5 WE5 WE5 WE5 R5100010 R6110010 R5100110 R5110110 R510+110 R23 R23 R23 R23 R23 3OOUR12OA 30lCIO 301CIOB 30lCI5 301CI5B R 5 5 5 5 IR 5YN 5YN 5YN 5YN R6011230 T62oo130040N T6200130040N T6200230040N T6200230040N R31 S43 543 543 543 CF CF CF CF CF 300cR 3000 3OO0R 300E 300ER R R R R R WE5' WE5 WE5 WE5 WE5 R511+110 R5100210 R5.110210 R510+210 R511 +210 R23 R23 R23 R23 R23 301C20 301C20B 301C25 301C25B 30lC30 5 5 5 5 5 5YN 5YN 5YN 5YN 5YN T62oo230040N T6200230040N T6200330040N T62oo330040N T620033004PN 543 543 543 278V 278Z 276ZH 276ZM 282A CF CF CF CF CF 300F 300FR 300G 300GR 300H R R R R R WE5 WE5 WE5 WE5 WE5 R5100310 R5110310 R510+310 R511+310 R5100410 R23 R23 R23 R23 R23 301C3OB 301C35 301C35B 301C40 301C40B 5 5 5 5 5 SYN 5YN 5YN 5YN 5YN T62oo330040N T6200430040N T6200430040N T6200430040N T6200430040N 543 S43 543 543 543 WES WES WES WE5 WES 2828 2820 282H 282K 282M CF CF CF CF CF 300HR 300K 300KR 3OOPA50 3OOPA60 R R R 5 5 WE5 WE5 WE5 IR IR R5110410 R51oo510 R5110510 T6200530040N T62oo63!1040N R23 R23 R23 543 543 301C45 301C45B 301C50 301C5OB 301C60 5 5 S 5 5 5YN 5YN 5YN 5YN 5YN T6200630040N T6200530040N T6200630040N T6200530040N T6200630040N 543 543 543 543 543 S S 5 5 5 WE5 WE5 WE5 WES WES 282P 282S 282V 282Z 28228 CF CF CF CF CF 3OOPA60 ·3OOPAloo 3OOPAl10 3OOPA120 3OOPAC10 S 5 5 5 5 IR IR IR IR IR T6200B30040N T6201030040N T6201130040N T6201230040N T62oo130040N S43 543 543 543 543 30lC6OB 301C70 30lC7OB 301CBO 301C8OB 5 5 5 5 5 5YN 5YN 5YN 5YN 5YN T6200630040N T62oo730040N T62oo730040N T6200B30040N T6200B30040N 543 543 543 543 543 282Z0 282Zf 282ZH 282ZK 283A S S 5 5 5 WE5 WES WE5 WES WE5 282Z0 282ZF 282ZH 282ZK 283A CF CF CF CF CF 3OOPAC20 3OOPAC30 3OOPAC40 3OOPAC50 3OOPAC60 5 5 5 5 5 IR IR IR IR IR T6200230040N 543 T6200330040N 543 T6200430040N 543 T6200530040N 543 T6200630040N 543 301C90 301C90B 301Cloo 301(:,ooB 30lCll0 5 5 5 5 5 5YN 5YN 5YN 5YN 5YN T8200B30040N T62oo930040N T6201030040N T6201030040N T620113OOA0N 543 543 543 543 543 2838 283C 2830 283H 283M S 5 S 5 S WE5 WES WES WES WES 2838 283C 2830 283H 283M CF CF CF CF CF 300RA10 3OORA20 3OORA30 3OORA40 3OORA50 5 5 5 5 5 IR IR IR IR IR T700013004BY T7000230048Y T700033004BY T700043004BY T700053004BY 537 537 537 537 S37 301Cl10B 301C120 301C120B 301CI30 301C130B 5 5 5 5 5 5YN 5YN 5YN 5YN 5YN T8200930040N T6201230040N T6201230040N T6201330040N T8201330040N 543 543 543 543 543 283P 2835 283V 2832 283Z8 S S 5 5 5 WES WES WES WE5 WE5 283P 283S 283V 283Z 283Z8 CF CF CF CF CF 3OORA60 300RABO 3OORA100 3OORAl10 300RA120 S S S 5 S IR IR IR IR IR T700063004BY T700063004BY T7oo103004BY T700113004BY T700123004BY S37 S37 S37 S37 S37 301CI40 301Cl4OB 301Cl50 301C15OB 301U80 5 5 5 5 R 5YN 5YN 5YN 5YN IR T8201430040N T6201430040N T8201530040N T8201530040N R6100B30 543 543 543 543 R31 5 5 S 5 5 5 5 5 5 5 5 5 5 5 5 S R R R R R R R R R R R R R R S43 543 Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on pageG3 G29 Suggested@ Part Number Replacement Page Part Number Type Mfgr. Suggested@ Replacement Page Part Number Type Mfgr. Suggested @ Replacement Page 301Uloo 301U120 301UI40 301U160 301U160 R R R R R IR IR IR IR IR R6101030 R6oo1230 R6oo1430 R6001630 R6oo183O R31 R31 R31 R31 R31 327E 327F 327G 327H 327K R R R R R WES WES WES WES WES CF CF CF CF CF CF CF CF CF CF 339A 3398 339C 3390 339E R R R R R WES WES WES WES WES IN3161 IN3162 IN3163 IN3164 IN3166 R31 R31. R31 R31 R31 301U2OO 301U210 301U220 301U240 301U250 R R R R R IR IR IR IR IR R6oo203O R6002130 R6002230 R6oo243O R6002530 R31 R31 R31 R31 R31 32BA 3288 328C 3280 328E R R R R R WES WES WES WES WES CF CF CF CF CF CF CF CF CF CF 339F 339G 339H 339K 341A R R R R R WES WES WES WES WES IN3166 IN3167 IN3168 IN3169 IN1199A R31 R31 R31 R31 R13 301UR80 301URloo 301UR120 301URI40 301URI60 R R R R R IR IR IR IR IR R6110830 R6111030 R6011230 R6011430 R6011630 R31 R31 R31 R31 R31 328F 328G 328H 328K 329A R R R R R WES WES WES WES WES CF CF CF CF IN3260 CF CF CF CF R27 3418 3410 341F 341H 341M R R R R R WES WES WES WES WES IN1200A IN1202A IN1204A IN1204A IN1206A R13 R13 R13 R13 R13 301URI80 301UR2oo 301UR210 301UR220 301UR240 R R R R R IR IR IR IR IR R6011830 R6012030 R6012130 R6012230 R6012430 R31 R31 R31 R31 R31 3298 329C 3290 329E 329F R R R R R WES WES WES WES WES IN3261 IN3262 IN3263 IN3264 IN3265 R27 R27 R27 R27 R27 344T 346A 3468 3460 346F S R R R R WCE WES WES WES WES T620XX30040N 543 IN1199A R13 INI200AR R13 INI202AR R13 IN1204AR R13 301UR250 302A 3028 302C 3020 R R R R R IR WES WES WES WES R6012530 IN1184A IN1184A IN118BA IN1186A R31 R15 R15 R15 R15 329G 329H 329K 331A 3318 R R R R R WES WES WES WES WES IN3266 IN3267 IN3268 CF CF R27 R27 R27 CF CF 346H 346M 350PL50 350PL60 350PL80 R R S 5 5 WES WES IR IR IR IN1204AR INI208AR T7270535440N T7270635440N T7270835440N R13 R13 S91 S91 591 302E 302F 302G 302H 302K R R R R R WES WES WES WES WES IN1188A IN1188A IN118BA IN118BA IN1190A R15 R15 R15 R15 R15 331C 3310 331F 331H 331K R R R R R WES WES WES WES WES CF CF CF CF CF CF CF CF CF CF 360Pl1OO 350PL110 350PL120 350PM50 350PM60 S 5 S IR IR IR IR IR T7271035440N T7271135440N T7271235440N T7270535540N T7270636540N S91 591 591 S91 591 302M 302P 3025 R R R R R WES WES WES WES WES IN1190A R4100840 R4100840 R4101040 IN1184A R15 R15 R15 R15 R15 331M R 5 R R R WES WCE WES WES WES CF T620XX20040N CF CF CF CF 543 CF CF CF 350PM80 350PMloo 350PM110 360PM120 350RA10 IR IR IR IR IR T7270835540N T7271036640N T7271135540N T7271236540N T700013504BY 591 591 591 S91 S37 WES WES WES WES WES IN1184A IN1186A IN118BA IN118BA IN1190A R15 R15 R15 R15 R15 3320 332F 332H 332K 332M R R R R R WES WES WES WES WES CF CF CF CF CF CF CF CF CF CF 350RA20 350RAJO 360RA40' 360RA50 350RA60 S 303F 303H 303M R R R R R S 5 S 5 IR IR IR IR IR T700023504BY T700033504BY T700043604BY T7oo053504BY T700063504BY 537 537 S37 S37 537 3035 303Z 304A 3048 3040 R R R R R WES WES WES WES WES R4100840 R4101040 INI200A INI200A IN1202A R15 R15 R13 R13 R13 332T 333A 3338 333C 3330 5 R R R R WCE WES WES WES WES T620XX20040N CF CF CF CF 543 CF CF CF CF 350RABO 350RAloo 350RA110 350RA120 350RA13O 5 S S 5 S IR IR IR IR IR T700083604BY T7oo103504BY T7oo113504BY T7oo123604BY T700 133504BY 537 S37 537 537 537 304F 304H 304M 3045 304Z R R R R R WES WES WES WES WES IN1204A INI204A IN1206A IN3671A IN3673A R13 R13 R13 R13 R13 333F 333H 333K 333M 333T R R R WES WES WES WES WES CF CF CF CF T620XX20040N CF CF CF CF 543 350RAI40 350RAl50 350RAl60 350RA170 36H S S 5 S 5 IR IR IR IR WCE T7oo143604BY T7oo163604BY T700 163504BY T7oo173604BY T627XX25440N 537 537 537 S37 587 3Oi;" 318 319A 3198 319C R R R R R WES WES WES WES WES CF CF CF CF CF CF CF CF CF CF 334A 3348 334C R wCe R R R R WES WES WES WES CF CF CF CF CF CF CF CF CF CF 352T 353T 356A 3568 356C S S R R R WCE WCE WES WES WES T627XX16840N T627XX15B40N IN3260R IN3261 R IN3262R S87 587 R27 R27 R27 3190 319E 319F' 319G 319H R R WES WES WES WES WES CF CF CF CF CF CF CF CF CF CF R R R 5 R WES WES WES WCE WES CF CF CF T620XX30040N INI184AR CF CF CF 543 R15 3560 356F 356H 356K 356M R R R R R WES WES WES WES WES 1N3263R IN3265R IN3267R IN3268R IN3269R R27 R27 R27 R27 R27 319K 320C ....••.•..•.• 322A 3228 322C R WES OWES R WES R WES R WES CF CF CF CF CF CF CF CF CF CF 3358 3350 335F 335H 335M R IN1184AR IN118BAR IN118BAR IN118BAR IN1190AR R15 R15 R15 R15 R15 357A 3578 357C 3570 357F R R R WES WES WES WES WES WES WES WES WES WES IN3161R IN3162R IN3163R IN3164R IN3166R R27 R27 R27 R27 R27 3220 322E 322F 322G 322H R R R R II WES WES WES WES WES .CF CF CF CF CF CF CF CF CF CF CF CF CF CF CF CF R15 R15 R15 R16 R15 R27 R27 R27 R9 R9 CF CF CF CF CF CF INI184AR IN1184AR IN1186AR IN118BAR IN118BAR IN3168R IN3169R IN3170R IN4816 IN4817 WES WES WES WES WES WES WES WES WES WES WES WES WES WES WES WES R R R R R 0 R R R R R 357H 357K 357M 359A 3598 322K 325 326A 3268 326C 336.............. 336A 3368 3360 336F 336H WES WES WES WES WES IN4818 IN4819 IN4820 IN4821 IN4822 R9 R9 R9 R9 R9 3260 326E 326F 326G 326H R R R R R WES WES WES WES WES CF CF CF CF CF CF CF CF CF CF R R WES WES WES WES WES IN5052 IN5053 IN5054 INl199A IN1200A R9 R9 R9 R13 R13 326K 327A 3278 327C 3270 R R R R R WES WES WES WES WES CF CF CF CF CF CF CF CF CF CF .. R R R R R WES WES WES WES WES IN1202A IN1204A IN1204A IN1206A IN1206A R13 R13 R13 R13 R13 302Z 303A 3038 3030 G30 Type Mfgr. R R R 33H 332A 3328 332C 3340 334F 334H 334K 334M 334T 335A 336M 337A 3378 3370 337F R R R R R R R R R R WES WES WES WES WES IN1190AR IN1199AR INI200AR IN1202AR IN1204AR R15 R15 R15 R16 R16 INI204AR IN120BAR CF CF CF R15 R15 CF CF CF CF CF CF CF CF CF CF CF CF CF 337H 337M 336A 3388 338C R R R WES WES WES WES WES 3380 338F 338H 338K 338M R R R R R WES WES WES WES WES R R Note: Manufac1Urer's Codes, Product Type Notes and@ Replacement Notes are listed on page'G3 3590 359F 359H 359K 359M 359P 3595 359Z 366A 3668 3660 366F 366H 366K 366M S S S S S 5 S R R R R R R R R R R R R R R R R Part Number Type Mfg,. Suggeated@ Replacement Page Part Number Type Mfg,. Suggeated@ Replacement Page p...rt Numbe, Type Mfg,. Suggelted @ Replacament Page 367A 367B 3670 367F 367H R R R R R WES WES WES WES WES INl200A INl200A IN1202A INI204A INI204A RI3 RI3 RI3 RI3 RI3 400G 400H 400K 400M 400P R R R R R WES WES WES WES WES 400G 400H 400K 400M 400P CF CF CF CF CF 406M 409A 409B 4090 409F R R R R R WES WES WES WES WES INI206A IN1199A INl200A IN1202A INI203A RI3 RI3 R13 RI3 RI3 367M 368A 368AR 3688 368BR R R R R R WES WES WES WES WES INI206A IN3615 IN3615R IN3616 IN3616R RI3 RI3 RI3 RI3 RI3 400S 400V 400Z 40lA 4018 R R R R R WES WES WES WES WES 400S 400V 400z 40IA 401B CF CF CF CF CF 409H 40BK 409M 410A 410AR R R R R R WES WES WES WES WES INI204A INI205A IN120BA 410A 410AR RI3 R13 R13 CF CF 3680 3680R 368F 368FR 368BR R R R R R WES WES WES WES WES IN3618. IN3618R IN3619 IN3619R IN3620 RI3 RI3 RI3 RI3 RI3 40IC 4010 40IE 40lF 40lG R R R R R WES WES WES WES WES 401C 4010 401E 40IF 401G CF CF CF CF CF 410B 410BR 410C 410CR 4100 R R R R R WES WES WES WES WES 410B 410BR 410C 410CR 4100 CF CF CF CF CF 368HR 368K 368KR 368M 368MR R R R R R WES WES WES WES WES IN3820R IN3821 IN3621R IN3622 IN3622R RI3 RI3 RI3 RI3 RI3 40lH 40lK 40IM 40lP 401 POA40L15 R R R R R WES WES WES WES IR 401H 401K 401M 401P R6220440FJ CF CF CF CF R67 4100R 410F 410FR 410H 410HR R R R R R WES WES WES WES WES 4100R 410F 41DFR 410H 410HR CF CF CF CF CF 374A 374B 374C 3740 374F R R R R R WES WES WES WES WES R510ool0XXZT R51OO110XXZT R510+110XXZT R51oo210XXZT R51OO310XXZT R23 R23 R23 R23 R23 401 POA4OL20 401 POA4OL30 401 POA60LI 5 401 POA60L20 401 POA60L30 R R R R R IR IR IR IR IR R6220440EJ R6220440CJ R6220640FJ R6220B40EJ R6220640CJ RB7 R67 R67 R67 R67 410K 410M 410MR 410S 410SR R R R R R WES WES WES WES WES 410K 410M 410MR 410S 410SR CF CF CF CF CF 374H 374K 374M 376A 376B R R R R R WES WES WES WES WES R5100410XXZT R6100610XXZT R5100610XXZT 376A 376B R23 R23 R23 CF CF 401 POA80L15 401 POA80L20 401 P0A90L30 401 POA I OOL20 401 POA I ooL30 R R R R R IR IR IR IR IR R6220840FJ R6220640EJ R6220640CJ R6221040EJ R6221040CJ R67 R67 R67 R67 R67 410Z 410ZR 411 A 411AR 411B R R R R R WES WES WES WES WES 410Z 410ZR 411A 411AR 411B CF CF CF CF CF 376C 3760 376F 376H 376K R R R R R WES WES WES WES WES 376C 3760 376F 376H 376K CF CF CF CF CF 401 POAI 20L20 401 POAI20L30 401 POA130L30 401 POA 14OL30 40'1 POA I 6OL30 R R R R R IR IR IR IR IR R6221240EJ R6221240CJ R6221340CJ R6221440CJ R6221640CJ R67 R67 R67 R67 R67 411BR 411C 411CR 4110 411F R R R R R WES WES WES WES WES 411BR 411C 411CR 4110 411F CF CF CF CF CF 376M 371A 371B 371C 3770 R R R R R WES WES WES WES WES 376M 371A 371B 377C 3770 CF CF CF CF CF R IR IR IR IR IR R6220440FJ R6220440EJ R6220440CJ R6220640FJ R6220640EJ R67 R67 R67 R67 R67 411FR 411H 411HR 411K 411KR R R R R R WES WES WES WES WES 411FR 411H 411HR 411K 411KR CF CF CF CF CF 377F 371H 371K 377M 384A R R R R R WES WES WES WES WES 377F 371H 371K 377M IN5391 CF CF CF CF R9 401 POL60S30 401 POL80S 15 401 POL80S20 401 POL80S30 401 POll OOS20 R .IR R IR R IR R IR R IR R6220640CJ R6220640FJ R6220640EJ R6220840CJ R6221040FJ R67 R67 R67 R67 R67 411M 411MR 411S 411SR 411Z R R R R R WES WES WES WES WES 411M 411MR 411S 411SR 411Z CF CF CF CF CF 384B 3840 394F 384H 384K R R R R R WES WES WES WES WES IN5392 IN5393 IN5394 IN5395 IN5396 R9 R9 R9 R9 R9 401 POL looS30 401 POL 120S20 401 POL 120S30 401 POL 130530 401S R R R R IR IR IR IR IR R6221040CJ R6221240EJ R6221240CJ R6221340CJ 401S R67 R67 RS7 R67 CF 411ZR 412A. 412B 4120 412H R R R R R WES WES WES WES WES 411ZR IN11B4A IN1184A IN1186A IN1188A CF RI5 RI5 R15 R15 384M 384S 384Z 387A 387AR R R WES WES WES WES WES IN5397 IN5398 IN5399 IN3899 IN3899R R9 R9 R9 RS7 R57 401V 401Z 402A 402B 4020 R R R R R WES WES WES WES WES 401V 401Z R4040070 R4040170 R4040270 CF CF R17 R17 R17 412M 413A 413B 4130 413H R R R R WES WES WES WES WES INI190A IN1184A IN1184A INII86A IN1I88A RI5 RI5 RI5 RIS RI6 R R R R R WES WES WES WES WES R4040370 R4040670 R4040770 R4040670 R4040970 R17 R17 R17 RI7 R17 413M 416A 416B 416H 416K R R R R R WES WES WES WES WES INI190A R404oo70 R4040170 R4040470 R4040570 RI5 R17 R17 RI7 RI7 R R R . 401 POL4OS15 401 POL4OS20 401 POL4OS30 401 POL60S 15 401 POL60S20 R R R R R R 387B 387BR 3870 3870R 387F R R R R R WES WES WES WES WES IN3900 IN3900R IN3901 IN3901 R IN3902 R57 R57 R57 RS7 RS7 402F 402M 402P 402S 402V 387H 387M 389A 389AR 3898 R R R R R WES WES WES WES WES IN3903 CF IN3909 IN3909R IN3910 R57 R57 R57 R57 R57 402Z 402Z0 403A 403B 4030 R R R R R WES WES WES WES WES R4041070 R4041270 R41oo14O R41oo14O R41OO24O R17 R17 CF CF CF 416M 416P 416S 416V 416Z R R R R R WES WES WES WES WES R4040670 R4040770 R4040870 R4040970 R4041070 RI7 R17 RI7 RI7 RI7 389BR 3890 3890R 389H 389M R R R R R WES WES WES WES WES IN3910R IN3911 IN3911 R IN3912 CF R57 R57 R57 R57 R57 403H 403M 404A 404B 4040 R R R R R WES WES WES WES WES R4100440 R4100640 INI19SA INl200A IN1202A CF CF R13 R13 R13 417A 417B 4170 417H 417M R R R R R WES WES WES WES WES INI184A IN1184A IN1186A IN118BA IN1190A R16 RI5 RI5 RI5 RI5 398A 3988 398C 398F 398H R R R R R WES WES WES WES WES IN5400 IN5401 IN5402 IN5403 IN5404 R9 R9 R9 R9 R9 404F 404H 404K 404M 407A R R R R R WES WES WES WES WES IN1203A IN1204A IN1205A IN1206A IN1199A RI3 R13 R13 R13 R13 418A 418B 4180 418H 418M R R R R R WES WES WES WES WES IN1184A IN1184A IN1186A IN1188A IN1190A RI5 RI5 RI5 RI5 RI5 39aK 398M 398S 398Z 400A R R R R R WES WES WES .WES WES IN5405 IN5406 IN5407 IN5408 400A R9 R9 R9 R9 CF 407B 4070 407F 407H 407K R R R R R WES WES WES WES WES IN1200A INI202A INI203A INI204A INI206A R13 R13 RI3 R13 RI3 R R R R' R R R R R R WES WES WES WES WES 400B 4DOC 4000 400E 400F CF CF CF CF CF 407M 408A 406B 4060 406H R R R R R WES WES WES WES WES INI20BA INI199A IN1200A IN1202A INI204A RI3 RI3 RI3 R13 RI3 S WES WES WES WES WES IR IN1184A IN1184A IN118BA INI18BA IN1190A T72OO545040N RI5 RI5 RI5 RI5 R15 S51 400B 400C 4000 400E 400F 419A 419B 4190 419H 419M 420PA50 420PA60 420PA80 420PAloo 420PAI10 420PA120 S 5 S S S IR IR IR IR IR T72oo645040N T7200645040N T7201045040N T7201145e40N T7201245040N S51 S51 S51 S51 551 Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are listed on page,G3 G3l 5uggeated@ Replacement Part Number Type Mfgr. 420PA13O 420PA14O 420PAI50 420PAI60 420PA170 S S S 5 5 IR IR IR IR IR T7201345040N T7201445040N T720154504DN T720164604DN T7201745040N S51 'S51 S51 S51 551 43sM 435P 4355 435V 436Z R R R R 420PB50 420PB60 420PB80 420PB100 420P8110 S S 5 S 5 IR IR IR IR IR T720064504DN T720064604DN T720064504DN .T7201 04504DN T720114604DN S61 551 561 S61 S51 435ZD 439A 439AR 4398 ,,39BR 420PB120 420PB130 420PB140 420PB150 420PB160 S 5 5 S S IR IR IR IR IR T720124504DN T720134504DN T7201445040N T720164504DN T720184504DN S51 561 551 561 S51 420PB170 420PBL50 420PBl60 420PBl80 420PBll00 S S 5 5 5 IR IR IR IR IR T7201745040N T727054524DN T7270645240N T727064524DN T7271046240N 420PBlll0 420PBl120 420PBM50 420PBM60 420PBMBO 5 S 5 5 5 IR IR IR IR IR 420PBM100 420PBM110 420PBM120 420PL60 420PL80 5 5 5 5 5 420Pll00 420PL110 420Pl120 420PM60 420PM80 Page Pert4!Aumber Type Mfg,. R, 5uggeated@ Replacement • We~ .A"40&w7O Page : Pai1 Number s:::r.=~ Rep , t P- WeS'R4050770 WES ,R4050870 WE5 R4050970 WES R4051070 471PD180 471PD200 471PDA120 471PDA14O 471PDAI60 R R R R R IR IR IR IR IR ~ro~8~ R6201250 R6201450 R6201650 R39 R3e R39 R39 R39 R R R R R WE5 WE5 WES WES WES R17 CF CF CF CF 471 PDAI BO 471PDA200 471T 472T 473T R R 5 S S IR IR wee wee wee R8201850 R6202050 CF T727XX4064ON T727XX48740N R39 R39 CF S91 891 439C 439CR 4390 439DR 439E R R R R R WES 439C WES 439CR WE5439D WES 439DR WES 4391: CF CF CF CF CF 474T 476T 477T 478A 478AR 5 S S R R WCE WCE wee WE5 WES T727XX4554DN T727XX4534DN T727XX36340N IN3979 IN3979R 891 S91 S91 R6S R66 561 591 591 591 591 439ER 439F 439FR 439G 439GR R R R R R WES 439ER WE5 439F WE5 439FR WE5439G WES 439GR CF CF CF CF CF 478B 478BR 4780 47BDR 478F R WES IN3980 R WE5 IN3880R R 'WES IN3981 R WES IN398IR R WES IN3882 T7271145240N T727124524DN T7270646440N T727064644DN T7270646440N S91 591 591 591 591 439H 439HR 439K 439KR 439M R R R R R WE5 WE5 WE5 WE5 WES 439H 439HR 439K 439KR 439M CF CF CF CF CF 478H 47BT 479A 479B 4790 R S R R R WE5 WCE WES WES WES IN3883 T720XX3S04DN IN3989 IN3880 IN3S91 R66 561 , RS7 RS7 R67 IR IR IR IR IR T727104544DN T7271145440N T727124544DN T727064524DN T727064524DN 591 S91 591 591 591 439MR 441 A 441B 4410 ,44,1F., R R R R ,R WE5 WE5 WE5 WE5 III!E5 439MR R3100012 R3100112 R3100212 479F 479H 489A 489B 4890 R R R R R WES WES WES WES WES IN3892 IN3893 IN3909 IN3910 R~100312 CF CF CF CF .c~ IN~911 R67 R57 RS7 R57 ,,57 5 5 5 5 5 IR IR IR IR IR T7271045240N 591 T727114524DN 591 T727124524DN 591 T727064544DN 591 T727064644DN 591 441H 441K 441M 441P 4415 R R R WE5 WE5 WE5 WE5 WE5 R3100412 R3100512 R3100612 R3100712 R3100612 CF CF CF CF CF 489F 489H 5OOPA5 500PA10 600PA20 R R 5 WES WES IR IR IR IN3912 IN3913 T7200156040N T7200156040N T7200266Q40N RS7 R57 551 561 551 420PM100 420PM110 420PM120 424A 5 5 5 R IR IR IR WE5 T727104544DN T727114544DN T7211245440N IN3909 591 591 591 R57 441V 4411 R R S 5 R WES WE5 WCE 'WCE WES R3100912 R3101012 T720XX65040N CF IN1199AR CF CF 561 CF R13 5OOPA30 500PA40 5OOPABO 5 600PABO 500PB050 5 IR IR IR IR IR 4248 4240 424F 424H 425A T72003S604ON 561 T7200455D40N 561 T72006S604ON 561 T7200865040N 561 T727064644DN 591 R R R R R WE5 WE5 WE5 WE5 WE5 IN3910 IN3911 IN3912 IN3913 IN3909 R57 R57 'R57 R57 R57 146K R R R R R WE5 WE5 WE5 WE5 WES INI200AR IN1202AR IN1203AR INI204AR IN 1206AR R13 R13 R13 RI3 R13 600PB060 500PB08O 500PBOIOO 500PBOll0 600PB0120 5 5 5 S IR IR IR IR IR T727064544DN T7270845440N T727104544DN T7271145440N T7271245440N 591 891 S91 591 S91 425B 4260 425H 429A 429AR R R R R R WES WES WES WES WES IN3910 IN3911 IN3913 429A 429AR R51 R51 R51 CF CF -l46M 446P 4465 446V 4462 WE5 WES WES WES WES IN120sAR IN3670AR IN3S11AR IN3672AR IN3673AR R13 R13 R13 R13 R13 600v5A SOOVl0A 5OOV2OA 60!lV30A 5OOV4OA III IR IR IR IR R7000006 R7000106 R7000206 R7000306 R7000406 429B 429BR 429C 429CR 4290 II R R R R R36 R36 R36 R36 R36 R WE5 429B R , WE5 429BR R WE5 429C R WE5 429CR R WE5 4290 CF CF CF CF CF 5 S 5 S T727014884DN T7270148B4DN T7270248B4DN T727034884DN T7270648B4ON 591 591 591 S91 S91 IR IR IR III IR R7000606 R7000606 R1010106 R1010206 111010306 R R R R R R36 R36 R36 R36 R36 WES WES WES WES WE5 429DR 429E 429ER 429F 429FR S IR IR IR IR IR SOOV6OA 5OOVBOA 5OOVR10A 500VR20A 500VR3OA 429DR 429E 429ER 429F 429FR 450PF5 450PF10 450PF20 450PF30 45DPF50 CF CF CF CF CF S 5 5 5 5 IR WCE WCE WCE WCE T7210648B40N T720XX56040N T720XX5504DN CF T920XX0903OW S91 S61 551 CF 555 500VR4OA 500VR5A 500VR6OA 500VRBOA 601PB050 429G 429GR 429H 429HR 429K 450PF60 456T 458T 482T 464T IR IR IR IR IR R1010406 R7010006 R7010&06. R7010806 T7270546540N R36 R36 R3S R36 591 R R R R R WE5429G WES 429GR WES 429H WES 429HR WES 429K CF CF CF CF CF 466T 470PA50 470PA60 470PABO 470PA100 WCE IR IR IR IR CF T120065504DN T720065504DN T7200665040N , T7201055040N CF S51 551 S61 551 601PBQ60 501PB08O\ 601 PBOI 00 601PB0110 501PBa120 8 429KR 429M 429MR 429RC70 430PL10 S S 5 5 5 R 1'1 R R S WES WES WESc WES IR 429KR 429M 429MR CF T127014864DN S IR IR IR IR IR T7270845640N T727D84654ON T7271046640N T7211146540N T727124664DN CF CF CF CF 591 sel 591 S91 591 591 470PAll0 410PA120 470PA130 470PA14O 410PA160 5 S S 5 5 IR IR IR IR IR T7201155040N T720122504DN T720136504DN T720145504DN T1201556040N 551 551 551 551 551 501VBOB 601VBOB 601Vl00B 501V120 501V12OB 430PL20 430PL30 43OPl4O 430Pl50 43OPl60 R R II R R III IR IR IR IR R7000606 R7000806 R7001D06 R7001204 R7001206 1135 R36 R3S R36 R3S' 5 5 5 5 5 IR IR IR IR IR T7270248640N T1210348640N T727044864DN T727054864DN T721064864DN 591 591 S91 591 591 470PA160 470PB50 470PB60 470PB80, 410PB100 IR IR IR IR IR T120165504DN T7200655040N T720065504DN T720065504DN T7201055040N S61 561 S61 S51 561 601V140 601V14OB 5OlV160 601V1BO 501V200 R 430PM10 43OPM20 430PM30 430PM40 430PM50 5 5 5 S S IR IR IR IR IR R7001404 R7001406 R7001604 R7001804 R7002004 5 5 5 5 S IR IR IR IR IR 1135 R35 R35 R3S R3S T721014B84DN T7270248840N T721034884DN T727044864DN T721064864DN 591 591 S91 S91 S91 430PM60 435B 435D 435F 435H 410PB110 410PB120 410PB130 470PBl40 410PB150 III IR IR IR IR 551 551 551 551 S51 601V210 501V220 601V230' 501V24O 501VRBOB IR WES WES WES WES T720115504DN T720125504DN T720135504DN T120146504DN T720165504DN' IR IR JR IR IR 5 R R R R 5 S 5 5 S R70021 04 R7002204 R7002304 R7002404 R7010806' T727064B940N R4050170 R4050210 R4050370 R4050410 S91 Rl1 R17 R17 R17 R35 R36 R35 R36 R36 470PBI60 410T 411PD120 411PD14O 471PDI60 ,8 IR wee IR IR, IR T720165504DN' T727XX45240N R6201250 R6201450 R6201650 551 591 R39 R39 R39 501VRBOB 50tVR 1OOB , 501VR120 501VR120B 501VR14O IR IR IR IR IR 117010806 R7011006 R7011204 117011206 R7011404 R36 R3S R35 R36 1136 R R 1-17T 144T ~4flA 146B .. 460 !46F ~46H S R R R R4061270 439A 439AR 439B 439BR Note: Manufacturer's Codes, ProductTv~Notes and@ Rep1aC8ntf!rtt NOtes ,are listed. onpiJge G3" . G32 Type Mfgr• R17 R17 R17 R17 R17 .". ".- • . . •" ~i~~ -. 8 5 5 8 8 8 II R 5 8 8 II R6S R66 R66 RS6 RS6 Pert Number Type Mfgr. Suggested@ Replacement Page Part Number Type Mfgr. Suggested@ Repllcement Plge 501VRI40B 501VR160 501VRIBO 501VR2oo 501VR210 R R R R R IR IR IR IR IR R7011405 R7011604 R7011B04 R7012004 R7012104 R35 R35 R35 R35 R35 67g·4 679·6 680·1 680·2 6BO·4 A A A A A UNI UNI UNI UNI UNI MBI2A25V40 MB12A25Y60 MB12A1OV10 MB12Al0V20 MBI2A1OV40 501VR220 501VR230 501VR240 507C ............. 506C ............. R R R 0 D IR IR IR WES WES R7012204 R7012304 R7012404 CF CF R35 R35 R35 CF CF 6BO·6 697·1 697·2 697·3 697·4 A A A A A UNI UNI UNI UNI UNI MB12A1OV60 MBllA06Vl0 MBllA06V20 MBllA06V30 M811A06V40 A3 550PA5 550PA10 550PA20 550PA30 550PA40 S S S S 5 IR IR IR IR IR T720015504DN T7200155040N T7200255040N T7200356040N T7200455040N 551 551 S51 S51 551 697·5 697·6 7ooPA50 7ooPA60 700PABO A A S S 5 UNI UNI IR IR IR 550PA50 550PA60 560PB60 550PB60 550PBBO S 5 S S S IR IR IR IR IR T7200555040N T7200655040N T7200555040N T7200655040N T7200B55040N S51 S51 S51 S51 S51 700PAloo 7ooPA110 700PA120 7ooPAI30 7ooPAI40 S 5 S S S 550PBloo 550PBll0 550PB120 550PB13O 550PB14O S 5 S 5 5 IR IR IR IR IR T7201055040N T7201155040N T7201265040N T7201355040N T7201455040N S51 S51 S51 S51 551 7ooPAl50 7ooPAI60 7ooPA170 7ooPK50 7ooPK60 550PBl50 550PBl60 560PB010 560PB020 550PB030 5 5 5 5 5 IR IR IR IR IR T7201555040N T7201655040N CF CF CF S51 S51 CF CF CF 550PB040 550PB050 550PB06O 6OOPB170 6ooPBl80 5 S li . S S IR IR IR IR IR CF CF CF T920170604DW T9201B0604DW 6ooPBI90 6ooPB2oo 6OOPB21 0 8OOPB22O 8OOPB23O 5 S 5 5 5 IR IR IR IR IR 6ooPB240 6ooPB250 651 POB50l20 851POB50l30 651 POB50l25 5 5 R R R IR IR IR IR IR 651 POB60l20 651 POB60l25 651 PDB60l20 851 POB60l25 851 POB6OL3O PIn Number 750PB14O 750PBI50 750PBI80 750P811O 750PBI80 Type Mfgr. Sugge.ted@ Replacement Pege S S 5 S 5 IR IR IR IR IR T920140B040W T920150B040W T920160B040W T920170604DW T9201BOB040W 555 555 555 555 555 A3 A3 780P 780S 760V 760Z 760ZB R R R R R WES WES WES WES WES 760P 780S 760Y 760Z 760ZB CF CF CF CF CF MBllA06V50 MB11A06V60 T9200507040W T9200607040W T9200B0704DW A3 A3 S55 555 S55 760Z0 760ZF 760ZH 760ZK 760ZM R R R R R WES WE5 WES WE5 WES 760Z0 760ZF 760lH 760ZK 760lM CF CF CF CF CF IR IR IR IR IR ,T9201OO704DW T9201107040W T920120704DW T920130704DW T920140704DW S55 S55 555 S65 S55 761P 761S 761V 761Z 7B1ZB R R R R R WES WES WES WES WES 761P 761S 761V 761Z 761ZB CF CF CF CF CF S S 5 5 5 IR IR IR IR IR T920160704DW T920160704DW T9201707040W T9200507040W T9200607040W S55 S55 S66 555 S55 7B1Z0 761ZF 761ZH 761ZK 761ZM R R R R R WES WES WES WES WES 7B1Z0 761ZF 761ZH 761ZK 761ZM CF CF CF CF CF 7ooPKBO 700PKloo 7ooPK110 700PK120 7ooPK)30 ' S 5 S S S IR IR IR IR IR T920OB0704DW T9201OO704DW T920110704DW T920120704DW ,~2Ql ;l(>7Q4Dy\( S55 S55 S55 S55 555. 770A 710B 770C 7700 770F R R R R R WES WES WES WES WES 770A 770B 770C 7700 770F CF CF CF CF CF CF CF CF S55 S55 7ooPK14O 700PKl50 7ooPKl60 7ooPK170 710A S S S S R IR IR IR IR WES T920140704DW T920150704DW T9201507040W T920170704DW 710A 555 S55 S55 S55 CF 770H 7701( 770M 770S 770l R R R R R WES WES WES WES WES 770H 770K 770M 7705 770l CF CF CF CF CF T920190604DW T920200604DW T9202106040W T920220604DW T9202306040W S55 S55 S55 555 S55 710AR 710B 710BR 710C 710CR R R R R WES WE5 WE5 WES WE5 710AR 7106 710BR 710C 710CR CF CF CF CF CF 770lD 770ZH 771 A 771B 771C R R R R R WES WES WES WES WES 770lD 770lH 771A 771B 771C CF CF CF CF CF T920240604DW T920250604DW R722050BEJ R72205OBOJ R7220506CJ 555 S55 R71 R71 R71 710D 710DR 710E 710ER 710F R R R R R WE5 7100 WES 710DR WI;S 710E WES 710ER WE5 710F CF CF CF CF CF 7710 771F 771H 771K 771M R WES WES WES WES WES 771D 771F 771H 771K 771M CF CF CF CF CF R IR R IR R 'IR R IR R IR R7220606EJ R72206060J R722060BEJ R7220506CJ R72206080J R71 R71 R71 R71 A71 710FR 710H 710HR 710K 710KA R R R R R WE5 WE5 WES WES WES 710FR 710H 710HR 710K 710KR CF CF CF CF 771S 771Z 771Z0 771ZH 7BlA WE5 WES WES WE5 WES 7715 771Z 771ZD 771ZH R6200030 CF CF CF CF R39 651POBlool25 651 POB 1OOl3O 651 PDB 120L25 651 POB 120L30 A R R R IR IR IR IR R7221006DJ R7221006CJ R7221208DJ A7220606CJ R71 R71 R71 R71 710M 710MR 710P 710PR 7105 R R R R R WES WES WES WES WES '710M 710MR 710P 710PR 710S CF CF CF CF CF 7B2B 7B2C 7B20 782F 7B2H R WES WES WES WE5 WES R6200130 R620+130 R6200230 R62oo330 R6200430 651 POB 130L30 661POBI40l30 651 POBI60L30 651 POL50S20 651 POL50S25 R R R R R IR IR IR IR IR R7221306CJ R7220506CJ R7221606CJ R722050BEJ R722050BDJ R71 R71 R71 R71 R71 R39 R39 R39 R39 R39 710SR 710V 710VR 710l 710ZD R R R R WES WES WES WES WES 710SR 710V 710VR 710l 710Z0 CF CF CF CF CF 782K 7B2M 783A 7B3B 783D R R R R R WES WES WES WES WES R6200530 R6200630 7B3A 7B3B 7B3D R39 R39 CF CF CF 651 POL50S30 651 PDL60S20 651 POL60S25 661 POL60S20 651 PDL60S25 R R A R R IR IR IR IR IR R722050BCJ A7220606EJ R722060BOJ R7220606EJ A72206060J R71 R71 R71 A71 A71 710ZDR 710ZR 720A 720AA 7206 R R A R A WES WES WES WES WES 71Ol0R 710lR 720A 720AA 7208 CF CF CF CF CF R R R A A WES WES WES WES WES 651 PDL60S30 651 PDL looS26 651 PDL l00S30 651POL110S25 651 POLll 0530 A A A R R 783F 7B3H 783K 783M 7B3S IR IR IR IR IR A7220606CJ R72210OBOJ A7221006CJ R722110BDJ R722110BCJ 7B3F 783H 783K 783M 783S CF CF CF CF CF A71 A71 A71 R71 R71 ~208A 20C 720CR 7200 7200R R A R R R WES WES WES WES WES 720BR 720C 720CR 720D 1200R CF CF CF CF CF 661 PDL 120S25 B51 POL 120S30 661T 662T 666T R R S S S IR IR WCE WCE WCE R122120BDJ R7221206CJ T920XX0503DW T920XX0703DW T920XX1003DW R71 R71 S65 S55 S55 783Z 7B3ZD 7B3ZH 7B3ZK 7B3ZM R R R R R WES WES WES WES WES 783Z 7B3ZD 7B3ZH 7B3ZK 7B3ZM CF CF CF CF CF 720F 720FR 720H 720HR 120K R R R R R WES WES WES WES WES 720F 720FR 720H 720HR 720K CF CF CF CF 66BT 869T 673-1 673·2 673·3 S S A A A WCE WCE UNI UNI UNI T920XX1003DW T920XX1003DW MB11A02Vl0 MB11A02V20 MBl1A02V30 S56 S55 7B4A 7B4B 7B4C 7B40 7B4F R R R R R WES WES WES WES WES CF CF CF CF CF CF CF CF CF CF 720KR 720M 720MR 720S 720SR R R R R R WES 720KR WES 120M WES 720MR 673-4 673·5 673·6 B79·1 679·2 A A A A A UNI UNI UNI UNI UNI MBl1A02V40 MBllA02V50 MB11A02V60 MBI2A25Vl0 MB12A25V20 ~g'~~R CF CF CF CF CF 7B4H 7B4K 7B4M 7B4S 7B4Z R R R A R WES WES WES WES WES CF CF CF CF CF CF CF CF CF CF 720l 720lR 750PBll0 750PB12O 750PBI30 R R S S S WES WES IR IR IR CF CF S56 S55 S55 7BeA 7858 7B5C 7B6D 785F R R R R R WES WES WES WES WES CF CF CF CF CF CF CF CF CF CF A3 A3 A3 A3 A3 A3 A3 A3 R 'R 720l 720lR T920110B04DW T920120B04DW T920130B040W A3 A3 A3 A3 A3 A3 A3 . ",' CF CF Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are listed on page G3 G33 Suggestad@ Port Numbe, Typo Mfg,. Replacement Pege Part Numbe, Type Mfg,. Sugg.stad@ Replacement Pege Type Mfg,. Suggestad@ Replacement Page 786H 785K 785M 786S 786Z R R R R R WES WES WES WES WES CF CF CF CF CF CF CF CF CF CF 790ZK 790ZM 790ZS 790ZZ 790ZZ0 R R R R R WES WES WES WES WE5 790ZK 790ZM 790ZS 790ZZ 790ZZ0 CF CF CF CF CF 809ZM61 850PA50 850PA80 850PA80 850PA100 S S S S 5 WES IR' IR IR IR 809ZM61 T9200509040W T920060904DW T92DD809040W T9201D09040W CF S66 556 565 556 788A 788AR 788B 7B8BR 7B8C R R R R R WE5 WE5 WE5 WE5 WES 788A 788AR 788B 788BR 788C CF CF CF CF CF 790ZZK 791A 791B 791C 7910 R WE5 WES WES WES WES 790ZZK IN3161R IN3162R IN3163R IN3164R CF R31 R31 R31 R31 860PAll0 850PA120 850PAl30 850PA14O 85OPAl50 5 S S S 5 IR IR IR IR IR T9201109040W T9201209040W T9201309040W T920140904DW T9201609040W 556 566 565 565 565 788CR 78BO 7B80R 788F 788FR R R R R R WE5 WE5 WES WES WES 788CR 7880 7880R 788F 788FR CF CF CF CF CF WE5 WES WES WES WES WES R31 R31 R31 R31 R31 R31 S 5 5 S S IR IR IR IR IR T9201609040W T9200509040W T92DD809040W T9200809040W T9201009040W S66 565 555 S66 566 R R R R R WES WES WES WES WES 788H 788HR 788K 788KR 788M CF CF CF CF CF IN3166R IN3168R IN3169R IN3170R IN3172R IN3174R 85OPAl80 85OPK50 850PK80 850PK80 850PK100 7B8H 7B8HR 788K 788KR 788M 791F 791H 791K 791M 791S 791Z 791Z0 791lH 791ZK 791ZM WE5 WE5 WE5 WE5 R8011224 R8011424 R8011524 R8011624 CF CF CF CF 850PKll0 850PK120 85OPKI30 860PK14O 860PKI60 5 S S 5 5 IR IR IR IR IR T9201109040W T9201209040W T9201309040W T9201409040W T9201609040W 565 566 565 555 '555 788MR 788S 7885R 788Z 788Z0 R R R R R WES WES WES WE5 WES 788MR 788S 788SR 788Z 788Z0 CF CF CF CF CF 791Z5 791ZZ 791ZZK 791ZZ0' 801PD80B R R R WE5 WES WES WE5 IR R8011824 R6012024 791ZZK 791ZZ0 R7200612 CF CF CF CF R43 850PKl80 9OOPB60 900PB60 9OOPBSO 900P81 00 S 5 S S S IR IR IR IR IR T920160904DW T920050904DW T92DD809040W T92DD809040W T9201D09040W 555 566 S65 565 555 788Z0R 788ZH 788ZHR 788ZK 788ZKR R R R R R WE5 WE5 WES WES WE5 788Z0R 788ZH 788ZHR 788ZK 788ZKR CF CF CF CF CF 801P0808 801P01008 801P0120 801P01208 801P014O R R R R R IR IR IR IR IR R72D0912 R7201012 R7201209 R7201212 R7201409 R43 R43 R43 R43 R43 9OOP8110 900PB120 l000PA50 l000PA80 1OOOPAI 00 5 S 5 5 5 IR IR IR IR IR T9201109040W T9201209040W T9200610040W T9200610040W T9201010040W S66 555 S65 S65 S66 788ZM 788ZMR 788ZR 788ZS 788Z5R R R R R R WE5 WE5 WE5 WE5 WES 788ZM 788ZMR 788ZR 788ZS 788ZSR CF CF CF CF CF 801POI408 801P0160 801POI80 801P0200 801P08608 R R R R R IR IR IR IR IR R7201412 R7201609 R7201809 R7202D09 R7200612 R43 R43 R43 R43 R43 l000PAll0 l000PAI20 l000PAI30 l000PAI4O l000PAI50 S S S S S IR IR IR IR IR T9201110040W T9201210040W T9201310040W T9201410040W T9201510040W S56 565 S55 S65 S56 788ZZ 788ZZ0 788ZZ0R 7B8ZZR 789A R R R R R WES WES WES WES WE5 788ZZ 7B8ZZ0 788ZZ0R 788ZZR 789A CF CF CF CF CF 801P08808 801 P081 008 801P08120 801P081208 801P0814O R R R R R IR IR IR IR IR R7200912 R7201012 R7201209 R7201212 R7201409 R43 R43 R43 R43 R43 l000PAl80 l000PK50' l000PK60 l000PK80 l000PK100 S S S S S IR IR IR IR IR T920161004DW T9200510040W T9200610040W T920061004DW T9201010040W 555 566 566 555 S66 789AR 7898 7898R 789C 789CR R R R R R WES WES WE5 WES WES 789AR 7898 789BR 789C 789CR CF CF CF CF CF 801P081408 801P08180 801P08180 801P08200 801P08210 R R R R R IR IR IR IR IR R7201412 R7201609 R7201609 R7202009 R72021 09 R43 R43 R43 R43 R43 l000PK110 l000PK120 l000PK130 l000PK140 l000PK160 S 5 S 5 5 IR IR IR IR IR T9201110040W T920121004DW T9201310040W T9201410040W T9201610040W 566 S55 S56 S56 555 7890 7890R 789F 789FR 789H R R R R R WES WES WE5 WE5 WE5 7890 7890R 789F 789FR 789H CF CF CF CF CF 801P08220 801P08230 801P0824O 809A 809A51 R .IR R IR R IR WES S S WES R7202209 R7202309 R7202409 609A 809A51 R43 R43 R43 CF CF l000PKI80 1200PN120 1200PN130 1200PN14O 1200PNl50 S S S 5 S IR IR IR IR IR T9201610040W TA201212040Y TA201312040Y TA201412040Y TA201612040Y S56 S67 567 S67 5.67 789HR 789K 789KR 789M 789MR R R R R R WES WES WES WES WES 789HR 789K 789KR 789M 789MR CF CF CF CF CF 8098 809861 809C 609C61 8090 S S S S S WES WES WES WES WES 8098 609851 809C 809C51 8090 CF CF CF CF CF 1200PNI80 1200PN170 1200PNI80 1200PNl90 1200PN200 5 S 5 5 5 IR IR IR IR IR TA201612040Y TA201712040Y TA201812040Y TA201912040Y TA202012040Y 567 567 567 S67 ·567 789S .789SR 788Z 789Z0 789Z0R R R R R R WES WES WES WES WES 7895 7895R 789Z 789Z0 788Z0R CF CF CF CF CF 609061 809E 609E51 809F 809F51 S S S S WES WES WES WES WES 809051 809E 809E51 809F 609F61 CF CF CF CF CF 1200PN210 1200PN220 1561·XX03 1561·XX04 1561·XX09 S S T T T IR IR WES WE5 WES TA202112040Y TA202212040Y 1661·XX03 1561·XX04 1661·XX09 S67 S67 CF CF CF 789ZH 789ZHR 789ZK 789ZKR 789ZM R R R R WES WES WE5 WES WES 789ZH 789ZHR 789ZK 789ZKR 789ZM CF CF CF CF CF 809H 609H51 809K 809K61 809M S S S S 5 WES WES WES WES WES 609H 809H61 809K 809K51 809M CF CF CF CF CF 1561·XX10 1561·XXI5 1671·XX20 1571·XX26 18OOPN120 T T T T S WES WES WES WES IR 1561·XX10 1561·XXI5 1571·XX20 1671·XX26 CF CF CF CF CF CF 789ZMR 789ZS 789ZSR 789ZR 789ZZ WES WES WES WES WES 789ZMR 789ZS 789ZSR 789ZR 789ZZ CF CF CF CF CF 809M51 809P 809P61 809S 809S51 S S S 5 S WES WES WES WES WE5 809M51 809P 809P51 8095 809S61 CF CF CF CF CF 16OOPN130 16OOPN14O 16OOPNI50 18OOPNI80 1801POK120 S S S S R IR IR IR IR IR CF CF CF CF R9201216 CF CF CF CF .R47 789ZZ0 789ZZOR 789ZZR 790A 7908 WES 789Z20 WES 789ZZ0R WE5 789ZZR \IllES 790A WES 7908 CF CF CF CF CF 809V 809V51 809Z 809Z51 809Z8 S S S S S WES WES WE5 WES WES 809V 809V61 809Z 809Z61 809ZB CF CF CF CF CF 1801POK14O 1801POKI80 1801POKI80 1801POK200 1801POK220 R R R R R IR IR IR IR IR R9201416 R9201616 R9201816 R9202016 R9202216 R47 R47 R47 R47 R47 S 790C 7900 790F 790H 790K R R R WE5 WES WES WE5 WES 790C 7900 790F 790H 790K CF CF CF CF CF 809Z851 809Z0 809Z061 809ZF 809ZF51 S S S 5 S WES WES WES WES WES 809Z861 809Z0 809Z051 809ZF 809ZF61 CF CF CF CF CF 1601POK24O 1601PDK260 2001P060 2001P080 2001P0100 R R R R R IR IR IR IR IR SO SO R9200620 R9200920 R9201020 CF CF R47 R47 R47 790M 7905 790Z 790Z0 790ZH R R R R R WE5 WES WES WE5 WES 790M 7905 790Z 790Z0 790ZH CF CF CF CF CF 809ZH 809ZH51 809ZK 809ZK51 809ZM 5 S 5 5 S WES WES WES WES WES 809ZH 809ZH61 809ZK 809ZK51 809ZM CF CF CF CF CF 2oo1P0120 2001P014O 2001POI50 2001POK60 2001POK80 R R R R R IR IR IR IR IR R9201220 R9201420 R9201620 R9200620 R9200920 . R47 R47 R47 R47 R47 Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are listed on page G3 G34 Part Numbe, Suggested@ Part Numbat' Type Mfgr. Replacement Page Part Number Type Mfgr. Suggested@ Replacement Page Part Numbat' Type Mfgr. Suggested@ Replacement Page S S S S 5 WES WES WE5 WE5 WE5 2201K 2201M 2201P 22015 2201V CF CF CF CF CF 2271P 2271S 2271V 2271Z 22728 S S 5 S 5 We5 WES WE5 WES WE5 2271P 2271S 2271V 2271Z 22728 CF CF CF CF CF 2001 PDKI 00 2001POK120 2001POKI40 2001POKI80 21818 R R R R S IR IR IR IR WES R9201020 R9201220 R9201420 R9201620 21818 R47 R47 R47 R47 CF 2201K 2201M 2201P 2201S 2201V 21810 2181F 2181H 2181K 2181M S S S S S WES WES WES WES WES 21810 2181F 2181H 2181K 2181M CF CF CF CF CF 2201Z 2201Z8 2201Z0 2202A 22028 5 5 5 S 5 WE5 WES WES WES WES 2201Z 2201ZB 2201Z0 2202A 22028 CF CF CF CF CF 22720 2272F 2272H 2272K 2272M 5 WES 5 WES S WES S . WES S WES 22720 2272F 2272H 2272K 2272M 'CF CF CF CF CF 2181P 2181S 2181V 2181Z 21828 S 5 5 5 5 WES WE5 WES WES WES 2181P 21815 2181V 2181Z 21828 CF CF CF CF CF 22020 2202F 2202H 2202K 2202M 5 5 S 5 5 WE5 WE5 WE5 WE5 WE5 22020 2202F 2202H 2202K 2202M CF CF CF CF CF 2272P 2272S 2272V 2272Z 2272Z0 S 5 S 5 S WES WE5 WE5 WES WES 2272P 2272S 2272V 2272Z 2272Z0 CF CF CF CF CF 21820 2182F 2182H 2182K 2182M 5 5 5 5 5 WES WES WE5 WES WE5 21820 2182F 2182H 2182K 2182M CF CF CF CF CF 2202P 2202S 2202V 2202Z 2202Z8 5 5 S 5 S WE5 WE5 WE5 WES WES 2202P 22025 2202V 2202Z 2202ZB CF CF CF CF CF 22918 22910 2291F 2291H 2291K 5 S S 5 S WES WES WE5 WES WE5 22918 22910 2291F 2291H 2291K CF CF CF CF CF 2182P 2182S 2182V 2182Z 2182Z0 5 5 5 5 5 WES WES WE5 WE5 WES 2182P 21825 2182V 21B2Z 2182Z0 CF CF CF CF CF 2202Z0 2231A 22318 22310 2231F S S S S S WES WES WES WES WES 2202Z0 2231A 22318 22310 2231F CF CF CF CF CF 2291M 2291P 2291S 2291V 2291Z S S S S S WE5 WES WES WES WES 2291M 2291P 22915 2291V 2291Z CF CF CF CF CF 2191A 2191A51 21918 2191861 21910 5 S 5 5 5 WES WE5 WE5 WES WES 2191A 2191A51 21918 219851 21910 CF CF CF CF CF 2231H 2231K 2231M 2231P 2231S 5 S S S S WES WES WES WES WES 2231H 2231K 2231M 2231P 2231S CF CF CF CF CF 2292B 22920 2292F 2292H 2292K 5 5 5 S S WE5 WES WES WES WE5 22928 22920 2292F 2292H 2292K CF CF CF CF CF 2191061 2191F 2191F61 2191H 2191H61 5 S 5 S S WES WES WES WES WES 2191051 2191F 2191F51 2191H 2191H51 CF CF CF CF CF 2231V 2231Z 2231Z8 2231Z0 2232A S S S S S WES WES WES WES WE5 2231V 2231Z 2231Z8 2231Z0 2232A CF CF CF CF CF 2292M 2292P 2292S 2292V 2292Z 5 5 S S S WE5 WES WES WES WES 2292M 2292P 2292S 2292V 2292Z CF CF CF CF CF 2191K 2191K61 2191M 2191M6l 2191P 5 5 5 5 5 WE5 WE5 WE5 WE5 WE5 2191K 2191K51 2191M 2191M51 2191P CF CF CF CF CF 22328 22320 2232F 2232H 2232K 5 5 S 5 S WES WES WES WE5 WES 22328 22320 2232F 2232H 2232K CF CF CF CF CF 2292Z0 25018 25010 2601F 2501H S S S S S WES WES WES WES WES 2292Z0 25018 25010 250lF 2501H CF CF CF CF CF 2191P61 2191S 2191S51 2191V 2191V51 5 5 5 5 5 WE5 WE5 WE5 WES WE5 2191P61 21915 2191551 2191V 2191V51 CF CF CF CF CF 2232M 2232P 2232S 2232V 2232Z S S S S S WES WES WES WE5 WES 2232M 2232P 2232S 2232V 2232Z CF CF CF CF CF 2501K 2501M 2502B 25020 2502F S S S S S WES WES WES WES WES 250IK 2501M 25028 25020 2502F CF CF CF CF CF 2191Z 2191Z51 2192A 2192A61 21928 5 5 5 5 S WE5 WES WES WES WES 2191Z 2191Z51 2192A 2192A51 21928 CF CF CF CF CF 2232Z8 2232Z0 22418 22410 2241F S S S 5 S WES WES WES WES WES 2232Z8 2232Z0 22418 22410 2241F CF CF CF CF CF 2502H 2502K 2502M 2502P 2502S S S S S S WES WES WES WES WES 2502H 2502K 2502M 2502P 26025 CF CF CF CF CF 2192851 21920 2192051 2192F 2192F51 S S S S S WES WES WES WE5 WE5 2192851 21920 2192051 2192F 2192F51 CF CF CF CF CF 2241H 2241K 2241M 2241P 22415 5 S S S S WES WES WES WES WES 2241H 2241K 2241M 2241P 2241S CF CF CF CF CF 25038 25030 2503F 2503H 2503K 5 S S S S WES WES WES WES WES 25038 25030 2503F 2503H 2503K CF CF CF CF CF 2192H 2192H51 2192K 2192K51 2192M S S S S S WES WES WES WES WES 2192H 2192H61 2192K 2192K61 2192M CF CF CF CF CF 2241V 2241Z 22428 22420 2242F 5 S 5 S S WES WE5 WES WES WES 2241V 2241Z 22428 22420 2242F CF CF CF CF CF 2503M 2503P 2503S 2603V 2503Z S S S S S WES WES WES WES WES 2503M 2503P 2503S 2503V 2503Z CF CF CF CF CF 2192M51 2192P 2192P61 2192S 2192851 S 5 S 5 5 WE5 WES WE5 WE5 WES 2192M51 2192P 2192P51 21925 2192S61 CF CF CF CF CF 2242H 2242K 2242M 2242P 2242S S S S S S WES WES WES WE5 WES 2242H 2242K 2242M 2242P 2242S CF CF CF CF CF 2503Z0 2503ZH 2506B 25060 2505F 5 S S S S WES WES WES WES WES 2503Z0 2603ZH 25058 25050 2505F CF CF CF CF CF 2192V 2192V51 2192Z 2192Z51 2193A S S S S S WES WES WE5 WES WES 2192V 2192V61 2192Z 2192Z51 2193A CF CF CF CF CF 2242V 2242Z 2242Z0 22488 22480 S 5 5 5 S WES WE5 WE5 WE5 WES 2242V 2242Z 2242Z0 22488 22480 CF CF CF CF CF 2505H 2506K 2506M 2505P 2505S S S S S S WES WES WES WES WES 2505H 2506K 2505M 2505P 2506S CF CF CF CF CF 21938 21930 2193F 2193H 2193K S S S S S WE5 WE5 WES WES WES 21938 21930 2193F 2193H 2193K CF CF CF CF CF 2248F 2248H 2248K 2248M 2248P S 5 S S 5 WES WES WE5 WES WES 2248F 2248H 2248K 2248M 2248P CF CF CF CF CF 2505V 2505Z 2611B 25110 2611F S S S S S WES WES WES WE5 WES 2505V 2505Z 26118 25110 2511F CF CF CF CF CF 2193M 2193P 2193S 2193V 2193Z S S 5 S S WES WES WES WES WES 2193M 2193P 2193S 2193V 2193Z CF CF CF CF CF 22485 2248V 2248Z 2248Z0 22718 S S S S S WES WES WES WE5 WES 2248S 2248V 2248Z 224BZO 22718 CF CF CF CF CF 2611H 2611K 2511M 2511P 2511S S S S S S WES WES WES WES WES 2511H .2511K 2611M 2511P 2511S CF CF CF CF CF 2201 A 22018 22010 2201F 2201H S S S S S WES WES WES WES WES 2201A 22018 22010 2201F 2201H CF CF CF CF CF 22710 2271F 2271H 2271K. 2271M S S 5 S S WE5 WES WES WES WES 22710 2271F 2271H 2271K 2271M CF CF CF CF CF 2511V 2511Z 2512A 25128 25120 S S S S S WES WES WES WES WES 2511V 26"Z 2612A 25128 25120 CF CF CF CF CF Note: Manufacturer's Codes, Product Type Notes and ® Replacement Notes are listed on page G3 G35 Sugge.ted@ Sugge.ted@ Part Number Type Mfg •. Replacement PagL Part Numbe. Type Mfg •. Replacement Page S"IIII_@ Part N'umber R.~I8c_ P- CF CF CF CF CF S S S S S WES WES WE5 WES WES 2643M 2543M61 2543P 2543P61 2543S CF CF CF CF CF 2832F 2832H 2832K 2832M 2832p S S 5 S S WES WES WES WES WES 2832F 2832H 2832K 2832M 2832P CF CF CF CF CF 2512S 2512V 2512Z 2513B 25130 CF CF CF CF CF 2543551 2601B 26010 2601F 2601H S S 5 S 5 WES WE5 WES WE5 WES 2543S51 2601B 26010 2601F 2601H CF CF CF CF CF 28325 2832V 2721A 2721B 27210 5 S 5 5 .S WE5 WES WE5 WES WE5 2832S 2832V 2721A 2721B 27210 CF CF CF CF CF WE5 WES WES WE5 WES 2513F 2513H 2513K 2513M 2513P CF CF CF CF CF 2601K 2601M 2601P ,2601PDN120 2601PONl40 S S S R R WES WES WES IR IR 2601K 2601M 2601P CF CF CF CF CF CF CF 2721F 2721H 2721K 2721M 2721P 5 S 5 S 5 WE5 WES WES WE5 WE5 2721F 2721H 2721K 2721M 2721P CF CF CF CF CF 5 S 5 5 S WES WES WE5 WES WES 26135 2513V 2513Z 2513ZB 251320 CF CF CF CF CF 2601PDN180 2601PONl80 2601PDN200 2601PDN220 2601PDN240 R R R R R IR IR IR IR IR CF CF CF CF CF CF CF CF CF CF 27215 2721V 27212 2722A 2722B S 5 S 5 S WE5 WE5 WE5 WE5 WES 2721S 2721V 2721Z 2722A 2722B CF CF CF CF CF 2515B 25150 2515H 2515K 2515M S S S 5 5 WE5 WES WES WE5 WE5 2615B 25150 2515H 2515K 2615M CF CF CF. CF CF 2801PON250 26015 2601 V 26012 2602B R S S 5 S IR WES WES WE5 WE5 CF 2601S 2601 V 2601Z 2602B CF CF CF CF CF 27220 2722F 2722H 2722K 2722M S S S 5 5 WES WES WE5 WE5 WES 27220 2722F 2722H 2722K 2722M CF CF CF CF CF 2515P 25155 2515V 2615Z 2541A 5 5 5 5 S WE5 WE5 WE5 WE5 WES 2515P 25165 2515V 2615Z 2541A CF CF CF CF CF 26020 2802F 2602H 2802K 2802M 5 5 5 5 S WE5 WE5 WE5 WE5 WES 26020 2602F 2602H 2602K 2602M CF CF CF CF CF 2722P 27225 2722V 2722Z 2722Z0 5 5 5 5 S WES WE5 WE5 WES WES 2722P 27225 2722V 2722Z 2722Z0 CF CF CF CF CF 2541A51 2541B 2541B51 25410 2541051 S S S S S WES WES WES WES WES 2541A51 2641B 2541B61 26410 2641051 CF CF CF CF CF 2602P 2602S 2602V 2802Z 26058 S S S S S WES WES WES WES WES 2602P 2602S 2602V 2602Z 2605B CF CF CF CF CF 2731A 2731B 27310 2731F 2731H S S S S S WES WES WES WES WE5 2731A 2731B 27310 2731F 2731H CF CF CF CF CF 2541F 2641F51 2541H 2541H51 2541K S S S S S WES WES WES WES WES 2541F 2541F61 2541H 2641H61 2541K CF CF CF CF CF 26050 2605F 2805H 2605K 2605M S S S S S WES WES WES WES WES 26050 2606F 2606H 2805K 2805M CF CF CF CF CF 2731K 2731M 2731P 2731S 2731V S S S S S WES WES WES WES WES 2731K 2731M 2731P 2731S 2731V CF CF CF CF CF 2541K51 2541M 2541M51 2541P 2641 PSI S S S S S WES WES WES WES WES 2541K51 2641M 2641MSI 2641P 2541P51 CF CF CF CF CF 2605P 2605S 260SV 2605Z 2811B S S S S S WES WES WES WES WES 2805P 2805S 2605V 2806Z 2811B CF CF CF CF CF 27312 2731Z0 2732A 2732B 27320 S S S S S WES 27312 WES 273120 WES 2732A WES 2732B WES.27320 CF CF CF CF CF 2541S 2541S51 2541V 2541V51 2641Z S S S S S WES WES WES WES WES 2541S 2641S51 2541V 2641V51 25412 CF CF CF CF CF 26118 28110 2811F 2811H 2611K 2611M S S S 5 S S WES WES WES WES WES WES 26118 28110 2611F 2811H 2611K 2611M CF CF CF CF CF CF 2732F 2732H 2732K 2732M 2732P S S S S S WES WES WES WES WES 2732F 2732H 2732K 2732M 2732P CF CF CF CF CF 2541251 2542A 2542A51 25428 2642851 5 S S 5 S WES WES WES WES WES 2541Z51 2542A 2542A51 2642B 2542B51 CF CF CF CF CF 2811P 2611S 2611V 26112 26128 S 5 5 S S WES WE5 WES WES WES 2611P 26115 2611V 26112 26128 CF CF CF CF CF 2732S 2732V 2732Z 273220 2761B S S S S S WES WES WES WES WES 2732S 2732V 2732Z 2732Z0 2781B CF CF CF. CF CF 25420 2542051 2542F 2542F51 2542H 5 S S S S WES WES WES WES WES 26420 2642051 2642F 2642F51 2542H CF CF CF CF CF 26120 2612F 2612H 2612K 2812M S S 5 S 5 ' WES WES WES WES WES 28120 2612F 2612H 2612K 2612M CF CF . CF CF CF 27810 2781F 2761H 2761K 2781M S S 5 5 5 WE5 WES WES WES WES 27610 2761F 2781H 2761K 2761M CF CF CF CF CF 2542H51 2542K 2542K51 2542M 2542M51 5 S S S 5 WES WES WES WE5 WE5 2542H51 2542K 2542K51 2542M 2642M51 CF CF CF CF CF 2812P 2612S 2612V 2612Z 2612Z0 5 S S 5 S WES WES WES WES WES 2612P 2612S 2612V 2612Z 2612ZD CF CF CF CF CF 2781P 2761S 2761V 27612 2762A S S 5 S S WES WES WES WE5 WES 2761P 2761S 2761V 2781Z 2782A CF CF CF CF CF 2542P 2542P51 2542S 2542551 2542V S S S S S WES WES WES WES WES 2542P 2642P51 2642S 2542551 2542V CF CF CF CF CF 28158 26150 2615F 2615H , 2616K S S 5 5 S WES WE5 WES WES WES 26158 26150 2616F 2616H 2616K CF CF CF CF CF 27828 27820 2762F 2762H 2782K S 5 S 5 5 WES WES WES WES WES 27628 27820 2782F 2762H 2782K CF CF CF CF CF 2642V61 2542Z 2542251 2543A 2543A51 S 5 S S S WES WES WE5 WES WES 2642V61 2542Z 2642251 2543A 2643A51 CF CF CF CF CF 2615M 2615P 2615S 2615V 2815Z 5 5 5 S S WES WES WES WES WES 2616M 2615P 26155 2615V 26152 CF CF CF CF CF 2762M 2782P 2762S 2762V 2762Z S S S 5 S WES WE5 WES WE5 WES 2762M 2782P 2762S 2762V 2762Z CF CF CF CF CF 26438 2543851 26430 2543051 2543F S S 5 S S WE5 WE5 WES WES WE5 25438 2643851 25430 2643051 2643F CF CF CF CF CF 28318 26310 2631F 2631H 2631K S 5 S 5 5 WES WES WES WES WES 26318 28310 2831F 2631H 2631K CF CF CF CF CF 2762Z0 2781A 2781B 27810 2781F S 5 5 S S WES WES WE5 WE5 WES 2762Z0 2781A 2781B 27810 2781F CF CF CF CF CF 2643F51 2543H 2543H51 2543K 2543K51 S 5 S S S WES WES WES WES WES 2543F51 2543H 2643H51 2643K 2543K51 CF CF CF CF CF 2831M 2631P 2831S 2632B 26320 5 S 5 S 5 WES WES WE5 WES WES 2831M 2831P 2631S 26328 28320 CF CF CF CF CF 2781H 2781K 2781M 2781P 27815 5 S 5 S S WES WES WE5 WES WE5 2781H 2781K 2781M 2781P 27815 CF CF CF CF CF S S S S S WES WE5 WE5 WES WE5 2512F 2512H 2512K 2512M 2512P 2512S 2512V 25122 2513B 25130 S S S S 5 WES WES WES WES WE5 2513F 2513H 2513K 2513M 2513P S S 5 S S 2513S 2513V 25132 25132B 2513Z0 Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are listed on page G3 G36 Type Mfg •. 2543M 2543M51 2543P 2543P61 2543S 2612F 2512H 2512K 2512M 2512P Suggestod@ Replacement Page Type Mfgr. Page Part Number 27B1V 2781Z 27B2A 27B2B 27820 S S S S S WES WES WES WES WES 27B1V 27B1Z 27B2A 27B28 27B20 CF CF CF CF CF 43892 43B92R 43893 43893R 43B94 R R R R R RCA RCA RCA RCA RCA IN3892 IN3B92R IN3B93 IN3893R R3D2OB12 R55 R55 R55 R55 R55 27B2F 27B2H 27B2K 27B2M 27B2P S S S S S WES WES WES WES WES 27B2F 27B2H 27B2K 27B2M 27B2P CF CF CF CF CF 43B94R 43B99 43899R 43900 43900R R R R R R RCA RCA RCA RCA RCA R3D30612 IN3B99 IN3B99R IN3900 IN3900R R55 R57 R57 R67 R57 27B2S 27B2V 27B2Z 27B2Z0 3001PON80 S S S S R WES WES WES WES IR 27B2S 27B2V 27B2Z 27B2Z0 CF CF CF CF CF CF 43901 43901R 43902 43902R 43903 R R R R R RCA RCA RCA RCA RCA IN3901 IN3901R IN3902 IN3902R IN3903 R57 R57 R67 R57 R57 3001PON80 3001 PDNI 00 3001PDN120 3001PDN14O 3001PDNI80 R R R R R IR IR IR IR IR CF CF CF CF CF CF CF CF CF CF 43903R 43904 43904R R R R RCA IN3903R RCA R402OB20 RCA R4030620 40108 40108R 40109 40109R 40110 R R R R R RCA RCA RCA RCA RCA IN1199A IN1199AR INI200A IN1200AR IN1202A R13 R13 R13 R13 R13 40110R 40111 40111R 40112 40112R R R R R R RCA RCA RCA RCA RCA INI202AR IN1203A INI203AR IN1204A IN1204AR R13 R13 R13 R13 R13 40113 40113R 40114 40114R 40115 R R R R R RCA RCA RCA RCA RCA IN1205A INI205AR IN1206A INI206AR IN3671A R13 R13 R13 R13 R13 40115R 40208 4020BR 40209 40209R R R R R R RCA RCA RCA RCA RCA IN3671AR IN1191 IN1191R IN1192 IN1192R R15 R15 R15 R15 40210 40210R 40211 40211R 40212 R R R R R RCA RCA RCA RCA RCA IN1194 IN1194R IN1195 IN1195R IN119S R15 R15 R15 R16 R15 40212R 40213 40213R 40214 40214R R R R R R RCA RCA RCA RCA RCA IN119SR INl197 IN1197R INl19B INl19BR R15 R15 R15 R15 R15 40741 40742 40743 40754 40755 S S 5 S 5 RCA RCA RCA RCA RCA T40001100B T40002100B T40003100B T400011608 T40002160B S13 513 S13 S13 S13 40756 407E/7 40956 40956R 40967 5 5 R R R RCA RCA RCA RCA RCA T40006160B T400041608 INllB3A INllB3AR INllB4A 513 513 R16 R15 R15 40967R 40958 4095BR 40959 40959R R R R R R RCA RCA RCA RCA RCA INllB4AR INl186A INllB6AR INllBBA INl18BAR R15 R15 R16 R15 R15 40980 40980R 43879 43B79R 43880 R R R R R RCA RCA RCA RCA RCA INl190A INl190AR IN3879 IN3879R IN3880 R15 R15 R55 R55 R55 438BOR 43B81 43BBIR 43882 43BB2R R R R R R RCA RCA RCA RCA RCA IN3B80R IN38Bl IN3B81R IN3882 IN388ZR R55 R55 R55 R55 R55 438B3 43883R 43884 43884R 43889 R R R R R RCA RCA RCA RCA RCA IN3B83 IN3B83R R3020S06 R3030806 IN3889 R55 R55 R55 R55 R55 438a9R 43890 43890R 43B91 43B91R R R R R R RCA RCA RCA RCA RCA IN3889R IN3890 IN3890R IN3891 IN3891R R55 R55 R55 R55 R55 Part Number Typo Mfgr. R67 R57 R57 "1.$ Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on pageG3 G37 . " Designed with YOU in Mind Ideal for all users of power semiconductors regardless of job'function, technical background, and experience level. . -,~ ."", • ... -- "---. . ~s- • < : • • • • 0::-.. .' ".tVeJ'=~ ....... .' Two books in one 8Y2 x 11 format Easy to read Fully indexed tlMfa. . : ' , . :'. : ': -""', • ", . • Master cross reference • Complete product data • 432 Pages U..S. $6.50 • Book Rate Postage Included. Elsewhere $7.50 This valuable reference book will save you time and money when specifying, buying, installing, testing, maintaining, troubleshooting, servicing, identifying, and replacing power semiconductors. Order your copy today. Send check or money order (payable in U.S. funds) to: Westinghouse Electric Corporation Book Order Semiconductor Division Youngwood, Pa. 15697 Acceptance of Orders The conditions stated below shall take precedence over any conditions which may appear oli your standard form, and no provisions or conditions of such form, except as expressly stated herein shall be binding on Westinghouse. Notice of objection ·to any additional or different terms is hereby given.© may develop under proper or normal use during the period of one year from the date of shipment. by repair or replacement f.o.b. factory. of the defective part or parts. or. at its option. issue credit at the original purchase price. Order Entry Send all orders for quantities shown in PL 54~020 to our authorized full line Westinghouse distributor. Orders for larger quantities may go to: Westinghouse Electric Corporation Semiconductor Division Youngwood, Pennsylvania 15697 Telephone: 412-925-7272 TVVX: 510-468-2840 Standard Conditions of Sale Price Policy Prices are firm for orders specifying delivery within six months from acceptance of order by Westinghouse. Shipments scheduled beyond six months from order acceptance. or held or postponed beyond such six months at the request of buyer. are subject to price adjustment to price in effect at time of shipment. Such adjustment will not apply to products scheduled for shipment within thirty days of the date of notification to bUY81 of the price adjustment. Minimum Billing The minimum order shall be $250.00 plus transportation charges. Taxes The prices do not include any Federal. State or Local property. license. privilege. sales. use. excise. gross receipts or other like taxes which may now or hereafter be applicable to. measured. by or imposed upon or with respect to the transaction. the property. its sale. its value or its use. or any services performed in connection therewith. Purchaser agrees to payor reimburse any such taxes which Westinghouse or Westinghouse's subcontractors or suppliers are required to pay. Terms of Payment Terms of payment are net within 30 days from date of shipment. Payments If, in the judgment of Westinghouse. the financial condition of the purchaser. at any time during the manufacturing period. or at any time product is ready for shipment. does not justify the terms of payment specified. Westinghouse may require full or partial payment in advance. © Changed since previous issue. Delivery F.O.B.-P.S.-Frt./Coli. (Transportation charges. not allowed). This product is delivered Free on Board. Point of Shipment. Freight Collect (Transportation Charges not allowed). Loss. Damage, or Delay Westinghouse shall not be liable for failure to perform or for delay in performance due to fire. flood. strike or other labor diffiCUlty. act of any governmental authority or of the purchaser. riot. embargo. car shortage. wrecks or delay in transportation, inability to obtain necessary labor. materials. or manufacturing facilities from usual sources or due to any other cause beyond its reasonable control. In the event of delay in performance due to any such cause. the date of delivery or time for completion will be postponed by such length of time as may be reasonably necessary to compensate for the delay. Warranty Lifetime Guarantee Westinghouse warrants to the original purchaser that it will correct any defects in workmanship or material. by repair or replacement. F.O.B. factory or. at its option. issue credit at the original purchase price. for any silicon power semiconductor bearing this symbol + during the life of the equipment in which it is originally installed. provided said device is used within manufacturer's published ratings and applied in accordance with good engineering practice. Other Semiconductor Products Westinghouse. in connection with products sold. agrees to correct any defect or defects in workmanship or material which Developmental Products Westinghouse semiconductor products designated at the time of sale to be developmental are warranted to meet the applicable preliminary specifications in effect at time of order entry. If any failure to comply with such preliminary specifications appears within 12 months from date of shipment. Westinghouse will correct such non-compliance by repair or replacement f.o.b. factory. or. at its option. issue credit at the original purchase price. The foregoing warranties are exclusive and in lieu of all other warranties of quality whether written, oral, or implied (including any warranty of merchantability or fitness for purpose). Correction of non-conformities in the manner and for the periods of time specified above shall constitute fulfillment of all liabilities of Westinghouse to the purchaser whether based on contract. negligence or otherwise in respect to such products. Limitation of Liability Neither party shall be liable for special. indirect. incidental or consequential damages. The remedies of the purchaser set forth herein are exclusive and the liability of Westinghouse with respect to any contract or sale or anything done in connection therewith. whether in contract. or in tort (including negligence) shall not exceed the price of the equipment or part on which such liability is based. Patents Westinghouse shall at its own expense. defend any suits or proceedings brought against the purchaser. and/or its vendees. mediate and immediate. so far as based on an allegation that any goods. material. equipment. device or article (hereinafter referred to as product) or any part thereof furnished hereunder constitutes an infringement of any claim of any patent of the United States, other than a claim covering a process performed by said product or another product produced by said product. provided that such product is not supplied according to purchaser's design. and is used as sold by Westinghouse. if purchaser January 2. 1978 Supersedes Selling Policy 54-000. pages 1 and 2. Dated February 26. 1976 G39 The purchaser should immediately inspect Patents. Continued each shipment. and if there is evidence of shall have made all payments then due loss or damage during transit. should file hereunder. and if Westinghouse is notified a claim against the carrier. Westinghouse promptly in writing and given authority. may assist with such claims. but will not information and assistance for the defense accept any responsibility for the claims. of said suit or proceeding. and WestingAny adjustments in such cases are behouse shall pay all damages and costs tween the purchaser and the carrier. awarded in any suit or proceeding so defended. provided that this indemnity shall License Notice not extend to any infringement based upon The sale of any product hereunder does the combination of said pro<;tuct or any not convey any license. express or implied. part or parts thereof with another product under any patent claims on circuits. sysor things not furnished hereunder unless tems or processes. or on any combination Westinghouse is a contributory infringer. of the product with other devices. eleWestinghouse shall not be responsible for ments or things. any settlement of such suit or proceeding made without its written (:onsent. In case Termination© the product or any part thereof furnished Any order may be terminated by the hereunder is in any suit or proceeding' so purchaser only upon'payment of reasondefended held to constitute infringement. able cancellation charges which will be and its use is enjoined. Westinghouse determined by Westinghouse in shall. at its own option and its own exconjunction with expenses and pense. either procure for the purchaser the , !)ommitme.nts,incurred. right to continue using said product ,0(.' ,part thereof; or replace it with a non-in';,. fringing product; or modify it so'it b;;-'"'' " ,'. The iri'inimum charge for an order which is cancelled after Engineering has been comes non-infringing; or remove it and completed prior to release to Production refund the purchase price and the transwill be $250,00. or 2% of the selling price. portation and installation costs thereof. whichever is greater. If an order is The foregoing states the entire liability of cancelled after it has been released to Westinghouse with respect of patent inProduction. an additional charge will be fringement by said product or any part made in proportion to the percentage of thereof. completion of the order. The additional charge will be based on material. labor. To the extent that said product. or any and overhead costs plus a 15% markup to part thereof. is supplied according to compensate for disruption in scheduling. purchaser's design or instructions. or is disruption in planned production. lost modified by purchaser. or combined by profit. and other indirect costs. purchaser with another product or things not furnished hereunder except to the exReturning Product tent that Westinghouse is a contributory Authorization and shipping instructions for infringer. or is used by Pllrchaser to per~ the return of any product must be obtained form a process. or produce another prodby the purchaser from Westinghouse beuct. and. by reason of said design,instrucfore returning the product. Product must tion. modification. combination. performbe returned with complete identification in ance. or production. a suit or proceeding accordance with Westinghouse instrucis brought against Westinghouse. purtions or it will not be accepted. Where a chaser agrees to indemnity Westinghouse purchaser requests authorization to return in the manner and to the extent Westinghouse indemnifies purchaser in the preced- product for reasons of his own. he will be .charged for placing the returned goods ing paragraph insofar as the terms thereof in salable condition (restocking charge) are appropriate. and for any outgoing and incoming transportation paid by Westinghouse. Title - Risk of Loss The product shall remain the personal In no event will Westinghouse be responproperty of Westinghouse until fully paid sible for product returned without proper for in cash. and the purchaser agrees to authorization and identification. perform all acts which may be necessary to perfect and assure the retention of title to such property by Westinghouse. Risk of loss of·the product. 'or any part of the same. shall pass to the purchaser upon delivery of such product or pert.F.O.B .• point of, shipment. © Changed since previous issue. .. G40 This schedule is to be used for general planning guidelines only. These typical factory lead times 'Iisted do not include order transmittal time to the semiconductor factory or shipping time to the user's plant. Please contact Westinghouse for specific requirements. Check with the local authorized distributor for off-the-shelf delivery on most rectifier, SCR, transistor, and modular rectifier assembly products. There are several points worth noting about power semiconductors when planning for volume purchases. Semiconductors are yield dependent devices - once manufactured, if they don't meet the desired specification, they usually cannot be altered or modified. Also, ordering the highest current rating, highest voltage rating, and fastest turn-off time device in a given product family usually results in a longer lead time due to lower production yield. As with most any type of manufactured product, unforeseen delays in shipping product due to late parts delivery, parts shortages, receipt of inferior or Ol,ltof-spec component parts, can occur. The actual quantity required by the user of a given semiconductor type as well as the general market demand for the device can also affect the product's lead time. Therefore, the user should work closely with the manufacturer to assure on-time delivery of the needed semiconductors. The best way to assure a steady flow of semiconductors into your pia nt is to enter a pu rchase order on the manufacturer with scheduled monthly releases. An alternate approach would be a purchase agreement to buy a certain number of power semiconductors (particular type) in a specified period of time. The purpose of either of these approaches is to provide the semiconductor manufacturer with better planning visibility so that the factory can match its production schedule to your actual requirements. TYPICAL FACTORY LEAD TIMES Typical Factory Lead Time Shipping Quantity (Am......l Voltage Range (Volte) 2-25 12-1650 197-8700 588-13,580 900-2200(RMS) 50-1000 100-2000 100-4000 100-4000 1200-3000 .5-325 6-450 1K-688K 2K-72K 500 100 100 100 100 50 50 50 1-2 4-8 4-8 4-8 4-8 4-12 6-8 6-10 General Purpo.e 1-6 3-16 15-70 100-150 160-550 300-2200 50-1000 50-1000 50-1200 100-1400 50-4000 l00-4pOO 1000 500 500 100 100 100 2-4 1-2 1-2 2-4 2-4 4-6 50-600 _ 50-1600 100-32.00 100 100 100 2-6 4-6 4-8 Currant Rangea Product Type Data Book Location (Page Numbers) (Weakll ASSEMBLIES A3,A4 A5-A36 A39-A44 A45-A51 A52-A55 A65-A66 A69-A75 A76-A79 Modular Rectifier Gold Line Air Cooled Disc Liquid Cooled Disc Liquid Cooled Manifold Sinks and Kits H.V. Stacks, Channel H.Y. Stacks, Plate RECTIFIERS R9-R12 R13,R14 R15-R18 R19-R26 R27-R38 R39-R54 Axial Lead Mount Stud Mount Stud Mount Stud Mount Stud Mount Disc Mount R55-R58 R59-R66 R67-R78 THYRISTORS 59-518 S19-530 531-540 541-554 555-570 571,572 573-576 Stud Mount Stud Mount Disc Mount Fast Recovery 6-30 80-250 350-1400 Stud Mount Stud Mount Stud Mount Disc Mount Disc Mount Integral H.S. Flat 8ase Pha8e Control SCR'. 10-22 25-1200 40-80 25-1500 125-350 50-2200 125-550 100-2200 600-1400 100-3000 300 100-2000 175-350 100-1600 100 100 100 100 100 50 50 2-4 4-6 4-6 4-6 6-8 4-6 4-6 577-582 583-594 Stud Mount Disc Mount Fast Switching SCR'. 40-325 100-1200 60-900 100-2200 100 100 4-8 6-10 595,596 597,598 Stud Mount Disc Mount 600-1000 600-1000 100 100 6-8 6-10 40-150 1000 4-6 30-250 100 4-6 50 50 8-12 8-12 TRANSISTORS T5-T14 T15-T32 T33,T34 T33,T34 TO-66/TO-3 Stud Mount Stud Mount Disc Mount RBDT'. 22 125 General Purpose .5-15" High S.O.A. 1.5-25" High Power Fast Switching 50' 400-500 50" 400-500 "Gain Rated Current For volume users of high power semiconductors, Westinghouse offers a program that can help save you and your company time and money. Westinghouse will carry your safety stock, at no cost to you, in the form of a bonded element inventory selected to your specifications and with guaranteed delivery time for encapsulating these elements into any device package you desire. In addition, this program will allow Westinghouse to respond more rapidly to sudden increases in your production levels. Therefore, by letting Westinyhouse carry your safety stock, you not only get a guaranteed delivery lead time, but your company realizes an improvement i.n its cash flow as a result of the reduction in committed captial. For fast delivery and prompt service, specify Westinghouse power semiconductors. G41 Westinghouse has been a pioneer in the manufacture of reliable power semiconductors for both commercial and military applications worldwide. From simple conditioning tests to a full-scale high reliability test program, Westinghouse can deliver a product to meet any required level of reliability. A complete line of high power military rectifiers are available in both standard and reverse polarity. The JAN type numbers and their respective ratings are as follows: 100 Ampere/DO-8 Package MIL-S-19500/246 VOLTAGE RATING 240 Ampere/DO-9 Package MIL-S-19500/211 TYPE NUMBER TYPE NUMBER JAN 1 N3164, R 400V JAN 1 N3289, R JAN 1 N3291 , R 600V JAN 1 N3293, R JAN 1 N3170, R 800V JAN 1 N3294, R JAN 1 N3172, R 1,QOOV JAN 1 N3295, R JAN 1 N3174, R 200V JAN 1 N3168, R For copies of the military specifications, contact the Commanding Officer, Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, Pa. 15120. Westinghouse power semiconductors have been selected for use in a -NAVY NUCLEAR (SVFC) v~riety of high reliability programs. -APOLLO - SEA SPARROW - AIR LAUNCH CRUISE MISSILE -SATURN MISSILE -'F15, F16 -NIKE X -Baa SONAR - KC 135 -ARSR-3 -SHILLELAGH -TPS-43 - AIRBORNE CAMERA SYSTEM -D2W -MARK 46/48 -SST - MOL PROGRAM -AWG10 -50556 - A.A.F.S.S. - SIRDIPS - LEM PROJECT - PHASE ARRAY RADAR - TRC-170 - SPRINT/SPARTAN (A.B.M.) - DE1160 - LORAN C - TRIDENT SUBMARINE -C5A - E2C RADAR For the utmost in reliability, specify Westinghouse power semiconductors. G42 Introduction Semiconductor devices control large amounts of power with high efficiency and reliability. With ever-increasing circuit and device power levels, the requirement for adequate cooling of semiconductors is mandatory. The problem for the user is to properly assemble the devices into equipment without reducing thei~ capability. Regardless of whether the device is a lead mount, stud type, flat base or disc, certain mounting procedures must be adhered to in order to get the most reliable device "peration. The amount of heat involved requires proper mounting to prevent unwanted temperature rise or damage to the semiconductor. This AD sheet discusses proper mounting methods and surface preparation required for successfully applying semiconductors. Equivalent Electrical Schematic ,. ~Analogof DeVice Power Heat -lj I >"'---Devlce and Encapsulation -TC -TS ReSA j.\1 Mechanical Analog Parameter T - Temperature v -Voltage AT -Temperature AV -Voltage Difference Difference *Re -Thermal Resistance P R -Electrical Resistance -Heat Source -Current Source *Re -Units of °CIWatt P -Units of Watts Thermal losses at the junction and in device resistance must be conducted through device and package to the ambient. Under stable operating conditions, the resulting AT, between the junction and the ambient is expressed as A TJA P x R9JA = For stud and disc types Re is made up of three quantities so the thermal equation may be written: A TJA = P(ReJc + Recs + ResA) Source of Thermal Resistance _ _ Heat Sink and Coolant e--TA -TA Fig. 1: Mechanical-Electrical Analog of Stud Mounted Device. Thermal Resistance Analogs Semiconductor heat flow is conveniently depicted by the thermal-electrical analog illustrated in Figures 1 and 2. These figures show the heat flow paths for the stud and disc type devices, respectively. The discussion will cover one heat flow path as in Figure 1, but apply equally to Figure 2. In the diagrams, the following quantities are analogs. '., 6; ~r--- Contact Resistance Recs Equivalent Schematic -TA ReSA ...--- Sink Resistance Recs ....--- Contact Resistance ReJC ReJC ....--- Device Resistance Cathode - TJ Anode ....--- Device Resistance Recs .....--Contact ReSistance ReSA ...--- Sink Resistance -TS(K) Cathode Side -TC(K) TCIKl TC(A) r Heat 1 A) Anode Side t - Source of Thermal Resistance -TC(A) -TS(A) -TA Fig. 2: Mechanical-Electrical Analog of Oisc Mounted Device with Double Sided Cooling. properties for this double side cooled device responds in the same manner described for stud type dey-ices. Stud type thermal resistance (ReJc) is determined by device design. The heat sink thermal resistance, (ResA), is similarly fixedby the dissipator selected and the amount of coolant used. The remaining thermal resistance quantity, Recs, is the variable which should be reduced to lowest practical levels by proper mounting procedures. These procedures include preparation and treatment of the mating surfaces, use of joint compounds, and applying the required force to the mating surfaces. These lead mount devices are not affected by load force, and surface finish as are the higher power devices mentioned previously. When using disc devices the ReJC value is effected by how well the recommended mounting force is applied. The case to sink Surface Requirements The condition of the sink mounting surface is one of the most important mounting details. Lead mount semiconductors have their internal resistance predetermined by how well they are soldered together. The axial lead, bonded directly onto the wafer takes heat out of the body and radiates it to the surrounding ambient. A detailed thermal analysis is provided in the lead mount data sheet. The following sections describe what limits should be met on flatness and surface finish to minimize mounting resistance due to surface problems. a. Surface Flatness Surface flatness is specified as a total ,indicator reading (TIR), measuring the maximum distance between the crests and valleys of the mounting surface. The flatness of the mounting plane is referenced to the maximum deviation measured in the device mounting area. For satisfactory mounting, the device seating area should be held from .0005 to .001 nR. Commercial extruded heat sinks do not have comparable flatness values. In addition, cast sinks, rough plates, etc. will require additional treatment. G4~ ------- b. Surface Finish A second sink condition of importance is surface finish. All surfaces have a roughness factor. This value is expressed in microinches and is the average of the deviations above and below mean value of the deviations. In general, the surface finish should be approximately 30-60 microinches, which is the equivalent finish supplied on Westinghouse semiconductor devices. Finer finishes add undue cost and, in general, do not result in lower contact drop at the mounting interfaces. Table 1 shows the approximate surface roughness obtainable with various production methods. Generally speaking, mill finish or machined surfaces on copper or aluminum will be satisfactory if they are flat and free from deep scratches. Castings or rough extrusions should be spotfaced to insure flatness and finish. A suitable procedure is to measure a sample surface on a production run, and if satisfactory, proceed with production based on machining techniques. Periodic sample testing will assure that tool wear, etc., is not affecting the desired values. trical and thermal insulator which offers resistance to heat flow. Therefore, it must be removed from' the mounting area. Another treated aluminum finish is irridite, or chromate acid dip, which offers low resistances because of its thin surface. But, for optimum performance, the device seating area should be spotfaced to remove the irridite finish. For economy, paint is sometimes used for sinks. When this finish is used, cleaning is mandatory, because of high thermal and electrical resistance. Thermal Compounds Following all the prescribed procedures previously listed, it is still possible to have air voids between mating surfaces. To optimize contacts, thermal joint compounds are used. Other approved thermal compounds are Dow Corning 342 available from Dow Corning Corporation in Midland, Michigan or Silicone Oil SF 1154 available from the General Electric Company. Mounting Pressures Optimum m-ounting pressures for -device types have been determined by empirical tests. Based on the results of these experiments, the device tabulations were generated for Table 2. Lower than recommended torques or forces can result in overheating and higher values may result in cracked silicon or internal contact problems. For higher or lower torque and force values, contact Westinghouse. The formula for thermal resistance of any substance is: Re ="t/A ---- Pal Nut Hex Nut where Re=thermal resistance of the film in DC/Watt p = specific thermal resistance of the film Fig. 3-A: Typical Non-insulating Hardware Kit. . t = average film thickness of the film in inches Hex Tenznut A=film area in square inches Table 1 Surface Texture vs. Process All Values are in Micro-inch Average Deviation Process Polish Hone Grind Electrolytic Grind Barrel Finish Bore, Turn Die Cast 'Broach, Ream Mill Normal Range (Min.) Average Tooling 4 to 16 4 to 32 4 to 63 8 to 32 8 to 32 16 to 250 32 to 63 32 to 125 32 to 250 Treated Mounting Surfaces To produce a reliably low electrical and thermal resistance between the contacting surfaces it is necessary that they be free of all foreign material, oxides, andfilms. Freshly machined surfaces are generally free of these contaminants if used immediately. Bear in mind that freshly bared aluminum forms an oxide film in a matter of seconds. Other types of metals, such as copper and steel, oxidize more slowly. As a precautionary measure, all mating surfaces, and particularly aluminum, should be used immediately after machining. If they are stored, a cleaning operation is good practice. A satisfactory cleaning technique is to polish the mounting area with No. 000 fine steel wool, followed by an alcohol or warm soap and water wipe. Many aluminum heat sinks are black anodized for appearance, durability, and performance; however, anodizing is an elec- The values of p will vary from .10°C inches per watt for copper film to 12000C inches per watt for air, whereas a satisfactory joint compound will have a resistivity of approximately 60°C inches/watt. Therefore, the voids, deep scratches, and imperfections which are filled with joint compound, will have a thermal resistance of about 1 /2Oth of the original value. Westinghouse recommends the use of Alcoa #2 electrical joint compound to fill these voids. This compound contains an active chemical in a grease type medium that dissolves the oxide film, present on most heatsink mounting surfaces, and seals the joint against moisture. Some compounds attack the surface, with localized action going relatively deep. With this compound, however, the surface is lightly etched with no deep localized attack; it attacks the oxide and not the metal. All heat exchanging surfaces should be cleaned as mentioned previously. Apply Alcoa #2 compound to all heat exchanging surfaces sparingly with the use of a spatula or lintless brush. Another method is to place a predetermined minimal amount at or around the center of the contact area and then rotate the device back and forth while pressing it into the heat sink. In this fashion, excess compound will be forced out and may be wiped clean. Prolonged skin contact with the compound should be avoided since it does contain a fluoride ·base. It is recommended that after using the compound, any skin areas which were in contact with the compound should be washed clean .. Fig. 3-B: Alternate Non-insulating Hardware. Fig. 3-C: Typical Insulating Hardware Kit Assembly. Standard mounting hardware for stud devices includes a nut and locking washer, or a pal nut. With either combination, the nutshould be carefully tightened applying the torque indicated for the type of device shown in Table 2. An illustration of standard mounting hardware for stud devices is shown in Figure 3. Standard hardware kits are available to accomodate mounting all semiconductor types. The appropriate kit is identified by a code number as shown in the last three colu mns ofT able 2. These codes are explained in Table 3 as to what components cot:ne. in each kit. Alcoa #2 Joint Compound is available from .•. Alcoa Conduct8 Products Company. Division of Aluminum Company of America, Pittsburgh, Pennsylvania. G44 1 !' Table II Semiconductor Mounting Torque. Force. and Hardware . Pack8ge Description Stud Mount Stud Size .190-32 .250-28 Package Outline 00-4 ® IApplicable JEDEC Series Types Insulating Tenz Nut 20 (2.22) 31 32 25 30 (3.33) 14 34 37 50 (5.56) 56 17 19 R500/R501/R502/R503/R510/R5111 120 (13.35) 99 - 98 IN3288A/IN4587 Rectifier R500/R501 130 (14.46) 02 - 01 360 (40.06) 03 - 04 10(1.11) 10(1.11) - 22* 20* - Rectifier R302lR303/R31 0/R311 IIN1199. A.B IN 1341. A. B/IN 16121IN3615/IN3670. A IN3987/1N4458 Rectifier R402/R403/R404/R405/R410/R4111 00-5 IN248. A.B. C/IN1183. AlIN1191. A IN2154/1N3208/1N3765 RBDT T40R SCR T400/2N681/2N1842.A Transistor MT-52 Mounting Hardware Codes Non-insulating 00-5 TO-48 Mounting Torque Lb-In (N-M) 153/15412N3429 Transistor .312-24 MT-1 MT-33 .375-24 00-8 151/152/2N1015/2N1016/2N2226 163/164/2N2757/2N3470 Rectifier .500-20 00-30 SCR .750-16 Diamond Base Mount Axial Lead Mount Flat Base Mount TO-941 T500/T507/T510/2N1792/2N19091 TO-83 2N2023/2N4361/2N4371 Rectifier 00-9 R600/R601/R602/R603/R610/R611 R70 IN2054/1N3161/1N3260/1N3735/1N4044 R700/R701 SCR TO-93 T70 T600/T607/T610/2N3884 1700/T707 060 Transistor 060T TO-66 TO-3 00-41 00-27 00-15 rvOO-27 R34 T68 T78 Integral HeatSink Mount 176 2N305412N3441 2N3055/2N3232-33/2N3236/2N34421 2N3771.2. 3/2N4347-48 IN4001-07 IN4816-22/IN5052-54 IN5391-99 IN5400-08 R340 T680 (2.4" Square Base) T780 (Stud less) 17601T767 - None Required Solder Leads to Terminals 25 (2.78) Per 80lt Four .312-24 bolts supplied by Customer Spring flat and parallel to mounting plane 26** Bolt used for electrical connection only. - - .5-20 Bolt supplied by customer. • *(2) .138-40 Bolts required per device. Bolts supplied by customer. **(2) .312-24 Bolts required per device. Bolts supplied by customer. G41S Semiconductor Mounting Torque. Force. and Hardware (Continued) Package Description Package Outline Mounting Force LB iKN) . @/APPlicable JEDEC Series Types Mounting Hardware Codes Disc Mount Interface Oia. In. (mm) .75 (19.05) R62 Rectifier R620/R622 RBDT T62R SCR 1400 (6.2) 1000/4.5 T52 T62 T520/T527 T620/T625/T627 1400 (6.2) 062 Transistor 062T 1400 (6.2) Rectifier 1.34 (34.04) R72 2400 (10.7) R720/R722 SCR T72 Clamp Purchased Separately T720/T7271T72H Rectifier 1.75 (44.45) RS2 RS20 5500 (24.5) SCR TS2 1.S0 (48.26) RSG TS20 RSGO/RSG2 6000 (26.7) SCR TSG TSGOITSGH Rectifier 2.48 (62.SS) RA2 RA20 1 ~600 (53.4) SCR TA2 TA20 Device - - - - - - - - - - - - - - . 0 0 ; Suitable Thermal Joint Compound Applied. Heat Sink Mounting Plate Mounting Surface Finish: 30 to 60 Microinches per Inch Clear of all Oxides, Paints and Foreign Particles. Flatness: Flat to .001 TIR Min. Chamfer Edge .01" Radius to Remove Burrs fastening Hardware: a) Hex Nut plus Pal Nut or Lockwasher -orb) Hex Tenznut (Alternative) Flat Bearing Surface Fig. 4: Recommended Mounting Practices and Finishes for Stud Mount Devices. G46 Mounting of Stud Type Devices Figure 4 presents an exploded view of a studtype device and shows the various recommendations of surface flatness and finish. It should be noted that the diameter of the mounting hole should not exceed the diameter of the stud by more than '164" and that the edge of the hole should have a chamfer not exceeding .01" radius. The fastening hardware shown consists of a nut and a locking feature, either pal nut or lock washer. Either type will work as .long as proper torque is applied. It is very importantto apply the torque with a good torque wrench such as those sold by P.A. Sturtevant Co. and Snap-On Tools Corporation or other reputable firms. It should be noted that Westinghouse does not recommend as standard practice drilling and tapping holes for mounting stud type devices. This is due to the need for 'Ito of a degree perpendicularity necessary between the hole and mounting surface. Mounting Flat-Base Devices In mounting flat-base devices the required pressure is obtained by fastening tne device corners or edges with bolts. The pressure should be applied in a staggered fashion such as tightening opposite corners to one half the recommended torque as per Table 2 and then finally apply the necessary remaining torque in the same staggered fashion. Special "studless" devices are mounted by mounting springs as shown in Figure 5. Proper mounting pressure is applied when the spring is flat and parallel to the heat sink surface. Mounting Discs Disc's achieve higher current ratings due to improved heat transfer capabilities. This is made possible by two heat paths and greater heat cc.nduction area. Since these devices are fabricated without mounting features. such as studs. plates or retainer assemblies. the devices must be mounted with external force. The required clamping force must be applied perpendicular to the disc surfaces and should be uniformly distributed over the total contact areas. To achieve this. the clamping system must assure sink-device parallelism via appropriate clamp construction and mounting technique. Westinghouse offers a clamp which provides uniform distribution of the required pressure. This distribution of pressure is accomplished by a ball and socket type gimbaling mechanism. The force is applied via a spring bar or bars depending on the magnitude of the force to be delivered. This clamp is available with a mechanical force gauge to acknowledge what force is applied. The stud length is variable to accomodate different lengths of clamping columns. An exploded view of an assembly consisting of a disc type semiconductor with double side cooling and the Westinghouse clamp is shown in Figure 6. Table III Semiconductor Mounting Hardware CODE NUMBER TYPE HARDWARE DESCRIPTION 01 Tenz nut .5-20 Nut-washer combination 02 Non-insulating .5-20 Hex nut and pal nut 03 Non-insulating .75-16 Hex nut and pal nut 04 Tenz nut 14 Non-insulating 17 Insulating .312-24 Nut. mica washer. glass sleeve. solder lug. pal nut and shoulder bushing .75-16 Nut-washer combination .25-28 Hex nut and pal nut 19 Tenz nut .312-24 Nut washer combination 20 Insulating Mica sheet and (2) bushings 22 Insulating Mica sheet and (2) bushings 25 Tenz nut .190-32 Nut-washer combination 26 Spring bracket Spring. spacer and safety bracket. Bolts supplied by customer 31 Non-insulating .190-32 Nut and lock washer 32 Insulating .190-32 Nut. shoulder bushing. mica washer. lockwasher and solder lug 34 Insulating .25-28 Nut. shoulder bushing. mica washer. lockwasher and solder lug 37 Tenz nut .25-28 Nut-washer combination 98 99 Tenz nut Non-insulating .375-24 Nut-washer combination .375-24 Hex nut and pal nut Note: Semiconductor DeVice Hardware IS supphed upon request only. Most standard non-insulating hardware kits are available free of charge if specifically requested when ordering devices. Insulating kits, tenz nuts. and other special hardware kits are available at extra cost-consult factory. A recommended procedure for mounting disc types is as follows: 1. Check mounting surfaces of semiconductor and heat exchanger to insure no large scratches. nicks or irregularities are present. 2. Mounting surfaces should be free of oxides. films or foreign materials in order to have good heat exchanging properties. Surfaces should be rubbed lightly with 000 steel wool and swabbed with alcohol immediately prior to assembly. Surfaces should not be touched after cleaning. Parts may be placed on a lint free surface until final assembly. 3. Pre-assemble any roll locating pins to be used with a light hammer into the center dowel hole in each heat sink if necessary. A gauge block is useful to prevent excessive length of this pin. 4. Polarity of the device should be checked prior to assembly to insure the device is installed in the desired direction. Spacer Device - - - - - - - - - } -......... Finish: Surface to be 30 to 60 Microinches. Flatnass: Flat to .001 TIR Min. Safety Bracket Spring Suitable Thermal Joint Compound Applied. Heat Sink - - - - -.... Fig. 5: Mounting Procedures for Studless Device. 5. For assembly the contact surfaces of the semiconductor and heat sink should be G47 Clamp (Epoxy Coated) Finish: Surface to be 30 to 60 Microinches. F1.tn.ss: Flat to .001 TIR. Suitable' Joint Compound Applied. Fig. 6: Mounting Procedure For Disc Mounted Devices (Exploded Viewl. lightly coated with Alcoa #2 (or suitable substitute). The device should then be centered on the heat sink. If dowel pin locators are used the device should be placed with its locator holes over the projections. The device should then be rotated through 1800 to distribute the compound. 1. Removing the Device Disassembly should be made by loosening the clalTlP nuts in a staggered fashion, i.e., one half turn from one nut, one halfturn from the other, etc., until the nuts can be removed by hand. 6. The appropriate clamp may now be inserted through the heat sink. The clamp force bar with mechanical force gauge must be initially adjusted to give a zero force reading. The spring bar may now be placed over the studs and the centering pin located in the hole provided. The nuts may now be finger tightened, in an even fashion such that approximately the same number of threads show above each nut. 2. Re-Zeroing Clamp Gauge Make sure that the gauge is set to zero before using again. This is done simply by bending the indicator until a zero force is indicated. 7. To achieve the correct mounting force apply either half or quarter turns per nut in a staggered fashion until the gauge indicates the correct force. Remounting Disc Devices In some instances devices must be replaced in the field. The procedure to be used is similar to the mounting procedure just outlined with the following additions: G48 3. Clllaning and Coating of Clamp Threads While the clamp is disassembled. clean th., threads with a light brushing and then wiPII with a cloth. Prior to using the clamp a coating of Anti-Seize or Never-Seez nongalling compound should be applied to the threads. WARNING: Due to the high load forces placed on these clamps' breakage could occur when torsional force is being applied to the threads resulting in the broken bolt becoming a flying projectile. Safety precautions must be taken to prevent bodily harm. As indicated earlier. proper device loading is necessary to guarantee good thermal performance. With disc devices power dissipating properties are also affected by loading effectiveness. Figures 7a and 7b illustrate the typical effect of mounting force on thermal performance and device forward voltage drop for discs. Parallel Mounting of Disc Devices For applications requiring greater current output than can be obtained from one device. two or more devices can be readily paralleled. It is necessary. however. to take simple precautions to allow for possible variations in height of the devices. A rigid heat sink may be used and will serve as a base for the units to be paralleled. but the other side of the devices should be cooled by individual heat sinks. Individual clamps are required for each device to provide the required pressure. Stack Mounting of Disc Devices The flat symmetrical design of the disc package permits stacking the devices to obtain a number of circuit configurations. A single clamping device can be used with the length of bolt adjusted to clamp thE! total wherein insulated spacers may replace devices in the mechanical assembly. Heat Sink Considerations The previous discussion referred indiscriminately in the various sections to either platetype or to extruded heat sinks. The plate-type is the simplest to' use and may be of copper, aluminum or any thermally conductive material. The aluminum extrusions are the most common heat sinks presently used and furnish a greater exposed surface for heat transfer to the ambient atmosphere. ..... ~------ Mounting Force _ Mounting Force _ Fig.7A: Typical Junction-Case Thermal Impedance Varietion as a Function of Mounting Force for Disc Type Devices. Fig. 7B: Typical Forward Voltaga Drop Variation as a Function of Mounting Force For Disc Type Devices. length of the stack. The limit of stacking, of 'course, depends on the rigidity of the assembly and the amount of expansion and contraction which can be tolerated during operation. Both problems can be solved by proper fixture design for assembly and by selection of springs with suitable load-deflection characteristics. When stacking devices in one clamped column it is necessary to keep sink mounting surfaces parallel to within .0005 inch if devices are to be mounted on both sides of the sink such as in many plate designs, a) Parallel Figure 8 shows the basic configurations which may be obtained in a single stack. These include parallel, series, center tap, doubler and three-phase, full wave circuits. Many others are possible. The diagrams use diode circuits for simplicity of illustration. They are applicable to SCR's connected in series and to complete isolated circuits' b) Series The heat-transfer characteristics of any heat sink, under normal convection ,conditions, can be greatly enhanced by using either forced air or some liquid coolant. The use of a liquid coolant is considerably more efficient. Liquid cooled sinks are generally cast or machined. Either is highly efficient but cast heat sinks have very little waste in fabrication and have very low pressure drop. The flow of coolant through the sinks is usually controlled to hold the semiconductor temperature to the designed maximum level. A complete line of air and liquid cooled heat sinks are available to accommodate all disc type semiconductors. In addition, Westinghouse offers a full line of air and Ifquid cooled assemblies fbr all power semiconductors. c) Doubler Ac Ac Ac (+) (-) d) Center Tap e) 3 Phase. Full Wave Fig. 8: Stack Mounted Disc Assemblies. G4~ Designed;'with"YOU· in Min~ Ideal for all users of power 'semiconductors reg ard I;ess ,of' job function, technical background, and experience le"el.· • • • • Two books in one 8% x 11 format Easy to read Fully indexed u.s. $~.50 • Book Rate Postage Included. Elsewhere $7.50 This valuable reference book will save you time and money when specifying, buying, installing, testing, maintaining, troubleshooting, servicing, identifying, and replacing power semiconductors. Order your copy today. G50 • Master cross reference • Complete product data • 432 Pages Send check or money order (payable in U.S. funds) to: Westinghouse Electric Corporation Book Order Semiconductor Division Youngwood, Pa. 15697 Introduction The Silicon Controlled Rectifier (SCR) is a thyristor which attains its power control function by gate turn-on. The gate signal causes the SCR to revert from a forward blocking or off-state condition to a current conducting or on-state condition. Turning on an SCR should be simple, but circuit considerations and device trade-ofts add some complexity. With an understanding of gate terminology, trade-offs and requirements of an SCR, a designer will have better guidelines for specifying gate turn-on requirements. Without a gate control signal, the thyristor blocks voltages in both directions, so that power flow is inhibited. To initiate power flow, the SCR is gated only when it is in the forward blocking (VORM) off state. Increasing the gate signal IG from 0 to IGT shows that the SCR's ability to block voltage decreases until it turns on. The reverse blocking voltage characteristic (VRRM) is like a rectifier diode. If one were to leave on a gate signal while the SCR becomes reverse biased, it is possible that the SCR would fail due to increased leakage current. V II Characteristics of an SCR The SCR is a three terminal thyristor, properly defined as a Reverse Blockir'lg Triode Thyristor. The V II characteristics relationship is shown in Figure 1. The SCR can be turned on by three methods; viz., • The recommended application of a gate current and voltage to the gate cathode potential leads. Off State or Forward Blocking Voltage IG=O V ORM n---IG=IGNT • Two-terminal turn-on by exceeding the non-repetitive forward blocking (off-state) voltage rating, referred to at times as Veo turn-on. 1I"\....---IG=IG2 "'\14---- IG= IG3 • dv Idt turn-on due to high dv /dt causing capacitive current triggering action. , The last two methods are not recommended for repetitively turning on an SCR because of restricted anode current rise time (di /dt) and magnitude. t V Forward Current Reverse Blocking Voltage Figure 1. Voltage Current Characteristics Using Gate Control. To turn off an SCR in an AC phase control circuit is relatively easy. Suppress the gate signal and the reversal of the AC line voltage causes commutation from the conduction state back to the off state. Of course, there are circuits which require sophisticated methods to achieve turn-off commutation such as choppers and inverters. These are available in the literature. causes the SCR to latch into conduction and remain "on" (hold); referred to as gate trigger voltage. • IGNT is a dc gate current which, when applied to the gate cathode terminal, will still permit the SCR to block rated VORM; referred to as non-trigger gate current. • VGNT is a dc gate voltage which, when applied to the gate cathode terminal, will still permit the SCR to block rated VORM; rEiferred to as non-trigger gate voltage. 6n 12v -=- Figure 2. OC Gate Characteristics Test Circuit. There are other gate parameters which must also be considered and are subsequently covered. They include peak gate trigger current for pulse operation, IGTM; peak and average gate power, PGM and PG(AV); and peak reverse gate voltage, VGRM. The rated values are given in the data sheets. The maximum gate triggering characteristics for Westinghouse di/namic gate SCA's is given in Figure 3. The di/namic or amplifying gate SCR consists of a pilot and main r Maximum Instantaneous Gate Trigger Voltage VGTM • Volts Gate Parameters and Characteristics Because of the myriad of SCR applications, a dc gate test condition (Figure 2) with a resistive load was chosen to permit both the manufacturer and the user to ascertain basic gate parameters. It was not intended to reflect operational application requirements. These dc gate trigger requirements are normally given on SCR data sheets. • IGT is a dc gate current which causes the SCR to latch into conduction and remain "on" (hold); referred to as gate trigger current. • VGT is the dc gate cathode voltage which .15 2 3 Maximum Instantaneous Gate Trigger Current IGTM Amperes - 4 A Figure 3. Maximum Gate Triggering Characteristics for Westinghouse di/namic Gate SeR·s. G51 SC~ on the same element; this new gating structure provides improved characteristics over previous designs. N9te that the ratings are at 25°C and that a recommended load line for moderate di/dt applications is given. The characteristic effect of junction temperature versus gate trigger current Ivoltage is depicted in Figure 4 with an SCR IGT= 150 rna. Note that as an SCR is heated to 125°C, the required gate current to trigger typically is one-half the 25°C value, and that the --40°C value is approximately twice the 25°C value. . on concept (q = 5 IGT dtp) described in the referenced literature. The minimum gate trigger requirements versus pulse widths are given with respect to junction temperature. This.insures that the SeR will latch on and remain on (if provided in circuit) but is not the optimum gate drive requirements. Gate Drive Requirements The present di/namic gate SCR may be triggered with either Soft Gate Drive or Hard Gate Drive. Predecessor devices with center firing and edge firing gates required hard gate drive to achieve uniform..current conduction and I.ow switching losses. However, even with the di Inamic gate and newer mterdigitated geometries, applications still exist which 'equire hard gate drive. firing circuitry. providing a cost reduction. If a snubtier network is always available to discharge upon signal initiation, soft gate drive may be adequate even for some high di Idt applications, but further assistance is advised from an application engineer. IG ~ IGTM=3 to 5XIGT diG>1 A//Jos Cit diG 0.l/Jos<trs1/Jos §dt u * "Back Porch" (!) t, 201JoS 14- --I I-- Anode Current---i I+Conduction Time Time (Not to Scale) Figure 8. Hard Gate Drive. Hard Gate Drive Demanding applications where hard. gate IGTM=1.5 to 31GT drive is suggested include inverter and chopper diG>.5A//Jos circuits of capacitive type, loads where high dt repetitive di/dt is evident; heavy industrial·' t,~1/Jos phase control operation with inductivo load (or power factor control) and.systems where I electrical rioise is troublesome requiring noiseIGTM~r'----------------~~--~ 150 o 10 75 225 300 375 immune thyristors and gate signal suppresl't,1 : sioncircuitry (up to IGT). Figure 6 is the IGNT 1--20l's to Anode Current..,.. Minimum Required Gate Current, IGT,"" mA. suggested ,Hard Gate Drive for an individual Conduction Time Figure4. Typical Gat. Triggering Range for Various SCR. The cases of anode current conduction Time (Not to Scale) interval:::; 20 pS or picket fence gate firing Junction Temperatures·. Flg'ure 7. Soft Gate Drive. are not shown. Reference must be made to To relate the measured value of dc gate the Minimum Pulsed Gate Trigger Requiretrigger current to pulsed gate operation rements (Figure 5) to obtain the proper value Example: A Westinghouse T920 has a data quired in some applications, the following of IGT. This value of IGT is then used for the sheet IGT=200 ma @ 25°C. The recominformation is needed and is shown in mended gate drive, to cover all types of load Hard Gate Drive IGTM determination. Figure 5. Whether the SCR design is a convariations @ TJ=--40°C start-up is as ventional center fire gate, di Inamic gate, or Soft Gate Drive shown in Figure 7 is perfollows: other, it is necessary to increase the gate fectly adequate for resistive and inductive iGT @--40oC=2xIGT@25°C (from Figure4) drive amplitude for,pulse widths less than 20 load applications. In general, a gate drive IGT@--40°C=400ma microseconds. This is due to the charge turntransistor can be eliminated from the gate Hard Gate Drive-IGT=3.3to 5x IGT@--40oC Answer IGT= 1.3A peak (Min. value) 1000 Gate Trigger Current, IGTM, 800 Milliamperes ,"- '\ \. ~ ....... 1'1... 600 400 .~ t"-... 200 ............ ['0,. "~ ....... r-..... ........ I"- o I . I 'SdR I I. Minimum Gate Turl'l-On Characteristics6. Westinghouse di/namic Gate Designs SCR IGT";150ma, 25°C 5.5 @ Vp=12V IGTM vs tp, TJl 5. VGTM VS tp, TJ I 4.5 -.....r-....... -- -- --- VG1 1@ -400C- 4. 3.5 3. __ VGT@25°C ~ --- - ""- IGT@ 40°C IGT @ 125°C 2,5 VGT@125° 1.5 I IGT@:.!5°C G52 o I 500. Recommended Gating Practices A di/namic gate SCR is optimized to provide fast turn-on and low switching losses with a Gate Trigger soft gate drive signal. Recognition of situaVoltage, tions where di/namic gate action is limited VGTM, Volts along with a number of recommended design practices are given below. • Gate the SCR when the anode voltage is positive. Allowing a positive gate while the SCR becomes reverse biased limits device reliability . 1. .5 1. 2. 5. 10. 20. 50. 100. 200. Square Wave Pulsewidth, tp, Microseconds Figure 5. Minimum Pulsed Gate Trigger Requirements. 2. The conduction period of the anode current "back porch" must have a gate current no lower than the IGT @ --40°C; i.e., 400 ma to ensure conduction for low power factor loads. • Design the gate firing sequence such that the snubber network across the SCR is charged prior to gate sign,!1. This gives good di Inamic gate action. • If a de gate signal is used in a multi-phase system a soft gate drive signal does not give good di /namic gate action. No snubber discharge is possible after time zero which results in poor di/namic gate action. In addition, Westinghouse SCR's have high noise-immune characteristics (IGNT) meaning they do not false trigger at very low gate currents. For this particular application hard gate drive is required. from the same source. Generally, 10 to 250 is used to diminish input gate cathode impedance variations. • Use single point triggering if gating rhore than one device from the same source. capability, redundancy is required or because reduced junction temperature operation is desired. It is understood that the required type of gate drive circuit is dependent upon the particular circuit and load characteristics. A specific gate firing problem is encountered with parallel operation of devices. In situations where anode reactors are employed, as shown in Figure 10, care should be exercised • The gate drive circuitry should have a 1 to because as device "a" turns on, its voltage is 2A average 100V diode in series with thtl supported by the reactor. Until the slow gate and across the gate cathode terminals device "b" turns on, no current, except magas shown in Figure 8. These will eliminate Series Operation netizing current, flows. Therefore, device "a" two possible failure modes of an SCR. The diodes in series with the gate will Present application techniques are such that, in has low turn-on losses. Device "b" on the other hand has the circuit voltage plus the many designs, circuit applications exceed prevent negative gate current flow while device blocking capabilities. For this reason, transformed voltage across it while switching the diode across the gate cathode limits series connected SCR applications have been, half the load current, and so is stressed harder the reverse gate voltage, VGRM, to'" 2V and are prevalent. Figure 9 shows a typical due to delay variations. Therefore, in this by diode clamping. instance the designer should consider the A circuit connection, including the compensating components required for proper operation. delay variations in gate pulse amplifier design, I n such a series connection the last device assuming single point trigg'ering. It must be recognized that with a di/namic gate device to turn on may be subject to an overvoltage G and dissipates the most energy. A high drive and low magnetizing current (~IL), di/namic gate signal from a single source is required to gate action may not be achieved and high 1 N 4817 gate drive is recommended. minimize delay times and switching losses. 1N 4817 Gate The resistors Rs are for static voltage balancCircuit ing due to blocking voltage, leakage current The necessity for economy sometimes dictates - - - - - - - - ' - - - - - - - - -.. K differences. The snubber capacitor C is not the operation of thyristors without balancing Figure 8. Protected Gate Cathode components, as illustrated in Figure 10(b). only for dv /dt but also.for ORR variations. Unlike the previously described situation, Source with balancing reactors, device "a" turns • Provide open circuit gate voltage>20V to prevent gate drive extinction. The instanon first and ,is more severely stressed as it taneous gate cathode voltage can exceed the must switch both the R-C network energy source voltage in high di /dt applications. and the load current. If the load is capacitive or resistive a di /dt problem may exist. The Rs combination of di/dt, device "b" turn-on • Inductive loads can be troublesome if the with very low anode voltages, and long delay gate drive is insufficient in amplitude or width. Existing recommended practice is times, dictates hard gate drive. the use of the "picket fence" or hard gate Vsource Ac Input drive. A picket fence is a high frequency gate signal varying from 1 to 15KHz, 200",s Rs to 50",s wide within a 60Hz envelope such that the SCR is continuously gated. The R average gate current rating is maintained. In hard gate drive circuits, the "back porch" C anticipates worse-case power factor; making Load Load the gate pulse width wide enough to enFigure 9. Typical Series Connection with Single (a) Reactor Current Balancing sure SCR latching and holding. Point Triggering. • If highest total circuit reliability is desired, a power burn-in of the complete gate firing board at rated temperatures and power will eliminate weak components and infant mortality. ----+ • To prevent noise pickup in the gate potential connections, twist together th'e gate cathode potential leads of the SCR and use either a twisted wire pair from the gate pulse amplifiers circuit or a coax-type shielded cable. Locate the wires as close as possible to the SCR but away from magnetics or high current carrying members in the circuit. Of course, the gate cathode lead lengths should be as short as possible. It should also be noted that the gate circuitry employs individual resistors. To neglect this point is dangerous, since one low impedance gate consumes an excess of the available energy by voltage clamping of the transformer, thus reducing the energy available to the other devices and possibly causing overvoltage destruction of the device with the maximum delay. In such applications, a good overdrive gate signal is recommended. One should specify matched D. delay times • To minimize D. delay time variations between and D. ORR (if not diode clamped) fqr each SCR's, use hard gate drive with as high a series connected group of SCR's to optimize voltage sharing. gate current risefime (diG /dt) as possible; ref. Figure 6. Parallel Operation Discrete SCR's must be paralleled because • Always use a resistor in series with each gate lead if triggering more than one SCR they lack the required current handling -=+ Ac Input (a) R (b) C Load (b) No External Balancing Figure 10. Parallel Operation of Thyristors. It is also wise in this type of operation to select device characteristics which provide matching voltage drops and turn-on times. In inverter or commutating SCR applications, the di/namic forward lIoltage drop matching permits current sharing while steady state voltage drop matching is not necessary. G53 Gate Firing Circuits A gate trJgger circuit can become quite sophisticated such as in an inverter application. Trigger logic circuits have been designed to do many things- Circuits Gate Signals • Trigger the proper SCR's. • Suppress the gate at overtemperature conditions, • Crowbar (trigger) or suppress at fault conditions or overvoltage. • Not trigger at low gate signal levels or predetermined pulse widths. These type of circuits require design time and in many cases practical experience. If your experience or time is limited, consider the commercial gate firing circuit manufacturers to implement your required SCR circuit. Shown in Figure 11 are three examples of an SCR's hard gate firing circuit for phase control operation. In the first circuit, a Shockley diode (4E20-B) provides the trigger pulse by voltage breakover, with AC line synchronization on the primary. In the second circuit, the Westinghouse T507 or other fast turn-on SCR is the trigger pulse, which can be gated within any point of the positive AC voltage. The negative AC voltage causes the SCR to line commutate off. The DC circuit uses a transistor to trigger, since an SCR in this circuit would not naturally commutate off. In all three circuits, the negative gate voltage is clamped by the diode across the gate cathode terminals. Other gate firing circuits are available in the Westinghouse SCR Designer's Handbook and those of other manufacturers. Summary The information provided herein will allow the designer or user to assess the merits of a gate trigger circuit. It is important that the gate drive circuit provide a signal which compensates for temperature and circuit effects. The reliability of a circuit is dependent upon every item within it. A proper gate drive signal will not guarantee improved circuit reliability but certainly is a proper step in achieving total reliability. G54 .75-1A Igt I . - .150 Amps c -..j 101- t2 < 1psec Gate Current Input Signal ::::Olts D 1 C , r r . : G T-64525 ___ ;r;;;, t, = :0 1pSec. t2=Cond. Angle ~BK ______ 1.5A ~ L::::::::!- - - 0.2A 0.5 ufd 1--_--.... Input IG TR=:01 psec. . Gate Current I ,VGT .7v-3.Ov 1 VGR 1.0v Gate Voltage (With SCR Connected) Figure 11. Examples of High Drive Circuitry. References 1. Rice, L. R., "Westinghouse Silicon Controlled Rectifier Designers Handbook," Second Edition, Westinghouse Electric Corporation, 1970. 2. Gentry, F. E., Gutzwiller, F. W., Holonyak, N. and Von Zastrow, E. E. "Semiconductor Controlled Rectifiers," Prentice-Hall, 1964. 3. Dewan, S. B., and Straughen, A., "Power Semiconductor Circuits," John Wiley & Sons, 1975. 4. Gyugyi, L., and Pelly, B. R., "Static Power Frequency Changers," John Wiley & Sons, 1976. 5. Bedford, B: D., and Hoft, R. G. "Principles of Inverter Circuits," John Wiley & Sons, 1964. 6. Schaefer, J., "Rectifier Circuits, Theory and Design," John Wiley & Sons, 1965. 7. Pelly, B. R., "Thyristor Phase Controlled Converter and Cycloconverters:' John Wiley & Sons, 1971 . B. Grafham, D. R.and Hey, J. C., "General Electric SCR Manual." Fifth Edition, General Electric Company, 1972. 9. Hoft, R. G., "International Rectifier SCR Applications Handbook:' First Printing, International Rectifier Corporation, 1974. 10. Kusko, A., "Solid State DC Motor Drives," The M.I.T. Press, 1969. 11. McMurray, W., 'The Theory and Design of Cycloconverters," The M.I.T. PresS, 1972. 12. Ramshaw, R. S., "Power Electronics:' Chapman and Hall, 1973. 13. Mazda, F. F., "Thyristor Control:' John Wiley and Sons, 1973. 14. Murphy, J. M. D., "Thyristor Control of AC Motors," Pergamon Press, 1973. 15. Davis, R. M., "Power Diode and Thyristor Circuits," Cambridge University Press, 1971. During the design of any power circuit incorporating thyristors, the designer is faced with choosing between several techniques for protecting the thyristors from load induced faults which would subject them to Inordinately high levels of forward current. Many of these faults are of short duration and self-clearing. Conventional fault clearing techniques employing breakers or fuses are costly to maintain as they require varying periods of "downtime" either to reset the breakers or replace blown fuses. A better approach to limiting faults of this nature is surge suppression. Thyristor Surge Suppression Surge suppression is a fault clearing technique utilized in AC circuits in which the thyristor "rides thru" the first half cycle of surge current. The gate drive is inhibited at this point and the thyristor recovers to the blocking state isolating the load fault. Gate drive can be re-instituted following the---succes$ful clearing of the fault allowing continued use of the equipment with essentially zero downtime due to the load induced fault. Design of circuits employing surge suppression is more difficult than conventional designs for several reasons. Fault sensing logic must be employed to sense and clear the fault and then perhaps automatically re-institute circuit operation. The exact magnitude of the worst case current fault must be known to properly coordinate the thyristors. Of prime importance, a definitive set of surge suppression ratings must be available for the thyristors to facilitate prop'er derating for reliable operation. To aid in your design of a surge suppression circuit, a number of graphs have been developed. The first graph A has been designed to facilitate the determination of the magnitude and width of a fault current pulse given the ratio of resistance (R) to inductive reactance (XL) of the circuit during a fault. Graphs B-1 through B-17 for Westinghouse phase control thyristors give the maximum permissible single cycle surge current that cen be reliably utilized in a surge suppression circuit. These current levels are presented as functions of the base width and initial peak junction temperature as the figure illustrates. Graph C gives the voltage rating factor applicable to all Westinghouse phase control devices. Their use is outlined and an illustrative example is as follows: ITSM Procedural Outline 1. Determination of fault current magnitude and pulse width. Determine the equivalent resistance a. (R) and inductive reactance (XL> from detailed analysis of voltage source and circuit loop impedances. b. Determine the offset factor, K, from . R the graph A, given the value of XL. Then IT(asm)= KXIT(Sm) where: IT(asm) is the peak value of asymmetric surge current IT(sm) is the peak value of symmetric surge current given by: (1) Calculate or estimate the peak junction temperature of the thyristor prior to the anticipated surge. Worst case will be 125°C. (2) On the Surge Suppression Rating graph B-1 through B-17, locate the specific ordinate scale pertaining to the anticipated surge current pulse width. (3) Locate the specific magnitude of surge current on this scale. (4) Move horizontally on this value of surge current until you intersect the peak initial junction temperature curve as determined in 2.b.1. (5) Read the peak junction temperature from the abscissa scale. (6) Refer to Graph C for the Voltage Rating Factor. Find the value of the maximum junction temperature following surge given in 2.b.5 on the abscissa scale. Follow this value of temperature vertically until you intersect the "standard" curve. The value of the Voltage Rating Factor, F, corresponding to this intersection is the minimum F factor which can be used to establish the device voltage rating by the following expression. VRating= FXVp Where: V is the peak open circuit voltage. R is the value of circuit resistance. XL is the value of circuit inductive reactance. c. Determine the asymmetric surge current base width from Graph A given R the value of XL. 2. Selection of proper thyristor for an anticipated surge. a. Select tne proper family of thyristors suited to the specified operating current-voltage-mechanical configuration and cooling requirements of the equipment. Refer to the Westinghouse Short Form Catalog (54 .. 000) or specific data sheets for this information. b. Refer to the appropriate Surge Suppression Rating Graph 8-1 through B-17 for the specific thyristor selected in 2a. Where: • VRating is the minimum rated voltage for the thyristor, VORM and VRRM. .• F is the voltage rating factor. • Vp is the peak forward voltage seen by the thyristor following a surge. 3. If the voltage rating derived above is greater than that attainable for the device in question there are several options open: a. Repeat 6 using the ··selected" curve. If an acceptable rating is attained, a device may be specially selected and tested by the manufacturer to perform at the specified operating levels. Contact your Westinghouse Applications engin.per for details if you require a specially selected device. b. A higher current rated thyristor can be specified and the calculations outlined in 2b-1 thru 2b-6 repeated. c. Two thyristors can be operated in series to attain the specified voltage rating. G5! • Calculate magnitude of'asymmetric surge current IT(aam)' Design Example Given: • Maximum junction temperature prior to surge, Tji= 110°C. • Circuit equivalent resistance, R = .01 ohms. • Circuit equivalent inductive reactance, XL=.025 ohms. • Peak .open circuit voltage, Vp-400V. • Assume a 1000V, T920 type thyristor will be used for this application for steady state current and reliable voltage derating requirements. 12 msec. ordinate scale-19,000A using peak Tji = 110°C curve. IT(aam) = K. IT(am) == 1.28. 14,860= 19,000A • Find asymmetric surge current pulse width from Graph A for~== 40 XL . • Pulse base width -11.9 msec. Initial device selection T920, 900 ampere device. Initial junction temperature given as 110°C. From surge suppression rating curve for T920-09 (Graph 8-16). 12 msec. ordinate scale-19000A peak using Tji curve for 110°C. Peak Tj=173°C from graph. Examining the Voltage Rating Factor curve for a standard device at 173"C, NO F factor is available in the standard rating. The 900 ampere standard device cannot be used under the stated conditions. First Option: Evaluate the T92G-1000 ampere device. Find: Magnitude and width of fault current pulse. Acceptable device rating for this application. Procedure: R . .01 XL ratlo=.025=0.40 From Graph A find the offset factor. K=1.28 • Calculate magnitude of symmetric surge current IT(am)' Using the Voltage Rating Factor curve for a standard device at Peak Tj = 163°C, F=3.2 VRating=F. Vp-3.2. 400=1280 volts A standard 1300 volt-1000 ampere T920 thyristor fulfills the minimum requirement for this application. Second Option: Using the special selection curve of Graph C for Tj-173°C; F-2.6. VRating= 2.6X400= 1040 V. A specially selected 1100 volt-900 ampere T920thyristor may also be used. Tji=1100C V 400 IT(am)" (R2+XL2)',.= [(.01 )2+ (.025)2]1{2 from surge suppression curve for T920-10 (Graph B-17). = 14,855A Surge Current Offset Factor- Pulse Width-Graph A --r-... 16.7 16 ...... 1'.... MdI f... fsir ul- Fvcle Sur "- '\ 15 rei Off et Fil tor 14 r-- t...... 1\ \ 11 \ rnSi i .. ~ IT'••, 10 11M ; 1.8 i\ , 1\ 12 <3 ~ 2.0 1\ ........ f', 13 _ , I\. ~ ... \ ·IT,~~ 9 is 1.4 t; ... 1\ 1\ IV i 1.2 ~ 0 1\ ~ \ E .3.5.7 10. 3 .3.5.7 10. 2 .3.5.7 10. 1 R XL .3 ~ i\~ I'. i 8.3 10. 4 GS6 '" 1\ \ L en " 'j 1.6 \ .5.7 1 3 ." 1.0 u "" 5 710 Peak Tj=163°C ~ :0 U) Surge Suppression Rating for Phase Control SCR's-STUD MOUNT Asymmetric and Symmetric Surge Currents VB. Junction Temperature 1100 900 1200 1200 1100 1000 1000 800 900 600 1400 1600 1000 800 800 1600 1 900 700 800 800 1000 1200 « :::i 4OO ~ 1400 1:::F!'ttt±iFH:R: 800 1000 1200 600 800 1000 400 600 800 200 400 600 E200 700 ~ 800 600 " u 800 700 400 I:'R:ffiffiffl+t:!::I-:li!'-F.::I't' 500 OJ .. ::!II 24 II ~200 E300 E o N ii e" 9-200 9130 e 140 Junction Temperature Prior to Reapplied VOSM. TJ. °C 5 8 9 7 8 6 7 5 6 4 5 3 4 2 3 7 4 3 5 6 4 5 3 2 7 4_ 4 3 3 2 2 2 2 ~ ~ o " 2 '" aI " " Ii} 9- 9- 3 ~ ~ o '"aI ii 6 9- Junction Temperature Prior to Reapplied VOSM. TJ. °C 5 9 8 8 7 7 10 8 6 8 5 4 9 7 6 6 11 9 7 6 4 9 8 7 8 10 9 8 7 10 6 7 5 6 4 5 5 4 3 4 3 2 3 3 2 ~ N ~ " 9- ~ o " 9- 3 .! ~ 2 ~rh ~ 1 I~ 9 '"aI " 9- .. '" 100 110 120 130 140 150 160 170 180 Junction Temperature Prior to Reapplied VOSM. TJ. °C N 2 ~ o 2 e" 4 ~ '"aI 3 " e2.5~~~~~~~~~~DE~~~~]i~~~ 100 110 120 130 140 150 160 170 180 Junction Temperature Prior to Reapplied VOSM. TJ. °C G57 Surge Suppression Rating for Phase Control SCR's-DISC MOUNT Asymmetric and Symmetric Surge Currents vs. Junction Temperature 10 9 7 8 6 7 6 6 4 !5 :::E 3 4 i 3 :s ~ ~ 2 .." u 8 9 7 8 ~ ." 8 7 !5 8 5 6 :s 3 4 4 6 3 4 2 3 2 3 ~ i ~E .!'" E E N 0 c " en& e" "'~ 4 ::IE 2 .. . . 'U .. 6 3 ~ ..~" u 2 <II 5 4 ...cDE Ii e" e <II i" .E 2 uE .!'" "'~ c" eng. 1 100 110 120 130 140 150 160 170 180 ~2 N 0 e" e" . 3 ...cOE e" 2 100 110 Junction Temperature Prior to Reapplied VOSM. TJ. 'C 7 6 10 7 8 9 6 7 8 5 6 7 :s 5 6 r<II 4 5 3 '4 4 2 ~ 9 5 3 ::IE 8 6 4 r<II i 11 7 6 « >< 10 8 u" . ~ 2 u" "~ " " <II . . . ~fIJ uE E 2 .!'" E N 0 .- CI. e" e" ~'; <II~ E 3 ~E e" Ci)g. ...cD . '" ~~ 2 11 8 9 10 7 8 9 6 7 8 5 6 7 4 5 6 3 4 5 140 160 160 170 ..E ..E .E ... 2 3 N 0 e" e" 2 cD e" Junction Temperature Prior to Reapplied VOSM. TJ. 'c Junction Temperature Prior to Reapplied VOSM. TJ. 'c 4 3 Junction Temperature Prior to Reapplied VOSM. TJ. 'C 14 9 10 11 9 11 12 8 9 10 8 10 11 7 8 9 7 9 10 6 7 8 6 8 9 :i <II 5 6 7 ::IE 5 7 8 i 4 5 6 6 7 ." 3 4 5 5 6 7 13 12 6 11 5 :s :s 4 r ~ 2 u ~ " " ~E <II . '" ~'ii .- CI. <II~ G58 10 <II .!::" 3 ..E ..E . 3 2 N 0 e" e" 2 ...cDE e" 9 E' 4 "t: u" 8 3 "~ <II " " .. 2 'U 4 ~E -&~ 1 3 c " <nE130 Junction Temperature Prior to Reapplied VOSM. TJ. °C 180 'c 3 .[ 2 "". ~ <II 10 130 4 ::IE 3 9 120 Junction Temperature Prior to Reapplied VOSM. TJ. 7 .E ..E ..E 4 N g. " 3 5 0 e" 4 ...cD e" 6 5 Surge Suppression Rating for Phase Control SCR's-DISC MOUNT Asymmetric and Symmetric Surge Currents VS. Junction Temperature 22 18 20 16' 18 14 16 12 14 ~ 10 12 i 8 10 "e' 6 8 .. "U 4 6 U >'" E .. E ~~ 2 ~ 4 o M en So So ~4 " ~ 22 22 18 20 16 18 18 14 16 16 12 14 20 20 18 16 ~ 16 14 P 14 12 12 10 10 8 12 ~ 10 " u 8 en" c::: II 14 16 12 14 10 12 H +':-!-H- 8 . E6 II 20 18 8 .. E '"E 6 ~ 4 ~ M 9- 94 ~ E <Xi " 6 II 6 '" E 8 <Xi II " 6 170 180 Junction Temperature Prior to Reapplied VOSM' TJ • 28 26 22 24 20 22 18 20 16 18 Junction Temperature Prior to Reapplied VOSM' TJ. "C 20 26 24 18 24 20 22 24 16 22 22 14 20 16 18 20 18 16 18 16 16 E 1! 16 14 12 :; 8 S- 14 ~ 14 .. e elO N ~10 II II So So 8 " Junction Temperature Prior to Reapplied VOSM. TJ. "C 20 26 28 24 26 22 24 20 22 18 20 16 18 14 16' 12 14 22 18 6 <Xi S- 8 14 8 M 0 II 12 en" 6 '"E 12 El0 8 12 U 12 '"E 20 14 14 N II 24 18 20 10 28 26 22 0 '" E 12 M <Xi " ~10 Junction Temperature Prior to Reapplied VOSM. TJ. "C 20 16 18 14 16 14 E ~ U" 12 8 10 (I) e' .il 6 (I) "U'" ~E4 .!ID "'~ c: " Cii~2 .. . 8 E N " ~ El0 6 0 " ~ .. E 12 M <Xi 8 " ~ 10 1 Junction Temperature Prior to Reapplied VOSM. TJ. "C G5!l to the increased gate sensitivity of the device at the high junction temperature following a surge. Conclusion A detailed procedure has been outlined which will aid in specifying a device for a given surge suppression requirement. The surge suppression ratings arrived at by this technique are intended to be maximum ratings similar to the maximum blocking voltage and conduction current specifications on device data sheets. As such, a certain degree of derating from this maximum operating condition would greatly increase the reliability of operation. This derating is intended to buffer the detrimental effects of variations in circuit parameters from the values used in the determination of the device specifications. RC dv /dt suppression networks are required to hold the reapplied dv /dt to less than the data sheet rating to prevent dv /dt triggering following the surge. This is the predominant surge suppression failure mode and thus great care should be taken in the suppression network design. Secondary fault protection techniques must be employed in the event the thyristor fails to successfully suppress the fault. This is usually provided by slow speed fuses or circuit breakers. In addition, care must be taken throughout the design of the equipment. The gate drives must be well shielded so as not to present appreciable noise currents to the thyristor during the surge suppression interval. These noise currents could cause retriggering due References 1. J. D. Balenovich &. W. H. Karstaedt "An SCR Surge Suppression Rating Technique:"IEEE Conference Record of lAS, October 1976. Voltage Rating Factor-Graph C 10 9 8 7 6 Stand rd-~ r--"'- --- - -- Select d - --i- 5 '+ t 4 I 3 I J I II / I 2 !5 tl II II. ~ // 'I 'i ., a: '" l!! ~ 100 Peak Tj (OCt G60 I 120 -- / 140 / 160 - r-- V -- R comm .. ded ~ aximum J 180 'i 200 220 REQUEST PRE-ORDER • PRICE AND DELIVERY QUOTATIONS Assemblies, Rectifiers, Thyristors, SCR's, RBDTs, and Transistors • APPLICATION ENGINEERING ASSISTANCE Assemblies, Rectifiers, Thyristors, SCR's, RBDTs and Transistors. • TECHNICAL LITERATURE REQUESTS Tech Tips, Application Data Sheets, Handbooks, Technical Data, User's Manual & Data Book, etc. ORDER • IN-PROCESS ORDER INFORMATION (Factory Orders) ACTION Contact your local sales representative or authorized distributor (listing on next page). If additional information is required, call the factory and ask for Sal.es. Call the factory and ask for Applications Engineering. Call the factory and ask for Communications. Call the factory and ask for Customer Service. For factory orders, the name of your customer service representative is located in the lower right-hand corner of your @ weekly open order status report. POST ORDER • RETURN MATERIAL AND OTHER CLAIMS • DEVICE IDENTIFICATION AND REPLACEMENTS @ FACTORY WESTINGHOUSE ELECTRIC CORPORATION SEMICONDUCTOR DIVISION YOUNGWOOD, PENNSYLVANIA 15697 Call the factory and ask for the Return Material Coordinator. Contact your local sales representative or authorized distributor (listing on next page). If additional information is required, call the factory and ask for Sales. PHONE (412) 925-7272 TWX 510/468-2840 See .:: Sales Representative and Distributor listing on the next page. G61 Westinghouse Worldwide Power Semiconductor Sales Headquarters U.S.A. - South Amerlce Europe Canada Internatlonel YOUNGWOOD, PENNSYLVANIA BURLINGTON, ONTARIO LE MANS, FRANCE SAO PAULO, BRAZIL' Westinghouse Electric Corporation Semiconductor Division Youngwood, Pa. 15697 Westinghouse Canada, Ltd. P.O, Box 5009 Bur1lngton, Ont., Canada L7R4B3 CDS Westinghouse Avenue G. Durand 12003 Le Mans. France Rue Santa Justina. 41 04545 - SAO Paulo - SP Phone: 412/925-7272 510/468-2840 Phone: 416/639-6010 .TELEX: 061-8509 Phone: (43) 84.33.40 TELEX: 842-720040+ TWX: Semicondutores Industriais Westinghouse LTDA Brasil Phones: (011) 240.5264 (011) 61.8800 Westinghouse Power Semiconductor Sales Representatives CALIFORNIA, Culver City . · .. Bestromcs, Inc CALIFORNIA, Los Angeles. . . . .. .. Westinghouse ............ . ...... BestrOnlcs of San Diego, Inc. CALIFORNIA, San Diego. CALIFORNIA, Sania Clara · .. Magna Sales CALIFORNIA, Mt View .. ........... Westinghouse . . ....... LlndbergCo .. . COLORADO. Denver ... CONNECTICUT, Old Saybrook. · . Gerber Sales Corporation .. CONNECTICUT. Newtown. · Gerber Sales Corporation .' FLOR I DA. Orlando ..... .. LawrenceAssoc, Inc ILLINOIS, Chicago . Westinghouse · ... S A I Marketing. . .................. . INDIANA, Indianapolis. .... Dy-Tronl)(, Inc . IOWA, Cedar Rapids . MARYLAND, Baltimore · Westinghouse MASSACHUSETTS, Boston . ....... Westinghouse .. . ........ . MASSACHUSETTS, East Longmeadow ....... Gerber Sales Corporation . MASSACHUSETTS, Waltham .... Gerber Sales Corporation . MICHIGAN, Brighton . ... S A I Marketing ... S A I Marketing MICHIGAN, Grand Rapids MINNESOTA, Minneapolis. · .. Comstrand Inc. ............. Dy-Tronl)(, Inc MISSOURI, SI LoUIs. MISSOURI. Independence NEW JERSEY, Haddonfield NEW JERSEY, Ringwood · ... JL Sales Assoc NEW MEXICO, Albuquerque ...... Lindberg Co .: :~~~~~~s~~lat~s':'" 213/870-9191 213/572-4849 714/278-2150 4081985-1750 4151965-()3()5 3031758-9033 203/388-4386 203/426-3440 305/592~600 312/887-8922 317/844-7196 319/377-8275 3011828-5400 617/237-6950 413/525-3059 617/890-8040 313/227-1786 616/942-2504 612/571-0000 314/731-5799 3141731-5799 609/854-3011 201/962-6315 505/881·1006 NEW YORK, Clinton , NEW YORK, Endicott . NEW YORK, Hempstead NEW YORK, Syracuse NEW YORK, ScottsVille NORTH CAROLINA. Charlotte OHIO, Cincinnati . OHIO, Cleveland OHIO. Day. In OHIO. Dayton. PENNSYLVANIA, Youngwood , TEXAS. Dallas TEXAS. Houston UTAH, Salt Lake City WASHINGTON, Seattle, WISCONSIN, Milwaukee , .. Advanced Components Corp ,Inc · .Advanced Components Corp, Inc · Westinghouse. . •.. ,., .. , ...... Advanced Components Corp ,Inc · Advanced CGmponents Corp, Ipc · .. Westinghouse . ' · S A I Markebng . · .. S.A I Marketing .,' S.A I Marketing .. · Westinghouse . Westinghouse . Kruvand ASSOCiates, Inc · Kruvand AsSOCiates, Inc · .. LlndbergCo . . .. Quadra Sales Corp · .. Westinghouse. , 315/853-6438 6071785-3191 516/489-2200 315/699-2671 716/889-1429 704/377-3471 313n61-5432 216/292-2982 513/435-3181 5131228-9627 4121925,,7272 214/691-4592 7131780-9710 8011534-1500 2061883-3550 4'141786-{)260 Canada MANITOBA. Winnipeg ONTARIO. Burlington QUEBEC, Lachine. , ... , . USA-Washington, Seattle · Westinghouse Canada Ltd . .. Wesllnghouse Canada Ltd · Westinghouse Canada Ltd ,Quadra Sales CorporallOn . 204/772-9401 416/639-6010 514163;1-94; 1 206/454-4946 Authorized Westinghouse Power Semiconductor Distributors ALABAMA. Birmingham .,',.,., .Ack Semiconductors . ALABAMA, Huntsville. . . Hamllton/Avnet ARIZONA, Phc '1IX • • Hamllton/Avnet , ... , ... , . , , ~. CALIFORNIA, Gosta Mesa Avnet Electronics. CALIFORNIA, Los Angeles , .. Hamilton Electro Sales. CALIFORNIA, Mt View . ,Hamllton/Avnel CALIFORNIA, San Diego. . .. Hamllton/Avnet COLORADO, Denver '. ........ .Hamllton/Avnet CONNECTICUT, Georgetown. .Hamllton/Avnet CONNECTICUT, North Haven .Cramer . FLOR IDA, Hollywood ... Cramer . FLORIDA. Ft Lauderdale .Hamllton/Avnet FLORIDA, Orlando "',." ....... ,.Cramer .. GEORGIA, Atlanta. ..,' . Cramer . GEORGIA, Atlanta. . ..... Harnllton/Avnet GEORGIA. Atlanta. . Specialty Distributing. GEORGIA. Augusta ... Specialty Distributing. ILLINOIS, Chicago ... , .... , ... Complete Reading Electric. ILLINOIS, Chicago ... Hamllton/Avnet ILLINOIS, Chicago " .. SemlconductorSpeclallsts , INDIANA, Ft Wayne ,. , .. Ft Wayne Electronics , INDIANA, Indianapolis. ". ,RA-DIS-CO . KANSAS. Kansas City .. Hamllton/Avnet MARYLAND. Baltimore .. Harnllton/Avnet ..... , ... MARYLAND, Rockville. , .. Cramer (Washington, DC) . MASSACHUSETTS, Boston. . ,Cramer MASSACHUSETTS, Boston ...• , Hamllton/Avnet ...... , .. " ... , .. . MASSACHUSETTS, Boston .... ,Schweber ..... . MICHIGAN, DetrOit. . .Hamllton/Avnet .... , ... , MICHIGAN. DetrOit. .Semlconductor Specialists MICHIGAN. Detroit. , ... , ... , ......... Shendan Sales . MINNESOTA, MinneapoliS .. ,Hamllton/Avnet MINNESOTA. Minneapolis . , . , ... Schweber . MINNESOTA. Minneapolis . , . , ... Semiconductor Specialists . MISSOURI, Kansas City. .. .... , ... L-COMP .. , ......... , , .. M ISSOUAI, Kansas City .. ,Semiconductor Specialists MISSOURI, SI LoUIs. Hamllton/Avnet MISSOURI, St LOUIs.... . Semiconductor SpeCialiSts .. , NEW JERSEY,Camden . General RadiO Supply Co NEW JERSEY. Cedar Grove. .., . Hamllton/Avnet ,. NEW JERSEY, Lltue Falls ..... Cramer ... , .... , ........... . NEW JERSEY. Moorestown .............. , ... Arrow ElectroniCS G62 205/322-0588 205/533-1170 602/275-7851 7141754-6111 213/558-2121 415/961-7000 714/279-2421 3031534-1212 203/762-0361 203/239-5641 3051923-8181 305/971-3491 305/894-1511 404/448-9050 404/448-0600 4041873-2521 4041722-1526 312/454-1234 312/678-6310 312/279-1000 219/423-3422 317/637-5571 913/888-8900 3011796-5000 301/948-0110 617/969-7700 6171933-8020 617/890-8484 313/522-4700 313/478-2700 313/477-3800 612/941-3801 612/941-5260 612/854-8841 816/221-2400 816/452-3900 314n31-1144 314/731-2400 609/964-8560 201/239-0800 201/785-4300 6091235-1900 NEW JERSEY, Mt Laurel. .."." .. ," . Harnllton/Avnet NEW JERSEY, Somerset , . , . Schweber NEW MEXICO, Albuquerque . , ,Hamllton/Avnet NEW YORK. L I .Cramer NEW YORK. L I .Hamllton/Avnet NEW YORK, L I ..... Schweber . NEW YORK. Rochester ..... Cramer . NEW YORK. Rochester ........... , .Hamllton/Avnet NEW YORK. Rochester ., ... , ..... Schweber . NEW YORK. Syracuse .Cramer . NEW YORK, Syracuse ... Hamllton/Avnet NORTH CAROLINA, Winston-Salem. . .Cramer OHIO. CinCinnati .. Shendan Sales. OHIO. Cleveland .. Hamllton/Avnet OHIO, Cleveland " .. , ............ , .. ShendanSales . OHIO. Columbus .. Hughes Peters OHIO, Di"Iyton . , .. Hamllton/Avnet ... " .. " ....... . PENNSYLVANIA. Plttsburgi1 , , .. CAMIAPC TEXAS, Dallas ... , .. Altalr . TEXAS, Dallas , .. Hamllton/Avnet TEXAS, Houston , ... Altalr .......... , ....... . TEXAS, Houston ......... , .. , ...... , .. CompleteReadlng ElectriC TEXAS, Houston ... . ,Hamllton/Avnet UTAH. Salt Lake City .... . ,Hamiltbn/Avnet WASHINGTON, Seattle. . ....... ,', .. " .. Hamllton/Avnet WEST VIRGINIA, Charleston. . . McJunkin ." .... , WISCONSIN. Milwaukee. .. .. . . . Taylor ElectrOniCs WISCONSIN. Milwaukee ........ , .... Hamllton/Avnet 609/234-2133 201/469-6008 5051765-1500 516/231-5600 5161333-5800 5161334-7474 716/275-0300 716/442-7820 716/461-4000 315/437-6671 315/437-2642 919/725':'8711 5131761-5432 216/461-1400 216/831-0130 614/294-5351 513/433-0610 4121782-3770 214/231-5166 214/661-8861 713/462-3029 713/224-5731 713neo-l"71 6011972-2800 2061746-6750 3041348-4965 414/241-4321 4141784-4510 Caneda BRITISH COLUMBIA, Vancouver MANITOBA, Winnipeg ONTARIO, Mississauga ONTARIO, Ottawa ..... . ONTARIO, Toronto ONTARIO, Toronto .. ONTARIO, Toronto .. QUEBEC, Montreal .R-A-E Industrial ElectroniCS . ,. · . , . Cam-Gard Supply .. '"'' ... Schweber · Hamilton/Avnet . ,Cesco ElectrOniCS ,Hamilton/Avnel ......... , .. .. · Semiconductor Specialists •.. ,Hamilton/Avnel .... . , ............ .. 604/687-2821 2041768-8481 4161678-9050 613/228-1700 416/661-(1220 4161677-7432 416/678'-1444 514/331-6443 INTRODUCTION Westinghouse has an extensive line of assembly capabilities with over twenty years of design experience. These products include Modular Bridges, Gold Line-Stud Mount, Air and Liquid Cooled-Disc, High -Voltage Stacks, and Custom Designs in a variety of circuit configurations as identified on the following pages. Westinghouse assemblies offer you savings in money, manpower, and time. Pre-engineered modular designs are available wth expert application assistance. All devices and heat sinks are thermally matched for optimum performance with guarteed ratings and are 100% factory tested. Buying assemblies rather than discrete components minimizes or eliminates tooling and set up charges and means single supplier contact for negotiating, purchasing, and expediting materials. Multiple incoming inspections, inventory investment, assembly time, and other handling costs are reduced. Thus, buying assemblies can save time and money while allowing a company to use its manpower and resources on programs that offer a greater return on investment. Buyers of assemblies also benefit by buying products which utilize the latest assembly techniques as well as those that incorporate the stateof-the-art in power semiconductors and heat sinks. In addition to the industry's broadest line of "catalog" assemblies, Wesinghouse can offer custom designs to meet virtually any requirement - consumer, industrial, or military. As a semiconductor manufacturer and a knowledgeable assembly supplier who deals with numerous materials and vendors worldwide, Westinghouse can help you minimize your total system cost by optimizing your custom design. ASSEMBLY PRODUCT INDEX M G P S H PRODUCT FAMILY PAGE MODULAR BRIDGES, SINGLE PHASE RECTIIFER ...........•........•••... A3 2-2SA/SO-1000v Economical, electrically isolated designs provide high surge ratings and small size for applications requiring easy hookup and reductions in assembly time. GOLD LINE ..........•....•..•....•....•...•.....•..•..•.•...•........•. AS 12-1670A/100-2000v A complete product line of stud mount rectifier and/or SCR assemblies simplifies any design selection because of circuit, mounting and electrical mounting and electrical variations that are available from standard designs. AIR AND LIQUID COOLED DISC ......................................... A37 197-13,S80A/100-4000V Variations of six heat sink designs (three extrusions and three castings) provide a building block approach to the mounting and cooling of a complete line of disc rectifiers and/or SCR's. HIGH VOLTAGE STACK, CHANNEL DESiGN .............................. A69 .S-324A/1-688KV Fully compensated rectifier modules in conjunction with a varilength mounting channel provide a method of obtaining custom designs from standardized components with very high packaging densities. HIGH VOLTAGE STACK, PLATE DESiGN ................................. A76 6-4S0AI2 -72KV Provides a viable base design for very high current and high voltage rectifier design combinations requiring repetitive surge capabilities and high reliability. SINKS AND KITS •.......•...........•...•..••...•..•.......•...•..•••.. A6S Sinks developed by Westinghouse are offered in complete kits with all necessary hardware supplied to mount and assemble disc power semiconductors. Extrusions designed for cooling large area power semiconductors are compatible with special fabrications. A1 Regardless of heat sink type - plate, fabrication, or extrusion; device type - standard, special. or military; mounting, cooling, and clamping requirements; or other special components - resistors, capacitors, fuses, thermostats, etc., Westinghouse can help. To get this free "added value" service, simply call Westinghouse on your next design project. All Westinghouse assemblies carry a one year warranty. In addition, spare parts and r.eplacement assemblies are readily available for most designs. Save time and money; consider an assembly and specify Westinghousel eI) ~ I- u C eI) c AVAILABLE CIRCUIT CONFIGURATIONS (sHADED AREAS) RECTIFIER HALF CONTROL-RECTIFIER/SCR FULL CONTROL - SCR A2 :a.:: u eI) a: S :;:) C 0 :E w Z ::::i C ...I 0 (l' C eI) c w w (l' ...I w 00 U ...I C LI. ...I 0 0 U C 0 2 <C ~ 0 :E ::t I- > a: ::J ;;: d::::i :E<C ::t2 0 eI) ::J U Dimensions: Inches (Millimeters) MB11A02 Serle. MB12A10 lit MB12A25 Series M B11 A06 Seri.. 1 .087 (2.2) .152 Dia. (3.8) ~~--+-'T ForNo.6~S~c~re~w~~~____-t1- .125 (3.18)..1 .152 Dia. I (3.8) ""T -,...t---..... ForNo.6~Szcr~ew~~~____-t1- .600 (15.0) Positive Terminal=:::~~~~~~tJ ColorD~ ~ .750 (19.05) ~ Positive Terminall-:=::t~J-----''----',," Color Dot TsL ~~.600--' .750-.J (3.18) 1(19.05) ~ (2.2) r-(15.0)~ _-' '- .030 dia. -----, ,.. (.76) I.J; f f ................~--L .250 Max. (6.35) (6.35) -r Features: • Single ,phase bridge circui! • Positive terminal polarity key (MB12) • Electrically isolated case • Low Vt, low leakage • High surge current ratings Applications: • Motor control, AC to DC converters • Power supplies, battery chargers ~ I .652 (16.56) 1.125 (28.58) l .712 (18.08) .193" Dia. Hole for No.8 Screw (4.90) .875 Min . (22.2) .................. .250 -L Max. II IEiiII r"\ (2r= m+ :J L: - - ' '-- .050 Dia. ~ ,.. (1.27) .875 Min. (22.2) AC (16.56 1.125 -r • 1.000 Max. .,g,;;..;~~..;;.. . (25.40)..... n (11.10) 437 .........'+'-_.. Module: MB11A02 MB11A06 MB12A10 MB12A25 V10 V20 V30 V40 V60 vao W10 Benefits: • Economy • Availability • Easy assembly hook-up • 25 to 50% reduction in assembly time Ordering Guide To order a Westinghouse Modular Assembly simply add the appropriate voltage code suffix from the table to the basic type number of the assembly you have selected. For example, to order the assembly MB12A25 with a 400 Volt rating, add the voltage code suffix-V40. Now the complete ten digit type number description is MB12A25V40. A3 Maximum Ratings and Characteristics -- 1 riBIIJ>12 5, fl(':; I . Repetitive Peak Reverse Voltage (PRV) Average DC Output Current* at 50"C Peak One Cycle (Non-repetitive. 60Hz) Surge Current Forward Voltage Drop per cell at 25°C Reverse Leakage per cell at rated PRY at 25°C Thermal Resistance-Junction to Case (typical) Operating Temperature Range Storage Tempereture Range ,'H'11A,I, c.; I ',~BI2'" S( fI' 50-1000V 2A 50A 1_0 V at 1.0 A DC 10"A 50-1000V 6A 125A 1.0 V at 3.0 A DC 10I'A -55°C to +125°C -55°C to +l60°C -55°C to +125°C -55°C to +150°C 1 I III:::; Mel ) 'J>~C 'It', 50-600V 25A 50-600V lOA 200A 1.2 Vat 5 A DC 10"A 1.5°C/W -55°C to +150°C -55°C to +150o C 300A 1.2 V at 12.5 A DC 10I'A 1.5°C/W -55°C to +150'C -55°C to +150oC *NOTE: 60Hz, resistive or inductive load; for capacitive load. derate current by 20%. Mechanical Characteristics 11V121"\'" IMBllA02 SUIt'S Electrically Isolated Case Any 10 in.-Ib. Max. (#6 Screw) 3.5 grams .030· Dia. Leads Positive Output: Color dot Negative Output: Diagonally opposite positive output Case Mounting Position Mounting Torque Weight Terminals/Leads Polarity Marking 30 25 ! '~Bl',\, S rl Electrically Isolated Metal Case Any 20 in.-Ib. Max. (#8 Screw) 31 grams .25" Universal Faston Inputs: AC Posithle Output: + Negative Ou~put: - 300r-----~-------+---- I MB12~25 Seri Electrically Isolated Metal Case Any 20 in.-Ib. Max. (#8 Screw) 31 grams .25" Universal Faston Inputs: AC Positive Output: + Negative Output: - I Non-Repetitive Surge Current Versus Time I I .+ I s '\ 20 ~I '\ I I I MBP ~10 Seri s MB11 ~06 Seri s MB11 iA02 Seri s I "' ~ ...... ......... ~ '\ i ~ E '\ <C ~ " b::~ ~ ~ 20 40 60 80 100 Maximum Allowable Case Temperature, ·C 120 140 100r---~~--------r-"--~~~----t-~~~~------; .>< to CD 0- f 50~~::::j:====~B11A~!S~~~~--"-r:;~;:::::~::::::j u CD 2' 100.. A4 I SI lies Electrically-Isolated Case Any 10 in.-Ib. Max. (#6 Screw) 6 grams .050" Dia. Leads Positive Output: Color dot l\Iegative Output: Diagonally opposite positive output Bridge Output Current Versus Temperature 35 iMB12AIO ':.,(>rll c; 160 ~ O~----~---------~------~------~--------~------~ 1 2 5 10 20 50 10"_ Cycles at 60 Hertz How to Select an Assembly I. Circuit Funtion A. Rectifier (contains rectifiers only)Go to Page A6 B. Half Control (contains both rectifiers ar1 SCR's) - Go to Page A16 C. Full Contrc>' 'contains SCR's only) Go to Pagl .24 II. Circuit Configuration - Select the configuration desired and then turn to the page number referenced. III. Current Rating - The assemblies are listed in order of increasing current rating on each page. Select the one that best meets your requirements. Each 'assembly has a table of current ratings as a function of various ambient temperatures, air flow velocity and conduction or delay angles for half and full control assemblies. IV. Mounting - Select the type number for either floor or wall mounting. Most assemblies offer both types of mounting. V. Vc.:tage Rating - Now from the range of voltage ratings shown. select the voltage rating you require from the voltage code suffix table. NOTE: Additional electrical and mechanical data on the assembly you have chosen can be found by referring to the respective key numbers. For information on current and voltage ratings not shown or' for any special electric... and/or mechanical requirements as well as additional information on any of the Gold-Line Assemblies listed. contact your nearest Westinghouse Sales Office. Features • Pre-engineered Design • Low Cost • Fully Tested Assemblies • Full Range of Current and Voltage Ratings • Guaranteed Assembly Ratings • Easy to Read Rating Charts • General Recommendations for Fuses. Voltraps. Gate Drives. R-C Networks • Complete Information for Assembly Application • Value Engineered Design • Compact Size • Light Weight • All Standard Circuit Configurations Available • Most Assemblies Built from Stock • Gold Chromate Finish • Insulated Mounting • JEDEC and MIL Approved Devices Available for Most Designs • Resistor/Capacitor Networks and other Special Frame Modifications Available. 100 " 200 300 400, 600 800 1000 1200 1400 1.600 2000 :w.r+;; ";~~Jl~: A5 Rectifier Assemblies This section describes the circuit configura~ tions available for Rectifier Assemblies. (assemblies using rectifiers only). The chart below shows the schematics, waveform, recommended diode voltage ratings, the basic current ratings available, and the page number where specific rating information for each assembly can be found. On each page the as!lemblias for a given circuit configuration are listed in order of increasing current rating. The tabulated current ratings for each assembly type number are given as a function of ambient temperature and as a function of air velocity (linear. feet per minutll- LFM). Refer to the mechanical and electrical keys specified for the assembly you have selected to obtain assembly wei.ghfand dimensions and other electrical data and recommendations. Assembly Output Ripple (%) Wave Form .45 ERMS .707 ERMS 121 (See Single Phase Bridge "B" or Three Phase "E"). A6 .900 ERMS 1.0 ERMS 48 .900 ERMS 1.0 ERMS 48 .900E RMS 1.0 ERMS 48 1.350 ERMS 1.351 ERMS 4 %ID 1.350 ERMS 1.351 ERMS 4 %ID 1.170E RMs 1.171 ERMS 4 Description of Rectifier Assemblies Pictured on the Right I. Westinghouse GE11A61, 3t/> Bridge, 35-61 Amps, 100-800 Volts on 3 x 3 plates. II. Westinghouse GE15B30, 3t/> Bridge, 100-300 Amps, 100-1600 Volts on 114 x 4 x 5 heat sinks. III. Westinghouse GE16B45, 3t/> Bridge, 225-450 Amps, 100-1600 Volts on 4 x 4 x 5 heat sinks. IV. Westinghouse GE19B53, 3t/> Bridge, 280-530 Amps, 100-2000 Volts on 5 x 5 x 6 heat sinks. V. Westinghouse GE19B83, 3t/> Bridge, 520-830 Amps, 100-2000 Volts on 5 x 5 x 6 heat sinks. .. ,", Available A...mbll_ " .', ~ Actual Diode Peak Reverse Voltage Recommended Rectifier Diode Repetitive Voltage Rating 1.41 ERMS or 7r ED 2.8 ERMS or 6.28 ED Output Current Ratimfs (Amperes) AVG '~:-' '" " ,'" > foroed ! ,~ ConveRtioti ' (i4O"C & Natural ' Convection @40°C : For Specific Rating Info See Page ' "QC:)(UJiM, , 2.2 to 300 , ,12t0190 ' " - ~ AS ... ,' . " i1.2to 120 A9 45t6'61{) " i I I II •• 2.828 ERMS or 7r ED 45 to 610>' ( 26 to 380 5.7 ERMS or 6.28 ED A11 JII 2.828 ERMS or 7r Eo 5.7 ERMS or 6.28 Eo ,', 26 to 380 45 to 610 A10 ,. " ,. , 1.414 ERMS or 1.57 Eo 2.8 ERMS or 3.2 Eo 26 to 380 ':" A12 "~' .. ~!. 2.8 ERMs or 2.1 ED • ".j 45 to 610. :'c. 1.414 ERMs or 1.05 ED ,~ . , " 61 to 830 '35 to 520 ., . .. ::. A13 .. ,!': .' 2.828 ERMs or2.1E o 5.7 ERMs or 4.2 Eo 57 to 860 2.45 ERMs or 2.1 Eo 4.9 ERMs or 4.2 Eo 70 to 1050 100 to 1360' ! A14 , <= I I I 120 to 1670 A15 ,~,< A7 - - - _ . _ - - ------ n Single Rectifier R Current Rating Voltage Ratings 12-22 Amps 100-800 Volts Type Number Mounting Mech. Data Pg. A34-35 40 Amps 100-1000Volts 20-38 Amps 100-1000Volts Elec. Data Pg. A33 Type Mach. Data Pg. A34-35 Number Elac. Data Pg. A33 Type Number Mech. Data Pg. A34-35 Elec. Data Pg. A33 Floor Wall Air Velocity (LFM)+ 40'C Maximum Ambient 60'C Temperature 80'C Output Current (Ayg. Amps.) 1000 150 N.C. 400 250 15 +:~~;'': 17 "'"1. ii1 19 19 17 15 14 11 16 11 9 14 13 Output Current (Ayg. Amps.) 400 250 150 34 30 26 32 29 25 22 17 22 20 15 28 25 Output Current (Ayg. Amps.) 1000 400 250 150 N.C. 40 40 t:(~7~ ·::I.~l1 40 40 40 40 40 40 40 40 40 34 40 Current Rating Voltage Ratings 70-140 Amps 100-1600 Volts 110-150 Amps 100-1600 Volts 190-300 Amps 100-2000 Volts Type Type Type Number Number Number Mounting Mach. Data Pg. A34-35 Elec. Data Pg. A33 Floor Wall Air Velocity (LFM)" 40'C Maximum Ambient 60'C Temperature 80'C AS Output Current (Ayg. Amps.) 1000 N.C. 400 250 150 90 r'~:: ::;:,WdJ 110 99 125 101 90 80 55 103 85 47 65 75 Output Current (Ayg. Amps.) 150 126 400 146 127 108 250 136 118 99 150 126 110 92 93 78 Output Current (Ayg. Amps.) 400 250 150 281 266 247 256 237 224 160 208 216 200 189 175 135 Doubler D Current Rating Voltage Ratings Type Meeh. Data Pg. A34-35 Number Mounting 18-32 Amps 100-1000Volts 12-20 Amps 100- 800 Volts Elee. Data Pg. A33 Meeh. Data Pg. A34-35 Number Elee. Data Pg. A33 Type Number Floor Wan Output Current (Avg. Amps.) 400 18 15 13 Air Velocity (LFM) + 4O'C Maximum Ambient 60'C Temperature 80'C Current Rating Voltage Ratings 250 16 14 12 Meeh. Data Pg. A34-35 Number Output Current (Avg. Amps.) 150 15 13 11 45-135 Amps 100-1600 Volts Type Mounting Type 19-40 Amps 100-1000Volts 400 31 27 23 250 28 24 21 400 36 32 24 75-150 Amps 100-1600 Volts Elee. Data Pg. A33 Type Mech. Data Pg. A34-35 Number Output Current (Avg. Amps.) 150 24 21 18 250 33 27 20 150 30 25 19 190-300 Amps 100-2000 Volts Elec. Data Pg. A33 Floor Type Number r----- Mech. Data Pg. A34-35 Elee. Data Pg. A33 Wan Output Current (Avg. Amps.) Air Velocity (LFM)+ 4O'C Maximum Ambient 6O'C Temperature 80'C 400 104 85 65 250 92 75 58 150 81 66 51 Output Current (Avg. Amps.) 400 124 250 110 100 76 88 68 150 93 75 57 46 Output Current (Avg. Amps.) 400 270 240 204 250 253 222 188 150 228 201 170 N.C. A9 Po•. Center Tap C Current Rating Voltage Ratings Mounting 26-45 Amps 100-800 Volts 40-76 Amps 1oo-1000Volts Type Mech. Data Elec. Data Type Mecb. Data Elec. Data Type Mech. Data Elec. Data Number Pg.A34·35 Pg.A33 Number Pg. A34·35 Pg. A33 Number Pg. A34·35 Pg. A33 Floor ~- Wall .. Output Current (Avg. Amps.) Air Velocity (LFM). Maximum 4O'C Ambient 60'C Temperature 80'C Current Rating Voltage Ratings Mounting 1000 I 38 31 400 40 34 28 250 36 31 25 150 33 28 23 .. 1·:NC 22 18 90-270 Amps 100-1600 Volts 1000 '7t:'~1 65 55 400 76 57 49 250 68 52 44 150 NC 59 45 38 ~~ ···1 E2 Output Current (Avg. Amps,) 155-300 Amps 100-1600 Volts 270-510 Amps 100-2000 Volts Mech. Data Elec. Data Type Type Mech. Data Elec. Data Number Pg. A34·35 Pg. A33 Number Number Pg. A34·35 Pg. A33 F-34 . . 220 . 150 400 207 170 115 250 185 152 103 150 162 133 90 74 50 380-610 Amps 100-2000 Volts Type Mech. Data Elec. Data Number Pg. A34·35 Pg. A33 Floor Wall Output Current (Avg. Amps.) Air Velocity (LFM). Maximum 4O'C Ambient 6O'C Temperature 80'C W.10 34 29 Wall Current Rating Voltage Ratings ~ Type Output Current (Avg. Amps.) A10 Output Current (Avg. Amps.) Floor Air Velocity (LFM). 4O'C Maximum Ambient 60'C Temperature 80'C Mounting 60-80 Amps 1oo-1000Volts 1000 'ttl"'i 520 426 400 564 460 393 250 532 455 371 150 490 418 342 NC ElW:ti 325 265 Output Current (Avg. Amps.) 265 212 400 279 225 180 250 248 200 160 150 209 169 135 -~--1 E 4 W-34 Output Current (Avg. Amps.) Neg. Center Tap N Current Rating Voltage Ratings Type Mach. Data Pg. A34-35 Number Mounting 40-76 Amps 100-1000Volts 26-45 Amps 100- 800 Volts Elac. Data Pg. A33 Type Mach. Data Pg. A34-35 Number 60-80 Amps 100-1000Volts Elac. Data Pg. A33 Type Mach. Data Pg. A34-35 Number Elac. Data Pg. A33 Floor Wan I. Output Current (Avg. Amps.) Air Velocity (LFM). Maximum 4O·C Ambient 6O·C Temperature 80.C Current Rating Voltage Ratings 1000 400 250 150 r';;.f'l 40 36 33 38 34 31 28 31 28 25 23 22 18 90-270 Amps 100-1600 Volts Type Mach. Data Pg. A34-35 Number Mounting N.C. 1000 400 250 150 68 65 76 57 59 45 55 49 .71 I 52 44 38 , NC 34 29 Type Mach. Data Pg. A34-35 Number 1000 400 250 150 ,.(i_L,s! 80 80 80 80 80 80 80 75 74 68 61 N.C. Pih.',:;, 50 41 270-510 Amps 100-2000 Volts 155-300 Amps 100-1600 Volts Elec. Data Pg. A33 Output Current (Avg. Amps.) Elac. Data Pg. A33 Type Mach. Data Pg. A34-35 Number Elac. Data Pg. A33 Floor , Wan Output Current (Avg. Amps.) Air Velocity (LFM). 4O·C Maximum Ambient 60·C Temperature 80·C Current Rating Voltage Ratings Output Current (Avg. Amps.) 400 250 150 N.C. 1000 400 250 150 207 185 162 JIO: .;;.• ':t 279 248 N.C. 220 170 152 133 74 265 225 200 209 •.::,'tiJ;;; 169 125 150 115 103 90 50 212 180 160 135 100 Output Current (Avg. Amps.) 1000 400 250 150 NC ~_;i 454 426 378 I·:.·' 496 395 321 370 330 235 302 266 190 360 380-610 Amps 100-2000 Volts Type Number Mounting .' Output Current (Avg. Amps.) Mech. Data Pg. A34-35 Elec. Data Pg. A33 Floor Wan Output Current (Avg. Amps.) Air Velocity (LFM). Maximum 4O·C Ambient 6O"C Temperature 80·C A11 1 cP Bridge B Current Rating Voltage Ratings 26-45 Amps 100- 800 Volts Type Mach. Data Pg. A34-35 Number Mounting Elec. Data Pg. A33 Floor Wall Output Current (Avg. Amps.) =Type Number FW9 250 68 62 44 400 76 67 49 90-270 Amps 100-1600 Volts Type Elac. Data Pg. A33 I Elec:Data Pg. A33 Type Mach. Data Pg. A34-35 Number Floor Type Number E2 Output Current (Avg. Amps.) 160 69 45· 38 155-300 Amps 100-1600 Volts Mach. Datil Pg. A34-35 Number Mounting Mech. Data Pg. A34-35 Output Current (Avg. Amps.) Air Velocity (LFM). Maximum 4O'C Ambient 60'C Temperature 80'C Current Rating Voltage Ratings 60-80 Amps 100-1 000 Volts 45-76 Amps 1oo-1000Volts 270-510 Amps 100-2000 Volts Elec. Data Pg. A33 Type Mech. Data Number Pg. A34-35 ,----- Elec. Data Pg. A33 I Wall Output Current (Avg. Amps.) Air Velocity (LFM). Maximum 4O'C Ambient 6O'C Temperature 80'C Current Rating Voltage Ratings 400 207 170 116 Number Floor 160 162 133 90 _ Mach. Data Pg. A34-35 F-41 Elac. Data Pg. A33 i E-4 Output Current (Avg. Amps.) Air Velocity (LFM). Maximum 4O'C Ambient 60'C Temperature 80'C A12 Output Current (Avg. Amps.) 400 279 225 180 380-610 Amps 100-2000 Volts Type Mounting 250 186 162 103 250 248 200 160 160 209 169 136 Output Current (Avg. Amps.) 3 q, Bridge E Current Rating Voltage Ratings 35-61 Amps 100- 800 Volts Type Mech. Data Pg. A34-35 Number Mounting 55-100 Amps 1 00-1 OOOVolts Elec. Data Pg. A33 Type 70-120 Amps 100-1000Volts Mecn. Data Pg. A34-35 Number Elec. Data Pg. A33 Type Mech. Data Pg. 'A34-35 Number Elec. Data Pg. A33 Floor Wall Output Current (Avg. Amps.) Air Velocity (LFM). Maximum 40'C Ambient 60'C Temperature 80'C Current Rating Voltage Ratings 400 54 52 46 45 40 Type Number Mounting Floor 150 1000 400 250 150 N.C. 45 fi,;~J 92 84 73 "'.'elk;: 42 36 38 33 30 91 81 73 26 78 69 62 63 54 48 41 100-300 Amps 100-1600 Volts r----- Output Current (Avg. Amps.) 250 49 Mech. Data Pg. A34-35 Elec. Data Pg. A33 Output Current (Avg. Amps.) 400 250 150 ';-~ 120 1000 116 107 .,. NC [ 116 115 96 87 58 94 85 72 70 47 180-380 Amps 100-1600 Volts 225-450 Amps 100-1600 Volts Type Type Number Number Mech. Data Pg. A34-35 .' Elec. Data Pg. A33 Wall Output Current (Avg. Amps.) Air Velocity (LFM). 4O'C Maximum Ambient 60'C Temperature 80'C Current Rating Voltage Ratings Mounting 246 189 Output Current (Avg. Amps.) Output Current (Avg. Amps.) 400 250 150 400 250 150 1000 400 230 205 180 288 405 250 361 168 148 82 307 243 196 ;JL_~ 189 145 323 261 145 393 333 290 130 113 63 234 198 149 110 297 252 224 232 1.76 150 NC 303 tal', 249 188 185 140 280-530 Amps 100-2000 Volts 370-700 Amps 100-2000 Volts j 520-830 Amps 100-2000 Volts Type Type Type Number Number Number Mech. Data Pg. A34-35 Elec. Data Pg. A33 GE19B83 F·43 EA Floor Wall Output Current (Avg. Amps.) Air Velocity (LFM). 40'C Maximum Ambient 60'C Temperature 80'C Output Current (Avg. Amps.) Output Current (Avg. Amps.) .. 1000 400 250 730 150 NC 672 Is.zo 325 730 770 675 638 588 455 275 617 570 540 600 385 400 250 150 1000 400 250 150 NC 470 443 393 ~i] 628 581 l<~ 456 405 382 336 240 611 552 510 526 461 360 321 302 266 190 517 468 432 391 •. :J A13 6 <p Star Current Rating Voltage Ratings Type Number Mounting Mech. Data Pg. A34-35 Elec. Data Pg. 0433 Mech. Data Pg. A34-35 TYPII Number Elec. Data Pg. A33 Type Number Mech. Data Pg. A34-35 Elec. Data Pg. A33 Floor Wall Output Current (Avg. Amps.) Air Velocity .(LFM). Maximum 4O'C Ambient 60'C Temperature 80'C Current Rating Voltage Ratings 1000 400 250 150 ·;t.'j ! P.utput Current (Avg. Amps.) NC 400 250 195 189 171 Eff"" ..· 375 344 294 187 156 142 95 308· 274 241 153 138 117 114 77 236 212 184 457·870 Amps :.100.-?OOO Volts 367-735 Amps 10.0-1600 Volts Type Nu,!!ber. Mech. Oats Pg. A34-35 Output Current (Avg. Amps.) 150 189 Type Number Mounting 294-620 Amps 100-1600 Volts 163.4.90 Amps '10Q.1600 Volts 114-195 Amps 100-1000Volts' 603-1150 Amps 100-2000 Volts Elec. Data Pg. A33 Type Number Floor Wall Output Current (Avg. Amps,.) Current Rating Voltage Ratings Floor A14 (Avg. Amps.) Output Current (Avg. Amps.) 150 NC 400 250 150 400 250 150 ~:tC~ 660 543 641 588 tWf'" 767 722 641 1022 947 853 473 494 406 411 366 307 484 302 744 661 623 548 392 997 899 832 753 228 587 523 492 433 310 843 764 704 638 850-1360 Amps 100-2000 Volts I GS19C13 Mech. Data Pg. A34-35 Elec. Data Pg. A33 _ Output Current (Avg. Amps.) Air Velocity (LFM). Maximum 4O'C Ambient 60'C Temperature eo'c Curren~ 250 Type Number Mounting Output 400 1000 Air Velocity {LFM). Maximum 4O'C Ambient 60'C Temperature 80'C 1000 N.C 400 250 150 1190 1095 1190 1253 1100 1038 959 742 1005 930 880 815 628 .* .1 I 8&0 Current Rating Voltage Ratings Mounting 140-240 Amps 1 00-1 OOOVolts 200-600 Amps 100-1600 Volts Type Mech. Date Elec. Data Numbe. Pg. A34-35 Pg. A33 Type Number 360-760 Amps 100-1600 Volts Mech. Data Elec. Data Type Mech. Data Elec. Data Pg. A34-35 Pg. A33 Number Pg. A34-35 Pg. A33 Floor Wall Output Current (Avg. Amps.) Air Velocity (LFM) + Maximum 4O'C Ambient 60'C Temperature 80'C Current Rating Voltage Ratings Mounting 1000 -I 232 188 400 240 230 170 250 232 192 144 150 .. NC 210 _ : ' 174 116 140 94 1000 400 250 160 I!~'l 480 410 336 260 360 296 226 492 378 378 290 N.C l164 126 450-900 Amps 100-1600 Volts 560-1060 Amps 100-2000 Volts Type Numbe. Type Number Output Current (Avg. Amps.) Output Current (Avg. Amps.) Output Current (Avg. Amps.) 1000 ,. 400 646 250 576 150 486 614 468 522 396 464 354 392 298 290 220 740-1400 Amps 100-2000 Volts Mech. Data Elec. Data Pg. A34-35 Pg. A33 Type Number Mech. Data Pg. A34·35 Elee. Data Pg. A33 Floor Wall Current Rating Voltage Ratings 1222 1034 I 400 1266 1104 260 1162 1020 936 864 .. 160 NC 1062 I 740 922 782 550 650 1040-1670 Amps 100-2000 Volts Type Mech. Data Pg. A34-35 Number Floor t. Output Current (Avg. Amps.) 1000 Air Velocity (LFM)+ Maximum 40'C Ambient 60'C Temperature 80'C Mounting Output Current (Avg. Amps.) __ F-43 Eisc. Data Pg. A33 I E4 Output Current (Avg. Amps.) Air Velocity (LFM)+ 40'C Maximum Ambient 60'C Temperature 80'C 1000 400 t810 J 1540 1460 1234 1360 1140 250 1480 1276 1080 150 1344 1176 1000 N.C. L-910 770 A15 Half Control Assemblies increasing current rating. The tabulated current ratings for each assembly type number are given as a function of ambient temperature, as a function of the conduction or delay angle, and as a 'function of the air velocity (linear feet pElr minute - LFM). The conduction angle is defined as the number of electrical degrees the SCR conducts current. The ~elay angle is defined as the number of electrical degrees the gate trigger pulse is delayed from the time the anode voltage on the SCR starts positive. Refer to the mechanical and electrical keys This section describes the standard circuit configurations available for Half Control Assemblies (assemblies using both rectifiers and SCR's). The chart below shows the schematics, waveform, recommended SCR and diode voltage ratings, the basic current ratings available, and the page number where specific rating information for each assembly can be found. On each page the assemblies for a given circuit configuration are listed in order of ';''1'';', ' specified for the assembly you have selected to obtain assembly weight and dimensions and other electrical data and recommendations. 'I' , \ Assembly Output Circuit " , , <, f~umlol'\ , ~'" ~ ;-" Schematic " " .:".ouWer ,:':t, "' " , o ,~ ' ., ,. ~ »c<,~ ~.:", " ,', .~.~~Ph.aM Bridge ~. '1-.,'\ :-'1- 0 -~ .ca.- Ell" ;"', t / I'~ Ttl.... >',to ,,' Waveform , A'...... ~ AiCfawttch " Pb... 'ridge ~';. ',' ,;.. t'hrf!ItPhasa AC .SWitch " 1 ~ !RL , L CR, '" ~. R ~ 'Bi ~ ·Iw ~ L Maximum Voltage Ed=Avg. E.=RMS Maximum SCR Voltage Maximum Diode Voltage (See: Single Phase Bridge "B" or Three Phase Bridge "E") °lw 1 CR, Er'~1 A16 ",' ;'t':., E.=ERMS 1.4 ERMS 1.4 ERMS Ed =.90 ERMS 1.4 ERMS 1.4 ERMS Ed=1.35 ERMS 2.45 ERMS 2.45 ERMS E.=E RMS 1.4 ERMS 1.4 ERMS ,Description of Half Control Assemblies Pictured on the Right I Westinghouse GA28B32, 141 AC Switch 180-320 Amps, 100-1600 Volts on 4 x 4 x 9 II III IV V heat sinks. Westinghouse heat sinks. Westinghouse heat sinks. Westinghouse heat sinks. Westinghouse heat sinks. Recommended SCR &. Diode Voltage Rating 2.8 ERMS 2.8 ERMS or 3.9 Ed GB28B29, 141 Bridge, 161-290 Amps, 100-1600 Volts on 4 x 4 x 9 GE28B42, 341 Bridge, 232-420 Amps, 100-1600 Volts on 4 x 4 x 9 GE24B 11, 341 Bridge 54-11 0 Amps, 100-1000 Volts on 1% x 4 x 5 GF24A89, 3lP AC Switch 42-89 Amps, 100-1000Volts on 1% x 4 x 5 Output Current Ratings (Amperea) Forted Natural CCltWeCtiOn aUO·C &. Convection at40·C '1000 I.FM· 12 tl.l71 19ta 140 ja'RMSto "180RMS <MRMS,to 320RMS' 3tQ161 ;M~'2./ For Specific Rating Info See Page AlB ~\, II A19 A2D ., III 4.9 ERMS or 2.1 Ed 2.8 ERMS '37 to 232. A2l A22 IV v A17 M Doubler D Current Rating Voltage Ratings 12-19 Amps 100-1000 Volts Type Number Mounting 36 Amps 100-1200 Volts 18-36 Amps 100-1000 Volts Type Mech. Data ...-N_um_be_r_ _ Pg. A34-35 Elec. Data Pg. A33 Type Number Mech. Data Pg. A34-35 Floor Wall Maximum Air Velocity +Ambient Temperature (LFM)+ I "- 4O'C L I 60'C L I SO'C L Delay Angle 60 90 120 150 o Delay Angle 60 90 120 150 o Delay Angle 60 90 120 150 Current Rating Voltage Ratings Mounting Output Current (Avg. Amps.) 1000 400 250 150 16 15 ,.' 17 16 15 14 17 10 14 13 12 16 12 11 9 10 12 8 8 8 7 6 16 15 13 11 14 13 11 13 12 11 12 11 10 10 9 8 7 9 6 8 6 7 6 11 10 10 9 8 7 6 5 8 7 6 6 5 6 9 8 8 5 9 8 6 9 8 6 5 5 4 Output Current (Avg. Amps.) 400 250 150 35 32 28 33 30 27 28 28 27 18 24 23 14 23 21 23 16 18 18 11 18 35 32 28 23 16 29 27 26 21 16 26 26 22 19 18 23 22 20 18 14 14 13 12 11 27 26 21 19 16 22 21 19 16 13 20 19 17 16 12 18 10 17 9 16 13 10 8 7 6 9 Output Current (Avg. Amps.) 400 250 150 36 36 36 33 33 33 28 28 28 28 28 23 23 23 23 23 16 16 16 16 16 36 33 28 23 18 36 33 28 23 16 36 33 28 23 16 36 33 28 23 16 29 27 26 21 16 36 33 28 23 18 33 31 27 22 16 30 29 25 22 16 28 27 24 21 16 21 20 17 16 12 47-72 Amps 100-1200 Volts 63-110 Amps 100-1600 Volts 77-140 Amps 100-1600 Volts Type Number Type Number Type Number Mech. Data Pg. A34-35 Elec. Data Pg. A33 Floor Wall Maximum Air +Ambient Velocity Temperature (LFM)+ I 4O'C L I I I L 80'C A18 o Delay Angle 60 90 120 150 o Delay Angle 80 SO 120 150 o Delay Angle 80 90 120 150 Output Current (Avg. Amps.) 150 NC 1000 400 250 ':.:,~<l 68 63 57 I 41 64 43 67 63 59 49 40 54 58 58 45 35 45 45 4~ 32 32 32 32 28 .. Output Current (Avg. Amps.) 150 NC 1000 400 250 81 93 1101 104 ea ... 81 105 98 89 79 81 57 88 88 72 84 71 71 71 60 49 49 49 49 40 -r 59 55 50 42 32 55 52 46 40 31 51 48 43 38 30 47 44 40 35 27 36 34 31 27 22 92 87 79 69 49 83 80 73 84 45 41 37 32 25 41 39 34 30 23 38 38 32 28 22 35 33 30 28 21 26 24 22 19 18 89 85 81 64 42 .. 49 47 76 86 72 83 58 62 41 43 49 86 58 48 82 59 56 48 38 65 53 49 43 35 48 47 44 39 31 34 32 38 32 30 27 23 Output Current (Avg. Amps.) 250 150 NC 1000 400 111 97 I 17 1401 128 '1'21 94 74 107 134 89 110 98 88 121 75 59 94 84 98 48 68 80 89 89 .. 79 82 91 88 79 89 56 70 61 50 80 67 53 48 37 74 73 88 58 47 87 65 59 52 42 57 58 53 48 37 41 39 36 31 28 113 109 99 88 88 102 99 82 81 74 84 50' 90 77 77 1 ~ACSwltch A Current Rating Voltage Ratings 28-46 Amps 100-1000 Volts Type Number Floor Wall Mounting Maximum +Amblent r----- Air Velocity F~::,a:LFM)~ L 4CrC r- Ir-. so·c L Angle 120 150 180 Delay Angle 90 o 120 150 180 o Delay Angle 90 120 150 180 Current Rating Voltage Ratings Mech. Data Pg. A34-35 Elec. Data Pg. A33 Output Current (RMS Amps.) 1000 400 250 150 N.C. 48 40 38 47 42 30 39 35 43 48 40 36 31 49 44 41 38 32 50 45 40 34 43 o f [ I 8O'C Delay 90 120 160 lSO Delay Angle 90 120 L o 150 lSO o Deley Angle Type Number Type Number Output Current (RMS Amps.) 1000 400 250 150 N.C. 74 66 42 ..•. 82 73 48 89 87 82 77 51 89 89 86 89 89 89 84 56 89 89 89 87 64 Output Current (RMS Amps.) 1000 400 250 150 as 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 Mech. Dala Pg. A34-35 Elee. Data Pg. A33 33 34 35 37 38 31 32 33 34 3.6 28 29 30 31 33 22 24 25 26 27 81 86 89 89 89 68 75 78 85 89 61 67 70 77 85 54 60 63 69 78 33 34 39 43 50 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 86 89 89 89 89 68 69 73 76 82 29 30 31 32 33 25 26 27 28 29 23 24 25 26 27 21 22 23 24 26 16 17 17 19 21 61 63 64 70 76 50 53 54 59 64 45 47 48 53 58 40 42 43 47 52 23 24 25 27 30 80 76 79 81 85 89 71 74 75 80 66 69 70 74 78 49 52 53 56 50 147-260 Amps 100-1600 Volts 106-170 Amps 100-1200 Volts Type Number r--___- - Mech. Data Pg. A34·35 83 85 89 89 83 180-320 Amps 100-1600 Volts Elec. Data Pg. A33 Type Number Mech. Data Pg. A34·35 Elec. Data Pg. A33 Floor Wall Maximum Air Velocity +Ambient Fmperature (LFM)+ I - 85-89 Amps 100-1200 Volts 38 39 40 41 42 Type Number Mounting 42-89 Amps 100-1200 Volts 90 120 150 lSO Output 1000 1701 174 177 177 177 Current (RMS Amps.) 150 N.C. 400 250 157 147 134 11" 111 154 141 164 157 144 113 168 156 127 177 176 136 177 177 168 136 143 146 155 168 128 134 137 145 159 120 126 128 136 150 108 113 116 126 138 83 85 88 98 106 102 106 111 117 126 96 101 109 110 118 86 80 85 88 95 58 60 62 70 74 94 97 103 112 102 Output Current (Avg. Amps.) 1000 400 250 150 N.C. tso t 240 216 196 I 147 274 256 230 204 159 279 264 237 208 165 279 254 227 180 279 279 279 273 250 198 211 225 232 272 193 205 212 230 251 173 188 196 206 226 156 169 175 189 202 143 154 160 171 187 128 137 142 155 169 250 Output Current (Avg. Amps.) 1000 400 250 150 N.C. 260 227 I 1SO alOI 297 341 313 276 242 193 360 321 286 250 200 378 346 308 270 212 302 390 375 337 235 153 161 166 184 202 112 120 125 137 151 260 278 288 310 341 237 252 260 282 309 209 112 78 83 86 95 103 191 209 218 233 256 175 188 195 210 233 153 167 174 190 120 124 138 151 223 232 252 277 208 181 193 200 223 247 135 145 150 164 180 132 141 146 166 185 92 98 102 110 122 A19 1. Bridge B Current Rating Voltage Ratings 26-41 Amps 100-1000 Volts Mach. Data Pe· A34-35 Type Number Mounting 4O"C L r Jrc L 8O"C L Type Mach. Data Pg. A34-35 Number Elec. Data Pg. A33 Type Mach. Data Pe. A34-35 Number Elac. Data Pe. A33 , Output Current (Avg. Amps.) E 6 Output Current (Avg. Amps.) Output Current (Avg. Amps.) 180 I I 78-80 Amps 100-1200 Volts ---I ~- -\IVF13 15 Floor Wall Mulmum Alit +Ambient Velocity T8IIIJIIII'atUf8 (LFM)+ r Elac. Data Pe. A33 38-80 Amps 100-1000 Volts Conduetion 120 Angle 80 80 30 3430 . 30 28, 28 21 16 23 19 14 ' 21 18 13 24 22 20 18 12 Conduction 120 Angle 80 23 20 18 80 UI 30 12 20 18 18 16 11 18 17 14 13 10 18 13 13 13 10 180 Conduction 120 Angle 80 80 30' 180 Current .Rating Voltage Ratings Mulmum +Ambient Air Velocity 73 86 57 13 12 11 10 8 "60 ~ F29 ~--~ V\1 29 45 31 43 38 30 81 66 48 43 31 54 60 48 41 38 32 27 41 38 45 38 31 34 29 23 48 44 40 35 27 28 27 24 22 17 80 68 80 88 "46 56 38 33 31 27 21 20 18 17 16 12 72 88 Elac. Data Pg. A33 J f7 I Output Current (Avg. Amps.) Type Mach. Data Pg. A34-35 Number HB-- F- 30 \",1 32 " 48 32 78 66 80 54 56, 50 48 32 80 88 58 48 32 48 32 42 32 88 81 54 48 32 84 69 50 44 32 80 54 48 42 32 44 40 34 32 24 161-290 Amps 100-1600 Volts 130-230 Amps 100-1600 Volts Mach. Data Pg. A34-35 Number Floor Well 20 18 17 14 10 94-160 Amps 100-1200 Volts Type Mounting 27 26 ' Elec. Data Pg. A33 Type Mach. Data Pg. A34-35 Number Elac. Data Pg. A33 I 3(' [ 8 EII!InII Output Current (Avg. Amps.) W30 i f ' Output Current (Avg. Amps~)·'.. TlllllJMftlure (LFM)+ r 180 I ' Conduction 120 I Conduction 120 Ir - : Ir - : I 8O"C, A20 L 122 110 113 104' 106 88 88 89 86 63 82 80 82 88 76 69 80 70 65 180 88 63 Conduction 120 Angle 80 82 77 75 88 88 78 71 86 :" 71 88 80 112 41 180 80 30 84, 87 72 88 63 54 44 182 174 169 138 174 180 144 128 89 89 48 47 143 128 120 107 130 120 107 88 84 77 45 38 32 '''68 143 130 118 92 118 107 88 88 70 138 127 118 104 100 83 88 77 83 84 104 84 88 78 83 70 84 58 53 48 218 188 172 138 212 188 178 154 124 188 178 169 138 112 174 161 148 128 100 167 146 133 118 84 137 130 117 104 84 234 162' 122 152 140 114 106 . 122 100 92 74 118 112 107· 82 74 84 78 73 82 58 3 q, Bridge E Current Rating Voltage Ratings 37-58 Amps 100-1000 Volts Type Number Floor Mounting Wall Maximum "Ambient Air Velocity 110 Amps 100-1200 Volts 54-110 Amps 100-1000Volts Mech. Data Pg. A34·35 Elee. Data Pg. A33 F.4 i VV 5 : - .- - - - - < E 5 Output Current (Avg. Amps.) Type Number Mach. Data Elec. Data Pg. A34·35 Pg. A33 GE24B11 GE54Bl1 F·18 ' Type Number Mach. Data Elec. Data Pg. A34·35 Pg. A33 E·6 VV·20 Output Current (Avg. Amps.) [-'::.:~.~ L I Angle 90 120 150 o 6O"C L I 8O'C L Delay Angle 60 90 120 150 Delay Angle 45 39 32 23 o 34 60 90 120 30 27 24 18 150 Current Rating Voltage Ratings 39 34 28 21 30 27 24 23 16 37 32 27 19 33 30 24 18 27 25 21 24 20 19 19 19 15 15 97 85 68 15 47 19 18 16 15 81 75 140-220 Amps 100-1200 Volts Type Number Mounting 27 '25 64 58 44 82 74 64 47 75 67 58 47 66 61 53 42 67 62 56 49 38 59 56 51 44 35 53 50 46 40 31. 40 37 32 26 29 26 25 22 18 , Pg. A33 Elec. Data Pg. A33 Type Number , 99 64 84 69 48 48 105 99 99 93 81 67 ,48 84 69 48 69 Floor [ I 8O'C L I 8O'.c L Output Current (Avg. Amps.) Output Current (Avg. Amps.) 60 90 120 84 81 72 63 63 60 51 48 46 30 Elec. Data F-32 Pg. A33 I E·g o 60 90 120 150 ' Output Current (Avg. Amps,) 1000 400 250 ':~.~1 378 402 364 362 330 282 207 334 322 294 252 204 294 207 150 Delay Angle 90 87 75 66 48 Pg. A34·35 . o Delay Angle 81 75 63 48 W-32 Maximum Air Velocity "Ambien1 Temperature (LFM)" Delay Angle 99 84 69 48 Mech. Data Type Nurnber Wall I 99 84 69 48 2.32-420 Amps 100-1600 Volts 188-330 Amps 100-1600 Volts flec. Data 99 177 165 149 127 95 139 165 156 120 93 o 134 122 60 123 116 90 112 103 120 96 150 75 89 70 163 144 129 113 89 140 132 120 106 82 108 102 94 81 65 275 260 236 208 148 250 240 218 192 148 224 217 196 174 137 196 190 175 156 124 147 141 129 '115 '96 114 107 105 99 97 84 66 78 62 77 71 67 68 -47, 208 195 182 161 125 186 178 164 144 115 165 159 146 129 105 '145 141 132 117 94 -103 : 96 91 80 68 90 338 327 297 258 204 306 296 268 231 186 246 242 222 192 150 222 218 198 174 141 150 291 282 264 225 180 1II.C. [IIIf 222 206 177 144 238 207 168 236 230 210 183 150 180 170 158 138 111 198 194 176 156 126 171 168 159 138 111 123 117 108 93 78 272 264 "' A21 3 cp AC Switch F Current Rating Voltage Ratings 28-46 Amps 1oo-1000Volts 42-89 Amps 85-89 Amps 100-." OOOVolts 100-1200 Volts Floor Mounting Wall Maximum Air Velocity " "Ambient Fmperature (LFM)+ L 400C I I I 80°C L o Delay Angle 90 120 150 180 o Delay Angle Delay Angle . Output Current (RMS A,mps.) 150 400 250 40 38 34 36 43 40 38 32 49 44 41 45 43 40 34 50 50 47 45 42 36 250 74 80 86 89 89 40 28 30 31 33 35 22 25 26 27 30 81 85 89 89 89 68 72 78 85 89 61 66 70 77 85 25 27 28 29 31 23 25 26 27 29 21 23 24 26 28 16 17 19 21 22 61 64 70 76 83 50 54 59 84 72 45 48 53 38 40 41 42 33 35 37 , 38 180 43 o 29 31 32 33 33 Current Rating Voltage Ratings 89 89 89 400 82 89 89 89 89 31 33 34 36 37 90 120 150 90 120 150 180 Output Current (RMS Amps.) 106-170 Amps Type Number Mach. Data Pg. A34-35 58 66 71 }7 84 89 57 63 69 78 33 36 39 43 50 40 43 41 52 60 23 25 27 30 36 54 147-260 Amps 100-1600 Volts 100-1200 Volts Ellrc. Data Pg. A33 Output Current (RMS Amps.) ·150 66 89 89 89 89 89 80 86 89 89 89 89 89 89 89 89 89 89 89 89 86 89 89 89 89 68 73 76 82 89 76 81 85 89 89 71 75 80 83 89 66 70 74 78 87 49 53 56 60 87 180-320 Amps 100-1600 Volts Type Mech, Data Elee. Data Type Number Pg. A34-35 Pg. A33 Number Mech. Data Pg. A34:35 Elec. Data Pg. A33 Floor Mounting Wall Maximum .. Ambi~nt Air Velocity Fmperat::la:LFM1~ L 4O C O I, L 6OOC I 80°C A22 L Angle 120 150 180 o Delay Angle 90, 120 160 180 o Delay Angle 90 120 150 180 Output Current (RMS Amps.) 1000 400 250 150 N.C. 157 147 134 .UJqJ_' 177 168 157 144 113 177 ' 177 170 156 127 177 177 168 136 177~'" 177 177 177 177 155 inut Output Current (RMS Amps.) 1000 400 250 160 N.C. 216 ..JIII1II 240 196 J~.7 279 264 237 208 165 279 279 254 227 ' 160 279 279 273 198 250 279 279 279 279 228 136 146 155 168 177 128 137 145 159 174 120 128 136 150 184 108 .116 126 138 152 83 88 98 106 122 211 232 250 272 279 193 212 230 251 279 173 196 206 226 261 163 166 184 202 102 111 117 126 140 96 104 110 118 132 88 97 103 112 125 80 88 95 102 115 58 62 70 74 88 156 175 189 202 235 143160 171 187 218 128 142 155 169 197 Output Current (RMS Amps.) 1000 400 250 150 N.C. 260 320 I 297 227 t;,1Il"' 286 200 250 360 321 378 346 308 270 212 390' 375 337 302 235 , 390 ago 385 344 278 181 200 223 247 285 135 150 164 160 356 209 232 252 277 317 175 195 210 153 174 190 233 208 240 132 146 166 185 215 92 102 110 122 150 260 288 310 341 381 237 260 282 234 112 126 137 151 178 112 124 138 151 177 '78 86 95 103 125 191 218 233 256 290 309 267 2~6 Full Control Assemblies Westinghouse GA33A49, 1cp AC Switch 34-49 Amps, 100-1200 Volts on 1 ~ x 4 x 3 heat sinks. IV Westinghouse G F33A49, 3cp AC Switch, 34-49 Amps, 100-1200 Volts on 1 ~ x 4 x 3 heat sinks. II Westinghouse GA36B16, 1cp AC Switch, 104-160 Amps, 100-1200 Volts on 4 x 4 x 5 heat sinks. V Westinghouse GF36B16, 3cp AC Switch 104-160 Amps, 100-1200 Volts on 4 x 4 x 5 heat sinks. III Westinghouse GA39B34, 1cp AC Switch 222-340 Amps, 100-1600 Volts on 5 x 5 x 6 heat sinks. VI Westinghouse GF39B34, 3cp AC Switch 222-340 Amps, 100-1600 Volts on 5 x 5 x 6 heat sinks. A23 Full Control Assemblies, This section describes the standard circuit configurations available for Full Control Assemblies (assemblies using SCR's only). The chart below shows the schematics, waveform, recommended SCR voltage ratings, the basic current ratings available, and the page number where specific rating information for eacH assembly can be found. On each page the assemblies far a given circuit configuration are listed in order of increasing current rating. The tabulated current ratin'gs for each assembly type number are 'given as a function of ambient temperature, as a function of the conduction or delay angle, and as a function of the air velocity (linear feet per minute - LFM). Tht;! conduction angle is defined as the number of electrical degrees the SCR conducts current. The delay angle is defined as the number of electrical degrees the gate trigger pulse is delayed from the time the anode voltage on the SCR starts positive. Refer to the mechanical and electrical keys specified for the assembly you have selected to obtain assembly weight and dimensions and other electrical data and recommendations. Assembly Output Waveform Maximum Voltage Ed=Avg. E.=RMS Maximum SCR Voltage Ed =.45 ERMS 1.4 ERMS E. =.707 ERMS (See: Single Phase Bridge "B" or Three Phase Bridge "E") 1.4 ERMS 1.4 ERMS 1.4 ERMS A24 , Description of Full Control Assemblies Pictured on the Right VII. Westinghouse GB33A44. 11/> Bridge. 34-44 Amps. 100-1200 Volts on 1% x VIII. IX. X. XI. heat sinks. Westinghouse heat sinks. Westinghouse heat sinks. Westinghouse heat sinks. Westinghouse heat sinks. Recommended SeR Repetitive V.oltage Rating 2.8 ERMS 6.2 Ed or 4 x 3 GB36B14. 11/> Bridge. 93-140 Amps. 100-1200 Volts on 4 x 4 x 5 GB39B31. 11/> Bridge. 196-310 Amps. 100-1600 Volts on 5 x 5 x 6 GE36B20. 31/> Bridge. 135-200 Amps. 100-1200 Volts on 4 x 4 x 5 GE39B44. 31/> Bridge. 285-440 Amps. 100-1600 Volts on 5 x 5 x 6 VII ~----------------------~ For Specific Rating Info See Page A26 VIII A27 2.8 ERMS A28 IX 2.8 ERMS or 3.1 Ed A29 4.9 ERMS or 2.1 Ed A30 2.8 ERMS A31 X XI A25 Single SCR T Current Rating Voltage Ratings Mounting 17-22 Amps 100-1200 Volts 36-40 Amps 100-1200 Volts Type Numb!!r Type Number Mech. Data Pg. A34-35 47-71 Amps 100-1200 Volts Elec. Data Pg. A33 Floor Type Number ,----- Mech. Data Pg. A34-35 Elec. Data Pg. A33 Wall Maximum Air ..,Ambient Velocity Temperature (LFM). I 4O'C Conduction Angle 60'C L I 80'C 1000 400 250 180 J2 21 19 18 120 19 18 17 16 16 15 14 14 13 13 12 11 30 8 8 8 8 . 180 19 17 16 15 13 40 40 39 37 28 57 54 51 48 37 120 16 15 14 13 12 33 33 33 33 26 52 49 46 43 33 Conduction Angle L 90 14 13 12 11 10 28 28 28 28 23 47 44 42 39 30 60 11 ,9 9 8 22 22 22 22 20 41 39 ,36 35 27 30 7 10 7' 7 6, 6 16' 16 16 16, 16 32 30 29 27 21 180 1.5 13 12 11 10 34 32 30 28 21 43 41 38 36 27 120 13 12 II 10 8 30 28 27 25 19 39 37 34 32 24 90 11 10 9 8 7 27 26 24 23 17 36 33 32 30 22 60 8 8 7 7 6 22 21 20 19 14 31 29 28 26 20 30 6 6 5 5 5 16 16 15 14 11 24 23 22 21 16 Current Rating Voltage Ratings 77-120 Amps 100-1600 Volts Type Number Mech. Data Pg. A34-35 98-150 Amps 100-1600 Volts Elec. Data Pg. A33 Type Number Mech. Data PII' A34-35 Elec. Data Pg. A33 Floor Wall Maximum Air ..,Ambient Velocity Temperature (LFMl. Output Current (Avg. Amps.) 1000 400 250 150 NC 1000 400 250 150 I ',120'1 112 106 96 ~ F'n::~ ~ 144 134 121 • 40'C L r- 60'C L r- 80'C A26 L Output Current (Avg. Amps.) 90 Conduction Angle Mounting Output Current (Avg. Am,ps.) 150 60 L I Output Current (Avg. Amps.) 180 Conduction Angle .. Output Current (Avg. Amps.) NC 120 105 103' 96 88 73 142 132 124 112, 92 90 89 89 89 81 67 124 119 113 102 85 60 71 71 71 71 59 99 99 97 90 74 30 50 50 50 50 47 70 70 70 70 60 180 98 91 85 78 60 124 115 108 97 76 Conduction 120 Angle 90 89 83 78 71 57 115 107 99 91 73 82 76 72 66 53 105 98 92 83 67 60 71 66 62 58 47 90 85 79 73 59 30 .,50 50 50 46 38 70 67 64 59 48 180 72 68 63 57 43 92 86 80 72 53 Conduction 120 Angle 90 67 62 58 52 41 86 79 74 68 53 62 58 55 50 39 80 74 68 62 48 60 54 50 47 44 35 69 64 60 55 43 30 42 40 38 35 28 55 54 49 45 36 Doubler D Current Rating Voltage Ratings Mounting 15-20 Amps 100-1200 Volts 34-36 Amps 45-68 Amps 100-1200 Volts 100-1200 Volts Type Number Type Number Type Number Floor Wall Maximum Air +Ambient Velocity Temperature (LFM). I 4O'C L I 60'C L I 80'C L Delay Angle Delay Angle 1000 400 0 ~,;:R"J 60 18 19 16 90 13 12 250 18 16 11 17 NC Output Current (Avg. Amps.) 1000 llK4fu: {;.Thi Output Current (Avg. Amps.) 400 250 150 N C. 1000 400 250 36 36 36 ~;.It.'~.' '~~.~~i 64 60 150 56 15 12 32 32 32 32 31 62 58 55 52 41 11 10 22 22 22 22 22 45 45 45 42 34 0 17 16 16 14 12 36 36 36 35 31 55 52 49 46 35 15 11 14 13 12 10 32 32 32 32 26 50 47 45 10 10 9 8 22 22 22 22 20 41 39 38 42 36 32 28 0 13 12 11 10 9 32 42 10 10 8 29 24 18 37 34 34 32 25 23 8 6 22 21 20 19 15 38 31 39 35 8 9 7 29 26 20 11 9 30 27 27 60 29 28 26 19 90 Current Rating Voltage Ratings 75-114 Amps Floor 95-150 Amps 100-1600 Volts 100-1600 Volts Type Number Mounting 150 60 90 Delay Angle Output Current (Avg. Amps.) ,.----., Mech. Data Pg. A34-35 Elec. Data Pg. A33 Type Number Wall Maximum Air +Ambient Velocity Temperature (LFM). I 40'C L I 60'C L I 80'C L ,,0\ \' 400 109 60 101 101 96 86 90 71 71 71 69 0 Delay Angle Delay Angle Delay Angle Output Current (Avg, Amps.) 1000 .. 260 150 NC 101 92 1':;:' ~;.1:c 72 58 Output Current (Avg. Amps.) 1000 400 250 150 ''''.':.\ 138 129 118 r ..,;· 137 98 128 98 120 108 90 88 74 98 NC 0 94 87 81 74 68 120 112 104 95 79 60 88 82 70 55 113 105 97 88 69 90 69 65 77 63 57 46 90 86 80 74 59 0 60 70 66 65 60 57 65 52 41 90 84 78 62 40 78 ~o 70 64 48 90 53 50 47 43 34 83 69 64 60 64 43 53 A27 1 q, AC Switch A Current Rating Voltage Ratings 34-49 Amps 100-1200 Volts Type Mach. Data Pg. A34-35 Number Mounting 80-89 Amps 100-1200 Volts Elec. Data Pg. A33 ~ Air Velocity Output Current (RMS Amps.) t-:":~::: L Elec. Data Pg. A33 1000 400 250 150 E6 W22 Output Current (RMS Amps.) Output Current (RMS Amps.) 42 39 47 44 41 90 50 48 45 42 60 50 49 46 44 30 50 50 48 46 180 40 37 35 32 28 89 89 88 83 64 129 121 114 107 80 Conduction 120 Angle 90 42 38 36 34 29 89 89 89 89 68 140 132 124 115 88 43 40 37 35 31 89 89 89 89 72 148 140 132 124 96 60 44 41 39 37 32 89 89 89 89 76 160 153 144 136 105 40 38 34 89 89 89 89 86 178 168 160 150 118 Angle L 30 45 42 180 31 28 26 25 21 76 71 67 64 47 97 91 86 80 67 Conduction 120 Ang}e : 33 30 28 27 22 81 76 70 66 49 107 100 94 86 62 30 Current Rating Voltage Ratings 33 31 29 27 24 85 80 76 72 63 112 106 100 93 68 34 32 30 29 25 88 84 80 76 58 121 115 108 103 75 35 33 31 30 26 89 89 86 81 62 133 127 121 115 86 174-223 Amps 100-1600 Volts Type Mech. Data Pg. A34-35 Number Mounting 222-340 Amps 100-1600 Volts Elec. Data Pg. A33 Type Number Floor Wall Maximum Air .Ambient Velocity Temperature (LFM)+ r l.c L r ~o.c L A28 Number 44 r Jo.c r Jo.c Type 50 L r Jo.c Mech. Data Pg. A34-35 Number ~ F20-li ~--- Floor Wall Maximum .Ambient Type 104-160 Amps 100-1200 Volts L Output Current (RMS Amps.) - Output Current (RMS Amps.) 400 250 320 300 377 350 328 298 390 378 355 323 265 390 390 382 355 290 390 390 390 390 333 175 1000 180 Conduction 120 Angle 90 60 30 180 160 N.C. 272 _ 244 280 260 245 220 Conduction 120 Angle 90 223 222 208 190 150 305 285 267 242 190 223 223 223 207 164 327 305 287 263 206 60 223 223 223 223 182 355 330 314 292 230 30 223 223 223 223 211 390 376 357 330 267 160 149 139 126 95 208 192 160 162 125 178 165 155 141 106 228 200 180 135 192 179 168 154 118 247 210 '230 215 197 147 208 196 185 170 152 275 267 247 230 172 223 223 212 186 154 306 286 270 250 195 180 Conduction 120 Angle 90 60 30 I 1. Bridge B Current Rating Voltage Ratings 34-44 Amps 100-1200 Volts Type Number Mounting 73-80 Amps 100-1200 Volts Meeh. Data Elee. Data Pg. A34-35 Pg. A33 Type Number Mech. Data 93-140 Amps 100-1200 Volts Pg. A34-35 Else. Data Pg. A33 Type Number Mech. Data Elee. Data Pg. A34-35 Pg. A33 Floor Wall Maximum Air +Ambient Velocity Temperature (LFM)+ I 4O"C L I 60°C L rL 60°C O~tPut Current (Avg. Amps.) 180 Conduction 120 Angle 90 60 30 180 Conduction 120 Angle 90 60 30 180 Conduction 120 Angle 90 60 30 Current Rating Voltage Ratings 37 32 27 22 15 34 30 25 20 14 32 28 24 19 14 30 26 22 18 13 29 26 21 26 23 20 16 12 24 22 18 15 22 20 17 14 II II 17 12 Mounting Floor Maximum Air +Ambient Velocity Tempereture (LFM)+ I ,L 4O"C 60°C L " 8O"C L 13 80 66 67 45 32 80 66 57 45 32 79 66 57 45 32 74 66 57 45 32 57 62 47 40 32 114 104 94 82 63 108 98 88 78 60 102 92 83 72 51 95 86 78 69 54 74 66 60 54 42 19 17 16 13 10 68 60 54 45 32 64 57 51 43 32 60 54 48 41 30 56 51 46 39 29 42 38 35 29 23 86 18 81 13 66 58 45 16 68 63 55 43 72 64 59 62 41 54 48 43 40 31 26 23 20 17 154-240 Amps 100-1600 Volts Type Number Mech. Data Output Current (Avg. Amps.) 1000 400 250 150 N.C. 80 80 J!II!I ~ 80 66 66 66 66 65 57 57 57 57 57 45 45 45 45 45 32 32 32 32 32 11 62 48 196-310 Amps 100-1600 Volts Elee. Data Type Pg. A34-35 Pg. A33 Number "10-B-3-9-B-24--:_ _ IOB39B31 Output Current (Avg. Amps.) --' Mech. Data Elee. Data Pg. A34-35 Pg A33 Output Current (Avg. Amps.) 180 Conduction 120 . 90 Angle 60 30 60 30 196 178 163 142 99 182 166 162 132 99 170 156 144 124 99 156 142 131 116 92 120 114 106 94 76 248' 230 210 180 140 230 214 196 169 134 216 198 184 168 127 194 182 166 146 118 152 146 134 118 96 180 120 Conduction 90 Ang'e 60 30 144 133 123 107 84 136 124 116 100 80 126 116 109 94 76 114 104 99 87 70 86 82 78 69 66 184 172 160 137 110 172 158 148 128 103 160 148 136 120 97 144 135 124 110 90 106 105 96 86 180 Conduction 120 Angle 90 ·" A29 ,·il •• '----'-"---=--~. -----~ ----.-.-,-~---.- ~ 3 cp Bridge E Current Rating Voltage Ratings Mech. Data Pg. A34-35 Type Number Mounting'" 103-110 Amps 100-1200 Volts 45-60 Amps 100-1200 Volts Elee. Data Pg. A33 Type Number Mech. Data Pg. A34-35 1,35-200 Amps 100-1200 Volts Elec. Data Pg. A33 Type Number Mech. Data Pg. A34-35 Elec. Data Pg.A33 Floor W~II Maximum Air Velocity "Ambient Temperature (LFM). I L I 60'C L 4O'C I 80'C L Delay Angle Delay Angle 250 150 400 250 150 N.C. 1000 400 250 150 10 57 54 51 110 110 110 ,03 '• .2IItt::: 192 180 168 60 54 49 46 44 37 96 96 96 96 94 186 174 166 156 123 90 38 37 34 33 30 66 66 66 66 66 135 135 135 126 102 105 0 52 48 45 42 36 109 109 109 105 82 165 156 147 138 60 45 41 39 37 31 96 96 96 96 75 150 141 135 126 96 90 34 31 30 28 25 66 66 66 66 60 123 117 109 103 79 0 40 36 33 31 27 97 91 87 81 60 126 117 111 102 79 60 34 31 30 28 24 87 82 78 73 54 114 106 102 96 69 90 26 24 23 22 19 66 64 61 57 45 93 88 84 78 57 I 60'C L I 80'C L A30 Delay Angle Delay Angle Delay Angle 225-340 Amps 100-1600 Volts 285-440 Amps 100-1600 Volts Type Number Type Number Mech. Data Pg. A34-35 Elec. Data Pg. A33 Floor Maximum Air Velocity "Ambient Temperature (LFM). I 4O'C L Output Current (Avg. Amps.) 400 Current Rating Voltage Ratings Mounting Output Current (Avg. Amps.) 1000 0 Delay Angle OutPllt Current (Avg. Amps.) Output Current (Avg. Amps.) 1000 400 250 150 N C. 3401 321 303 276 lti!! 60 303 303 288 258 216 90 213 213 213 207 174 o Output Current (Avg. Amps.) , 1000 400 250 150 N C 414 388 f'Y• . 411 384 360 354 324 294 294 294 270 -.1 264 222 o 282 261 243 222 174 360 336 312 285 222 60 264 246 231 210 165 336 315 291 264 207 90 207 196 186 171 138 270 255 240 222 179 159 ... o 210 195 180 165 123 270 252 234 210 60 198 186 171 156 120 249 234 210 192 144 90 159 150 141 129 102 207 192 180 168 129 3 q, AC Switch F Current Rating Voltage Ratings 34-49 Amps 100-1200 Volts Type Number ,----- Floor Mounting 104-160 Amps 100-1200 Volts 80-88 Amps 100-1200 Volts Mech. Data Pg. A34-35 Elec. Data Pg. A33 Type Mech. Data Pg. A34-35 Number Elec. Data Pg. A33 Type Number Wall Maximum "Ambient Temperature I 40'C L I 60'C L I 80'C L Air Velocity (lFM)+ Delay Angle Delay Angle Delay Angle 1000 400 250 150 N C 1000 400 250 150 0 ["~'l 44 42 39 !ii:M" ~}J8f'1 88 88 88 90 49 46 43 41 36 88 88 88 88 .. 120 49 48 46 43 39 88 88 88 88 40'C L I 60'C L I 80'C L Delay Angle 1000 400 250 150 N C. :::fM:] 149 140 132 F~ 87 172 162 153 143 114 88 177 177 176 165 133 80 40 37 35 32 28 88 88 88 84 64 128 120 114 106 38 36 34 30 88 88 88 88 70 140 132 124 116 90 120 43 40 38 36 32 88 88 88 88 78 160 153 142 135 104 0 31 28 26 25 21 76 72 67 64 48 98 91 86 81 58 90 33 30 29 27 23 81 76 72 68 51 106 100 94 88 65 120 34 32 30 28 25 88 84 80 76 58 122 116 110 103 76 174-270 Amps 100-1600 Volts 222-340 Amps 100-1600 Volts Type Type Number Number Mech. Data Pg. A34-35 Elec. Data Pg. A33 Floor Output Current (RMS Amps.) 1000 400 250 150 ~J 251 235 215 90 285 280 260 240 120 285 285 285 280 f;._' N.C. Output Current (R MS Amps.) , W'"J 1000 400 250 150 320 298 271~i' N.C. 198 379 350 330 303 248 235 390 390 383 352 293 173 0 217 203 189 172 135 278 258 240 218 90 242 227 212 195 157 310 285 268 247 193 279 288 250 230 187 353 333 313 288 232 123 120 Delay Angle I Output Current (RMS Amps.) 42 0 Delay Angle .. N C 0 Maximum Air Velocity "Ambient Temperature (lFM)+ I Output Current (RMS Amps.) 90 Current Rating Voltage Ratings Mounting Output Current (RMS Amps.) -- 0 160 150 139 126 95 208 192 180 162 90 182 170 160 147 112 238 217 202 186 138 120 212 200 190 172 136 272 253 238 220 170 A31 Electrical Data Tables I and II provide General Recommendations for Transient Voltage Protection. Tables III and IV must be, used in conjunction with the electrical key specified with each of the assembly type numbers. These tables cover non-repetitive surge ratings, 12t ratings, general fuse recommendations, recommended gate drive requirements, and recommended RC dv/dt net- works for the devices used in the Gold Line Assemblies. Circuit conditions and economics will dictate which protective devices, if any, are necessary for reliable operation. Table I General Recommendations for Voltrap1ll Transient Voltage Suppression for Gold-Line Assemblies _ This table can be used as a general guide can obtain the size of the Voltrap® required, the selection and application of Westingwith any Gold Line Assembly. Knowing the The Voltraps® should be connected across house Voltraps@, send for T.D. 16-435, pp. Assembly Input Power Transformer KVA each device with the shortest lead lengths 1-14 - Westinghouse Electric ,Co., General and the Secondary Line to Line Voltage, one practical. For more information regarding Control Division, Buffalo, N. Y. 14240. 24 60 120 240 480 S03 S04 S05 S05 S06 S01 S02 S03 S04 S04 S05 S01 S01 S02 S03 503 S04 S05 S01 S01 S01 S01 S02 S03 S04 S05 S01 S01 S01 S01 501 S01 S03, S04 S05 Table II General Recommendations for RC Transient Voltage Suppression Across for Gold-Line Assemblies This table can be used as a general guide work with the shortest lead lengths possible with any'Gold Line Assembly. R-C networks should be connected across the DC Output are generally used when Voltraps@ are not Terminals of the Rectifier Assembly. considered economical. Only carbon or non-' R = Resistor (ohms) inductive wound power resistors and exP = Power Rating of Resistor (watts) tended foil or computer grade electrolytic C = Capacitor (microfarads) caoal;It(,,',S should be used. The R-C netV = Voltage Rating of Capacitor (volts) the DC Output Terminals General recommendations assume that the transformer and line inductance are lesS' than R2C/4. ~~~~~~~========~ A32 Table III Electrical Data and General Fuse Recommendations for Rectifier Gold-Line Assemblies This chart lists the non-repetitive 1-3-5-10 Amp-Trap '''. Equivalent fuse types are avail3. English Electric Co., Limited cycle'surge current ratings and I2t ratings able from several companies. A partial listing Fusegear Division for the rectifiers used in the Gold Line of these companies include: Liverpool, England Assemblies. In addition, general fuse recom1. Bussmann Mfg. Div. mendations are presented, Fuses must be McGraw Edison Co. mounted in series with each device. The St. Louis, Missouri 63107 numbers listed in the table are Chase2. The Carbone Corporation Shawmut (Newburyport, Mass,) Form 101 Boonton, New Jersey 07005 12t (Amp2-Sec) 5 500 Line Voltage Fuse 10 155 130 260 120 240 480 A13 x 30 180 365 310 245 1000 120 240 480 A13 x 50 04.25 x 50 04.60 x 30 2150 1800 37,200 120 240 480 A13x250' 2400 .A&o x 101': 120 240 480 'A13 x 400 A2S.x 40() . A601( 4500 4100 3500 125,000 AZ5 x30 ASOx30, ~26x300 Table IV Electrical Data and General Gate Drive, Fuse, and RC dv/dt Network Recommendations for Half and Full Control Gold Line Assemblies This table lists the non-repetitive 1-3-5-10 Norwalk, Conn. 06852). Vectrol, Inc, (Rockonly extended foil AC voltage rated capacicycle, surge current ratings, I2t ratings and ville, Md.) and others. For additional infor- tors should be used. general fuse recommendations for Half Conmation on selecting gate triggering requireR = Resistor (ohms) trol and Full Control Gold Line Assemblies. ments and designing gate drive circuitry P = Power Rating of Resistor (watts) refer to the Westinghouse SCR Gate Turn on The fuse types shown' are Chase-Shawmut C=Capacitor (microfarads) Form 101 AmpoTrap®. Their address and Characteristics. V=Voltage Rating of Capacitor (volts) the addresses of other fuse manufacturers are listed under Table III. The fuses must be Also, listed in this table are RC dv/dt netmounted in series with each device. works for dv/dt suppression. These RC In addition this chart lists the general gate dv/dt networks must be placed with short requirements for the SCR's used in these 'lead lengths across each device (rectifiers and SCR's) in the assembly, Only carbon or assemblies. Commercial gate firing packages non-inductive wound power resistors and are available from Firing Circuits, Inc. 12 t (Amp2-sec) 100 rna 3.0 Volts 350 rna 100 rna 3.0 Volts 350 rna 150 rna 3.0 Volts 500 rna 90 800 6,000 120 240 480 1w .25 2w .25 5w .25 300 600 1000 i 1150 11080 10,700 I I I I 2400 1 2200 : 2000 120 240 480 1w .25 2w .25 5w .25 300 600 1000 45,000 120 240 480 100,000 120 240 480 950 870 I I I 1 1 150 rna 3.0 Volts 1600 : 1250 I 500 rna 300 600 1000 90 1200 3300 Line Volt- I 5000 1 3600 : I I 3350 I 3100 .5 .5 .5 300 600 1000 300 600 1000 A33 .;. Mechanical Data Tables V, VI and VII list the length, width and height, drill plan, mounting hole dimensions ahd approximate weight for each assembly. These tables are divided into "floor-type" mounting, "wall-type mounting", and "floor and wall type mounting", and must be used in conjunction with the mechanical key specified with each of the assembly type numbers. Color coding for terminal identification is in accordance with NEMA standards. Color Code: Yellow - A.C. terminals (input) Red - Positive terminal (output) Black - Negative terminal (output) The material for Westinghouse Gold Line heat sinks is aluminum with gold chromate finish. Mounting feet and other mechanical support materials are of flame retardant, non-tracking, NEMA Class B (130·C continuous operation) insulation. Table V n A34 Assembly Weight (Lbs.) Length L .8 1.6 1.6 2.4 2.4 3.4 .7 .8 1.2 1.4 2.0 2.2 2.4 2.8 2.8 3.3 3.3 3.6 2.7 5.6 5.6 5.9 8.2 8.2 10.8 16.2 4.8 5.0 9.6 10.0 14.4 15.1 4.4 4.6 8.0 9.0 9.0 10.2 10.2 13.5 15.5 15.8 23.4 23.6 4.125 8.750 8.750 13.375 8.750 13.375 4.125 4.125 4.125 4.125 8.750 8.750 8.750 8.750 8.750 8.750 8.750 13.375 4.125 8.750 8.750 8.750 13.375 13.375 9.250 13.875 4.125 4.125 8.750 8.750 13.375 1 5.125 5.125 10.750 10.750 10.750 10.750 10.750 16.375 10.750 11.250 16.375 16.815 D 3.875 3.875 3.875 3.875 6.125 6.125 3.875 3.875 4.375 3.875 3.875 3.875 4.625 3.875 4.125 4.125 4.125 4.625 6.625 6.625 6.625 6.625 6.625 6.625 11.625 11.625 6.625 7.375 6:625 7.250 6.625 7 7.875 7.625 7.625 7.625 7.625 7.625 7.625 7.625 12.625 14.000 12.625 14.000 3.875 3.875 4.125 3.875 4.375 4.375 3.875 5.750 5.875 5.750 5.875 6.062 5.875 5.750 5.750 5.750 6.062 5.875 5.750 6.250 5.750 6.062 5.750 6.062 6.250 9.562 9.562. 9.562 9.562 9.562 9.562 6.750 6.750 7.125 7.250 6.750 6.750 7.125 6.750 6.750 7.250 6.750 7.250· 3.00 7.62 7.62 12.25 7.62 12.25 3.00 3.00 3.00 3.00 7.62 7.62 7.62 7.62. 7.62 7.62 7.62 12.25 3.00 7.62 7.62 7.62 12.25 12.25 7.62 12.25 3.00 3.00 1.62' . E Hole Diameter .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 7.~2 2.75 2.75 2.75 2.75 4.94 4.94 2.75 2.75 2.75 2.75 2.75 2.75 2.15 2.75 2.75 2.75 2.75 2.15 5.50 5,50 5.50 5.50 5.50 5.50 10.50 1 5.50 5.50 5.50 5.50 12.25 1 4.00 4.00 9.62 9.62 9.62 9.62 9.62 15.25 9.62 9.62 15.25 15.25 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 11.50 12.50 11.50 12.50 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 Table VI Length L .8 1.6 1.6 1.6 2.4 2.4 2.4 3.4 .7 .8 1.2 1.4 2.0 2.2 2.4 2.8 2.8 3.3 3.3 3.6 2.7 5.6 5.6 5.9 8.2 8.2 4.8 5.0 9.6 10.0 14.4 15.1 4.4 4.6 8.0 9.0 9.0 10.2 10.2 13.5 5.062 10.000 10.000 10.000 14.625 14.625 10.000 14.625 5.062 5.062 5.062 5.062 10.000 10.000 10.000 10.000 10.000 10.000 10.000 14.625 5.375 10.000 10.000 10.000 14.620 14.620 5.375 5.375 10.000 10.000 14.625 14.625 6.375 6.375 12.000 12.000 12.000 12.000 12.000 17.625 Dimensions in Inches Height Width H W 3.500 3.750 3.000 3.000 3.750 3.000 5.750 5.750 3.380 3.380 4.500 4.500 3.250 3.000 4.250 3.250 4.000 4.000 4.000 4.250 6.125 6.125 5.880 5.880 5.880 5.880 6.125 7.000 6.125 7.000 6.125 7.000 7.625 6.750 6.7,50 7.625 6.750 6.750 6.750 6.750 3.062 4.688 3.125 4.688 4.688 4.688 4.688 4.688 3.380 5.062 5.062 5.062 5.125 5.626 5.125 5.125 5.125 5.125 5.625 5.125 5.062 5.125 5.125 5.625 5.125 5.625 9.125 9.125 9.125 9.125 9.125 9.125 6.062 6.062 6.625 6.125 6.125 6.125 6.625 6.125 Drill Plan 0 E 4.69 9.25 9.25 9.25 13.88 13.88 9.25 13.88 4.69 4.69 4.69 4.69 9.25 9.25 9.25 9.25 9.25 9.25 9.25 13.88 4.62 9.25 9.25 9.25 13.88 13.88 4.62 4.62 9.25 9.25 13.88 13.88 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 5.62 5.62 11.25 11.25 11.25 11.25 11.25 6.50 Mounting Hole Diameter .28 slots .34 .34 .34 .34 .34 .34 .34 .28 slots .28 slots .28 slots .28 slots .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 Table VII Approximate Assembly Weight (Ibs.) Length Dimensions in Inches Width Drill Plan Height L W H 0 .2 .3 .4 .5 .7 .6 3.125 3.560 4.000 4.438 5.750 3.500 3.062 3.062 3.062 3.062 3.062 5.062 4.500 4.500 4.500 4.500 4.500 6.500 2.25 2.69 3.12 3.56 4.88 2.62 .7 4.060 5.062 6.500 3.19 .8 4.625 5.062 6.500 3.75 1.0 5.188 5.062 6.500 4.31 1.5 6.875 5.062 6.500 6.00 E 1.00 1.00 1.00 1.00 1.00 2.50 and 1.00 2.50 and 1.00 2.50 and 1.00 2.50 and 1.00 2.50 and 1.00 Mounting Hole Slots .22 x .47 .22 x .47 .22 x .47 .22 x .47 .22 x .47 .28 x .56 .22 x .47 .28 x .56 .22 x .47 .28 x :56 .22 x .47 .28 x .56 .22 x .47 .28 x .56 .22 x .47 A35 Thermal Data Forced Air Cooling The rating charts presented in this brochure cover natural convection and four forced air conditions: 150. 250. 400. and 1000 linear feet per minute (LFM). The air velocity is measured in LFM as it approaches the sink. From the rating charts. it can be seen that the current ratings of a given assembly can be increased considerably by using forced air. All air flow velocity measurements are per JEDEC RS-282. SEC 7-13. The following is a partial listing of Manufacturers of blowers and fans: 1. W. W. Grainger. Inc. 3812 Penn Ave. Pittsburgh. Pennsylvania 15201 2. Rotron. Inc. Woodstock. New York 12498 3. Rotating Components 1560 5th Ave. Bay Shore. New York 11706 4. Pamotor. Inc. 770 Airport Blvd. Burlingame. California 5. IMC Magnetics Corporation Eastern Division 507 Main Street Westbury. New York Oil Cooling Current ratings for assemblies which are immersed in natural convected oil are approximately equivalent to the 1000 LFM air flow ratings listed in this catalog. A36 INTRODUCTION Q.de.;",lnfonn,,;o" J Voltage Code Available Circuits Parallel Circuits Series Circuits Liquid Cooled RIC Tabs Kits and Sinks Air Cooled Assembly Modules. ASSEMBLY RATINGS Rectifier Single Rectifier Series Rectifier 1(6 Bridge 3(6 Bridge 3(6 WYE 6(6 Star * Half Control 1(6 Bridge 3(6 Bridge Full Control Single SCR Series SCR 10 Bridge 3(6 Bridge AC Switch. 1 f/J JEDEC. Manifold AC Switch * New High Current Air Cooled Module. SUPPORTING DATA Electrical Data Mechanical Data Kits and Sinks Thermal Data Air Cooled Assembly Page Liquid Cooled Assembly Page A38 A38 A39 A39 A39 A40 A41 A40 A4S A48 A4S A46 A47 A46 A42 A42 A49 A49 A43 A43 A43 A44 A44 ASO A48 ASO AS1 AS1 AS2 AS6 AS9. A64 A6S. A66 A68 AS6 AS7. AS8. A60-A63 A66 A67 *Also see Page A38. Series Circuit. Liquid Cooled Assembly Modules. A37 New High Current Water Cooled Module. .. -~- ......- - - - - . . --~ Liquid Cooled Manifold AC·Switch . Ordering Information All assemblies in this section are keyed to a standard twelve digit part number which describes the assembly frame, heat sink, and device type. Simply insert the two digit voltage code for the desired assembly voltage rating. more devices, to obtain higher voltage ratings than available in a single device. This type of circuit 'generally requires special ORR matching and other test matching to assure proper voltage sharing across each device in the application. Voltage Code Make sure the desired assembly voltage rating does I)ot exc;:eed the Maximum Voltage Available for the assembly under consideration. Then, using Table I, select the appropriate two digit voltage code. Inserting this two digit voltage code into the 9th and 10th positions of the assembly part number completes the required ordering information for all standard designs. Standard air cooled assembly modules are only available for two devices in series. To order, simply specify PS frame connection. For current ratings, refer to the appropriate PR on PT circuit frame data; for assembly outline drawings, refer to the PO frame mechanical data. Available Circuits Table II lists the standard circuits available from Westinghouse. A complete index by circuit type is given on page A37. The shaded areas of Table II denote circuits with ratings published in this section. PC (positive center tap - common cathode connection) is available; use the corresponding single phase bridge data for the appropriate current rating. Likewise, the PN (negative centertap - common anode connection) is available; use the corresponding single phase bridge data for the appropriate current rating. Series and parallel circuits are also available. Parallel Circuits This type of circuit is usually specified when paralleling ·two or more devices to obtain higher current ratings than available in a single device. Two common techniques for paralleling devices are direct and forced sharing; both techniques usually require specially factory matched test selection to assure proper device performance in the application. The standard Westinghouse PP circuit is provided with common anode connection; common cathode parallel circuit connections can be provided on request. Series Circuit This type of circuit is usually specified when seriesing two or A38 Liquid cooled assembly ratings for two and three devices in series are presented in this section along with their outline drawings. For applications requiring four or more devices in series, consult Westinghouse for a custom module. Liquid Cooled R/C Tabs Tab type, .250 push-on terminals are an option available on Westinghouse liquid cooled heat sinks. This option makes the connection of resistors, capacitors,and/ or voltage protection devices directly across the semiconductor device an easy task. To order this feature, add suffix "RC" to the standard twelve digit type number- i.e. PDW6T6201230RC. Kits and Sinks Standard air and liquid cooled disc assembly kits are available to the user who needs design flexibi1ity on small quantity custom designs that might require non-standard factory configurations. Air cooled heat sink extrusions, designed by Westinghouse to optimize the cooling of large area power semiconductors. are available in mill lengths or cut-to-order lengths. See pages A65 and A66 for more information on Westinghouse kits and sinks. ............ FRAME AND SINK TYPE I DEVICE TYPE VOLTAGE CODE DEVICE CURRENT ' «ti',4'lfIJIJIIDDDemmm TABLE I Voltage Code AssemblY Device Voltage Rating Voltage 100 200 400 600 800 01 02 1000 10 12 14 16 18 20 22 24 26 28 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 4000 04 06 08 30 40 TABLE II STANDARD AVAILABLE CIRCUITS Circuit Schematic Configuration n Voltage 1 Code , PRA8R820 30 377 401 368 391 338 30 355 378 342 363 314 341 30 313 333 297 316 276 300 PRA6R820 40 414 448 396 431' 379 411 40 387 419 367 399 347 376 PRA6R820 50 444 482 424 459 403 436 PRA7R720 06 484 537 464 518 444 494 06 448 497 429 479 405 451 06 389 431 362 404 335 373 PRA7R720 09 564 623 536 592 512 567 09 521 576 494 546 465 515 12 755 842 721 802 682 762 Rectifier R ONE ASSEMBLY PRA7R720 PRA9R920 11 1033 1183 990 1150 947 1110 11 970 1128 930 1080 878 1030 REQUIREO PRA9R920 11 860 1000 16 1104 1280 945 1010 875 1025 1192 1020 1135 1220 920 1090 1340 1608 1277 1537 1635 1222 1440 PRA9R9GO 13 1087 1305 1040 1230 995 1170 13 1020 1200 970 1140 915 1085 845 990 780 930 PRA9R9GO 1B 1100 1308 1B 1020 1216 965 1150 PRA9R9GO 22 1371 1658 1297 1570 1048 1248 PDA8R820 30 754 802 736 782 676 736 30 710 756 684 726 628 682 30 626 666 594 632 55'2 600 PDA8R820 40 828 896 792 862 758 822 40 774 838 734 798 694 752 PDA6R820 60 888 964 848 918 806 872 968 1074 928 1036 888 988 06 896 994 858 958 810 902 06 778 862 724 808 670 746 PDA7R720 09 1128 1246 1072 1184 1024 1134 09 988 1092 930 1030 PDA7R720 -12 1441 1604 1364 1524 PDA9R920 11 1980 2300 1894 2220 11 1860 2160 1756 2060 11 1620 1890 1490 1750 PDA9R920 16 2110 2450 2000 2150 ASSEMBLIES REQUIRED 745 1000 1075 16 PDA7R720 06 TWO 810 1055 1225 1300 PRA9R920 20 13 1 </> Bridge 321 368 16 2040 2270 1840 2180 PDA9R920 20 2554 3074 2444 2880 PDA9R9GO 13 2080 2460 1990 2340 13 1940 2280 1830 2170 13 1690 1980 1560 1860 PDA9R9GO 18 2200 2616 2096 2496 18 2040 2432 1930 2300 PDA9R9GO 22 2742 3316 2594 3140 A39 Schematic This Number) Configura~ Voltage '- tion Code 3~ Bridge THliEE ASSEMBLIES REQUIRED 6~ Star , PDA6R620 •• 30 1032 '097 30 959 '0'9 887 955 30 834 779 839 85' PDA6R620•• 40 '207 40 '033 '1'8 976 1058 1137 '23' 1067 '156 PDA6R 620••50 '252 '360 "94 '295 PDA7R720 ••06 '38' '5'5 '32' '462 1259 1401. 06 '274 '402 '222 '352 '154 1284 06 1106 '2'7 '03' "4' 954 1061 PD"'7R720••09 '596 1766 '5'9 '676 '456 1604 09 '475 '632 '400 '545 1324 1458 PDA7R720 • .12 240' 2038 2282 1933 2'63 -1-------11--PDA9R920 •.11 2790 3234 2676 3105 11 2475 3000 2496 2880 11 2259 2625 2085 2460 PDA9R920 ••16 2925 3396 2772 3270 16 2688 3'74 2520 2985 PDA9R920•. 20 3645 4290 3495 4'34 IPI)A5IR9GO. _13 3360 2700 32'6 13 2655 3'35 2505 2970 13 2265 2700 2115 2520 PDA9R9GO-.18 3060 3627 2910 3450 18 2838 3366 2685 3189 PDA9R9GO••22 3825 4590 3636 4350 PRA6R620• ..30 '553 '636 1500 1579 30 '45' 1528 1392 1464 30 '265 '332 1206 1269 PRA6R620 ••40 '723 1850 1648 1769 40 '609 '727 1529 1641 PRA6R620._50 '884 2027 1793 1939 2045 2249 1957 2144 PRA7R720• ..o6 06 2002 2'99 '906 2096 1810 1983 06 '759 '932 1653 1818 1547 1695 2288 2518 PRA7T720 ••09 25'9 2760 2403 2651 SIX 09 2356 2582 2235 2466 2115 2327 ASSEM8LIES 12 383' 3332 3687 3183 3514 PRA9R920••11 4302 5010 4080 4788 11 3978 4650 3780 4422 '1 3480 4050 3210 3768 PRA9R920.36 4500 5682 4320 5000 REQUIRED A40 886 954 1028 16 4170 4968 3960 4650 PRA9R920•• 20 5870 6888 5520 6480 PRA9R9GO• .13 44'0 5250 4200 4980 13 4050 4860 3840 4590 13 3468 4'70 3180 3870 PRA9R9GO• .1 8 48'8 5700 4566 5448 18 4470 53'6 4200 5040 PRA9R9GO••22 6210 7398 5916 7038 Schematic Configura· tion mJn 3 WV· Transformer) SIX ASSEMBLIES REQUIRED Voltage Code • PRA6R620 30 2064 2194 1908 2056 2084 30 1918 2038 1774 1910 1936 30 1754 1868 1668 1772 1558 1678 1702 PRA6R620 40 2232 2414 2134 2312 2360 40 2066 2236 1952 2116 2180 PRA6R620 50 2388 2590 2274 2462 2510 PRA7R720 06 2762 2642 2924 2518 2602 2864 08 2548 2444 2704 2306 2568 2628 06 2212 2082 2282 1908 2122 2172 PRA7R720 09 3192 3038 3352 2912 3208 3284 09 2800 3090 2648 2916 2986 PRA7R720 12 4564 3866 4326 4448 PRA9R920 II 5580 8510 5362 6210 6600 11 4960 6000 4992 5760 6120 11 4518 6250 4170 4920 5250 PRA9R920 16 6850 6792 5544 6640 6990' 16 6376 6348 6040 6970 6400 PRA9R920 20 7290 8680 6990 8268 8730 PRA9R9GO 13 5670 6720 5400 6432 6840 13 5310 6270 6660 6010 5940 6330 13 5400 4230 6040 6370 PRA9R9GO 18 6120 7254 6820 6900 7360 18 5676 6732 6370 6378 6768 7660 7272 8700 9294 PRA9R9GO 22 A41 Schematic Configuration, This Number} Voltage Code • PDA6T6R6 R4 1 t/J Bridge PDA6T6R6 rPDA7T7R7 PDA9T9R9 TWO REQUIRED PDA9T9R9 PDA6T6R6 ~ 3 ¢ Bridge 334 356 304 334 278 306 383 418 349 381 315 343 30 433 474 395 431 356 388 25 408 441 378 412 350 382 34 462 500 430 468 398 434 40 606 650 558 614 528 564 411 456 36 504 560 459 508 45 558 615 508 562 454 504 66 639 712 576 645 514 573 06 872 1028 790 932 707 831 07 962 11,32 876 1026 782 919 OB 1051 1234 957 1119 852 1004 09 1185 1402 1075 1267 10 1322 1661 1201 PDA9T9R9 ASS"EMBlIES REQUIRED PDA9T9R9 521 1412 1521 954 1131 1060 1263 Gil 930 1090 1G 1140 1360 1040 1244 940 1124 12 1450 1760 1316 1590 1180 1424 840 994 760 900 16 473 503 430 472 393 432 20 545 694 497 643 449 489 30 616 673 561 613 507 552 677 625 634 5~3 496 640 614 PDA6T6R6 PDAn7R7 THREE 16 20 34 654 707 608 662 563 40 857 920 790 869 747 798 655 727 590 652 36 46 729 801 661 725 56 832 928 741 827 06 1140 1347 1020 1203 07 1257 1476 1131 1322 OB, 1375 1611 1231 1444 09 1552 1836 1382 1636 10 1746 2055 1557 183B GB 1316 1542 1188 1406 1075 1273 1G 1613 1924 1471 1760 1332 1590 12 2052 1862 2250 1670 2015 Circuit Schematic Configuration n Single SCR (Order BV This Numberl Voltage Code PTA6T620 PTA6T625 t 15 152 167 139 153 20 175 190 158 172 30 197 215 178 192 25 189 206 175 191 T 279 308 254 281 66 319 356 288 322 ONE 06 436 514 395 466 ASSEMBLY 07 481 566 438 513 REQUIRED OB 525 617 478 559 09 593 701 538 633 10 661 781 601 706 530 631 OB 465 545 420 497 335 380 450 10 570 680 520 622 412 470 562 12 725 880 658 795 510 590 712 PTA9T9GO F11 1 <I> Bridge PDA6T620 PDA6T625 PDA7T720 PDA9T920 TWO ASSEMBLIES REQUIRED 15 334 356 304 334 278 306 20 383 418 349 381 315 343 30 433 474 395 431 356 388 25 408 441 378 412 350 382 30 462 500 430 468 398 434 40 606 650 558 614 528 564 35 504 560 459 508 411 456 45 558 615 508 562 454 504 55 ,639 712 576 645 514 573 06 872 1028 790 932 707 831 07 962 1132 876 1026 08 1051 1234 957 1119 09 1185 1402 1075 1267 1201 1412 10 1322 1561 PDA9T9GO 18 930 1090 10 1140 1360 1040 1244 940 1124 12 1450 1760 1316 1590 1180 1424 B40 994 1060 1263 760 900 PDAATA20 A43 Schematic Configuration This Number} Voltage Code PDA6T620 ~ 34> Bridge THREE PDA6T626 PDA9T920 ASSEMBLIES REQUIRED ~ 15 473 503 430 472 393 432 20 546 594 497 543 449 489 30 616 673 661 613 507 662 211 577 625 534 5113 495 540 46 795 875 801 '651 725 56 921 1023 832 928 741 827 08 1483 1140 1347 07 1382 1628 1257 1476 1131 1322 08 1375 1611 1231 1444 09 1552 1836 1981 1382 1636 10 1746 2055 1557 1838 1188 1406 PDA9T9GO. 08 ~ , Switch A ~AC PAA6T820 PAA6T6211 AMPS RMS PAA7T720 TWO ASSEMBLIES REQUIRED PAA9T920 1316 10 1471 1760 1075 1273 1332 1590 12 1862 2250 1670 2015 2151 111 367 391 334 367 306 336 20 420 459 384 419 347 377 30 475 521 434 474 392 427 211 448 486 415 453 385 420 30 508 560 437 477 40 666 715 580 620 311 654 616 463 502 45 614 677 558 618 499 565 66 703 78.3 634 709 666 630 869 1025 778 9'5 963 1129 860 1011 08 07 969 1130 1058 08 1063 1231 938 1104 09 1642 1183 1393 1049 1245 10 '1717 1321 1553 1166 '389 PAA9T9GO 09 1023 '199 924 ,1093 836 990 10 1254 1144 1368 1034 '236 12 "696 '448 1749 1298 1666 PAAATA20 12 A44 1020 1203 (Orde, By This Number) Voltage Cod. n Single Rectifier R SINGLE ASSEMBLY PRW6R620 30 1200 594 601 618 548 554 30 2000 559 565 581 523 529 545 30 3000 498 504 518 459 464 478 PRW6R620 40 1200 604 610 626 567 574 589 40 2000 567 573 588 530 536 550 PRW6R620 50 1200 687 695 715 645 653 672 823 570 PRW7R720 06 1200 830 846 878 777 790 06 2000 .781 796 826 726 739 770 06 4000 692 705 732 636 647 674 PRW7R720 09 1200 971 988 1030 910 926 964 09 2000 1533 REQU IRED 1-!~~~.!!....!:12~-.!.12~0~0!... 14> Bridge. TWO REQUIRED PRW9R920 I I 1200 II 2000 1462 II 3000 1308 1370 PRW9R920 16 1200 1675 1767 16 2000 1572 1650 PRW9R920 20 1200 2170 2280 PRW9R9GO 13 1200 1654 1693 1788 13 2000 1563 1600 1685 1498 1580 13 3000 1397 1430 1510 1288 1320 1398 PRW9R9GO 18 1200 1793 1841 1940 1680 1726 1830 18 2000 1680 1726 1830 1563 1602 1702 PRW9R9GO 22 1200 2376 2517 2175 2228 2363 PDW6R620 30 1200 1188 1202 1236 1096 1108 1140 30 2000 1118 1130 1162 1046 1058 1090 30 3000 996 1008 1036 918 928 956 PDW6R620 40 1200 1208 1220 1252 1134 1148 1178 40 2000 1134 1146 1176 1060 1072 1100 PDW6R620 50 1200 1374 1390 1430 1290 1306 1344 PDW7R720 06 1200 1660 1692 1756 1554 1580 1646 06 2000 1562 1592 1652 1452 1478 1540 1348 06 4000 1384 1410 1464 1272 1294 PDW7R720 09 1200 1942 1976 2060 1820 1852 1928 09 2000 1824 1856 1934 1702 1730 1802 PDW7R720 12 1200 2403 2438 2523 2256 2292 2382 PDW9R920 II 1200 3044 3106 3256 2864 2924 3066 II 2000 2864 2924 3066 2684 2540 2870 II 3000 2560 2616 2740 2354 2400 2534 PDW9R920 16 1200 3280 3350 3534 3070 3144 3300 16 2000 3070 3144 3300 2860 2930 3080 PDW9R920 20 1200 4280 4340 4560 3965 4056 4280 PDW9R9GO 13 1200 3308 3386 3576 3126 3200 3370 13 2000 3126 3200 3370 2934 2996 3160 13 3000 2794 2860 3010 2576 2640 2796 PDW9R9GO 18 1200 3586 3682 3880 3360 3452 3660 18 2000 3360 3452 3660 3126 3204 3404 PDW9R9GO 22 1200 4634 4752 5034 4350 4456 4726 A45 Voltage Code ~ PDW6R820 30 1676 1724 1584 30 1576 1621 1480 1521 30 1406 1445 1298 1334 PDW6R820 40 1701 1743 1602 1644 40 1597 1637 1497 1536 PDW6R820 60 1942 ll195 1806 1827 1881 PDW7A720 06 2364 2468 2141 2177 2269 06 2224 2312 2037 2072 2160 1970 2048 1784 1814 1891 2770 2877 2596 2703 3t/> Bridge 06 1939 PDW7R720 09 09 2425 2526 ASSEMBLIES PDW7R720 12 3269 3381 REQUIRED PDW9R920 11 3924 4005 4200 11 3660 3744 3930 11 3210 3279 3450 PDW9R920 16 4245 4320 4536 2241 2302 THREE rmTI 30 2347 2387 2441 30 2111 2147 2195 1956 1978 2032 PRW6R620 40 2533 2559 2625 2400 2423 2482 6t/>Star 40 2396 2421 2483 2251 2273 2328 PRW6R620 50 2928 2961 3041 2768 2798 2871 PRW7R720 06 3513 3568 3702 3222 3270 3394 06 3319 3372 3498 3136 3183 3304 2977 3024 3137 2756 2797 2903 4146 4210 4372 394Q., 3999 4146 PRW7R720 3919 3979 4132 3686 37i11 ' 3878 SIX PRW7R720 507i 5145 5312 4811 4874 5027 ASSEMBLIES PRW9R920 6390 6540 6828 6018 6150 6456 6018 6150 6456 5640 5760 6186 11 5496 5760 4962 5058 5328 PRW9R920 16 7116 7422 6612 6726 7026 6726 7026 6210 6312 6618 9420 9900 8652 8832 9.300 PRW9R9GO 13 7122 7512 6737 7080 13 6737 7080 6300 6660 13 6006 6342 5418 5550 5868 PRW9R9GO 18 7668 8070 7122 7272 7632 7272 7632 6708 6846 7200 10302 10842 9456 9678 10248 11 REQUIRED 16 PRW9R920 20 PRW9A9GO A46 1627 9216 (Order By This Number) Voltage Coda PRW6R620 PRW6R620 SIX ASSEMBLIES 3314 3352 3448 3490 3130 3168 3254 3294 3116 3152 3242 3282 2926 2960 3042 3078 2778 2810 2890 2925 2566 .2596 2668 2700 3362 3402 3486 3526 3168 3204 3288 3224 3106 3156 3194 3274 3310 2960 2994 3072 PRW6R620 3842 3884 3990 4040 3612 3654 3762 3812 PRW7R720 4654 2728 4916 6006 4282 4354 4538 4620 4378 4448 4624 4710 4074 4144 4320 4396 3878 3940 4096 4172 3568 2628 3782 3850 5446 5540 5754 5858 5106 5190 5406 5512 PRW7R720 PRW9R920 REQUIRED 5114 5202 5402 5500 4772 4850 5052 5152 6812 6912 7138 7276 6434 6538 6762 6858 8340 8520 8910 9180 7848 8010 8400 8640 7848 8010 8400 8640 7320 7488 7860 8100 6972 7128 7488 7722 6420' 6558 6900 7092 PRW9R920 8970 9180 9642 9900 8490 4640 9072 9312 8490 4640 9072 9312 7920 8082 8496 8724 PRW9R920 11700 11982 12618 13032 10920 11160 11808 13230 9090 9300 9840 10140 8568 8778 9252 9582 8568. 8778 9252 9582 8028 8208 8664 8958 PRW9R9GO 7632 7812 8264 8556 7032 7212 7632 7878 PRW9R9GO 9774 9996 10578 10932 9204 9432 9954 10302 9030 9204 9432 10302 8618 8820 9112 9630 PRW9R9GO 12852 13200 13974 14448 12012 12348 13080 13584 A47 Circuit Configura· tion r1 PSW6R620 30 594 601 618 548 554 570 30 559 565 581 523 529 545 30 498 504 518 459 464 478 PSW6R620 40 604 610 626 567 574 589 530 536 550 PSW6R620 645 653 672 PSW7R720 777 790 823 726 739 770 636 647 674 910 926 964 OR ! tl1tlltl1 SERIES RECTIFIER SINGLE ASSEMBLY REQUIRED Avail. (VI Voltage Code PSW7R720 PSW7R720 PSW9R920 11 1462 11 1308 1370 PSW9R920 16 1675 1767 16 1572 1650 PSW9R920 20 2170 2280 PSW9R9GO 13 1693 1788 13 1600 1685 1498 1580 13 1430 151q 1288 1320 1398 PSW9R920 18 1841 1940 1680 1726 1830 1680 1726 1830 1563 1602 1702 2317 2376 2517 2175 2228 2363 PSW9R920 M r1 PSW6T620 OR SERIES THYRISTOR 1533 PSW6T625 272 280 285 242 249 253 20 313 323 327 278 286 290 30 355 367 372 314 324 329 25 325 333 336 295 303 306 370 380 384 PSW7T720 436 451 459 45 486 503 512 56 572 593 603 PSW9T920 06 721 158 779 07 SINGLE BlY 08 REQUIRED 09 10 PSW9T9GO 08 PSWATA20 14 *Consult factory for exact type number before ordering. A<\S Vohage Code FP1 1. Bridge PDWITIR8 16 536 544 560 , 476 484 498 20 618 626 645 548 556 573 30 701 711 733 621 629 648 PDWITIRI 26 636 650 666 578 590 606 3H 728 740 760 660 674 692 926 948 960 844 864 884 859) 872 903 766 777 806 957 971 1007 851 864 898 1128 1145 1186 999 1015 1056 55 PDWBT9R9 08 1419 1442 1517 1250 1271 1338 TWO 07 .1545 1568 1651 1368 1391 1462 REQUIRED 08 1681 1708 1797 1488 151 I 1591 09 1936 1967 2075 1704 1733 1828 10 3161 2196 2316 1903 1934 2040 1330 1360 1440 ·DUTPUT CURRENT AMPS RMS PDWBTBRB 08 1494 1530 1620 10 1860 1920 2010 12 2440 2500 2660 ~ PDWIT8R8 11 750 761 784 20 881 892 919 30 998 1010 1044 PDW8TIR8 26 890 910 932 1388 1442 3. Brldgo PDW7T7R7 PDWBTBRB THREE ASSEMBLIES REQUIRED 1618 1642 1701 2047 2079 2190 2223 2260 2376 2463 2583 2846 3002 3181 3369 2142 2268 2798 PDW9TBRB A49 .- . ---~ .---- 'Circuit Configura· tion n Slngl.SeR . T 10rder By This Number) Voltage Code PTW6T620 PTW6T6.25 272 280 286 242 249 313 323 327 278 286 356 367 372 314 324 326 333 336 295 303 PTW7T720 PTW9T920 SINGLE SEMBLV REQUIRED PTW9T9GO 14 F14 1 "'Bridge POW6T620 16 1500 1500 618 626 645 548 556 573 30 1500 701 711 733 621 629 648 PDW6T626 25 1200 636 650 666 578 590 606 30 1200 728 740 760 660 674 692 40 1200 926 946 960 844 864 884 PDW7T720 35 2200 869i 872 803 766 777 806 45 2200 957 971 1007 851 864 898 1145 1186 999 1015 1056 20 55 1600 TWO PDW9T920 06 3000 1442 1517 1271 1338 07 2200 1568 1651 1391 1462 08 1708 1797 1511 1591 1600 1967 2075 1704 1733 1828 10 1600 2196 2316 1903 1934 2040 1440 REQUIRED 09 PDW9T9GO A50 1494 1530 1620 1330 1360 1860 1920 2010 1660 1710 1800 2500 2660 2220 2340 253 329 Circuit fOrder By Thl. Number, Configuration ~ ----3q, Bridge Voltage Code PDW8T820 1 PDW8T825 750 761 784 666 677 881 892 919 780 790 815 998 1010 1044 885 896 924 809 826 848 532 547 890 PDW7T720 932 1064 1327 1344 1238 1283 1365 1388 1442 1618 1642 1701 PDW9T920 THREE ASSEM8L1ES REQUIRED 910 1036 2798 PDW9T9GO 2079 2190 2260 2376 2453 2583 2846 3002 3181 3369 2142 2268 2674 2614 3500 3724 697 PDWATA20 1 ~ PAW8T620 ~ PAW6T625 AC .Switch ONE ASSEM8LY REQUIRED ·OUTPUT CU1'RENT AMPS RMS PAW9T9GO 616 688 710 603 611 630 771 782 806 683 692 713 636 649 666 699 715 732 800 814 836 1016 1042 1056 945 959 992 46 1053 1068 1108 55 1241 PAW7T720 PAW9920 598 679 1259 1305 06 1586 1668 07 1725 1816 08 1878 1977 09 2164 2282 2415 2647 1643 1683 1782 2101 2211 PAWATA20 PAWATA20 AS1 • Eleven current ratings available • Manifold base providing easy mounting and 18" isolating liquid path • 3N221 and 3N222 types available • %-18 N.P.T. (2) brass fitting supplied with grounding wire • Water temperature sensing thermostats available for assembly protection The Westinghouse AC manifold switch provides a fast-access, high performance assembly that has been rated for continuous or duty cycle applications. All mounting and electrical 'connections meet the JEDEC outlines. Water connections can be made (V) verti.cal. or (H) horizontal. The electrical connections may be supplied either (5) short tangs or (L) tangs. Refer to @ outlines M-16 under mechanic.al data, this section. AVAILABLE. DE.SIGNS FRAME Storage Temperature" ..•••••.••••••••••• -40°C to 66°C Ma)(imum Ambient Temperature •••••••••••••••• " •• 66° PAM7 Ma)(imum Water Pressure (INLET) ..••.. " .••.... 60 psig Maximum Water Temperature (INLEn ...••..•...•.• 60"C Maximum Pressure Drop, 1.26 GPM ••••••••••• : 10 PSIG "Manifold must be purged of water to avoid freeze up at low temperatures. PAM9 PAM9 EXAMPLE: Obtain optimum device performance for your application by selecting proper order ·code PAM7 with T7201255 SCR's rated at 1240A RMS with 1.25 GPM twater =40.oC and vertical H20 connection, short tang electrical connectiohs. ............_-_........ FRAME AND SINK TYPE I DEVICE TYPE I VOLTAGE CODE I DEVICE CURRENT I I H2 0 TANG IB III E1I. .II1l1l......III1II. . . . .fI A52 HANDLING PRECAUTIONS: When the switch is to be placed in operation, all surface moisture must be eliminated before power is applied, otherwise catastrophic electrochemical failure can be induced. Coordination between cooling water temperature and the prevailing humidity is necessary to avoid condensation on water cooled metallic surfaces and electrical insulation. Ordinarily, this is no problem with 40°C cooling water. With lower temperature water, humidity control may be necessary to completely stop condensation. MOUNTING POSITIONS: No restrictions WATER QUALITY: The cooling water shall have the following quality: A neutral or slightly alkaline reaction, i,e, a pH between 7.0 and 9.0. A chloride content of not more than 20 parts per million; a nitrate content of not more than 10 parts per million; and a sulphate content of not more than 100 parts per million. A total solids content of not more than 250 parts per million. A total hardness, as calcium carbonate, of not more than 250 parts per million. No chemial additives to be used. MOUNTING Visually examine the switch before it is mounted to see that it has not been damaged during handling. When mounting the insulating base, the following precautions should be taken to avoid distorting the plastic part, a cause of . breakage and/or leakage. The mounting surface is to be flat within .030". Bolts or nuts which are used to hold the switch into the equipment shall be used with a flat washer against the plastic base. Torque values shall not be exceeded. (Sft-Ibs. max. for 1.4" screw). For pipe connections, a sealing agent, joint compound, shall be used in order to limit the torque needed and in order to get a water -tight joint. A53 RMS DEMAND CURRENT.,AMPS 3200 I- zw a: a: :::l u 2800 --..... " - --!. f.,.." k..,." "- , ::! w (/) 20 50 2000 !z3000 Il! a NUMBER OF CONDUCTING CYCLES I 1600 1200 2600 ~~ -100 0 ::! a: ' 10 0 «z , ,:2200V 5 2400 3600 3400 'PAM7T72o....35 ' II- MAX, VOLTAGE AVAILABE ~ ~ ~~ -..;;: ~ ;::::s ~ z ,~ ~ 10 I- zw 4000 - 1 :::l U 0 5 1 -f., 3000 z « ::!: w 0 2000 (/) ::!: a: 10 I 20_ -50_ -100 - .~ .. ~ ,I NUMBER OF 1000 -CONDUCTING ~YCLiS .~ I o I r-L.!. 3600 2' I- zw a: a: :::l U 0 «z ::!: w 0 (/) ~ a: ......;"". 3200 3000 ' 2oJ50 2400 • 100 . NUMBER OF 2000 CONDUCTING ~ I CYCLES 1600 1 % DUTY I I I I I '1 r-.... I I " 10 4000 ....---- ~mill 100 .... ~ W IIIIII 100 10 PAM9T92o....oe I II' MAX. vqLTAGE AVAILAB LE 2200V I 2 5 ao lO_ 20 1--50 z "- ~ I I I I w 3000 , -....;::::: i'-...~ ~ ~ -r-- r-.'_ 1-1- ~ t--... t-- -=- ~~ 100 I « III I I- f f'..:. -.;.;;,:. "'....... '~ ~ i-- z .~ ~ ~ ;s .... 1 % DUTY 100 ~" ,"" .:-..: r-..."\ m PAM9T92o....06 MAX. VOLTAGE AVAILABLE 3000V NUMBER OF CONDUCTING . CYCLES I 1400 ~~ 100 _ 1 0 0 _ 50, . 1800 - ~ ~ m -20 ~ '" ~ ................ ....... ...;"" i'... ~ 5000 ":""1 1200 A54 I --- .I r-L' (/) ~ - 10 10 2200 '";::::::; s I 5 ~ PAM9T92o....o7 MAX. VOLTAGE AVAILABLE 2200V 5 10-r-. 2800 .-- !z % DUTY 4000 ~ - 3600 3400 ~ o ...... .......... ':'" .;.."" I I 1000 10 1 I u 02600 , ,"'- 0....... ~ ~ ~ 1 % DUTY :::l . ~' 5 NUMBER OF CONDUCTING CYCLES 1000 Il! .. - 1~ ., 1400 a: '-.:. . 2 PAM7T72o..-451 I II MAX, VOLTAGE AVAILABLE 2200V _100· 100 -f., 21 a: a: 'l.' 20 -:-f., ~ PAM7T72o....55 MAX. AVAILAB,"E VOLTAGE l.100V I 50 o % DUTY I - 2200 (/)1800 If 5000 TWATER = 4()°C. 1 :25 GPM o « ~ 800 1 --- "'S. PERCENT'DUTY ~ ~ 2000 """':""NUMBER OF CONDUCTING o ,.CYCLEs. ~ ~ a: 1000 .< o 1 % DUTY 10 100 RMS DEMAND CURRENT. AMPS VS, PERCENT DUTY TWATER II 6000 ....z w -~"" 5000 2 5r-i- a: a: ::l u 0 z<{ :::!l w 10 4000 3000 F--- 1100 en :::!l a: ~ ~ 20'50 0 PAM9T92o. ..()9 I MAX. VOLTAGE AVAILABL 1700V I I NUMBER OF CONDUCTING I CYCLES I 2000 .... iria:: ~ w a:: a:: 5000 0 ~ 4000 w 0 3000 :::!l en :::!l a: ~ 2000 -NUMBEROF CONDUCTING 1000 - I C Y C rS, ~ 100 % DUTY -1 .... zw a: a: ::l u 0 z<{ :::!l w 2 5 10 20 5000 6000 5000 4000 r........ ~~~ ....~ I :::!l 2000 r- NUMBER OF a: 1000 - CONDUCTING CYCLES o1 I I % DUTY 10 100 ',III I I 1 PAM9T9Go._12 MAX. AVAILABLE VOLTAGE 1700V ....... 7000 0 en :::!l a: 1 o 10 8000 !Z en II 0 1 100 II 2- f-5 ~4000 020 50 ~ ~ 3000 I - - - 00 ~ 20 10 50 1 1001 ~ PAM9T9Ga.._l0 MAX. AVAILABLE VOLTAGE 2000V 6000 ::l 5 t'..... ~~ ~ 10 ~ 6000 a: 1 2 ~ % DUTY MAX. VOLTAGE AVAILABLE 3000V ::l U I--. I 01 100 PAM9T~G~kl I II ....z I R .~ 2000 I- NUMBER OF CONDUCTING a:: CYCLES 1000 10 % DUTY 3000 o PAM9T92a.._10 MAX. VOLTAGE AVAILAB LE 1700V 2 6 lO20 60 1uv a: w 'I t-l-~ ::l 1000 01 - 5000 ~4000 z ~ = 40°C. 1.25 GPM ~ NUMBER OF CONDUCTING 3000 I - rCLjS ""II- ~ ~~ ~ ~ ~. ""'""ll I 2000 1 10 ~ ~ rr 100 OPTIONAL THERMOSTAT % DUTY A5! seR *Typical - 300 V I~s minimum. **Non-repetitive velue A56 .-, .-4 W~8 OI•• n,lon W-7 mm Inc.... 209.8 rna •. 156.4 S.76 rna •. .82 506 max IIICIIII. 8.26 rna •• 6.12 508 rna •. 6.00 max. 1.26 12B.5 max 127.0 rna •. 31.7 15.7 13.5 ref 3.17 11.10 33.32 76.2 ref. .82 .53 ref. wldB X K lone: ,101 (21 ... .125 1.31 300 ref .,prox. lb• WI. 168.2 1285ma. 1270 max 317 157 135 ref. 317 500 max 12. 62 63 ref. 126 44 131 TT 10 33.32 78.2 ref a.OOrel. tI, In tl' 1.26 27. •• 222.3 max. 3.26 148 .-7 DlnltnlllNl W-9 Inches mm 9.11 max. 705 662 max. 6.38 max. 200 2314 max . W.III I ' IInI sloll!} .,. DIIllnIIOll Inc"" 9.70 max. (·14 "pIDI. W.. ... 6.00 max. 127.0 max. 500 max 12. 269.5 max 2182 85' 506 max. 128.5 max. 1270 max. .2 31.8 15.7 .82 53 ref. .125 13.5 ref 3.18 1.312 3.00 ref 33.32 16.2 ref Ibs ... W-7 Iocb" 7." 5.06 max 3.25 tiS 318 .-5 .1061 max ... 101.6 ref 700 246.4 max. 191.5 128.6 max. 1.25 635 11.10 3889 Ib, .-2 W-8 508 22.4 13.5 ref 53 ref. .250 .44 153 4.00 ref tpprOl . (14 1791 1656 rna)!; 1367 max 11.10 318 " 7 13.5 ref 318 63 ref 12. 44 1.312 til 300 lb. 1.48 425 1110 3332 76.2 ref tIS 193 .-1 W.. DlIMns ..n iocII.. 11.08m.... 280.9 m.... 228.8 8.52 ma... 6.38 max. 186.8 m .... 138.7 ma... ... ... 2.00 r~ (1-1 .,111 X K 11111( alai 121 .63 ref. .250 .. ... 9.00 1.531 4.00 ref. 1,lIfOl. ,., w.. 8.76 50.• 22.4 13.6 8.36 11.10 38.89 101.S ref. .... tp A57 M-3 Dnlllim W-8 mm I..... 246.4 max. 9.70 max. 7.64 191.6 5.88 max 5.00 max. 1494 max. 127.0 max. 31.8 15.7 13.66 ref . 1.25 .&2 .53 J ..... 11( r·~ r·~ 3.18 .125 Iant 11.10 33.32 .44 1.312 300 ref. 2.38 Sial (21 M 76.2 ref. 60." 953 .375 1.00 • ,prlll. WI. 25.4 .p lb• 32. 1.60 .-8 Dlmlnslon r·~ r·~ M W-7 mm IIIchls 1061 max 86 269.6 max. 218.2 5.B8 max. 149.4 max S.OO max. t27.0mex. 31.B 125 .62 .53 ref. 15.7 13.56 ref. .126 .44 1312 1110 3332 3.18 3.00 ref. 76.2 ref 2.38 60.5 9.63 375 25.4 1.00 • pprox. WI. lb• kl' 7.00 3.17 M-9 Olln..o". 1--==--,W::,.-..:.9--:::::---1 bleb. mm 11.06 max. 900 280.9 max. 228.6 8.66 max. 6.38 max. 1367 max. 2.00 .88 63 faf. .260 willlxK _ 0101 (21 A5S 60.8 22.4 13.5 ref. 635 .44 11.10 t.53t 38.89 1016 ref. 4.00ref. M 2t7.4max. 3.00 1.00 .375 762 26.4 9.53 2.00 508 'ppra•. liII WI. 9.26 kl' 4.22 M-10 hDI ': ----w---~- Inches L_*_J! r---- " 1 G dtl. (2lholestDpslnk (2) ItaIIs ba1tom sink I , I. .312·18 hu. tid. boll 13018 max 5125 melt '3018maK t01.9Tet 425 ref 12.7 ref 50 ref 1079 ref. 127 ref 674 3 •• 67. 402 ref. 1021 ref. 452 ref. ',48 ref klS Ibs 'IS WI. ~70 "". 3.2 ~62 Plrsink .312-18 loch.. 13125 max 256 5.75 max. 5125 max. 4.26 ref. 60 ref. 344 4.02 ref. 350 ref. 1H r - . Ibs • pprOl. WI. ,• ( 1 I 3334 65.0 256 625 max 1588 malt 5125 max. t301Bmax 107.9Tef 425 ref 1079 ref 12.7 ref. .60 ref 8.75 1148 88" 3.S0ret 88S lb. kI' 71 sQ.lnCftIS SQ. em !:>i: 6.2 40.0 .0:::6.2 .1 20638 max 636 6.44 max 163.6 max 9938 max 25243 max 225 ref 57.2 ref 100 25.4 apprOI. lb' wI. 16.5 SCI. Inches sect. •• Ii·· - I 9.53 19.1 ref 800 ref. .g. 75 sq. em 677 ""'105 ~J~~; ha;~~~d." M-15 Dimension J A-9 1--:--,-_.--___ _ Inches mm 17125 max. 434.28 max 250 l f I. -, '-----Itl-:- ,IJ I .... 8.125 max. 375 75 ref 315 ref .. . I!~bol1 1 - . . ' .,-.--:t t A-9 Incites: 250 J ----W-:-Ol -.)Ik- .40.0 M-14 DlmenslDn - '--- -- - kg• 1575 .rea -- --'" 875 4.52 ref. per sink : ~ 127 ref. .344 1021 arGSS 1"1- 650 1460 max 130.18 max 1 - ___ I 3334 13125 67 ~". • .250-2. "'.IId. bI111 J !I mm Inchls sq. em Ilea . A-7 mm sq.lnclles ~-w-·rr _. • . _ l i--~ -~I f -, '-----~---:- -L .. -I" M-13 14.75 crou_1. perslilk sq em ~400 "'62 A-B •• .P. lid. bOil ~400 Dimension ~T-.l~ "....~mod.l. ~i I ~34 "" 7.5 sq. Inches M-ll ---1 __ 1588 max Ibs sq. em SCI. Inches H . J9l ' 650 SOrel 344 L_*_J r r·-·- '" 1 \ 256 625 max area hDI .: .--w.--~- 155.78 max 1460 max crosssecf. .1 . 66.0 6125 max 575 mall. 5125 max 426 ret appro!. __ mm Inches 155.78 malt. 2.56 'M' ~T-~l~ acc~m'd'to ~ ._ A-7 mm 6.125 malt ---1 \ M-12 A-B DImension 1636 max 9938 max. 25243 max 2250 ref. 6715 ref 1.00 254 315 ref. 9.53 1905 ref. 800 ref 4.50 ref .578 ref. 114.3 ret. 1468 ref .375 750 ref. ~J .pproll. WI. cro~'r:a.ct. ";·,In. 63.5 644 max. Ibs 350 • sq.lniCh" -106 tl' 15.9 s~ em 677 A59 HS I VS ARRANGEMENT M-16 1lItII...lo' 1--:--:-...:H:::S:,:'r-:VS=-_ _-l Iocb.. M.. 1094,.f. MANIFOLD SWITCH 1748 1.38 4.50 max 3•• 1143 max 25.4 185.1 76.2 78.2 216.9 82.0 82.6 '.00 6.50 .25 200 72 150 37 60 56 • N ~ R V 277.9 ref, 688 300 300 850 244 32. 6.0 508 .83 38. 94 12.7 142 166 __ ~ __ 396 __ _ ~_I!!.".+_--:-77'=.6-"m= ••'___l ~ __ ~.!..~ _ 1~.~.07m •• ~. --.~~---.-t--~~-~ 1 _ _ ...L0~ _ _ _ ~ 1--._ I---ii-- '•.0~8 NPT --:-:-::--- .--7~~---~~~1--~2·6·~~~9~ . I--~ ___ ,'~0~6__-t__~~__~ ~I------'---r------~ ~ -------+------~ .0 H" 112 2159 850 HL , VL ARRANGEMENT DlmlnslDn ~. HL & VL mm IIIC". 12.50 ref 317.5 ref 1748 688 ... 300 762 .' -300_ _ 78.2 215-.850 '00 138 4.50 max L --"- ~EE WICtlI "-. FF lonl stII. (4) V ,~ W I ~ 1 ~ 1 : II CC DD I II FF i. AEiO AI ......... wiler IRIlt 10"6---- --.-- 351 114.3 mex. 100 2.' 6.50 18S.1 2. 200 .72 50.8 1.50 38.1 37 .50 56 1.58 300 ma. SSm ... .50 1.00 'A·'8 NPT 64 18.2 •.. 12.7 14.2 39.8 7.emu. 14.0mBx. 12.7 26.4 1.00 .375 .7. 25.4 8.50 215.9 9.5 19.1 au HH w-e DlmenslDII A B C D E F G H J K L Inches mm 11.15 max. 283.2 max. 8.98 228.1 ,5.06 max. 128.5 max. 6.00 max. 127.0 max. 1.25 31.8 .62 15.7 .53 ref. 13.5 ref. .125 3.18 .44 11.10 1.312 33.32 3.00 ref. 76.2 ref. Ibs 4.6 approx. wI. klS 2.1 M-18 W-7 Dimension'H----,----,.------1 mm Inche. J wide. K 10111 $1ot(2) H 12.55 max. 318.8 max. 10.54 267.7 5.06 max. 128.5 max. 5.00 max. 127.0 max. 1.25 31.8 .62 15.7 .53 ref. 13.5 ref. .125 3.18 .44 11.10 1.312 33.32 3.00 ref. 76.20 ref. klS Ibs approx. WI. 2.36 5.19 M-19 Dimension W-9 , Inches mm 330.7 max. J wi• • llooK B 13.02 max. 10.95 Ilot(2) C 6.52 max. 165.2 max. D E F 6 5.38 max. 2.00 136.7 max. A 50.8 .88 .53 ref. H . 250 J .44 K 1.531 L 4.00 ref. 22.4 13.5 ref . 6.35 11.10 38.89 101.6 ref. lb. IPprox. WI. 278.1 : kiS 12.3 5.61 M-20 OIIIIenslon A B C D E Wide x K lone slot (2) W-6 inches 11.12 max. mm 282.4 max. 9.06 230.1 5.88 max. 5.00 max. 127.0 max. 149.4 max. 1.25 31.8 F .62 15.7 6 H J .53 ref. 13.46 reI. .125 3.18 11.10 33.32 .44 K 1.312 L M N 3.00 ref. 76.2 ref. 2.38 60.5 P R approx. WI. .375 1.00 IbS 4.91 9.53 25.4 klS 2.23 A61 W-7 DImension A I C D E F G H J K L M N 12.82 mIX. '10.68 P .375 R 1.00 " 9.63 25.4 lit. klS 4.09 W-9 I mm a 13.03 max. J 10.94 C D 8.56 max. 331.0 ma•. 277.9 217.4 max. 5.38 max. 136.7 max. E 2.00 .88 .63 ref. F G H J K L M N 4.00 ref. 3.00 1.00 .375 2.00 P approx. Ibs WI. 13.26 'pprn. WI. A62 W-8 W-7. Inches mm 6.00 max. 1.20 4.95m... 127.0 ma•. 30.5 Ibs 3.0 klS 8.02 M-24 M-23 ~38 50.8 22.4 13.48 ref. 8.36 11.10 38.89 101.6 ref. 76.2 26.4 9.53 50.8 .250 .44 1.531 R 1.00 78.2 ref. 60.5 Inches A 6.00mox. 1.92 ref. 2.38 .63 ..1. 31.86 16.7 13.46 ref. 3.18 11.10 33.32 9.00 Dlmenllon J dla. each Sink 127.0 max. .44 1.'12 3.00rol. 2.38 WI. A I C D E F 6 K J K 320.6 ma•. 288.2 149.4 max. 6.88 max. 6.00 max.. 1.26 .82 .53 rei. . 125 approx. DImension mm Inches 126.7 max. 127.0 max. 46.8 ref. 60.6 13.6 ref. 9.63 25.4 klS 1.38 Inches 5.50 mex. 1.70 4.95 max. 6.00 max. 1.92 ref. 2.38 ,53 ref. mm 139.7 max. 43.2 126.7 max. 127.0 ma•. 48.8 ref. 60.5 13.5 ref. .38 1.00 9.53 . 25.4 Ibs kgS 3.18 7.0 Ic-----D----~ ---. ~--i F +-+H++++-- t M-25 Dimension Inches mm A B 6.91 max. 1.70 150.1 max, 43.2 C 7.16 max. 181.9 max. D E F G H J K 5.38 max. 136.7 max. 'pprol. 1 W-9 WI. 2.41 ref. 3.00 .53 ref. 61.2 ref. 76.2 13.5 ref. 1.00 .38 2.00 25.40 9.63 50.8 IbS klS 4.22 9.25 M-26 Dimension R die. (2) hOles elch Sink W-A Inches mm A B 9.25 max. 235.0 max. C 9.31 max. 236.5 max. D 7.06 max. 179.3 max E 2.B2 F G 2.1B .42 ref. .31 H J 6.00 1.00 K l M N P R S 2.00 .pprox. WI. 554 716 107 ref 7.9 152.4 25.4 50.B 22° B2.6 22° 3.25 .50 1.00 375 .62 ref. 1'2.7 25.4 9.53 ·'5.7 ref. Ibs kgs 6.79 14.94 M-27 l1 ~~ !=f r- - Dba,nslon + R dll. (2) hOles nCh sink H T~~ K ~~~ A B C D E F 6 H J K l M N P R S IPprOl. WI. W-A inChes mm 11.50 max. I.B7 292.1 max. 47.5 9.31 max. 236.5 max. 7.06 max. 179.3 max. 71.6 10.7 ref. 7.9 2.82 .42 ref. .31 6.00 1.00 2.00 22° 3.25 .50 1.00 .376 .62 ref. Ibs 20.76 152.4 25.4 50.B 22° 82.6 12.7 25.4 9.53 15.7 ref. kgs 9.43 A63 101-28 ----- LillJ'T-~"'I0"''''¥r''''''' ----~1·312-"h".".,," F ~ j DllJJIDslon A-A Inches mm 1012 max 2S7.1 max. 1269 max 784 max. 322.3 max. 199.1 mall:. 12.7 ref, 70.6 50 ref 2.78 .578 approx. wt. cross sect. Irea per sink ~ .1 ' 14.88 Ibs ~44. k&o ...... 20.2 sq. em Sq. Inches ,..... 1829 . . . . ',8.0 ,I 101-29 m¥"'.te. " -••tsto .... ...11 ~.31H.h"." jF ~ ----- LillJ ----- Dimension A-A incites 2112 max. 1269 max 7.84 max 50 ret 278 .678 approx. wI. .1, A64 ; .1 cross sect. aria per sink ~91 lb. 0 sq. Inches 18.29 1111 5384 max. 322.3 max. 199.1 max. 12.7 ref. 70.S . 14.88 klS 41.3 sq. em 118.0 • One piece aluminum extrusion' EXTRUSION NO. A9. V2 SCALE • Cooling for 50 mm75mm disc devices • A9 available in 3 or 6 foot lengths c A • AA available in 7 foot lengths • Cut to length sections also available T 1 r~------B--------~~ EXTRUSION NO. AA. V2 SCALE I 1 A ~----------------B----------------~~~ • Fully rated and proven designs • Includes all necessary hardware for mounting, clamping • Machine finished mounting surfaces • Gate terminals provided with air cooled designs • Complete thermal characteristic curves provided • Clamps/sinks optimized for each device package C-F - Consult Factorv PRW6M010KT Single Reetifier R62 Ml PRW6M230KT Single Reetifer R62 M23 PTW6M010KT Single SCR T62 M1 PTW6M230KT Single SCr T62 M23 PAW6M030KT AC Switch R621T62 PDW6M030KT Doubler - Bridge Leg R62/T62 M3 PSW6M020KT PSW6M170KT Series - two Series - three R621T62 R621T62 M2 M17 PRW7M04OKT Single Rectifier R72 M4 PRW7M240KT PTW7M04OKT Single Reetifier R72 M24 Single - SCR T72 M4 PTW7M240KT Single -SCR T72 M24 PAW7M060KT AC Switch external connection required R72/T72 M6 PDVII'7M060KT Doubler - Bridge Leg R72/T72 M6 PSW7M050KT R721T72 M5 PSW7M180KT Series - two Series - three R72IT72 M18 PRW9M070KT PRW9M250KT Single Rectifier Single Reetifier R92 R92 M7 M25 PTW9M070KT Single SCR T92 M7 PTW9M250KT PAW9M090KT Single SCR T92 M25 AC Switch external Connection Required R92/T92 M9 PDW9M090KT Doubler - Bridge Leg R921T92 M9 PSW9M080KT Series - two R921T92 ~8 PSW9Ml90KT Series - three Single SCR AC Switch External Connection Required R92/T92 M19 TA2 M26 TA2 M27 Doubler - Bridge Leg TA2 M27 Series. Contact Factory TA2 PTWAM260KT PAWAM270KT PDWAM270KT PSWAM __ KT ASS R62 Ml0 Ml0 AC Switch T62 R62/T62 PRA6Ml00KT Single Rectifier PTA6Ml00KT PAA6Mll0KT Single SCR T-2 T-3 C-F T-4 Mll PDA6Ml10KT Doubler-Bridge Leg R62/T62 Mll PRA7M120Kl Single Rectifier R72 M12 PTA7M120KT Single SCR T72 M12 PAA7M130KT R721T72 PDA7M130KT ACSwitch Doubler-Bridge Leg M13 M13 PRA9Ml40KT Single Reetifier R92 M14 PTA9M140KT Single SCR T92 M14 PAA9M150KT AC Switch R921T92 M15 PDA9M150KT Doubler-Bridge Leg R921T92 M15 PRAAM280KT Single Reetifier PTAAM280KT Single SeR TA2 M28 PAAAM290KT AC Switch TA2 M29 PDAAM290KT Doubler-Bridge Leg TA2 M29 R72/T72 T-l M3 T-4 T-5 M28 CF T-1. T-2. W6 AND W7 SINKS I .070 0 I- ...c: .050 !i .040 ~ .030 \ 8 " '- 0.3: .5 " .020 _u .. °~..010 E .. o r-.. 6 234 6 .025 ~ Cii ., ...,." .020 0. til .015 - m I I I I I I I( I I I I Transient Thermal Impedance Vs. Time I-" ~ ~ ~~ " iii u E •. 010 ° iii .s= l- E E ::J ~ ~ ~ .005 . ~! :!; ~ ~!!! 0 .1 I-" ~ ~ ~ ~::: "" ~ 7 I III 1.0GPM ~ 1.2 GPM .1.5 GPM I III 3.0 GPM 5.0GPM ~ ~~ ~. 'j( J I""" c: .5 3: " II' / 3 4 5 6 2 o Water Flow Rate, Gallons Per Minute 7 Water Flow Rate, Gallons Per Minute ...c: '(" 0 8 6 4 2 0 Douj'e sile cotng In 0 ...... L 4 2 "- .......r-.. ~ , 1 6 Single Side Cooling Cii ;: ~ .~ -Pr~ssur~ Drop :"s. w!ter FI~W Ra~e-j- Zasw VS. Water Flo;" Rate \ .060 10 100 Time, t, seconds T-3. W9 SINK i ~ .05 .04 .040 ~ Cii • .03 5 .030 20 I I I I .1 ~. I ., 18 Pressure Drop Vs. Water Flow Rate ...c: ..g 16 Cii<;' 14 ~--\ '-Z!SW is, ~ater flOW ~at~ f-- ~ ~ iO al .§~ I\"Single Side Cooling .02 5 .02 0 \ ~ "' ....... ...... ..... g 0 ""'- isme~ 8 i&. 4 eli 2 :9 0 a: 8.=.. E i ~ .010 - E ~ ~~ ~...:. §~ .005 ..., ~~'" ~ ~ ~~ .~ ~ ~ ~ ./ ~ 1.,..000" o .e,: .015 ., ;:1 / T~a~si~~ I;Jermal I!ped!nc~ Js.' T!!! Cii ~ It' .. 2 345 6 7 8 9 Water Flow Rate· Gallons Per Minute 2345678 Water Flow Rate, Gallons Per Minute .020 j ~~ 6 o ~ 8c: g12 ~~10 .01 5 iii EOu•. 01 0 iii ~.oo 5 -Double Side Cooling ;:~ / ~.s= &. I- I-' ..... .... ...~ ~ ..... ~ ... GP~ 1.0 1.2GPM 1.5 GPM- I 3.0GPM ~ 10- 5.0GPM ~ 0 .1 10 100 Time, t, seconds A67 T-4, A6 AND A7 SINKS I E m j.....oo" .,/ ,/ / . _.50 r:: .45 iii .350 r:: .250 .200 .300 iii ~ --§- 888 I I ~ ~ ZeSA Vs. Air Flow Rate: ,I..' • • • • • • • • • N~~ra! C~m~e.~tio,n ~at!n~, ~Sf' '\. Single Side Cooled = .98°C/W Double Side Cooled = .49°C/W 1\ ~ .050 -' ~~ Double Side Cooling I I I I I 1.1 I 8. 8 8 8 §- 8 0 0 Steady State Thermal Resistance II III .A1111 JI / .40 r:: , i til .35 ~~ .. 30 _0 a; ,. o •. 25 (3. ~ .15 ~ 1::' .10 E m- .~ ~ .05 « Natura'l:.L Convection / EE ~ « .. 20 :i 0 1 - IS Air Flow Rate, Linear Feet Per Minute (3. Transient Thermal Impedance Vs. Time 8 crH- .....~Ing:e ~id~ 1' ... .100 : I I I I I I I ...... ~ .150 ~ Air Flow Rate, Linear Feet Per Minute g ~g . / ·iii 8 8-88 .400 :.;s I I -±t .500 .450 Pressure Drop VS. Air Flow Rate l..& .... IIIII - , 150LFM 300 LFM 500 LFM 1000 LFM 1500 LFM I 100 10 I I ILl ~ III1 I 1000 10,000 Time, t, seconds T-5, A9 SINK .5 Pre~sur~ Dro~ vs.IAir JIO"; tte. .4 / .3 J .2 ~ " . .1 e II> a.. V o ,,/ l/ ~ a:~ .06 E·- .04 -.. r:: m i;;~ (3.« Vi;. Air Flow Rate Double Side Cooled " .22°C/W at 275 W I I I I I I ..... Single Side Cooling '\ " .02 r-N..J. ... II I' I Double 0 Si~e Cooling 1-1-. 8 8 8 8 ~ 0 Air Flow Rate, Linear Feet Per Minute 0 Steady State Thermal Resistance ./ ./ , .04 .02 1 10 ~ 100 Time, t. seconds Col 8 I I 11111 !.A"T 1III II II Tral)sient Thermal Impedance Vs. Ti me .10 .08 I .06 If: Natural Convection Rating, ZeSA: 1\.,;". , .. Coo,,,, ....= 1\ II III .22 .20 .18 .16 .14 .12 A6S .18 .16 -I:E~ UlO .14 •° ~~ .12 ~~ .10 ZeSA m« air Flow Rate, Linear Feet Per Minute o 0 t- .~ .~ .08 - -- °S888§88 V .20 1000 Nateral Convection 275W I I I III I I I III _150 LFM300 LFM500LFMl000LFM 1500LFM 10,000 Features and Benefits • Fully compensated modules for high reliability • All terminations supplied for ease of installation • Eight standard modules for wide range of current capability • Vari-Iength channels for Package standardization • High density packaging for compact designs • Ratings for oil and air cooling • Internal wiring available for complex circuit configurations • Increased ratings by seriesing and/or paralleling individual channels • Expert application assistance • Special custom designs available on request Applications • RF generators • Radio and TV transmitters • Radar modulators • Industrial precipitators • Fusion and l1igh voltage research • Dielectric heating • Voltage multipliers • Electron Beam Welding Standard Available Circuit Configurations SH1 Half Wave (Single Leg) SD1 AC ~ Doubler (Two Legs) SB5 AC AC Single Phase SE5 AC AC AC Three Phase OOimensions in I!,!ches (Millimeters) L .190-32 UNFx.5 (No. 10 Hardware Included) SB5 1</> Bridge [Note: 205" Spacing Available on Request) *Obtain the Channel Length L From Table III Using the Channel Number (11th and 12th Digits of Product Description Number) 2.35 (59.69) SE5 3</> Bridge A69 Thesemodules, consisting of silicon diodes and compl!ns8ting ne~ork, provide the opii,muri1 iii steady'state and transient volfage division. The design of the stacks provides for cooling by free convection air, forced convection air, or oil. Design Modules 2AOl 3/\0:) 4/\OS I SA09 8A36 I 9B11 ** Volts/Cell Voltdl]( Co(/p Surge60Hl *Oil Only *OilOnly 6AI4 I 7AI2 I Volts/Cell Volt HJf" Codp Notes: • Mounting: Any position for oil cooling or forced convection; horizontal for free air convection. • Max, ambient operating temperature for free air convection iii based upon compensating network A70 maximum ratings. • JAN/military qualified Rectifiers are available on • Storage temperature: -55°C to 100°C. 9811 modules. ' • Surge ratings are par JEDEC and for non-repetitive , applications. For repetitive faults. consult Westinghouse. * * This Design is also available with 6A Lead MOllnt Rectifiers - See next section, Module Electrical Characteristics Current Output vs Ambient Temperature/Max. PRV CooirlHJ Conditions An FI()w i Tf flq} C J I , 2AOl I lA03 .65 .6 .5 .iI Natural Convection 40 50 60 150 LFM 40 50 60 .9 .83 .76 I I 4A05 I 5A09 I 6A14 I 7A12 I 8A36 I 9611 2.6 2.4 1.75 2.4 2.25 2.15 4.0 3.75 3.5 12.0 11.5 7.2 15.0 12.0 8.0 33.0 32.0 30.0 1.1 1.0 0.9 3.2 3.0 2.8 4.2 3.9 3.6 6.8 6.3 5.8 12.0 12.0 12.0 22.0 20.8 19.3 47.0 44.0 41.0 .65 .55 300 LFM 40 50 60 1.1 1.0 0.9 1.35 1.25 1.15 3.7 3.5 3.3 5.6 5.15 4.75 8.8 8.1 7.4 12.0 12.0 12.0 28.5 27.0 25.0 69.0 64.0 60.0 500 LFM 40 50 60 1.3 1.2 1.1 2.3 2.15 2.0 4.1 3.9 3.65 7.2 6.65 6.1 10.8 9.9 9.1 12.0 12.0 12.0 32.0 30.0 28.0 82.0 78.0 73.0 1000 LFM 40 60 60 1.5 1.5 1.35 2.7 2.6 2.3 4.5 4.2 3.8 8.8 8.3 7.8 14.0 13.0 12.0 12.0 12.0 12.0 36.5 35.0 33.0 108.0 101.0 96.0 Oil 40 60 85 1.5 1.5 1.1 3.0 3.0 1.8 5.0 5.0 3.6 10.3 8.4 5.8 19.5 15.7 11.0 12.0 12.0 12.0 36.5 35.0 28.0 108.0 96.0 80.0 Circuit SHl i Half Wave (Single Leg) SOl Doubler (Two Legs) CircUIt I 5Hl Module [ 501 585 5E5 I Cell 2AOl 3A03 4A05 5A09 6A14 7A12 8A36 9811 01 through 43 P (.7 Kv) • Check Table I below for maximum voltage allowed per leg vs. circuit configuration. • Check Table II A below for maximum number of modules allowed for each circuit configuration. Formula for Channel Number Channel Number=(Nx5)+C N = Total numberof modules in channel 5=Module spacing factor, Table II 8 C= Channel circuit factor, Table II C 5 (.8 Kv) Z (1.0 Kv) , Cooi,ng- I MaXlIllUnl : Module I 2AOl 2AOl 3A03 3A03 4A05 5A09 6A14 7A12 8A36 9811 Voltagp Oil or Air 16 Kv 11.2 Kv 16 Kv 11,2 Kv 8.0 Kv 4.0 Kv 4.0 Kv 1.0 Kv 1.0 Kv 1.0 Kv Oil Air Oil Air Air or Oil Air or Oil Air or Oil Air or Oil Air or Oil Air or Oil Example Required is a single phase bridge rated (with safety factor) at 15 KV per leg, I DC output of 12 amps at 40°C ambient natural convection, and non-repetitive single cycle surge rating of 140 amps. Circuit Conflquratlon , SHl I I 688 Kv 313.6 Kv 688 Kv 313.6 Kv 168 Kv 172 Kv 84 Kv 43 Kv 43 Kv 21 Kv r SOl 336 Kv 156.8 Kv 336 Kv 156.8 Kv 80 Kv 84 Kv, 40 Kv 21 Kv 21 Kv - 58::' . . . Select -[ 160 Kv 67.2 Kv 160 Kv 67.2 Kv 40 Kv 40,Kv 20 Kv 10 Kv 10 Kv - SE5 96 Kv 44.8 Kv 96 Kv 44.8 Kv 24 Kv 24 Kv 12 Kv 6 Kv 6 Kv - Table II-A, B, C , B A I Mi:::Ix Allowed TotLlI : I Modules vs CircUIt I Confl~urdtlon I Module : - CircUit 43 43 28 21 21 42 42 28 20 40 40 24 20 I Spat 36 36 24 18 I C I C S I C ChdfltHl Module CircUit Factor IrlCJ I SH1'I SOl I 56S I SEb 'I F d ct 0 r 2A01,3A03 (Oil Only) 5A09, 7A12 &.8A36 2A01, 3A03 (Air) 4A05,6A14 9811 I CircUIt ' -- ~ ,SHl i SOli SB5 1.0 1.0 1.5 2.0 2.0 0 0 0 0 1 1 1 1 1 I SE5 3 3 3 3 5 5 5 5 Table III Channel No 01 02 03 04 05 06 07 08 09 10 11 12 13 14 16 16 17 18 19 20 21 22 A72 I Lenqth Inches (mill) 4.25 5.00 5.75 6.50 7.25 8.00 8.75 9,60 10.25 11.00 11.75 12.50 13.25 14.00 14.76 15.50 16.26 17.00 17.75 18.50 19.25 20.00 Chdnnel Number 01 through 43 Table I-Maximum Stack Voltage per Leg vs. Circuit Configuration Module I Number of Modules pl::.r Leg M (.6 Kv) 108 127 146 165 184 203 222 241 260 279 298 318 337 356 375 394 413 432 461 470 489 508 II Chdnnel No 23 24 25 26 27 28, 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 I Length Inc hes (mill) 20.75 21.50 22.25 23.00 23.75 24.60 26.26 26.00 26.76 '27.60 28.25 29.00 29.75 30.60 31.26 32.00 32.75 33.60 34.25 35,00 36.75 527 546 565 584 603 622 641 660 679 698 717 737 756 776 794 813 832 851 870 889 908 Module for current and surge from information, Result 7A12, this number is inserted as the 4 through 7 digits in the product description number. Cell voltage letter code from information. "select Note, highest voltage available would give most compact deSign but may affect delivery at times; also, the higher voltage cells operate the snubber components and diodes closer to maximum ratings. Z (1.0 KV), this letter code is Result inserted as the\8th digit in the product description number. Number of modules required per leg by "'Obtain dividing required voltage per leg (with safety factor) by module voltage (number of cells per module times cell voltage) . 15 KV 1 Celi/ModuleX1 KV/Cell 15 modules 15 (9th and 10th digits of product description Result number). Circuit configuration available for your • Select (Trial I) requIrement; check -. Ta-tiles rand Ilfor'feasibility. This case, a SB5 7 A 1215, would not be feasible because 60 modules exceed the maximum channel length. Select By dividing assembly into next standard (Trial II) circuit configuration, a doubler design (S01 can be considered as indicated in Trial 1. SD1 works (1st, 2nd, and 3rd digit of the Result product description number). Two assemblies are now required for a complete single phase bridge, Note: This assembly could have been reduced to single leg components by using the SH1 circuit (four assemblies would then be required). The added cost for this is minimal and may be desired should parts or spares standardization be practical. Calculate Channel number using total number of modules per stack channel (N) and multiplying by module spacing factor (5) per Table II B, then adding the channel circuit factor (C) per Table II C. N=15 modules/legX2legs = 30 modules. Channel number= (N XS)+C =(30X1)+1=31. 31 (11 th and 12th digits of product descripResult tion number). , Answer S 017 A 12Z1531 (Two doubler assemblies will be required for this single phase bridge example). l1li Product Description Number 5 Circuit 0 1 112 1,3 7 4 Module A 1 I 151 61 2 7 Cell Z 8 Module! Leg 1 5 9 I 10 Channel Number 3 1 11112 Electrical Characteristics Average Power Dissipation per Module 60 55 1. and 3. ~ 50 .. 45 '8 40 :; ::! Ii c. .. = , /I ~ , ~ ./' )1' ,/ I' ./ 35 // ~ 30 V ./ C .2 10 c. 25 :~ i ~V 10 o V / 15 0.. 5 V / 20 Q A / ..... V 2AOl / ./ V o 3 / 90 60 ~ 50 C 40 '= 30 ~ 0 20 C Ii 0.. /" / ..,.. V / V 10 0 ./ ./V / 0 [ / , ,,/ ".,. V 6A14 V ~A09 / --- i...- - 5 V~A1J & ~A1J / 70 jg 4 / 80 8. V V 1. and 3. ::! V ~ /'V 100 '8" I' 4A05 ." 2 Forward Current, Average Amperes per Module .!! ~V 3A03 ~ 7A12 o 2 .3 4 5 6 7 8 9 10 15 20 Forward Current. Average Amperes per Module .!! '8" 140 8. 120 ::! I a. 100 g 80 .~ 60 [ C 1 40 r:JIII" ....- 20 o - 8A36 o 20 30 ~ -- 40 / .,,::: roo- 50 60 ....... ~ ...- 70 :::: 80 ..,.. ~ ~ "i:'" 90 - ..,..... ~ ~ ......... 98 1 100 110 Forward Current, Average Amperes per Module A73 I BA10 CA10 Design Modules These modules. consisting of silicon diodes and compensating network. provide the optimum in steady state and transient voltage division. The design of the stacks provides for cooling by free convection air. forced convection air. or oil. 6.0 Amp Lead Mount 6.0 Amp Lead Mount Ordering Information See previous section. High Voltage Stack Channel Design for ordering details in conjunction with tables below. CIfCUlt SHl I Module I BAlD Cell M(.6Kv) SDl CA10 SB5 5(.8Kv) SE5 I Module MaxlI1ll1ln Module Voltage I Cooling Od or A" Channel Number 01 through 43 • Check Table 1 below for maximum voltage allowd per leg vs. circuit configuration. Formula for Channel Number Channel Number = (NxS)+C • Check Table II A below for maximum number of modules allowed for each circuit configuration. N=Total number of modules in channel S=Module spacing factor. Table II B C=Channel circuit factor. Table II C Table I - Maximum Stack Voltage per Leg vs. Circuit Configuration I I Number of Modules per Leg 01 through 21 ~ BAlD 6.4KV Oil or Air 134KV 64KV 32KV 19KV CA10 4.8KV Oil or Air l00KV 48KV 24KV 14KV Table II - A. B. C B A Module SHl SDl SB5 SE5 BAlD or CA10 A74 I C C Channel ClfClllt Factor S Module Spacing 21 20 2q 18 Factor 2.0 CircUit SHl SDl SB5 SE5 0 1 3 5 Coolmg Conditions Air Flow Temp "C BA 10 CA 10 Features and Benefits: • Fully Compensated Modules For High Reliability . • Vari-l...ength Design For Circuit and . Mounting Flexibility • High Density Packaging For Compact Designs • Ratings For Air and Oil Cooling • Expert Applications Assistance • Special Designs Available on Request • High Repetitive Surge Ratings • Compression Bonded Encapsulation For Thermal Cycling Capability , • Availability, Present High Volume Device Production Applications: • • • • Fusion and High Voltage Research. High Voltage Free-Wheeling Rectifiers' Laser Supply Charging Diodes . Magnetic Metal Forming Supplies Circuits DIMENSION IN INCHES (MILLIMETERS) HB1 1" HC1 _t 110 3.00 (31.10) (76.20) ""I 1__ HD1 HH1 I - - - - - - - ' - - - l ' --~_---_I u,1IIIII HN1 -1 IT7.L 8.50 mix. 3.18 (88.55) . . 112-11 ... A76 ~.j ~i~} 118r) IIIX. (190.6) 1 Design Modules Type 76A,B,C,D Type B6,A,B,C,D Heatsink Plate Only Added Heatsink Module Cell Types Average Power Dissipation Per Module (2400 Volts applied per module) 4oowr-----------r---------~~--------~----------~;_--------_,--------;_~ II> t: co 300w 3:: c0 ~ ... 'iii II> 200w i5 a; it 0 a. 100w O,~O----------2~5----------5~0----------~7~5----------10~O----------1~2-5---------1~50 Forward Current, Average Amperes A77 50 60, 40 50 60 40 50 60 40 50 60 40 50 60 40 60 85 Natural Convection 150 LFM 300 LFM 500 LFM 1000 LFM Oil '~"VoIta;Q'e :;,' , r, '~in9.ht ~fJI' PRV, .(Air,orOit) Convection 40 50 60 40 150LFM 50 Natural 60 40 50 60 40 50 60 40 50 60 40 60 85 300 LFM 500 LFM 1000 LFM Oil Muimum Voltage Rating P4!, Module PRY (AIr or 011) 23 20 19 33 30 24 111 92 64 35 32 29 42 39 35 47 42 38 50 46 41 121 100 70 SKY , BKV 28 26 23 32 27 23 13 8 47 44 39 56 52 47 1~ 8 -54 4~ 46 8' 6 3 29 24 20 44 37 31 9 7 4 46 41 36' ,12, 8 5 ,63 58 40 62 56 50 80 76 69 93 88 82 114 106 99 146 128 98 62 58 54 68 64 60 73 69 64 134 110 76 58 54 49 130 108 82 138 118 90 51a! ,. 4:11t(V SKV, ,SKY,' 28 24 14 36 26 16 70 64 58 94 88 78 112 104 94 124 114 106 134 124 116 36 26 16 108 98 92 124 116 108 126 128 120 16 12 6 58 48 40 88 74 62 106 88 76 116 108 98 260 216 164 18 14 8 92 82 62 57 53 67 62 58 131 108 76 53 72 44 66 60 38 86 80 74 12 Ii 5 70 Circu;t 40 89 83 71 103 98 91 Half Wave (Single Leg) HOI 126 120 116 150 131 100 )AC ~ 24 22 12 43 40 38 56 52 46 64 34 46 66 60 48 222 184 128 B4 78 70 94 84 76 100 92 82 242 200 140 262 216 152 146 138 128 268 220 152 72 124 112 100 144 132 120 172 160 148 276 236 180 Doubler (Two Legs) .ltv 4.6tQ( 24 16 10 126 116 80 160 150 138 186 176 164 24 16 10 140 120 80 178 166 142 228 212 198 206 196 182 252 240 232 292 256 196 300 262 200 .. () ! i ! HHI 60 Circuit 0 HBI ~r OAC t ( ~ ( AC , Single Phase External Wiring Required) , 150 LFM 300 LFM 500 LFM 1000 LFM Oil ~muni~ , Rating Per Modi!Ie l"fW A78 1 7 (Open Negative - Natural ConvectIon (AA«Oil) 11 6 ,1IKV 1IKY 5KV 4.6KV 40 50 60 40 50 60 40 50 60 40 50 60 36 33 18 69 60 57 84 78 69 54 39 24 141 132 117 54 39 24 162 147 138 96 81 69 42 36 21 105 96 87 126 117 105 141 126 114 168 156 141 186 171 159 186 1711 162 204 192 180 60 132 111 93 159 132 116 40 50 60 40 60 85 99 90 150 138 72 123 201 186 174 219 207 192 174 162 147 333 276 192 363 300 210 392 324 228 402 33p 228 390 324 246 258 240 222 414 '354 270 6KV IIKY ·&KV, 5KV SKY ~, '" 1IKV SKV SKY 4.6KV 24 18 27 36 24 15 189 174 120 36 24 15 210 180 120 267 249 213 9 87 72 150 216 198 180 240 225 207 279 264 246 309 294 273 342 318 297 378 360 348 438 384 294 450 393 300 SKY ".1IKV .- .' 4.6KV 21 12 138 123 108 186 168 Circuit ~ --------3 <I> Bridge THREE HOI REQUIRED OR SIX HHI REQUIRED Ordering Information HCl HDI B HHI 6500A 28 Factory 30 Assigned Dimension HBI 9.80 HCl 6.60 HDl 6.60 HHI 5.00 HNl 6.60 Tolerance i..080 Plus Module Code Dimension Tolerance 01 2.09 02 4.19 03 6.28 04 8.38 05 10.47 +.013 06 12.56 -.003 07 14.66 Per 08, 16.75 Module 09 18.85 10 20.94 11 23.03 12 25.13 ... .. .. ... EXAMPLE: Frame Code Thru 22 23 25 HNI Table II Dimension In Inches Thru 12 5500A 6000A Required is a single phase bridge rated (with safety factor) at 60Kv per leg, IDe output 'of 250 amps and a non-repetitive 3 cycle surge rating of 4500 amps (consult @' for repetitive surge applications)., SELECT Module for current and surge from module electrical characteristics tables. RESULT B6C Module B6C, This number will be inserted as the 4 through 6 digits in product description number. SELECT Call voltage code from design module cell types. RESULT 25 (2.5KV), This number code is inserted as 7 through 8 digits. OBTAIN Number of modules required per leg by dividing required voltage per leg (with safety factor) by module voltage (2 times cell voltage).' 60KV (Total 5KV (Per Module) = 12 RESULT 12 Modules, This number code is inserted as 9 through 10 digits. SELECT Circuit configuration available for your requirement by checking maximum allowed modules from Table II. RESULT HH 1 configuration is the only available design .. Four assetnblies are ;equired, HHl is the 1 through 3 digits. OBTAIN High voltage stack length from Table II frame adder and module dimension adder. .RESULT (HH1) 5.00"+ .080" plus (12 modules) 25.13 = 30 13 +.093 . -.083 STEP I 4 I 1 I 2 I 3 1 5 (make copy for each use) Name________________________________________________________ Company_______________________________________ Phone________________________________________--JX~__________~Address __________________~-------------------Job Function _____________________________Sectipn______________ City___________________________ State'___________ Zip _______ Bldg. Please complete a copy of this form for each different application. Forward this form to Westinghouse Electric Corporatio'n, Semiconductor Division, Attention: Sales Department, Youngwood, Pa. 15697 for complete quotation. If you need faster service, please call (412) 925-7272 for a quote. Circuit Cooling 0 0 0 0 0 0 0 Application 3"', 12 Pulse Bridge 0 Transmitter 0 Clipper Charger De-Queing Doubler I </> Bridge 3 q, Bridge 0 Air o Oil Type, ______________ Mfg. _________amb. temp. °C_ _ __ o o Other, explain o R F Generator o Precipitator o Accelerator o Hi-Voltage Test Equipment o Voltage Multiplier o Other Natural Convection, Altitude ______________ ft., ambo temp. °C._______ Forced Air, LFM , ambo temp. °C ________ Current Max. Output Current, IDe 0 RMS 0 Average Waveform _____________________________ Duty Cycle, Time On ____________________Time Off___________________ Every_____________________________ Cycling (Number of cycles required this application) ____________________________________________________________ Fau It Surge 1'" ______________ Ti me,_______________ ms 3'" 10'" Time ms Time ms .Percent Impedance______________________ Transformer KVA Number of faults expected/lifetime,________________ Note: JEDEC surge is a non-repetitive value. Westinghouse will advise device for requirement. Voltage Input Voltage Supply _______________ KV ACO DCO Safety Factor Required: Voltage_____________, Current______________ Circuit Protection: 0 0 Fuse Circuit Breaker 0 Other, explain Distance from ground plane (stacks) mounted from: Bottom Top,_____________________ Sides,_________________ Other Considerations._______________________________________________________________________________________ Problems experienced in the pastL_________________________________________________________________________________ o o o New Design Conversion Replacement Number /System _______________________________ MFG/Type No. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ Budgetary cost for this system ____________________________________ Number of systems required _________________________ Timetable Long ra nge potentia 1_________________________________ Westinghouse Assembly Recommended ____________________________________________________.____________________ ABO Negotiation Number_____________________ Recommended by _ _ _ _-,-_ _ _ _ _ _ _ _ Date _ _ _ _ _ _ _ _ _ _ ____ INTRODUCTION Westinghouse introduced the first silicon rectifier in 1952. Today, Westinghouse offers a complete line of General Purpose and Fast Recovery rectifiers. AII~ rectifier elements use N-type silicon providing soft recovery characteristics which minimize rectifier spike voltages and reduce transient protection requirements. Westinghouse uses an exclusive irradiation process to manufacture fast recovery rectifiers. This process provides precise control for better availability, soft recovery characteristics for less circuit ringing and reduced transient protection, high voltage capabilities up to 3200 volts with low reverse leakage currents, and fast recoverytimes-200 nanoseconds for low current (6-30 ampere) rectifiers and 1.5 to 5.0 microseconds for high current (80-1400 ampere) rectifiers. RECTIFIER PRODUCT INDEX Page 1 Nl183,R-90,R lNl183A,AR-90A,AR lNl191, R-98, R lNl191A, AR-98A, AR lNl199, R-1206, R lN1199A,AR-1206A,AR 1 N 1199B, BR-1206B, BR lN1341, R-48, R lN1341A AR-48A AR 1 N 1341 B, BR~48B, BR lN1612, R-16, R 1 N2154, R-60, R R15 R15 R15 R15 R13 R13 R13 R13 R13 R13 R13 R15 1N3208, R-14, R 1 N3260, R-76, R lN3288A AR-97A, AR 1 N3615, R-24, R 1 N3670, R-73, R 1 N3670A AR-73A AR 1 N3765, R-68, R 1 N3879, R-83, R 1 N3889, R-93, R 1 N3899, R-3903, R 1N3909, R-13, R 1N3987, R-90, R R15 R27 R19 R13 R13 R13 R15 R55 R55 R57 R57 R13 1N4001-07 1 N4044, R-56, R 1 N4458, R-59, R 1 N4587, R-96, R 1 N4816-22 R9 R29 R13 R21 R9 lN5052-54 1N5391-99 lN5400-08 R9 R9 R9 Type Number Page R5DO R5Dl R9GO R9G2 R23 R23 R51 R75 R302 R303 R310 R311 R340 R55 R55 R13 R13 R9 R402 R403 R404 R405 R410 R411 R57 R57 R17 R17 R15 R15 R500 R501 R502 R503 R510 R511 R23 R23 R59 R59 R23 R23 R600 R60l R602 R603 R610 R61l R620 R622 R31 R3l R63 R63 R31 R31 R39 R67 R700 R70l R720 R722 R35 R35 R43 R71 R920 R47 R1 --~-'--- ------ -"---- • _________ ~ Type Number _ _ -==",-I_", - ..... ----""----~="- ".....-;;=; The axial lead mount package is the most popular 'for one to six ampere general purpose rectifier (diode) applications. The axial lead mount design features silver plated copper leads offering excellent heat conduction, solderability, and corrosion resistance. Several axial lead mount types are available with a chamfered body on the cathode end to insure proper polarity identification and correct assembly. Tape and reeling capability is available for those customers using automatir. insertion equipment. All stud mount rectifiers are available in both standard and reverse polarity. Color-coded glass or ceramic seals on all stud mount rectifiers make polarity identification easy and minimize the possibility of installing a device of the wrong polarity. Stud mount rectifiers (80 amperes and above) feature compression bonded encapsulation (CBE). This CBE package encapsulation technique reduces thermal fatigue inherent in conventional solder construction devices by eliminating solder joints. @disc mount rectifiers offer more amperes per dollar than any other package type. These devices feature doublesided cooling and have reversible mounting polarity. These all-copper non-magnetic packages are ideal in high frequency applications where magnetic noise can be a problem. In addition, the disc glazed ceramic seals are convoluted for long creepage paths which are especially important in applications where dirt, humidity and other contaminants can accumulate and cause arc-over. Milita,y rectifiers are available in both polarities in the popular stud mount 00-8 and 00-9 packages: JAN IN328995 series and JAN IN3164-74 series. Complete test facilities are available for matching devices' for series and/or parallel operation,' for special test parameter selection, and for full-scale high reliability requirements.@offers a Lifetime Guaramee on all rectifiers bearing this symbol +. Specify Westing" house Rectifiers. R2 GENERAL PURPOSE RECTIFIERS 1 - 150 Amperes 2000 140CI~------------------------------------------------~-r~~~r ~ 120C)~------------------------------------------------TlrT-r; Z ~a: w ~ !:i ~ 400 200 50~~~~~~~~~-e~~~~~~~~~~~~~~-c~~-c~~~~ 1 1.5 1.5 3 5 6 6 12 15 16 18 22 25 35 40 60 70 100 100 150 150 AVERAGE CURRENT RATING ~AXIAL LEAD MOUNT DSTUDMOUNT GENERAL PURPOSE RECTIFIERS 160 - 2200 A mperes 4000 3000 ~ 2000 ' - - - ~a: 1600 z w~ ·C !:i g r-r- "t 800 400 200 - "t a: a: CD CD ... .CD a: "0... ".-0 0 a: a: CD "... CD a: CD 10 N CD r- r- 10 ... .,...cD "0 "0 '" 0 a: a: .; '" "00 8" § C') 50 0 r- ..!-~ -.r- ... CD 10 1200 ~ 1000 600 r- CD "...0 CD a: "8 CD r- III- - r- I - ~ I~ r- I r II I r II C') q-, .11) a: a: ...,...0 ...,..., ",...00 8",... " ,... I a: - q ...,...0 <=! r- 0 0 0 ~ ~ a: a: a: ! a: a: a: 160 200250275 300 300300400 450 500 5506009001100120013001600180020002200 ! -- AVERAGE CURRENT RATING DSTUD MOUNT ~DISC R3 FAST RECOVERY RECTIFIERS 6 - 1400 Ampere. 3000 2500 2400 2000 C) z 1800 a: ~ 1200 w C) CC !:i g 1000 800 800 400 200 50 8 12 o 20 30 80 100 200 2150 360 400 600 800 AVERAGE CURRENT RATING STUD MOUNT ~DISC Note: Reverse recovery times shown represent fastest currently available at given voltage rating. R4 800 900 GENERAL PURPOSE RECTIFIERS 1 - 15 Amperes JEDEC/, TYPE AVERAGE CURRENT ONE CYCLE SURGE VOLTAGE 50 100 150 200 IN4816-22 IN6062-54 IN6400-08 1.5 50 3 200 6 150 IN4816 IN4817 IN5400 IN5401 IN4818 IN4819 IN4820 IN4B21 IN4822 IN5052 IN5053 IN5402 IN5403 IN 5404 IN5405 IN5406 IN1341.A. IN1348.A.8 IN3987-90 IN5054 IN5408 IN1341,A,B IN1342.A.8 IN1343.A.B IN1344.A.B IN1345.A.8 IN1346.A.B IN1347,A,B IN 1348.A.B IN3987 IN39B8 IN3989 IN3990 PACKAGE TYPE 00-27 "'00-27 00-4 PAGE NUMBER R9 300 400 500 600 700 800 900 1000 IN5407 R9 • 00-41 , > 00-27 _ I ,, , R13 "For JEDEC Reverse Polarity Units - add suffix "R"_ 00-" GENERAL PURPOSE RECTIFIERS 16 - 70 Amperes */*. JEDEC/TYPE AVERAGE CURRENT ONE CYCLE SURGE VOLTAGE 50 100 150 200 300 400 500 600 18 220 IN1191 IN1192 IN1193 INl194 IN1195 IN1196 IN1197 IN1198 700 800 900 1000 1200 25 IN 1183A-90A R410-40 R404-70 40 70 1200 ~00-27 400 800 IN2154 IN2155 INl183A INl184A IN1185A INl186A IN1187A INl188A INl189A IN1190A R4040270 R4040370 R4040470 R4040570 R4040670 R4100840 R4040870 R4101040 R4101240 R4041 070 . R4041270 IN2156 IN2157 IN2158 IN2159 IN2160 R4040070 R4040170 PACKAGE TYPE 00-5 00-5 PAGE NUMBER R1S R17 "For JEDEC Reverse Polarity Units - add suffix "R" ""For Reve... Polarity Unit. R410-R41' R404-R405 , iR34 +00-_ .i 00-5 (R4041'r R5 GENERAL PURPOSE RECTIFIERS. 100 - 300 Amperes 150 -3000 R600• ...20 R810-...20 200 5500 IN3288A IN4587 RSloo120. IN3289A IN4588 RSloo220 IN3290A IN4589 R61oo320 IN3291A IN32928 IN3293A IN4590 IN4591 IN4592 IN3294A IN4593 IN3295A IN3296A IN3297A IN4594 IN4595 IN4596 R6100420 RS100520 R61ooS20 R61oo720 RS100820 R6100920 R6101020 R6001220 R6oo1420 R6oo1620 R6oo2020 R6oo2520 R6oo3020 IN4050 IN4051 IN4062 IN4053 IN4054 IN4055 IN4056 PACKAGE TYPE 00-8 00-8 00-9 00-9 PAGE NUMBER R19 R21 R31' R29 4VER4GE CURRENT ONE CYCLE SURGE r VOLT4GE 00-8 .. , " ~a II 00-9 i . ~'~ ~ R70 ,, 50 100 150 200 250 300 350 400 500 600 700 800 900 1000 1200 1400 1600 2000 2500 3000 'For JEOEC Reverse Polarity Unit. - add suffix "R", "For Reverse Polarity Units - R600 - RSOl R6l0- RSll R600-R60l R6l0-R6l1 GENERAL PURPOSE RECTIFIERS 300 - 600 Amperes 1',-. f' aII R700• ..o4 R700_..oS 450 8500 550 10000 R7000103 R7000203 R7000303 R7000403 R7000503 R7000603 R7000803 R7oo1003 R7oo1203 R7oo1403 R7oo1603 R7oo2oo3 R7oo2203 R7oo2503 R7oo2803 R7oo3003 R7003503 R7004003 R7000104 R7ooo204 R7000304 R7000404 R7ooo604 R7000604 R7ooo804 R7oo1004 R7oo1204 R7oo1404 R7oo1604 R7oo2004 R7000105 R7000205 R7000305 R7000405 R7ooo505 R7ooo605 R7ooo806 R7oo1oo5 R7oo1205 R70 R70 R70 R35 R35 TYPE 300 6000 VOLTAGE R62 ,~ ~ 100 200 300 400 500 600 R72 ~ ~ . ~ " 800 1000 1200 1400 1600 2000 2200 2600 2800 3000 3500 4000 PACKAGE TYPE •• For Reverse R6 IN4044-66 IN3288A97A 100 2300 JEDEC/TVPE R70l 275 5000 IN4044 IN4045 IN4046 IN4047 IN4048 IN4049 GENERAL PURPOSE RECTIFIERS 900 - 2200 Amperes R920 __11 R9GO__13 R9GO_...J8 R9GO __ 22 AVERAGE CURRENT ONE CYCLE SURGE 1100 16,200 1300 16,200 1800 21,500 2200 30,000 VOLTAGE 100 200 300 400 500 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 R9200111 R9200211 R9200311 R9200411 R9200511 R92oo611 R9200811 R9201011 R9201211 R9201411 R9201611 R92018;1 R9202011 R9202211 R9202411 R9202611 R9202811 R9203011 R9GOOl13 R9G00213 R9G00313 R9G00413 R9G00513 R9G00613 R9G00813 R9G01013 R9G01213 R9G01413 R9G01613 R9G01813 R9G02013 R9G02213 R9G02413 R9G02613 R9G02813 R9G03013 R9GOOl18 R9G00218 R9G00318 R9G00418 R9G00518 R9G00618 R9G00818 R9G01018 R9G01218 R9G01418 R9G01618 R9G01818 R9G02018 R9GOO122 R9G00222 R9G00322 R9G00422 R9G00522 R9G00622 R9G00822 R9G01022 R9G01222 PACKAGE TYPE R92 R9G R9G R9G PAGE NUM8ER R47 R51 R51 R51 TYPE tS 'R72 ~' R9G "i~.fN R7 t 00-4 + FAST RECOVERY RECTIFIERS 6 - 250 Amperes * /** IN3889-93 R302.._12 */** 12 150 .. R502 __10 ~61l2,-;,25 30 300 100 2500 250 '5000 IN3889 IN3890 IN3891 IN3892 IN3893 R3020512 R3020612 IN3909 IN3910 IN3911 IN3912 IN3913 R4020530 R4020630 R5020010 R5020110 R5020210 R5020310 R5020410 R5020510 R5020610 R5020610 R5021010 R5021210 R8020025 R6020125 R$020225 ' R6020325 R6020425 R6020525 R8020625 R6020625 R6021025 R6021225 R602i425 .R!I021625 REVERSE RECOVERY TIME, 200 n. 200 ns 1,5 )Js '-5-2}'s PACKAGE TYPE 00-4 00-5 00-8 00-9 PAGE NUM8ER R55 RS7 JEOECI'TYPE 00-5 AVERAGE CURRENT ONE CYCLE SURGE 50 VOLTAGE 100 200 300 400 500 600 800 1000 1200 1400 1600 00-8 00-9 R62 R622...40 R722_.DS R9G2 __09 R9G2 __14 AVERAGE CURRENT ONE CYCLE SURGE 400 5000 600 9500 900 12000 1400 25000 VOLTAGE 100' 200 300 R6220140 R6220240 R6220340 R6220440. R6220540 R6220640 R6220640 R6221 040 R6221240 R6221440 R6221640 R7220106 R7220206 R7220306 R7220406 R'7220506 R7220606 R7220806 R7221 006 R7221206 R7221606 R7221606 R9G20109 R9G20209 R9G20309 R9G20409 R9G20509 R9G20609 R9G20809 R9G21009 R9G21209 R9G21409 R9G21609 R9G22009 R9G22409 R9G22509 R9G22609 R9G23009 R9G23209 R9G20114 R9G20214 R9G20314 R9G20414 R9G20514 R9G20614 R9G20814 R9G21014 R9G21214 2-31's 3-5jJs 31's R72 R9G R9G R71 R75 R75 TYPE 4()(j R9G 500 600 800 1000 ,1200 t400 1600 2000 2400 2500 2600 3000 3200 REVERSE RECOVERY TIME PACKAGE TYPE PAGE NUMBER R8 R63 R302-R303 R 402'--- R 403 R602-R503 RS02-RS03 FAST RECOVERY RECTIFIERS 350 - 1400 Amperes S R72 R59 "For Reverse Polarity Units - 'For JEDEC R~rsa Polarity Units add suffix .. R" ,'L5-2I's R62 R67 , .I I / l,1 co' j ;;-' I "" '6' ~ // ""i Symbol </>b .,.0 G L Symbol .;b .;0 G L Conforms to 00-41 1N4001 Series Millimeters Inches Min. Max. Min. Max. .028 .034 .712 .863 2.04 2.71 .080 .107 .160 .205 4.07 5.20 1.10 28.0 Conforms to 00-15 1N5391 Series Inches Millimeters Min. Max. Min. Max. .027 .035 .686 .889 .104 .140 2.65 3.55 .230 .300 5.85 7.62 1.00 25.40 - Conforms tolV 00-27 1N5400 Series Millimeters Inches Min. Max. Min. Max. .046 .056 .712 .914 4.83 5.33 .190 .210 .285 .375 7.24 9.52 1.125 28.58 - R34 Outline R340 Inches Min. Max. .046 .056 .360 .390 .250 .350 1.250 ~ - Millimeters Min. Max. .712 .914 9.14 9.91 6.35 8.89 31.75 - Conforms to 00-27 1N4816 & 1N5052 Series Inches Millimeters Min. Max. Min. Max. .712 .914 .028 .036 .190 .210 4.83 5.33 .285 .375 7.24 9.52 1.125 28.58 Features: • All diffused design • Low forward voltage drops • Standard JEDEC outlines • Lifetime Guarantee Applications: • Phase control • Motor control • Power supplies • Light dimmers R! Ordering Information VRRM (V) Forward Currant, IF(av) V 1 Amp 1.5 Amp 1.6 Amp 3 Amp lAmp 50 100 200 300 400 500 600 700 800 900 1000 1N4001 1N4002 1N4003 1N6391 1N5392 1N6393 1N6394 1N6395 1N6396 lN6397 1N5400 1N5401 1N5402 1N6403 1N6404 1N'6406 1N6406 R3400006 R3400106 R3400206 R3400306 R3400406 R34OO506 R3400606 1N4006 1N4816 1N4817 1N4818 1 N4819 1N4820 1N4821 1N4822 1N5062 1N6063 1N5398 1N6407 R3400806 1N4007 1N6064 1N6399 1N6408 R3401oo6 1N4004 1N4006 Ratings and Characteristics All Types Symbol Repetitive peak reverse voltage. V •••••••••••• Non-repetitive transient peak reverse voltage. <D. VRRM VRSM 100 200 200 300 300 400 400 525 600 650 600 BOO 700 900 1 N4001-07 1 N4B16 thru 1 N5399 1N6400-0B R340 Saries IF(av) IF(av) 1.0 .. 1.5 ·See Graph A· 3.0 6.0 IFSM 30 3.5 Graph C 50 10 Graph 0 200 16,5 Graph E 400 Symbol Max forward current. amperes. <!) •••••••••••• Max current ratings. amperes. <!) •••••••••••• Max % cycle (60 Hz) peak surge current (under load). amperes .................. . Max 1'1 (t<B ms) amps2-second; ••••••.••••• Max forward voltage drop. peak volts ••••.••• Max peak reverse current at rated VRRM. "a TA= 25·C .•••••••••••••••••••••••• TA=150·C ••••••••••••••••••••••••• Max operating ambient and storage temp .••••• 50 100 1'1 VFM IRRM IRRM TA & Tstg 10 300 800 1000 1000 1200 650 Graph F 50 10 10 500 500 300 TA=-65°C to + 175·~Tstg=-65· to +175°C .. 900 1100 • <D Non-recurrent, B.3 millisecond maximum duration % sine wave pulse. TJ=O· to 175·C. Graph A-Maximum aliowab,le forward current versus ambient temperature for resistive load (derate 20% for capacitive load). Graph B-Maximum allowable peak current versus surge time statting from maximum rated load. 400 6 360 5 320 1\ \ 280 , ~ 4 240 3 ... I' «f' ~ « 2 :. l.. i ~ C ~ :::J u II I!' :::J :::J U en 0 0 R10 ...... II ~ u.. _ ~ !!. 'EIII ~ 0 ~ 180 Q. E 200 e II) 40 80 Ambient Temperature, TA, ·C 120 160 200 120 80 40 k r---- R340 "" , , ~ ........ ~ 1N4816-22 1N4816-64 1N5391-99 - 2 Cycles ~l 80 Hz ...... 1N6400-06 ~ 1"0..... 1N4OO1-07 / / of 5 "' r-- ~ I I 10 20 60 100 Graph C-Maximum forward voltage drop of a single diode Graph D-Maximum forward voltage drop of a single diode at 26°C and 160°C junction temperatura. . at 26°C and 160°C junction temperature. 60 100r------r------~----~------~--~--T_--~~ 50 70~----~----·_4------4_----~~--~~----_4 40 ~ ::;;.-30 50r_-----4--------r------4---~~~~----r_----~ V' 25°C 20 - H400 J 10 8 6 i < ~ 30~----~----_4------~~~_4------4_----_4 20r_-----+------+-10~----~----_4--~--4_----_4------4_----_4 I 5 gJ f Seri s 4 3 I 7~----~----_4~~--4_----_4------4_----_4 'fI 5r_-----4-------+j.-----4-------+--------r_----~ I 3~--4_--~----~--4---_+--__4 2 It-- 25 ~ ~ 2~-----t----_Ifr------4_------+_------r_----~ I- 15 °C ~ 1.0 ~ en IL j t;: .='" 1ii :::I U .6 .5 .4 .3 .2 11 .7r_-----4--~~-r------;-------+--- j .5 ~ .3r_-----4~_+---r------;-------+-------r_----~ il c E .1 .2 .4 ~C .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8- .6 .2~-----t~~--~------4_------+_------r_----~ .1~ 30 20 10 ~ 7 /I 5 150°C ~ E ~~~ .5 __ ~ ______ 1.0 ~ ______L -______L __ _ _ _ 1.5 2.0 2.5 ~ 3.0 Maximum Instantaneous Forward Drop, V FM , Volts ~ V ,..,. Graph F-Maximum forward voltage drop of a single diode at 26°C and 150°C junction temperature. 200 IN 816-22 IN 052-54 iN! i::lQ1_QQ eries ,.ff VV ,V- 3 ~ 2 i R340 Series 25 r. I ~ 8 /' ~ ____ 0 Maximum Instantaneous Forward Drop, VFM, Volts Graph E~Maximum forward voltage drop of a single diode at 2&oC and 160°C junction temperatures. 50 l Seri s ~ ~ .8 u j 1 N5 00-08 E .7 11 ~ 16O"C .5 I ; IL en :::I ~ .3 E .2 .=~ .1 o 2 3 4 Maximum Instantaneous Forward Drop, VFM , Volts 5 1.4 1.6 1.8 2.0 Maxiinum Foward Voltaga Drop, Vl'M, Volts R11 How To Determine The Operating Junction Temperatura of The Lead Mount Rectifier When using a lead mounted rectifier as with all semiconductors, the maximum junction temperature should never be exceeded. The derating curves shown in graph A are the maximum currents at ,specified ambient temperatures when the lead mount is terminated in a heat sink within Yl inch of the body. When the lead mounted rectifier isterminated on a terminal strip, printed circuit board or is mounted in an-enclosed area, the rectifier could be Operating above or below the maximum junction temperature because of the heat sinking area. To calculate the operating junction temperature, a lead temperature measurement must be made. First a thermocouple is soldered to the lead. A small amount of solder should be used, since excess solder will add to the area of the lead and will give erroneous readings. The thermocouple should be soldered 0.2 inch from the body of the rectifier. Excessive temperature and excessive time should be avoided when soldering to the rectifier lead. Then the lead mount is operated at the maximum current encountered in the application and the lead temperature is stebilized. The temperature, forward voltage drop and current are recorded. The junction temperature is then calculated using the following formmula: Example: The R340 lead mount rectifier is mounted on a printed circuit board to one inch square copper pads on each lead. The leads were Yl" measured from the body of the rectifier to the printed circuit board. All measurements are ,made in accordance with EIA standard RS-282. The following was measured. I ""(avl = 6AAvg. = 1.1V = = 6.5W 123°C TA =, TAO =25°C R9JL = 9°C/W (From Graph G) P TL To take full advantage of the thermal transfer capabilities offered by the leaCls of lead ' mounted devices, the following are important points to remember: • Avoid placing semiconductor devices which produce heat in locations where air circulation is restricted. • Place heat-producing devices on top of a chassis, instead of below, and preferably on one that is vertically mounted. • A 35-mil lead provides approximately 0.1 square inch of radiating surface per inch of length. 'For this reason one should not trim off needed cicioHng caPa-Cit.,: --- , - , The junction temperature can be calculated as follows: TJ = TL+(R9JLxP) 123 + (9 x 6.5) 181.5°C This example shows that one inch square pads on each lead is not sufficient since the , junction temperature ,exceeds the 175°C , maximu,m: ThisjupcUo!') temperature cel'! b~ "reduced by increasing the copper pads, by reducing the length of the leads or by increasing the air flow. • Terminal posts and mounting brackets frequently provide more cooling area than the device lead. If possible, take advantage of the cooling offered by terminals ,and mounting brackets. Mount heat-producing devices close to, terminals or brackets. • Check the ambient temperature inside cabinets. If it is excessive, install a fan: forced air can reduce thermal resistance by as much as 500 per cent. Graph G-Staady State Thermal Resistance Junction to Lead vs Lead Length 90~--------~--------~---------r---------r---------' TJ = (TA - TAO) + TL + (R9JL xP) where TJ = Junction Temperature TA' = Highest ambient temperature to be encountered in the application. TAO = The operating ambient temperature at which the lead , temperature was measured. 80 ~ P ...'2 70 60 'rr;- ., -ci 'Tl = Measured lead, temperature ~ R9JL = The value obtained from Graph G for thermal resistance junction to lead at 0.2 inch from the body. P = The average power calculated from the current and voltage readings. .9 50 40 c .'.c" 0 '" .; , .. 30 .~ 20 -, c . , 1115400 selies 1\340 selies CI> If the lead temperature is measured at the maximum operating ambient temperature, the formula for calculating the junction temperature reduces to: TJ = TL + (ReJL x PI R12 rr; iij i .r:. I- 10 0 .2(5.08) .4(10.16) I,.ead length Inches (Millimeters) .6(15.24) .8 (20.32) 1 (25.40) Symbol Inches Min. A <l>D E F .424 .075 Max. .405 .424 .437 .175 J .BOO M N <l>T <l>W .250 .422 .453 .060 .105 10-32 UNF-2A Millimeters Min. Max. 10.29 10.77 10.77 11.10 1.91 4.45 20.32 6.35 10.72 11.51 1.52 2.67 Glass to Metal SealCreepage & Strike Distance = .07 in. min. (1.75 mm) (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-.2 oz (6g) R310-Standard Polarity-Gray Glass R311-Reverse Polarity-Yellow Glass. Conforms to DO-4 Outline Matrix Key Letter ABC 0 E F G H I Features: • Diffused junction • Low leakage current • Lifetime Guarantee Applications: • Power Supplies • DC to DC Conveners • Battery Chargers • Machine Tool Controls NOTES: 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of this terminal is undefined. 3. 10-32 UNF-2A maximum pitch diameter of plated threads shall be basic pitch diameter (.1697', 4.29 mm) Ref. (Screw thread standards for federal services 1957) Handbook H28 Pl. 150 1N1343 1 N1343A 1 N1343B 1 N1201 1 N1201A 1 N1201 B lN3617 1N1345 1N1345A 1N1345B lN1203 lN1203A 1N1203B lN3619 lN3670 lN3670A lN1583 300 lN1584 1111111B11 500 :::t 1N1Q7 II: II: ~ 700 0) ....as '0 > ilN1586 1 N3987 1N44!i8 900 1N4459 ~---------------------------------3Ma------------------------------~ R13 16~----~-----,------~----~-----,------, 200 14 ~-----+---~-+ lj=2t iO"C 12~----~----~~---+----~~----+-----~ ISO ~CD.EFGHI-; L I 1 Phase Or 3 Phase ~ ~ 4~----4-~~~~~~~r---~~~k4----~ .3 2 ~ A-, - L____ ~ ____ 140 ~ 1/ y ~/ / V 1---+-J-~c-...3o,.,....--f-......;:~+=~p..,.".pOO&,---i J O~____~____~______~~__ J / / v o V ~ o Maximum Allowable CaseTemperalure,Tc,"C 10 40 20 70 GO SO Forward Current ,[FIAV) ,Amperes Per Diode Non Repetitive S"rge Current Versus Time JEDEC Circuit 300 1250 ~ ~2OO ;~ u D.U:r. 150 !o ...JI 100 I J .OUI. RDI SCR I Scope I 50 0 1 2 C)'CIesAt EO Hertz 5 10 20 30 40 EO Tvpical Recoverv Time Ranges Westinghouse Device Family R310. R311 .251 rec. Recovery Time Waveform R14 JEDEC Circuit Test Conditions IIFM =36 A. diR/dt=25 A/jl.s Typical trr 1-2 jl.S Symbol Inches Min. A B <1>0 E F .667 .060 J M N Max. .450 .080 .667 .687 .200 1.000 .375 .453 .175 .422 .140 .156 %-28 UNF-2A <l>T Z Millimeters Min. Max. 16.94 1.52 10.72 3.56 3.96 11.43 2.03 16.94 17.45 5.08 25.40 9.53 11.51 4.45 <l>W Glass To Metal SealCreepage 8< Strike Distance = .09 in. min. (2.46 mm) (In accordance with NEMA standards.) Finish-Nickel Plate. A'pprox. Weight-.6 oz (18g) R410-Standard PolarityGray Glass R411-Reverse PolarityYellow Conforms to 00-5 Outline Matrix Key Letter ABC D E F G H NOTES: I. Complete threads to extend to within 211.t threads of seating plane. 2. Angular orientation of this terminal is undefined. 3. 14-28 UNF-2A. Maximum pitch diameter of plated threads shall be basic pitch diameter (.2268', 5.74 mm) Ref. (Screw thread standards for federal services 1957) Handbook H28 1957 Pl. I Features: • Diffused Junction • Low Leakage Current • LOWVF • Lifetime Guarantee Applications: • Power Supplies • DC to DC Converters • Battery Chargers • Magnetic Amplifiers 150 :E a: a: lNl185 lN1185A lN3210 300 lN3211 lNl195 lNl196A lN2167 lNl187 lNl187A 400 lN3212 1 N1196 1MitllA 1K2'isa . 1";'. :ufli_ 500 lN3213 lNl197 lN1197A lN2159 600 1N3214 1 Nll1!8 ~ Cl III 800 '0 900 > 1 N1193A 200 700 .. lNl193 ·1N1tUA "N2!80,. tN1189A lN1189 lllli'_'-1it1'~'J . ,;". :" .. ;, ", ~ " For JEDEC Reverse Polarity Add Suffix R, i.e"IN1191AR. lN3765 ft4100822 ' lN3767 1000 IRRM@ 25° IRRM@ 190°C ~-------------------------l00~A --------------------------~~ I: IE-------------------------- 5.0 rnA --------------------------41 R1 200 TJ = 200 0 C V 1 Phase / Or 3 Phase"- ~ ~ ~ 150 160 10 170 ..... --' 20 IY A,B,C,D,E F,G,Hil I-"" 40 30 I." / 60 50 70 Forward Current, IF(AVI, Amperes Per Diode Maximum Allowable Case Temperature, Te, °C ~ ., JEDEC Circuit Q. Non Repetitive Surge Current Versus Time 900 E 0( ::t Jg i 600 ~ :; u ., o.u:r. E' ::> <f) ~ RFtf==;;;;;:F=~~~~~~~~~ 150 ::> E ';( Ro1 SCR Scope ::i! 10 ·5 co .01n. 20 30 40 Cycles At 60 Hertz I Typical Recovery Time Ranges .25I,ee. Recovery Time Waveform R16 Westinghouse Device Family Test conditions R410, R411 IFM = 100 A. diR/dt Typical trr = 25 Alps 2-4ps 60 Symbol Inches Min. A E .667 .060 J M N <pT Min. .450 .080 .667 B <pO F Millimeters Max. .422 .140 .687 .200 1.000 .375 .453 .175 Max. 11.43 2.03 16.94 16.94 1.52 10.72 3.56 17.45 5.08 25.40 9.53 11.51 4.45 Z .156 3.96 <pW %-28 UNF-2A Glass To Metal SealCreepage & Strike Distance = .09 in. min. (2.46 mm) (In accordance with NEMA standards.) Finish-Nickel Plate. Allprox. Weight-.6 oz (18g) R404, -Standard PolarityGray Glass R405, -Reverse PolarityYellow Glass Conforms to 00-5 Outline Features: • Copper base package • Hard solder construction • Proven reliability in aircraft applications • Specially designed for cyclic loading and rotating applications NOTES: 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of this terminal is undefined. 3. %-28 UNF-2A. Maximum pitch diameter of plated threads shall be basic pitch diameter (.2268", 5.74 mm) Ref. (Screw thread standards for federal services 1957) Handbook H28 1957 Pl. Applications: • Aircraft power systems • Communications equipment • High reliability power supplies • Motor controls Ordering Information Parameter Current IF IAVI @Tc,oC IFSM Example Obtain optimum device performance for your application by selecting proper Order Code. TYPE R404, forward polarity, rated at 70A average wilh VRRM = 4OOV, order as: R404---60 60A @130 1000 A 12t for FUSing 4160 A'sec VFM@IFIAVI & 25°C 1.7V R404_70 70A @130 1200A 5600 A 2 sec 1.7V IRRM@ 190°C 6MA 5MA ReJC O.75°CIW O.66°CIW TJ (Operl Range -66 to 200°C -66 10 200°C Tsts Range -65 10 200°C -65 to 200°C R17 Voltage. Blocking State Maximums Symbol Repetitive peak reverse voltage, V .•..•••.... Non-repetitive transient peak reverse voltage, Voltage tp<5.0 msec. V .•.•........... VRSM 50 100 VRRM 200 300 400 500 600 800 1000 100 150 300 400 500 600 700 900 1100 ) ~R~ev~e~r~~I~ea~k~ag~e~cu~r~N~n~t,~m~A~p~ea~k~12:5~._Oc~,.~.~.~.~.~.~IR~R~M~~~t=~--------_l00~A Typical Recovery Time Range Test Conditions: JEDEC Circuit IFM = 100 A. diR/dt = 25A/J,ls 80 . ~ g ~ ~::J to) 8OA~pere f .'\. 8- "~'" 40 3. . I!! a .: c 800 ~ . ~ 100 120 140 Maximum Caae Temperatura, Te, °C ~ eo ~"'lJere ............. "'lJere t...;.... 600 ::J ... l rn 180 180 ~ ~ t\. 10 i"--...... ::J to) .~ 20 ............... JI; "- ~ 30 ............... ~'000 f'\. 60 1200 E "2 ...~ = 2-4}Js 70A~pere 70 I!! 80 ! < trr " 400 E ::J 200 E 'K III ::i 2 200 5 10 20 1000 ., TJ = 200°C 80 Ampere and 70 Ampera ~ .. i'6 ~ Q. Q. 100 E 0( c: .2 110 100 TJ = 25°C, 60 Ampere and 70 Ampere I ~ d·c 50 II ~ I "" 'iii to) '6 "2 0 0 40 Forward Current, Averaga Amperes Per Diode R18 A f ~ 'i. ~ J TJ = 190°C, 60 Ampere and 70 Ampere I!! i i 60 40 Cycles at 60 Hz 200r--------r------~~------~------_, 150 ~ --..... r......... 60 80 ...! 10 /1 2 Maximum Forward Voltaga Drop, VFM, Volts 3 Symbol A B ~D E F J M' N a ~T Inches Min. 4.18 .050 .860 1.031 .255 2.50 .437 .605 Max. 4.62 .100 1.000 1.063 .400 .650 .645 1.675 .291 .250 .310 %-24 UNF-2A Z ~W Millimeters Min. Max. 106.17 117.35 2.54 1.27 21.84 25.40 26.19 27.00 10.16 6.48 63.50 11.10 16.51 15.37 16.38 42.54 7.39 6.35 7.87 Creep & Strike-Distance: Ceramic Seal 1-.66 in. min. (16.94 mm). Glass Seal -.16 in. min. (4.11 mm). (In accordance with NEMA standards.) Finish-Nickel Plete. Appro•. Weight-3.5 oz (99g) Standard Polarity-White Ceramic Reverse Polarity-Pink Ceramic Standard Polarity-Gray Glass Reverse Polarity-Yellow Glass 1. Complete threads to extend to within . 2% threads of seating plane. Conforms to DO-8 Outline 2. Angular orientation of terminal is undefined. 3. Pitch diameter of %-24 UNF-2A (coated) threads (ASA 81.1-1960). 4. Dimension "J" denotes seated height with lead bent at right angl~. Symbol JEDEC Number (D'<D <I: ...<I: ...z ...z. ...z ...z. ...z ...z < < Ol III Maximum Ratings and Characteristics Blocking State (TJ =200°C) Q) * Non-repetitive Peak Reverse Voltage, Volts * Max. Allowable doc Blocking Voltage, Volts ...... ...... III 0 Ol N M N Ol N M M Ol N M N M N M Ol N M V RRM 100 200 300 400 500 600 VRSM 200 300 400 525 650 800 VR 100 200 300 400 500 600 IRRM 24 24 24 24 21 17 • Available as JAN types * Repetitive Peak Reverse Voltage, Volts ......... <I: Q) ..,.<I: < Ol N M Ol N M <I: <I: ,.... Ol N M Ol N M co It) .... ...z 800 1000 1200 1400 1050 1300 1600 1800 z 800 . ~e ~e 1000 1200 1400 11 9 * Max. Peak Reverse Current at Rated VRRM 100 Amperes Avg. Forward Current, Single Phase @ Tc =130°C, ma ................. Conducting State (TJ =200°C) 13 7 All Types * Max. (fca) ®, Forward Current@ Tc=130°C, Amperes 100 Mounting: Recommended stud mounting torque, 120 in.-Ibs. lubricated. RMS Forward Current, Amps ......•............ 160 Consultlrecommended mounting procedures. * Max. Peak Y:z Cycle Surge Current (at 60 Hz) (Under Load), Amps ........•..............• 12t for Fusing (at 60 Hz Half-Wave). Amps2-Sec .... * Max. Forward Voltage Drop @ 100 Amperes Average, Tc = 130°C, Peak Volts .. IFSM I2t 2,300 22,000 1.5 Thermal Characteristics * Oper. Junction Temp. Range, °C ........•........ TJ * Storage Temperature Range, °C ...........•..... T 8 tg Max. Thermal Resistance, °C/Watt * Junction to Case ................•.•...•.... Case to Sink, Lubricated Mounting Surface <DOrder reverse polarity units by designating R. <D Full cycle average measured with DC meter. <DCeramic package avaitable. @)Ceramic seal supplied -40@to +200 -40@to+200 .40 .15 • JEDEC Registered Parameters. R19 ~500 ~ E « -_ ........ 1. ",,; ~ :i ...!!- 50 .......... ~ ~ ~ I '" i ..... ..- +---I--i-+t-+Ft~ooI.+! ::l U 11 .~+ '- + . pr.-~~.~~~+'++~~'~I-H 100 10 LL .5 1.5 2 2.5 3 Cycles at 60 Hz Maximum Forward Voltage Drop. VFM • Peak Volts Figure 1. Forward Current vs. Forward Voltage. Figure 2. Maximum allowable surge current at rated load conditions; I 140 I--+---i ~ 1~r-~~~~~7r~-+~~~--r-~ ~1OO~~~~~-t--~~-+--t-~-1--4--+--~~ .$ ! : t-o~.~..d-~~~~--1-.J--r--+-+-i 11 J t l Average Forward Current. IF(AV) Figure 3. Power dissipation vs. Average forward current. ai a"' t--+-+--i---t--"'~~~+--+--t---i ~ I--t-+~-+--I---+---~~~-+-+-+--i 120 160 Maximum Case Temperature. TC(MAX)"C Figure 4. Forward Current vs. Case Temperature. F..tures: • Standard and Reverse Polarities with Color Coded Seals. • High Surge Current Ratings. • Electrical Selection for Parallel and Series Operation. • Compression Bonded Encapsulation. • Lifetime Guarantee .4 .9 c: og ...,::lc: 40 .3 Application.: • • • • • .001 Time. t. Seconds .1 Figure 5. Transient thermal impedance vs. time. R20 10 Welders. Battery Chargers. Electrochemical Refining. Metal Reduction. General Industrial High Current Rectification. Symbol Millimeters Min. Max. Min. Max. 4.18 .050 .860 4.62 .100 1.000 106.17 1.27 21.84 117.35 2.54 25.40 F J 1.031 .255 2.50 1.063 .400 26.19 6.48 63.50 27.00 10.16 M N .437 .605 .650 .645 1.675 11.10 15.37 16.51 16.38 42.54 .250 .310 .291 6.35 7.87 7.39 A 8 .pO E Q .pT Z .pW %-24 UNF-2A Creep & Strike-Distance: .66 in. min. (16.94 mm) .• Ceramic .16 in. min. (4.11 mm) . • Glass (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-3.5 oz (99g) Standard Polarity-White Ceramic Reverse Polarity-Pink Ceramic Standard Polarity-Gray Glass Reverse Polarity-Yellow Glass 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of terminal is undefined. 3. Pitch diameter of %-24 UNF-2A (coated) threads (ASA B1.1-1960). 4. Dimension "J" denotes seated height with lead bent at right al)gle. Conforms to 00-8 Outline Symbol JEDEC NumberCi) Q) ,... (Xl (Xl (Xl .,.. It) z ..- (J) (Xl ~ N M .,.. (J) (J) (J) (J) (J) It) It) It) It) It) It) It) z z z ..- z z""" z ..- z 0 (J) .,.. .,.. .,.. ~ ~ ~ It) z It) z .,.. ~ .,.. .,.. ~ ~ It) .,.. co (J) .,.. ~ • • * Repetitive Peak Reverse Voltage, Volts .......... V RRM 100 200 300 400 500 600 * Non-repetitive Peak Reverse Voltage, Volts ....... V RSM 200 300 400 525 650 800 1050 1300 1600 1800 800 1000 1200 1400 * Max. Allowable d-c Blocking Voltage, Volts ...... VR 100 200 300 400 500 600 IRIAV) 9.5 9.5 9.0 9.0 8.0 6.5 800 1000 1200 1400 * Max. (fca) @, Reverse Current at Rated VRRM 150 Amperes Avg. Forward Current, Single Phase @ Tc 110°C, rna ................. = Conducting State (TJ = 200°C) * Max. (fca) @, Forward Current All Types @ Tc 110°C, Amperes RMS Forward Current, Amps .................... . IF IAV) 150 IFIRMS) 2~6 (Under Load}, Amps ........................ . * Max. Forward Voltage Drop @ 150 Amperes Average, Tc = 3,000 .... . I FSM 12t 37,200 110°C, Peak Volts .. V FM 1.35 Amps~Sec 4.5 4.0 3.5 • Ceramic Seal Supplied Mounting: Recommended stud mounting torque, 120 in.-Ibs. lubricated. Consult recommended mounting procedures. * Max. Peak 'h Cycle Surge Current (at 60 Hz) Pt for Fusing (at 60 Hz Half-Wave), 5.5 G)IOrder reverse polarity units by designating R. o 'Full cycle average measured with DC meter. o Ceramic package available. Thermal Characteristics * Oper. Junction Temp. Range, °C . . . . . . . . . . . . . . . .. * Storage Temperature Range, °C . . . . . . . . . . . . . . . . .. Max. Thermal Resistance, DC/Watt Junction to Case ..... . . . . . . . . . . . . . . . . . . . . .. Case to Sink, Lubricated Mounting Surface " JEDEC Registered parameters. TJ T stg -65 to +200 -65 to +200 Re JC Re cs .35 .15 R21 Electrical Characteristics ~[IJ[~~[2t~IJ[f.~£]~~J:J~~ia~~~ ~3000 L~ r'--r~I- --"--~ ~ I :::J .. •• U gj, ~m -"'1000 l'- c... 5 'x ~ o 5 1.5 2 Maximum Forward Voltage Drop. VFM • Peak Volts Figure 1. Forward current vs. Forward voltage. 2.5 . ~: §E 10 - L .__ ,--, .. ' . II ...... 1 . ____--l..-..J ___" _. 0 125 3 Cycles at 60 Hz Figure 2. Maximum allowable surge current at rated load con·ditions. ~ 120 ~ :::J U 'E ~ .£ 80 gj, 40 ~ OJ ~ Maximum Case Temperature. Tc(MAX)'C Figure 4. Forward current vs. Case temperature. Features: • Standard and Reverse Polarities with Color Coded Seals. • High Surge Current Ratings. • Electrical Selection for Parallel and Series Operation. • Compression Bonded Encapsulation. • Lifetime Guarantee. Applications: • Welders. • Battery Chargers. • Electrochemical Refining. • Metal Reduction. • General Industrial High Current Rectification. Time. t. Seconds Figure 5. Transient thermal impedance vs. time. R22 Symbol A B ",0 E F J M N Inches Min. 4.18 .050 .860 1.031 .255 2.50 .437 .605 Q ",T Z ",W Conforms to 00-8 Outline Features • Standard and Reverse Polarities with Color Coded Seals. • Flag Lead and Stud Top Terminals Available. • High Surge Current Ratings. • Special Electrical Selection for Parallel and Series Operation. • Compression Bonded Encapsulation. • %" Stud Package Available. • Lifetime Guarantee Max. 4.62 .100 1.000 1.063 .400 .650 .645 1.675 .250 .291 .310 %-24 UNF-2A Millimeters Min. Max. 106.17 117.35 1.27 2.54 21.84 25.40 27.00 26.19 10.16 6.48 63.50 11.10 16.51 15.37 16.38 42.54 6.35 7.39 7.87 Creep & Strike-Distance: RSOO.501-.66 in. min. (16.94 mm). RS10.511-.16 in. min. (4.11 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-3.S oz (99g) RSOO-Standard Polarity-White Ceramic RS01-Reverse Polarity-Pink Ceramic RS10-Standard Polarity-Gray Glass RS11-Reverse Polarity-Yellow Glass 1. Complete threads to extend to within 2J.1, threads of seating plane. 11 R510/511 R600/601 2. Angular orientation of terminal is undefined. 3. Pitch diameter of %·24 UN F·2A (coated) threads (ASA Bl.I-1960). 4. Dimension "J" denotes seated height with lead bent at right angle. Applications • Welders. • Battery Chargers. • Electrochemical Refining. • Metal Reduction. • General Industrial High Current Rectification. Example Obtain optimum device performance for your application by selecting proper Order Code. ! Type R S j 0 Voltage 0 L 3 Type R51 0 rated at 150A average with VRRM = 300V. and standard flexible lead-order as: ,*t3!!l""s ,M't;; (";"'-':'" * W' Stud package similar to 00·30 case. R23 Voltage Blocking State Maximums (i) Symbol Repetitive peak reverse voltage, V ... Non-repetitive transient peak reverse voltage, tp <5.0 msec., V ..•.••• VRRM 100 200 300 400 600 600 700 800 900 1000 1100 1200 1300 1400 VRSM 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 R510 ALL TYPES R500 ALL TYPES Reverse leakage current, mA peak .. IRRM 30 Current R510_15, R511_15 R500_15, R501_15 Conducting State Maximums Symbol R510_10, R511_10 R500_10, R501_10 RMS forward current, A ...........•.••••• _.... Ave. forward current, A One-half cycle surge current@, A 3 cycle surge current@, A .................. . 10 cycle surge current@, A ................ .. I't for fusing (for times=8.3 ms) A' sec .....•...•• Forward voltage drop at IFM =470 A and TJ=25°C, V .••...•••..••..••••••••••••.•• Forward voltage drop at rated single phase average current and case temperature, V •••••....••••. _ IF(rms) IF(av) IFSM IFSM IFSM 1'1: 160 100 2300 1875 1350 22,000 236 150 3000 2375 1750 37,500 VFM 1.55 . 1.40 VFM 1.37 1.35 Typical Reverse Recovery Time IFM =314A, tp=40!,s diR/dt=25AI!'s, TC=25'C, I's .......... . ,- 7 trr Thermal and Mechanical ________________~----------------~--S~ymbOI 120 Max. mounting torque, in ib.CD Thermal resistance Case to sink, lubricated, 'C/Wall Min., Max. oper. junction temp., ·C ...•........•• Min., Max. storage temp., 'C. '" 3000 ~ CD Q. E < :i ..;' i 2000 ~:::I U CD ~ :::I III . ~ CD 1000 Q.. E :::I E .. 'x ~ Cycles at 60 Hz (i) At maximum TJ CD Per JEDEC RS-282, 4.01 F.3. CD. For R5DO W' stud package use 130 in.-Ib. , R24 R8CS TJ Tstg .20 --------------;,1 -65 to 200 -65 to 200 ------------~ 2000 '000 F ~~ I,OIi I R~,Llo.' R~"I ~ ~ 100- ,10 .... 3000 . 2000 ~ 10 ~ RSOO-'O. RBOI . T = i2 Cp' R500-15. RBOI 1000 II- I- _. ... .. C. ~200 T = 2E ·C ...: ~F j ~ i ~::> U II 1/ ~~ - 2.5 2 1.5 .5 10 5 o Maximum Forward Voltage Drop. VFM• Peak Volts 180 "' '40 Ij '20 S~gle J I/' 80 :t U 80 1• 40 r l"- . ~L. ....... . o 100 120 AI;1 11n !R5' 110 " ""-, , "'" '" "" ~~ ......, ~ ~r: !! ~ ~"'I ~!&..!' 180 ~ 160 J l·-- 1-.•. i--- ! 200 300 I-- 1-- .. ::E 100 I - 220 o I...o ,... lI. J 1/ ~ r---+- ~ ~ r~ I 200 If .... 11 3 ha e.IU ;'as ~-. v ith nt rp as Ii ~ Maximum Case Temperature, TC(MAX)'C 200 6Ph se ~ta ~. Q I i 160 2.5 2 1/ ~ 2 lii 9rn ~- _. 140 I. 3 ~ V. "- ~- I in, e +ha e " 'i"- ~ i" c r- ~tttI - I I 200 r-- I I II~, -f-,p , '--Ii I 100 .. _1-- i~ ~ ~ V' ~" l/ , " ~~ ,'J If' "J 300 400 500 300 400 500 Average Forward Current, IFIAy) 240~m 1 1.5 ;c 400 - i ~ ~ ~ i I .5 500 J ", "- ~~ -! Maximum Forward Voltage Drop, VFM' Peak Volts "\. 20 J ~ IPhal It ~, I i Dc m _. I I I\. If" 600 ,/ 100 - . ", = . :&IE ... 3 ..... 50 20 0 . .~ 100 ~ ~ J...Io ~ IS ~. E )1/ _. ill!: l- RS10-1B. RB"_'S 1- l-- !II 500 rI - -- .. ~- 600~== 1 t ,'20 a 1 80 f40 l 120 140 Maximum Case Temperature, TdMAX) 'C 160 180 200 100 200 Average Forward Current, IF (AV), Amperes R25 ... 200 190 ~ i ~ 320 Type R5OCL.10. R501 -- HIO 170 i SINGLE PHASE t""oiO:"'" ~ ~ ~~ lJ' ";;:::: SIX PHASE.I 160 ~ i 240 11- 200 "'iii ,!!l THREE PHASE / . C m 120 II 11- E ::J ~ ,~., 100 90 E ::J E ';c ::!; . o 20 40 80 100 80 120 140 190 u 0 170 ~ 160 oj :; ta ..... r-.;;:: i.I SINGLE PHASE THREE PHASE ~ ~ ~ ~V lJ' ~ 1"'= ~ "'......." SIX PHASE 1/ ~~ 150 . 120 80 40 0 i > ~ ....... C ,2 Oi In 110 11- E ::> E ';c ::!; 100 ., 80 Average forward Current, IF (AV!. Amperes ~ 20 40 l' SINGLE PHASE 80 60 120 100 140 100. 120 140 ~ TH~EE ~HA~E , 160 E 60 ~~ SIX PHASE \ 80 40 V ..-.! 200 i -" ~ ~ P' 240 120 20 P" ~ V ~~ 1/ TYPE R5OCL.15. R501_15 C 90 ... ,..... ~ ~ ~ L ;; V 280 130 ., , , 120 E ';c ::!; ~ TH~EE ~HA~E 160 m II ::J ~ 320 "'iii I- R26 15 & 140 E ~ Average Forward current. IF IAV!. Amperes TYPE R5OCL.15. R501 180 ~ ~ .... .... V SIX PHASE, Average Forward Current. IF (AV!. Amperes 200 V ./ ~ 110 ::!; J 0 .~ 130 I- ~PE ~5~16, R5hl~1O 280 C V 140 ¥l ~ ~ / ~ ::J 150 E 10 40 0 '" ~ ...-- jiijIP k!: ~ ~ P"" V ~ V ~ ~ ~ .... .....Vk:::: ~ ~ V V [7 .., ~~ I"S:NG~E P7AS~ 100 40 20 60 80 Average Forward Current, IF (AV), Amperes 120 140 Symbol A B r/>O E F J M N Q r/>T Z r/>W Symbol Maximum Ratings and Characteristics Blocking State (TJ =190"C) Volts * Millimeters Min. Max. 135.13 152.40 1.60 4.37 24.89 27.05 30.78 31.75 6.35 16.00 82.55 13.46 19.18 16.76 19.02 57.15 8.38 8.89 11.18 Creep & Strike Distance: .49 in. min. (12.52 mm) .• Ceramic .13 in. min. (3.43 mm). _. Glass (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-8 oz. (226g) Standard Polarity-White Ceramic .Reverse Polarity-Pink Ceramic· Standard Polarity-Gray Glass Reverse Polarity-Yellow Glass 1. Complete threads to extend to within 2'1.. threads of seating plane. 2. Angular orientation of terminal is undefined. 3. Pitch diameter of %-16 UNF-2A (coated) threads (ASA 81.1-1960). 4. Dimension "J" denotes seated height with lead bent at right angle. Conforms to 00-9 Outline * Repetitive Peak Reverse Inches Min. Max. 5.32 6.00 .063 .172 .980 1.065 1.212 1.250 .250 .630 3.250 .530 .755 .660 .749 2.250 .330 .350 .440 %-16 UNF-2A JEDEC Number 0!CD 0 N M N N N M M ...co rco co ex> en co 0 ...r- on r- ~ N M N M N M Z Z Z ~ ~ ~ 800 900 1000 1200 1400 1600 100 200 250 300 350 400 450 525 650 800 925 1050 1175 1300 1600 1800 2000 720 800 960 1120 1280 co N M z CD z co z ~ co M z ~ N co '" N M M N M ~ ~ z ~ co co N N M M Z ~ ~ ~ r- r- N M N N M M Z Z ~ ~ r- r- .N M Z N M Z .~ r- . N M Z ~ Voltage ............. ,VRRM 50 100 150 200 250 300 350 400 500 600 700 Non-repetitive Transient Peak Reverse Voltage. Volts. V RSM * Allowable doc blocking voltage. Volts ........ V R 40 80 120 160 200 240 280 320 400 480 560 640 * Max. (fca) CD. reverse current at rated VRRM (rep); 160 amperes avg. forward current, single phase @ Tc=125°C. ma ...... IR(AV) Conducting State (TJ = 190°C) *. Max. (fca) ®. Forward Current at Tc = 130°C. amps .... 12 Symbol I F(AV) RMS Forward Current. Amps . . . . . . . . . . . . . . . . . . . . . I F(RMS) All Types • Ceramic seal supplied. 160 250 • JEDEC registered parameters. * Max. Peak '/2 Cycle Surge Current (at 60 Hz) . (Under Load),Amps . . . . . . . . . . . . . '. . . . . . . . . . . . . I FSM 12t for Fusing (at 60 Hz Half-Wave). Amps2-Sec ...... 12t 2,000 16.700 * Max. Forward Voltage Drop ® @ 160 amperes average, Tc=125°C, peak volts V FM Mounting: Recommended stud mounting torque; 360 in.-Ibs. lubricated. 1.6 Thermal Characteristics * Oper. Junction Temp. Range, °C . . . . . . . . . . . . . . . . . . TJ * Storage Temperature Range, °C . . . . . . . . . . . . . . . . . . T stg -65 to +190 -65 to +175 Max. Thermal Resistance, °C/Watt * Junction to Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . ReJC Case to Sink, Lubricated Mounting Surface ... . . . .. R ecs 'CD Order reverse polarity units by designating R. CD Full cycle average measured with DC meter. '0 Ceramic package available. 0.30 .15 R27 Electrical Characteristics 2000 p::~=rn:r:r+:[;J~~+r++=1rrT-lr-:::q1000 I I I I __- -~~ ~ '//$'" . ... -- t::::::::: ~-i- 500 ~ -t··I--:":: ... :--;i--:::: J: ; ·-; -1 ;~- I~ /-I· ·iI5d;~1+;;;allllll·I--I~-I-; 10111111111111 S! 0.. __ _ 50 - - j -- ~ ~ 20 c-"'-j-'-+-.I-f-+-+- I-i--Ir-~ 5 8~~t:::::b ~ 3 F::":' 0 2 3 4 5 ~ 2400 I i I r! j'600 t--t--~-+I--t""+-~..,C:t+-'-I-+--:-1'-1-+++-H+++I ~- 81200 ~~ . :-- -I- 1++H-+1H-l I--+-~~+I-++i-H-h:"';':-+-+'''-.~~I::!-+++-+++.J ~ en 800 I--'---+-+-I-++f++ .>I. I !:-- ... . T " ... ~t· ., ; = .. i. rI ~ ,'! § 400 I---f-H--i.+H-tHf-++-+--i-f-+-i-++I-H-H-+-I I .~ + ~ 2 t II f I i 1""- 3. 5 7 10 20 Overload Operating Time. CVcles at 60 Hz 6 Maximum Forward Voltage Drop. VFRM • Peak Volts Figure 1_ Forward current vs_ forward voltage. r--,.......,.--r-1r-l')""T" .. :.,.....~.,..,.Ii""T"l.,....,i""T"l-...,.-.,..-,-...,..,...,...,..,.,.I...-.-...!....... 8. : ~ 2000 i""'~ 30 :itt 50 70100 Figure 2. MaJ<imum allowable surge current at ratec;lload conditions.· ¥l ~600 :> ~ ~ lliillllilllillliilllllil r tl-tt 1200 ~-++H+I*+2i .{ 400 i ] ,-t-t-l-t u. 100 E :::l I 100 200 300 400 500 600 Average Forward Current. IF(AV)' Amperes Figure 3. Power dissipation VS. average forw8.rd current. 120 f 140 160 Maximum Case Temperatuie. TC(MAX)'·C Figure 4_ Forward current vs. case temperature . .4rT~~mrTT~~~~~~~~~~<T~rrm Features: • Standard and Reverse Polarities with Color Coded Seals • High Surge Current Ratings • Electrical Selection for Parallel and Series Operation • Compression Bonded Encapsulation • Lifetime Guarantee Applications: • • • • • TIme. Figura 5. Transient thermal impedance versus time. R28 Welders Battery Chargers Electrochemical Refining Metal Reduction General Industrial High Current Rectification 180 Inches Min. Symbol A 5.32 .063 .980 1.212 .250 3.250 .530 .660 B .pO E F J M N 6.00 .172 1.065 1.250 .630 135.13 152.40 1.60 4.37 24.89 27.05 30.78 31.75 6.35 16.00 82.55 13.46 19.18 16.76 19.02 57.15 8.89 8.38 11.18 .755 .749 2.250 Q .pT Millimeters Min. Max. Max. .330 .~50 .440 %-16 UNF-2A Z .pW Creep & Strike Distance: .49 in. min. (12.52 mm)., Ceramic .13 in. min. (3.43 mm) •• Glass (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-8 oz. (226g) Standard Polarity-White Ceramic Reverse Polarity-Pink Ceramic Standard Polarity-Gray Glass Reverse Polarity-Ye"ow Glass 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of terminal is undefined. 3. Pitch diameter of %-16 UN F-2A (coated) threads (ASA 81.1-1960). 4. Dimension "J" denotes seated height with lead bent at right angle. JEDEC number<D® Maximum Rat'ings and Characteristics Blocking State (TJ =190°C) Symbol ... a a a ... ... ... ... ... ... ... ... ... ... III co ,... a a a 0 Z Z Z '<t '<t '<t '<t '<t '<t co '<t '<t '<t '<t a'<t • Z Z a a III a Z Z Z Q') '<t '<t '<t co III N III M III III III III '<t '<t '<t ... Z '<t a Z '<t a Z '<t ... ... BOO 900 1000 a Z III '<t Z * Repetitive Peak Reverse Voltage, Volts ., .... , ........ , ..... V RRM 50 100 150 200 250 300 400 500 600 700 100 200 250 300 350 400 525 650 BOO 925 50 100 150 200 250 300 400 500 600 700 * Non-repetitive Peak Reverse Voltage, Volts .... , .......... V RSM 1050 1175 1300 * Max. allowable doc blocking voltage, Volts , .............. V R BOO 900 1000 * Max. (fca) ®, reverse current at rated V RRM ; 275 amperes avg. forward current, single phase @T = 120°C, rna ... , ... , . , . I R(AV) Conducting State (TJ = 190°C) 15 Symbol All Types * Ave. Forward Current (180° Conduction) @ T = 120°C,amps ® ....................... IF(AV) 275 RMS Forward Current, amps .................... IF(RMS) 435 * Max. Peak Y2 Cycle Surge Current (at 60 HZ),amps ... IFSM J2t for Fusing (at 60 Hz half-wave), ampsLsec . , .... Ft 5,000 104,000 Mechanical Characteristics Finish: Nickel-plated case to maintain low contact resistance and to prevent corrosion. Mounting: Recommended stud mounting torque; 360 in.-Ibs. Co!.'sult recommended mounting procedures. * Max. Forward Voltage Drop @ 275 amperes average, T C = 120°C, peak volts ..................... V FM 1.35 * Oper. Junction Temp. Range, °C. ..' ............. TJ * Storage Temperature Range, ·C .................. Tstg Max. Thermal Resistance, °C/Watt Junction to Case ............•......•....... R eJC Case to Sink, Lubricated Mounting Surface ....... Recs • JEDEC registered parameters. CD Order reverse polarity units by designating Thermal Characteristics 1 N4044R. etc. -65to+190 ® Full cycle average (measured with a doc meter), (!) Ceramic package available, -65 to +190 .17 .15 R29 ~ 1000 8. E <t "'1l"l (l. ::i; 100 ...!:- c' ~ ::J u "E 50 20 ~ 10 0 LL 2 Maximum Forward Voltage Drop, VFM , Peak Volts Figure 1. Forward current'vs. forward voltage. Cycles at 60 Hz Figure 2. Maximum allowable surge current at rated load conditions. c: 200 ~ ::J U 1! '"~ 100 0 LL 'OJ" ~ .{ Average Forward Current IF(AV), Amperes Figure 3. Power dissipation vs. AveFage forward current. g Maximum Case Temperature, Tc(Max),"C Figure 4. Forward current vs. Case temperature. .2 u'" ~ c Features: • Standard and Reverse Polarities with color Coded Seals • High Surge Current Ratings • Electrical Selection for Parallel and Series Operation • Lifetime Guarantee o "nc --,::J § t £ .1 Applications: co • • • • • E~ ~~ f-- __ ~p 'xE '" ~ ~~O .001 Time, t, Seconds Figure 5. Transient thermal impedance vs. time. R30 Welders Battery Chargers Electrochemical Refining Metal Reduction General Industrial High Current Rectification Symbol A B </>0 E F J M N Q </>T Z </>W Applications • Welders • Battery Chargers :. Electrochemical Refining • Metal Reduction ., General Industrial High Current Rectification Inches Min. Max. 5.32 6.00 .063 .172 .980 1.066 1.212 1.260 .260 .630 3.260 .630 .766 .660 .749 2.260 .330 .360 .440 %-16 UNF-2A Millimeters Min. Max. 136.13 162.40 1.60 4.37 24.89 27.06 30.78 31.76 6.36 16.00 82.66 13.46 19.18 16.76 19.02 67.16 8.38 8.89 11.18 Creep & Strike Distance: R600.601-.49 in. min. (12.52 mm). R6'0.61'-.13 In. min. (3.43 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Welght-8 oz. (226g) R600-Standard Polarity-White Ceramic R601-Reverse Polarity-Pink Ceramic R810-8tandard Polarity-Gray Glass R6"-Reverse Polarity-YellOW Glass 1. Complete threads to extend to within 2% threads of seating piane. 2. Angular orientation of terminal is undefined. 3. Pitch diameter of %-16 UNF-2A (coated) threads (ASA Bl.I-1960). 4. Dimension "J" denotes seated height with lead bent at right angle. Features • Standard and Reverse Polarities • Flag Lead and Stud Top Terminals Available • High Surge Current Ratings • High Rated Blocking Voltages • Special Electrical Selection for Parallel and Series Operation ---, ~ ;.I: ~, ~' .~ t ~' ,,,., ' '\ \\ __ ' ~ R610! R611 ~ R600!~ R60~ • Glazed Ceramic Seal Gives High Voltage Creepage and Strike Paths • Compression Bonded Encapsulation • JAN Types Available • Lifetime Guarantee Ord_ering Information. Example Obtain optimum device performance for your application by selecting proper Order Code. Type R610 rated at 250A average with V RRM and standard flexible lead - order as: = 300V, Example Obtain optimum device performance for your application by selecting proper Order Code. Type R600 rated at 300A average with VRRM = 1200V, and standard flexible lead - order as: R31 Voltage Blocking State Maximums CD Symbol Repetitive peak reverse voltage ,V....... VRRM Non-repetitive transient peak reverse voltage, V:S 5.0 msec ...................... VRSM 100 200 400 600 800 1000 1200 1400 1600 1800 200 22002400260028003000 200 300 500 700 1000 1200 1400 1600 18002000220 2400 2600 2800 3000 3200 1+----- R600 __ 20 ----i-~*-R600 __ 20-+t~-- 1 + - - - - R600 __ 25 . 1+---,-- R600 __ 30 --"";---cH ~-- Min., Max. oper. junction temp., °C . . . . .. Min., Max. storage temp., °C . . . . . . . . . .. TJ Tstg Typical Reverse Recovery Time I FM = 785A, tp = 1001's diR/dt = 25A/l's, Tc = 25°C, 1'8 . .. . . . . trr Reverse leakage current, mA peak ........ , I RRM Current Conducting State Maximums RMS forward current, A ........ . Ave. forward current. A ........ . One-half cycle surge current®, A .. 3 cycle surge current®, A ..... . 10 cycle surge current®, A .... . I't for fusing (for times 8.3 ms) A2 sec. Forward voltage drop at I FM = 800 A and TJ = 25°C, V ..... . Forward voltage drop at rated single phase average current and R610 (All types) ---.,~ -65.to 190 -65 to 190 -65 to 175 -65 to 190 9 11 -65 to 150 -65 to 190 13 ~---------------50-------------~ R600 __25 R610 __25 R601_.25 R61L.25 R600_...30 R610_..30 R601_...30 R611_...30 Symbol IF(rms) IF(av) IFSM IFSM IFSM 315 200 5500 4300 3300 400 250 6000 4700 3600 470 300 6500 5050 3900 125,000 150,000 175,000 1.7 1.5 1.4 1.45 1.45 1.45 12 t Thermal and Mechanical Symbol 360 Recs CD At maximum TJ CD Per JEDEC RS-282, 4.01 F.3. CD Consult recommended mounting procedures. R32 ----~~- R600 __ 20 R610 __ 20 R601 __ 20 R611 __20 case temperature, V ......... . Max. mounting torque, in lb. ® ......... . Thermal resistance ® Case to sink, lubricated, °C/Watl . . . . .. R600 __ 20 R600 __ 25 .10 190 I~ Type RSOO & R60l. _ 180 R6l0 & R6l1 _ ~ 170 VRRMS1000V ~ ~ 160 Single Phase ...... ~ 150 V""""':: ~ R600.....20. R61D.....20 / "" 140 '/'-....;: .fj130 R60l_...20. R6ll_...20 / ........ / ~ 120 110 I - - R6OD.....25. R61D.....25 / / 100 I - - R60l_...25. R6ll_...25 ' - g i l ...... • / I 90 R600..~O ~ ~ R6ll_..30 I o 150 100 200 50 Average FoIward Current. IFIAV). Amperes 190~ 180 ,u , 300 ....... ~ ~ --... ~ 1~ R610&R611_ VRRM:51000V Three Phase __ ~ I E 120 R600.....26. R61D.....26 / 110 ~ R60l_...26. R611_...25 ~+--+-+--7L'+-+-+--I 100 1--..:..:.::..:..r=:..:...:..:.:..:r=:....--+--+-1VI--7<~H-t--I ~ 9Or-----+------r--R-600..--~~-O---+~~--~~--~~ ! U E .~ ~ 80 70 60 I----t---+_ R61D..~O / R6ll_~O --IH----+-t--t----I R60l_.:aO ~~-----I-+-+---I 5Or----I-----+-----+-1--~----~__I--__I 4OU---r--~---r-1-~-__I_r~___I O~ o 250 50 100 150 200 Average Forward Current, 'FIAV). Amperes 190 ~ 180 ~ 170 ~ 160 ~150 R6OD.._20. R61D.._20 R60L...20. R6ll_...20 ! Six Phase .......... ~ _ - ~ l:'" 1/ 1)1' / 1/ '" R600..~O R61D..~O R6ll __30 R60l_..30 / R600.._25 R61D.._25 R6ll_...25 R60l __25 ~ ~ J o..o ~ ~ ~ t-: S I!? 8. E ~ ~ E ~ 'x ~ "?' 0 o 50 100 150 250 200 300 175 17O~ Type RBOO & RBOl 160 ..... ~ 2000V _ l200V~VRRM 150 Three Phase ~ 140 V' --...........;: ~ 130 o I RBOO_...20 / 12 ?"o... ...... RBOL...20 / 110 / 100 R6OD.....25 90 RB01_...25 80 - - .... 70 60 50 40 . 0 ~ o 50 100 150 250 200 300 175 170 Type RBOO & RBOl _ 160 l200V~VRRM 2000V L"'-..... ~ 150 Six Phase ~---... I-.. ~ 140 / ~ ~ 130 /RBOD.....20' to.... t-: 120 -RBOL...20 ~ 110 ::--.... -.........: IE E j 200 250 - - / 100 90 ~ 80 ~ I I 50 100 150 Average FoIward Current. 'FIAV). Amperes 70 60 50 40 Average Forward Current,IFIAV). Amperes R6l0&R6ll VRRMSi l000V .............. ~ ~ 300 Type R600 & R60l. _ ~ .c 140 .§130 £!! 120 110 a. 100 ~ 90 60 50 40 .. ............. Average Forward Current.IF(AV). Amperes _-+'.:=!II ... I ........ l ~ 350 ~ 150 / ""'- ~ "" 140 R600.....20. R61D.....20 ,.LC~~~ --jI-----1 .fj 130 I- R601_...20. R6l1_...20/ ~ ... . / R6OD...25 / R60l_...25 a. 100 Type R600 & R601._ ..... ~ 170 160 250 - 2000V _ I-..~ R6OD...20 ./ R60L...20 111 j I o~ l200VSVRRM Single Phase ~--...... 140 _ - 130 ~ 120 0 E R60l_~O Type R600 & R60l -...;:::... .... ~ ~ R6la.~O / 60 50 40 175 170 160 ~ 150 RBOO• ...25 IR60L...25 70 60 50 40 c~ 00 100 50 Average Forward Current. IFIAV). Amperes 150 200 R33 - 150 140 I .~ ~ 130 ~ ~~ toY 0 ....... 0 :::l ~ ~ ~ § .~ ~ ~ """'----.......-::::::: ~ 100 - S i x Phase ~ 1§ Type R600-20 _ R601-20 / / I 90 ~ ..".... Th~ee Phase/ 80 "" 70 Single Phase 60 l:lIammmmmmmmamm ~ ~ • 800 ~ .... Type R600-30 m~~~Rt'.l6~0~1-3m~0~fi!fl~mEf Type R610-30 :. 700 ~ ~ R611-30 .~ 600 .~ 500 / ~400 j~ / / E 200 50 40;,;~ 0 o 50 00 250 200 150 100 50 100 150 209 250 ~ 350 400 450 500 Average Forward .Current.IF(AV), Amperes Average Forward Current. IF(AV), Amperes 10,000 1000 5000 ~~ ". ~ / IA' R610-20,R611-20 ~ R600L-20,R601-20 C- /. ..,-~ "- "'- i'-... I Tli 15rC I R610-25,R611-25 R600-25,R601-25 1) = 175°C '" " If Type R600-25 R601-25 Type R610-25 R611-25 ~800 - == -- -C I - r 5.0 2.0 3.0 4.0 Maximum FOlWard Voltage Drop, VFM , Volts 1.0 6.0 ~ Six Phase c:600 R610-30, R611-30 R60CL-30,R601-30 I Tlr 9 « ~700 Three Phase '!500 § 200 .~ 100 7.0 ~ 00 50 100 150 200 250 ~ 350 400 Average Forward Current.IFIAV), Amperes ~ .2 8OOr-r=~~IIJn~~TT~"--~~-'';' 700 ~I"'" f--- . ..,-1 .1 V ...- ~ o .001 .005 .01 Time, t. Seconds R34 .05 .1 .5 5 10 200 150 50 Average Forward Current.IFIAV), Amperes 250 300 ", , Symbol ",.1': I Min. Max. 9.76 .063 10.00 .172 1.490 247.90 1.60 254.00 4.37 37.85 1.750 .810 41.15 10.92 101.60 44.45 20.57 J 1.620 .430 4.000 M N .530 1.04 .755 1.08 3.100 13.46 26.42 19.18 27.43 78.74 .330 .440 .350 8.38 11.18 8.89 </>D E j F I " Q </>T Z , i ,I ! I " R7 Outline Featu ....: • Standard and Reverse Polarities • Flag Lead and Stud Top Terminals Available • Flat Base, Flange Mounted Design Available • High Surge Current Ratings • High Rated Blocking Voltages Millimeters Max. A B 'i Inches Min. , ~, </>W %-16 UNF-2A Creep Distance-2.12 in. min. (53.98 mm). Strike Distance-1.20 in. min. (30.48 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-16 oz. (454g). R700-Standard Polarity-White Ceramic R701-Reverse Polarity-Pink Ceramic 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of terminal is uhdefined. 3. Pitch diameter of %-16 UNF-2A (coated) threads (ASA 61.1-1960). 4. Dimension "J" denotes seated height with lead bent at right angle. • Electrical Selection for Parallel And Series Operation • Color Coded Seals • High Voltage Creepage and Strike Paths • Compression Bonded Encapsulation • Lifetime Guarantee Applications: • Welders. • Battery Chargers. • Electrochemical Refining. .' Metal Reduction. • General Industrial High Current Rectification. Example Obtain optimum device performance for you'r application by selecting proper Order Code. Type R700 rated at 450 A average with VRRM = 1000V, and standard flexible lead-order as: R35 Voltage Blocking State MaximumsCD Symbol Repetitive peak reverse voltage, V ..... VRRM Non·repetitive transient peak reverse voltage, tS5.0 m sec, V ..••.••••• VRSM 800 1800 200012:z00 12400 126(1012:8001 500 700 1000 4nrl11 Flnn.11800 2000 2201012~400 2600128(101310001 400 600 Reverse leakage current, mA peak. . . . . IRRM Switching Typical Reverse Recovery Time IFM= 1500A, tp=190,.s diR/dt=25A/,.s, Tc=25°C,,.s........ trr Thermal and Mechanical Min., Max. oper.junction temp., ·C...... TJ Min., Max. storage temp., ·C........... Tstg Max. mounting torque, in Ib.@ .........• Thermal resistance@ Junction to case, °CfWatt. . . . . . . . . . • R6JC Case to sink, lubricated, °C/Watt. . . . . . R8CS Current Conducting State MlI'Ximums RMS forward current, A ......... ,' .... . Ave. forward current, A •.............. One-half cycle surge current@, A ....... . 3 cycle surge current<!>, A .......•.. 10 cycle surge current<!>. A. . . . ..... . 12t for fusing (for times= 8.3 ms) A'see........................... Forward voltage drop at IFM=1500 A and TJ=25°C, V ..•••••.•.•••••••• Forward voltage drop at rated single phase average current and case temperature, V .••...•.......•..... R700--03 R700--04 R700--05 R701--03 R701--04 R701--05 470 300 7000 '5250 4200 700 450 8500 6400 5100 865 550 10,000 7500 6000 204,000 266,000 416,500 VFM 2.15 1.6 1.4 VFM 1.45 1.45 1.1 IF(rms) IF(av) IFSM IFSM IFSM I't 1 At maximum TJ 2 Per JEDEC RS-282, 4.01 F.3. 3 Consult Westinghouse recommended mounting procedures. R36 -----l" 1IE------65 to 200 ----~1E--,-165 to 175 -...,.tE--------65 to 150 -65 to 200 -65 to 200 to 200 ---"""';M ~----36C1-----~;:---360 360 -----~ I l!l 1200 I Type R700/R701 u 200 o ~ I R700-03 <{ <{ :; 160 ~ Q) 2~ ~ E ~ 6 900 o..<{ 800 > Single Phase 140 c:" I"'" ~ b.. .... ~ Ii' 100 Six ~ 120 Phase r-- 60 0 700 '" 600 -., ""'" 80 1100 ~1000 VRRM~4000V 180 ~ 0- ;;::.~::: ,';: .~:l~:-.~­ _'Bt-OOi.R -Qt-:-04 7-; -:- ,.I ,., - c - :. ,•'. ;.' r-:-:-;~:..;+~. ~, ri-- . . ,Y:j':: ----'-I::~!:~: .~ 0 500 /1"" ~ ~ ~ Ql ;!: Thr:a Phase 400 0 0.. 300 E 200 ::: 40 -~x 20 o o '" :2' 100 200 300 400 500 0 600 Average Forward Current, I F(AV), Amperes '"~ Q) 0- E « :2' LL ... c: ~ " u 'E ~ o u.. o~---~~~ Maximum Forward Voltage Drop, Vfm, Volts o 100 ___ 200 ~~~_~~_~~~~ 300 400 500 600 700 800 Average Forward Current, I F(AV) , Amperes \Ii u'" B c: ..,0 .12 "c: ....," .10 Q) " c: al0-'" c: .08 '.o, '" E 0- .~ o E E Time, t, Seconds Transient Thermal Impedance vs. Time " x '" :2' Average Forward Current, I F(AV)' Amperes R37 220 u o 200 ~ 180 <l: ~ I-u ~- 3 ~ 160 ~ x ~ 220 200 I I x ~ 160 u 140 ....... ...... ",- Z 120 ttl Iii 100 D. E ttl 60 40 20 .Sx 20 o ~ 0 o x oj ~ 220 200 180 ttl o 100 2<)0" 300 400 500 600 ~ ~ ttl U 60 E 40 .£ ~ x u ;.. ...... R70C>-05 VRRM:S12ooV Three Phase 1,/ '............ ~ ~ ~ - R70<l-04 ~ u 140 3 120 Iii'" 100 D. E 80 I~ u'" E 100 5\ttl u 60 E ::J E o 100 200 300 400 500 600 700 800 I I Type R7oo/R701 ~ t-... VRRM:s12ooV ~ ~....... ........ A R70C>-03 / Six Phase R70C>-05 ~ ...... ~ .....- R70<l-04 ~- ~ 0 .......... ~ .'.~~£ .~t:. ' 100 200 300 I 100 ttl 60 E 40 ,;. v' 400 ;·;<'ida- 600 Average Forward Current, IF(AV), Amperes I Type R7oo/R701 VRRM:s2000V ~ t-..... ..... ~ 140 '" I'" '"'" U D. E o 150 300 450 Average Foward Current, I F(AV) , Amperes R70<l-04 N ~~ 3 120 40 20 "' 700-03 220 200 u 0 ..::. 180 x ~ 160 ~ "' ttl R38 . 80 x ........ ........ ttl 120 '" E I'" ........... Three Phase 40 0 140 .. 600 60 20 eo- / '" ~ 220 200 ==::::::::- ......... ~ .............. .II' ~- o 160 ~ .- VRRM:s2000V R70C>-04 160 20 u D. " ............ I.L ~ 180 " .S 'x :;; 3 """'" ~ Type R7oo/T701 - I- "' "" /' R70C>-03 80 x 180 <l: I- / 0 Average Forward Current, I F(AV), Amperes 0 ...., .. R70<l-04 220 u 200 Type R7oo/R701 - ~ i'-o... 120 100 ::J -........... ............ 150 300 450 Average Forward Current, 'F(AV)' Amperes 700 800 II 140 '" E I'" D. Single Phase' ::J ~ 160 ~ VRRM:I 2000V R70C>-03 Average Forward Current, I F(AV)' Amperes u -" 80 E I- Type R7oo/R701 _ :~ I- R70C>-04 II I :... 180 40 60 ::J - u 0 '" '"'" U E E Single Phase 80 ttl U ?to R70C>-03 120 VRRM:! 1200V ~ ......... .............. r--..... ....... 140 I Type R7oo/R701 - R70C>-05 ~ -....... ~ t-...... l/ 15. 100 E ~ I 1 Six Phase ~ R70C>-03 80 .S"x 20 ~ 0 ttl 700 800 - . 150 300 450 Average Forward Current, IF(AV), Amperes 600 Gene~~1 Purpose Rectifiers • R620 Symbol <1>0 <1>0, <1>0, H <l>J J, N Inches Min, 1.610 .745 1.420 .500 .135 .072 .030 Max, 1,650 .755 1.460 .560 .145 .082 300-500 A. Avg. Up to 3000 Volts Millimeters Min, Max. 41,91 40,89 18.92 19.18 37.08 36.07 12.70 14.22 3.68 3.43 2.08 1.83 .76 Creep Distance-.49 in. min. (12.60 mm). Strike Distance-.52 in. min. (13.21 mm), (In accordance with NEMA standards). Finish-Nickel Plate. Approx. Weight-2.3 oz (66g). 1. Dimension "H" is clamped dimension. , R62 Outline Applications: Features: • • • • • High Surge Current Ratings • High Rated Blocking Voltages • Special Electrical Selection For Parallel and Series Operation • Available in Factory Assembled Water or Air Heat Exchangers • Single or double-sided cooling • Long creepage & strike paths • Hermetic seal • Lifetime Guarantee Rectification Free Wheeling Battery Chargers Resistance Welding Example Obtain optimum device performance for your application by selecting proper Order Code. Type R620 rated at 400A average with V RRM Order as: = 1000V, R39 Voltage Blocking State Maximums<D Repetitive peak reverse voltage . v .... .' .. Non-repetitive transient peak reverse voltage. t:S 5.0 msec .......•.••........... Symbol VRRM 100 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 VRSM 200 300 500 700 1000 1200 1400 1600. 1800 2000 2200 2400 2600 2800 3000 3200 R620 __ 30 R620 __ 30 R620 __ 40 R620 __ 40--il ~620 __ 30~ R620 __ 50 Reverse leakage current. mA peak ......... Switching Typical Reverse Recovery Time IFM = 785A.tp := 100,",s diR/dt:= 25A/,",s. Tc := 25·C. ,",S •• , . . . . IRRM 60 60 6 9 65 to 190 65 to 190 1000 to 1400 65 to 175 65 to 190 1000 to 1400 .095 .02 .095 .02 50 Symbol trr 11 Thermal and Mechanical Symbol Min .. Max. oper. junction temp .• ·C ...... Min., Max. storage temp .• ·C ........... Min., Max. mounting force. Ib.®· ......... Thermal resistance® with double sided cooling Junction to case, 0 C I Watt ........... Case to sink. lubricated ·C/Watt ...... TJ Tstg ReJC Recs 65to150_ -65to190~ ·1000 to 1400----,! .095 .02 Current Conducting State Maximums Symbol RMS forward current. A •...... Ave. fo'rward current, A ... , ..... One-half cycle surge current®. A .. 3 cycle surge current®, A , .... . 10 cycle surge current@, A .... . 12t for fusing (for times = 8.3 msl A2 sec. IF(rms) IF(av) IFSM IFSM IFSM Max 12 t of package (t=8,3 ms), A 2 sec Forward voltage drop at I FM := 800 A and TJ := 25·C. V .. , ... Forward voltage drop at rated single phase average current and case temperature, V .' ..... , ... <D At maximum TJ CD Per JEDEC RS-282, 4.01 F.3. CD Consult recommended mounting procedures. R40 R620 __ 30 R620 __ 40 R620 __ 50 470 300 5500 4300 3300 625 400 6000 4700 3600 785 500 6500 5050 3900 125,000 20xl0· 150,000 20x 10· 175,000 1.7 1.5 1.4 1.7 1.85 1.85 20Xl0· P ~ :I 150 1400 140 l! ~1~ 130 X ;. I!? 100 .S .~ 90 ~ ~ +1 ip- - 1m 8) .;J 600 10 60 I 0 400 E :> E 200 50 j =l= ~1000 ;G11O ~ ~~ o( 120 t .. 'x ~ 00 50 100 150 20U 250 Average Forward Current.'F(AVI. Amperes 300 350 400 l! 0 250 150 200 100 0 50 Average Forward Current. 'F(AVI. Amperes 300 350 40( 1600 ~1400 (2000 ~1OOOFi33~:::3~cj~~~~~5:::i -~ £500 u 1~~~~~~~~~~~~~ to 2.0 3.0 4.0 5.0 6.0 7.0 Maximum Forward Voltage Drop. VFM • VOlts .10 H-++!I-!1#-I-i-HtIII--l--J..tIl.ilI-l~ .OOH~~~+W~-H~-l­ <:r .OOH-++!~-r~tIII-~~ilI-l- ~ ~!! .071-1-!-HlH1-I-1+l+!-4~~1-++ t~·06 ~ B.05I-H~-+H#hlI--4+!~t+ ~ .04 .I'~ .: ~ l03I-+++T+II~..f.+W~~I+III-,;f-l...J..J4tHllf--+-HJ+!ltI-+-1:+lt H++f.IHlI-++H+!!I--I- ~ ~ oU~Iiit::t:rWillU .0001 .001 TIIIlB t. Seconds .01 .1 1.0 10.0 100.0 50 100 150 ~ 250 300 350 400 450 500 550 600 Average Forward Current. 'F(AVI. Amperes R41 175 170 160 ~ 150 ~ 140 ~ ~ 150 t.Y130 ~ 130 ~ 120 ~ 110 a. 100 ~ 140 1 ~ : 5 ~ 120 110 100 E ~ 90 3l 80 70 E 60 50 8. a E 70 .1 : ~ ~ 500 550 600 50 100 150 200 250 300 350 400 450 500 Average Forward Current.IF(AV). Amperes 50 100 150 200 250 300 350 400 450 500 550 600 Average Forward Current,IF(AV). Amperes ~ .:. ~ ~ 50 100 150 200 250 300 350 400 450 500 Average Forward Current.IF(AV). Amperes 190 180 170 160 150 140 ~ 130 ~ 120 ~ 110 8. 100 E ~ 90 5 80 § ·xE ~ 50 100 150 200 250 300 350 400 450 500 550 600 Average Forward Current.IF(AVI. Amperes 100 150 200 250 300 350 400 Average Forward Current. IF(AV). Amperes 450 500 Symbol Millimeters Min. Max. Min. Max. ",0 ",0, ",0, 2.250 1.333 2.030 2.290 1.343 2.090 57.15 33.86 51.56 58.17 34.11 53.09 H ",J 1.020 .135 .075 1.060 .145 .090 25.91 3.43 1.91 26.92 3.68 2.29 J, N .040 1.02 Creep Distance-1.15 in. min. (29.36 mm). Strike Distance-1.02 in. min. (2591 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-8 oz. (227g). 1. Dimension "H" is clamped dimension. Features: • High Surge Current Ratings • High Rated Blocking Voltages • Special Electrical Selection For Parallel and Series Operation • Available in Factory Assembled Water or Air Heat Exchangers Ii 'Lifetime Guarantee Application.: • • • • Rectification Free Wheeling Battery Chargers Resistance Welding • Single or double-sided cooling • Long creepage & strike paths • Hermetic seal Example Obtain optimum device performance for your application by selecting proper Order Code. Type R720 rated at 900A average wit/l VRRM "" 1OOOV, Order as: R43 Voltage Blocking State Maximums CD Symbol 1~12~14~1600 180~rOO~r200 '4~116d~I'80~12000 22~124~1260~128~13000 2400 2600 2800 3000 3200 RepetitIve peak reverse voltage • V ....... VRRM Non-repetitive transient peak reverse voltage. t ~ 5.0 msec ..................... VRSM Reverse leakage current. mA peak ......... IRRM 2.00 300 500 700 1000 1200 1400 1600 1800 2000 2200 I..I' I..r'" I.. I' I..- R720__06 R720__ 09 R720... _12 50 I' .. . ~ I' I' ... I' R720__06 . R720__ 06. -, R720__ 09~ 50 --" LL 50 Switching Typical Reverse Recovery Time IFM lS00tp 190ps dlR/dt 25A/p.s. Tc 25'C. ps ... · .... = = = = " trr " .. 1 ... ... .. 13 Thermal and Mechanical Min .• Max. oper. junction temp .• 'c ...... Min .• Max. storage temp .• 'c ........... Min .. Max. mounting force. Ib® ......... Thermal resistance® with double sided cooling Junction to case. 'C/Watt ........... Case to sink. lubricated 'C/Watt ...... TJ Tstg ReJC Recs c.- C; Conducting State Maximums IF(rms) IF(av) 'FSM' IFSM IFSM Max '2t of package (t=8.3 ms). A"sec Forward voltage drop at I FM 1S00A and TJ 25'C. V ..... Forward voltage drop at rated single phase average current and case temperature. V .......... '2t = lOt ~ r"" ::: .... . ...... ... 65 to "75 "6 to 200 2000 t6 2400 .065 .02 R720 __ 09 . :;: c;: I' , I"! ,. 65 to 150 .65 to 200 2000 to 2400 ~ .056 .02 -,.... R720 __ 12 945 600 7000 5250 4350 1415 900 8500 /1350 5300 1886 1200 12500 9400 7800 204.000 80x10· 301.000 80x 10. 660.700 80x10' VFM 1.8 1.6 1.2 VFM 2.1 2.1 1.6 <D Al maximum TJ <D Per JEDEC RS-282. 4.01 F.3. CD Consult recommended mounting procedures. R44 , R720 __ 06 RMS forward current. A ....... Ave. forward current. A ......... One-half cycle surge curre,nt@. A 3 cycle surge current@. A ..... 10 cycle surge current@. A .... Pt for fusing (for times =8.3 ms) AO sec. = .055 .02 '""' i' Current 65 to 200' -66to'200 2000 to 2400. .~ ·-:r. j....~ ... !. irYPf 1 ! .. I .\ R720 _06 100 ~ ~ ! >=' !! t E ~ ~ il 50 E E • 40 ~ 100 200 300 400 500 soo 700 aoo 200 300 400 500 600 700 Average Forward Current. IF (AV). Amperes Average Forward Current, IF (AV). Amperes Maximum ForwardVo!tage Drop, V FM • Volts Average Forward Current. ~ .06 .9 .05 , IF (AV). Amperes u c °B .,c ".c " .E ~ .04 (J "C .03 Co ;; .L. .02 ;:: .c", >-;: E, .01 ~u EO. 'S( s ~J". 0 .1 .001 .01 Time, t.'Seconds Transient Thermal Impedance vs. Time \ 10 .! 100 J ___ o .00 200 300 400 500 600 100 800 900 1000 1100 1200 [300 Average Forward Current, IF CAV). Amperes R45 .:~i:t~2:~';~~~~-~i! 160 SIINGLE ;PHAS¢ 120 110 ;-,-;-1<72ib::::o;!t=<"k- ;.:i ' ! 100 ~ !i 90 aE 80 E 70 5 60 !l ~ .. , ~'-'M _ _ ": ".j E 50 J 40 ' = ' r:k~H 130 I-' ~ : 0 0 Average Forward Current, IF (AV), Amperes 200 175 170 190 160 180 150 130 140 120 I-' 130 120 100 110 ~ 100 a !i 90 E 80 E 80 ~ 70 E ~ t ~ i!. ~E 60 § 80 :. .~ 70 60 50 , " .• j :; 100 200 300 400 !IOO 6()0 700 100 800 900 1000 1100 1200 1300 200 300 Average Forward Current. Average Forward Current, If ("VI. Amperes 400 IF (AV), 500 190 150 160 140 150 130 140 I-' ~ ~ !i 120 5 70 E ::! TyFjE R720 " • I 100 90 ~ 90 !l ~ ~ 80 60 80 i 40 0 •.•• Average Forward Current, IF (AV). Amperes ""i.~ •. • .•.• ~ .. ~ ... ". -- .. ..: .,. 80 ... , 60 E 50 ~ :; 40 ~ 1000 I o f' ""'f , L, • ..... r. 0 R46 900 ~.:-!-:. 110 !! ~ 110 t 800 120 I-' 130 100 700 1200V -< VAAM r'200ElV .SJitQPHASE. ':' __1-'_' 160 180 170 600 Amperes 200 ·1 '_'H'_'~_' .~ :; E j:" .,..... ~~ ... i, ~ E ~ 200011 ; 110 t 90 !i $. T~f!~!o f'l:lAA.Elr":"'-; __ "~ 140 160 ! ~ 1200V ~ VAA~ 150 170 I-' ~ .JPER-ko,-L-:~-·:-~J 100 . - ~j~- .. -- 200 300 400 500 Average Forward Current. If lAY). Amperes 600 700 80Q 900 1000 Symbol <1>0 <1>0, <1>0, H <l>J J, N Millimeters Min. Max. Min. Max. 2.880 1.744 2.580 1.020 1.35 .075 .060 2.920 1.755 2.700 1.060 .145 .090 73.15 44.30 65.53 25.91 3.43 1.91 1.27 74.17 44.58 68.58 26.92 3.68 2.29 Creep Distance-.SO in. min. (20.32 mm). Strike Distance-1.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-16 oz. (454g.) 1. Dimension "H" is clamped dimension. Features: • High Surge Current Ratings • High Rated Blocking Voltages • Special Electrical Selection For Parallel and Series Operation • Available in Factory Assembled Water or Air Heat Exchangers • Single or double-sided cooling • Long creepage & strike paths • Hermetic seal • Lifetime guarantee ", it · )~\ ~) /. Applications: • Rectification • Free Wheeling • Battery Chargers • Resistance Welding Example Obtain optimum device performance for your application by selecting proper Order Code. Type R920 rated at 1600A average with VRRM order as: = 1000V, R47 Voltage Blocking State Maximums <D Repetitive peak reverse voltage ,V •••.... Non-repetitive transient peak reverse voltage, V :S 5.0 m sec •.................... Symbol VRRM VRSM 10~1~0~14~160~1 8°~1100011200 1600 1800 2000 2200 R920 __ 11 ./ R920 __ 11 .- R920 __ 16 ./ R920__ 20 ~ 1 Reverse leakage current, mA peak ......... 140~116001180~12000 220~1240~ 12600,1280~ 13000 200 300 500 700 1000 1200 1400 IRRM 100 -,'..... 'i' ... !..- ,,.. ':- 2400 2600 2800 3000 3200 R920 __ 11---~ R920 __ 16 R920 __ 20 75 " , 50 Switching Typical Reverse Recovery Time I FM 1500 tp 1901's diR/dt 25A/p.s, Tc 25·C, I's ....... = = = = trr ./ ,.... 12 15 20 , Thermal and Mechanical Min., Max. oper. junction temp., ·C ...... Min., Max. storage ,temp.,·C ........... Min .. Max. mounting force, Ib® .....•... Thermal resistance® with double sided cooling Junction to case, °C/Watt ........... Case to sink, lubricated ·C/Watt ..•... TJ Tstg L rReJC Recs r- 65 to 190 -65 to 190 5000 to 5500 .03 .01 1- , ',.. 65 to 175 . 65 to 190 5000 to 5500 .03 .01 ... ./ ..... ... - ~,- 65 to 150 , 65 to 190 5000 to 5500~ .03 .01 Current Conducting State Maximums R920 __ 11 RMS forward current, A ••..... .. Ave. forward current, A ......... One-half cycle surge current®, A .. 3 cycle surge current®, A ...... 10 cycle surge current®, A ..... Pt for fusing (for times> 8.3 msl A2 sec. Max l't of package (t=8.3 msJ, A'sec = Forward voltage drop at I FM 1500A and TJ 25·C, V ...•• Forward voltage drop at rated single phase average current and case -temperature, V .......... = IFlrms) IF(av) IFSM IFSM IFSM 12t l't VFM VFM CD At maximum TJ CD Per JEDEC RS-2B2, 4.01 F.3. CD Consult recommended mounting procedures. R48 1725 1100 16,000 12,000 10,000 1,100,000 90x10' R920 __ 16 2500 1600 21,500 16,000 13,300 1,925,000 90x10' R920 __ 20 3140 2000 30,000 22,000 18,500 3,700,000 90x10' 1.45 1.20 1.05 1.55 ,1.50 1.45 -::: 200 lr 180 i 180 ~ 140 I! 120 !I 100 § 40 ! u E I r--.... Type R920 VRRM.s1200 v Single Phase .... ~ ~ ~ f'} ~ ~ TypeR92Q._11/ ~~ "" 80 80 ~ A TypeR92o.._18/ 20 600 1000 1600 2000 i " 3000 2600 180 180 ~ 140 ; 120 ! 100 ! " "- ~" Type R92o.._20 / 200 u o I tj E ::J E I 200 I 180 140 I! 120 ~ I """'IIIIi 180 ~ i ~ ~ ~~ ~" ~ 100 Type R92o.. _11 / 80 Type R92o.. _18 ' 80 u E 40 80 E 20 20 o 600 1000 1600 200 180 180 "' "" " 2600 2000 100 Type R92Q. _11 " 80 TypeR92o.._18' Type R92o.. .20 40 20 o o '" /' ~ ') .... ~ 3000 ~ ~~ / Type R92o.. -20 ' 3000 ,, 1600 1000 600 "", "- /~ , } I ' """/ ~ Type R92o.. _18 ' 2000 ~ 2600 "' 3000 Averllge Forwllrd Current. IF (AV). Amperes - ~ 120 2600 ThraePhase Type R92o.. _11 ~, 140 80 ~ ~ Type R920 VRRM::! 1200 v Six Phase ~~ '" Type R920 1200 V< VRRM$ 2000 V 200 ~ 180 2000 1600 1000 200 lr Average 50rward Currem. IF IAVI. Amperes lr 600 .......... "" ~'" Type R92o....20 o o ......... ~ 40 ~"\/ }\.'\ o '" ~ ~/ Type R92o.. _18 / '"~" "- ::J I ~ TypeR92o.._11 / Average Forward Current. IF (AV). Amperes Type R920VRRMS1200v Three Phase - Type R92o..-20 ~ ~~ 80 Average Forward Currem. IF IAV). Amperes lr ~ Type R920 1200 V< VRRMS2000VSingle Phase _ "" /\.\ \ ~, 1000 1600 600 Average Forward Current. IF IAV). Amperes lr i 140 ; 120 1 100 : tj E ::J E "' "x ~ 2000 2600 180 ~ E ~ ~ 180 ............... Type R920 1200 V< VRRM:S 2000 V SixPhasa ~ ~ ~-..... ~ ~ "" >.... /~ 80 Type R92o.. _11 80 AV I' Type R92o.._18" 40 Type R92Q...20 / 20 o o 600 1000 ,\ ~ 1600 " ,,,- " 2000 2600 Average Forward Currem. IF IAVI. Amperes R4 200 u o Type R92Q.. _ 2000 V <: 180 i VRRMS3000 V 160 r............ ~ 140 ~ 8. 100 E ~ 80 Single Phase / ! 60 E 40 'j( . 20 ::! o u ::l E ~ ~ ~~ / ............ ~ / '" Six Phase I' 500 250 ~ 700 .2 5000 to 0. 'iii 4000 .!l C ., ~ ~ a.. "' 1250 1000 750 6000 c: Three Phase o 8 ~ -.........;::: Tvpe R92Q.._ll .,'" ;: ~ e> ....... 120 E - 3000 2000 E E 1000 ::l 1500 'x., ::! 0 ~ Average Forward Current. IF IAVI. Amperes ~ g g 8 .... ~ N g.... Averalle Forward Forward Current. IF IAV). Amperes 8000r---~~~---'----r---~---r---'---' r 3 ~ 2 ~ Type R92o.. _11 TJ = 150°C Ii f:! c .. ""~ '" ~ -' 0 ; o IIIII 100 i 6000~-+--~--+-~---+~~--~-; ~ a.. Type R92Q..-20 TJ=190oC "E ...!5 ~ TvpeR92Q.. _16 TJ = 175°C e::'" > Tvpe R92Q.._16 ~ 7000~---4----~----+---~-----t----~~--t----i I II ~ 'i ~ 1000 II 10.000 Average Forward Current.IFM. Peak. Amperes 5i B {}. Average Forward Currnt. IFIAV). Amepres 111111111 lll1lllW .03 H+I-HHl+HH-tttHitHtlll-ttttltlttffitH-ttHftH1ffHtttllttnm i i~H+~~H*~~~~~~~~~ffim~ l~ .en ~JH....++.l..HjIJ.IH.-+H+H#-HHH+tttIIltHitH+ttlttHttH §SJ: ~ .~ ~ ~~OLW~~~~~~WW~~~~~~ .001 .en .1 Tame. t. Seconds Transient Thermal Impedance vs. Time R50 1. 10. 100. i :::~--~---+----~--+----+--~~~+-~~~-; J c 3000 § 2ooo~--+---+---~~~~~~-t---t---i---1 ..:eE 'j( O~~ o __-L__~__~~~-L__~~~~. 300 600 900 1200 1600 1800 2100 Average Forward Current. IF IAVI. Amperes 2400 2700 Symbol 4>0 4>0, 4>0, H 4>J J, N Inches Min. 2.850 1.845 2.560 1.020 .135 .075 .050 Max. 2.900 1.855 2.640 1.060 .145 .090 Millimeters Max. Min. 72.39 73.66 46.86 47.12 65.02 67.06 26.92 25.91 3.68 3.43 2.29 1.91 1.27 Creep Distance-l.15 in. min. (29.36 mm). Strike Distance-l.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-l lb. (454g.) 1. Dimension ""H"" is Clamped Dimension. R9G Outline Features: • High Surge Current Ratings • High Rated Blocking Voltages • Special Electrical Selection For Parallel and Series Operation • Available in Factory Assembled Water or Air Heat Exchangers • Low Thermal Impedance • Single or double-sided cooling • Long creepage & strike paths Applications: • Rectification • Free Wheeling • Battery Chargers • Resistance Welding • Cathodic Protection Example Obtain optimum device performance for your application by selecting proper Order Code. Type R9GO rated at 1800A average with VRRM order as: = 1000V. R51 Voltage Blocking State Maximums <D Symbol Repetitive peak reverse voltage ,V....... VRRM Non-repetitive transient peak reverse voltage, V:::: 5.0 m sec ............ , . . . . . . .. . VRSM 1 + - - - - RSGG.._13 - - - - ' I ) - I + _ _ RSGG.._13 1 + - - - - RSGG.._18 1.+---- RSGG...22 Reverse leakage current. mA peak . . . . . . . .. Switching Typical Reverse Recovery Time I FM = 1500 tp = 1901'S dlR/dt = 25A/p.s, Tc = 25·C, p.s . . . . . . . I RRM 1+-----100 Symbol VRRM:::: 1200V 16 RSGG.._18 ----)~..f _ - --+'1+(--RSGG.._13 ---+1 --+ RSGO__ 22 75'---H-~---- 50------;~ 1200V <V RRM !S 2000V 20 2000V <VRRM:s' 3000V 26 trr Thermal and Mechanical Symbol Min., Max. oper. junction temp., ·C . . . . .. Min., Max. storage temp., ·C . . . . . . . . . .. Min .. Max. mounting force, Ib@ ........ . Thermal resistance@ . with double sided cooling Junction to case, ·C/Watl . . . . . . . . . . . Case to sink, lubricated ·C/Watt . . . . . . TJ Tstg ReJC Recs VRRM:::: 1200V -65 to 190 -65 to 190 5000 to 6000 .023 .075 1200V < V RRM ::; 2000V -65 to 175 -65 to 190 5000 to 6000 .023 .075 2000V < V RRM -65 to 150 -65 to 190 5000 to 6000 .023 .075 Current Conducting State Maximums SYmbol RMS forward current, A ........ . Ave. forward current, A ........ . One-half cycle surge current@, A .. 3 cvcle surge current@, A ..... . 10 cvcle surge current@, A .... . lOt for fusing (for times'S.3 ms) A2 sec. ' Max 1'1 of package (t=8.3 ms), A'sec Forward voltage drop at I FM = 1600A and TJ = 25·C, V ..... Forward voltage drop at rated single phase average current and case temperature, V ......... . <D At maximum TJ <D Per JEDEC RS-282, 4.01 F.3. <D Consult recommended f!lounting R52 IF(rms) IF(av) IFSM IFSM IFSM p~ocedur8S. ,R9GO_13 2040 1300 16,000 12,000 10,000 1,100,000 90xl0' R9GO_18 2825 1800 21,500 16,000 13,3000 1,925,000 90xl0' R9GO_22 3455 2200 30,000 22,000 18,500 3,700,000 90xl0' 1.45 .1.20 1.05 1.55 1.50 1.45 :S. 3000V 190 ~ 180 u 0 ~ :;, .... 160 ~ g 150 0. 140 E I- 130 " "en ttl , ~~ ~ l'.. 170 '"'t'o.. ...... 120 ." 60 o 8 8 '" ......... 190 180 ~ :; g '" .. ~ "" 170 160 150 " "en , , t-...... ~ i"'.. ~~ 140 Type R9GD.._13 '- ~ § ~ ~ 175 ~ 155 ~ ~ E 115 0) ttl 95 'j( 75 u E :J E I\.. I\.. ~ ~ § '" '" 8..... 170 - ~ " '" , ~ ~ype RJGO__ 18 .:s: ~ ~ \\ " "' o 8 '" g ~ ~ ~ ~ ~ ~ Average Forward Current, IF(AV), Amperes g '" ~ 155 Type R9GO VRRM :::;1200V Six Phase ~ :; 13 I- '135 ci ~ 130 E " I- CD I- 0) en 115 ttl 110 U E :J E 90 95 'j( ttl 'j( :2 ttl :2 Type' R9GD.._13 ~ 60 55 35 M '" ~ ~I" , , g 8..... N Type R9GO 1200V<VRRM:::;2000V Three Phase ttl I- ttl 8 It) 175 ~ 150 :; 13 E :J E ~ I'... Type R9GO_t2~ en ~ 8 I I I ~ 0) Average Forward Current, IF(AV), Amperes 0 "en U ~~ 0. '190 u .......... ~ :; ~ 60 8 N Average Forward Current, IF(AV), Amperes I- , '\ "" '" 8." I- 1,\ ' \ I\, 8 75 ~--+---4---4---4---4---~~~~-+---+~~ M M ~ Type R9GO _18 o ~ g "'"8 '\. 80 95 ~-~--+--~-~--~-~~-+-~~--+-~ 13 135 It\. , 70 ~ E 'xttl r--... """'""" "., " 120 50 ttl Type R9GD.. _22 u 110 E 100 :J E 90 'j( :2 "en Type R9GO VRRM:::;1200V Three Phase ~~ ttl ttl 8..... 135 ~-~--+--~~i-~~-~~~~~;r--r-~ U '" '" Average Forward Curren,t, IF(AV), Amperes '" 0. E 130 I- 8<:t 8 8 It) ~ ~ 115 ~-~--+--~-4-~~~~~~~~~~~-~ I'\. '\. "\ 155 1--+-....::p...,~~-+--+--1 0. E Type R9GD.. _22 Type R9GD.. _18 70 ~ g:; Type R9GD.._13 " ' 110 E :J E 100 0)( • 90 ttl :2 80 0 I--I--- "I",,'" '" "'."" V f'....." "' , r\"" , '" ""\: '\ U u , Type R9GO VRRM :::; 1200V Single Phase 75 70 50 Type R9GD.._18 0 8 '" 8<0 [;l 8 C'\I 8 Il) 8 CD 8N. Average Forward Current, IF(AV), Amperes 8..... '" Average Forward Current, IF(AV), Amperes R53 150 ~~ l;' 140 Xc( '" ~ ..... ~ " " '" t'... "- '\. ::;; 130 ~ :; I 120 ~G> 110 Co E 100 f-'" !II " u 90 E ::l E 80 " 70 ·x ~ "" '" "'f\. G> i'.. .._ I'\.. "Single Phase 8 ~ 8000 i 7000 ) .~f r-.." ~\ ~hr~Ph~eI ...... Co 5000 .~ 4000 j 3000 ~ 2000 ./ ::l ..; E 1000 ·x o ~~ " ~ '" Type ~ 7000 ~ 6000 ~ 5000 ::;; 8 a Thre~ -.l 3000 0 / 1/..;1~ V ~~ V ~~ V" ~~ E 1000 10,000 Phase Singl~ Phase J " :ii I Six prase, -"'"300~600 i"'" ·x o 900 1200 1500 1800 2100 2400 Average Forward Currn!, IRAV), Amepres Forward Current. IFM, Peak Amperes .03 ~8000 ~ 3lCD u c: i'~ .02 > ~ ~ ::l -, o ~I' tl c: CD 7000 r--t---+----ir--t----+ i 6OOO~~--r_~--r__r--~-r~r_~ g 6000~-~-_+-~~-+---+-_4-_7~~~--~ .~ :~ 8. o .5 J~ eo ::l " e= 'jj( U ~~ 8 V 2000 E Single Phase R9GQ.~18 E iii ~ ~V Co .~ Type R9GQ._13 TJ = 150°C c: ./ ~ f""'" c:" .2 16 4000 0 .ij / Average Forward Forward Current. IF IAV), Amperes l 1000 / I Three Phase '" 8000 100 V V./ ~ E Average Forward Currn!, IFIAV), AmpeJ"es 0 V J' V / / Six Phase 16 8 '" I ~. a "'~ I o I TYPE R9GQ. _13 !II > 6000 ~ SiXPh::~ 60 I I Type R9GQ. _13 f - - 2000V<VRRM .01 ~ f-u R54 ~ .... ~I0 OMC~~~~~ .001 .01 .1 10 Time, t, Seconds Transient Thermal Impedance Vs. Time 100 o 300 600 __ 900 ~ __ 1200· ~ __ 1500 ~ __ 1800 ~ __ 2100 Average Forward Current, IF IAV), Amperes ~~ 2400 2700 Symbol Inches Millimeters Min. Max. .424 .405 .424 .437 A 4>D E F J 4>T Max. 10.77 10.29 10.77 11.10 .075 .175 .800 .250 1.91 4.45 20.32 6.35 .422 .060 .453 .105 10.72 1.52 11.51 2.67 M N Min. ",w 10-32 UNF-2A Glass to Metal SealCreepage & Strike Distance = .07 in. min. (1.75 mm) (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-.2 oz (6g) Standard Polarity-Green Glass II Reverse Polarity- Brown Glass NOTES: 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of this terminal is undefined. 3. 10-32 UNF-2A maximum pitch diameter of plated threads shall be basic pitch diameter (.1697",4.29 mm) Ref. (Screw thread standards for federal services 1957) Handbook H28 Pl. Conforms to DO-4 Outline Features: • • • • Applications: • • • • ·Diffused Construction Fast Recovery Reverse Polarity Available LowVF Ordering Information Volfdqe Rdtlnq I,. Computer Power Supplies Control Circuits Free Wheeling Applications By-Pass Rectifiers Electrical Characteristics "CDCe ·1 "'"CO" R302 R303 I R302 R303 PardIT1(>ters I I 50 IN3879 IN3889 100 IN3880 IN3890 200 IN3881 IN3891 300 IN3882 IN3892 I2t for Fusing 400 IN3883 IN3893 VFM @IFIAV) & 25°C 500 R3020506 R3020512 600 R3020606 R3020612 R302 - Standard R303 - Reverse For JEDEC Reverse Polarity add suffice R, i.e., IN3879R cD!see JEDEC Circuit IN3879 R To IN3883 R IN3889 R To IN3893 R " 6A "12A @100 @ 100 " 75A "15OA .25 90 1.5V 1.5V " 3.0 MA "3.0 MA 3.0oC/W 3.0 oC/W TJ IOPER) Range " -65 to 150o.C " -65 to 150°C Tstg Range " -65 to 175°C " -65 to 175°C Current IFIAV) @TC,oC IFSM !fiR CD " 200 r$ "200 ns " JEDEC Registered Parameters R55 Current Versus Temperature 30r-------,--------.--------~------~ 300, ., 200' -g 15 100 ., ~ III. Q. ., II! 50 <II E Co < "'.,OJ" 20 < i 10 ~ E ~ Q. !: i ~ i 5 u OJ 2, u. 1 ~ IN3889 Series 10~~~~1_~~~-+--------+_------~ II! 5 ::> u 'E 20~------1--------+--------+-------~ .,II! Co IN3879 Series 'EOJ ~ u. 0 1.5 1.0 0;5 . 2,5 2.0 0~80~-~~~-----~~----~~~~--~160 Maximum Allowable Case Temperature, Tc, °C Maximum forward voltage, VFM, Peak Volts Non Repetitive Surge Current Versus Time Power Versus Current 8or----.-----.----~--~_r----_r----~ 300r-----,-------,-----,-----,---r-,---, ~ 15 ~ 250 60~--4---_+--~~ m a. .i. j ~ s g 401---+---+>~-1 Phase_+_---I-_ _-I .., (3 (TJ ,; 1500 C) e- 15 j 20t---+~---t--"O'--1f__'_--+-,---+_--~ ~ ...O! .I! J E ::> E 'x 'i IE Or:3 Phase .~ 200 O~'--~--~~-~~--~--~---~ 10 20 30 '40 60 50 0 2 Forward Current,IF(AV), Amperes Per Diode 5 10 30 40 20 60 Cycles At 60 Hertz JEDEC Circuit Normalized Rectifier Efficiency Versus Frequenc lOO D.ur. ] 80 h 70 ~ 60 in I .01n. RDI SCR Scope Reverse Recovery Time IN3879 and IN3889 Series IFM=36A, diR/dt=25A/usec trr=200 NS I'R302 50 40 J: o lK R56 ......... 90 lOOn. Kilohertz I 10 100 Inches Min. Symbol A B </>0 .667 .060 E F J M N Max, .450 ,080 .667 .687 .200 1.000 .375 .453 .175 .422 .140 .156 %-28 UNF-2A </>1 Z </>W Millimeters Min, Max. 11.43 2.03 16.94 16.94 17,45 5.08 1.52 25.40 9,53 10.72 11.51 4.45 3.56 3.96 Glass To Metal SealCreepage & Strike Distance = .09 in. min. (2.46 mm) , (In accordance with NEMA standards.) Finish-Nickel Plate. A'pprox. Weight-.6 oz (18g) Standard Polaritv-Green Glass Reverse Polarity-Brown Glass NOTES: I. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of this terminal is undefined. 3. ~-28 UNF-2A. Maximum pitch diameter of plated threads shall be basic pitch diameter (.2268", 5.74 mm) Ref. (Screw thread standards for federal services 1957) Handbook H28 1957 Pl. Conforms to 00-5 Outline Features: • Diffused Construction • Fast Recovery • Reverse Polarity available • low Profi Ie Package • low VF ELECTRICAL CHARACTERISTICS QRDERING INFORMATION VOLTAGE RATING 'OA "wec I 30A JEDEC PARAMETERS R402lR403 R402,R403 <D'N3899 <D'N3909 100 IN3900 200 -- 50 Application.: • Computer Power Supplies • Control Circuits • Free Wheeling applications • Bypass Rectifiers --- - IN3B99.R TO IN3903 R ---------- ------- IN3909.R TO IN3913 R - *20 A *30 A IN3910 Currant IF (Ay) @TC,DC @IOODC @IOODC IN3901 IN3911 IFSM *225A *300 A 300 IN3902 IN3912 12t for Fusing 210A2 sec 400 IN3903 IN3913 ""M @ IF (AY) @25 DC 500 R4020520 R4020530 600 R4020620 R4020630 /RRM @ l00DC R402 - Standard R403 - Reverse CD For 1.5 V *6.0MA 375A2 sac 1.5.V *10.0 MA ReJC 1.0DCIW TJ (OPER) Range '-65 . to 150°C t..65 to 150DC Tstg Range '-65 to 175 c C '-65 to 175c C I.ODC/W JEDEC reverse polarity add suffix R, i.e .. IN3899R. (j) See JEDEC circuit. <D trr 200 ns 200 ns * JEDEC Registered Parameters. R57 Current Versus Temperature I . ~ III Co 100 ., TJ = 160°C . ~ /1. rt 10 5 /I HI "E II~ u . ~ ~ o IN3903 p"" IN3899 ~ u "E . ~ ~ ... 2 1.4 ~V 2.5 20 3 3.5 IN389J Series K~ E ., ~IN3909-13 .5 /v IN3909 lseries. ~ !!: 1111. ... 30 « ..... TJ = 25°C --- E ~ -25°C I '0 ~ 40 Co 1//.1<.-. "" . ., IL X//A. l. ~ 0 /h V «E E III is ~ ~ 150°C .., ~ :.,,-"" I / ~ I 10 ~~ o 80 100 140 120 180 160 200 Maximum Allowable Case Temperature. Te. °C Maximum forward drop. IIFM. Peak Volts Power Versus Current 80 IN3899 and IN3909 Series ~ 60 V 40 V .,~ / Co ~ ~ !!: / 450 --- -- / ~ 20 t-- -... r--- r-- 1-Phase Or 3-Phase (Tj = 150°C) / "'Io-~ k IN3909 Series IN3899 : r i t " > - ./~ (l ~ I I I I II o 20· 30 40 50 2 5 10 ::::r-r- -- ... ... 20 30 40 Forward Current. IF(AV). Amperes Per Diode Cycles At 60 Hertz JEDEC Circuit Normalized Rectifier Efficiency Versus Frequency 60 IN3899 and IN3909 Series 100 1000. ., E u D.ur. lK .OUt .E .,c:~ ·u 80 70 60 iil 50 10 40 ~III 30 c: .2 ~ 90 .11 RDl SCR Scope a: 20 10 Reverse Recovery Time IN3899 and IN3909 Series IFM = 100 A. diR/dt = 25 Alus R58 Kilohertz 100 Symbol A B <l>D E F J M' N Q <l>T Z <l>W Conforms to DO-8 Outline Features: • Fast Recovery Times • Standard and Reverse Polarities • Flag Lead and Stud Top Terminals Available • High Surge Current Ratings • High Rated Blocking Voltages • Special Electrical Selection for Parallel and Series Operation • Glazed Ceramic Seal Gives High Voltage Creepage and Strike Paths • Compression Bonded Encapsulation for Thermal Cycling Capability in Excess of 100, 000 Thermal Cycles • Lifetime Guarantee Inches Min. 4.18 .050 .8~0 1.031 .255 2.50 A37 .605 Max. 4.62 .100 1.000 1.063 AOO ,.650 .645 1.675 .291 .250 .310 %-24 UNF-2A Millimeters Min. Max. 106.17 117.35 1.27 2.54 25AO 21.84 27.00 26.19 10.16 6.48 63.50 11.10 16.51 15.37 16.38 42.54 6.35 7.39 7.87 Creep & Strike--Distance: .66 in. min. (16.94 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Welght-3.5 az (99g) Standard Polarity-White Ceramic Reverse Polarity-Pink Ceramic 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular Orientation of terminal is undefined. 3. Pitch diameter of %·24 UNF·2A (coated) threads (ASA B1.1-1960). 4. Dimension "J" denotes seated height with lead bent at right angle. MIII Applications: • Inverters • Choppers • Transmitters • Free Wheeling Ordering Information Example Obtain optimum device performance for your application by selecting proper Order Code. Type R502rated at 100A average with VRRM:;:: 1000V, recovery time = 1.5 !,sec, and standard flexible lead-order as R59 Voltage 0 Blocking State Maximums <D Symbol Repetitive peak reverse voltage ,v ....... Non-repetitive transient peak reverse voltage. V~ 5.0msec ..................... VRRM 100 200 300 400 500 600 700 800 900 1000 1100 1206 VRSM 200 300 400 500 600 800 900 1000 1100 1200 1300 1400 Reverse leakage current, mA peak. . . . . . . .. I RRM ~---------------------------45--------------------------~~ Switching (TJ = 25·C) Max. Reverse Recovery Time IFM = 314A tp = 40p.s dlR/dt = 25A/ p.s, Tc = 25·C,l's . . • •• . . 1+------------------------1.5, 2.0 & 3 . 0 - - - - - - - - - - - - - - - - - - - - - + - l trr Thermal and Mechanical Min., Max. oper. junction temp., ·C ..... Min., Max. storage temp.,·C .......... Max. mounting torque, in Ib.@ ® ....... Thermal resistance (J)' Junction to case, ·C/Watt ........ Case to sink, lubricated, ·C/Watt ..... . . . . . -40 to 175 -40 to 175 120 Current R502 __ 08 R50-3 __ 08 Conducting Stat. Maximums RMS forward current, A ........ . Ave. forward current, A ........ . One-half cycle surge current<!>, A .. 3 cycle surge current<!>, A ..... . 10 cycle surge current@, A ..... . 12t for fusing (for timesi = 8.3 ms) A2 sec. Forward voltage drop at I FM 314 A and TJ = 25·C, V ..... . Forward voltage drop at rated single phase average current and case temperature, V ......... . = IFlrms) IFlav) IFSM IFSM IFSM R502 __ 10 R503 __ 10 125 80 3000 2500 1800 157 100 3500 2900 2150 37,500 51,000 ! 12t VFM VFM <D At maximum TJ <D Per JEDEC RS-282, 4.01 F.3. <D Consult recommended mounting procedures. <D For higher voltage. contect Westinghouse. R60 .27 .12 ReJC Recs 1.65 1.45 1.60 1.50 180 170 ,.. i"=: ~ t::::: ~ ~ 160 ~ := I (60 Square) 0 I"'" Three Phase (1200 Square) ~"" 130 c. e ~ R502.._08 R503.._08 .I /,. -.,~~ It': t--.. 150 I-- Six Phase ~140 ~I--I I I I Single Phase (1800 Sine) ./ i 160r--+--+---+--+--~--+-~__~V--+-~V7'~~~ ~ 7 ~ ./ ./ ; 1401.j-~-+-+--+-+-+-~'-~~~~~+-~~~ ~ ~. ~ 1/ = c120r-~-+--+-~~-+--./~~+~~~~~~~--+--+-~ '~ 100'1--+--lI---l--+-~I7'L..-+,.";"./""'~-l- '~ ./. ~ V Six Phase (60 0 Square) - C, 80~-+-~~~-~~~·~~V~ Three Phase ~ 'l (120 0 Square) I-__f--lf--l ~ 60 V ~ ~ 120 5" 110 IL. § 100 E 40 E 'j( ~ ./ t--t-+-+--+-+"""If--t-7f-V-7"'l .j----I--+-+--+-+~/4--h.£.,i/J;//~ ::;; E § I I-- R502.._.o8 180 I-- R503••,08 90 20 40 60 100 80 Average Forward Current, IF (AVI, Amperes 120 . / I~ Single Phase """,/~~h~I--4_ (180 0 Sine) -1--+--1-__1-__1---1 ~ 20~~~~j~~~~~±~~~I~~1~~jr~~±~~t~~t~~~~~~~ o 20 40 60 80 100 Average Forward Current, IF (AV), Amperes ,120 180 F u 0 R502.._08 ~ R503 __08 CI) "c.~ . /~ ~ E « "" 1000 ~ ...- !-- ~ , :ti" c. E 140 b " 100 ;== :: TJ = 175°C ;:::: = ... -I "E ,. " ~ u.. " II> u" E "E " :2 TJ - 25°C C/l 250 " ~ 230 I 1== R502.._1 ~ 'iii 130 II> I-- ~ ~ 90 t-- '"E E 70 'j( 50 " :2 3.0 " Three Phase (120 0 Square) 10 o Single Phase (180 0 Sine) "...x: ....... " .>< ./ ./ / ./ ./ ./ ./ :7 ./ -/ ./ ./ 150 c. 0 IL. ./ "Ec. V ~'000 ~ "2 f7 ~ ,3 ." ./ J--" ~TJ ~ t::I-' I--- " A 100 "0 '~5°C I u.. ::;..-' 20 1-10 F-R502.._1O ~ R503.._10 ~ i """ ./ J' 10'0 140 80 '60 20 Average Forward Current. IF (AV), Amperes ~ ~ Six Phase, (60 0 Square) C C 110 110 ~ 21 Ot-- R502.._10 190 > ~ 170 0 12 100, 0 3 2 Forward Voltage Drop, VFM, Volts ! '16 130 'j( I o '~ " I- / II 10 ::: 160 'iii l: u :=.,; R502.._10 R503.._10 :; 150 " ~" ~ ! I"J 1\ TI = 2rCI 100 80 40 60 Average Forward Current, IF(AV), Amperes 120 o 2 Forward Voltage Drop, VFM, Volts 3 R61 ~------,tp------~ tp=~YCC (,.sec) IFM'=Ec/VLtC RD, SCR, To Oscilloscope JEDEC Recovery TIme Circuit Recovery Time Waveform 5 ¥ .a S ,.; E i= ., 8., a:., .,Ie,. ., a: 3 ~ I @ r-S;;~ V -<:: - .2 ie'= 175 LFM =3\ 4A 0 ./ ~ ~ /. V ./ /' , trr @Tel= 25°C "I:'s @,Te = 25°C IFM = 314A . IR I R I r I I I VPICS everse ecovery Ime and Overshoot Current Vs. -Ratj of Revj'se Current for ;2.0 usefR502 atd R50: T o R62 t 4 20 30' 40 Rate of Reverse Current, diR/dt (Amps/usee) 50 o Recovery Time Comparison for Fast Switch and Conventional Rectifiers Symbol A B .. D E F J M N Inches Min. 5.32 .063 .980 1.212 .250 3.250 .530 .660 Q ..T Z ..W Conforms to DO-9 Outline Max. 6.00 .172 1.065 1.250 .630 .755 .749 2.250 .350 .330 .440 0/4-16 UNF-2A Millimeters Max. Min. 135.13 152.40 1.60 4.37 24.89 27.05 30.78 31.75 6.35 16.00 82.55 13.46 19.18 16.76 19.02 57.15 8.38 8.89 11.18 Creep & Strike Distance: .49 in. min. (12.62 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-8 oz. (226g) Standard Polarity-White Ceramic Reverse Polarity-Pink Ceramic 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of terminal is undefined. 3. Pitch diameter of %-16 UNF·2A (coated) threads (ASA 61.1·1960). 4. Dimension "J" denotes seated height with lead bent at right angle, Features: • Fast Recovery Times • Standard and Reverse Polarities • Flag Lead and Stud Top Terminals Available • High Surge Current Ratings • High Rated Blocking Voltages • Special Electrical Selection for Parallel and Series Oper.ation • Glazed Ceramic Seal Gives High Voltage Creepage and Strike Paths • Compression Bonded Encapsulation for Thermal Cycling Capability in Excess of 100,000 Thermal Cycles • Lifetime Guarantee Example Applications: • • • • Inverters Choppers Transmitters Free Wheeling * For higher voltages, consult factory. Obtain optimum device performance for your application by selecting proper Order Code. Type R602 rated at 250A average with V RRM Recovery time = 1.5 I'sec, and standard flexible lead - order as: = 1000V. R63 Blocking State Maximums<D Symbol Repetitive peak reverse voltage ,V ...... . Non-repetitive transient peak reverse voltage, V:S 5.0 msec ...•......•.......... Reverse leakage current, rnA peak .. 100 200 400 600 800 1000 1200 1400 1600 200 300 500 700 1000 1200 1400 1600 1800 50 ( Switching 50----+ Symbol Max. Reverse Recovery Time = = I FM 785A, tp 1001's diR/dt 25A/ps, Tc 25°C. ps ...... . = = trr ~ 1.5. 2.0 & 3.0 Thermal and Mechanical Symbol Min., Max. oper. junction temp., °C . Min., Max. storage temp., °C . . . . . . Max. mounting torque, in lb. Thermal resistance Junction to case, °C/Watt . . . . Case to sink. lubricated, °C/Watl . . . . .. ..... TJ Tstg ..... . . . .. -40t0175 -40 to 200 360 ReJC Recs .17 .10 .17 .10 Symbol R602 __ 20 R603 __ 20 R602 __ 25 R603 __ 25 Current <D At maximum TJ CD At 60 Hertz. R64 1200V < V RRM:S 1600V -40 to 175 -40 to 200 360 Conducting State Maximums RMS forward current. A .•... Ave. forward current. A •........ One-half cycle surge current®, A .. 3 cycle surge current®, A ..... . 10 cycle surge current®. A .... . I2t for fusing (for times> 8.3 ms) A2 sec. Forward voltage drop at I FM = 800 A and TJ = 25°C, V ..... . Forward voltage drop at rated single phase average current and case temperature, V ..... '..... VRRM:S 1200V IF(rms) IF(av) IFSM IFSM IFSM 315 200 4500 400 250 5000 3500 2700 3900 3000 85,000 104,000 1.85 1.65 1.65 1.58 2.0 & 3.0 ---l 70 H-··..;-..l±E:::Ff 60 .. ~ ~~~t O~~·_·~~·~·~~~~~~~==~~~i.~ o Average Forward Current. IF(AV). Amperes 100 50 50 100 150 150 150 100 50 ~r-~~-~""~"--'..'.~~~~-r~~~~ f' 2000 f" i'~ ~3500 ; - :l u ~~ 300 250 300 I: • I I '",- '~ :l REb< Rtp;: m2500 a. i i! i -I ~tl I CJl -'" I: fi+ /~~ ~~ ~~ ! .~.:. H· Iii I"..... JI i 1 " !'- b:tt'-o~1 E ~2000 I- _ .~ 2.5 3.0 3.5 i I :E1500 1.5 2.0 Forward Voltage Drop. VFM. Volts 200 II I f-- I'i'~ I i 1.0 250 Average Forward Current.IF(AV). Amperes Average Forward Current.IF(AV). Amperes .5 200 Average Forward Current. IF(AV). Amperes 1 2 3 5 10 20 I 30 ' SE 50 I 100 Surge Cycles At 60 Hertz R65 10n UJ ~-----tp.------~ RD, R~O.25 tp=nVLC ("sec) L<O.01I'H IFMriiEEc/yrJC SCRl To Oscilloscope JEDEC Recovery Time Circuit Recovery Time Waveform 3.5 3.0· u 2,5 w :t til ...l: ~ i= I 0: (Il I!! J 2.0 1.5 1.0 .5 0 10 20 30 40 Reverse Rate Of Current. diR/dt. I ! I ... _, . ~ : !, I iI .-. .j.,J. I ,! i , .' 'I j, ! , i • :11 !; ~- I 1 i ~ ~ V 1 I: ["-'1- . i:~ I-""I-'" 'I .005 .01 Time. t. Seconds R66 Recovery Time Comparison for fast Switch and Conventional Rectifiers II, i : 60 50 N p.SEC I, ! ,05 .1 .5 5 lO lOS Symbol <l>D <l>D, .. D, H <l>J J, N Min. 1.610 .745 1.420 .500 .135 .072 .030 Max. 1.650 .755 1.460 . ',560 .145 .082 Min. 40.89 18.92 36.07 12.70 3.43 1.83 .76 Max. 41.91 19.18 37.08 14.22 3.68 2.08 Creep Distance-.49 in. min. (12.60 mm). Strike Distance-.52 in. min. (13.21 mm). (In accordance with NEMA standards). Finish-Nickel Plate. Approx. Weight-2.3 oz (66g). 1. Dimension "H" is clamped dimension. R62 Outline Features: Applications: • • • • • • • • Fast Recovery Times High Surge Current Ratings High Rated Blocking Voltages Special Electrical Selection For Parallel and Series Operation • Non Magnetic Package • Single or double-sided cooling • Long creepage 8< strike paths • Hermetic seal .' Lifetime Guarantee Inverters Choppers Transmitters Free Wheeling *for higher voltages, consult factory Example Obtain optimum device performance for your application by selecting proper Order Code. Type R622 rated at 400A average with VRRM and 1.5 /Lsec recovery time order as: = 1200V, R67 Voltage Blocking State Maximums (j) Repetitive peak reverse voltage ,V ....... Non-repetitive transient peak reverse voltage, V:S 5.0msec ...................... Symbol VRRM 100 200 400 600 600 1000 1200 1400 1600 VRSM 200 300 500 700 1000 1200 1400 1600 1800 I Reverse leakage current, mA peak ......... IRRM I *= 50 I' 50 ----? Switching Symbol Max. Reverse Recovery Time I FM 785A, tp 1001'S diR/dt 25A/ps, Tc 25°C, ps ....... = = = = trr I; ... 1.5, 2.0, 3.0 Thermal and Mechanical Symbol Min., Max. oper. junction temp., °c ..•.•. Min., Max. storage temp., °c ..•..•••••. Min .. Max. mounting force, Ib Thermal resistance with double sided cooling Junction to case. ·C/Watt ........... Case to sink, lubricated ·C/Watt •..... ......... TJ Tstg -40 to 175 -40 to 175 -40 to 200 1000 to 1400 .095 .02 ReJC Recs Current Conducting State Maximums Symbol RMS forward current. A .•.••......•. Ave. forward current, A ............• One-half cycle surge current~, A •..•. 3 cycle surge current~, A ........ . 10 cycle surge currel)t~, A •....... 12t for fusing (for times = 8.3 ms) A2 sec...•...••....••••••...... Max 12t of package (t=8.3 ms). A2 sec.•••........•.•..•....•. Forward voltage drop at I.M = . 800 A and TJ = 25"C, V ••.......• Forward voltage drop at rated single phase average current and case temperature, V ••..••..•.•.•. CD At maximum TJ CD At 60 Hertz R6S I'(,ml) 1.(••) I.SM IFSM I fSM R622 __ 35 R622 __ 40 650 350 4500 3500 2700 626 400 5000 3900 3000 86,000 104,000 20 x 10. 20xl0· 1.86 1.65 2.25 2.00 2.0,3.0--7 ~150 • • • • • • • ..... 140 jm• • • • • t ~ ~ J 50 100 150 200 250 300 350 400 450 500 Average Forward Current. IF(AV). Amperes 50 100 150 200 250 300 350 400 450 500 550 600 Average Forward Current. IF(AV). Amperes 11_ ~1400 21600 i 1200 ~1000 ~600 j400 E ::::J .~ 50 100 150 200 250 300 350 400 450 500 Average Forward Current.IF(AV). Amperes ~ 200 50 100 150 200 250 300 350 400 450 500 550 600 Average Forward Current.IF(AV). Amperes J 1 .5 1.0 1.5 2.0 Forward Voltage Drop. V FM . Volts 2.5 3.0 3.5 5 Surge Cycles At 60 Hertz 10 20 30 50 100 R69 ,J:ln UJ i----tp,----i R:O;;O.25 tp=n.yLC (I'sec) l<O.01"H I FM =EcI.ytJC SCR, RD, To Oscilloscope JEDEC Recovery TIme Circuit Recovery TIme Wavefonn 3.5 60 50 ~ 4O~ « .. 3O~ c! 20 '0 40 30 60 50 TrIll hI Ti I V .07 .06 IJ .05 n, .0 / .02 .01 0 .0001 I.- .001 Time. t, Seconds R70 ..... .01 . .1 10 ~ O~ Reverse Rate Of Current. diR/dt. AI"SEC .08 § u 100 Recovery TIme Comparison for Fast Switch and Conventional Rectiflllrs Symbol 4>0 4>0, 4>0, H .pJ J, N Inches Min. Max. 2.250 2.290 1.333 1.343 2.030 2.090 1.020 1.060 .135 .145 .075 .090 .040 Millimeters Max. Min. 57.15 58.17 33.86 34.11 51.56 53.09 26.92 25.91 3.68 3.43 2.29 1.91 1.02 Creep Distance-1.15 in. min. (29.36 mm). Strike Distance-1.02 in. min. (2591 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Appro •. Weight-8 oz. (227g). 1. Dimension "H" is clamped dimension. R72 Outline F..tures: • Fast Recovery Times • High Surge Current Ratings • High Rated Blocking Voltages • Special Electrical Selection For Parallel and Series Operation • Non Magnetic Package • Lifetime Guarantee Applications: • Inverters • Choppers .. Transmitters • Free Wheeling Example Obtain optimum device performance for your application by selecting proper Order Code. Type R722 rated at 800A average withV RRM and recovery time 3.0 psec. = = 1200V R71 Blocking State Maximums <D Symbol Repelilive peak reverse vollage ,V ....... VRRM Non-repetitive transient peak reverse voltage. I::; 5.0 msec ..................... VRSM 100 \200 1 300 200 300 400 160~180~roo~r200'140~1:600 1800 12000 121 00 1 2200 \2300 \2400 12600 800 1000 1200 1400 1600 1800 2000 2200 2300 2400 2500 2600 2700 R722--05 ·R722_-06 Reverse leakage curr~nl. mA peak ... ...... R722--08 50 IRRM R722- --05 I I I 50 Switching Max. Reverse Recovery Time I FM 1500 tp 190ps diR/dl 25A/ps, Tc 25'C, ps . = = = = 2.0,3.0 .' . " 5.0 3.0,5.0 trr Thermal and Mechanical Min., Max. oper. junclion lemp.,'C . ..... Min., Max. slorage lemp., ·C ........... Min .. Max. mounling force, Ib® . .. ...... Thermal resistance® wilh double sided cooling Junction to case, °C/Watt .... Case to sink, lubricaled 'C/Watt . , . . . . TJ Tslg -40 to 150 -40 to 175 -40 to 190 2000102400 ReJC Recs .055 .02 Current Con dueling Slate Maximums R722--05 RMS forward currenl, A ..... Ave. forward current, A .. ...... One-half cvcle surge currenl0, A . 3 cvcle surge current0. A .... 10 cvcle surge current0. A .. PI for fusing (for times=·B.3 msl A2 sec. Max 1'1 of package (1=8.3 ms). Nsec Forward vollage drop al I FM 1500A and TJ 25'C, V ..... = = IF(rms) IF(av) IFSM IFSM IFSM 121 12 t VFM 1 At maximum TJ 2 Per JEDEC RS-282, 4.01 F.3. 3 Consult Westinghouse recommended mounting procedures. R72 R722--06 R722--08 785 500 7000 5040 4200 945 600 9500 6B40 5700 1250 800 11000 7920 6600 205,000 375,000 504,000 BOX10' 2.6 BOX10· BOX10· 1.B 1.65 r:' .,. .o .~ E E :> 'x.. >« :i!<L . OJ en U E :> E .." :::E Average Forward Current, IF (AV), Amperes r:' o 'iii 120~.';;·":+*:+:"1: ... Co en Ci en ~ ~ 800'~~~~~~~~~~~~~~~nma~~~~ ~ ;=, <L - 6001f,4'--C!-'·-!---:-T"J''''" E :> .§ Average Forward Current, IF (A V), Amperes Average Forward Current, IF(AV), Amperes R73 500-800 A. Avg. Up to 2500 Volts 2.0 - 5.0 Jlsec 6.0- 11 Fast Recovery 2.8 .. • -: ••• " " " ; 1 " T 5.5: 2.6; 5.0' 2.4-- 4.5·· 2.2' ~_ 4.0- !l 2.0 :!: ~ :!l; 3.5 g. 3.0 o 2.5· !! '" 2.0"" ~1.4 g 1.2- o 1.0", ...~_~ :..-.-:::=....- 1.5 _ _ 'E 1.0' ~ .f 1.8 ~-1.6' (I) ~ • Rectifiers R722 ...g, ~ 'EIII 0.5- 0: 500 100 200 1000 Forward Current, IFM, Peak Amperes 2000 0.8 5000 0.6e 0.4' S 0.2' 0 0 lL 500 1000 100 200 Forward Current, IFM, Peak Amperes 2.8 2000 5000 2.6 5 2.4. u ...'" 2.0 c: .; > 1.8 1lc: :i 1.6· > 1.4 '0 0 0 "'" ~ ..... E:!: = U .03 0. III 1.2· , 1110 E ...: ... ~ 1.0 ~ 0.02 1-" EN 0.8 '0 > 0.6 'Eco 0.4· S 0.2· lL 0 0 .05; ~ ~ .04 lL <i .06: ;:; 2.2' E ,,-.01 'x ~ ~ B 200 500 1000 2000 .001 .01 .1 Time, t, Seconds Transient Thermal Impedance vs. Time , ; 100 . 0··----- 5000 Forward Current, I FM, Peak Amperes . Typ;;cal • I" J i it·,·, . . . . I r l 'T1 r Reve!s~ Rl!c?~erv Tiin. ~rid;qver~tlop~ c;u!r!'7t:'" ~ ~ \is. _ ... .. t r ~ ! +-1 > • • • • Reye-rse Rate of Current' for- 3.O;.tSec-· 6.0 R;>22· -_ •• - : .• - 480 ! !'" ! ["440 5.0' t ~; 400 lrl CJ) ~ :. 4.0 E ~ ... « ~ oj E 3.0' :' 0 I- , 200 c: :1~.:@tJ''';.2i;''c.iFM';'1oodA: 160 ~ i .. ,. 10aol<~ ..'11@li' os. , . ~l :12'5"C . : . ~. F.M , . -: • r-'~ 120 t ~ 2.0 o u Q) ...14>~: , @It·· '75'C 1 _ .... 'fQaoA' .l"!' .-.',F.M~~-''':-''80 a:: ~ ii" a:: 0 · · · · t , l t . , · .. - .. I.... j-;-. o .. I .I 20 40 60 80 100 120 Reverse Rate of Current, di R/dt, A/p.Sec R74 _ . . -"40 ! 1" • 140 t • '"; 160 : j"t ~ [I' '0 180 200 a I"'......- - - t p , - - - - - - l tp = n'\,fLC (/Lsec) ~Y:M'=Ec/# 1) 0 ~ CD c3 Recovery TIme Waveform 10 100 Symbol <1>0 <1>0, <1>0, H Inches Min. 2.850 1.845 2.560 1.020 .135 .075 .050 Millimeters Max. Min. Max. 2.900 1.855 2.640 1.060 .145 .090 72.39 46.86 65.02 25.91 3.43 1.91 1.27 73.66 47.12 67.06 26.92 3.68 2.29 <l>J J, N Creep Distance-1.15 in. min. (29.36 mm). Strike Distance-1.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-l lb. 1454 g.) 1. Dimension "H" is Clamped Dimension. Features: • Fast Recovery Times • High Surge Current Ratings • High Rated Blocking Voltages • Special Electrical Selection For Parallel and Series Operation • Non Magnetic Package Example Applications: • Chopper • DC to AC Inverters • Transmitters • High Frequency Rectification . Obtain optimum device performance for your application by selecting proper Order Code. Type R9G2 rated ar 1400 A average with VRRM = 1200V and recovery time = 3.0,usee. R75 Voltage Blocking State Maximums <D Symbol Repetitive peak reverse voltage ,V....... VRRM 100 200 400 600 800 1000 1200 1400 1600 1800 20002200 2400 2600 2800 3000 3200 VRSM 200 300 600 700 10001200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 Non-repetitive transient peak reverse voltage. V:S 5.0 msec ..... .... ............ ~----R9G2....D9-----'J~--R9G2....D9 ~----R9G2.._11 3400 ---3IIE---- R9G2....()9 ---.......;~ R9G2.._11 ~----R9G2.._14 ----~ Reverse leakage current. mA peak .. IRRM Switching ~------100---------~~---75---~~----------50-------~~ VRRM~1200V 1200V""'VRRM:= 2000V 2000V-VRRM:53200V Max. Reverse Recovery Time IFM =1500 tp = 190us diR/d. 25A/us, Tc 25°C, I's. •. . . .• . .... = = Irr Thermal and Mechanical Min" Max. oper, Junction temp" °C. ,. . . . . . Min" Max, storage temp" °C ......... , .. , . Min" Max. mountong force, Ib,0 ... , ..... . Thermal resistance TJ Ts.g 0 with double sided cooling Junction to case, DC/Watt ......... , .. , • Case to sink, lubricated DC/Watt ...... , • RWC Recs 3,0,5,0 5.0 5.0 VRRMS1200V 1200V- VRRM::S 2000V 2000V-VRRM :53200V 5000 to 6000 -40 to 150 -40 to 190 5000 to 6000 -40 to 150 -40 to 190 5000 to 6000 .023 .075 .023 .075 ,023 .075 -40 to 150 -40 to 190 Current Conducting State Maximums RMS forward current, A ........... , , .... . Ave, forward current. A .......... , ... , ... , One-half cvele surge current, A 0, .. , .... . 3 cycle surge current, A 0 ........ , , .. . 10 cycle surge current, A 0 ....... " . , . , . I't for fUSing (for times==8,3 msl A'sec, Max I't of package (t = 8,3 msl, A'sec Forward v,oltage drop at IFM = 3,OOOAandTJ = 25°C, V ..... , .... " ... R9G2_..D9 IFlrms) IFlav) IFSM IFSM IFSM I't I't VFM o At maximum TJ o Per JEDEC RS-282, 4.01 F.3. o Consult recommended mounting procedures. R76 R9G2..._11 R9G2 __14 1,415 900 12,000 8,600 7,200 1,730 1,100 15,000 10,750 9,000 2,200 1,400 25,000 17,900 15,000 600,000 9Oxl0' 940,000 9Oxl0' 2,600,000 9Oxl0' 4,80 3,10 2.50 II> 160 u 0 ~ 140 ~ "'i; ! pO f:I 100 GiQ. E 60 ~ ~ .. 60 - 'K Three Phase (120 0 Square) co 40 Six Phase 0 20 f-- (60 Square) I :E o o ~ 3000 c:: .~ Q. ,~ ;;! / ~ :: 0 D- 1500 /# E 1000 :I E 'x 500 A~ . I :E 1500 2000 o U a ~ ! := 140 , Q) Q. 120 80 . :g Si~Phase I u E 60 r-- (60 0 Square) I\, / - I ., I ~ RSG2.._11 - ~ ::. (180 0 Sine) 0 E ~ ~ b. ~~ Three Phase A (120 Square) ~ / ~ 100 f- ! I I Single Phase :> . I "" I (120 Square) 0 I i" Single Phase I (180 0 Sine) I " 500 1000 Average Forward Current, IFIAV), Amperes I 1500 2000 1500 2000 4500 4000 RSG2._11 3500 c:: ""~ Q. 2500 ., 'iii 0 2000 Gi ~ 1500 D- 40 E 1000 :I • 'x 20 to o :E o 1000 500 Average Forward Current, IFIAV), Amperes 1500 1000 500 Average Forward Current, IFIAV), Amperes 2000 160r---~--~----r---'---~----~--~---' o Six Phase 0 Square) i" (60 ~ I" Three Phase n 'i :E u ~ ~ 3000 :I E 'K J o , Average Forward Current, IFIAVI, Amperes 160 / IX f' VI liLt /,W 0'" 2000 ., 'L RSG 2. ..oS / 2500 'iii ~ /'" \ r--- I 0 r\'" ~ co u E :I E / I 4000 3500 :> SinglePhaL (180 0 Sine) 4500 x ::. « '\ ~ 10 CD ICD ~ RSG2...QS +-_ 140 1-....;::.....I111:~+__ ~ ! '" ~ x 4500 4000 « ::. 3500 :> ~ ~ c:: .g to c. 'iii 80 60~---r----r-~~---4~--4---~~--+---~ 2500 0'" 2000 ~ Q) ::0 1500 D- 40 20 3000 1----+----~--4_---4----4_--_4----+_--~ o ~--~--~--~--~--~----~--~~ o 500 1000 1500 2000 Average Forward Current, IFIAV), Amperes E 1000 :I E 'xco 500 :E 2000 Average Forward Current, IFIAV), Amperes R77 10000 II> V ~ ~ ~ 1000 i :; g TJ = 150°C c: - .~ .02 I/~ 8c: . 'iQ. // rl 100 ~~ ..," -=-==~t$>. ~ ~ 0 .- ?/ V/ V !V ~ i ~ ~'lJG'J,-' ~9G'}...',II. ~ .03 :. .E ~ u 'E ~ ....o '" io-~ 10 o 2 3 Forward Voltage Drop, VF;"', Volts 4 S .001 7 6 .01 .1 10 Time. t. Seconds Transient Thermal Impedance Vs. Time L 2.5"H IFMl ,DJl rn ~ 0 tp R~O.25 tp=Tr.yLC ("sec) L< 0.01 "H IFM'=Ec/VOC SCR, RD, To Oscilloscope JEDEC Recovery Time Circuit Recovery Time Waveform 10 .," II> ::> ); iii 'S~ 6 Typical Reverse Recovery Time and Overshoot Current I VS I Reverse Rate of Current For 5.0 usee R9G2 ~ I I I 400 ~trr @TJ= 150°C ~@TJ= 1500C, IFM = 1500A---' ~ .-100-""" ~ 300 E 4 ["'-... to-- 8 .... ...... .,> 0 .,"~ ., !!! ~ a:: V 2 0 ~ V ./ V ./' V - ....- V I-........ ~ ",.. « j V 200 100 o 50 75 100 g" ~> V l o s @.Tj = .25.o C"IFM = 1500A 25 i., ~ trr @ Tj = 25°C, 1'25 Reverse Rate of Current, diR/dt, Amps/usee R78 8. ~ V Fast Switch Rectifier Recovery Time = 3.0 J,lS8C 150 o Recovery Time Comparison for Fast Switch and Conwntional Rectifiers --lOS 100 INTRODUCTION Westinghouse thyristors are designed, manufactured, and tested to insure the circuit designer' "state-of-the-art" flexibility in design a:1d dependability in operation. Westinghouse high power 5CR's feature all-diffused elements and are available in a variety of packages: stud, disc, integral heat sink, and flat base. These 5CR's offer high surge current capability with optimized forward voltage drops, soft firing and high di/dt capability with center-fired dil namic gate designs, and the industry's highest guaranteed dv/dt capability with shorted-emitter designs. All high power Westinghouse stud mount devices utilize compression bonded encapsulation (CBE) construction which reduces thermal fatigue by eliminating solder joints. Westinghouse disc devices feature non-magnetic packages and are cold-welded to avoid thermal stresses on the semiconductor elements during encapsulation. Westinghouse Phase Control 5CR's offer package 12 t or explosion ratings for most ceramic packages; in addition, surge suppression ratings are available which enable the designer to better utilize the full capability of Westinghouse 5CR's. The Westinghouse T625 now offers the designer of a 1500 C operating junction temperature 5CR; this device features higher current ratings and better overload characteristics for motor control applications. Westinghouse Fast 5witching 5CR's offer turn-off times as low 10 microseconds as a result of an exclusive irradiation process. These center-fired di/namic gate designs all feature low switching losses, high di/dt, low IGT, high current, high voltage,low recovered charges, and fast turn-off times. The Westinghouse mid-gate structure (available only as a T72H or T9GH) is interdigitated gate design which optimizes the device for higher peak currents and narrower pulse widths while provic1ing low switching losses and faster turn-on and turn-off capability. The Westiinghouse Reverse Blocking Diode Thyristor (RBDT) offers the control of an 5CR without the complex firing circuitry. This device blocks vol- THYRISTOR (SCR/RBDT) PRODUCT INDEX Type Number Page 2N681-92 2N1792-1809 2N1842,A-50,A 2N1909-16 2N3884-96 2N4361-68 2N4371-78 2N5204-07 511 519 59 519 531 521 521 513 T527 T600 T607 T610 T620 T625 T627 T680 583 533 579 533 543 547 587 573 T9GO T9GH T40R T62R T72H T400 T500 T507 T510 T520 561 593 595 597 589 513 523 577 527 541 T700 T707 T720 T727 T760 T780 537 581 551 591 571 575 T920 555 TA20 567 tage in the forward direction until the appropriate dv/dt pulse is applied. The RBDT offers excellent di/dt capability up to 3,OOOA/us, and seriesing is easily accomplished for high voltage applications. Westinghouse offers extensive testing capability for series and/or parallel matching, special parameter selection, Type Number Page or full high reliability screening. Westingoffers a Lifetime Guarantee on all 5CR's bearing the symbol +. In addition, all Westinghouse thyristors are available on factory assembled and tested air or water cooled heat exchangers in a variety of circuit configurations. 5pecify Westinghouse Power Thyristors. 51 PHASE CONTROL SCR'S 10 - 250 Amperes 1500 CJ z i 800 III CJ ...~ g 400 200 50 50 o AVERAGE CURRENT RATING BDISC STUD ~FLAT BASE 150°C JUNCTION TEMPERATURE * PHASE CONTROL SCR'S 250 - 1400 Amperes 3000 2200 2000 CJ Z i III 18001500 I------t:;:; - 1200- I-- CJ 1000 ... 800 > 800- ~ 0 ./ * r- -'- - ~%- ~ 4OO1tl "I 2:~l~ '- L..... :oo~~ ~ I"! , -1 ~ _~ ~ ~,~ 250 300 300 300 300 350 350 350'-400-450~550 800 700 800 800 900 1000 1000 1200 1200 1400 o AVERAGE CURRENT RATING STUD MOUNT II DISC ~ STUDLESS QINTEGRAL HEATSINK * 150°C JUNCTION TEMPERATURE S2 FAST SWITCHING SCR'S & RBDT'S 22 - 250 Amperes 1200 1000 (!) Z i= c( II: 800 600 w (!) c( !3 ~ 400 200 50 22 40 60 70 115 80 126 126 125 150 160 176 200 260 AVERAGE CURRENT RATING OSTUD MOUNT NOTE: BDiSC 'REVERSE BLOCKING DIODE THYRISTOR (RBDT) Turn off times shown represent fastest currently available at given voltage rating. FAST SWITCHING SCR'S 250 - 900 Amperes 2000 1BOO~------------------------------------------------------------~~--~rw~- 1200~~~~~~~~~~----~~~~.---- 1000 BOO 600 400 200 50 L--_ _ __ 250 250 275 300 325 350 350 400 450 450 475 800 900 AVERAGE CURRENT RATING DSTUD MOUNT f:j DISC • di/namic Midgate design NOTE: Turn off times shown represent fastest currently available at given voltage rating. S3 + PHASE CONTROL SCR'S TO-~ TO-83 T400__16 10 150 16 250 14000010 14000110 14000016 14000116 14000210 14000216 14000310 14000410 14000510 14000610 14000710 14000810 14000910 14001010 14001210 14000316 14000416 14000516 14000616 14000716 14000616 14000916 14001016 14001216 PACKAGE TYPE 10-48 10-48 PAGE NUMBER 513 513 AVERAGE CURRENt ONE CYCLE 5URGE ~ VOL1AGE 100 160 200 250 300 400 500 600 700 600 TO-94 70 1000 2NI909 2,N1792/2N191 0 2N1793/2N1911 2N179412N1912 2N179512N1913 2N179612N1914 2N1797/2N1915 2N1798/2N1916 26 50 1 " ., T4OO__10 JEDECI TYPE 900 1000 1200 1400 1500 2N1803 2NI804 10-83110-94 519 PHASE CONTROL SCR'S 70 - 176 Amperes T620-_13 1620__16 1600-_18 T610 __18 80 1800 125 1600 150 3300 175 5500 15100080 15100180 16100280 16100380 T6100480 T6100680 T5100680 T5000780 T5000880 T5000980 T6001080 T5001280 T6001580 15200013 16200113 16200213 15200313 T6200413 T6200613 T6200613 T6200713 T&200813 T&200913 T6201013 T6201213 T5201513 16200015 16200116 16200216 16200316 T6200415 T6200616 T8200616 T620071& T620061& • T6200916 TII201016 T6201215 T6201615 16100018 16100118 16100218 T6100318 T6100418 T6100618 T6100618 T8000718 T6000618 T6000918 T6001018 T6001218 T6001618 T52 T62 TO:93 541 543 533 JEDEC/1:YPE VOL1AGE T521T62 ~ ""~ 50 100 200 300 400 500 600 700 600 900 1000 1200 1500 PACKAGE TYPE PAGE NUMBER 54 523/527 . • THYRISTOR SELECTOR GUIDE PHASE CONTROL SCR'S 175 - 300 Amperes T820 __ 20 TYPE * T700__ 2& * T820 __ 30 T700__ 30 AVERAGE CURRENT ONE CYCLE SURGE 200 4000 250 7000 300 5500 300 8400 VOLTAGE 100 200 300 400 500 T6200120 T6200220 T6200320 T6200420 T6200520 T6200620 T6200720 T6200820 T6200920 T6201020 T6201220 T6201420 T6201520 T7000125 T7000225 T7000325 T7000425 T7000525 T7000625 T7000725 T7000825 T7000925 T7001025 T7001225 T700.1425 T7001525 T7001625 T7001825 T7oo2025 T7oo2225 T6200130 T6200230 T6200330 T6200430 T6200530 T6200630 T6200730 T6200830 T6200930 T6201030 T6201230 T6201430 T6201530 T7000130 T7000230 T7000330 T7000430 T7000530 T7000630 T7000730 T7000830 T7000930 T7001030 T7001230 T7001430 T7001530 T7001630 T7oo1830 T7oo2030 T7oo2230 600 700 800 900 1000 1200 1400 1500 1600 1800 2000 2200 PACKAGE TYPE T62 T70 T62 T70 PAGE NUMBER 543 S37 S43 S37 T68 . ~---' ... T70 a • \-,,~ T76 * HIGH TEMPERATURE· 150°C > PHASE CONTROL 350 - 700 Amperes * ' ~ T780__ 35 T&25__40 T720 __ 55 T920__ 07 AVERAGE CURRENT ONE CYCLE SURGE 350 10,000 400 5000 550 10,000 700 15,000 VOLTAGE 100 200 300 400 500 T78oo135 T78oo235 T78oo335 T7800435 T7800535 T7800635 T7800735 T7800835 T7800935 T7801035 T7801235 T7801435 T7801635 T6250140 T6250240 T6250340 T6250440 T6250540 T6250640 T6250740 T6250840 T6250940 T6251040 T6251240 T72oo155 T72oo25S T72oo355 T7200455 T72oo555 T7200655 T72oo755 T72oo855 T72oo955 T7201055 T7201255 T7201455 T7201655 TYPE 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2500 2800 3000 " T78 T9200607 T92oo707 T9200807 T9200907 T9201007 T9201207 T9201407 T9201607 T9201807 T9202007 T9202207 PACKAGE TYPE T78 T62 T72 T92 PAGE NUMBER S75 S47 S51 555 * HIGH TEMPERATURE· 1500C j~ .".....,., ~",~ T72 T92 55 PHASE CONTROL SCR'S 800 - 1400 Amperes T90G..._08 T820__ 10 T9GO __12 TA20 __ 14 AVERAGE CURRENT ONE CYCLE SURGE 800 13,000 1000 27,000 1200 27,000 1400 35,000 VOLTAGE 800 700 800 900 1000 1200 1400 1800 1800 2000 2200 2400 2600 2800 3000 T9GOO808 T9G00708 T9GOO808 T9GOO808 T9G01008 T9GOI208 T9GOI408 T9GOI808 T9GOI808 T9G02008 T9G02208 T9G02408 T9G02808 T9G02808 T9G03008 T9200810 T92oo710 T9200810 19200910 T9201010 19201210 19201410 T9201810 T9G00812 T9G00712 T9G00812 T9G00912 T9G01012 T9G01212 T9G01412 T9G01612 TA200814 TA2oo714 TA200814 TA200914 TA201014 TA201214 TA201414 TA201814 TA201814 TA202014 TA202214 PACKAGE TYPE T9G T92 T9G TA2 PAGE NUM8ER 561 555 S61 567 TYPE T92 T9G TA2 S6 FAST SWITCHING SCR'S and RBDT'S 22 - 125 Amperes * T607__40 T60'2-_70 T627__12 AVERAGE CURRENT ONE CYCLE 5URGE 40 1000 70 1200 115 1200 VOLTAGE 100 200 300 400 500 600 700 900 1000 1200 T5070140 -T507024O T5070340 T5070440 T5070540 T5070640 T5070740 T5070840 T5070940 T5071040 T5071240 T5070170 T5070270 T5070370 T5070470 - 15070570 T5070670 T5070770 T5070870 T5070970 T5071 070 T5071270 T5270112 T5270212 T5270312 T6270412 T5270612 T5270612 T5270712 T5270812 T6270912 T5271 012 T5271212 TURN OFF TIME 10-501'5 10-501'5 10-50 IJS PACKAGE TYPE TO-83/TO-94 PAGE NUMBER 577 TYPE 800 * +? 00-5 (T40R) ~ TO-83 -, ~ \' T52 577 TO-94 583 'RBDT - Rever.e Blocking Diode Thyristor I I \ - .~ FAST SWITCHING SCR'S 125 - 250 Amperes ,, TO-93 l:L TB07__ 13 T627__16 T62'2-_20 AVERAGE CURRENT ONE CYCLE 5URGE 125 3500 150 3500 200 4000 I VOLTAGE 100 200 300 400 T6270115 T6270215 T6270315 T6270415 T6270515 T6270615 T6270715 T6270815 T6270915 T6271015 T6271215 T6270120 T6270220 T6270320 T6270420 T6270520 T6270620 T6270720 T6270820 T6278920 T6271 020 T6271220 T521T62 900 1000 1200 T6070113 T6070213 T6070313 T6070413 T6070513 T6070613 T6070713 T6070813 T6070913 T6071013 T6071213 TURN OFF TIME 10-50 1'. 10-501'. 10-50 ps PACKAGE TYPE TO-93 T62 T62 PAGE NUMBER 579 587 587 TYPE 500 600 700 BOO T62R ~ 57 FAST SWITCHING SCR'S 250 - 350 Amperes * T72H __ 25 T70'Z...._30 T727__ 35 AVERAGE CURRENT ONE CYCLE SURGE 250 6000 300 8000 360 7000 VOLTAGE 100 200 300 T72HOI25 T72H0225 T72H0325 T72H0425 T72H0525 T72H0625·· T72H0725 T72H0825 T72H0925 T72Hl025 T72H1225 T7070630 T7070730 T7070830 T7070930 T7071 030 T7071230 T7270635 T7270735 T7270835 T7270935 T7271 035 T7271235 25-50 iJS 20-50 }-IS 15-50l's TYPE T70 400 500 600 700 800 900 1000 1200 TURN OFF TIME T72 PACKAGE TYPE T72 T70 T72 PAGE NUMBER 589 581 591 * di/namic mid-gate deSign FAST SWITCHING SCR'S 400 - 900 Amperes T9G T727_A5 TYPE AVERAGE CURRENT ONE CYCLE SURGE 450 8000 VOLTAGE 100 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 T7270645 T7270745 T7270845 T7270945 T7271 045 T7271245 * T9GH_-D9 475 900 13,000 8000 T7270148 T7270248 T7270348 T7270448 T7270548 T7270648 T7270748 T7270848 T9GH0609 T9GH0709 T9GHOB09 T9GH0909 T9GH1009 T9GHI209 T9GHI409 T9GHI609 T9GHI609 TURN OFF TIME 20-50 }Js 10-50 }Js 30-80 }Js PACKAGE TYPE T72 T72 T9G PAGE NUMBER 591 591 593 :l<dilnamic mid-gate design S8 '" T727_A8 Symbol A A, rJ>D E F J M N rJ>T rJ>T, Inches Min. .330 Max. .505 .880 .544 .562 .152 1.193 .300 .453 .165 .075 .544 .113 Millimeters Min. Max. 12.83 8.38 22.35 13.82 13.82 14.27 2.87 3.86 30.30 5.33 7.62 10.72 11.51 4.19 3.18 1.52 1.91 3.05 .210 .422 .125 .060 Z .120 %-28 UNF-2A <t>W Approx. Weight-.33 oz. (10 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Contour and angular orientation of terminals is undefined. 3. Pitch diameter of 14-28 UNF-2A (coated) threads (ASA 81.1-1960). Conforms to TO-48 Maximum Ratings and Characteristics JEDEC Types: 2N1842, TJ=100'C; 2N1842A, TJ=125'C Blocking State Symbol <: NN '<t'<t ~~ zz NN <: MM '<t'<t '<t~ '<t'<t '<t'<t <: 1010 '<t'<t <: .......... <: 00 00 <: C"l C"l <: 00 '<t'<t '<t'<t '<t'<t 200 250 300 400 500 300 350 400 500 600 6.0 5.5 5.0 4.0 3.0 LtlLtl 0000 0000 0000 0000 0000 0000 ........ ........ ........ ....ZZ.... ........ ........ ........ zz zz zz zz zz zz NN NN NN NN NN NN 0000 0000 NN NN zz <: LtlLtl "Repetitive Peak Forward and Reverse Voltage, volts ......... VORM 25 50 100 150 VRRM "Non-repetitive Transient Peak Forward and Reverse Voltage, VRSM 75 150 225 t!!:5.0 msec, V .••.•.•...•.•..•..••..•.•••....•.•••• 35 "Forward and Reverse Leak,age Current, (full cycle average) mAo .. IO(AV) IR(AVI 022.5 019.0 012.5 6.5 I I Conducting State (Max. Values at Max. TJ) RMS Forward Current, amps .......... "Ave. Forward Current (180'Conduction) amps ........................... Surge Current (at 60 Hz): "Y.z Cycle, amps. 3Cycles,amps. 10 Cycles, amps. 12t for Fusing (at 60 Hz half-wave), amps2 sec ....................... Forward Voltage Drop at TJ =25'C ITM = 10 A. volts ......................... Symbol .trRMS 2N1842 Series CD 16 trAV ITSM trSM trSM 10 125 90 75 12t 60 VIM 1.6 Thermal Characteristics ·Oper. Junction Temp. Range, 'C ....... TJ 'Storage Temperature Range, 'C ........ Tstg Max. Thermal Impedance, 'C/Watt: Junction to Case ....... , .... , ..... ROJC Max. Thread Torque, Lubricated, in. Ibs .. "JEDEC Registered Parameters. -40 to + 1OOCD -40 to +125CD 1.3 30 Gate Parameters (Max. values at TJ =25'C) Gate Current to Trigger (VFB -12V), ma. Gate Voltage to Trigger over temperature range (VFB=12V), volts ............ "Non-Triggering Gate Voltage (Rated VFB), TJmax, volts ....•...... "Peak Forward Gate Current, amps ...... "Peak Reverse Gate Voltage, volts ....... 'Peak Gate Power, watts .............. "Average Gate Power, watts ........... Symbol IGT VGT VGNT IGFM VGRM PGM PG(AV} Switching State Typical Turn-On Time, IT-10 A, 10-90%, VDRM = 1 0 volts ,TJ=25'C, !-'sec ..... ton Min. di/dt, Linear to 5.0 ITAV, . amps/!-'sec .•................ , .... di/dt Typical Turn-Off Time, IF=10 A, TJ max, diR/dt=10 A/!-,sec., dv/dt= 20VI !-,sec. Linear to .8 VoRM !-,sec .•.. tq Typ. dv/dt, Exp. to VORM ,voltsl !-,sec ...... dv/dt CD 2N1842A Series is the same except: TJ and Tstg=-65 to +125; VGT=3.7; VGNT=.25. Actual test limit 6.5 mAo 2N1842 Series CD 80 3.5CD .3CD 2 5 5 .5 3 25 50 100 o 89 3r Electrical Characteristics £1 ~ 'if'-1-~'l i 25~---- "--':'" ~ 1.---.i1--ConduCtion .,,- I . , I Angle. ~~'--' -:--. r-3W>--r' ..... " .t?/Jl ... ((It ~ConQuctlon Angle. I . _···-15··_···· _.1 20 Average Forward Current. IT(AV). Amperes Figure 1. Power dissipation vs forward current. rectangular wave. 20 Figure 2. Case temperature va forward current. rectangular wava. 125100 i 2 . '·~~i/~.. :0 , o~ ! -'- ·-i~· 2 ; 8 0 -' .IC~lion 11800 --.;.JAnglei& "10 t-:- '12 2" ' c. 9570· •. E ~ E E o " " :;: 0 Average Forward Current. ITIAV). Amperes Figure 3. Power dissipation VB A'IO" T·A~ ---1 ~ 8560· 6 4 2 6 --. forward current. half-wave sinusoid. '0. 1.2;·-- , .-. U - "., p ." . . . . . - 0··"'·-'-' .. 30~ , .8~' ~- i 20; ; ,,.- . ! 10f .2; ,. . - ·~--IO ----16cf Forward Current. ITM. Peak Amperes Figure 5. Forward voltage va forward currant. 510 '10 12 Figure 4. Case temperature vs forward current. half-wave sinusoid. IA 40. "" ! .~.. Average Forward Current. ITIAV). Amperes '1000 o~-6i--·---" :61 .1 Time, t, Seconds Figura 6. Transient tharmal impedance va time. Symbol A A, </>D E F J M N </>T </>T, Inches Min. .330 .544 .113 Max. .505 .880 .544 .562 .152 1.193 .300 .453 .165 .075 Millimeters Min. Max. 8.38 12.83 22.35 13.82 13.82 14.27 2.87 3.86 30.30 5.33 7.62 10.72 11.51 3.18 4.19 1.52 1.91 3.05 .210 .422 .125 .060 Z .120 ":4-28 UNF-2A </>W Creep &. Strike Distance. .27 in. min. (6.96 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-.33 oz. (10 g). 1. Complete threads to extend to within 2}1 threads of seating plane. 2. Contour and angular orientatIon of terminals is undefined. 3. Pitch diameter of %-28 UNF-2A (coated) threads (ASA B1.1 -1960). Comforms to TO-48 Outline Maximum Ratings and Characteristics Blocking State (TJ=125'C) Symbol JEDEC Type co co z N volts .... VORM VRRM "Non-repetitive Transient Peak Forward and Reverse Voltage. VRSM t :::; 5.0 msec 'Forward and Reverse Leakage Current. (full cycle average)mA to(av) tR(av) N M o:t co co co z N z N z N co co co L() co co z N co co co z N "coco z N co co co z N en co co z N 0 en co z N a; co z N N en co Z N 'Repetitive Peak Forward and Reverse Voltage. ,v. .............................. Conducting State (TJ =125'C) RMS Forward Current. amps .......... • Ave. Forward Current (180' Conduction) amps. . . . . . . . . . . . . . . . . . . . . . . . . .. Surge Current (at 60 Hz): *1t.i Cycle. amps. 3Cycles.amps. 1 0 Cycles, am ps . 12t for Fusing (at 60 Hz half-wave), amps2 sec.. . . . . . . . . . . . . . . . . . . . . .. Forward Voltage Drop at TJ =25'C IF=16 Adc, volts ................. Symbol hlrms} Ir lav} hSM IrsM IrSM 12t VrM Thermal Characteristics ·Oper. Junction Temp. Range. ·C ....... TJ 'Storage Temperature Range. ·C ........ T.1g Max. Thermal Impedance, 'C/Watt: Junction to Case ................. ROJC Max. Thread Torque, Lubricated, in. Ibs .. All Types 25 16 150 110 90 90 1.7 65 to +125 -65 to +150 1.3 30 25 50 100 150 200 250 300 400 500 600 700 800 35 75 150 225 300 350 400 500 600 780 840 960 6.5 6.5 6.5 6.5 6.0 5.5 5.0 4.0 3.0 2.5 2.25 2.0 Gate Paramet.ers (TJ=25'C) Symbol Gate Current to Trigger (VFB -12V), ma. IGT Gate Voltage to Trigger Over Temperature Range (VFB =12V), volts ....... VGT "Non-Triggering Gate Voltage at TJ= . 125'C (Rated VFB). volts ........... VGNT 'Peak Forward Gate Current, amps ...... IGFM "Peak Reverse Gate Voltage, volts ...... , VGRM 'Peak Gate Power, watts... . . . . . . . . . .. PGM • Average Gate Power, watts. . . . . . . . . .. PG(AV) Switching State Typical Turn-On Time, 1r-10 A, 10-90%, VORM=10 volts, TJ=25'C, !'sec ..... ton Min. di/dt, Linear to 5.0 ITlaVi amps/ !,sec ..................... , di/dt Typical Turn-Off Time, Ir=10 A, TJ= 125°C, diR/dt=1 0 Ah,sec., dv/dt= 20V / !,sec. Linear to .8 VORM !,sec. . . .. tq Typ. dv/dt, Exp. to \lORM volts/!,sec .... , dv/dt All Types 40 3.0 .25 5 5 5 .5 3 25 50 100 " J EOEC Registered Parameters. S11 u o i ~ ~ ::> ~ 1I0f.:..:-J-l\~~~~.:-l'--+-'-+--+--.Jf"''+-'''''''''4o<---' 100 90~--+---+-\-~~~~~~~~-h--~--~---t--~---1 Q) Co E ~ 80 .-, -,+-+--tt,--\;-."ot~--f"" '!, 25 Average Forward Current. ITIAVI. Amperes Figure 1. Power disaipation va forward current, rectangular weve. 30 Average Forward Current. ITIAVI. Amperes Figure 2. Ca.e temperature va forward current, rectangular wave. 40; - - , o~ Average Forward Current. I.TIAVI. Amperes Figure 3. Power dissipation va forward current, half-wave ainusold. Average Forward Current. I TIAVI. Amperes Figure 4. Ca.e temperature va forward current. half-wave ainusold. ,01 Forward Current, ITM Peak Amperes Figure 6. Forward voltage va forwaro current. S12 Time. t. Seconds Figure 8. Transiant thermal impadance va time. . Symbol A A, cl>D E F Inches Min. cl>T cl>T, Z Min. Max. .330 .505 .880 .544 8.38 12.83 22.35 13.82 .'544 .113 .562 .152 1.193 13.82 2.87 14.27 3.86 30.30 .210 .422 .125 .300 .453 .165 5.33 10.72 3.18 7.62 11.51 4.19 .060 .120 .075 1.52 3.05. 1.91 J M N Millimeters Max. cl>W )1.1-28 UNF-2A Finish-Nickel Plate. Approx. Weight-.33 oz. (10 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Contour and angular orientation of terminals is undefined. 3. Pitch diameter of 14-28 UNF-2A (coated) threads (ASA 61.1-1960). Conforms to TO-48 Outli'ne . Ordering Information 22 Amperes 75I<sec(typ.) 40 mA. TO-48 Example Obtain optimum device performance for your application by selecting proper order codes. Type T400 rated 35 Amps RMS with VRRM/VDRM=1200 V, IGT= 40 rna and tq = 75 ..sec max. Order as 513 I.. .. Type T400 ....o. Order Code Blocking State Symbol 00 Repetitive Peak Forward and Reverse Voltage <D, volts .. VORM 50 VRRM Non-repetitive Transient Peak, Reverse Voltage, volts 75 ;;5.0 msec .......•...... VR5M Peak Forward and Reverse leakage Current mA ....... IORM <D 6.5 IRRM Current-Select Order Code 10, 16, 22 Conducting State (Te=120°C) 09 100 200 300 400 500 600 700 800 900 150 300 400 500 600 700 800 900 1000 1100 1200 1300 720 960 1.200 1440 6.5 6.0 5.0 4.0 3.5 2.5 2.2 2.0 I Order Code 3.0 12 1000 1100 1200 600 800 1000 1200 1.8 1.6 10 16 22 16 25 35 10 16 22 IT5M 150 Z50 360 t l't 90 260 540 t VTM 2.3 2.3 2.3 T400 JEDEC 50 100 150 100 1.5 3.3 2.5 2.0 Symbol Order Code 75 tq not specified 1 0 Order Code 40 80 8 6 t JEDEC TYPES HAVE IrsM = 300 A. lOt = 375 A'sec Ratings and Characteristics Max. holding current, mA All Symbol Types IH 100 Thermal and Mechanical Characteristics Min., Max. oper. junction temp., °C .. " Tj Min., Max. storage temp., °C ......... Tstg Max. thread torque, in.·1 bs .......... . Max. thermal resistance Junction to case, °C Iwatt .... ...... Rejc JEDEC TYPES ................ Rsjc -40 to + 125 -40 to + 150 30 1.6 1.5 Gate Parameters (Tc-25°C) T400 KIIax. gate voltage to trigger at Vo = 5V, Tc=-40 to +120°C ........... " Max. non-triggering gate voltage, Tc= +120°C and rated VDRM, volts. Peak forward gate current,amps ...... . Peak reverse gate voltage, volts ...... . Peak gate power, watts ............. . Average gate power, watts .......... . JEDEC TYPES VGT VGDM IGTM VGRM PGM PG(AV) 3 .25 5 10 25 2 I Peak reverse gate voltage, volts ...... . Peak gate power, watts ............. . Average gate power, watts .......... . 814 an Z 08 Symbol <D N an Z 07 Gate Current-Select Order Code 8 or 6 Applies for zero or negative gate voltage. At 60 Hertz. N 06 Symbol <D N an Z 05 Turn Off-Select Order Code 1 or 0 M ax. gate current to trigger at Te=25°C, mA ....... IGT N 04 Min. critical dv Idt, exponential to VORM, TJ = 125°C volts IJl.sec. . . . . . . . . . . . . . . . . . . . .. dv Idt Min. di/dt ,JEDEC Std. #7, Sec. 5.1.2.4. A/Jl.Sec.................. di/dt Max. turn-off time, IT = 10, Te = 120°C, diR Idt = 5A I Jl.sec reapplied dv Idt = 100 V IJl.sec linear to rated VORM, Jl.sec . " .. tq N 03 L Type Switching State I' 0 N an Z 02 1T(.v) Max. %-cycle<D surge current, amps .. : ........... . J<" • • • • Max. I"T for fusing (at 60 Hz half-wave), ampere" seconds .. Max. forward voltage drop at IT= 3.14X IT(Ay) AdC and TJ =26°C, Vdc ., ~ ............. an 0 N 01 IT(rms, Max. rms forward current, amps .. Mal(. ave forward current, amps 10 . 11 an 0 N VGRM PGM PG(AV) 5 60 10 1.7 50 ""l''' 120 45 110 l! 40 100 i.35 x ~_ 90 ! } ~ 3O+--+---l- ~ i&. 20· .. o Z eGO .;;; J 80 ~ 70 25 8~ ~. r- 360°-j 15 ~~ 10 E ::I :' ~ E ';( E ~'Conductlon 16 18 20 22 40-: ! , E Angle ~ 14 Average Forward Current, IT{AV),Amperes 3l 8 D';~~·' ~ 24 "':'" o 0, .. 26 Figure 1. Power dissipation vs. forward current. rectangular wave. 4 2 6 Average Forward Current, IT{AV),Amperes Figure 2. Case temperature vs. forward current. rectangular wave. A 0° 16 j 18 Conduction 1200 Angle. 20 24 Average Forward Current, IT{AV), Amperes Average Forward Current, IT{AV),Amperes Figure 4. Case temperature vs. forward current. half wave sinusoid. Figure 3. Power dissipation vs. forward current. half wave sinusoid. 6ET""""---~"-. . T400.-10 5 ~~~~ ~ .. -(-i 1 •• -,'. -, 2.0:- . '~i 1.6 4- _. r·· .8 2 '0 E:= ~i 5~ f- .....A ,§~, ~u : 10 20 50 Forward Current, ITM ,Peak Amperes Figure 5. Forward voltage vs. forward current. 100 200 500 lK . :;: <S 0.--·_· .. N .0001 Time,t,Seconds Figure 6. Transient thermal impedance vs. time. 815 I~~~ T~:6r~ ~ 1OO1+-t~rl'\:~n~N:-·--r-·i--+ W [0:4 I~. Conduction 90.,--+--t\--"f:->'n~..r""".t""""'!-:---tAngle t) i o. , I i j--'H-1 80 'i , ---j-- 70 Z I i 60 ~ 50H---+-+--+-+t---tt- --t-lr--!+ ~ 4O,+-+--+--t-+-r----n--H- I :,+-~-r-+~~~~ 0246810 24~ Averoge Forward Current,IT(Av),Amperes Figure 8. Case temperature vs. forward currant. ractangular wava. Vo 2 4 6 8 ~ ~ ~ ~ ~ ro ~ ~ ~ Average Forward Current,irlAV),Amperes Figure 9. Power dissipation vs. forward cunent. half wave sinusoid. Figure 10. Ca •• temperature vs. forward current. half wave sinusoid. 2.0 i I ,.~ l 0 t) ~ 1.6 c :!u .,c :> 12 tIc 0 1 ! a ~= 2· ~'~~~~~F±~T~t-·~·~~-~~~r !i~ ii :u; 0,.f=::!:t!'I:I:Jf..::.i:..l±lI;l4-,.i:.:.lJili4-.i...:Wi4·.....;..;.......;;~+-..:....::.:.;.:iliI 0+-~-+~~'~~~Y-~-4~~~~~~--~~~ o ~ ro Forward Current,lTM ,Peak Amperes 2 5 Figure 11. Forward voltage vs. forward current. 516 ~ ~ roo N .0001 Time,t,Seconds Figure 12. Transient thermal impedance vs. time. 70 120' T400-22 -..- -_. -t-------+----- 60 t ! .. -j.-_. _.. _.1 .._- ---··t.-· , - 50 I ~ ....j ~40' ~ c0 I ~ .. ~ ~ E E " 'M J ~ ! 0' ! ~ e ----. .1--. I .-.. 10 0 4 60· i ... L r- 360°-j ~ ~ 1.-..-.-1--. Conduction Angle 8 12 ... I ~ Conduction Angle ! ~---v~...... ~+--·--t-----+I t!! 40' . Jl I . -·- --~T~---" ------~---- .... ! 8 E 20 E " ~ , 32 28 36 20 24 Average Forward Current, tr(AV),Amperes Figure 13. Power dissipation vs. forward current. rectangular wave. <'> .--..--l---n I E I 20 ! 8. i _ .... _ ....•. _-j-.. 30 I----~ 801 ~. .+ r- 360°-j ooL 16 o· 4 0 12 16 20 8 Average Forward Current ,1T(Av),Amperel 24 28 36 Figure 14. Case temperature va. forward current. rectangular wave. 120 "-.;::--...---,---r----r----,-----,,---,.---.--.., T400-22 ..______1.. .. ___ .. -1.--.. --- 60' --Li ! .1 .~- i -j- ,. ! .~ 0° o. o 4 8 12 ...! ConduCtion i!20 ° Angle. 16 20 24 28 36 Average Forward Current, IT(AV),Amperes Figure 15. Power dissipation va. forward current. half wave sinusoid. 20 24 28 36 Average Forward Current ,IT (Av),Amperes Figure 16. Ca.e temperature ve. forwerd current. half weve sinusoid. 7'-~--~~~~~~~~--r--r'-rr--r--r~M Forward Current,lTM ,Peak Amperes Figure 17. Forward voltage vs. forward current. llme,t,Seconds Figure 18. Transient thermal impedanca VB. time. 517 60~--~----'-----r---~----r---~----, 2N5204-07 II ~ 50 ~ ~ 40~----~--~~--­ > ~ 8 16 12 20 24 28 4 Average Forward Current, ITIAV), Amperes Figure 19. Power dissipation vs. forward current, rectangular wave. 70 16 20 24 28 32 36 2N5204-07 z;: 60' 110 ~ ~ 12 DC 2N5204-07 . 8 Average Forward Current, ITIAV), Amperes Figura 20. Case temperatu're VB. forward current, rectangular wave. u ° 50 ~ > ~ 40 .: ..,0 '" Q. 'iii 30 til i5 .. I;; 20 30 CD ~ E ::> E u E ::> 10' E '" ~ Q. .. 'x .0;C ~ 00 36 Averaga Forward Current, ITIAV), Amperes Figure 21. Power dissipation vs. forward current, half wave sinusoid. 4 8 12 16 20 24 28 32 36 Average Forward Current, IT(AV), Amperes Figure 22. Case te, ""erature vs. forward current, half wave sinusoid. 10 1000 2N5204-07 2N5204-07 TJ =25°C ~ ~ :g 100 ~ E TJ =125°C ,1.0 " ,0.4 I;' ...« / l.'" If i iCD .-::: ~ ~ I Q. I:: '"'- 10 iii Ez;: ,CD CD 518 V • Eu , ::>0 .§.,; ::> U U- V V """""" ./ ~~ 0';04 I: "E '~" 0 .,4.0 t- 125°C 0 ~ I- 25°C ~ ~ ~ j 2 3 4 Maximum Forward Voltage Drop, VTM, Peak Volts Figure 23. Forward voltage vs. forward current. 5 6 2 , 0 .01 0.001 0.004 0.01 0.04 0.1 0.4 1.0 4.0 10 Time, t, Seconds Figure 24. Transient thermal impedance vs. time. 40 100 Symbol A A, B </ID E F J M N Q </IT Z </IW Inches Max. Min. 5.775 6.850 .055 6.265 7.500 .075 146.69 159.13 173.99 190.50 ~.40 1.91 .860 1.031 .255 1.000 1.063 .400 21.84 26.19 6.48 25.40 27.00 10.16 2.50 .437 .796 .650 .827 63.50 11.10 20.24 16.51 21.01 .260 .250 , , Millimeters Min. 1.675 .291 Max. 6.60 6.35 42.55 7.39 %-20 UNF-2A Creep & Strike Distance. .10 in. min. (2.54 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-5 oz. (142 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of terminals is undefined. 3. Pitch diameler of %-20 UNF-2A (coated) th(eads (ASA 81.1-1960). 4. Dimension "J" denotes seated height with leads bent at right angles. Conforms to TO-94 Outline Features: • 'Center fired, di/namic gate • All diffused design • Low gate current • Compression Bonded Encapsulation For TO-83 Outline, see page 523. Applications: • Phase control • Power supplies • Motor control • Light dimmers • LOWVTM • Lifetime Guarantee Voltage en * ...0 Z CD Blocking State Maximums (TJ = 125'C) Symbol V ORM VRRM V RSM IORM IRRM ... 1') Not otu) 1')10 ...... ZZ ... eII en'" ... en en", III'" ell'" NN NN NN NN 100 100 150 150 200 200 150 20 20 225 20 20 300 18 18 ... eII 25 25 50 50 35 20 20 75 20 20 N Repetitive peak forward bloc,king voltage, V Repetitive peak reverse voltage, V Non-repetitive transient peak reverse voltage, t ~ 5.0 msec. V . Forward leakage current, mA peak Reverse leakage current, mA peak ON ... en ...... ZZ ell ...... zz ell'" en'" NN NN ... en ...ZZ... Note: For better ratings & higher voltages, see T500 series. ... en en'" IDCO ... en en oen III ~~ ... ... ...... zz en'" ...... zz co'" ...... 250 250 300 300 400 400 500 500 600 600 350 16 16 400 500 12 12 600 10 10 700 10 10 ZZ 14 14 NN zz NN ZZ NN Thermal and Mechanical Current Symbol Conducting State Maximums (TJ = 125'C) Symbol RMS forward current, A Ave. forward current, A One-half cycle surge current@,A 12t for fusing (for limes 2: 8.3 ms) A2 sec. Forward voltage drop at ITM=500A and TJ = 25'C, V IT(rms) IT(av) I TSM 121. 110 70 1000 4000 2.3 Gate Switching (TJ = 25'C) Typical turn-off time, IT = 50A TJ = 125'C, diR/dt = 5 AIp.sec, reapplied dvIdt = 20V Ip.sec linear to 0.8 Vo RM, P. sec Typ. turn-on-time, IT = 100A Vo = 100V@),l'sec Min. critical dv/dt, exponential to V ORM TJ = 125'C, V/l'sec®® Min. di/dt(j) non-repetitive, JEDEC, A/l'sec eDCDCD VTM Min.;.Max. oper. junction TJ temp., 'C Min., Max. storage temp .. 'C Tstg Max. mounting torque, in Ib.(j) Max. Thermal resistance(j) Junction to case, 'C/Watt ReJc Case to sink, lubricated 'C/Watt Recs Maximum Parameters (TJ = 25'C) Gate current to trigger at V 0 = 12V,mA Symbol tq 100 ton 4 dv/dt 300 di/dt 800 Gate voltage to trigger at Vo = 12V,V Non-triggering gate voltage, TJ = 125'C, and rated Vo RM, V Peak forward gate current, A Peak reverse gate voltage, V Peak gate power, Watts Average gate power, Watts -40 to + 125 -40 to 130 + 150 .40 .12 Symbol IGT 70 VGT 3 VGDM IGTM VGRM PGM PG(av) .25 4 5 16 3 CD CD CD CD (j) CD Consult recommended mounting procedures. Applies for zero or negative gate bias. Per JEOEC RS-397, 5.2.2.1. With recommended gate drive. Higher dv/dt ratings available, consult factory. Per JEOEC standard RS-397, 5.2.2.6. *2Nl909 Series in TO-49 PKG 2N1792 Series in TO-83 PKG 519 .50 7 l!l .. (5 oj > 6 i >Ii 5 u'" TJ = 125°C e c: .S! U II 0 !!! '"'" 4 (5 > . "E 3 ~ u. ~ E 2 :::I E - . I----" 'j( :::1! 2 5 ~ V c: ..,., .30 :::I . 1/ "c: .,,,, "0 Q.~ Elii .20 / =~ ....... Eu 10' 50 100 200 10 20 .40 g ~o ~-:: .10 ... ~ l/ g~ 500 1 K 2k o 5K 10K .0001 0-.J~;~K)n 10 100 1000 -1----+---_+---.1'1-----1 u '0; 0. I :::I ~ ~ 60~----~~~~~~~4_------~----4_----~ ~ is 100~----_+----_R, 80~----~ l00~--_\~~~~--~d_----.~----_+----_4----~ ~ '~" E ~ .1 140r---~----~---,----,-----r_--~--__, .L20 ~ ~----~----~----- 'j( .01 Maximum Case Temperature VS. Forward Current Maximum Power Dissipation VS. Forward Current 18or-----~----~----~~----~----_r----~ ~t: .001 Time, t, Seconds Forward Current, ITM, Peak Amperes 160 ~ ~ 140 V I 40~----~~~~~------~-----+------~----~ 801------1--t III ~ d·c 20 60 40 100 80 4OL----L~--L-~~~__~__~~--L---~ o 120 Average Forward Current, Amperes 20 40 60 80 100. 120 140 Average Forward Current, Amperes Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current 140~~~~~~--~---r--~~--,_--~--~ 140'~--~----r---~----r_--_r----~--_r--~ 120~--_+----~--_+----~--_+--__+ ~ r-360~ ~ 100 ~ ~---I-+- l..........1-COr>d~ClII,IIl r:o Angle" .~ 80~--+---~--~-~~~~~~~_+--_+--~ :;o ~ 1E :::I u ° ~ 100 1---+-----'~~~~3Ioo.,~'40::--+--+--_+--__l ~ ., Q. 60'~--~----_+~~~~~~~--~--_+----~--~ 4O'r----r--~~~~---+----~---r--_4--~ E E ~ ..III 80~--_+----~----~--~~~~~~~~--4_--~ u 6O~--+--_4----+l--_I__+--lf__1__I_-I "f: :::1! 10 20 30 40 Average Forward Current, Amperes S20 50 60 70 80 4O~---ILO--~2LO----30LL--~40~L--5LO~--6LO--~~~~80 Average Forward Current, Amperes Inches Min. Symbol A A, Max. 5.775 6.265 6.850 7.500 .055 .075 .860 1.000 1.031 .. 1.063 .255 .400 2.50 .437 .650 .796 .827 1.675 .260 .291 .250 %-20 UNF-2A B t/>D E F J M N a t/>T Z t/>W Millimeters Min. Max. 146.69 159.13 173.99 190.50 1..40 1.91 21.84 25.40 26.19 27.00 6.48 10.16 63.50 11.10 16.51 20.24 21.01 42.55 6.60 7.39 6.36 Creep & Strike Distance • .50 in. min. (12.85 mm) . .10 in. min. (2.S4 mm). ** (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-S oz. (142 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of terminals is undefined. 3. Pitch diameter of %-20 UNF·2A (coated) threads (ASA 81.1-1960). 4. Dimension "J" denotes seated height with leads bent at right angles. Conforms to TO-94 Outline Features: • All diffused design • Low gate current f * For TO-83 Outline, see page 523. Applications: • Phase control • Power supplies • Motor control • Light ~!mmers • LOWVTM • Compression Bonded Encapsulation • Low Thermal Impedance Voltage 2N4361 2N4371 2N4362 2N4372 2N4363 2N4373 2N4364 2N4374 2N4366 2N4376 2N4366 2N4376 2N4367 2N4377 VDRM VRRM 100 100 200 200 400 400 600 800 800 1000 1000 1200 1200 1400 1400 VRSM IDRM IRRM 200 ( 300 500 700 950 10 10 1200 1450 1700 Blocking State Maximums 0 (TJ = 12soq Symbol Repetitive peak forward blocking voltage, V •........••...•... . •• . . • . . . • • . . Repetive peak reverse voltage ,'V •. . . . . .•. . . Non·repetitive transient peak reverse voltage, t~ msec, V .................... Forward leakage current, rnA peak . . . . . . . . . . Reverse leakage current, rnA peak ...•..••.• 600 ( > ~ Thermal and Mechanical Current Conducting State Maximums (TJ = 125°C) Symbol Symbol RMS forward current. A .......•...•.........•. Ave. forward current. A .....•.............•.••. One·half cycle surge current. AC!) 3 cycle surge current. A 0 .................. . 10 cycle surge current. AC!) .................• I't for fUSing (for times 8.3 ms) A'sec .......... . Forward voltage drop at ITM = 500AandTJ = 25°C.v Switching ITCrms) ITCav) 1T5M ITSM 1T5M I't ITM Min., Max. oper. junction temp .. °C .............. TJ Min .• Max. storage temp., °C T$'g Max. mounting torque, C!) in Ib .................. . Max. Thermal reslstance(i) Junction to case, °C/Watl ............. ReJc Case to sink, lubricated °C/Watt .... . . . . . . . . . .. Recs 110 70 1600 1250 1080 10,700 2.5 -40 to +125 -40 to +150 130 .28 .12 Gate Symbol Typical turn-oil time, IT = 50A TJ = 125°C. diR/d' =5 Alpsec, reapplied dvldt = 20V Ipsec linear to 0.8 VDRM, psec ....... Typ. turn·on-time, IT = l00A Vo = 1OOV, ).Isec ............... Min CritiC'. II rlv eft exponential to VORM T' 125 r.. V Jlsec CD .... Mm eft dt Il'ln rp!lt'tltlve A jJSf~C. 2N436S* 2N437S Maximum Parameters (T.J tq ton 100 4 75 C) Symbol G<JIf' £:llrrt'nl to If I~qe->r al VO IGT 12V ",A Gatl' volta~w '0 tr IgqE~r at VD 12V V . ............ VGT 250 3 Non-tnggennq gate voltage. TJ dvldt dt'dt 100 800 . 125 C. and rated VORM. V. . Peak forward gate current, A ..... Peak reverse gate voltage, V ...... Peak gate power. Watts .......... Average gate power. Watts ....... VGDM IGTM VGRM PGM PG(avl 015 4 5 15 Consult recommended mounting procedures. Applies for zero or negative gate bias . Per JEDEC RS-397, 5.2.2.1. With recommended gate drive. CD Higher dv/dt ratings available, consult factory. (i). Per JEDEC standard RS-397, 5.2.2.6. *2N4361 Series in TO-94 PKG. 2N4371 Series in TO-83 PKG. **Glass-to-metal seal package. (i) C!) C!) (i) 521 Maximum Forward Voltage VS. Forward Current 2 4 6 10 20 4060 100 200 400600lK 2K 4K6K 10K Forward Current, ITM, Peak Amperes Maximum Case Temperature VS. Forward Current Time in Seconds Maximum Power Dissipation VS. Forward Current 200~Tr~~n7~~~c--n~-n--~--~--~--~-r~~-' A 00 j Conduction ~Oo Angle, 120 Average Forward Current, Amperes Maximum Power DiSSipation VS. Forward Current u o ~ 60~--~--+---~---ri--r-t-ti--+--if--~--~r---~~ ;a. ~ 40r-~t----r-~H-~r;~r4~~~--;;--~---f---i---1 3:OJ u Average Forward Current, Amperes 522 Average Forward Current, Amperes Conforms to TO-83 Outline Conforms to TO-94 Outline Symbol A A, B q,D E F J M N Q q,T Z q,W Inches Min. 5.775 6.850 .055 .860 1.031 .255 2.50 .437 .796 Millimeters Max. Max. Min. 6.265 7.500 .075 1.000 1.063 .400 146.69 159.13 173.99 190.50 1-.40 1.91 21.84 25.40 26.19 27.00 6.48 10.16 63.50 11.10 16.51 20.24 21.01 42.55 7.39 6.60 6.35 .650 .827 1.675 .291 .260 .250 %-20 UNF-2A Min. A, Max. .070 L, L, M, .420 .180 .360 .470 .190 .235 .080 .060 .180 'h-20 UNF-2A q,W Max. Min. 1.810 .110 .650 .520 C L q,T, q,T, Z, Features: • Center fired, di/namic gate • All diffused design • LowVTM • Compression Bonded Encapsulation • Low Thermal Impedance • High Surge Current Capability • Low gate current • Lifetime Guarantee Millimeters Inches Symbol 45.97 2.79 16.51 13.21 1.78 10.67 4.57 9.14 4.83 1.52 4.57 11.94 5.97 2.03 Applications: • Phase control. Motor control • Power supplies. Light dimmers Approx. Weight-4 oz. (114 g). 1. Basic dimensions of TO-94 and TO-83 are same except as noted. Creep & Strike Distance. T500-.50 in. min. (12.85 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-5 oz. (142 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of terminals is undefined. 3. Pitch diameter of %-20 UNF-2A (coated) threads (ASA B1.1-1960). 4. Dimension "J" denotes seated height with leads bent at right angles. Ordering Information Type I Voltaqe I Current I Turn off Code and Code IT(av) Code tq ,usee (A) Code * for 600 volts and below, see T510 " *·For lower I GT consult factory. 07 08 09 10 11 12 13 14 15 40 40 100 (typ) Type I 1a 80 10 ~J ~ I a a .. 100. 'fI() Example Obtain optimum device performance for your application by selecting proper Order Code. T IGT' (~; (V) 700 800 900 1000 1100 1200 1300 1400 1500 I edds I ~.'"~ VRRM 1600 -; Gdte Current VORM , .. Case Code r .• .',', .. ":. TO-94 AQ TO-83 AA 4 ' Type T500 rated at BOA average with VORM = 1000 volts IGT= 150 rna, and standard flexible lead order as: Voltage 8 3!t"'t",,'tNi" ,SIM1"""m 823 Voltage Blocking State MaximumsiCD (TJ=125°C) Symbol Repetitive peak lorward blocking voltage, V ...........••...... Repetitive peak reverse voltage ,V. VORM VRRM 700 700 800 800 900 900 1000 1000 1100 1100 1200 1200 1300 1300 1400 1400 1500 1500 VRSM IORM IRRM 850 950 1100 1200 1300 10 10 1450 1550 1700 1800 Non-repetitive transient peak reverse voltage, t<5.0 msec,V........• Forward leakage current, mA peak •• Reverse leakage current, mA peak .. • • ... Current Conducting State Maximums (TJ=125°C) Symbol RMS lorward current, A ......•.•........••..... Ave. lorward current, A ••..••...........•...... One-half cycle surge current@, A 3 cycle surge current@, A ....•••...•••....... 10 cycle surge current@, A ......•...•.......• I't lor lusing (lor times~8.3 ms) A' sec...........• Forward voltage drop at ITM=500A and TJ=25°C, V. IT(rms) IT(av) ITSM ITSM ITSM Switching TSOO __ 40 TSOO __ 80 63 40 1200 950 800 6000 3.7 l"t VTM 125 80 1800 1300 1170 13,500 2.2 Gate Thermal and Mechanical (TJ=25°C) Symbol Typical turn-off time, IT=50A TJ=125°C, diR/dt=5 A/p.sec, reapplied dv/dt=20V/p.sec linear to 0.8 VORM, p.sec.. . .. . .. .. . .. • Typ. turn-on-time, IT=100A VO=100V®,p.sec ............... Min. critical dv/dt, exponential to VORM TJ=125°C, V/p.sec@@. .... Min. di/dt non-repetitive(j)00 A/p.sec Symbol Maximum Parameters ~=2rq ~mb~ -40 to +125 -40to+150 Gate current to trigger at Vo =12V,mA ••.....••..•.• ·• IGT 130 Gate voltage to trigger at Vo =12V, V .............•.•. Non-triggering gate voltage, TJ =125°C, and rated VORM, V. Peak lorward gate curre'nt, A •.• Peak reverse gate voltage, V ... Peak gate power, Watts ..••.•. Average gate power, Watts ...• Min., Max. oper. junction tq 100 ton dv/dt di/dt 4 300 800 temp., °C. . • . . • . . . . . • . Min., Max. storage temp., °C Max. mounting torque, in Ib.<D .............. . Thermal resistance<D Junction to case, °C/Watt •...••...... Case to sink. lubricated °C/Watt •............• TJ Tstg ReJC .28 Recs .12 <D Consult recommended mounting procedures. @ Applies for zero or negative gate bias. @'Per JEOEC RS-397, 5.2.2.1. With recommended gate drive. See Ordering Inlo. 3 VGT 0.16 4 5 16 3 VGOM IGTM VGRM PGM PG(av) o CD Higher dv/dt ratings available. consult lactory. ·CD Per JEOEC STO RS-397, 5.2.2.6. Transient Thermal Impedance VS. Time .30 . Maximum Forward Voltage VS. Forward Current 7 "!, 6 .25 l!l ~ J ti 5 .. j 5 ,; "';.~.:." TJ= 12Soe to 91. 4 .~IIII II 'E ~0 ..,., 3 ,., 'C !~= .05 ,,,,,,,'. .,;,, li,~ !e l 0 ....... 2 5 10 20 50 100. 200 Forward Current,lTM,Peak Amperes ;:; ~i°.z. ..... "[ 'j( S24 .10 "c: ,to 2 E ;:> E ~ .15 C:I ;:>, ... . .20 UI u, 500 lK 21< 5K 10K .1 o. .0001 .001 Time.t, Seconds .01 .1 10 100 Maximum Case Temperature VS, Forward Current Maximum Power Dissipation VS, Forward Current 130 100 .180· 120 :'. f.) 0 !::I 1 . 110 E . m ! , I- ~ 100 • E ::I E f.) . 40 'j( ~ 90 20 ~~'< 0 <1 " 0 10 20 30 40 50 0 10 20 40 30 50 Average Forward Current, Amperes Average Forward Current, Amperes Maximum Power Dissipation VS, Forward Current Maximum Case Temperature VS, Forward Current 180, T6oo __ 80 1 '50 .180· .~ i 120 o 0= 1 90 E ::I E 60' 'j( to ~ 30. o 100 Average Forward Current, Amperes o 20 40 60 Average Forward Current, Amperes 80 100 525 Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current Jfft~ng{t~~ 130 o 20 40 Average Forward Current, Amperes Maximum Case Temperature VS. Forward Current Average Forward Current, Amperes 526 60 80 20 40 Average Forward Current, Amperes Maximum Power Dissipation Vs. Forward Current Average Forward Current, Amperes 60 80 Conforms to TO-94 Outline Symbol A At B .pO E F J M N Inches Min. 5.775 6.850 .055 .860 1.031 .255 2.50 .437 .796 Q .pT Z q,W Max. 6.265 7.500 .075 1.000 1.063 .400 .650 .827 1.675 .291 .260 .250 11..-20 UNF-2A Millimeters Max. Min. 146.69 159.13 173.99 190.50 1.91 1-.40 21.84 25.40 27.00 26.19 6.48 10.16 63.50 11.10 16.51 20.24 21.01 42.55 7.39 6.60 6.35 Creep & Strike Distance. T500-.50 in. min. (12.85 mm). T510-.10 in. min. (2.54 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Appro •. Weight-5 oz. (142 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of terminals is undefined. 3. Pitch diameter of %·20 UNF-2A (coated) threads (ASA B1.1·1960). 4. Dimension "J" denotes seated height with leads bent at right angles. Symbol Inches Min. A, Max. 1.810 .110 .650 .520 C .070 L L, L, M, q,T, q,T, Zt q,W .420 .1BO .360 .470 .190 .235 .060 .OBO .1BO 11..-20 UNF-2A Millimeters Min. Max. 45.97 1.78 2.79 16.51 10.67 13.21 4.57 9.14 11.94 4.B3 5.97 1.52 2.03 4.57 Approx. Weight-4 oz. (114 g) . 1. Basic dimensions of TO-94 and TO-83 Features: • Center fired di/namic gate • All diffused design • LowVTM • Compression Bonded Encapsulation' • Hermetic glass to metal seal • Low gate current • Lifetime Guarantee Applications: • Phase control • Power supplies • Light dimmers • Motor control are same except as noted. Ordering Information *for 700 volts and above see T500 Example Obtain optimum device performance for your application by selecting proper Order Code. Type T51 0 rated at 80A average with V ORM = 300 volts I GT =70ma. and standard flexible lead order as: 527 Voltage Sumbol Blocking Stata Maximurws (1) IT· '" , :i5'Cl . V DRM V RRM Repetitive peak forward blockinCi voltage. V Repetitive peak reverse vollag. .V Non-repetitive transient peak reverse voltage. t:S; 5.0 msec. V Forward leakagecurrent. rnA peak Reverse leakage current, rnA peak 50 100 100 200 200 300 300 100 200 300 400 50 V RSM IDRM IRRM ~ ~ 400 400 600 500 600 600 600 600 700 ~ ~ 10 10 Current Conducting Stata Maximums (TJ = 125'C) RMS forward current, A Ave. forward current, A One-half cycle surge [email protected] 3 cycle surge [email protected] 10 cycle surge [email protected] 12t for fusing (for times ~ 8.3 ms) A2 sec. Forward voltage drop at ITM 500A and TJ = Symbol 125 80 50 1200 960 1800 1250 1080 10.700 1.8 600 12t. 6000 2.6 VTM Switching T510 _ _ 80 80 IT(rms) IT(av) ITSM ITSM ITSM = 26'C. V T610 _ _ 60 Gate Symbol (TJ - 25'C) Msxlmum Parametars (TJ = 26'C) = Typical turn-off time, IT 50A TJ 125'C, diR/dt = 5 A/p.sec, reapplied dv/di = 20V/ p.sec linear to 0.8 V DR M. P. sec Typ. turn-on-time, IT 100A V D = l00V@, p.sec Min. critical dv/dt, exponential to V DRM Tu 125·C. V/p.sec~~ Min. di/dt non,(soetitive. AI p.sec Q) <D (!) = tq 100 ton 4 dv/dt 300 di/dt 100 = = Symbol Gate current to trigger at V D = 12V. rnA IGT Gate voltage to trigger at V D 12V.V Non-triggering gate voltage. TJ = 125'C. and rated VDRM. V Peak forward gate current. A Peak reverse gate voltage. V Peak gate power. Walta, Average gate PClwer. Watte VGT See Ordering Info. 3 VGDM IGTM V GRM PGM PG( ••) 0.16 4 6 16 3 = Thermal and Mechanical Symbol Min .• Max. oper. junction TJ temp., 'C Min .• Max. storage temp.,·C Tstg Max. mounting torque, in Ib.(!) Max. Thermal res,stance(!) Junction to case. 'C/Watt . ReJ e Case to sink,lubricated 'C/Watt Rees -40 to + 126 -40 to 130 + 150 (!) Applies for zero or negative gate bias. ~ Consult recommended mounting procedures. @ Per JEDEC RS-397. 5.2.2.1. @ Witn recommended gate drive. ~ Higher dv/dt ratings avallabla. consult factory. (!) Per JEDEC' standard RS-397, 5.2.2.6. .40 .12 Maximum Forward Voltage VS. Forward Current ~ ! ~ 4 ~-~ -f-~~ r::! f "j i' ~ 3f ~ Transient Tharmallrnpedance VS. Time ! I J}:',~ ;~~t~p~lj \·,.:"1 ;,!!(J"'Ur-Il, > 'E 2!'''~'--1- ,~,...j"'''':-+''-14-<''i-' ! ; --I' _:J ~~~, :~~~l;'~' 1...: :.~~ in •.: l;;T..~i ;,. ~ "~11!ilit; ... - -r.~..<.1""'~i1·-·· I' 'i:P ..j.o~,.j~1 ~B?j -r-"'r' I' ,-.1'1 I,:: !Jti;:;~i:;1r~i~~~;':~tl1lIili 01---- 2 5 10 2.0 Forward Current, IrM. Peak Amperes 828 50 100 200 -500 IK 2K Tlme,t_ Maximum C_ Temperature VS. Forwerd Current 13O{II.~mmmm~~~ 120 ~ 110 l,oOP'#ft#HM~~~~~~~~+f+H ~ 90~P#lli4H+9H4W¥{~~~~ 10 20 30 40 50 Average Forwerd Current. Amperes Maximum Case Temperature VS. Forward Currant Maximum Power Dissipation VS. Forward Current Average Forwara Currant. Amparall 829 Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current 130 120 : t--J"'--j I?}J (TiJ . 120 • o t--J60--j 100 ~ III !-..L-cufOl1ull,on t) T510_50 li Anqle6 (TiJ •. !-..L-conducllOn Angle" ~ 110 r:0 80 ~ .~ " ".0; f . !IOO III i5 60 i 40 ." 20 I- m90 Q. ~ E E 80 ·K DC 20 40 60 ::E 80 0 0 140 20 40 80 60 Average Forward Current, Amperes Average Forward Current, Amperes Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current 150 120 20 40 60 80 Average Forward Current, Amperes 530 100 120 140 140 160 Average Forward Current, Amperes 160 Millimeters Inches Symbol A A, B q,D E F J M N Min. Max. Min. 7.750 7.750 .063 8.100 8.100 .172 196.85 205.74 196.85 205.74 1.60 4.37 .980 1.212 .250 1.090 1.250 .630 24.89 30.78 6.35 27.69 31.75 16.00 3.25 .530 1.040 .755 1.077 82.55 13.46 26.42 19.18 27.36 Q q,T .260 .340 Z 2.250 .290 Max. 6.60 8.64 r----' \\ ; I 57.15 7.37 q,W %-16 UNF-2A Creep & Strike Distance: .69 in. min. (17.60 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-8 oz. (227 g). 1. Complete threads to extend to within 2)(, threads of seating plane. 2. Angular orientation of terminals is undefined. 3. Pitch diameter of %-16 UNF-2A (coated) threads (ASA Bl.I-1960). 4. Dimension "J" denotes seated height with leads bent at right angles. Features: • Center fired dilnamic gate • All diffused design -. Guaranteed dvldt (300 vips) • Low gate current • LOWVTM • Low thermal Impedance • High surge current capability • Compression Bonded Encapsulation Lifetime Guarantee • ot III CD CD CD CD Voltage CD Blocking State Maximums (TJ = 125°C) CO) Repetitive peak forward blocking voltage, V ,. Repetitive peak reverse voltage, V ..... , ..... Non-repetitive transient peak reverse voltage, t!:'5.0 msec,.V ..............••........... Forward leakage current, mA peak .......... Reverse leakage current, mA peak ..•....... C"l Z Z 10 CD CD CO) Z " 10 10 CD CD CD C"l CO) N N Z Z GI CD CD C"l Z • • • • .. GI GI N GI CO) M M N N 0 CD CD Z Z CO) GI CIO Z Z VDRM VRRM 50 200 200 300 400 500 600 700 800 50 100 200 300 400 500 600 700 800 VRSM IORM IRRM N N N ot CO) N N Phase Control Power Supplies Motor Control Light Dimmers CD Symbol N eoo 900 III GI GI CIO C"l N N N Z 150 200 300 400 500 600 720 850 960 1080 25 ~ 25 ~ Current CD Z 1000 1000 1200 1200 1200 1320 ... ) Thermal and Mechanical Conducting State Maximums (TJ = 125°C) Symbol RMS forward Current, A ..........•.... Ave. forward current. A ..........•...•. One-half cycle surge current, A0 ....... IT,rms) IT ,av) ITSM I't for fusing (for times 8.3)A' sec .•.... Forward voltage drop at ITM = 625A and TJ = 25°C, V ........................ Pt Symbol 275 175 4500 84,000 Min., Max. oper, junction temp.,oC .....•..•...•. Min., Max. storage temp.,oC Max. mounting torque, in lb. CD Max. Thermal resistance CD Junction to case, 1.55 VTM °C/Watt ............... Switching TJ Tstg -40 to+125 -40 to + 150 360 ReJc .13 RecS .075 Case to sink, lubricated, CD °C/Watt ............... Gate Maximum Parameters Symbol Typical turn-off time, IT = 150A TJ = 125°C, dirRI dt = 12.5A/JJsec, reapplied dv/dt = 20V/"sec linear to 0.8 VORM, )Jsec . ... .. . . . . .. . . . Typ. turn-an-time, IT = l00A VD = 1OOVCD, "sec.. . .. . .. . .. .. . . Min. critical dv/dt, exponential to VORM TJ = 125°C, V/"sec00.... Min. di/dt non-repetitive, A/,usecCDCD(j)............. Applications: (TJ = 25°C) tq ton 100 5 dv/dt 300 di/dt 800 Gate current to trigger at Vo = 12V, mA Gate voltage to triggeratVO = 12V,V Non-triggering gate voltage,TJ = 125°C, and rated VORM,V .... Peak forward gate current. A ..•.. Peak reverse gate voltage, V ....•. Peak gate power, Watts .... , .••.. Average gate power, Watts ...••.. Symbol IGT VGT VGOM IGTM VGRM PGM PG,av) 150 3 0.15 4 5 15 3 CD Consult recommended mounting procedures. o Applies for zero or negative gate bias. o Per JEDEC RS-397, 5.2.2.1. o With recommended gate drive. o Higher dv/dt ratings available, consult factory. CD Per JEDEC standard RS-397, 5.2.2.6. S31 Maximum Forward Voltage VS. Forward Current Transient Thermal Impedance VS. Time s.o~ 20 !!l 4.5~ lB :i 4.0~ .16 ~ ~ II >ri a.5~ ~ .12 := E ~ @ '; a.o~ ~. 10 ~ 2.5 '0 TJ" 126·C .14 .OB .. ! ~ 1.5~ iii !: " P .~ I.O~ ~ .06 .04 -",!,.-..--: 0 ... · __ E o Forward Current, ITM, Peak Amperes .!l I aoo i ~ 200 Je ~ 75 100 I DC o so ISO 100 . Average Forward Current, Amperes 200 100 180~ .~ .oonductio,n anQle o 10 .1 Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current 65 .01 .001 0001 Time,t, Seconds JO 2150 150 100 SO Average Forward Current, Amperes 300 200 Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current ~ 400 ~ 60 c· (.) .2 0 1 !!::l :; ; 30 Q ..e ... Q. Je 200 I- (.) ::l .e 'M 100 . .,.conduction anQle. :E 0 0 Average Forward Current, Amperes 532 150 100 ISO Average Forward Current, Amperes 200 Symbol A A, B </>D E F J M N Inches Min. 7.750 7.750 .063 .980 1.212 .250 3.25 .530 1.040 Max. 8.100 8.100 .172 1.090 1.250 .630 .755 1.077 2.250 .290 Q </>T Z </>W Conforms to TO-93 Outline Features: • Center fired di/namic gate • All diffused design • Low gate current • LowVTM • Low Thermal Impedance • High surge current capability • Compression Bonded Encapsulation • Lifetime Guarantee * for lower IGT consult factory .260 .340 %-16 UNF-2A , Millimeters Max. Min. 196.85 205.74 196.85 205.74 1.60 4.37 27.69 24.89 30.78 31.75 6.35 16.00 82.55 13.46 19.18 27.36 26.42 57.15 7.37 6.60 8.64 Creep & Stnke Distance: T600-.69 in. min. (17.60 mm). T610-.12 in. min. (3.05 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-8 oz. (227 g). 1. Complete threads to extend to within 21> threads of seating plane. 2. Angular orientation of terminals is undefined. 3. Pitch diameter of %-16 UNF·2A (coated) threads (ASA 81.1-1960). 4. Dimension "J" denotes seated height with leads bent at right angles. T600 T610 Ceramic Package Pt (case rupture) rating: 20 x 10· A'sec. Applications: • Phase Control • Motor Control • Power Supplies • Welders • Light Dimmers Example Obtain optimum device performance for your application by selecting proper Order Code. _ ,iJii ITre _ 0 Type T600 rated at 175A average with VDRM = 1000V, IGT= 150 ma, and standard flexible lead-order as: ._"m.Fii,."'.• ~ 1 I U 1 _ 8 I '''"C.''••••''''''"•••• 0 I 4 I 8 ~S33 Voltage ----------------,@.~-------------------------------------,~---------------------------------Blocking State Maximums Symbol J=125°C) Repetitive peak forward blocking voltage. V .•••. Repetitive peak reverse voltage~ V ..•••••.... ,Non-repetitive transient peak reverse voltage. t ~5.0 msec. V ........................ . Forward leakage current rnA peak •••••••..... Reverse leakage current. rnA peak .•••••••.•... T610 T600 VORM VRRM 100 100 200 200 300 300 400 400 500 500 600 600 700 700 80d 800 900 900 1000 1000 1100 1100 1200 1200 1300 1300 1400 1400 1600 1600 VRSM IORM IRRM 200 300 400 500 600 700 • 850 950 1100 25 25 1200 1300 1450 1650 1700 1800 •• • • Current Conducting Stata Maximums {TJ=125°C} RMS forward current A ••.••••••...•••. Ave. forward current. A ..•••••••....••• One-half cycle surge current@. A ....••••• 3 cycle surge current@, A ....••..••.• 10 cycle surge current@, A ...•.•••••• l"t for fusing {fortimes>8.3 ms} A" sec...•• Forward voltage drop at ITM=625A and TJ=25°C. V .••••••••..•.••...•.•.• Symbol T600 __ 13 T610 __ 13 T600 __ 15 T610 __ 15 T600 __ 18 T610 __ 18 IT(rms} IT(av} ITSM ITSM ITSM l"t 200 125 3300 2400 2000 45,000 235 150 4000 3000 2400 66,000 275 175 5500 3900 3400 120,000 2.05 1.8 1.55 VTM Switching Gate (TJ=25°C) Maximum Parameters Typical turn-off time, IT=150A TJ=125°C, diR/dt=12:5 A/p.sec, reapplied dv/dt=20V/J.&sec linear' to 0.8 VORM, J.&sec •••• : ••••••• Typ •.turn-on-time, IT=l OOA . [email protected] ............. .v1in. critical dv/dt. exponential to VORM TJ=125°C. V/p.sec(V I(£) .•• Min. di/dl non-repetitive. A/J.&sec 0200 <D <D (i) (j) (£) (i) Symbol tq 100 5 ton dv/dt 300 di/dt SOo Thermal and Mechanical Symbol (TJ=~5°C) Symbol Gate currentto trigger at Vo =12V. rnA Gate voltage to trigger at VO=12V. V. Non-triggering gate voltage, TJ =125°C. and rated VORM. V .... Peak forward gate current. A ......• Peak reverse gate voltage, V ....... Peak gate power. Watts ..••••..•.. Average gate power. Watts .•.•.... IGT VGT 150 3 VGOM IGTM VGRM PGM PG(av) 0.15 4 5 16 3 TJ Tstg -40to+126 -40to+150 Max. mounting torque, in Ib.(j) ...•...•••••.•• Thermal resistance(j)' Junction to case. ·C/Watt .....•.......• Case to sink, lubricated. ·C/Watt .....••••••... 300 ROJC .13 ROCS .075 Consultirecommended mounting procedures. Applies for zero or negative gate bias: Per JEDEC RS-397. 5.2.2.1. Withl recommended .9.Bte drive. Higher dv/dt ratings available, consult factory. Per JEDEC standard RS-397. 5.2.2.6. Maximum Forward Voltage VS. F'orward Current Transient Thermal Impedance VS. Time ,001 Forward Current. ITM. Peak Amperes S34 Min .• Max. oper. junction temp., °C .... ,..•••••.. Min .. Max. storage temp., °C Time,t, Seconds 01 .1 10 100 · MaXimum Case Temperature VS. Forward Current 140 . ..,....,,-.,....r-r. .,.......,....,....,...,-.,.., 120 100 20 40 60 80 Average Forward Current, iT CAY)' Amperes 100 120 140 40 20 60 80 o Average Forward Curr,nl. IT CAY). Amperes 160 100 120 140 120 140 160 Maximum Power Dissipation VS. Forward Current 250 . =a;$-m:ff i i 200 > 150 0.:"- co u "s .2- !? is E E =: o " E ... j (!. ::J .... 100 50 E .~ ~ ~ 40 60 80 100 160 Average Forwar.d Current. iT CAY). Amperes Average Forward Current. iT CAY). Amperes Meximum Case Temperatura VS. Forward Current 140 300 i' i 250 200 o..~ C 150 o ·s 0. .~ is 100 l" E 50 ::J E 'j( III o ::!: 50 100 150 200 50 100 150 200 835 Maximum Case Temperature VS. Forward Current Maximum Power Diuipation VS. Forward Current ~Effm~a:ail 300 !!! -250 ~ ~ 200 ,.~ ..... C 150 0 's ,2- u '"'" 100 C 0 ~ to ;" . c. ...~ 'E .CD lCD E ';( U :::ii E 50 " . IV 40 80 160 120 0 0 200 '40 120 80 160 200 160 200 • 250 300 Average Forward Current. IT (Ayj. Amperes Average Forward" Current. IT (AY). Amperes ' Maximum Power Diuipation VS~ Forward Current Mllximum Case ,Temperature VS. Forward Current 300 UI 250 t· ..k 200 ,.~ ~ C 150 ,2 liiQ. 'in u 0 UI C 100 ''; 5 to c. to 1ii ~ ... 0 E E ."E ~ . ';(,,- CD In IV u :::ii 0 40 80 Average Forward Current. IT(AII). 160 120 100 ,0 0 150 40 80 120 Average Forward Current, IT lAY). Amperes Maximum Power Diuipation VS. Forward Current i Maximum Case Temperature VS. Forward Current 50 200 Ampe~es, 400 140 836 50 200 ,250 o 50 100 . 150 200 Symbol A A, B </>D E F J M N Q </>T Z </>W Inches Min. Max. 9.76 10.00 10.18 10.42 .172 .063 1'.490 1.620 1.750 .430 .810 4.000 .530 .755 1:04 1.08 3.100 .330 .350 .440 %.-.16 UNF.-2A Millimeters Min. Max. 247.90 254.00 258.57 264.67 1.60 4.37 37.85 41.15 44.45 10.92 20.57 101.60 13.46 19.18 27.43 26.42 78.74 . 8.38 8.89 11.18 Creep Distance-l.76 in. min. (44.91 mm). Strike Distance- .81 in. min. (20.70 mm). (In accordance with r4 EMA standards.)' Finish-Nickel Plate. Approx. Weight-16 oz. (454 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of terminals is undefined. . 3. Pitch di.ameter of *-16 UNF-2A (coated) threads (ASA 81.1-1960). 4. Dimension "J" denotes seated height . with leads bent at right angles. i Features: • Center fired di/namic gate • All diffused design • LowTTM • Compression Bonded Encapsulation • Guaranteed dv/dt (300 vi ,us) • l'Iigh surge capability • Long'creep and strike· • Westinghouse Lifetime Guarantee' Package Ilt (case rupture) rating: . 1 5 x 10 6 A 2 sec. Applications: • • • '. Phase Control Welding Power Supplies Motor Control Ordering Information I Type Voltage VDRM and VRRM (V) Code .T700 ~ , 100 200 400 600 800 1000 1200 1300 1400 1500 1600 1700 1800 2000 2200 Current I I Code I T(av) (A) Code 01 Q2 04 06 08 10 12 250 26 300 30 350 36 Turn off tq p'sec 150 .(typical) I Gate current Code IGT (ma) Code 0 150 4 * Leads I Case Code BY T70 - 13 14 16 16 17 18 20 22 .• For lower IGT consult factory Example Obtain optimum device performance for your application by selecting proper Order Code. Type T700 rated at 350 A ave~age with VDRM = 1000V. IGT = 150 rna, and standard flexible lead-order as: 537 Voltage CD Blocking State Maximums ITJ =125·C} Repetitive peak forward blocking voltage ,V Repetitive peak reverse voltage ,V ......... . Non-repetitive transient peak reverse voltage, 5.0 msec,V ................•....... Symbol VORM t.:s 1000 1200 1300 1400 1500 1600 1700 1800 2000 2200 1000 1200 1300 1400 1500 1600 1700 1800 2000 2200 VRRM 100 100 200 200 400 400 600 600 800 800 VRSM 200 300 500 700 950 1200 1450 1550 1700 1800 1900 2050 2150 2400 2600 Forward leakage current, mA peak ......... . Reverse leakage current, mA peak .......... . IORM I RRM 1~<--------------------------30------------------------+)1 < 30 ------------------------+) Current Conducting State Maximums (TJ == 125·C) RMS forward current, A ........ . Ave. forward current, A ........ . One-half cycle surge current®, A .. 3 cycle surge current®, A ..... . 10 cycle surge current®, A .... . 12 t for fusing (for times> 8.3 ms) A? sec. Forward voltage drop at ITM == 3000 and TJ == 25·C, V ......... . Symbol T700 __ 26 T700 __ 30 IT(rms) I nav ) I TSM ITSM I TSM -400 250 7000 5040 4340 470 300 8400 6050 5200 550 350 10,000 7200 6200 205,000 295,000 416,000 3.30 2.75 2.15 \2t. V TM Switching (TJ == 25·C) Typical turn-off time. IT == 250A, TJ == 125·C, diRldt == 25 A/llsec, reapplied dvldt == 20V/Ilsec linear to 0.8 VORM,l'sec ... Typ. turn-an-time, IT == 100A VO== 100Ve!), Ilsec ............... . Min. critical dv/d\, exponential to VORM' T J == 125·C, V Illsec0 m . .......... . Min. dildt non-repetitive, A/llsec CDCD0 .............. . Thermal and Mechanical Symbol Symbol tq 150 ton 7 dvldt 300 di/dt 800 Min., Max. oper. junction temp .. °C ......... . Min" Max. storage temp .. ·C .............. . Max. mounting torque. In lb. CD lubricated .... . TJ Tstg Gate Maximum Parameters (T J == 25·C) Gate current to trigger at Vo == 12V, mA Gate voltage to trigger at Vo == 12V, V ... Non-triggering gate voltage, TJ == 125°C, and rated VORM ' V . '.............. . Peak forward gate current, A .......... . Peak reverse gate voltage, V ..........• Peak gate power, Watts .•............. Average gate power, Watts ........... . Per JEOEC standard RS-397, 5.2.2.6. 360 .10 .05 Symbol IGT V GT VGOM I GTM VGRM PGM PG(av) Transient Thermal Impedance VS. Time Maximum Forward Voltage VS. Forward Current .1 3.5 c::::==="" 10K Forward Current, ITM' Amperes 538 -40 to +125 -40 to +150 Thermal resistance CD Junction to case. ·C/Watt ............ . Case to sink. lubricated. ·C/Watt. ........ . CD Consult recommended mounting procedures. CD Applies for zero or negative gate bias. CD Per JEOEC RS397, 5.2.2.1. CD With recommended gate drive. 0. Higher dvldt ratings available, consult factory. o T700 __ 36 Time, t. Seconds 150 3 0.15 4 5 16 3 Maximum Case Temperature VS. Forward Current 125 u o Average Forward Current, AmperE.'s Maximum Case Temperature VS. Forward Current u o ~ ::l 1ii ~ !'" . u"' Average Forward Current. Amperes Maximum Case Temperature VS. Forward Current Average Forward Current, Amperes Average Forward Current. Amperes S39 Maximum Power Dissipation Vs, Forward Current Average Forward Current, Amperes Average Forward Current, Amperes Maximum Case Temperature VS. Forward Current 125~~'~-n~~~Tr~~r--'- ~ .ij$<b':';j5; , . .t : ~ :or : : " ~ :~ Ei1?tFfll u o ~ I" !: . r..-·-+-.....+~<""l.,poiilool,.plllili!..t-ii+++-.-.~."."',~-:: 7:~~~~·L • "'.~. , t'~'~ ;- ,'" > : -O-'~:~~~ • ~, " r::: ~ i-.j-.,..!I<-~.i'...' .~'.ol:r~~:~: 'l ~ilLUj ,: :'! ::!j '~$'" u Average Forward Current, Amperes 540 , 1 , ~ ~ "+~ ~ .. 'f· >.o._ .... '-+ ...... ~ ""'r t - +") Inches Symbol cpO cpO, cpO, Millimeters Min. Max. 1.610 .745 1.420 1.650 .755 1.460 40.89 18.92 36.07 41.91 19.18 37.08 .500 .135 .072 .560 .145 .082 12.70 3.43 1.83 14.22 3.68 2.08 196.85 .76 215.90 H cpJ J, L N 7.75 .030 8.50 Min. Max. Creep Oistance-.34 in. min. (8.64 mm). Strike Oistance-.52 in. min. (13.21 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. We,ght-2.3 oz. (66 g). 1. DimensIOn "H" is clamped dimension. T52 Outline Package I2t (case rupture) Voltage rating: Blocking State Maximums @1(TJ=125°C) Symbol Repetitive peak forward blocking voltage, V . ... . Repetitive peak reverse voltage ,V .......... . Non-repetitive transient peak reverse voltage, t <5.0 msec, V .......................... . Forward leakage current, rnA peak ........... . Reverse leakage current, rnA peak ............ . VORM VRRM 100 100 VRSM IORM IRRM 200 .... RMS forward current, A ........•..•.... Ave. forward current. A ........ , ...... . One-half cycle surge current@, A ........ . 3 cycle surge current@, A ....•.....•. 10 cycle surge current@, A .....•..... 1'1 for fusing (for times>8.3 ms) A' sec..... Forward voltage drop at ITM = 50DA and TJ=25°C,V ....... ............... . x 106 A 2 sec. 200 200 300 300 400 400 500 500 600 600 700 700 800 800 900 900 1000 1000 1100 1100 1200 1200 1300 1300 1400 1400 1500 1500 300 400 500 600 700 850 950 1100 25 25 1200 1300 1450 1550 1700 1800 • • Switching Current Conducting State Maximums (TJ=125°C) 20 Symbol (TJ=25°C) T520 --13 IT(rms) 200 125 1600 1250 1080 IT(av) ITSM ITSM ITSM I't 10,700 2.2 VTM Gate <D. Consult recommended mounting procedures. CD Applies for zero or negative gate bias. CD Per JED£C RS397, 5.2.2.1. <D With recommended gate drive. <D Higher dv/dt ratings available, consult factory. <D Per JEDEC standard RS-397, 5.2.2.6. Maximum Parameters (TJ=25°C) Gate currentto trigger at Vo = 12V, rnA Gate voltage to trigger at VD=12V, V. Non-triggering gate voltage, TJ =125°C, and rated VORM. V . .•. Peak forward gate current, A ...... . Peak reverse gate voltage. V . ..... . Peak gate power. Watts .•.......•. Average gate power. Watts ....•.•. Symbol Typical turn-off time, IT=150A TJ=125°C. diR/dt=12.5 A//J.Sec, reapplied dv/dt=20V/p.sec linear to 0.8 VORM. p.sec ........... . Typ. turn-on-time, IT=100A VO=100V@),p.sec . ........... . Min. critical dv/dt, exponential to VORM TJ=125°C, V/p.secCD<D·· ·Min. di/dt non-repetitive, JEOEC A/ p.sec <D <D <D tq 100 4 ton dv/dt 300 di/dt 500 Thermal and Mechanical Symbol Symbol IGT VGT 100 3 VGOM IGTM VGRM PGM PG(av) 0.15 4 5 16 3 Example Obtain optimum device performance for your application by selecting proper Order Code. Min., Max. oper. junction temp., °C ..•.......... Min., Max. storage temp., °C Max. mounting force in Ib.(D ............... Thermal resistance(D Junction to case, °C/Watt .............. Case to sink. lubricated, °C/Watt .........•.... TJ Tstg -40to +125 -40to+150 800 to 1000 ROJC .12 ROCS .02 Type T520 rated at125A average with VORM= 1000V, IGT= 100 ma, and standard flexible lead-order as: S41 Transient Thermal Impedance VS. Time .12 r- I t.10 fl- i-'" V .08 fi- - r- r- t- / .04- tv, .V' ~ r0'::: I- .0001 .001 .01 .1 ltllIIt1.0 10.0 Time, t, seconds Average Forward Current, Amperes Maximum Power Dissipation VS. Forward Current Average Forward Current, Amperes 542 Average Forward Current, Amperes 100.0 Symbol .po .po, .po, H .pJ J, L N Inches Min. 1.610 .745 1.420 .500 .135 .072 7.75 .030 Max. 1.650 .755 1.460 .560 .145 .082 8.50 Millimeters Min. Max. 40.89 41.91 18.92 19.18 36.07 37.08 12.70 14.22 3.43 3.68 1.83 2.08 196.85 215.90 .76 Creep Distance-.34 in. min. (8.64 mm). Strike Distance-.52 in. min. (13.21 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-2.3 oz. (66 g). 1. Dimension "Hoi is clamped dimension. T620utline Features: Application •• • Center fired di/namic gate • All diffused design •. Guaranteed dvldt (300 vips) • Low gate current • Phase Control • Power Supplies • Motor Controls IPackage 12t (case rupture) rating: 120x 108 A 2sec. • LOWVrM • Low Thermal Impedance • High surge current capability • Lifetime Guarantee Ordering Information Example Obtain optimum device performance for your application by selecting proper order code. = Type T 620 rated at 300 A average with VDRM 1000V, IGT 150 rna, and standard flexible lead-order as: = S43 Voltage Blocking State Maxlmums(i) '(TJ = 12S0C) Repetitive peak forward blocking voltage ,V Repetitive peak reverse voltage, 'V, , ......... . Non-repetitive transient peak reverse voltage. t: S; 5.0 msec, V .• _....................... .. Symbol VORM VRRM Forward leakage current. mA peak .......... ' Reverse leakage current: mA peak .......... . 100 100 200 300 400 500 200 300 400 500 200 300 400 500 800 VRSM 600 600 700 700 700 850 950 1100 1200 1300 1450 1660 1700 1800 25 26, ~ IORM IRRM 800 ,900 1000 1100 1200 1300 1400 1&00 800 900 1000 1100 1200 1300 1400 1600 -< ~ ) c.urrent Conducting State Maximums (TJ = 12S0C) T620 __ 13, Symbol RMS forward current, A ........ . Ave. forward current, A ........ . One-half cycle surge current@, A .. 3 cycle surge current@. A .....• 10 cycle surge current@, A ..... ' 12 t for fusing (for times> 8.3 ms) .A2 sec. -, Forward voltage drop at ITM = 825A and TJ = 25°C, V ..•...• ',' . 3400 45,000 64,400 120,000 2.6 2.05 1.55 1l! Typ. turn-an-time, l't = 100A VO= 100V(i), p.sec ................ . M in. critical dv / dt, exponen~ial to VORM ' TJ = 125·C, V/p.sec@(j):......•..... Min. di/ dt, non-repetitive. ,A/p,sec (j),@,(i) .............. . :::!i tq 100 ton 5 dv/dt 300 di/dt 800 >" Forward Voltage vs. Forward Current 3.5 II' 3.0 2.5 f T62a._16 L.o' 1.5 """ 15 I"" 1.0 Symbol Gate current'to trigger at Vo = 12V, mA . 'Gate voltage to trigger at Vo = 12V. V ... Non-triggering gate voltage, TJ = 125·C, and rated VORM ' V ..•......•....•. Peak forward gate current, A .......... . Peak reverse gate voltage, V .......... . Peak gate power, Watts .............. . Average gate power, Watts ........... . Thermal and Mechanical °c ..... . Min .. Max. storage temp., ·C .......•... Min., Max. mounting force, Ib.G) •..•.•.. Thermal resistance with double sided cooling G) Junction to case, ·C/Watt ...•..... Case to sink. lubricated. DC/Watt •.•... 0.5 IGT VGT 150 3 VGOM IGTM VGRM PGM PG(av) 0.15 4 .~ o ~ 1 2 5 10 20 50 100 200 500 1K 2K Forward Current, ITM • Peak Amperes 5 16 3 Transient Thermal Imp8dance VS. Time .10 § Symbol TJ Tstg --40 to +125 -40 to +150 1000 to 1400 r- $I .08 -I- I - :I '") ReJC Recs Consultlrecommended mounting procedures. Applies for ,ero or negative gate bias. Per JEOEC RS-397. 6.2.2.1. <!J Withlrecomm,nded gate drive. <D Higher dv/dt ratings avaiflible. conSult faCtory. <D Per JEOEC standard RS-397. 5.2.2.6. o o 5500 3900 ! 2.0 12 Maximum Parameters (TJ = 25·C) CD 300 4000 -'" l Gate Min., Max. oper. junction temp., 200 ~ 4.0 Symbol Typical turn-off time, IT _ 150A TJ = 125°C. diR/dt == 12.5 If.7p.sec, reapplied dv/dt = 20V/p,sec linear to 0.8 VORM,/L sec ... .08 .02 ". It' .06 1/ ~ t .04 i~·02 ~ t:.'G uQ) ON 0 .(00 11 limE!. t. Seconds 844 470 315 2900 2500 Switching (TJ = 25°C) T620 __ 30 235 169 3300 2400 2000 IT(rms) IT(av) I TSM ITSM I TSM 12 t T620 __ 20 .1 ,.... IA" 5K1OK Maximum Case Temparature VS, Forward Current Maximum Power Dissipation VS, Forward Current 125~~r---r---r---~--r---~--~--~--' 800 T620--15 720 ~~ L.-..l--Cond\.ItlOOl'l 105 ........ cO !::I 560 - 60° L 1 I L.-..l--c"",",,~ 30° 6 '. ~ III 85 I 400 I i5 I 75 c3• 85 E 160 ::I E 'M 80 55 ::ii .. 0 40 360 200 80 ~ / / 1 ILL 1/ /" " , ~700- / ,,~ "DC " / . / ./ // I ILL 'LL L " " L II ~ 1 / , , / , I 0;, / h -I~ ........ 00 Average Forward Current. Amperes ~ IL I2a ....... -- e 320 ~ ~ a.. 240 ! ~ 1?41 ,2 480 95 u 0 soo t-- r-'"'--j i _ 640 3 1 00 1800 T820--15 ~ 40 ~ 120 80 160 200 240 280 320 360 Average Forward Current. Amperes Maximum Case Temperature VS, Forward Current Maximum Power Dissipation VS, Forward Current 125 . .~--~--~--~~~~--~--~--~--r--' T620--20 800 l05I--+...J~~~I100.:-~-+--+---+ r-""--j ~~ L.-..l-- !!J 700 1?41 I2a ~ L.-..l--~:~;!.'r' C 600 ........ CondUC:loon 0 u o i 'i... '. 500 lit 400 ~ 300 i5 :. ! E ::I E . 5 ';( 40 ::ii 120 160 200 240 280 320 360 400 440 80 Averaga Forward Current. Amperes Average Forward Current. Amperes Maximum Case Temperature VS, Forward Current 125~~~~~~~--r-~~--~~-'--~~-' Maximum Power Dissipation VS, Forward Current 800 r-"T~20.:-3p 720 640 105 560 I- -DC , .. .v'0 r-'"'b ~ , lon_ L.-..l-- Angle. :1 __ ConductIOn 480 95 u 0 !::I e 85 lE 75 {! :. 85 u 55 I ~o~"'LL", III. ~ " '~~ LLL.. L:. 320 II 240 160 '/rf. I« - / " " I " '/' ~ .L.. 80 160 240 Average Forward Current. Amperes 320 400 480 560 0 o 80 160 240 320 400 480 560 Average Forward Current. Amperes 545 Maximum Case Temperature VS, Forward Current 126 Maximum Power Dissipation VS, Forward Current . T620_15 -t--1--I---r--r--r--1-_ 1200 680 -+--+---,1--+--+--1-900r-~'-:-~"""" ~ 600 +--t__t-+--t__t"'rl-of--h"'l.!30° ~ 520 :g1 360~~---+--~--+---~-+~~~~~~~---+--4-~ 440 u o co o~ 86~-r~r--r~r-~~~~~~~~--r--r~ i 76~-r--~-+--~~--~~--~-+~~~--4-~ 280~-r--r--+--~~~~~--+--+--~-i~~~ ! 200~~---+--~~~~~-+--~--+-~~~---+--4-~ !'66~-r--t--+--+--t--+--i~+--i~~~~~~ E ~ 120~-t--~~ ~~--~--~-+--+--+--~--r--r~ 'M ~ ~ 4O~~"~--+--+---r--+--+--~--+-~~-r--+-~ o 20 40 60 80 100 120 140 160 180 200 220240 Average Forward Current. Amperes Aver. Forward Current. Amperes Maximum Case Temperature VS, Forward Current Maximum Power Dissipation VS. Forward Current 126 720r---~--~~--~---r----~---r----'---~ T620--20 -r----t---~----1_---r120°-+:.,...--I 640 ~-_t--+---t_-_t----+-900-+~.......~t800 T620--20 ~ 0.J 1.: II) ::: 560 ~ 480 C iC:::~on ,2 400 ~--~----~--_300~~~~~----+----t_--_t !Ii c. ':0 ~ ~ 320 240 IL. E 160 E 80 " 'M II 66~__~__~__~30~O__~~~~~~__~~~~__~ 40 80. 120 ·160. :t 360 200 Average Forward Current. Amperes 160 200 240 280 . 320 Average Forward Current. Amparas Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current 800r---r--'---r---r--~--~--T-~~--r-~ 125 . .~r-~~--~~~~~~--~~~~~~~ T620--30 T620--30 ~ -+---+---+---+-----=T---,~ ~ ~ 600 C ,2 500 'iii 400 .~ 300 !Ii c. u o 1ft <r..J~ont: 0 ! ~ I .E" 100 ~ :t IL. E : 200 " II 66~~--~--~~~--~~~~--~~~~ o 40, 80 120 160 200 Average Forward Current. Amperes S46 120 0 240 280 320 360 400 0 40 80 120 160 200 Average Forward Current. Amperes 240 280 320 360 400 Inches Min. Millimeters Min. Max. q,D 1.610 1.650 40.89 41.91 q,D, .745 .755 18.92 19.18 1.460 36.07 37.08 q,D, 1.420 H .500 .560 12.70 14.22 q,J .135 .145 3.68 3.43 J, .072 .082 1.83 2.08 L 7.75 8.50 196.85 215.90 N .030 .76 Creep Distance-.34 in. min. (8.64 mm). Strike Distance-.52 in. min. (13.21 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-2.3 oz. (66 g). Symbol Max. 1. Dimension "H" is clamped dimension. T62 Outline Features: • Center fired dilnamic gate • Full 150°C Junction Temperature Rating • All diffused design • Low gate current • Low VTM • Low Thermal Impedance • High surge current capability • Lifetime Guarantee Package I2t (case rupture) rating: 20 x 106 A 2 sec. Applications: • Phase Control • Motor Control • Power Supplies • Plating supplies Ordering Information Example Obtain optimum device performance for your application by selecting proper Order Code. Type 6 2 5 Type T625 rated at 400A average with VDRM= 1000V, IGT= 150 rna, and standard leadorder as: ··'r"i-r":Si'l"nW."i.'i." ••• M;;i'iijn,10••, I I I 1 0 4 0 0 4 N 547 Voltage Blocking State Maximums 0 (TJ=150·C) Symbol Repetitive peak forward blockinll voltag~e, V .•......••.• Repetitive peak reverse voltage, V .•.•....••••....•.• Non-repetitive transient peak reverse voltage, t~5.0 msec. V ................................... Forwarci leakage current, rnA peak ........••••...•••• Reverse leakage current, rnA peak •...•...•.....•••••. VORM VRRM 100 100 VRSM IORM IRRM 200 T625 .... 200 200 300 300 400 400 500 500 600 600 700 700 BOO BOO 900 900 1000 1000 1100 1100 1200 1200 300 400 500 600 700 B50 50 50 950 1100 1200 1300 1450 • • Current Conducting State Maximums (TJ=150·C) ............ ........... RMS forward current. A •.. Ave. forward current. A •... One-half cycle surge currenta>. A ...••..•• 3 cycle surge current@. A .........••• 10 cycle surge currenta>. A ..••••••••• l't for fusing (for times>B.3 ms) A' sec ...• Forward voltage drop at ITM=625A and TJ=25·C, V ••.••..••••.•....•••.•• Symbol T626--26 T626--30 T625--40 IT(rms) IT(av) ITSM ITSM ITSM l't 390 250 2BOO 2000 1700 32,500 470 300 3600 2600 2250 54,000 625 400 5000 3500 3000 100,000 2.60 2.05 1.55 VTM Gate Switching (TJ=25·C) Symbol Typical turn-off time. IT=150A TJ=150·C. diR/dt=12.5 A/J.'Sec. reapplied dv/dt=20V/JIosec linear to O.B VORM, J.'Sec. • • . . . . • • . • .. tq Typ. turn-on-time. IT=100A [email protected]'Sec ....••••..•••. ton ~Min. critical dv/dt, exponential to VORM TJ=150·C, V/JIosec00 .•• dv/dt Min.'di/dt repetitive, A/IJ.sec CD CD 0 .. , .... di/dt Min. di/dt non-repetitive. A/psec CD CD 0 di/dt CD Thermal and Mechanical Maximum Parameters (TJ= 25·C) 150 3 300 200 800 Symbol Symbol Gate currentto trigger at Vo =12V, rnA IGT 150 Min. Gate Current to trigge. at VO=12V, rnA ...•••••......•••.. IGT(min) 25 Gate voltage to trigger at VO=12V, V. VGT 3 Non-triggering gate voltage, TJ 0.25 =150·C, and rated VORM, V .•.• VGOM Peak forward gate current, A ..••••. IGTM 4 Peak reverse gate voltage. V ...•••• VGRM 5 Peak gate power. Watts ...•.••.••• PGM 16 Average gate power. Watts .••••••• PG(av) 3 Min .. Max. oper. junction temp., ·C .......••••.• TJ -40to+150 Min .. Max. storage temp.,·C Tstg -40to+150 Min., Max. Mounting Force, Ib(D .. 1000 to 1400 Thermal resistance with double sided cooling(D Junction to case, ·C/Watt .•.....••••••• R8JC .08 Case to sink. lubricated. CD ·C/Watt .............. R8CS .02 Consult recommended mounting procedures. o Applies for zero or negative gate bias. o Per JEOEC RS-397. 5.2.2.1. CD With recommended gate drive. Higher dv/dt ratings available. consult factory. ,0 Per JEDEC standard RS-397, 5.2.2.6. o Maximum Forward Voltage VS. Forward Current TranSient Thermal Impedance VS. Time 10· 09 60 5 ~ '0 > >i 50 g >: 1 tl c 40 g> of' 06 05 8. '" 04 iii <::: 03 ~.:=. 02 .E ~ 20 E 1;' ,E E ~ ..," g .g 30 'E ~ 07 .§ ~ g 08 gi 10 01 ,01 Forward Current. ITM. Peak Amperes S48 Time. t. Seconds 10 100 Maximum Casa Temperature VS. Forward Current 150 140 , ~ ~ l!... 120 , , 90 80 J 0-1~;~onl: ~ 80 " 120 1800 60 90 I I J I 120 160 200 240 30 40 J '\ I"l'. ~ \ \ 1\ '" ~ ~ i\. 0 \ 0 '\ 0 I\. "0 \ 100 J , I\. ~ ~ i'.. A.- '\ 110 T625-2& 720 ~-t---1I---t---t--+-t--+--+--+--+--f 1200 f---+-+--+--+-+- 90 0 -M~i--"o~--I T625--25 C": ~ ~ \ ~~~ 130 Maximum Power Dissipation VS. Forward Current 800r-~-r~~~-r~--~'--r~--~'-~-' 160~+--+""'7I': 80~~"~~;--+--~;--+-'r-;--+--~;--i J 40 280 ~ 140 130 120 u o T625-30 "~ ~ ~ t:-.. ~ ~ I" t': ~ , 1\ \ I' i\., "r'\, ~ ~ 120 720 J 0...J=~H)nt.: "- ~ 'I\. \. "\ 60 0 _I 160 J A.--- ~ "'- '- ~ ..... ~ I 80 I J ,, I\. 300 40 200 240 280 800r-~~~-r~~~-,~r-~'-'--r~~-' ~~ 110 160 Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current 150 120 80 Average Forward Current, Amperes Average Forward Current, Amperes 90 0 I 200 , T625-30 +-+--~-r-t--+--r-t--+--r--r1800 ~+-+--11-t-~-+--t-+-+--tr-t--t1200 r+-~Y 640 560 480 ~:j~:~::~::t::t-~30~0~~~~~~~::t::t::~~~ 400~ 320~+-~-+~r-~~~~~t-+--r-+~r-+-;--i ~ 240t-+-+-~~~~~~+-~-+-4--r-+-+-~-t ~ f' J J 1200 1800 1 240 280 I 320 40 80 120 160 200 240 Average Forward Current, Amperes Average Forward Current, Amperes Maximum Case Temparature VS. Forward Current Maximum Power Dissipation VS. Forward Current 280 320 160r-~--~--'---~--~~--~--'---~-' T625-40 u l00~--+---ir--~~~~~~~---r---r---+--~ o ~ ~ . ~ ! 5l ~ 80~--+---+-\-+-~rt-~~~~~~---r---+--~ 60 I---+--OL-__~__~_L~__&-__~_L~~_L___L__~__~ o 60 120 180 240 300 360 420 480 540 600 Average Forward Current, Amperes 60 120 180 240 300 360 420 480 540 600 Average Forward Current, Amperes 549 Maximum Power Dissipation Vs. Forward Current Maximum Case Temperature VS. Forward Current 150 ~~~ ~ ~~ ~~ 140 ~t::: s: , I' 130 i\ ~ ~ ~ o 100 ~ 90 ~ 80 ;; c- 3l ~ i\ "\~ 110 ~ ~b- , i\ ,r\ r" 120 u T625J5 I I I I I 40 80 , ~ f" ~ ~~ c· .S! ;; c·u), i"oo... ""[\"i\ '" ~ I\. ~ a l-L...:i=~K!fI :.... ~ ...... i"oo... II> :::. :J::'" "- ," II> 400 ~ 300 0 lii 1'0.. ~ 0 0.. ~. E ~ 300 1600 90 0 1200 1800 2700 DC I I I I I I I I II I 120 160 200 240 280 320 360 400 "E 'j( ::!:'" 40 w~ ~::-.. I 40..... ~ ~, \ ~ 80 r\. , ", \ j\\ \ 90 0 31)0 I o 40 I I I Bfo _ 240 280 320 360 400 l--J,....i=~D'I - ~ .; 0 .~ .!II 400 ! 300 0 "\ "O"~"" ~" ~ 500 c.;; i'." "- 9110 l~OO I II> .... lr ; rr DIC 0.. E 200 E 100 .~ " ::!: 0 0 40 80 120 160 200 240 280 320 360 400 440 ~veragelorllV~rd Average Forward Current, Ampere.$ \is. 200 ::: 80 120 160 200 240 280 320 360 400 480 Maximum Case Temperature 160 I ~~ ~ '~~~,i'.~" 10 I r--'Ol---j ~j\~~r-.~, i'. 20 120 Maximum Power Dissipation VS. Forwa·rd Current 900~-r'-~~~'-~-r~~rT~~r---~~ Maximum Case Temperature VS. Forward Current 30 80 Average Forward-Current, Amperes Average Forward Current, Amperes Forward Current Current, Amperes Maxf;num Power Dissipation VS. Forward Current 1200r---r-~~~~~--~--~--~--~--~---. 160r-~--~---r--~--'---~--r-~~~---' T625-40 T625-40 II> 1000 DC r-- 36" ---j ::: ~~ ~ l--J,.... Conduc!on .; 800 Angle" .S! ;; .~ 600~--+---1-~-h~~~~~~'-~--+---4---~--~ ..!II o DC CD II> co U 80 160 240 320 400 480 560640 720 890 Average Forward Current, Amperes 5E 2OOJ--~M ::!:'" o~~~~--~--~--~--~--~--~~--~ o 80 160 240 320 400 Average Forward Current, Amperes " 550 4oo~--+-~~iS~~~~~----t---+---~--~--~ 'j( o~~--~~~~~~~~~~~~--~~ o J .~ . 480 560 640 720 800 Inches Millimeters Min. Max. Min. Max. .pD 2.250 2.290 57.15 58.17 .pD, 1.333 1.343 34.11 33.86 .pD, 2.030 2.090 51.56 53.09 H 1.020 1.060 25.91 26.92 q,J .135 .145 3.43 3.68 J, .075 .090 1.91 2.29 8.50 196.85 215.90 L 7.75 N .040 1.02 Creep Distance-l.00 in. min. (25.40 mm). Strike Distance-l.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-8 oz. (227 g). 1. Dimension ··H'" is a clamped dimension. Symbol " T72 Outline Features: • Center fired di/namic gate • All diffused design • Low gate current • LowVTM • Low Thermal Impedance • High surge current capability • Lifetime Guarantee Package J2t (case rupture) rating: 80 x 106 A 2 sec. Applications: • Phase Control • .Motor Control • Power Supplies • Welding Ordering Information Code T72DN Example Obtain optimum device performance for your application by selecting proper order code. Type T720 rated at 550A average with VDRM = 1000V, IGT 150 rna, and standard flexible lead-order as: = 551 Voltage (j) BlocklnllStateMaxlmums ITJ = 125°C) Repetitive peak forward blocking voltage ,V . Repetitive peak reverse voltage', V ••.•.•..•• Non-repetitive transient peak reverse voltage, tS; 5.0 msec. V··· .....•.•...••...... Symbol VORM \fRRM 100 100 200 200 400 400 600 600 800 1000 1200 1300 1400 1500 1600 1700 HIOO 2000 2200 800 1000 1200 1300 1400 1500 1600 1700 1800 2000 2200 VRSM 200 300 500 700 950 1;Z00 1450 1550 1700 18001900 2050 ;2150 2400 2600 T720 __ 55 T720 __ 35, T720 __ 45 Forward leakage current, mA peak •••••....• Reverse leakage current, mA peak .•....•.... ~I ~I ~ ~ 30 IORM IRRM 30 Current Conductin!! Stata Maximums (TJ == 125 C) RMS forward current, A •...•.... Ave. forward current, A .•..•.•.. One-half cycle surge current@, A .• 3 cycle surge current@, A .••••• 10 cycle surge current@, A ..... 12t for fusing (for times> 8.3 ms) A2 sec. Forward voltage drop at'ITM ==3000 A and TJ == 25°C, V •••••..... Symbol T720 __ 35 IT(rms) IT(av) I TSM I TSM I TSM 12t VTM TY~Cal 850 550 10,000 7200 6200 205,000 295,000 416,000 3.30 2.75 2.15 Gate Maximum Parameters (T J ==' 25°C) Symbol turn-off time, IT == 250A, A7 ~e2r~:'i;pft~~/3~idt2! 20ft l!lsec linear to O.B VORM,I' sec .•. Typ. turn-on-time, IT == 100A VO== 100V@, !lsec ............... . Min. c~tical ~V/dt, exponential to VO RM ' TJ - 125 C, V/I'seco(lJ® ......... .. Min. di/dt non-repetitive, A/!lsec (j)(j)(l)....•..... Thermal and Mechanical Min., Max. oper. junction temp .. ·C ••.... Min., Max. storage temp., ·C ......••.•. Min .. Max. mountIng force, Ib.(j) ••.•••.. Max. Thermal resistance(j) With double sided cooling Junction to case, ·C/Watt .......... . Case to sink, lubricated, ·C/Watt : .... . tq 150 ton 7 dv/dt 300 di/dt 600 Symbol TJ Tstg Maximum Forward Voltage VS. Forward Current -40 to +125 -40 to +150 2000 to 2400 Gate current to trigger at Vo '== 12 V, mA Gate voltage to trigger at Vo == 12V, V ... Non-triggering gate voltage, TJ == 125°C, and rated VORM ' V ............... . Peak forward gate current, A .......•... Peak reverse gate voltage, V ..••.•..... Peak gate power, Watts ............... . Average gate power, Watts ........... . Consult recommended mounting procedures. Applies for zero or negative gate bias. Per JEOEC RS-397, 5.2.2.1. With recommended gate drive. <D HIgher dvldt ratings available, consult factory. (l) Per JEOEC standard RS-397. 5.2.2.6. (l) (j) (j) (l) .06 .02 Transient Thermal Impedance VS. Time .06 1""'-ii'""""'T'm'Ir-l-rrT'Tl'lrr--o-r Forward Current. ITM' Amperes 852 T720 __ 55 700 450 8400 6050 5200 Switching (TJ == 25°C) T720 __ 45 550 350 7000 5040 4340 'Time, 1. Seconds Symbol IGT' V GT 150 VGOM I GTM VGRM PGM PG(av) 0.15 3 4 5 16 3 Maximum Case Temperature VS. Forward Current Maximum Power Dissipation VS. Forward Current 125 115 u o iii !;105 I ~ 95 3l lJ 85 100 50 200 150 250 300 350 Average Forward Current, Amperes Maximum Case Temparature VS. Forward Current 125 ~~EHffEltmEftimmmffiffimIffiffiSm 75 65~O~~5O==~I00~~15O~~~~~~~~~~~~ Average Forward Current, Amperes Maximum Case Temperature VS. Forward Current 1251111i1iil:J±F!mmr u o 100 200 300 Average Forward Current, Amperes Average Forward Current, Amperes 553 Maximum Case Temperature VS. Forward Current Maximum Power Dissipation Vs. Forward Current u 0 ~ ::I ~ CD Q, E CD I- . CD to u 65 Average Forward Current. Amperes Average Forward Current. Amperes Maximum Power Dissipation VS. Forward Current Average Forward Current, Amperes 554 Average Forward Current, Amperes Symbol rJ>D rJ>D, rJ>D. H Inches Min. 2.880 1.744 2.580 1.020 .135 .075 Millimeters Max. 2.920 1.755 2.700 Min. 73.15 44.30 65.53 Max. 74.17 44.58 68.58 26.92 3.68 2.29 1.060 25.91 .145 3.43 .090 1.91 12.50 292.10 317.50 11.50 L .060 1.27 N Creep Distance-.SO in. min. (20.32 mm). Strike Distance-1.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-16 oz. (454 g). 1. Dimension "H" is a clamped dimension. rJ>J J, T92 Outline Features: • Center fired dilnamic gate • All diffused design • Guaranteed dvldt (300 vips) • Low gate current with soft gate control • Low 1"f'rM: . . • Low Tfiermallmpedance • High surge current capability • Westinghouse Lifetime Guarantee Applications: • Phase Control • Motor Control • Power ,Supplies Package I2t (Case rupture) rating: 90 x 106 A 2see. Ordering Information Note: Lower voltage devices available. Consult factory representative. Example Obtain optimum device performance for your application by selecting proper order code. Type T920 rated at 600 A average with VDRM = 2600V. IGT= 200 mao and standard 12 inch leads-order as: S55 Voltage@ Blocking Stata Maxlmuma tTJ = 125°C) Repetitive peak forward blocking voltage ,V •. Repetitive peak reverse voltage ,V .........• Non-repetitive transient peak reverse voltage, t 5.0 msec, V ....... ", ..................... : ' Voltage vs. Type No. AvailabilitY Symbol VORM VRRM 600 800 1000 1200 1400 1600 1800 2000 600 800 1000 1200 1400 1600 1800 2000 !2200 2400 2600 2800" 3000 VRSM 700 900 1100 1300 1500 1700 1900 2100 2600 3000 3200 2200 2400 2600 '2800 3000 I ~T92(l...()9 2300 3400 T920-10~ T920......08~ T920......07 T92a......oB Forward leakage current, mA. p,at< ...•.....• Reverse leakage current, mA peak .......... . Current Conducting State Maximum. (TJ = 125°C) RMS forward current, A ......••• Ave. forward current, A ....••••• One-half cycle surge current@, A .. 3 cycle surge current@, A .••••• 10 cycle surge current@, A ...•. 12 t for fusing (t=8.3 ms),A's~c Max 12 t of package (t=8,3 ms). A'sec Forward voltage drop at I TM = 3000 and TJ = 25°<:, V .......... . Switching (T j=25°C) Turn-off time, IT=250A Tj=125°C. diR/dt=50. A/p.sec reapplied dv/dt= 20V/p.sec linear to 0.8 VDRM. p.sec ... Turn-On and Delay Time ITM=1000A(l), tp=450 p.sec ....... , psec ,................ Critical dv/dt expoll.!'ntial to VORM Tj=125°C. V/P.sec®®I ........... · di/dt@non-repetitive. ............... Q)@@Al'sec Latching Current VO=75V. rnA ................... . Holding Current VO=75V. rnA ................... Gate (Tj=25°C) Gate current to trigger at Vo =12V, rnA .. Gate voltage to trigger at Vo = 12V, V.... Non-triggering gate voltage, TJ=125°C, and rated VORM, V.............•.. Non-triggering Gate Current at VO=12V, rnA .....•.............. Peak forward gate current, A .......... , Peak reverse gate voltage, V........... Peak gate power, Watts .............. Average gate power, Watts ............ Thermal and Mechanical 60 60 T920.....oe Symbol Symbol Min 3.5 1.5 ton td 300 600 13,000 9,750 8,000 700,000 90 xl0' 1415 900 . 25,000 18,700 15,400 2,600,000 90 x 10· 3.0 2.55 2.10 1.90 Max Min Max Min VD 3.5 1.5 = ll00V 300 "' Typ 1:70 Max 150 2.5 ':0 'VO=600'Y VD = 600V 300 1000 800 1570 1000 27,0.00 20,200 16,700 3,040,000 90 x 10· 1000 800 800 IL 160 500 400 1000 300 500 IH 150 500 150 500 150 ,500 Typ ·Max Symbol Min 100 1.5 IGT VGT 20 IGNT IGTM VGRM PGM PG(av>' Symbol 200 3.0 .15 VGOM Oper. junction temp., °c ............... TJ Storage temp., °c. , .................. Tstg Mounting force, Ib.(i) ................. 4 5 16 3 Min Typ -40 -40 5000 Max 125 150 5500 Thermal resistance with double sided cooling@ .......... Junction to case, °C/Watt ........... 'RIIJC Case to sink, lubricated, °C/Walt ........ RIICS 856 Typ 250 1000 di/dt T920-09 T92()-'-10 1255 800 17,000 12,200 10.200 1,203.000 90 x 10' 400, tq dv/dt Typ T920-07 T920-08 1100 700 15,000 10,800 9000 937,000 90 x 10· 940 IT(rms) ITlav ) I TSM ITSM I TSM 12 t 12t .028 .008 .03 .01 Q) Consultlrecommended mounting procedures. ® Applies tor zero or negative gata bias. ® Per JEOEC RS-397, 5.2.2.1. o With\recommended gate drive. (j) Higher dv/dt ratln"s available, consult factory. (l) Per JEOEC standard RS-397, 5.2.2.6. Maximum Forward Voltage VS. Forward Current 7.0 I 6.0 ~ 4.0 j 3.0 ~ II ~J ~'gfotlll ~ I. ~ 6.0 IT9fO~6 I T920__(17...... 11111 II III I II II ~ .... _I T92 0-10 ~~ 2.0 ~ Ij ~"'T92<>-09 11'920-08 ... 1 ,,~ - 1.0 'j( :; J I I 'I Q E I I o 100 ~ ~ 10,000 1000 Forward Current, ITM, (Amperes) Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Currant 1800<r.~~Lr~~~~~~~~~~~~r--' 125 II 120 115 ,.~ c-- ·f t. 110 .~ "j' .-1 105 ':.. 100 ". 95 ·..-l-:..:i-, ~ u o ! 90 .t-.. !, :t· i!tQ::c~ 85 ::;\::: !-> ~.'" 1: . ; rT' ~ 70 ".~., 66 0 .. ;.~ t:~:, .:Ie ,..~ 'Ti' ~, .,..~~ t~ 200 : Fe f-T.:!';': . r-i"!: ",- ~-'-+ 400 :.:;c- :ji,""'·'1 :+,d '-:. 600 800 J 450~~~~1H~~~~~~~44~~~~fT~~ 300~~~~~~~~~~~~~~~~~rlrl E '" E 150 ': ~ 200 Average Forward Current, Amperes 110 115 105 100 95 ~ • 11 9OHij~~~IIII~~~~~~Ii~~~~ ~ u 85 J:: ~~~~~1±ff~~~~~~~~tE~~~li a 70~tt~~~~~~~~~~ ~ Average Forward Current, Amperes 600 800 Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current 2400'r:-1'7:"T:-:--::-r:-r."""''''''''~r.--r.-rr~:-r--r.--'-'-'-'-....,.., 125~~~~~nET2~rt7TnT:D~~~~ 120 400 Avarage Forward Current, Amperas 2200 r-:-jf,.pM-~"""':"': 2000~~~~~~~~~~~~~~~~~ 1800 i---+-'-++-'-'-o-H-'-++-'- -:--':+-r-:-~!E:.:+,-y;.."Fo'-t"=-t-..:...j 1600~~~~~~-':+~~~~~~~~~~~ S .~ -1,000 F'c.,...;=:=':'-:-f~r,..:.:~r-E'h.-E,~~.:-~r--:-::...;:.:+c::.....-=-4 is J E E '" 'j( CD ::! 600 400 200 0 0 300 600 900 1200 Average Forward Current, Amperes 857 Maximum Power Dissipation VS. Forward Current Average Forward Current. Amperes Average Forward Current. Amperes Maximum Case Temperature VS. Forward Current a?t Maximum Power Dissipation VS. Forward Current 70 ;.; :. 1 65 I:,: :: t o 100 200 300 400 500 600 700 800 900 1 000 Average Forward Current. Amperes Maximum Case Teml?erature VS, F"rward C~~rent Maximum Power Dissipation VS. Forward Current 1200,,_ 500 Average Forward Current. Amperes 858 Maximum Case Temperature VS. Forward Current J E .'" E 'j( :IE Average Forward Current. Amperes Average Forward Current. Amperes Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current 25 20 1 1 • ' :: Imr '~F:t·;: :t:::'E ~, ., .. ~~; t·, . [;1£': :~ 'a.' ::: ~ .. %. ~ l' ~i~ 1)0 20 5( 100 0 Average Forward Current. Amperes 0 :,' !I;: :t.!"'t; I··.. ~: ~". )0 800 )Q Average Forward Current. Amperes Maximum Power Dissipation VS. Forward Current Maximum Case Temperatur!l VS. Forward Current J '" I E Avera.ge Forward Current, Amperes S59 1350 1200~~~e';:':-:-: ~1050 , 3:. 900 .~ ! :; u 0 e:s ; 0- E CD I- ..31 75 70 u Average Forward Current, Amperes Maximum Case Temperature VS. Forward Current Maximum Power Dissipation VS. Forward Current 120 115 110 105 ,100 95 u 0 90 ~ 85 :s ; 80 0- E 75 CD I- . CD OJ U Average Forward Current, Amperes Average Forward Current, Amperes S60 Symbol q,D q,D, q,D, H q,J J, L N Inches Min. Millimeters Max. Min. Max. 2.850 2.900 72.39 73.66 1.845 1.855 46.86 47.12 2.560 2.640 65.02 67.06 26.92 1.020 1.060 25.91 .145 3.43 3.68 .135 1.91 2.29 .075 .090 11.50 12.50 292.10 317.50 .050 1.27 Creep Distance-1.00 in. min. (25.40 mm). Strike Distance-1.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Appro •. Weight- 1 lb. (454g). 1. Dimension "H" is a clamped dimension. Features: Applications: • • • • • • • • • Phase Control • Motor Control • Power Supplies Center fired dilnamic gate All diffused design Guaranteed dvldt (300 vips) Low gate current with soft gate control LowVrM • Strain Buffer Low Thermal Impedance High surge current capability Westinghouse Lifetime Guarantee Package I2t (case rupture) rating: 90 x 106 A 2sec. Note; Lower voltage devices available. Consult factory reprasentative. Example Obtain optimum device performance for your application by selecting proper order code. Tvpe T9GO rated at 800 A average with VDRM = 26ooV. IGT = 200 mao and standard' 2 inch leads-order as: Voltage I Current "Note: For voltage Vs. Current Availability see next page. 561 Voltage CD TJ = 125°C Symbol Repetitive peak forward blocking, V ....••••• Repetitive peak reverse, V . • • • . . • • • . . . . • • • . • Non-repetitive transient peak reverse voltage, 1 ~ 5.0 msec, V _....................... _.. VDRM VRRM 600 BOO 1000 600 800 1000 VRSM 700 900 1100 1300 T9GO-12 Voltage vs. Type No. Availability Blocking State Maximums Forward leakage current, mA peak. . . • • . • . . . Reverse leakage current, mA peak •.••..•..• 1200 1400 1600 1200 1400 1600 1500 2000 2000 2200 2200 2400 2400 2600 2600 1900 2100 2300 2500 2700 2900 1BOO 1BOO 1700 2BOO 3000 2BOO 3000 T9GO-l0 T9GO-OB 60 60 IDRM IRRM Current Conducting State Maximums Symbol RMS forward current, A •.•..•..•.• Ave. forward current, A ..•••.•••.•• One-half cycle surge current,A CD .. . 3 cycle surge current, A CD ...... . 10 cycle surge current, A CD ..... . I2t for fusing (t = 8.3 ms) A 2 sec Max. I2t of package t = 8.3 ms), A 2 sec Forward voltage drop at ITM = 3000A and TJ = 25°C, V .............. .. ITlrms) rnayl ITSM ITSM ITSM I2t I2t T9GO-DB 1250 800 13,000 9,750 B,OOO 700,000 90 x 10· VTM T9GO_l0 T9GO_12 1590 1000 17,000 12,200 10.200 1,203.000 90 x 10· 1880 1200 27,000 20,200 16.700 3,040,000 90 x 10· 2.10 3.0 1.70 Switching (TJ = 25°C) Symbol Turn-off time. IT - 250A TJ = 125°C, diR/dl = 50 A/psec reapplied dv/dt = 20V/~sec linear to 0.8 VDRM,,.sec Turn-On and Delay Time CD ITM = 1000A. tp = 450 fJ sec .••.•.. VD = 1500V, psec ............... Critical dv/dt exponential to VDRM TJ = 125°C, V IfJsec CD CD di/dt non-repetitive, A/psec CD(i)(i) .. Latching Current VD = 75V, mA ................... Holding Current VD = 75V, mA ................... ........ Min. Typ. Max. Min. Max. Min. Typ. tq 400 250 150 ton td 3.5 1.5 3.5 1.5 2.5 1.0 dv/dt di/dt 300 1000 300 1000 800 300 Max. 1000 800 800 IL 500 1250 400 1000 300 500 IH 150 500 150 500 150 500 Gate (TJ = 25°C) Symbol Gate currentto trigger atVD = 12V,mA Gate voltage to trigger at VD = 12V,V Non-triggering gate voltage, TJ = 125°C, and rated VDRM, V ....•.• IGT VGT Min. Typ. Max. 30 100 1.5 200 3.0 VGDM .15 VD = 12V, mA ................... Peak forward gate current,A ..•.... Peak reverse gate voltage, V .•..... Peak gate power, Watts ............ Average gate power, Watts ...•..•. IGNT IGTM VGRM PGM PG(ay) 20 4 5 16 3 Thermal and Mechanical Symbol Min. Oper. junction temp., °C •.•••••••.. Storage temp., °C •..•..•...•...... Mounting force, IbCD ••..•...•....•. Thermal resistance CD with double sided cooling Junction to case. °C/Watt ....... Case to sink, lubricated, °C/Watt ... TJ TOl9 -40 Non-tnggring Gate Current at Typ, ReJc Recs Max. 125 150 5500 -40 5000 CD Consult recommended mounting procedures. CD Appl ies for zero or negative gate bias. eD Per JEDEC RS-397. 5.2.2.1. (i) With recommended gate drive. o Higher dv/dt ratings available. consult factory. (i) Per JEDEC standard RS-397. 5.2.2.6. 562 Typ. .006 .023 .0075 3100 Maximum Forward Voltage VS, Forward Current 7 .l!J ~ i ><i e I 5 '" l!! I I I I fill , 4 ~ - :::: .... E E ." 'i( :! 0 . .02 v~ -' "[~ 1 V I t: ~ g~ -, :1 ~9bri~'~W 2 0 § IIII'ffl . u. B ~9~J~I~\~ ~ 'E 3 ~ c: o ~ ~9b6~1~~~ 0 II> I 1I1111J1 6 Transient Thermal Impedance VS. Time .03 E - CD N ~ OJ~ E~ .01 cpU ~ ,.... U o 1---'''- ~/-' 1000 100 Forward Current. ITM, Peak Amperes o 10,000 .001 \ 110 100 90 " " \ \ " \ \ ," " 0-.J~~~~ 200 300 90 0 60 0 400 l: - ~ \ 30 0 1800 I I 600 500 700 ~ 1600 C 1400 Q. 1 600 E 400 .." E 'i( :! 900 1000 ~ ...... o ~100 o 200 / 100 V~ 90 0 1'200 180), V ' / / / / / I/~ / / / "/ / / / V./ / / ~ ..... i 800 / I / Z 0...J~~~~",n ~ o '~ 1200 ~ 1 ~A r- '~ 1000 1800 800 ~ i5 '\ 12'00 l!J 600 30 0 2000 t- T~GO_-!l8 A- ~ \ I\. 100 I I \ '\ ~. 10 Maximum Power Dissipation VS. Forward Current I ~~ \ \ .1 2200 T9GO_08 \" r\.~ ~ .01 Time, t. seconds Maximum Case Temperature VS. Forward Current 125 120 ~ ,/ g V- / ~V P' 200 300 400 500 600 700 800 900 Average Forward Cu~rent, Amperes Average Forward Current, Amperes Maximum Power Dissipation VS, Forward Current 3200 . - - -......- - - . - - -......--"'T"""--.;---..----. Maximum Case Temperature VS. Forward Current 125 120 T9GO--08 110 iii"' 100 2400 3: 90 .~. 2000 80 :~ 1600 70 o :;; 1200 0 D- 800 E ::J E 400 t;j (,J 0 ~ ; Q. E ~ 60 ...., 50 U 40 II> .. . 'x :! 0 200 800 Average Forward Current, Amperes 1000 1200 1400 Average Forward Current, Amperes 563 Maximum Case Temperature ':'5. F~~td Current Maximum Power DiSSipation VS. Forward Current 125~----~--~-r----~~--~~----~-----' 2400 120. .....\r"'ii!~:1---+----+--~--+- T9GO_10 2200 _I 1 1 2000 ~~ 1SOO - 0-1~~~UC~01 I I I T9GO_10 i j 90.0 ~oo If 30.0 l So.~--+-~-~--~-~~~~_4--~ .. / / I. V) f / Vj ~V / c( I 60. & e ~ i u 600 ~ u o / ;j ~ VA ~~ 1! ~ 5o.~--+--~;_---_r~~~--~---; 400 : J~ tl II = ~~----~----~----~----~---~----~ ~ 0. 200 400 600' 800 1000 1200 / If /,1/; I J II 1000 a. E 800 I / //// 1400 1200 I 120.0 l: 1600 lsclo 200 ~ 0. 100 300 500 700 900 1100 A~erage Forward Current. Ampere. Average Forward Current. Amperas Maximum Power Dissipation Vs. Forward Current Maximum Case Temperature VS; Forward Current 3200r---r---~--~-~--~---r--~--~--~ 125~--~---r--~--~~--~--~---r--~---' T9GO_10 120. 2Soo 110. ~~ L.-.-l.-. ."' . COnductIOn 24OOr--r--T--+--;_--r--r-~~_4-~ 100 90 So. ~ ~ g 1200r---_r--~~~~~f+~~+_--_+----t_--_r--_i 70. I u = 0 r? ,0 60 J :> 1ii a; a. E E 50. .,.. . E 'K 40. 0. 200 400 600 SOO 1000" 1200 1400 1600 lS00 ,., Average Forward Current. Amperes 564 4OO~_,~~~-;_-;_-_r-_+-_4-_4-~ :> ~ u soo~-+_~~~~~-4--~-+_-~-_r--_i :I ~ 400 800 8001000 Average Forward Currant. Ampere. 1~14OO18OO18OO Maximum Case Temperature VS. Forward Current Maximum Power DiSSipation VS. Forward Current 125~--r---~--~--~---r--~--~--~---' 2400 120 , I J 180° I 2200, - T9GO_12 I 2000 110 I lJOO J i-~ 1800, - 90° 0..J~-I:: 6QO 100 1600 90 300 1400 !! ~1ooo ~ I )800 70 u 0 ! !" •Ea. ~ Q600 60 :# } 50 300 •• U 60° 90° 1200 ~ 200 400 600 800 1000 / /1 / ~ 200 i ID o 400 E 180° IJ I / '1/)' / IIJ 'l /~ 0' J//A V 1200 80 J JI(/ 200 Average Forward Current, Amperes 400 600 800 1000 1200 1400 1600 Average Forwerd Current, Amperes Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current T9GO_12 2800~-r--+--+--+--;--~~r--r--r-OT~T--; 110 2400 100 2000,1--+--+--+--+--4 90 80 .~ 1200 1--4--+-*"+-I-J~~~f--+-+-+-+--f---I 70 i u ~ 0 ! 60 E 50 I ~ J 300 60° 90° 120° 180° 2700 DC : 'j ID u E "E :I! 40 0 400 Avarage Forward Current, Amperes 2400 o 800 1200 1600 2000 2400 Average Forward Current, Amperes S65 Now ',AvailBble",From ·W·;··,};;···;"'·"··· . ·:·· '·h· · ·: . . '. .' _iff. n''g",. 0 '.",1 .'. . use Introduction to Solid State Power Electronic:s • 8112 X 11 Format -144 Pages • $6.00 U.S. (Includes Book Rate Postage) - $6.50 Elsewhere (Includes Book Rate Postage) With. the growing importance of power electronics, persons with a basic knowledge of electrical er'!gineering, both in industry and at the university, should find . this text a worthwhile inv~stment. Approved text for IEEE short course in Solid State Power Electronics ana numerous college and univers.ity courses. Volume educational and quantity discounts are available. Book describes device char.acteristics and ....# .• '.' '. . ' . fundamental circuit principl~~ .needed. to .fullycomprehend the fiel~~'6f:poVver elec- tronics. Included are numerous references for more detailed research and example problems which illustrate the essential mathematical relationships in power . electronics. To order your copy, send check or money order (payable to Westinghouse Semiconduotor in U.S. funds) to: Westinghouse Electric Corporation Book Order Semiconductor Divis.ion Youngwood, Pa. 15697 Symbol .pD .pD, .pD, H .pJ J, L N Inches Min. 3.910 2.470 3.440 1.260 .135 .075 11.50 .050 Max. 3.950 2.480 3.560 1.300 .145 .090 12.50 Millimeters Min. Max. 99.31 100.33 62.74 63.00 87.38 90.42 32.00 33.02 3.43 3.68 1.91 2.29 292.10 317.50 1.27 ~ Creep Distance-1.82 in. min. (46.23 mm.) Strike Distance-1.26 in. min. (32.00mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-2.1 lb. (950 g). 1. Dimension "H" is a clamped dimension. TA20utiine Features: Aplications: • • • • • • • • Steel Mill Drives • Crane Controls • Motor Controls di/namic Gate design All diffused design Guaranteed dv/dt (300 v/J.ls) Low gate current with soft gate control LowVTM Low Thermal Impedance High surge current capability • 12t package rating . • Lifetime Guarantee Package I2t (Case Rupture) Rating: 125 x 106 A' sec. Ordering Information NOTE: LOWER VOLTAGE DEVICES AVAILABLE CONSULT FACTORY REPRESENTATIVE Example Obtain optimum device performance for your application by selecting proper order code. TVpe TA20 rated 1200 A Average with VDRM=2000v, IGT=200 ma, and standard 12 inch leads-order as: 567 Voltage Blocking State Maximums 0 tTJ = 125'C) Repetitive peak forward blocking voltage • V Repetitive peak reverse voltage. V Non-repetitive transient peak reverse voltage. t:of: 5.0 msec. V •........•..•.•.•.•.•...•.•. Forward leakage current. mA peak ......... . Reverse leakage current. mA peak Symbol VORM 600 VRRM 600 VRSM 700 1000 1200 1400 1500 1600 1700 '1800 1900 2000 2100 2200 800 1000 1200 1400 1500 1600 1700 1800 1900 2000 2100 2200 900 1100 1300 1500 1600 1700 1800 1900 2000 2100 2200 2300 800 75 75 IORM IRRM Current Gate Conducting State Maximums tTJ = 125'C) Symbol TA20-12 TA20-14 (TJ=25°C) RMS forward current. A ......... Ave. forward current. A .......•. One-half cycle surge current®. A .. 3 cycle surge current®. A ...... 10 cycle surge current®, A ..... I't for fusing (t=8.3 ms) Nsec Max I't of package (t=8.3 ms). A'sec IT(rms) IT(av) I TSM I TSM I TSM I't 1900 1200 30.000 25.000 18.000 3.75 X 106 125 X 10· 2.200 1400 35.000 30.000 22.000 5.1 X lOS 125 x lOS Gate current to trigger at Vo = 12V. mA .. IGT Gate voltage to trigger at VO=1 2V. V .... VGT Non-triggering gate voltage. TJ=125°C. and rated VORM. V ................ VGNT Peak forward gate current, A .......... IGTM Peak reverse gate voltage, V ........... VGRM Peak gate power, Watts ......•...•••. PGM Average gate power. Watts .........•.. PG(av) 2.40 2.00 12 t Forward voltage drop at I TM = 6000A and TJ = 25'C, V ........... V TM Switching (TJ = 25°C) Symbol Turn-ofhme.IT=250A TJ =125°C. diR/dt=50 A/"sec reapplied dv/dt= 20V/"sec linear to 0.8 VDRM. "sec. Turn-On and Delay Trme ITM = 1000A0. tp = 450 "sec ....... VD=1100V. "sec. .............. Crrtrcal dv/dt exponentral to VDRM TJ=125°C. V/"sec®® ............ dr/dt non-repetItive, Ap.sec ............... ®®®I Latching Current VD=75V. mA ................... Holding Current VD=75V. rnA ......... ,' ......... Typ Min tq 250 4.5 2.5 ton td dv/dt 300 dr/dt 400 1000 IH 150 500 I 5 -iluO_14 4 568 ® ® ® ® 1,000 .018 .016 .015 .02 .0075 j Q. ~ - .012 II> .,uc .010 ;: .E ~ iii 'E u0 :;; 100,000 11.000 .006 ~ .014 .r:. £ 10.000 Max 125 150 ROJC Rlics .020 S l- ., 0 N u 100 8500 Typ Per JEDEC RS·397, 5.2.~.1. With recommended gate drive. Higher dv/dt ratings available; consult factory. Per JEDEC standard RS·397, 5.2.2.6. u :::I ~ ::::~ 200 3.0 o Consult recommended mounting procedures. o Applies for zero ornegative gate bias. .., I Forward Current. ITM. Peak Amperes -40 -40 c .2 t; c 2 o TJ Tstg oj 1/ 3 Oper. junction temp., °C ............. : . Storage temp., °C ............•....•.. Mounting force, Ib.(i) ................. Thermal resistance with double sided cooling0 .......... Junction to case, °C/Watt ........... Case to sink, lubricated, °C/Watt ........ !II III Max 4 5 16 3 Min ., ll~ TA2CL.12 I I 1111 150 1.5 .15 Transient Thermal Impedance VS. Time , ~ I" 6 Typ 30 Symbol 800 IL Min Thermal and Mechanical 1000 Maximum Forward Voltage VS. Forward Current 7 Max Symbol e,) V" .008 .006 .004 ~ .002 0 .001' .01 Time. t. seconds .1 10 100 Maximum Case Temperature VS, Forward Current 125 115 ~ u o I ~ 65 ~ ~o L =: 200 400 I 2600 I-- 0-1~~V)I\l: ~ ~ \ 1\ i\,1\ " ~ ~- 2800 I-- I 2400 I-- . iii u 0 ~looo .. Q. 'iii 0 IL 1\ e::J -,- 400 . E 200 'j( ::i; " .,e .,. I . u 55 :T~~I~ 1 ~- 3000 0--1~:~~n 200 400 600 , , ," I j V/ I J V / V 400 600 800 1000 1200 1400 1600 iA2<L-l~ I 2800 I ~~l: 2600 I - 0--1~~:~MJn 2200 2000 1800 f! 1600 1\ ~ ~ 1400 C ,2 1200 ~ ,~ 1000 1/1 i5 ~ 0 800 .. ::i; 90° J 17 1800 ~ 1/ I I J 1 1/ j J / 1/ I I / II I I III / I /1 // J / , '/ I / /// / IIh V I/, W ~ /A ~ Q. " 600 J /~ 600 E 400 E 200 'j( 1200 30° 2400 60 0 90 0 1200 1800 30 0 I I I 800 1000 1200 1400 1600 Average Forward Current, Amperes ~ 3200 I- L: 1\ 65 ) Maximum Power Dissipation VS, Forward Current " ~ / VV II ", ~ V 200 3400 i\ ~ \ ~ 1\ \ r\ \ ~ 1\i\ 1\ r\ 1\' f\ " , , !? I 1400 i5 800 CD 600 ~ I 1200 1800 I JV / J //V I / "/ / 1/ /. lj V j J ~V 1600 ,2 1\ 75 I II II C 1200 \ '\i\~ ~\: t'~ \ \ ~ \ i\,\. 85 Anqle6 1 r~oo II Aver age Forward Current, Amperes 1\ 1\~ ~ ~ 95 300 O~ConduC,.on~ I- ~ :0 0 1200 1800 I I I I I 600 800 1000 1200 1400 1600 "~ 105 6~0 I ~~ 1800 Maximum Case Temperature VS, Forward Current 115 I 2000 Average Forward Currant, Ampares 125 I 2200 ~ 75 !? I 3000 I-- f- TA2<L-12 I 1\1\ [\1\ r\r\ ~ \ \ \ "\ \ !\ , \ " 1\ \ \ r\,1\ , 95 85 I I I I JA2Ll11 I ~ ~ ~~ ~ 105 Maximum Power Dissipation VS, Forward Current ~ ~ ~ ~ 400 600 800 loool~14OO16001800 Average Forward Current, Amperes S69 Maximum Case Temperature VS. Forward Current 125 ~ 115 105 I I I I ~ 85 ~ " 1\r\ ~ 65 E ~ " ~ 300 I 51 ~ f\ .. I\~ ~ ~ ~ r\ ~ ~ ~ 1\ I\~ r\ ~ r\1\ I\. 1\ r\' 'f\ 1\ ~ ~ :; 600 1900 1200 1800 2700 fl " . 1/ 1200 1400 ·1 J E :l E 1/ Ii " "" V II II'If' ~ )[1 IV J ~ iV I 1.ir.l V 1/ If.~ ~V' : VI) V. i~ II A), ~ I 1000 .!! 0 I I J V II JI) J .~ ~~ ~ P' 800 .~ 600 400 200 - 200 400 600 800 1000 1200 14001600 1800 2000'2200 I I I I I TA20-.14 I I I " ~~ ! , " [\\ \ ~ 65 I ~ I 500 ~ \ , 300 I 1000 I I " r- r-J"~ L--..L- ConductIOn Angle A r- L--..L-Ca'lductlOl'1 ...... , ~ \ r\ i\\\ r\\ 90 0 1200 1800 270 0 DC I I II I I I I I I I I I 2000 1500 2500 600 J III) ~II i) j II "III 1/ ~V ~~If' 'I ~, ~~ IJ ~~~ 800 I E :l E 400 'r- :i I) 'K J 120 ilif Vj j J If 111/ 1/1/ J~ 1 il Ill'- 1/.1' .1ZI ~, 600 if I .: \ 1\ \ II j ,2 1200I i3 300 t- .U0 1800 :~~o~C II II II V ~ It Il )~ 90 0 t-~ 2800 2000 \\1\\ [\\ 1\ ~\ HiAJa.:l~ 2400 \ , 1\ 75 I 55 i 3200 ~~ ! Average Forward Current, Amperes 570 DC \ \i\ r\ \ '1\ ~\ \ 51 u II 1800 ~ l' r\!'; \ ~ E ~ 2400 J 1600 ~~ \[\,"\\\. ~~ :l & 300 ". "1 Maximum Power Dissipation VS, Forward Current -- 85 I ~ 2600 ;: 600 I A..... Maximum Case Temperature VS. Forward Current 95 I a L--..L-ConducIIOn Average' Forward Current, Amperes I u 2800 I I DC 27~011- 1200 1800 90 0 Average Forward Current, Amperes 125 105 ~~ I I VI I I I I 1 L "= ::i1 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 I 55 115 3000 2200 ~ ~ ~ ~ ~~ [\ 10 I I I I 2000 ~~ 75 " Angle • . ~ .; ~A~~I~ L--..L-C~Utloon "~~~ ~, 1\ 3400 /-1 3200 ~~- ~~ ~~ ~~ 95 I TA~~12 ~ ~ Maximum Power Diasipation VS. Forward Current 3600 f- ~~ 500 ~~ 1000 Average Forward Current, Amperes 1500 2000 2500 IncheS' Symbol" A B C </>D J Max. Min. Max. 9.00 .063 2.980 10.00 .172 3.020 228.60 1.60 75.69 254.00 4.37 76.71 1.490 3.750 .272 K M .530 2.030 .500 N p Q R 3.937 4.937 .330 S q,T U .970 .470 .440 V Z .292 .755 2.150 37.85 95.25 6.91 7.42 13.46 51.56 12.70 19.18 54.61 2.670. 4.063 100.00 5.063 125.40 .350 . 8.38 67.81 103.20 128.60 8.89 24.64 11.94 11.18 26.16 13.46 1.030 .530 Creep Distance-l.76 in. min. (44.91 mm). Strike Distance-.Sl in. min. (~0.70 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-5 lb. (2.3 kg.,. 1. Angular orientation of terminals ar~ undefined. 2. Pitch diameter of *-20 UNF-2A (coated) threads (ASA Bl.1-1 ~60). 3. Oimension "J" denotes seated height with leads bent at right angles. T76 Outline Voltage Millimeters Min. ® Blocking State Maximums ITJ "- 125'CI Repetitive peak forward blocking voltage • V Repetitive peak reverse voltage • V ...... , . , . Package J2 (case rupture) rating: 15 x 106 A 2 sec. Symbol VORM VRRM 100 100 200 200 400 400 600 600 SOO 800 VRSM 200 300 500 700 950 1200 1450 1550 1700 1800 1900 2050 2150 2400 2600 1000 1200 1300 1400 1500 1600 1700 lS00 2000 2200 1000 1200 1300 1400 1500 1600 1700 lS00 2000 2200 Non-repetitive transient peak reverse voltage, ~~ 5,Omsec, Vi ...... , .. , .. ,.· .. · .... . I: ~I 1-+--(- - T I 6 0 __ 30 Forward leakage current, mA peak '" ......• Reverse, leakage current, mA peak .......... . :~=~ !~I-------------t Gate Current Conducting State Maximums (TJ = 125'C) • RMS forward current, A .. , ..... . Ave. forward current, A ........ . One-half cycle surge current@, A .. 3 cycle surge current@, A ..... . 10 cycle surge current@, A .... . 12t for fusing (for times> S.3 ms) A2 sec. Forward voltage drop at I TM = 3000A and TJ = 25'C, V .......... . Symbol T760 __ 30 'T(rms) 'T(av) I,TSM 'TSM 470 300 8400 6050 5200 ' TSM 12t. 295,000 3.30 V TM Typical turn-off time. IT = 250A, TJ = 125'C, diR/dt = 25 A7p.sec, reapplied dv/dt = 20V/lJsec linear to O.S VORM,/L sec ... Typ. turn-on-time, 'T = 100A VO= 100V@, /Lsec . , .......... , .. . Min. critical dv/dt, exponential to VO RM ' TJ = 125'C, V/p.sec®(f), •.......... Min. di/dt non-repetitive, A/lJsec 000. , Symbol Gate current to trigger at Vo = 12V, mA Gate voltage to trigger at Vo = 12V, V ... Non-triggering gate voltage, TJ = 125'C, and rated VORM ' V ............... . Peak forward gate current, A .......... . Peak reverse gate voltage, V ...... , ... . Peak gate power, Watts .......... , ... . Average gate power, Watts ...... , , ... . 'GT V GT VGOM I GTM VGRM PGM PG(av) 150 3 0.15 4 5 16 3 Thermal and Mechanical Switching (TJ = 25'C) Maximum Parameters (TJ ;:: 25"C) Symbol Symbol tq 150 ton 7 dv/dt 300 di/dt 800 Example Min .. Max. aper. junction temp .• ·C ......... . Min .. Max, storage temp.'. ·C .............. . Max. mounting torque. In lb. TJ Tstg -40 to +125 -40 to +150 300 Max. Thermal Impedance, 0C/Walt Junction to Ambient @ 1000 LFM airflow ............ (JJA 0.18 o Consult recommended mounting procedures. o Applies for zero or negative gate bias. CD <D CD Per JEOEC RS-397, 5.2.2.1. With recommended gate drive. Higher dv/dt ratings available, consult factory. CD Per JEOEC standard RS-397, 5.2.2.6. Obtain optimum device performance for your application by selecting proper Order' Code. Type T760 rated at 300 A average with VORM = 1000V, IGT 150 rna, and standard flexible lead-order as: == 871 Maximum Forward Voltaga VS. Forward Currant Transient Thermal Impedance VS. Time 3.0 2.5 2.0 1.5 1.0 0.5 o 100 10 .01 Time, t, Seconds 10 100 1 Forward Currant - ITM, Ampares '11: Maximum Power Dissipation VS. Forward Current Maximum Case Tamparatura VS. Forward Currant 600 u 100 0 ! A6O" 400 :) ! 75 f ~ A30· J 300 I, SO U t+ E :) 200 E ~ A6O· 25 100 ~--::±t -'-+4-. ~~ ....taA 0 100 0 200 . Avarage Forward Current, Amperes MaKimum Cata Temparatura VS. ForWard Currant 0 0 100 Maximum Power Dissipation VS. Forward Current 100 U 0 !75 I' E ~SO I ~ 25 0 0 100 Average Forward Current, Amperes 872 ZOO Average Forward Current, Amperes Average Forward Current, Amperes 3I!ll Inches Symbol A A, Min. Millimeters Max. Min. Max. 9.760 10.250 247.90 260.35 10.000 10.750 254.00 273.05 .063 .172 1.60 4.37 B C .pD F J .pK M Q S .pT U Z 1.790 .980 .245 1.830. 1.090 .255 45.47 24.89 6.22 46.48 27.69 6.48 4.250 .338 .530 .348 .755 107.95 8.59 13.46 8.84 19.18 2.390 .330 2.750 2.430 .350 60.71 8.38 69.85 61.72 8.89 .280 .440 .320 7.11 11.18 8.13 Creep & Strike Oistance. .69 in. min. (17.60 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-16 oz. (454 g). 1. Angular orientation of terminals is undefined. 2. Dimension" J" denotes seated height with leads bent at right angles. Voltage (J) Blocking State Maximums (TJ=125 C C) Symbol Repetitive peak forward blocking voltage, V ..... Repetitive peak reverse voltage" V ........... Non-reDetitive transient peak reverse voltage, tS;5.0 msec, V ••••.••••••••••.••.•..... Forward leakage current, mA peak .......•.... Reverse leakage current. mA peak ............. VORM VRRM 100 100 VRSM IDRM IRRM 200 ... 200 200 300 300 400 400 500 500 600 600 700 700 SOO 800 900 900 1000 1000 1100 1100 1200 1200 1300 1300 1400 1400 1500 1500 300 400 500 600 700 850 950 1100 25 25 1200 1300 1450 1550 1700 1800 • Switching Current Conducting State Maximums (TJ=125 C C) Symbol RMS forward current, A .........•..•... Ave. forward current, A ................ One-half cycle surge current@, A .....•... 3 cycle surge current@. A ............ 10 cycle surge [email protected] ........... 1'1 foriusing (for times>S.3 ms) A' sec..... Forward voltage drop at ITM=625A and TJ=25 c C, V ....••....••........... IT(rms) IT(av) ITSM ITSM ITSM I't T680__18 275 175 5500 3900 3400 120,000 1.55 VTM (TJ=25 c C) Symbol Typical turn-off time, IT=150A TJ=125 c C. diR/dt=12.5 A/p.sec. reapplied dv/dt=20V/p.sec linear to O.S VORM, p.sec ............ Typ. turn-on-time.IT=100A [email protected] ............. tq ton 150 5 Min. critical dv/dt, exponential to VORM TJ=125 c C, V/p.sec(J)(J) •. dv/dt 300 Min. di/dt non-repetitive, A/p.sec (f) (j)(J) di/dt 800 Thermal and Mechanical Gate CD • Symbol Maximum Parameters Consult recommended mounting procedures. (J) Applies for zero or negative gate bias. CD Per JEDEC RS-397, 5.~ 2.1. (j) With recommended, e drive. (J) Higher dv/dt ratings av"ilable, consult factory. (j) Per JEDEC standard RS-397, 5.2.2.6. (TJ=25"C) Symbol Gate currenttotrigger atVo=12V, mA Gate voltage to trigger at VO=12V, V. Non-triggering gate voltage. TJ =125°C, and rated VORM, V .... Peak forward gate current, A .•••... Peak reverse gate voltage, V ....... Peak gate power, Watts ........... Average gate power, Watts ........ IGT VGT 150 3 VGOM IGTM VGRM PGM PG(av) 0.15 4 5 16 3 Min., Max. oper. junction temp .. "C .•.........•. Min., Max. storage temp .. °C Max. mounting torque each bolt, in-lb. (f) ..... Thermal resistance(j) TJ Tstg -40 to +125 -40 to +150 25 Junction to case, °C/Watt ....•...•••... Case to sink, lubricated, °C/Watt .......••..... Example Obtain optimum device performance for your application by selecting proper Order Code. ROJC .155 ROCS .05 , Type T680 rated at 175A average with VDRM l000V, IGT = 150 ma, and standard flexible lead-order as: = 573 4.C 3.5 I 1111 3.0 III " I 111111 TJ ! = 12&°C u S .§ 2.5 t> ~ 2.0 ..,§ ~ 1.5 i lii .Eu, ..... "" 1.0 E =~ ~~ 0.5 o g~ 1 2 10 20 50 1()() 200 5 Forward Current. 1TM, Peak Amneres' 500 lK 2K 51< 10K. .001 Time,l, Seconds Maximum Case Temp.erature VS. Forward Current .01 .1 10 100 Maximum Power Dissipation VS. Forward Current 300~~ ~"i~~ ~ ~l_~~~~~];' 250 ~ .~ 200; .1 .;o Io Il. . 100 E· .::l E 'j( ~ 50 o 100 50 150 200 Average forward Current. Amperes Average Forward Current. Amperes Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current 50 100 150 Average Forward .Current. Amperes 874 200 250 300 o 50 100 150 Average Forward Current. Amperes 200 250 300 Inches Symbol A A, B C q,D Millimeters Min. Max. Min. Max. 9.76 10.18 .063 10.00 10.42 .172 247.90 258.57 1.60 254.00 264.67 4.37 2.52 1.490 1.750 62.99 41.15 64.00 37.85 44.45 2.48 E F J q,K 1.620 .430 4.00 .360 M Q 5.30 q,S q,T .810 .400 .755 3.10 1.610 1.590 .330 .440 Z 10.92 101.60 9.14 13.46 40.39 .350 8.38 11.18 20.57 10.16 19.18 78.74 40.89 8.89 Creep Distance-1.76 in min. (44.91 mm). Strike Distance-.S1 In min. (20.70 mm) (In accordance with NEMA standards.) FInish-Nickel Plate. Approx. Weight-16 oz. (454 g). 1. Angular orientation of terminals are undefined. T78 2. Dimension "J" denotes seated height with leads bent at right angles. Outline I Voltage (j) Blocking State Maximums IT J -- 125°C I Repetitive peak forward blocking voltage ,V Repetitive peak reverse voltage V ......... . Non-repetitive transient peak reverse voltage, t~ 5.0 msec,V ................... ·.··· Symbol VDRM Package I2t (case rupture) rating: 15 x 1()6 A~sec. VRRM 100 100 200 200 400 400 600 600 800 800 1000 1200 1300 1400 1500 1600 1000 1200 1300 1400 1500 1600 V RSM 200 300 500 700 950 1200 1450 1550 1700 1800 1900 T780 __ 35 Forward leakage current. mA peak ......... . Reverse leakage current, mA peak 'DRM 'RRM + Symbol RMS forward current, A ........ . Ave. forward current, A .......•. One-half cycle surge current@, A .. 3 cycle surge current@. A ..... . 10 cycle surge current@, A .... . 12t for fusing (for times> 8.3 ms) A2 sec. Forward voltage drop at I TM = 3000A and TJ = 25°C, V .....•..... ) ) 30 Current Conducting State Maximums (TJ = 125°C) ) 30 < T780 __ 35 550 350 10,000 7200 6200 ' Tlrms ) 'T(av) ' TSM ' TSM ' TSM 12t V TM Switching (TJ = 25°C) Symbol Typical turn·off time, IT = 250A, TJ = 125°C, diR/dt = 25 A~JJsec, reapplied dv/dt = 20V/,..sec linear to 0.8 VORM,JJ sec ... Typ. turn·on·time, IT = 100A VO= 100V0. JJsec ............... . Min. critical dv/dt, exponential to VORM' TJ = 125°C, V /JJsec@:D ........... . Min. di/dt non-repetitive, JEDEC Std. #7, A/,..ser. CDCDCD .............. . 416,000 2.15 I tq 150 ton 7 dv/dt 300 di/dt 800 Gate Thermal and Mechanical Maximum Parameters (T J =25°C) Symbol Min. Max. oper. junction temp, °c ......... . Min. Max. storage temp .. °c .............. . Max. Thermal resistance Q) JunctIOn to case. °C/Watt. . ........ . Case to sink. lubricated. °C/Watt. TJ Tstg ROJC ROCS CD Consult recommended mounting procedures. (j) Applies for zero or negative gate bias. (j) Per JEOEC RS397, 5.2.2.1. CD With recommended gate drive. (j) Higher dv/dt ratings available, consult factory. CD Per JEOEC standard RS·397, 5.2.2.6. Symbol Gate current to trigger at Vo = 12V, rnA -40to+125 -40 to +150 Gate voltage to trigger at Vo = 12V, V ... Non-triggering gate voltage, TJ = 125°C, and rated VORM ' V ............... . Peak forward gate current, A .......... . . 10 .05 Peak reverse gate voltage, V .......... . Peak gate power, Watts .............. . Average gate power, Watts ........... . Example Obtain optimum dev.ice performance for your application by selecting proper Order Code. 'GT VGT 150 VGDM I GTM V GRM PGM PG(av) 0.15 4 5 16 3 3 Type T780rated at ,50A average with VORM= 1000V, IGT= 150 ma, and standard leadorder as: _.lla'14I,i.••_*,,,,,i=M;ii,,,';W.,,,,,,."'&.i;ii,,,".*.., CO=I j D I IT""] 7 8 3 5 0 [ 4 L'BY _ 575 Transient Thermal Impedance VS. Time N ~ "E ~ E ~ 1.5 i--~~-+~+--..i..-.,.-.~"T""-'-' 1.0 !-·..;.-.,.-+-++thl-·--t·--+---'--;-:;::.;;.:i.-""f' C-·..·-H...;--. 0.5 f-_'';''+'';r-';''';'+H1--+-+-t-c' .~ :E Forward Current. ITM. Amperes lime. t. Seconds Maximum Case Temperature VS. Forward Current Average Forward Current. Amperes 576 Average Forward Current. Amperes Conforms to TO-83 Outline Conforms to TO-94 Outline Symbol A A, B q,D E F J M N Inches Min. 5.775 6.850 .055 .860 1.031 .255 2.50 .437 .796 Q q,T Z q,W .260 .250 ~-20 Max. 6.265 7.500 .075 1.000 1.063 .400 .650 .827 1.675 .291 Millimeters Min. Max. 146.69 159.13 173.99 190.50 '1-.40 1.91 21.84 25.40 26.19 27.00 6.48 10.16 63.50 11.10 16.51 20.24 21.01 42.55 6.60 7.39 6.35 UNF-2A Symbol A, C L L, L, M, q,T, q,T, Z, q,W Inches Min. .070 .420 .180 .360 .190 .060 .180 ~-20 Millimeters Min. Max. 45.97 1.78 2.79 16.51 13.21 10.67 4.57 11.94 9.14 4.83 5.97 1.52 2.03 4.57 !'0ax, 1.810 .110 .650 .520 .470 .235 .080 UNF-2A Approx, Weight-4 oz. (114 g). 1. Basic dimensions of TO-94 and TO-83 Creep & Strike Distance. T500-.50 in. mm. (12.85 mm). (In accordance with NEMA standards.) Finish-Nickel Plate, Approx. Weight-5 oz. (142 g). 1. Complete threads to extend to w'thin 2% threads of seating plane. 2. Angular orientation of terminals is undefined. 3. Pitch diameter of %·20 UNF-2A (coated) threads (ASA B1.1-1960). 4. Dimension "J" denotes seated height with leads bent at right angles. no? Cod. 100 200 300 400 500 600 700 800 900 1000 1100 1200 01 02 03 04 05 06 07 os I T{avl (Al Features: • Center fired dilnamic • High di/dt with soft gate control • High frequency operation • Sinusoidal waveform operation to 20 KHz • Rectangular waveform operation to 20 KHz • Low dynamic forward voltage drop • Low switching losses at high frequency • Lifetime Guarantee Applications: • Inverters for UPS Induction Heating AC Motor Control • Switching power supplies • Cycloconverters • Choppers • Crowbars are same except as noted. Code Note: High frequency sine and square wave data available. consu It factory. Code - 40 40 to 70 70 15 20 80 so 25 30 40 50 09 10 11 Example Obtain optimum device performance for your application by selecting proper Order Code. Type T 507 rated at 80 A average with VORM = 1000V. IGT =.150 ma, tq = 30 p,sec max. and flex leads-order as: S77 Voltage Blocking State Maximums. ® ITJ = , 25·C) Repetitive peak forward blotking voltage • V .: Repemive peak reverse, voltagll; V ........ . Non-repetitive tranSient peak reverse voltage. t ~ 6.0 msec. V .......................... . Symbol VORM Forward lea~age' current. mA peak .•..•.•... Reverse leakage current. mA peak .....•..... IiRRM 100 100 200 200 300 300 400 '400 500 500 SOO 600 700 700 800 800 900 900 1000 1100 1200 1000 1100 1200 VRSM 200 300 400 500. 600 700 800 900 1000 1100 1200 1300 IORM 'R.RM ~ ~ 15 . 15 ) ) Current Conducting State Maxim'ums (TJ = 125·C) Symbol RMS forward current. A ........ . Ave. forward current. A ....••.•. One-half cycle surge current(!). A .. ,'ifor fusing '(for times> 8.3 ms) A'sec. Forward voltage drop at 'TM = 500A and TJ = 25·C. V .......•.. Min. repetitive di/dl (])'CDCD A/p.aec ... T507 __ 40 T507 __ 70 T507 __ 80 63 40 1000 110 70 1200 125 80 1400 4000 6000 8150 4.2 100 3.5 100 3.2 150 iT(rms) 'T(av) ' TSM I't. VTM di/dt (TJ = 25·C) ~ ... Symbol Max. turn-off time. IT =50A. TJ = 125·C. diR/dt = 5 "7p.sec. reapplied dv/dt == <D(l) 20V /1' sec linear to 0.8 VORM ,I' sec •.' . Typ. turn-on-time. IT = 100A . VO= 100VCD. p.sec ............... . Min. critical dv/dt. exponential to VORM' TJ = 125·C. V/p.secfJ)IJ) ....•....... Min. drl dt non-repedtive. .A/p.sec 1J)(l)1J) .............•. tq 10 to 50 ton 3.5 dv/dt 200 di/dt 800 l ~ 6I 0 4 ~ 3 ~ • ~ "E ...! Gate Maximum Parameter. IT J = 25·C) Gate current to trigger at Vo Maximum Forward Voltage VS. Forward Current 'l!I Switching E Symbol = 12V. mA Gate voitage to trigger at Vo = 12V. V ... Non-triggering gate voltage. TJ = 126·C, and rated VORM ' V ............... . Peak forward gate current. A .......... . Peak reverse gate voltage. V .: ..... ~ .. . Peak gate power. Watts .............. . Average gate power. Watts ........... . IGT VGT VGOM IGTM VGRM PGM PG(av) 150 3 0.15 4 5 16 3 '" E III I 507_~ ill ~~ ¥~07~70 6 T607_ ..80 ~t:~ ,. p- 'iii • :::t o 10 100 Forward Current. ITM. Peak Amperes Transient Thermal Impedance VS. Time -40 to +125 -40 to +150 130 .28 .12 (!). Consult r_mended mounting procedures. IJ) Applies for zero or neg.tiVe gete bias. IJ) Per JEOEC RS·397, 6.2.2.1. (i) Withlr.commended gate drive. <D ~igher dv/dt ratings available, consult factory. CD Per JEDEC standard RS·397. 6.2.2.6. (j). For operetion with antlparallel diode, consult factory. Time.,. Seconds 578 V ~~ 2 Symbol TJ Tstg 11)1/ I..t' 1 nermal and Mechanical Min.. Max. oper. junction temp .. ·C ..... . Min .• Max. storage temp .. ·C .......... . Max. mounting torque. in lb. (!) .....•.•. Max. Ther."al resistance IJ) Junction to case. °C/Watt .....•..• Case to oink. lubricated. ~C/Watt ..... . 1~~ ---.. 1000 , 10.000 Symbol A A, B 4>D E F J M N Q 4>T Z 4>W Features: • Center fire, di/namic gate • High di/dt with soft gate control • High frequency operation • Sinusoidal waveform operation to 20 KHz • Rectangular waveform operation to 20 KHz • Low dynamic forward voltage drop • Low switching losses at high frequency • Westinghouse Lifetime Guarantee Inches Min. Max. 7.750 8.100 7.750 8.100 .063 .172 .980 1.090 1.212 1.250 .250 .630 3.25 .530 .755 1.040 1.077 2.250 .260 .290 .340 %-16 UNF-2A Millimeters Min. Max. 196.85 205.74 196.85 205.74 1.60 4.37 24.89 27.69 30.78 31.75 6.35 16.00 82.55 13.46 19.18 26.42 27.36 57.15 6.60 7.37 8.64 Creep & Strike Distance: .69 in. min. (17.60 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-8 oz. (227 g). 1. Complete threads to extend to within 211.. threads of seating plane. 2. Angular orientation of terminals IS undefined. 3. Pitch diameter of %·16 UNF·2A (coated) threads (AS A B1.1-1960). 4. Dimension "J" denotes seated height with leads bent at right angles. Note: High frequency sine and square wave data available, consult factory. Applications: • I nverters for UPS AC motor control Induction heating • Cycloconverters • Choppers Ordering Information 100 200 300 400 I Tlav) (Al Code tq p'sec 125 13 10 '03 150 16 05 06 175 18 01 02 , 04 07 ~O, 08,' 1~ \1', ' Example Obtain optimum device performance for your application by selecting proper Order Code. Type T607 rated at175A average wjth VDRM = 1000V, IGT 150 ma, tq 30 !,sec and standard flex lead - order as = = 579 Voltage Blocking State MaximumsQ) (TJ = 125°Cl Repetitive peak forward ,blocking voltage ,V Repetitive peak reverse voltage ,V, ..•...... Non-repetitive transient peak reverse voltage. t ~ 5.0 m sec, V ........................ , •• Symbol VORM Forward leakage current, mA peak .........• Reverse leakage current. mA peak .......... . VRRM 100 100 200 200 300 300 400 400 500 500 600 600 VRSM 200 300 400 500 600 700 IORM IRRM < < 700 700 SOO SOO 900 900 1000 1100 1200 1000 1100 1200 SOO 900 1000 1100 1200 1300 ~ ) 25 25 Current Conductin'l State Maximums (TJ = 125 C) RMS forward current. A .....•.•. Ave. forward current, A ....•.•.. One-half cycle surge current®. A .. 12t for fusing (for times> S.3 ms), A2·sec. Forward voltage drop at ITM = 625·A and TJ = 25°C. V ... , ..... . Min. repetitive di/ dt CD CD@ ,A/usee Symbol T607 __ 13 T607 __ 15 T607 __ 18 IT(rms) IT(av) I TSM 200 125 3500. 235 150 4000 275 175 4500 65,000 S4,000 2.1 250 I.S5 300 lOt • 50,000 2.35 200 VTM di/dt Switching Maximum Forward Voltage VS. Forward Current (TJ = 25°C) Symbol Max. turn-off time. IT -·150A. TJ = 125°C, diR/dt =12.5 A7usec, reapplied dv/dt = 20V /,. sec linear to .SV ORM, ,.sec CD CD ' Typ, turn-on-time, IT = 100A VO= 100V@, usee . ......... , .... . Min. critical dv/dt. exponential to VORM ' TJ = 125°C, V/usec®(J) ........ , .. . Min. di/dt non-repetitive, CDQ)@,A/lI-sec .............. . !!! '0 > tq 10t060 3.5 ton dv/dt 300 di/dt 800 ~ ~. . f ~o· ... Gate Symbol = Gate current to trigger at Vi> 12V. mA Gate voltage to trigger at Vo = 12V, V ... Non-triggering gate voltage, TJ = 125°C. and rated VORM ' V ........ : ....... . Peak forward gate current, A .........•. Peak reverse gate voltage,. V .....•....• Peak gate power, Watts .............. . Average gate power. Watts ........... . IGT V GT 150 3 6 5 4 {60~ ~~ i j--•• 3 1S T607__ 2 ~ ~ .... 7' ..:::!:" 'x 0.15 4 1000 100 10.000 Forward Current. ITM, Peak Amperes Transient Thermal Impedance VS. Time 5 16 3 I/. 71 I E E 10 VGOM I GTM VGRM PGM PG(av) 'I. T607__13 I • I. Q 'E Maximum Parameters (T J = 25°C) 7 20 18 Thermal and Mechanical Symbol Min., Max. oper. junction temp., Min., Max. storage temp., °c ..... . °c .......... . Max. mounting torque. in lb. CD ........ . Max. Thermal resistance (J) Junction to case. °C/Watt .. , ..... . Case to sink, lubricated. ·C/Watt ..... . CD CD CD @ @ @ CD S80 TJ Tstg -40 to +125 -40 to +150 300 ReJC Recs Consult recommended mounting procedures. Applies for zero or negative gate bias. Per JEDEC RS-397, 5.2.2.1. With recommended gate drivEi. . Higher dv/d! ratings available. consult factory. Per JEOEC standard RS-397. 5.2.2.6. For operation with antiparallel diode, consult factory. .13 .08 oJooi...~~~~0001 .001 .01 Time.t. Seconds .1 10 100 Symbol A A, B q,D E F N Q q,T Z q,W Millimeters Min. Max. Creep Distance-1.76 in. min. (44.91 mm). Strike Distance- .81 in. min. (20.70 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-16 oz. (454 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of terminals is undefined. 3. Pitch diameter of *-16 UNF-2A (coated) threads (ASA B 1.1 -1960). 4. Dimension "J" denotes seated height with leads bent at right angles. T70 Outline Features: Center fired di/namic gate High di/dt with soft gate control High frequency operation Sinusoidal waveform operation to 20 KHz Rectangular waveform operation to 20 KHz Low dynamic forward voltage drop Low switching losses at high frequency Westinghouse Lifetime Guarantee I Applications: UPS I nduction heating AC motor drives • Cycloconverters • Choppers • Crowbar I Voltage Note: High frequency sine and square wave,data available. consult factory. • Inverters for Ordering Information Type Max. 9.76 10.00 247.90 254.00 10.18 10.42 258.57 264.67 .063 .172 1.60 4.37 1.490 37.85 1.620 1.750 41.15 44.45 .430 .810 10.92 20.57 4.000 101.60 .530 .755 13.46 19.18 1.04 1.08 26.42 27.43 3.100 78.74 .330 .350 8.38 8.89 .440 11.18 %-16 UNF-2A J M • • • • • • • • Min. I Current Turn off I Gatp current I Leads , VDRM Code T707 and VRRM (V) 100 200 300 400 500 600 700 1000 1100 1200 Code 01 02 03 04 06 06 07 I T(av) (A) Code IGT (ma) 150 Case 4 T70 275 325 250 300 Example Obtain optimum device performance for your application by selecting proper Order Code. = Type T 707 .rated at 300A average with VORM 1000V. IGT = 150 ma.tq = 30 psec and standard flex lead - order· as 581 Voltage Blocking State Maximums0 (TJ 7_ 125"C! Symbol VORM Repetitive peak forward blocking voltage • V Repetitive peak reverse voltage V ......... . VRRM 100 100 200 200 VRS M 200 300 300 300 400 400 500 500 SOO SOO 700 700 ,400 500 SOO 700 800 . Boo 1000' 1100 1200 1000 1100 1200 800 900 900 900 1000 1100 1200 1300 Non-repetitive transient peak reverse voltage, t ::; 5.0 msec,v ....................... . Type designation vs. Voltage availability T707_.28;T707_-33 T707_.25;T707_-30 Forward leakage current, mA peak ......... . Reverse leakage current. mA peak ~ IORM IRRM 30 30 < Current Conducting State Maximums (TJ == 125"CI RMS forward current, A ........ . Ave. forward current. A ........ . One-half cycle surge currentCD, A .. 12t for fusing (for times> B.3 msl A2 sec. Forward voltage drop at ITM == 3000A and TJ == 25"C, V .......... . Min. repetitive di/dt • A/p.sec (i)@0 Symbol T707 __ 28 ITlrms) ITlavl I TSM T707 __ 33 430 275 7000 500 325 8000 I2t • 20&000 2S&000 V TM di/dt 250 300 T707 __ 25 T707 __ 30 400 ,250 7000 475 300 8000 205,000 265,000 2.30 2:90 2:S0 400 300 400 Switching ITJ == 25"CI Max. turn-off time, IT ==400A, TJ == 125"C, diR/dt =25 A7p.sec, reapplied dv/dt = 20V / p,sec. linear to .8V DRM. p,secCD0, Typ. turn-an-time. IT = l000A VD= 3OOV@. p.sec ..... , .... , , .... Min. critical dv/dt. exponential to VORM ' TJ = 125"C, V/p.secCDCD ........... . Min. di/dt, non-repetitive.CD0CD A//olsec , , . , , .. " .... , , . Maximum Forward Voltage Drop. Vs. Forward Current Symbol !!l tq 10 to 60 ton dv/dt di/dt 3.0 >ci e 5 300 4 800 '" !!l "E ., 3 Gate current to trigger at Vo = 12V, mA Gate voltage to trigger at Vo = 12V, V , .. Non-triggering gate voltage, TJ = 125"C. and rated VORM • V ......... , , .... . Peak forward gate current. A .... , . , . , .. Peak reverse gate voltage, V .... , , : , , .. Symbol IGT V GT Average gate power, Watts ........... . Thermal and Mechanical Symbol, Min., Max. oper. junction temp., QC ..... . Min .. Max. storage temp., "C .......... . Max. mounting torque, in Ib, CD . , . , .••.• Max. Thermal resistance (i) Junction to case, "C/Watt , .... , , , . Case to sink. lubricated, "C/Watt . , , , , . ~ ~ "E E 3 :J 0.15 4 :! 'j( VGOM I GTM V GRM PGM PG(avl Peak gate power, Watts . . . . . . . . . . . . . . . 150 ., TJ Tstg 6 1.6 co 1111\ II 6 c Gate Maximum Parameters IT J == 25"C) ~ i 7 H~~:~~o I III I I I I T707':"_~~ 2 ;JIIII' [j ~ T707__ 33 II IIII 10 100 1,000 Forward Current, ITM. Peak Amperes 10,000 3 Transient Thermal Impedance VS. Time -40 to +125 -40 to +150 360 .10 .05 (i) Consult recommended mounting procedures, o Applies for zero or negative gate bias. Per JEOEC RS-397. 5.2.2.1. With recommended gate drive. CD Higher dv/dt ratings available, consult factory. Per JEOEC standard RS-397. 5.2.2.S, For operation with antiparaliel diode, consult factory. o o o o lime. t. Seconds S82 h 1'111 t I I gb~~~45 100,000 Inches Millimeters Min. Max. Min. Max. 1.610 1.650 40.89 41.91 </>D .745 </>D, .755 18.92 19.18 </>D, 1.420 1.460 36.07 37.08 H .500 .560 12.70 14.22 .135 .145 3.43 3.68 </>J J, .072 .082 1.83 2.08 L 7.75 8.50 196.85 215.90 N .030 .76 Creep Distance-.34 in. min. (8.64 mm). Strike Distance-.52 in. min. (13.21 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-2.3 oz. (66 g). Symbol 1. DImension "H" is clamped dimension. T52 Outline Features: • Center fired di/namic gate • High dil dt with soft gate control • High frequency operation • Sinusoidal waveform operation to 20 KHz • Rectangular waveform operation to 20 KHz • Low dynamic forward voltage drop • Low switching losses at high frequency • Lifetime Guarantee Note: High frequency sine and square wave data available, consult factory. Applications: • I nveners for UPS Induction Heating Motor Control • Choppers • Crowbars Orde.ring Information 'Cod. TS27 Code 100 200 300 400 500 600 700 800 900 1000 1100 1200 01 02 03 04 05 06 07 08 I T(av) (A) 10 15 20 30 40 50 60 115 125 ( GT ,,'COde, (rna) Code Case Code 8 150 4 T62 DN 1. <.~, 6 4' .3 ",:, 09 10 11 12 Example Obtain optimum device performance for your application by selecting proper Order Code. = Type T527 rated at 115 A average with VDRM 800V, IGT 150 rna, tq 20l'sec max. and flex leads-order as: = = 583 Voltage CD Blocking State Maximums ITJ _" 125"C} Repetitive peak forward blocking voltage ,V Repetitive peak reverse voltage ,V ......... . Symbol VORM 1000 1100 1200 1000 1100 1200 VRRM 100 100 200 200 300 300 400 400 500 500 600 600 700 700 800 800 900 900 50 msec, V ........................... . V RSM 200 300 400 500 600 700 800 900 1000 1100 1200 1300 Forward leakage current, rnA peak ......... . Reverse leakage current. rnA peak IORM IRRM ~ ~ Non-repetitive transient peak reverse voltage. t 25 25 Current Conducting State Maximums ITJ = 125"C) Symbol T527 __ 60 T527 __ 12 T527 __ 13 IT(rms) I Tlav ) I TSM 95 60 1000 180 115 1200 200 125 1400 4000 6000 8150 4.2 100 3.5 100 3.2 150 RMS forward current. A ........ . Ave. forward current, A ........ . One-half cycle surge current(i), A .. 12t for fusing (for times> 8.3 ms) A2 sec. Forward voltage drop at ITM = 500A and TJ = 25°C, V •......... VTM Min. repetitive di/dt ,A/p.sec CD0CD di/dt 12 t Maximum Forward Voltage VS. Forward Current Switching (TJ = 25°C) >r:i. Symbol IJ/p.~e~,2r~:~'p~~~ 3~/dt5= tq 10 to 50 3.5 ton dv/dt 300 di/dt 400 = Vo = 12V, rnA Gate voltage to trigger at Vo = 12V, V ... Non-triggering gate voltage, TJ = 125"C, and rated VORM ' V .... -........... . Peak forward gate current, A .......... . Peak reverse gate voltage, V .......... . Peak gate power, Watts .............. . Average gate power, Watts ........... . IGT V GT 150 VGOM I GTM V GRM PGM PG(av) 0.15 4 5 16 3 3 Min., Max. oper. junction temp., "C ..... . Min., Max. storage temp., °C .......... . Ma J(. mounting force, lb. leD ........ . Max Thermal resistance doubled side cooled JunctIon to case, 0 ClWatt ............ . Case to sink, lubricated, °C/Watt ..... . 584' -40 to +125 -40 to +150 800 to 1000 RaJC Racs Consult recommended mounting procedures. Applies for zero or negative gate bias. Per JEOEC RS-397, 5.2.2.1. With recommended gate drive. Higher dv/dt ratings available, consult factory. Per JEOEC standard RS-397, 5.2.2.6. For operation with antiparallel diode, consult factory. ~~ 2 ~ 0 10,000 1000 100 10 Forward Current, ITM, Peak Amps c: o Transient Thermal Impedance VS Time 'ilc: ..,., .14 ~ .10 :l ~ .12 .,g ,/ ~~ TJ Tstg T527__ 12 T527__13 /y 3 LI- / II" :;ij ~ Symbol eD 'E ., ~ 0 ~ Thermal and Mechanical CD > .> Symbol T527_..60 4 ';( Maximum Parameters (T J 25"C) I/J ,,~ VV 5 E :l E Gate CD CD CD CD ., !'l '" '0 0 20VI/l.sec I.inear to 0.8 VORM,/L secCD0 Typ. turn-an-tIme, IT = 100A VO= 100VeD, p.sec ............... . Min. critical dv/dt. exponential to VORM ' TJ = 125°C, VI/Lsec®IJ) .......... __ Min. di/dt non-repetitive, A//l.sec 0'0CD ........... _ .. . eD 6 e Max. turn-off time, IJ -50A, Gate current to trigger at 7 ~ .1135 .02 .09 EU .. 0 ~ ; .06 L 1-- E~ .!!! ~ .04 ~ cD ~ .02 a U 0 01-0.00 ~ .001 .01 Time, t, sec. .1 10 100 Case Temperature vs, FOtWard Current - Double Sided Cooling 1~rrn~~~~~Tr:nT~"~'~'~'~~0~~~~ Average Forward Current,IT(AV),Amperes 1000 ~ x ~750 ~ 0..: ,~ ~500 '(jj is ~~ ~ 250 E ::J E ~ Average Forward Current. IT(AV). Amperes 1000 P ~ i x ~ 750 ~ ~ ~ 120 ~~Iib~1+·"':"""~·L 100 80 ~ F-!:+~~"""':~~"';;:{-· 0..: R-~"+';:::':"~'h-,l\,,''-. ~ ~ 60 p.-.:.::+:::...j•• ::......:.. ,-'\ j ~ I--db;:;C-!'·.~·+":'':::+ ~~~~~~~-~~~ o 50 100 Average Forward Current, iT(AV). Amperes 150 200 50 100 150 200 250 300 Average Forward Current. ITfAV). Amperes 585 Power loss vs. Forward Current 600~ ¥l ~ 5OO1::l:~+-~ ~ ~400Fi4*m~ ~ c: :1 300 .!!l 0200 ~ c.. 100 § j o o 50 Average Forward Current,IT(AV). Amperes o -==:.;u;_u_r:.....":l;,;;;;:.-:.•. o w..:;...r..;;;;..~.c;;;;..;-.:L;..;;..;~""'_ 100 200 Average Forward Current.IT(AV). Amperes Average Forward Current. IT(AV). Amperes 686 Inches Millimeters Min. Max. Max. Min. 1.610 1.650 40.89 41.91 cl>D cl>D, .745 .755 18.92 19.18 1.420 1.460 cl>D, 37.08 36.07 H .500 .560 12.70 14.22 .135 .145 3.43 3.68 cl>J J, .072 .082 2.08 1.83 L 7.75 8.50 196.85 215.90 N .030 .76 Creep Distance-.34 in. min. (8.64 mm). Strike Distance-.52 in. min. (13.21 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-2.3 oz. (66 g). Symbol 1. Dimension "H" is clamped dimension. T62 Outline Features: • • • • • • • Note: High frequency sine and square wave data available. consult factory. Applications: Center fired dilnamic gate High di/dt with soft gate control High frequency operation Sinusoidal waveform operation to 20 KHz Rectangular waveform operation to 20 KHz Low dynamic forward voltage drop Low switching losses at high frequency • Inverters for Ups Induction Heating Motor Control • Choppers • Crowbars Ordering Information Code Code T-827 100 200 300 400 500 600 700 800 900 1000 1100 1200 01 02 03 04 06 08 07 08 09 10 11 I T(av) (A) Code 150 200 250 16 2G 26 tq (usee) 10 15 20 30 40 50 ~. 8 7 I GT (ma) 150 e I 4 3 12 Example Obtain optimum device performance for your application by selecting proper Order Code. = Type T627 rated at 200 A average with VORM 1000V. IGT = 150 rna. tq = 20 psec max. and flex leads-order as: 587 Voltage Blocking Stata Maximums CD ITJ _0 125°CI Repetitive peak forward blocking voltage • V Repetitive peak reverse voltage • V ......... . Non-repetitive transient peak reverse voltage. t:S 5.0 msec. V ...................... . Symbol VORM Forward leakage current. mA peak ...•...... Reverse leakage current. mA peak .......... . VRRM 100 100 200 200 300 300 400 400 500 500 600 600 700 700 800 800 900 900 1000 1100 1200 1000 1100 1200 VRSM 200 300 400 500 600 700 800 900 1000 1100 1200 1300 IORM IRRM ~ ~ + > 25 25 Current Conducting State Maximums (TJ = 125°C) T627 __ 25 Symbol T627 __ 15 T627 __ 20 IT(rms) 235 150 3500 315 200 4000 400 250 4500 50.000 65.000 84.000 2.35 200 2.1 250 1.85 300 RMS forward current. A ........ . Ave. forward current. A ........ . One-half cycle surge current®. A .. 12t for fusing (for times> 8.3 msl A2 sec. Fe, ,.ard voltage drop at 'TM = 625A and TJ = 25°C. V ......... . V TM Min. repetitive di/dt@. A/J.lsecQ)@® di/dt ' nav ) I TSM Switching (TJ = 25°C) Max. turn-off time. IT = 150A. TJ = 125°C. diR/dt =12.50 A7J.1sec. reapplied dv/dt == 20V/J.lsec ® linear to 0.8 VORM,!, sec. Typ. turn-on-time. IT = 100A VO= 100V@. J.lsec . " ............ . Min. critical dv/dt. exponential to VORM' TJ = 125°C. V/J.lsec®® ........... . Min.di/dt A/J.lsec0®® ..........•. Symbol Maximum Forward Voltage VS Forward Current tq 10 to 50 l!l "0 7 i 6 t 5 > ton 3.5 dv/dt 300 di/dt 800 > CD 0> l!! Gate Maximum Parameters (TJ = 25°C) Gate current to trigger at Vo = 12V. mA Gate voltage to trigger at Vo = 12V. V ... Non-triggering gate voltage. TJ = 125°C. and rated VORM ' V ............... . Peak forward gate current. A .......... . Peak reverse gate voltage. V .......... . Peak gate power. Watts .............. . Average gate power. Watts ........... . '''1111 T621~20 IGT V GT VGOM IGTM V GRM PGM PG(av) "E 150 3 1~dt!..25 - 0.15 4 5 16 3 ReJC R aCS ~ 2 ~ 10 100 Forward Current. ITM. Peak Amperes -40 to +125 -40 to +150 1000 to 1400 .08 .02 Q) Consult recommended mounting procedures: CD Applies for zero or negative gate bias. eD Per JEOEC RS-397. 5.2.2.1. ® With'recommended gate drive. ® Higher dv/dt ratings available, consult factory. ® Par JEOEC standard RS-397. 5.2.2.6. For operation with antiparallel diode. consult factory. o Time. t. Seconds S88 ~ ~lI V .~ Transient Thermal Impedance vs. Time .10,.....,...,....M'TT!'I'....,... Symbol TJ Tstg ./ 3 '" .....~ E "E 1/11 IIIII 4 "0 > Symbol . Thermal and Mechanical Min., Max. oper. junction temp., °C ..... . Min .. Max. storage temp .. °C .......... . Min .• Max. Mounting Force. Ib.0 ... . Max. thermal resistance. Double side cO"led Junction to case. °C/Watt ........ . Case to sink. lubricated. °C/Watt ..... . IIIII ~JH:15 1000 10.000 Symbol rj>D rj>D, rj>D, H q,J J, L N Inches Min. 2.250 1.333 2.030 1.020 .135 .075 7.75 .040 Max. 2.290 1.343 2.090 1.060 .145 .090 8.50 Millimeters Min. Max. 57.15 58.17 33.86 34.11 51.56 53.09 25.91 26.92 3.43 3.68 1.91 2.29 196.85 215.90 1.02 Creep Distance-1.00 in. min. (25.40 mm). Strike Distance-1.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish-Nickel Plale. Approx. Weight-8 oz: (227 g). 1. Dimension "H" is a clamped dimension. T72 Outline Features: • Midway, di/namic Gate structure • Hard Commutation Turn-Off • Forward Blocking Capabilities to 1200 Volts • 'Low Switching Losses at High Frequency • Soft Commutation (Feedback Diode) Testing Available Applications: • Induction Heating • Transportation • Inverters Note: High frequency sine and square wave data available, consult factory. Ordering Information Example Obtain optimum device performance for your application by selecting proper Order Code. Type T72H rated at 450 A average with VORM = 1000V, I GT = 150 ma, 19 = 30 !lsec max. and flex leads -order as: S89 Voltage 0 BlocklngStateMaximums (TJ = 125°CI Symbol VORM Repetitive peak forward blocking voltage • V Repetitive peak reverse voltage. V ......... . Non-repetitive transient peak reverse voltage. t ~ 5.0 msec. V _........................ _• Forward leakage current. mA peak ......... . Reverse leakage current. mA peak .......... . VRRM 100 100 200 200 300 300 400 400 500 500 600 600 VRSM 200 300 400 500 600 700 IORM 'RRM ~ ~ 1000 1100 1200 1000 1100 1200 700 700 800 800 900 900 800 900 1000 1100 1200 1300 + 35 35 Current Conducting State Maximums ITJ = 125°C) T72H_..35 Symbol RMS forward current. A ........ . Ave. forward current. A ........ . One-half cycle surge current®. A .. 3 cycle surge current®. A ..... . 10 cycle surge current®. A .... . I't for fusing (for times> 8.3 ms) A2 sec. Forward voltage drop at 11M = 3000A and TJ = 25°C. V .......... . Min. repetitive di/dtCD<D<D A/p.sec ITlrms) I Tlav ) I TSM ITSM I TSM I't • T72H_.A5 400 250 6000 550 350 7000 700 450 7500 4320 3720 5040 4340 5300 4650 150.000 205.000 234.000 3.80 3.45 500 3.10 600 VTM di/dt 400 Switching ITJ = 25°C) = delay time. ":D = .8 VDRM0. J/sec 7 = Max. turn-off time. IT 1000A. TJ 125°C tp = 100 /Jsec. dirRIdt =~ 50 A//Jsec .• reapplied dv/dt = 50 V//Jsec. linear to 0.8 VDRM. /Jsec. CD CD TVp. Maximum Forward Voltage VS. Forward Current Symbol ITM 6 l--f--i+++tHl--t--I-+-Htttlif-+--i +tfitll-+-i+HtlHI tq = 1000A T72H-25 25 to 50 5 .5 td T72H-45 Min. critical dv/dt exponential VDRM. TJ = 125°C. V/jlsec 0(D to 4 .8 Min. dild!. non-repetitive. A/J/sec CD<D <D dv/dt 300 di/dt 1200 3 Gate 2 Maximum Parameters ITJ = Symbol 25°C) = Gate current to trigger at Vo 12V. mA Gate voltage to trigger at Vo = 12V. V ... Non-triggering gate voltage. TJ = 125·C. and rated VORM • V ............... . Peak forward gate current. A .......... . Peak reverse gate voltage. V .......... . Peak gate power. Watts .............. . Average gate power. Watts ........... . 'GT VGT VGOM I GTM V GRM PGM PGlav) 150 3 .25 Forward Current. ITM. Peak Amperes 4 5 16 3 Transient Thermal Impedance VS. Time ::l Thermal and Mechanical u Symbol Min .• Max. oper. junction temp .• ·C ..... . Min .• Max. storage temp .• °C .......... . Max. mounting force. lb. . •• CD .......•. Thermal resistance CD. doubleside cooling. junction to case. TJ Tstg °C/Watt Case to sink. lubricated. ·C/Walt ..... . CD Consult recommended mounting procedures. o Applies for zero or negative gate bias. Per JEOEC RS-397. 5.2.2.1. <D With recommended gata drive. CD Higher dv/dt ratings available. consult factory. <D Per JEOEC standard RS-397. 5.2.2.6. CD For operation with antiparallel diode. consult factory. S90 """"""""'''''''''''''''''TI' .06 .,; o "T'TTr."I......-r-TT"nTlrD -40 to +125 -40 to +150 2000 to 2400 ·21 .04f.~~~~~~! ., :l ~ c: .06 .02 !~'021111111 E-- a;5-J .t:":' I- :: ~: c N 0.0001 .001 lime. t. Seconds .01.1 10 100 . Inches Millimeters Min. Max. Min. Max. 2.250 2.290 </>0 57.15 58.17 </>0, 1.333 1.343 33.86 34.11 2.030 2.090 </>0. 51.56 53.09 H 1.020 1.060 25.91 26.92 ¢J .135 .145 3.43 3.68 J, .075 .090 1.91 2.29 L 7.75 8.50 196.85 215.90 N .040 1.02 Creep Distance-1.00 in. min. (25.40 mm). Strike Distance-1.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-a oz. (227 g). 1. Dimension "H" is a clamped dimension. Symbol D2 Outline Features: • Center fired di/namic gate • High di/dt with soft gate control • High frequency operation • Sinusoidal waveform operation to 20KHz • Rectangular waveform operation to 20KHz • Low dynamic forward voltage drop • Low switching losses at high frequency • Lifetime Guarantee Note: High frquency sine and square wave data available. consult factory. Applications: • Inverters UPS Induction heating AC motor drives • Cycloconverters • Choppers • Crowbars Ordering Information Example Obtain optimum device performance for your application by selecting proper Order Code. Type T727 rated at 450 A average wjth VDRM = 1000V. IGT 150 ma.tg 30 J.lsec max. and flex leads-order as: = = 891 Voltage ® Blocking State Maximums ITJ = 125°C) Symbol VORM Repetitive peak forward blocking voltage ,V Repetitive peak reverse voltage ,V ......... . Non~repetitive VRRM transient peak reverse voltage. t::; 5.0 msec, V VRSM ...................... . type designation vs. voltage availability Forward leakage current, mA peak ......... . Reverse leakage current, mA peak .......... . 100 100 200 200 200 ~ 300 300 400 400 500 500 600 600 700 700 800 800 900 900 300 400 500 600 T727_..4D-T727_..4B 700 800 900 1000 1100 1200 1300 IORM IRRM 1000 1100 1200 1000 1100 1200 T727_-36--T727_..45 30 30 . Current Conducting State Maximums (TJ = 125°C) Symbol T727--40 RMS forward current, A ........ . Ave. forward current, A ........ . One-half cycle surge current@, A .. IT(rms) I Ttav ) I TSM 625 400 750 475 7000 205,000 2.50 300 8000 265,000 2.30 I2t for fusing (for times> 8.3 ms) A2 sec. Forward voltage drop at I TM == 3000A and TJ = 25°C, V .......... . Min. repetitive di/dt A/!,sec (i)<D<D I't V TM di/dt T727--48 400 T727--35 T727--45 700 450 550 350 7000 205,000 2.90 300 8000 265,000 2.60 400 Switching (TJ == 25°C) Max. turn-off time, IT == 400A TJ == 125°C, diR/dt = 25 A7!,sec, reapplied dv I dt = CD CD 20V/!'sec linear to 0.8 VORM,I' sec ... Typ. turn-an-time, IT = l000A VO==3OOV®,!,sec ............... . Min. critical dv/dl. exponential to VORM ' TJ == 125°C, V/!,sec®CD ........... . Min. di/dt non-repetitive, A/!,sec 0<D®' . " ..•... Maximum Forward Voltage Orop VS Forward Current Symbol l!l '0 tq IOta 60 > 3.0 > ton Gate current to trigger at Vo == 12V, mA Gate voltage to trigger at Vo == 1'2V, V ... Non-triggering gate voltage, TJ == 125°C, and rated VORM ' V ............... . Peak forward gate current, A .......... . Peak reverse gate voltage, V ..........• Peak gate power, Watts .............. . Average gate power, Watts ........... . ~ >- 6 ci. 5 0 dv/dt 300 0 di/dt 800 01 Q) !!l ill~72L1J ~127'li T727• ..40 4 T727• ..48 '0 > Gate Maximum Parameters (T J == 25°C) 7 'E'III ~0 Symbol IGT VGT VGOM I GTM VGRM PGM PG(av) 150 3 u.. 0.15 4 5 16 3 'xIII 3 ~ ~~ 2 p E E " ~ 10 100 1,000 Forward Current, ITM, Peak Amperes I Thermal and Mechanical Symbol Min" Max. oper: junction temp., °C ..... . Min" Max. storage temp., °C .......... . Max. mounting torque, in lb. CD ........ . Max. Thermal resistance (i) Double side cooled Junction to case, °C/Watt ... . Case to sink, lubricated, °C/Watt ..... . TJ Tstg TranSient Thermal Impedance VS. Time -40 to +125 -40 to +150 2000 to 2400 ,; '" III U RSJC Recs .06 .02 0 l- e 0 (j) Consult recommended mounting procedures. "ne ..," .04 <D <D <D <D <D Applies for zero or negative gate bias. Per JEDEC RS-397, 5.2.2.1. With recommended gate drive. Higher dv/dt ratings available, consult factory. Per JEDEC standard RS-397, 5.2.2.6. (j) For operati"n with antiparallel diode, consult factory. lime, t, Seconds 892 10,000 100,000 Symbol </>0 </>0, </>0, H </>J J, Inches Min. Millimeters Max. Min. Max. 2.850 2.900 72.39 73.66 1.845 1.855 46.86 47.12 2.560 2.640 65.02 67.06 1.020 1.060 25.91 26.92 .135 .145 3.43 3.68 .075 .090 1.91 2.29 11.50 12.50 292.10 317.50 .050 1.27 L N Creep Distance-l.00 in. min. (25.40 mm). Strike Distance-l.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-2 lb. (908 g). 1. Dimension "H" is a clamped dimension. T9G Outline Features: • Midway, di/namic Gate Structure • Hard Commutation Turn-Off • Forward Blocking Capabilities to 2200V • Low Switching Losses at High Frequency • Soft Commutation (Feedback Diode) Testing Available Applications: • Induction Heating • Transportation • Inverters Note: High frequency Sine and Square wave data available, consu It factory. Ordering Information Example Obtain optimum device performance for your application by selecting proper order code. Type T9GH rated at 800A average with VORM = 1aOOv tq = 50 usee. IGr = 300 rna, and standard 12 inch leads -- order as: *for lower voltages consult factory 893 Voltage (l) Blocking State Maximums (TJ = 125° C) Repetitive peak forward blocking voltage ,V Repetitive peak reverse voltage, V Non-repetitive transient peak reverse voltage, t ~ 5.0 msee, V ..... , .................... . Symbol VORM VRRM 600 800 1000 1200 1400 1500 1600 1700 1800 1900 2000 2100 2200 600 800 1000 1200 1400 1500 1600 1700 1800 1900 2000 2100 2200 VRSM 700 900 1100 1300 1500 1600 1700 1800 1900 2000 2100 2200 2300 (TJ=25°C) Symbol Min Gate current to trigger at Vo =12V, mA .. Gate voltage to trigger at Vo = 12V, V .... Non-triggering gate voltage. TJ=125°C, and rated VORM, V ................ Non-triggering Gate Current at VO=12V, rnA .................... Peak forward gate current, A .......... Peak reverse gate voltage, V ........... Peak gate power, Watts .............. Average gate power, Watts ............ IGT VGT Forward leakage current, rnA peak ......... . Reverse leakage current, rnA peak .......... . 60 IORM IRRM 60 Current Conducting State Maximums (TJ= 125°C) . RMS forward current, A ........ . Ave. forward current, A .......•• One-half cycle surge current®, A .. 3 cycle surge current®, A ..... . 10 cycle surge current®, A .... . I't for fusing (t=8.3 ms) A'sec Max I't of package (t=8.3 ms). A'sec Forward voltage drop at ITM = 3000A and TJ = 25°C, V .......... . Min. Repetitive di/dt Gate Symbol IT(rms) .1T(av) I TSM I TSM I TSM I't J2 t T9GH_.o9 1250 1400 800 900 10,000 7,500 6,200 416,000 90 x 10· 13,000 9,750 8,000 700,000 90 x 10· 2.95 2.50 300 400 A/usec. CD CD· CD di/dt Switching (Tj=25'C) Symbol Min Typ 7 40 ton dv/dt ./ ~ 400 IL 500 1000 IH 300 800 II J ~/ ~T9GH_.09 Min Oper. junction temp., ·C ............... Storage temp., ·C .................... Mounting force, Ib.(i) ................ . Thermal resistance with double sided cooling(i) Junction to case, ·C/Watt ........... Case to sink, lubricated, ·C/Watt ........ TJ Tstg -40 -40 5000 125 150 5500 .006 .023 .0075 Typ o 1000 Forward Current, ITM, Peak Amperes 10,000 Consult;recommended mounting procedures. Applies for z'ero or negative gate bias. Per JEDEC RS-397, 5.2.2.1. With recommended gate drive. . Higher dv/dt ratings availabla, consult factory: Per JEDEC standard RS-397, 5.2.2.6. For operation with antiparallel diode, consult factory. 100,000 Transient Thermal Impedance VS. Time Max .03 ~ Q)~• u .02 ~ ~~ ~cD E :: -u ~ S '/ .01 _.. ,~.~ uC: c~ ~ .... o .0001 .001 Time, t, Seconds S94 60 3 ;;.; 100 Symbol <D <D CD <D CD <D 10 5 1000 Thermal and Mechanical o 20 100 di/dt ROJC RlIcS 3.0 .15 IGNT IGTM VGRM PGM P9(av) " 3.0 1.5 td 300 VGOM T~G~__bal 50V~VR~VRRM tq Max 200 1.5 Maximum Forward Voltage Orop Vs. forward Current Max HARD COMMUTATION: (l) Turn-off time, IT = 500A, TJ = 125'C, diR/dt = 25 A/llsec, reapplied dv/dt = <D 20V/usee linear to 0.8 VDRM, }-Isec Turn-On and Delay Time <D ITM = l000A, tp = 450, Jlsec VD = 11 OOV, Jlsec Critical dv/dt exponl'"tial to VDRM TJ = 125°C, V/Jlsec<D<D di/ dt @ non-repetitive, <D CDCD AllJsec Latching Current YO = 75V, mA Holding Current YO= 75V, mA Typ .01 .1 10 Symbol Inches Min. A E </>T Conforms to 00-5 Outline Futures • • • • • di/dt of 2000 to 4000 A/us compression Bonded Enespsulation All Diffused Design LowVrM JEDEC 00-6 Package Min. .450 .080 .667 B </>0 F J M N Millimeters Max. .667 .060 .422 .140 .687 .200 1.000 .375 .453 .175 z .156 </>W %-28 UNF-2A Max• 11.43 2.30 16.94 16.94 1.52 10.72 3.56 17.45 5.08 25.40 9.53 11.51 4.45 3.96 Glass To Metal SealCreepage & Strike Distance = .09 in. min. (2.46 mm) (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-.6 oz (18g) NOTES: 1. Complete threads to extend to within 2Y.i threads of seating plane. 2. Angular orientation of this terminal is undefined. 3. }4-28 UNF-2A. Maximum pitch diameter of plated threads shall be basic pitch diameter (.2268", 5.74 mm) Ref. (Screw thread standards for federal services 1957) Handbook H28 1957 P1. Appllcetlonl: • Radar Modulators • Laser Pulsers Application The reverse blocking diode thyristor is a twoterminal, four-layer PNPN switch. In the forward direction, the device will initially block voltage to its rated V DRM • However, upon application of a trigger voltage, it switches to a low impedance state where it remains until the anode current is reduced below the holding current. The T40R· employs an all diffused design and is packaged in the standard 00-6 outline case. The exclusive Westinghouse CBE (compression bonded encapsulation) construction technique is employed to eliminate solder joints and, thereby, failures caused by thermal fatique. Example Obtain optimum device performance for your application by selecting proper Order Code. Type T40R rated at 22A average with V DRM 800V, and di/dt = 2000A/us - order as. = These deviess are ideal for pulse work because of their high di/dt and fast switching capabilities. Radar modulators and laser pulsers are two prime examples of the kinds of applications particularly suited to the Westinghouse L-_'--_ _..L.._ _..L.._ _..L.._ _......._ _...._ _......_ _ _ _ _---'_ _ _ _......_ _- - I T4OR. S95 Voltage Blocking State Symbol Repetitive Peak Forward Blocking Voltaga V ORM Repetitive Peak Forward Leakage Current at V ORM Holding Current TJ ('C) 25 to 125 Max. IH Symbol TJ ('C) IT{rmo) IT{oY) ITIM I"t 125 125 125 125 Units V V V 600 800 1000 25 125 25 IORM Typ. Min. 300 3 15 500 5 100 1'8 ma ma Current CDnducting Stete RMS Forward Current at Tc .. 4O'C CD Average Forward Current at Tc 4O'C CD Ofl1l-half Cycle Surge Current at T c .. 4O'C I~t For Fusing (For Times ~ 8.3 mil Forward Voltage Drop at ITM = 1oo0A. Pul.. Width .. 3001'8. Duty Cycle = 2% = CD VTM Typ. Min. Max. 35 22 300 370 25 Unit. A A A A"sac. V 4 6 Typ. Max. Units 20 40 A/I'8 A/I'8 A/I'8 V 1050 1500 Switching Symbol Rate of Rise of Current. Sine Wave CD at Pulse Width/2 0.51'8 to 800A at Pul.. Width/2 = 0.51'8 to 1200A at Pulse Width/2 .. 0.251'8 to 800A Dynamic Forward Voltage Drop at ITM = 1000A Sine Wave. Pulse Width/2 .. 41'8. Duty Cycle ...25% Pulse Trigger Voltage at dv/dt ii; 5000 V/I'8. Pulaa Width iI; 200 ns Pulse Trigger Current at VT (Circuit dependant value) Trigger Response Time at VT• IT for 90% to 10% of V ORM Turn-Off Time at ITM = 300A Sine Wave. Pulse Width .. 81'8 dv/dt = 20 V/I'8 to 800V Rate of Change of Voltege Exponential to VORM = TJ ('C) Min. di/dt di/dt di/dt VTM (OYN) 25 25 25 25 2000 3000 4000 VT 25 to 125 VORM + 50 IT 25 to 125 t •• 25 100 10 25 50 dv/dt 100 25 100 10 A 200 ns I's 100 200 20 V 1'8 V/I'8 V/I'8 400 100 Thermal and Mechanical Symbol Operating Junction Temperature Storage Temp_ure Mounting Torque CD Thermal Resiatance, CD Junction to Case Ca.. to Sink, Lubricated ()) At 60 Hertz. CD Consult recommended mounting procedures. 896 TJ T.... RaJc Reel Min. -40 -40 Typ. Max. Units 125 150 30 'C 'C in.lb. 1.25 .25 'C/W 'C/W Symbol </>0 </>0, </>0, H </>J J, Inches Millimeters Min. Max. Min. Max. 1.6iO .745 1.420 1.650 .755 1.460 40.89 18.92 36.07 41.91 19.18 37.08 .500 .135 .072 .560 .145 .082 12.70 3.43 1.83 ,76 14.22 3.68 2.08 N .030 Creep Dlstance-.49 In, min. (12.60 mm). Stnke Dlstance-.52 In. min. (13.21 mm). (In accordance with NEMA standards). Finish-Nickel Plate. Approx. Welght-2.3 oz (66g). 1. Dimension "H" IS clamped dimension. T62R Outline Features: • • • • di/dt of 2000 to 3000 A/}Jsec All diffused Design Low VTM High peak switching currents Application The reverse blocking diode thyristor is a twoterminal, four-layer PNPN switch. In the forward direction, the device will initially block voltage to its rated V DRM' However, upon application of a trigger voltage, it switches to a low impedance state where it remains until the anode current is reduced below the holding current. These devices are ideal for pulse work because of their high di/dt and fast switching capabilities. Radar modulators and laser pulsers are two prime examples of the kinds of applications particularly suited to the Westinghouse T62R. Ordering Information "Average current rating assigned for ordering information only. Example Obtain optimum device performance for your applicetion by selecting proper Order Code. Type T62R rated at 125 A average, with VDRM = 800V, order as: 897 Blocking State Repetitive Peak Forward Blocking Voltage Symbol VDRM T~ (OC) Min. 26 to 126 Typ. Max. UnlW V V V 600 600 1000 Repetitive Peak Reverse Blocking Voltage Repetitive Peak Forward Leakage Current at VORM Repetitive Peak Reverse Leakage Current VRRM Holding Current VRRM IORM IRRM IH 26 to 176 26 126 26 126 26 100 3 V ma ma ma ma ma 6 10 10 16 16 7 16 16 26 100 Current Conducting Stat. Peak Forward Pulse Current CD RMS Forward Current One·half Cycle Surge Current (For Times:s8.3 ms) I't For Fusing (For Times:s8.3 ms) I't of package (For Times = 8.3 ms) Symbol ITM IT{RMS) ITSM 12t I"t T~ Max. ("C) 126 125 126 125 126 2600 200 3000 37,500 20 x 10' UnlW A A A A"sec. A2sec. Switching Symbol Current Rate of Rise Code 2, 2000 A @ 1 psec Code 3, 2000 A @ .667 JAsec Energy per Pulse at ITM = 2500A Square Wave Pulse Width = 3 ps Pulse Trigger Voltage at dv/dt..tt 5000 V/JJs, Pulse Width ~. 200 ns Pulse Trigger Currant at VT (Circuit dependent value) Peak Dynamic Forward Voltage Drop at ITM = 2500A Turn-Off Time at ITM = 2500A Square Wave Pulse Width = 3.os, dv/dt = 20 VII's to 600V Critical Rate of Change of Voltage Exponential to VORM T~ (OC) Min. Typ. Max, UnlW .30 .19 W.S/Pulse W.S.lPulse AlPS AlPS di/dt di/dt W.S.I Pulse 25 25 126 25 2000 3000 VT 25 to 125 VDRM + 150 IT 25 to 125 70 VTM IOYN) 25 8 10 V tq 25 100 50 100 250 200 ps ps dv/dt 125 20 100 1050 1600 V A VIps Thermal and Mechanical Symbol Operating Junction Temperature Storage Temperature Mounting ForceCD Thermal Resistance, double-sided cooling, CD Junction to Case Case to Sink, Lubricated 1) Tstg. 598 -40 -40 1000 R9JC R9CS CD This value is for·a 3 JJsec, 400 Hz pulse, 2500 A peak. Consult factory for other pulse ratings. CD Consult recommended mounting procedures. Min. MIx. UnlW 125 150 1400 °C °C lb. .095 .02 °C/W °C/W INTRODUCTION @offers a wide range of power transistors designed to match the equipment manufacturer's technical and economic requirements. The designer can choose from various processes, ratings, and package styles to optimize an application: general purpose singlediffused types for economical ruggedness; high S.O.A. alloy types for the ultimate in reliability; and high power, fast switching tripled-diffused types for "state-of-the-art" voltage and power capability. For linear applications (amplifiers and regulators), general purpose transistors in TO-66 and TO-3 packages offer the most "watts per dollar" value. Excellent Safe Operating Area (SOA) make these types ideal for inductive loads such as DC motor controls or 60 and 400 hertz inverters. High S.O.A. alloy process transistors from@have been used in numerous critical aerospace and defense programs. Alloy construction, hard solder / moly bondi ng, and hermetic,copper stud, cases have generated a record of superb performance and reliability. For inductive load switching, the forward and reverse bias Safe Operating Areas (SOA) of these devices make alloy the clear choice over other processes. The newest addition to the@transistor line is the super-powered family of triple-diffused switching types. Up to 500 volts of sustaining voltage capability is coupled with a gain rating at 50 amperes; but brute power is not the only feature of the D60Tfamily- switching times under a microsecond and Compression Bonded Encapsulation (CBE) open a new area of application for designers of high speed inverters, switching regulators, AC motor drives and VLF radio transmitters. Complete test facilities are available for matching, special selection, or high reliability screening.@offers a Lifetime Guarantee on all transistors bearing this symbol+. Specify Westinghouse Power Transistors. TRANSISTOR PRODUCT INDEX Type Number Page 151 152 153 154 163 164 T15 T15 T17 T17 T23 T23 2Nl 015, A,B,C,D 2N1 016, A,B,C,D T19 T19 2N2226-29 2N2230-33 2N2757-61 2N2763-66 2N2769-72 2N2775-78 T25 T25 T29 T29 T29 T29 2N3054 2N3055 2N3429-32 2N3441 2N3442 2N3470-73 2N3474-77 2N3771 2N3772 2N3773 T5 T7 T21 T5 T7 T27 T27 Ttl Tt1 Tt1 2N6254 2N6262 T9 T9 D60T D62T T33 T33 T1 GENERAL PURPOSE NPN POWER TRANSISTORS .5 - 15 Amperes (Gain Rated) C'l I' I' 0 Z ~u: C'l 'z 150 140 N w 120 0 c[ 100 or III N ~ 0 or > 80. ...0 60 u: (,) III III III C'l C'l N N CD Z Z • 4 5 N 0 0 Z w ::j 0 40i (,) 20' .5 .5 3 3 10 8 15 GAIN RATED COLLECTOR CURRENT • DIAMOND PACKAGE TO-3/TO-66 HIGH S.O.A. &. HIGH POWER SWITCHING NPN POWER TRANSISTORS 460 o z ~u: 1 .5 - t - - 200 I- u: 100 e ui ui ... III C'l III N III or III cj <i <i (; 0 Lfi ... ....D ,... o 2 5 en N t:'? N N N N N cD en or C'l z N 60 1-""-""1-""1--""1- Zt- ~t-"NI40 30 1.5 1.6' 1.5 1.5 T2 e cj ~ ::j [t * * * * I-- ~ o (,) ** 260 240 w ~ 160 ~ w 50 Amperes (Gain Rated) 5 CD or CD 5 5 C'l '-t-.- z C'l I' 6 I' or C'l N z N 10 10 C'l C'l I' I' 6C'l .t I' z N C'l z N 10 10 N N or ... CD N co I' CD I' I' I' I' til z N z 10 16 I' N z GAIN RATED COLLECTOR CURRENT STUD MOUNT CD CD I' r:. III * DARLINGTON ** HIGH POWER SWITCHING M N en CD N N 20 .;., N Z N 26 50 GENERAL PURPOSE NPN POWER TRANSISTORS 4 - 30 Amperes JEDECTYPE 2N30154 2N8282 2N8254 2N3772 PEAK CURRENT 4 15 30 30 PEAK CURRENT GAIN RATED CURRENT 4 .5 15 3 15 5 30 10 VOLTAGE 40 80 80 140 150 .2N3054 1 MHz 1 MHz PACKAGE TYPE TO-86 TO-3 TO-3 TO-3 PAGE NUM8ER T5 T9 T9 TIl HIGH S.O.A. NPN POWER TRANSISTORS 6 - 20 Amperes MT-52 153 154 2Nl016. A.B.C.D 163 7.5 1.6 7.5 1.5 7.5 5 20 5 153-04 153-05 153-06 163-07 153-08 153-09 153-10 153-12 153-14 154-04 154-05 154-06 154-07 154-08 154-09 154-10 154-12 154-14 163-16 153-18 153-20 153-22 153-24 154-16 154-18 154-20 154-22 154-24 2Nl016D 163-16 163-18 163-20 CUTOFF FREQUENCY .5 MHz .5 MHz .5 MHz .5 MHz PACKAGE TYPE MT-52 MT-52 TO-82 MT-33 PAGE NUMBER T17 T17 T19 T23 90 100 120 140 150 180 180 200 220 240 250 ~ TO-82 2N6262 1 MHz VOLTAGE 30 40 50 80 70 80 TO-3 TO-66 2N3772 1 MHz PEAK CURRENT GAIN RATED CURRENT " 2N6254 CUTOFF FREQUENCY JEDEC,IITYPE -l;at." . 'f MT-33 2Nl016 2Nl016A 2Nl016B 163-04 163-05 163-06 163-07 163-08 163-09 163-10 163-12 163-14 2Nl016C T3 HIGH S.O.A. and HIGH POWER SWITCHING NPNPOWER TRANSISTORS TO-82 10 - 200 Amperes 2N2775-78 MT-33 060 10 10 30 15 30 2N3474 2N3475 2N3476 2N3477 2N2763 2N2764 ZN2765 2N2766 2N2775 2N2776 2N2777 2N2778 .5MHz .5 MHz .5 MHz MT-33 MT·33 MT·33 T27 T29 T29 "Darlington **Aloo Available in Diac Package - D62T T4 25 Symbol A q,b q,D e e, F L q,P q Inches Min. .250 .028 .470 .190 .095 .050 .360 .142 .950 R, R, S .570 Max. .340 .034 .500 .210 .105 .075 .152 .970 .350 .145 .590 Millimeters Min. Max. 6.35 8.64 .71 .86 11.94 12.70 4.83 5.33 2.67 2.41 1.91 1.27 9.14 3.61 3.86 24.64 24.13 8.89 3.68 14.48 14.99 Finish-Nickel Plate. Approx. Weight-.25 oz. (7 g). Features: • No forward bias secondary breakdown up to full voltage rating • High reverse bias S.O.A. for inductive loads • Low thermal resistance • Hermetically sealed .. 25 watt dissipation • 100% Power tested • Lifetime Guarantee Maximum Ratings and Characteristics Tc = 25°C unless specified * * * * * * Operating and storage temperature Collector-emitter sustaining voltage collector-base voltage Emitter-base voltage collector-emitter voltage V BE= -1.5V. Continous collector current * Continous base current * Thermal resistance * Power dissipation Applications: • Series and shunt regulators • High-fidelity amplifiers • Power switching circuits • Solenoid drivers Symbol VCEO(sus) VCBO VEBO V:CEV IC I JEDEC 2N3054 -65 To 200 55 90 7 90 4 I JEDEC 2N3441 -65 To 200 140 160 7 160 3 I UnIts I °C Volts Volts Volts Volts Amps 2 2 Amps R9JC 6 7 °C/W PT 25 25 Watts Ie *JEDC registered parameters. T5 Electrical Specifications T C = 26°C unles. otherwise specified Test Unit. * D.C. Current Gain h'FE V CE = 4V I c = 0.5A * Collector-Emitter Saturation Voltage VCE,..t) Ic = 0.5A B = O.05A 1.0 .1.0 V * Base-Emitter Saturation Voltage V,BE Ic=0.5AV CE = 4.0V 1.7 1;7 V * Emitter Cutoff Current lEBO ViEB = 7.0V 1.0 1.0 mA 150 25 100 25 Turn-On Time ton Ic = 0.5A 4 4 ~sec Storage Time ts Vlcc= 30V 2 2 ~sec Fall Time ~f I B(on) = I B(off) = 0.05A 4 4 ~sec Output Capacitance C~ VCB = 10V, f= lMH Z 375 375 pF Gain-Bandwidth FT. VCE - 10V,I c = 0.2A 800 800 KHz Beta Cutoff Frequency f Vce = 4V, I c =.lA 25 25 KHz Second Breakdown Collector Current VCE = 60V VCE = 120V .42 ISIB .21 A hfe 4 ~ T '\ ~,. ~, 100 V , , ~ 60 '0; (!)40 E ~ '~.t:-J C' c..i ci 0 i 10-2 Collector Current, IC, Amperes , . I\. 1\ , " I'\. 1\ 1\ 1\ ~ t\. i\ 1\ I' \ I'l\' I' 1\', "" ~ ~ ~ ::l U I 10-3 i\ '\. « '~(I <3 20 .2 Q. E '" ~d'. ~ ~ ~ ~ 1\ I\:(I~ ./ '" Safe Operating Area I-- Single Non-repetitive Pulse .4 Tc = 25°C These forward Bias Curves may bs used for all .3 ~ Transistors except the maximum collector-emitter voltage cannot be exceeded . 1\ I\. I\. \I' 1\ .5 ~Maximum Forward Bias w c; "'I .6 V I', 80 ~~ .. ~.. .7 .. IS' 0.,0''' .8 (Vce) =4V 120 \ "~c> .9 ~ ; ~. '\~ ~ ~" -q, ~.. \ I I II '\;\: \ """"".,.;'"'"' 2 140 ··rl\ ~~kl)L1~ ~\ '\~'\ \~ ~ 2N3441 ~ 10 E ..!1 '0 u .1 ". 4 6 10 Collector Emitter Voltage, VCE, Volts T6 2N344f Min Max 2N3054 Max Min Test Conditions Symbol 50 100 140 Symbol A <l>b Inches Min. .250 .038 Max. .450 .043 .875 .440 .225 .135 <l>D e e, F L <l>P q .420 .205 .312 .151 1.177 R, R, S .655 .161 1.197 .525 .188 .675 Millimeters Max. Min. 11.43 1.09 22.23 11.18 5.72 3.43 6.35 .97 10.67 5.21 7.92 3.84 29.90 4.09 30.40 13.34 4.78 17.15 16.64 Finish-Nickel Plate. Approx. Weight-.58 oz. (16.5 g). Conforms to TO-3 Outline F..tu....: Application. • High raverse bias S.O.A. for inductive loads • Low thermal resistance • Hermetically sealed TO-3 type package • 117 watt dissipation • 100% Power tested • Lifetime guarantee • • • • Series and shunt regulators High-fidelity amplifiers Power switching circuits Solenoid drivers Voltage Matrix Maximum Ratings and Characteristics Tc=25°C unless specified * * * * Syrnbol Operating and storage temperature Collector-emitter sustaining voltage Vceo(sus) I 2N3055 I 2N3442 I Units °C -65TO 200 -65 TO 200 60 140 Volts Collector-base voltage VCBO 100 160 Volts Emitter-base voltage VeBO 7 7 Volts Collector-emitter voltage VBe = -1.5V Vcev 100 160 Ie 15 10 I. 7 7 * Continuous collector current * Continuous base current Linear power derating factor from Tc =25°C * Thermal resistance * Power dissipation Power dissipation Tc = 100°C R&Jc Volts Amperes Amperes W/oC .67 .67 1.5 1.5 °CIW Pr 115 117 Watts Pr 67 67 Watts • JEDEC Registered Parameters T7 CHARACTERISTIC SYMBOL DC DC COLLECTOR EMlnER OR BASE VOLTAGE VOLTAGE V V VICE * Collector-Cutoff Curent: With base open ICED With base-emitter junction reverse-biased * Emitter-Cutoff Current DC Forward Current Transfer Ratio -1.5 -1 5 I CEV 140 100 -1.6 -1.6 lEBO Base-to-Emitter Voltage Collector-to-Emitter . Saturation Voltage hFE 4 MIN. MAX. - 5 - 10 - mA 30 30 - 6 6 - -- 20 70 0.4 0.3 4 3 V CE MAX. -- - 3 4 4 MIN. 0.7 3 4 <D <D IB UNITS 2N3442 2N3066 7 V BE * UMITS 0 0 140 100 <D IC 30 120 I CEV = 150°C At Tc; VEB VBE DC CURRENT A mA 70 20 - - - 1.7 1.8 - 1.1 -1.0 - V V (satj Gain-Bandwidth Product Forward-Bias Second Breakdown Collector Current fT 10 IS/b 60 78 1 800 800 kHz 1.95 1.6 1 -- sec. - 1 * JEDEC Registered Parameters <D Pulse Test 300 microsecond, 2% Duty Cycle 16 Ie MAX. 2N3055 Ic ,Max. 2N3442 10 8 Typical Characteristics " 6 ~ ~~ " ~'k" " ~~" x..<bS: 1\:-<-" ~.o 0.0 J:~ 4 '1~ ~ O~ ~a ~'" ~~ ~ 80~-+~~~~~~~---+--~--4---~-+~ .2 ~ ~ 1 60 S c40t--+---+-+--+--t~~r-"IIt---*--t--+----t ~ 8 ~ 20~-t---t--+-+-~~-+---p~'~r-~~--~ j g ~ .... ~, () ~ .!! .4 ou 2N3055 2N 3442 .2 O:'--A.-........--...- __--'__....._ ........_+__.l.--~--.. o 0.5 .2 .4 .6 .8 Collector Current, ie, Amperes 5 0:1 t T8 ot 2 468 10 Collector-Emitter Voltage, VCE, Volts 2 4 6 8 100 140 Symbol A c/lb c/lD e et F L c/lP q Inches Min. .250 .038 .420 .205 .312 .151 1.177 Rt R, Max. .450 .043 .875 .440 .225 .135 .161 1.197 .525 .188 .675 Millimeters Max. Min. 6.35 .97 10.67 5.21 7.92 3.84 29.90 16.64 S .655 Finish-Nickel Plate. Approx. Weight-.58 oz. (16.5 g). 11.43 1.09 22.23 11.18 5.72 3.43 4.09 30.40 13.34 4.78 17.15 Conforms to TO-3 Outline Features: • No forward bias secondary breakdown to 80 Volts • High reverse bias S.O.A. for inductive loads • Low thermal resistance • Hermetically sealed TO-3 type package • 150 watt dissipation • 100% Power tested • Lifetime Guarantee Applications • High Power Switching • Amplifiers • Servo Systems • Regulators • Modulators Voltage Matrix Maximum Ratings and Characteristics Tc = 25°C unless specified Symbol * Operating and storage temperature 'sus, I 2N6254 I 2N6262 I UnIts -65 To 200 -65 To 200 °C Volts * Collector-emitter sustaining voltage V CEO 80 150 * Collector-base voltage VCBO 100 170 Volts * Emitter-base voltage VEBO 7 7 Volts * collector-emitter voltage V BE = - 1.5. VCEV 90 170 Volts * Continuous collector current Ie 15 15 Ampere * Continous base current IB 7 7 Ampere .855 .855 w/oc * Linear power derating factor from T c = 25°C * Thermal resistance R9JC 1.17 1.17 °C/W * Power dissipation PT 150 150 Watts PT 86 86 Watts Power dissipation T c = 100°C T9 • JEOEC Registered Parameters ELECTRICAL CHARACTERIESTICS SYMBOL CHARACTER ISTIC DC EMITTER OR BASE VOLTAGE V DC COLLECTOR VOLTAGE V Vee Vce * Collector-Cutoff Current: with base open I ceo With base-emitter junction reverse-biased IcEV 100 150 At Tc = 150°C leEv 30 150 Emitter-Cutoff Current leeo *DC Forward Current Vee Ie MIN. MAX. h Forward-Bias Second Breakdown Collector Current I Sib 2N6262 MIN. MAX. 1.0 1.0 0.5 -1.5 -1.5 mA 0.1 -1.5 -1.5 5.0 2.0 0.5 2 2 3 5 2 5 2 3 4 Gain-Bandwidth Product UNITS 2N6254 0 0 VCE(sat) Saturation Voltage * Ic LIMITS 7 hFe •Colleetor-to-Emitter Vee 60 110 Transfer Ratio *Base-to-Emitter Voltage . DC CURRENT A 20 70 70 20 1.5 1.0 5 0.5 3 0.3 1 80 100 mA 0.2 0·5 V 0.5 800 800 'kHz 1 1.92 1.5 s 1 JEDEC Registered Parameters. 10~----~-4~~--~-4--~~~~-P~~~ 8!----+---+--+-+---~~- 6 ~~:~~rP~~~~ ~ ., 41-----+--+----1-+-----1-Maximum Forward Bias Safe Operating Area Single Non-repetitive Pulse Co ~ _u E ~ 2 Tc = 25°C 1 a8 These forward Bias Curves may be used for all ---+---+--+--+-+~-"'t Transistors except the· maximum collector-emitter voltage cannot be exceeded S6 ---+---+--+-+--+---'1 " VCEO =80V ~4~--4---+-~~----~-----+-2N6254 U I I 21-----+--+--+--+---+---+-VCEO =150 V 2N6262 T10 2 4 68 2 0.1 Collector Current, Ie, Amperes 0.Q1 4 6 8 1 2. 468 10 2 4 6 8 10 2 Collector Emitter Voltage, VCE, Volts Inches Min . .250 .038 Symbol A c/>b c/>D e e, F L c/>P .420 .205 .312 .151 1.177 q R, 'R, S .655 Millimeters Max. Min. 6.35 11.43 .97 1.09 22.23 11.18 10.67 5.72 5.21 3.43 7.92 4.09 3.84 29.90 30.40 13.34 4.78 16.64 17.15 Max. .450 .043 .875 .440 .225 .135 .161 1.197 .525 .188 .675 Finish-Nickel Plate. Approx. Weight-.58 Oz. (16.5 g). Conforms to TO-3 Outline Features: • No forward bias secondary breakdown to 100 volts:o;C, • High reverse bias S.O.A. for inductive loads • Low thermal resistance • Hermetically sealed TO-3 type package • 150 watt dissipation • 100% Power tested • Lifetime Guarantee Applications: • Series and shunt regulators • High-fidelity amplifiers • Power switching circuits • Solenoid drivers Maximum Ratings and Characteristics Tc=25°C unless specified Symbol Collector-base voltage 2N3771 ·.:.65 to 200' Operating and storage temperature Collector-emitter sustaining voltage I I 2N3772 I 2N3773 *-65 to 200 *-65 to 200 I Units °C Vceollllsl '40 . *60 *140 Volts V eBo '50 ' *100 '160 Volts V EIO '5 *7 *7 Volts V e,. *50 *100 *160 Volts Continuous collector current Ie *30 *20 Continuous base current I, *7.5 * .855 Emitter-base voltage Collector-emitter voltage V" = -1.5V Linear power derating factor from Tc = 25°C . *.16 Amperes '5 '4 Amperes *.855 ".855 wrC I, Thermal resistance RSJC 1.17 1.17 1.17 °C/W Power dissipation Pr *150 "150 *150 Watts Pr 86 86 86 Watts Power dissipation Tc = 100'C ... Qt:loistered Parameters T11 ELECTRICAL CHARACTERISTICS (Tcl =26°C LIMITS TEST CONDITIONS Characteriltic Symbol DC Collector Voltage (V) Vca • DC Forward Current Transfer Ratio • Collector- Cutoff Current: With emitter open Second-Breakdown Energy With base reverse biased & L =40 mH, RBE =100 ElYb u cB 5 7 4 4 4 Min. Max. -5 -15 - -- -- -- -- 60 - Units 5 - 15 -- 60 2 mA --2 mA --- mA -- mA -- - mA -- - -5 ---- -- -- - 10 5 -- 15 10 B - 60 40 ----- -2.5 5 2.6 30 10 r---r---t-----t----+---±;111-..... . !! 500 500 -- 2.2 V - -1.4 V 1.5 - - 3.75 -1.5 -4.0 5 2.2 1.4 - 2 100 10 5 2.7 1.5 1 O.B 10 10 - 0 0 15. 10 B .5t---t---::::;i;--+~~r-+----t ~ Max. 10 0 0 0 30 50 120 Maximum Transient --+----+----4---~ Thermal Impedance (All types) u 1.0 5 - --15 60-- -- Min. 10 10~--T-----'-----'------r-----r----~ 5 Max. 2 VCE(..,) ISlb 2N3773 5" -1.5 -1.5 -1.5 Second-Breakdown Collector Current With base forward-biased & 1-s, non repetitive pulse 2N3772 2" 30 30 140 " Collector-to-Emitter Saturation Voltage Min. I. Rated VCEO ICEV VBE Ie 30 20 16 15 10 B With base-emitter junction reverse- biased & Tc =150° C • Base-to-Emitter Voltage °E VSE -1.5 -1.5 -1.5 lEBO ~ VEa 50 100 140 " Emitter- Cutoff Current = VeE IcEV ICEO 2N3771 (V) With base-emitter junction reverse-biased With base open DC Current (A) 4 4 4 4 4 4 HFE ICBO DC Emitter or 8 _ Voltage, - - - 125 10 30 A mJ 6 3 ! c ~ 1 .§ 1-• . Maximum Forward Bias Safe Operating Area Single Non-repetitive Pulse Tc = 25°C These forward Bias Curves may be used for all Transistors except the maximum collector-emitter voltage ca nnot be exceeded 5i ~ 01~---i----+---~---~---~--~ ~.OO6~---i~---+---~---~---+---~ ~ " u ~ 1; .!! ·1 i.OO1~----~----~~--~~----~~----~-----' 101 10 1()-6 T12 ~ Time, t, Seconds 15 u .1 1 3 5 Collector-Emitter Voltage, VeE, Volts 50 100 140 Typical Characteristics 2N3771 20 100 \\ \ 60 ~ " 1\ \ \ f\.' 40 Te = c' '" ... - ----- VeE=4Volt. ~ t ,e=2S"C ~ ....... ~ :::-o 15 10 S V I 1 j,/J c.i o 20 Collector Current. Ie. Amperes char.ct.).tiC. VeE = 4 Volts l/ ~ / o - 6 '~ 8 "- 5 Typical VCE(satl Versus Ie le/I!I= 10 / I I J \ 6 "- ./ ---- - ./ ..-- /' 4 I I 1.1 I I " "" ~ P- I 15 10 o 20 Collector Current. Ie. Amperes 3 Typical Switching Characteristics - = = le/IBlonl 10 le/IBloffl 10 Vee 30 Volts = ........ r-..... ./ ......... r-...... If ,,/ V I, V ./ ................ ........ Te-160'~ Tr =-6S·C ........ Te=~ 2.5 1.5 .S Base Emitter Voltage, VeE. Volts 10 ~ Tc- 16O' C / IIV - il t ] 0 V 1/ V Typical hFE Versus Ie 1: 20 ci 1/ v1 J 15 i/ e=~6S":/ ./ -6S'~"",~ ~ /' J Te=2S"C/ r-e= lS0'C \~ 80 w J ,_w.¥_ ....... ~ o 4 8 Collector Current, Ie. Amperes ~ --;><:"'12 .. ........ r-.... 16 .......... 20 r--.... 24 Typical Characteristics 2N3772 20r---~-'--r--'~----~---~ j ~ c' ~ ! 20 r----+----4---~~~~----4---~~--_+--~ c.i 0L-__ o ~ __- L__ ~ ____4 -__J -___L__ 5 Collector Current, Ie. Amperes 10 lS ~L_~ 20 f-----i----i- 5 ~ u J u ci ~ 10 "0 u 0 L..._.Jt!:.._.u~..L_.L..._L-_L-_..L_._J......._J......._J o .S Base Emitter Voltage, VeE. Volts 1 l.S 2.5 T13 Typical Characteristics 2N3772 4 i" 8 Typical VCE(sat! Versus Ie lellB = 10 -f-'-- Te=150~ ~ I I I \ ['... -..!f 6 I i'-- ...... o - o ~ I-- ---'--- 5 10 o 15 Collector Current. Ie. Amperes - 4 V ,- ..,...V ~ ~'...-I I-CC i I o i--""" ~ f-- -- 5'C I I -I............ V~~ I Vee ,= 301"118 Te=~ ~ ~P"'"Te= le/lB(onl = 10 le/lBloffl = 10 ......... I "- ,",'..... 4 , ..... \ I Typical Switching Characteristics _ _ - 6 10 12 Coliector CUrrent. Ie. Amperes Typical Characteristics 2N3773 .- 80 20 I~ 60 , ~e=25'C Vce=4Volts I~ ..... Te= ~ 5'C "~ ~ ~ w 1- '" Te = 150'C"'- i u u o o 4 Collector Current, Ie;:. Amperes 8 10 r-- - fi? ~ .~ 20 ci Te=-65'» ~ 40 "/ 15 Typical hFE Versus Ie /' /J'I / VI u j ;3 .... Te= 25'C VCE = 4 Volts i ---- ~V Characteristics / /~ ' " Tc = 150'C o 12 /1 I o • 1.5 1 2,5 2 Base Emitter Voltage, VaE. Volts 4 r---~----~----r----'-----r--'-' Typical Switching Characteristics 6 1-"-11----'1--1--+ lellBlonl = 10 le/IB(oftl = 10 Vee = 30 Volts Typical VCE(sat) Versus Ie +_+_+_+_+_., lellB = 10 4 ~u I g t, ~ ,; E i= 4 T14 Collector Current. Ie. Amperes 8 12 0 0 2 4 Collector Current. Ie. Amperes 6 8 10 12 Symbol Inches Millimeters Min. Max . .500 .045 .140 .560 .060 .170 12.70 1.14 3.56 14.22 1.52 4.32 1.240 .730 1.280 .770 1.125 31.QO 18.54 32.51 19.56 28.58 e e, H .360 .180 .014 .400 .200 .025 9.14 4.57 .36 10.16 5.08 .64 j .140 .130 .550 .170 .190 .590 3.56 3.30 13.97 4.32 4.83 14.99 Q .550 .810 .105 .590 .850 .140 13.97 20.57 2.67 14.99 21.59 3.56 S <jlT .480 .050 .520 .070 12.19 1.27 13.21 1.78 A <jlB 'd <jlD <jlD, <jlD, K l N q Min. Max. <jlW 0/,0-24 UNF-2A Finish-Nickel Plate. Approx. Weight-.9 oz. (25 g). 1. Complete threads to extend to within Conforms to MT-l Outline Features: • Gold Alloy Process • No forward bias secondary breakdown to 150 volts • High reverse bias S.O.A. for inductive loads • Low thermal resistance with copper base • 175 watt dissipation • Protection from ther\11al fatigue with hard solder and molybdenum construction • 25 volt VEBO • Low VCE(sat) • Lifetime Guarantee Maximum Ratings and Characteristics Tc = 25°C unless specified 2% threads of seating plane. 2. Contour and angular orientation of terminals is undefined. 3. Pitch diameter of ';',-24 UNF-2A (coated) threads (ASA 81.1-1960). Applications: • High Power Switching • Amplifiers • Servo Systems • Regulators • Modulators 151 152 - Low Gain Series High Gain Series Maximum Ratings Voltage Type VCBO VCEO 151-04 151-06 151-08 151-10 152-04 152-06 152-08 152-10 65 85 105 125 40 60 80 100 151-12 151-14 151-16 151-18 152-12 152-14 152-16 152-18 145 165 185 205 120 140 160 180 151-20 151-22 151-24 152-20 152-22 152-24 225 245 265 200 220 240 Symbol Operating and storage temperature Units -65 to 150 °C 40 to 240 Volts VCBO VCEO (sus) + 25 Volts Collector-emitter sustaining voltage VCEO (sus) Collector-base voltage Emitter-base voltage VEBO 25 Volts Continuous collector current Ie 6 Amps Continuous base current IB 3 Amps 1.4 W/oC Linear power derating factor from Tc = 80°C Thermal resistance R9JC .71 °C/W Power dissipation PT 175 Watts Power dissipation TC = 100°C PT 70 Watts 115 Electrical Characteristics Symbol Tc=25"C unless otherwise specified TYpe 151 Min. Max. Collector cut-off current at VCEX=max. rating, VaE=-1.5 Vdc, mAdc .••..•.••.. ICEX Collector cut-off current at VCEX=max. rating, Tc=150·C, VaE = -1.5 Vdc, mAdc •.• ICEX Emitter cut-off current at VEa=25 Vdc, Ic=O, Tc=150·C, mAdc .•...•......... IEao Turn-on time at Vcc=12 Vdc. Ic=1.5A. la=.4A, microseconds .••....••.•.•.•. ton Turn-on time at Vcc=12 Vdc. Ic=1.5A, la=.25A, microseconds .•..•..•.....•. ton Turn-off time at Vcc=12 Vdc, VaE= -25 Vdc, Ic=1.5A.la= -.4A, microseconds .. tot! Turn-off time atVcc=12 Vdc, VaE= -25 Vdc, Ic=1.5A, la= -.25A, microseconds .. tot! Collector-emitter saturation voltage at Ic = 1.5 Adc, I a = 0.25 Adc, Vdc .....•...•. VCE(sat) Base-emitter voltage at Ic=1.5 Adc, la=0.25 Adc, Vdc •.•••...•.•.•.•..•.••. Va E(sat) Dc current gain at VCE=4 Vdc. Ic.=1.5 Adc ................................ hFE Collector-emitter sustaining voltage, base open, Ic = 200ma ......................... VCEO (sus) Second breakdown Collector Current, VCE = 150V, Tc = 80a C (one second test), forward bias, Amperes ...................... ; ................... IS/B Second breakdown energy, base reverse biased, L =250 mh, RB = 50 ohms, VBE = -6.0 volts, Ic = 2.0 Amperes, Joules ............................ ES/B Gain-bandwidth, VCE = 10 Volts, Ic = 0.5 Amps, Kilohertz ............................. ft Type 152 Min •. Max. 10 20 20 10 20 20. 7 7. .'. 14 14 1.25 2.0 1.30 2.5 11 See Voltage Table 18 .68 .68 .50 .50 250 250 Safe Operating Area Typical Characteristics 10 50 "1\.:."-, """- 5 152 40 .;>~. ...... ~~ ~ ~ \r\ ,~~'§.~ " "\ 30 \.. 151 1.0 10 II00 1 2 Collector Current, Ie, Amperes 3 4 5 6 Typical dc gain versus collector current at Tc =25'C, I(II I'! 0.5 f~ IE « _si I- i ~,,,~~ "q,~-t;~ ...... 4""~ '1 ", ~ Maximum Forward bias Safe Operating Area Singe Non-repetitive Pulse TC = eooc These forward Bias Curves may be used for all t ra nsistors except the maximum collecor-emitter voltage ca nnot be exceeded. "- \. ~ ~::I 5 ow ~ U ~ 4 :au 151 and 152 ~ o. 1 ::!l 10 3 50 Collector Voltage VCE, Volts Tc = BO°C 2 00 .25 .5 .75 Bose Voltage, VBE,Volts Typical base voltage vs. collctor current Characteristics at Tc = 2.5°C 116 1.0 1.25 1.5 "- "'- " 100 2.00 Millimeters Min. Max. 8.64 10.31 10.16 11.18 4.83 4.06 2.03 2.41 13.82 14.27 2.54 3.56 18.03 10.72 11.51 1.02 1.40 Inches Min. .340 .400 .160 .080 .544 .100 Symbol Max. .406 .440 .190 .095 .562 .140 .710 .422 .453 .040 .055 %-28 UNF-2A A .pO e e, E F J N .pT .pW Finish-Nickel Plate. Approx. Weight-.25 oz. (7 g). 1. Complete threads to extend to within 2'1.. threads of seating plane. 2. Contour and angular orientation of terminals is undefined. 3. Pitch dia. of %-28 UNF-2A (coated) threads (ASA B1.1-1960). Conforms to MT-S2 Outline Features: • Gold Alloy Process • No forward bias secondary breakdown to 150 volts • High reverse bias S.O.A. for inductive loads • Low thermal resistance with copper base • 150 watt dissipation • Protection from thermal fatigue with hard solder and molybdenum construction • 25 volt V ESO • Low VeE (sat) • Lifetime Guarantee Maximum Ratings and Characteristics Tc = 25° C unless specified Maximum Ratings Applications • High Power SWitching • Amplifiers • Servo Systems • Regulators • Modulators Voltage Type 153 - Low Gain Series 154 - High Gain Series Symbol I Type 153 154 -65 To 175 - Operating and storage temperature 40 To 240 I VCEO (BUB) 153-04 153-06 153-08 153-10 154-04 154-06 154-08 154-10 65 85 105 125 40 60 80 100 153-12 153-14 153-16 153-18 154-12 154-14 154-16 154-18 145 165 185 205 120 140 160 180 153-20 153-22 153-24 154-20 154-22 154-24 225 245 265 200 220 240 u or., 5 °C Collector-emitter sustaining voltage VCEO (sus) Collector-base voltage VCBO VCEO (SU8' + 25 Volts Emitter-base voltage VEBO 25 Volts Continuous collector current Ie 7.5 Amps Continuous base current IB 3. Amps Linear power derating factor from Te = 25°C VCBO Volts 1.33 W/oC .75 °C/W Thermal resistance ROJC Power dissipation Pr 200 Watts Power dissipation Tc = 100°C Pr 100 Watts T17 Electrical Characteristics Tc = 25° C unless otherwise specified All Types Test Test Conditions Symbol D.C. Current Gain (153 types) hFE VCE =4;lc = 1.5A 15 D.C. Current Gain (154 types) hFE VCE = 4, Ie = 1.5A 25 Units Max. Min. Collector-Emitter Saturation Voltage (153) VCE (sat) Ic = 1.5A, Is = 250 mA 13 V COllector-Emitter Saturation Voltage (154) VCE (sat) Ic = 1.5A, Is = 250 mA 1.25 V V Base-Emitter Saturation Voltage (153) VBE (sat) Ic = 1.5A, Is = 250 mA 2.5 Base-Emitter Saturation Voltage (154) VBE Ie = 1.5A, Is = 250 mA 2.0 V Emitter Cutoff Current lEBO VES = 25V, Tc = 175°C 20 mA Turn-On Time ton Ic = 1.5A 5 I'sec Storage Time Is Vcc = 12V, 5 I'sec Fall Time tI Is (ON) 5 ).(sec Output Capacitance Cob Vcs = 10V.f = 1 MHz fT =10V, I c =0.5A =1.5A VCE = BOV., t =1.0 second Tc =25°C L =ImH, Vss =- V, Rs =200 ' Ie = 5.6A . Gain-Bandwidth Beta Cutoff Frequency fhle Second Breakdown Forward Biased, ISB (sat) Collector Current Second Breakdown, Reversed Biased =I s rOFF) =0.3A pF 750 VCE 250 KHz VCE = 12V,Ic 14 KHz A 2.5 mJ 15.5 Typical Characteristics 10 MAJI. Ie ~ ""r'\. 5 40 ""- "", ~ :!l ;;; 153 E £i I 2 3 Collector Current,Ie,Amperes 4 7 6 8 Typical dc gain versus collector current Tc = 25°C. E \~t,,~ 1.0 ~ \. " u 5 11 \. 0.5 '5 _ - u 6 , 1+ ~o~'\." \\ Co « 00 - /~ "".I.~.r ~o~.r - - r530nd 154 \ Maximum Forward Bias Safe Operating Area Single Non-repetitive Pulse Tc = 25°C These forward Bias Curves may be used for all Transistors except the maximum collector-emitter voltage cannot be exceeded \ w U > x « :e 0.1 r 10 50 100 VeE + .+ T18 H °0 ~ ·f +:1 .5 Base 10 Emitter Voltage, VeE ,Volts .~ 1.5 it Collector Emitter Voltage, VCE, Volts Inches Min. .500 .045 .140 1.240 .730 Symbol A cpS d cpD cpD, cpD, e e, .360 .180 .014 .140 .130 .550 .550 .810 .105 .480 .050 0/,6-24 H j K L N q Q S cpT cpw Conforms to TO-82 Outline Features: • Gold Alloy Process • No forward bias secondary breakdown to 100 Volts • High reverse bias S.O.A. for inductive loads • Low thermal resistance with copper base • 150 watt dissipation • Protection from thermal fatigue with hard solder and molydenum construction • 25 volt V EBO • Low V CE (satl • Lifetime Guarantee Max. .560 .060 .170 1.280 .770 1.125 .400 .200 .025 .170 .190 .590 .590 .850 .140 .520 .070 UNF-2A Millimeters Min. Max. 12.70 14.22 1.14 1.52 3.56 4.32 31.&0 32.51 18.54 19.56 28.58 9.14 10.16 4.57 5.08 .36 .64 3.56 4.32 3.30 4.83 13.97 14.99 13.97 14.99 20.57 21.59 2.67 3.56 12.19 13.21 1.27 1.78 Finish-Nickel Plate. Approx. Weight-.9 oz. (25 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Contour and angular orientation of terminals is undefined. 3. Pitch diameter of 0/..·24 UNF·2A (coated) threads (ASA 61.1·1960). Maximum Ratings Voltage JEDEC 2N1015 + 2Nl015A+ 2Nl015B+ 2Nl015C+ 2N10150+ 2Nl0l5E+ Applications: • High Power Switching • Amplifiers • Servo Systems • Regulators • Modulators VCEO(SOSI 2Nl0l6 + ............ 30 2N1016A+ .1 ••••••••••• 60 2Nl016B+ .•.......... 100 2Nl016C+ ............ 150 2N10l60+ ...........• 200 2Nl 016E + .\........... 250 Maximum Ratings and Characteristics T c =25°C unless specified Symbol * Operating and storage temperature Collector-emitter sustaining voltage * Emitter-base voltage * Continous collector current . * Continous base current * Thermal resistance =45°C Power dissipation. Tc =100°C * Power dissipation Te \JEDEC 2N1015.1 2N1016 I - 65 TO 150 VCEO(suSI VeBO Ic IB Re.Jc Pr Pr UnIts °C 30 TO 250 Volts 25 Volts 7.5 Amps 5 Amps .87 °C/W 150 87 Watts Watts • JEDEC Registered Parameters T19 Electrical Characteristics Tc=25·C unless otherwise specified Symbol 2N1015/2N1016 Collector current at VCEX=VCE (from max.' ratings), TJ =150·C, VBE= -1.5 Vdc ..... . ICEX Emitter current at VEB = 25' Vdc, Ic =0, TJ = 150·C .. ' •..................•....... lEBO Switching time, delay pills rise time ..' ...•..•..••..................•.••...•.. td+tr Storage plus fall time ................................................... '.• ts+tf Second breakdown, Collector Current, VCE = 100 V., Tc = 45°C (one second test), forward bias. Amperes ' IS/8 Second breakdown energy. base reverse biased, L = 250 mh .• ES/8 RB = 50 ohms. V8E =-6.0 volts. Ic = 2.0 Amperes. Joules Gain-bandwidth. VCE = 10 volts. Ic = 0.5 Amps. Kilohertz ft 2N1016 Dc current gain at VCE =4 Vdc, Ic =2 Adc .....•....•.•..•...•......•...••.•.. hFE Base voltage, at Ic=2 Adc, 18=300 mAdc .......•............•.•...•.••...... VBE (S8t) Beta cut-off frequency ...........•.....••..............•.......•.••..•... fhfe 2N1016 Dc current gain at VCE=4 Vdc, Ic=5 Adc ...................•.....•..•.•..... hFE Base voltage, at Ic=5 Adc, 18=750 mAdc ................•.........•..•.•...• VBE (S8t) Beta cut-off frequency ..........•..•........•.....••.......•.. " ....•....• fhfe Max. Minimum Typical 2 3 3 7 Units mAdc mAdo I'sec I'seo *20 *20 Adc Joule 1.5 0.5 250 Khz. *10 *10 14 1.15 25 Vdc kHz 18 1.25 30 Vdc kHz *J EDC registered parameters. Typical Characteristics SAFE OPERATING AREA 10 80 MAX. Ie ...... 2N1016- 60 ~~t---'--Series 5 , I" ~q, 30 /J._s_ ...... "'"~'" I"" """~ 1)0" u:.~~f(1i.s> "'" ~ .c ~I" ~q, ~.s>~ ~ 40 .e ~ I"~" ~ ~ 2NI015 Q. ~ l=I=Series 00 I 2 3 4 6 5 7 Collector Current.ie.Amperes Typical dc gain versus collector current at Tc = 25°C. 8 sf , 1.0 i i!! ~ u 0 .. 'a t; 5 u 4 J l'\: ~~ '" I' "I> 3 2 \. - Maximum Forward Bias Safe Operating Area - Single Non-repetitive Pulse Tc = 45°C _ These forward Bias Curves may be used for aII Transistors except the maximum collector-emitter voltage cannot be exceeded. I I I I I O. 1 10 50 w ~ >< 0( ~ 100 Collector Emitter Voltage. VeE, Volts 00 .25 .5 .75 1.0 Bose Voltage. VeE.Volts Typical base voltage vs. Collector Current characteristics at Tc = 25°C. T20 1.25 1.5 , \. 0.5 200 Millimeters Max. Max. Min. 8.64 10.31 .406 A .pO .440 10.16 11.18 4.06 .190 4.83 e e, .095 2.03 2.41 E .562 13.82 14.27 3.56 .140 2.54 F .710 18.03 J .453 10.72 11.51 N .422 .pT .055 1.02 1.40 .040 .pW %-28 UNF-2A Finish-Nickel Plate. Approx. Weight-.25 oz. (7 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Contour and angular orientation of terminals is undefined. 3. Pitch dia. of 14-28 UNF-2A (coated) threads (ASA B1.1-1960). Symbol Feature.: Conforms to MT-52 Outline Test I Inches Min. .340 .400 .160 .080 .544 .100 • Gold Alloy Process • No forward bias secondary breakdown to 150 volts • High reverse bias S.O.A. for inductive loads • Low thermal resistance with copper base • 150 watt dissipation • Protection from thermal fatique with hard solder and molybdenum construction • 25 volt B EBO • Low V CE (sa') • Lifetime Guarantee SYI11'lOi I C nne 1"1Itr()IlS «t *Collector- Emitter Sustaining Voltage VCEO(sus) Base Open L=1H Ic=200mA *Collector Cutoff Voltage VCEV ICEv=2mA VEB=,1.5V *Collector Cutoff Voltage VCEV ICEv=10mA VEB=1.5V Tc=175°C I 7N3429 I 2N3430 50 I nJ3431 SYlllbol "Operating and storage temperature I 2N3432 I 200 150 100 Maximum Ratings and Characteristics* Tc=25°C unless specified Application.: • High Power Switching • Amplifiers • Servo Systems • Regulators • Modulators I 2N3433 250 All Types -65°C to 175°C .. Collector-emitter sustaining voltage VCEO(sus) 50 volts to 250 volts * Emitter-base voltage VEBO 25 volts .. Collector-emitter voltage,VEs=1.5V, Tc=175°C VCEV '50 * Continuous collector current Ic 7.5 amperes * Continuous base current Is 3 amperes vol~ to 250 volts 1.33 W 1°C • Linear power derating factor from Tc=60°C .. Thermal resistance R6 JC P,.75°C/W • Power dissipation ,Tc=60°C Pr 150 watts *JEDEC registered parameters T21 All Types Test Test Conditions Symbol *D,C, Current Gain' Min. Max. 10 35 Units" hFE VCE=2V, Ic=5A *Collector- Emitter Saturation Voltage VCE(sa!) Ic=5A,IB=750mA 1,0 V * Base- Emitter Saturation Voltage VBE(sa!) It=5A, IB=750mA 2.0 V *Emitter Cutoff Current lEBO VEB=25V, Tc=175°C *Turn-On Timei ton Ic=5A, *Storage Time ts Vcc=12V, 4 "sec *Fall Time' tf IB{on)=IB{off)=1,5A 8 ,usee 10 mA 5 ,usee " Output Capacitance Cob VCB=10V,f=1 MHz Gain- Bandwidth fr VCE=10V,lc=O,5A *Beta Cutoff Frequency 750 fhfe VCE=12V,lc=5A Second Breakdown forward Biased, collector current I,I"SB' Vce=30V, Ic=5A t= I second, TC == 25°C ' Second Breakdown reversed biased E'SB L=lmH, VBs=-2V, Rs= 201l, Ic=5,6A pF 250 KHz 20 KHz A 1.5 15.5 mJ *JEDEC registered data. 12 10 .. ,. .. -+:: -r: .. . ,. 7.5 • 5 4 ~ 3 2 ef tO .8 C[ .S •. s U ...-t...4 1: I 10~s~ .. .~~ - .\ ,t~ ~........ -~~ r- -f- .0 - - I- , 2 3 4 • !\ 1\~ .. f~ .. .-" 111 . 1 20 8 10 Collector Emitter Vollao~,VCE,VolI. ... - f--; ., _0 ~ . I .1:- _.11 rTl III! i I I rL. 80 I '\. ~ .._. These Sofe 0g::ratin~ Area Curves may be used r 2N 429-33 transistors except the minimum collector-emitter voltQge ratinos cannot be exceeded ._. m ~ "~~ .1' - Tc=25OC --- t-LJJ·~ , !\,Q(' ! I ~ SinOIe Nonrep"itive Pulse - ~.-: ,!'. 1 .'.J... .. ".~ Maximum Forward Bios Safe Operatino Area == = U .2 .. , l i-H -+-. - r- ~. 3 " ~.!! • .' .w •• , 30 40 I eo I 80 100 200250 Collector Current,Ic, Amperes 10' 1.5,··-,-'· 60- i Tc=150oC I I.ol--~ I ' 1 ITc. Tc" slIoe I ~ r·-II .Ty~n~t j !'r : ~+ . I oL ___ L..-L_--L-.: e . u. o .5 1.0 f"t ""'T..· 1.5 2.0 2. 3.0 Base-Emitter Voltaoe,VSE ,Volts T22 i . ...r .... .j. 40;.... 250C C[ ~ ... . :~1:~ ~ '11"\11 VealHt) . 20·I ,.: "• I VC[{ •• tl.Voll. ~ r' . ~ .,. 1· ..... L,,+"" Symbol A </>D e, e E F J N </>T </>T, </>W Inches Min. Max. .600 .650 .650 .700 .185 .205 .390 .410 .855 .875 .25Q .156 1.016 1.076 .560 .600 .090 .100 .060 .080 0/,.-24 UNF-2A Millimeter Min. Max. 15.24 16.51 . 16.51 17.78 4.70 5.21 9.91 10.41 21.72 22.23 3.96 6.35 25.81 27.33 14.22 15.24 2.29 2.54 1.52 2.03 Finish-Nickel Plate. Appro •• Weight-1 oz (28 g). 1. Complete threads to extend to within 2* threads of seating plane. 2. Contour and angular orientation of terminals is undefined. 3. Pitch dia. of 0/,.·24 UNF-2A (coated) threads (ASA 81.1-1960). Conforms to MT-33 Outline Features: • Gold Alloy Process • No forward bias secondary breakdown to 67 volts • High reverse bias S.O.A. for inductive loads • Low thermal resistance with copper base • 160 watt disSipation • Protection from thermal fatigue with hard solder and molybdenum construction • 26 volt VEBO • Low VCE (8811 • Lifetime Guarantee Applications: Maximum Ratings • • • • • Voltage Type High Power Switching Amplifiers Servo Systems Regulators Modulators 163 - Low Gain Series 164 - High Gain Series Maximum Ratings and Characteristics Tc = 2&OC unl... specified Symbol Operating and storage temperature I Type 163 164 I VeBO VCEO (SUI) 163-04 163-06 163-08 163-10 164-04 164-06 164-08 164-10 55 75 95 115 40 60 80 100 163-12 163-14 163-16 163-18 164-12 164-14 164-16 164-18 135 155 175 195 120 140 160 180 163·20 164-20 215 200 Unots -66TO 176 °C 40 TO 200 Volts Collector-emitter sustaining voltage VCEq(sUS) Collector-base voltage VCBO VCEO (suo) + 16 Volts Emitter-base voltage VEBO 16 Volts Continuous collector current Ic 30 AMPS Continuous base current Ie 7.6 AMPS Thermal resistance ReJc .5 °C/W Power dissipation Tc = 76°C Pr 200 Watts Power dissipation Tc = 100°C Pr 160 Watts T23 Electrical Specifications Tc=25°C unless otherwise specified 16i3- Teat Symbol Teat Conditions D.C. Current Gain hFE VCE=4V. Ic=5A Collector-Emitter Saturation Voltage VkElsat) Ic=5A. la=O.5A Base-Emitter Saturation Voltage VaEI"') Emitter Cutoff Currl!nt Turn-On Time Min. 16['4 Max. 15 , Min. 25 1.1 1.0 V Ic=5A. la=O.5A 2.2 2.0 V lEW VEBr 15V. Tc=175°C 25 25 mA t.on 1c=5A 6 6 Storage Time to Vcc=12V. 5 5 posec. Fall Time tf IB(on)=IB(off)=O.6A. 7 7 l'lIec. '" Qutput Capacitance l'lIec. Cob VCB F1 OV.f=1 MHZ Gain-Bandwidth h VCE=1Ov. 1c=1.0A 250 ~eta f'hfe VlCEI=12V. 1c=5A 10 I S8 "'cEF67V. 1 second Tc=75°C 3 3 A Es/b Vcc=30V L=.4H 1 1 J Cutoff FreQuencV Second Breakdown Forward Biased. Collector Current Second Breakdown Energy Revers8lBiased 1500 1c=5A Tc= 25°C 1500 10 60 164 40 163 00 5 10 15 20 Collector Current,Ie.Amperes Maximum Forward Bias Safe Operating Area Single Non-repetitive Pulse 15 Tc=75°C , VCE=4Volts f !. 10 I 163 and 164 E E ~ <I: .!i f ~ ~ s I (.,) voltage cannot be exceeded 'i 5 (.,) 15 These forward Bias Curved may be used for all Transistors except the maximum collector-emitter u .!! 00 ;g .5 1.0 Base to Emitter Voltage, VBE , Volts 1.5 2.0 .T 7 Collector pF KHz 250 Typical Characteristics T24 Units Max. KHz Inches Min. .500 .045 .140 1.240 .730 Sy.mbol A .pB d .pD .pD, .pD, e e, H Max. .560 .060 .170 1.280 .770 1.125 .400 .200 .025 .170 .190 .590 .590 .850 .140 .520 .070 UNF-2A .360 .180 '.014 j .140 " .130 K L .550 .550 N q .810 Q .105 S .480 .pT .050 .pW 0/,.-24 Finish-Nickel Plate. Approx. Weight-.9 oz. (25 g). Millimeters Max. Min. 12.70 14.22 1.14 1.52 3.56 4.32 32.51 31.5.0 18.54 19.56 28.58 9.14 10.16 4.57 5.08 ".36 .64 3.56 4.32 3.30 4.83 13.97 14.99 13.97 14.99 21.59 20.57 2.67 3.56 12.19 13.21 1.27 1.78 1. Complete threads to extend to within 2% threads of seating plane. 2. Contour and angular orientation of Conforms to TO-82 Outline Features • Gold Alloy Process • No forward bias secondary breakdown to 100 volts • High reverse bias S.O.A. for inductive loads • Low thermal resistance with copper base • 150 watt dissipation • Protection from thermal fatigue with hard solder and molybdenum construction • 25 volt VEBO • Low VCE(s.t) • Lifetime Guarantee Test Collector Voltage Sustaining I Symbol I 2N2226 2N2230 VCEO(sus) 50 Maximum Ratings and Characteristics Tc = 25°C unless specified I terminals is undefined. 3. Pitch diameter of 'A0-24 UNF-2A (coated) threads (ASA 81.1·1960). Applications • High Power Switching • Amplifiers • Servo Systems • Regulators • Modulators 2N2227 2N2231 I 2N2228 2N2232 100 Symbol * Operating and storage temperature I I 2N2229 2N2233 150 200 JEDEC 2N2226.33 I U't nl 5 -65 To 150 °C VeEO (sus) 50 To 200 Volts * Emitter·base voltage VEBO 15 Volts * Continuous collector current Ie 10 AMPS * Continuous base current IB * Thermal resistance R9Je .5 * Power dissipation Te = 75°C Pr 150 Watts Pr 100 Watts Collector-emitter sustaining voltage Power diSSipation Te = 100°C AMPS °C/W • JEDEC Registered Parameters T25 Electrical Characteristics TC=25'C unless otherwise specified Symbol Minimum 2N2226-29 Collector current at VCEX=VCE (from max. ratings), Tc=150'C, VBE=-1.5 Vdc ... Emitter. current at VBE = -15 Vdc, Ic =0. . . . . . • . . . . . . . . • . . . . . . . . . • . . . . . . . .. Emitter current at VBE=-15 Vdc, Ic=O, TC=150'C ............•............ Gain bandwidth product at Ic=10 Adc ................•..•..••.•.••••...• Saturation voltage at Ic=10 Adc, IB=150m Adc .......................... Dc current gain at VCE=6 Vdc, Ic=10 Adc ..........•..................... Base voltage, at Ic=10 Adc, IB=150 mAdc .............•.................. Beta cut-off frequency at VCE=12 Vdc, Ic=7 Adc .......•.................. Turn-on time at Ic=10 Adc, IB on=400 mAdc, VCE=12 Vdc .................. Turn-off time at Ic=10 Adc, IB off=-400 mAdc, VCE=12 Vdc, VBE off=-15 Vdc. Electrical Characteristics ICEX lEBO lEBO fT VCE(sat} hFE VBE (sat) fhfe td+tr ts+tf 100 TC= 25'C unless otherwise specified Symbol Minimum 2N2230-33 Collector current at VCEX=VCE (from max. ratings), Tc=150'C, VBE=-1.5 Vdc ... Emitter current at VBE=-15 Vdc, IC=O ................................... Emitter current at VBE=-15 Vdc, Ic=O, Tc=150'C .......................•. Gain bandwidth product at Ic=10 Adc .........•......•........•••......• Saturation voltage at Ic = 10 Adc, IB = 150m Adc . . . . . . . . . . . . . . . . . . . . . . . . .. Dc current gain at VCE=6 Vdc, Ic=10 Adc ..............•................. Base voltage, at Ic=10 Adc, IB=40 mAdc .......................•...•..... Beta cut-off frequency at VCE=12 Vdc, Ic=7 Adc .......................... Turn-on time at Ic=10 Adc, IB on=200 mAdc, VCE=12 Vdc .................. Turn-off time at Ic=10 Adc, IB off=-200 mAdc, VCE=12 Vdc, VBE off=-15 Vdc. ICEX lEBO lEBO fT VCE(sat) hFE VBE (sat) fhfe td+tr ts+tf Typical 500 2_2 360 3.0 10 4.5 25 Typical 500 2.2 660 3.0 7 400 Max. Units 20 15 30 mAdc mAdc mAdc· kc Vdc 3.5 4.0 Vdc kc ILsec ILsec Max. Units 20 15 30 mAdc mAdc mAdc kc Vdc 3.5 4.0 5 29 Vdc kc ILsec ILsec 10.000 Square Wave Pulse 60 Cps RepelltlOn Rate 1.75% Duty Cycle VCE,6 Volts 7000 TC=150°C 5000 Tc=150OC B 3000 TC=25OC 2000 Tc=25°C 6 II> ! !. E « 2N2230'33 Squore Wove Pulse 60 Cps Repetition Rote 1.75% Duty Cycle 4 1000 Tc =25'C :; 700 VcE =6Volts <: 8 2 500 Tc =150'C i _ 300 2N2226·29 U 00 5 10 Bose Current. lB' Milliamperes Forward current transfer characteristics. 15 20 I' o 200 o 2 4 1IIIIIIIlllilii rIIIIITI 6 e Dc gain versus collector current. 40 "S 2N2226-29 TC=150·C B TC=25OC 6 Square Wave Pulse 60 Cps Repetition Rate 1.75% Duly Cycle 4 VCE =6Volts 2 % T26 5 D Bose Current. lB. Milliamperes Forward current transfer characteristics. 2N2230-33 10 Collector Current, Ic. Amperes 15 20 COl lector to Emitter Voltage, veE. Volts 12 Symbol A <pD e, e Inches Min. .600 .650 .185 .700 .205 .410 .875 .390 .855 .156 1.016 E F J N <l>T <l>T, <l>W Millimeter Min. Max. 15.24 16.51 16.51 17.78 4.70 5.21 10.41 9.91 21.72 22.23 3.96 6.35 25.81 27.33 14.22 15.24 2.29 2.54 1.52 2.03 Max. .650 .250 1.076 .600 .100 .560 .090 .060 .080 0/,.-24 UNF-2A Finish-Nickel Plate. Approx. Weight-I oz (28 g). 1. Complete threads to extend to within 211. threads of seating plane. 2. Contour and angular orientation of terminals is undefined. 3. Pitch dia. of '/,.-24 UNF-2A (coated) . threads (ASA B1.1·1960). Conforms to MT-33 Outline F.ature.: Application.: • Gold Alloy Process • No forward bias secondary breakdown to 100 volts • High reverse bias S.O.A. for inductlve loads • Low thermal resistance with copper base • 150 watt dissipation • Protection from thermal fatigue with hard solder and molybdenum construction • 25 volt VEBO • Low VCE lsat) • Lifetime Guarantee • • • • • Voltage Matrix Test Collector * Voltage Isustaining) = 25°C Tc I 2N3470 12N3471 2N3475 Symbol 1 2N3474 VCEO lsus) Maximum Ratings and Characteristics Tc 25°C unless specified = * Operating and storage I * 2N3474 2N3475 2N3476 2N3477 200 150 Symbol t~mperature Collector-emitter sustaining voltage High Gain Series 2N3472/2N3473 2N3476 2N3477 100 50 Low Gain Series 2N3470 2N3471 2N3472 2N3473 High Power Switching Amplifiers Servo Systems Regulators Modulators I JEDEC 2N3470-77 - 65 TO 150 VCEO Isus) I Units °C 50 TO 200 Volts * Emitter-base voltage VEBO 15 Volts * Continuous collector current Ic 10 AMPS * Continous base current * Thermal resistance I. R&Jc 1 .5 AMPS °C/W * Power dissipation Tc = 75°C PT 150 Watts * P.ower dissipation Tc = 100°C PT 100 Watts *Jedec Registered Parameters T27 Electrical Characteristics 2N3470-73 Tc =25'C unless otherwise specified Symbol Collector current at Vcex=Vce (from max. ratings), Tc=150'C, VBE= -1.5 Vdc ... Emitter current at VBe = -15 Vdc, Ic =0. . . . . . . . . . . . . . . . . . . . . . . • . • . . . . . . . .. Emitter current at VBE=-15 Vdc, Ic=O, Tc=150'C ...............•......... Gain bandwidth product at Ic = 10 Adc. . . . . . . . . . • • . . . . . . . . . . . . . . . . . . . . . .• Saturation voltage at Ic==10 Adc, le=150m Adc ...... , ................... Dc current gain at Vce=6 Vdc, Ic=10 Adc .............................•.. Base voltage, at Ic=10 Adc, 18=150 mAdc ................................ Beta cut-off frequency at Vce=12 Vdc, Ic=7 Adc .......................... Turn-on time at Ic=10 Adc, Ie on=400 mAdc, Vce=12 Vdc .................. Turn-off time at Ic=1 0 Ado, Ie off= -400 mAdc, Vce=12 Vdc, VBe off = -15 Vdc. Electrical Characteristics Minimum Icex leBO leBO fT VCE(sat) hFe VeE (sat) fhfe td+ t, t.+tf Tc = 25'C unless otherwise specified Symbol 2N3474-77 Collector current at Vcex=Vce (from max. ratings), Tc=150'C, Vee=-1.5 Vdc ... Emitter current at VeE=-15 Vdc, Ic=O ..................••............... Emitter current at VBe=-15 Vdc, Ic=O, Tc=150'C .......•............•..•. Gain bandwidth product at Ic = 10 Adc. . . . . . • . • . . . . . . . . . . . . . . . • . • • . . . . . .. Saturation voltage at Ic=10 Adc, le"'150m Adc .......................... Dc current gain at Vce=6 Vdc, Ic=10 Adc .....•..............•........... Base voltage, at Ic=10 Adc, le=40 mAdc .........•....••.....•.....•..... Beta cut-off frequency at Vce=12 Vdc, Ic=7 Adc ...............••....•...• Turn-on time at Ic=10 Adc, Ie on=200 mAde, Vce=12 Vdc .................. Turn-off time at Ic=10Ade, IB off=-200 mAdc, Vce=12 Vde, VBe off=-15 Vdc. 10 500 2.2 360 3.0 10 4.5 25 ... 100 Minimum ICEX leBO leeo fT VCE(sat) hFe Vee (sat) fhfe td+t, ts+tf Typical Max. Units 20 15 30 mAdc m'Ade mAdc kc Vdc 3.5 4.0 Vdc kc #,sec #,sec VCE::6 Volts 5000 Tc=15O"C Vdc kc #,sec #,se,c Square Wave Pulse 60 Cps Repetition Rate 1.75% Duty Cycle 7000 a 4.0 Typical 10.000 Tc=25"C Units mAdc mAdc mAdc kc Vdc 3.5 500 2.2 660 3.0 7 5 29 400 Max. 20 15 30 TC"5O"C 3000 2000 Tc '25'C 6 ! 2N3474-77· 8E oCt i> i!! 5 I.> 2N3470-73 4 1000 2 2 ~ 500 a~ 300 TC '5O'C 2N3470-73 I' j 8 TC 25'C '$700 Square Wave Pulse 60 Cps Repetition Rate 1.75% Duty Cycle' ' Vce=6Volts o 00 20 Base Cu,rent. lB' Milliamperes 10 40 30 50 2000 2 4 1111111111111111111111 Forwerd current transfer characteristics. 40 j..LS Tc=1500C 8 TC'25"C 6 2N3474-77 Square Wave Pulse 60Cps Repetition Rate 1.75 % Duty Cycle VCE =6 Volts 4 2 00 5 10 Base Currant. lB' Milliamperes T28 Forward currant transfar characteristics. 10 Collector Current. Ie. Amperes Figure 10. Dc gain versus collector current. 15 20 1 ColleClor 10 EmItter Voltage, VeE, volts 12 Symbol A .pD e, e E F J N .pT .pT, .pW Inches Min. Max. .600 .650 .650 .700 .185 .205 .390 .410 .855 .875 .156 .250 1.016 1.076 .560 .600 .100 .090 .060 .080 710-24 UNF-2A Millimeter Min. Max. 15.24 16.51 16.51 17.78 4.70 5.21 9.91 10.41 21.72 22.23 3.96 6.35 25.81 27.33 14.22 15.24 2.29 2.54 1.52 2.03 Finish-Nickel Plate. Approx. Weight-1 oz (28 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Contour and angular orientation of terminals is undefined. 3. Pitch dia. of '/.,-24 UNF-2A (coated) threads (ASA 81.1-1960). Conforms to MT -33 Outline Features: • Gold Alloy Process • No forward bias secondary breakdown to 67 volts • High reverse bias S.O.A. for inductive loads • Low thermal resistance with copper base • 150 watt dissipation • Protection from thermal fatigue with hard solder and molybdenum construction • 25 volt VEBO • Low VeE (saIl • Lifetime Guarantee Maximum Ratings and Characteristics Tc = 25°C unless specified Applications: • High Power Switching • Amplifiers • Servo Systems • Regulators • Modulators Symbol * Operating and storage temperature Collector-emitter sustaining voltage VCEO Isusl I JEDEC 2N2757-78+ Maximum Ratings Voltage JEDEC 2N2757 2N2763 2N2769 2N2775... 50 2N2758 2N2764 2N2770 2N2776 ... 100 2N2759 2N2765 2N2771 2N2777 ... 150 2N2760 2N2766 2N2772 2N2778 .. 200 2N2761 ........................... 250 I Units - 65 to 175 °C 50 to 250 Volts * Emitter-base voltage VEBO 15 Volts * Continuous collector current Ie 30 AMPS * Continuous base current IS 7.5 AMPS * Thermal resistance Reue .5 °C/W * Power dissipation Te = 75°e Pr 200 Watts Pr 150 Watts Power dissipation Te = 100°C VCED Isusl • JEDEC Registered parameters T29 Electrical Characteristics, 2N2757-61 Series TC=25'C unless otherwise specified Minimum Symbol Min. collector-emitter sustaining voltage at Ic=200 ma, le=O ................ Collector current at VCEX=VCE (Ref. voltage ratings), Tc=175'C, VeE=-1.5 Vdc. Emitter current at VeE=-15 Vdc, Ic=O, Tc=175'C ........................ Saturation voltage at Ic=10 Adc, le=2 Adc ........................... Dc current gain at VCE=4 Vdc, Ic=10 Adc .............................. Base voltage, at Ic=10 Adc, IB=2 Adc .................................. Beta cut-off frequency at Vce=12 Vdc, Ic=2.5 Adc ........................ Turn-on time at Ic=10 Adc, IB on=.3 Adc, Vce=12 Vdc ..................... Turn-off time at Ic=10 Adc, Ie off=-3 Adc, Vce=12 Vdc, VBE off=-15 Vdc .... Typical Max. Refer voltage ratings VCEO(5U5) 30 8 ICEX 4 25 IEeo 0.4 1.5 VCE (sat) 10 14.0 hFE 1.35 2.5 VBE(sat) 14.0 fhle 3.0 td+ t, 9.0 t.+tl Units mAdc mAdc Vdc Vdc kHz !,sec !,sec Typical Characteristics, 2N2757-61 Series TC=-65°C 100 Tc=25°C \ 70 50 " '"' 30 25 Te=J5"C VeC4VoltsDc \ 20 too... 20 --- 2N275t;;;-- 10 7 5 15 ..... r-- 3 5 .. TC=25'C, .' 2 . 1 o 5 15 10 20 25 00 .5 1.0 Base to Emiller Voltage. VBE , Volts 30 Collector Current, Ie. Amperes Electrical Characteristics, 2N2763-66 Series Tc =-65OC 1.5 2.0 2.5 T C= 25'C unless otherwise specified Symbol Min. collector-emitter sustaining voltage at Ic=200 ma, IB=O ................ . Collector current at VCEX=VCE (Ref. voltage ratings), Tc=175'C, VBE=-1.5 Vdc. Emitter current at VBe=-16 Vdc, Ic=O, TC=175'C ......................... . Saturation voltage at Ic=15 Adc, IB=3 Adc .......................... .. Dc current gain at VCE=4 Vdc, Ic=15 Adc' .............................. . Base voltage, at Ic=15 Adc,IB=3 Adc ................................. . Beta cut-off frequency at VCE=12 Vdc, Ic=3.75 Adc ....................... . Turn-on time at Ic=15 Adc, leon=4.5 Adc, Vce=12 Vdc ................... . Turn-off time at Ic=15 Adc, IB off = -4.5 Adc, Vce =12 Vdc, VBE off = -15 Vdc .. . VCeO(5US) ICEX leeo VCE (sat) hFE VBe (sat) fhls td+1, 1.+tl Minimum Typical Max. Units 30 25 1.5 mAdc mAdc Vdc Refer voltage ratings 8 4 0.63 13.5 1.50 14.5 3.8 10 10 25 Vdc kHz !,sec !,sec Typical Characteristics, 2N2763-66 Series 100 70 - Te =-65°C '\ " 50 I 30 Te=~5"C " 10 25 VCE =4 Volt. Dc Vce=4 Volts 1---2N276~ ............... 20 --- t'--- 7 3 ! ...... ! 15 E C( ~ 'i 10 ~ " u 2 Su TC=I75°C 5 o 5 10 Collector Current, I c , Amperes 15 20 25 30 Tc=-~5° TC=25°C .!! 1 Te=175OC 20 5 1'30 Te=25OC 15 u 00 .5 Base to Emiller Voltage, _. -------- 1.0 VeE. Volts 1.5 2.0 2.5 Electrical Characteristics, 2N2769-72 Series Tc=25"C unless otherwise specified Min. collector-emitter sustaining voltage at Ic=200 rna, Is=O ............... . Collector current atVcEX=VCE (Ref. voltage ratings), Tc=175"C, VSE=-1.5Vdc .. Emitter current at VSE=-15 Vdc, Ic=O, Tc=175"C ....................... . Saturation voltage at Ic=20 Adc, Is=4 Adc .......................... .. Dc current gain at VCE=4 Vdc, Ic=20 Adc .............................. . Base voltage, at Ic=20 Adc, Is=4Adc ................................. . Beta cut-off frequency at VCE=12 Vdc, Ic=5 Al'c ..................... : .. . Turn-on time at Ic=20 Adc, Is on=6 Adc, VCE=12 Vdc .................... . Turn-off time at Ic=20 Adc, Is 011=-6 Adc, VCE=12 Vdc, VSE 011=-15 Vdc ... . Symbol Minimum VCEO(SUS) ICEX IESO VCE (sat) hFE VSE (sat) fhfe Refer voltage ratings Typical 8 4 0.74 12.5 1.8 16.0 4.0 10.0 10 td+t~ ts+tf Max. Units 30 25 1.5 mAdc mAdc Vdc 2.5 Vdc kHz ILsec ILsec Typical Characteristics, 2N2769-72 Series t \ 100 70 " ......... 50 30 20 Tc '25"C VcC4"Volts Dc \. ""'- , .......... /0 Ii " -r---. 2N2769-72 ""'- r---- 7 5! 3 2 '0 5 /0 15 Collector Current. Ie. Amperes 25 20 30 Electrical Characteristics, 2N2775..:78 Series TC=25"C unless otherwise specified Min. collector-emitter sustaining voltage at Ic=200 ma, IB=O .... , ......... . Collector current at VCEX=VCE (Ref. voltage ratings), TC=175"C,VSE= -1.5 Vdc. " Emitter current at VBE= -15 Vdc. Ic=O. Tc=175°C, ..............•......... Saturation voltage at Ic=25 Adc. IB=5 Adc ............................ . Dc current gain at VCE=4 Vdc.lc=25 Adc .............................. . Base voltage. at Ic=25 Adc. IB=5 Adc ................................ . Beta cut-off frequency at VCE=12 Vdc. Ic=5 Adc ......................... . Turn-on time at Ic=25 Adc. IB on=7.5 Adc. VCE=12 Vdc .......•........... Turn-off time at Ic=25 Adc. IB off=-7.5 Adc. VCE=12 Vdc. VBE off=-15 Vdc .. Typical Symbol Minimum Max. VCEO(SUS) ICEX lEBO VCE (sat) hFE VBE (sat) fhle 1d+t, ts+tf Refer voltage ratings 8 30 4 25 0.87 1.50 12.0 10 1.9 2.5 14.0 4,5 10.0 Units mAdc mAdc Vdc Vdc kHz ILsec ILsec Typical Characteristics, 2N2775-2778 Series \. /00 TC'-65"C "- 70 50I ! 30 "~ 20 TC' 25"C . 2~2775-78. f - - Te=15"C VCE=4VoIIS --- f""'...- 10I 7' 15 r-- ,TC=175"C 10 ~ TC=I75°C 5 3 TC'-65°C 2 10 5 10 Collector Current,Ic,Amperes 15 20 25 30 00 .5 Bose to Emili" Volla\le, VBE' Valls 1.0 /.5 2.0 T31 Safe Operating Information. 2N2767 through 2N2778 Second Breakdown. forward bias. collector current ••••••..••••••••••••••••• (VCE =67V.• One Second. Tc 75°C) Second Breakdown. reverse bias. energy .••••••••••••••••••....•••••••••••. (VeE = 30V.• Ie = 5.0A., L = 0.4 mH .• Te = 25°C) = ES/B Maximum 3:0 Units Amperes 1.0 Joule Maximum ForWard Bias Safe Operating Area Single Non-repetitive Pulse Tc = 75°C All types These forward Bias Curves may be used for all Transistors except the maximum collector-emitter voltage cannot be exceeded .7 .5r---_.~~--_.~--T-----+---+_--;_----~ .3~__~7- .7 10 ______~__~~____~__~__~~____~~ 20 '30 Collector to Emitter Voltage, VCE' Volts T32 50 70 lOO 200 Inches Symbol Min. A, C L .110 L, L, M, .500 .250 .440 .260 .145 .640 </>T, </>T, Z, </>w Millimeters Max. Min. Max. 2.500 63.50 .140 2.79 3.55 .812 20.62 .600 12.70 15.24 6.35 .560 11.17 14.22 .290 6.60 7.36 .160 4.06 3.68 16.25 %-16 UNF-2A Creep 8t Strike Dilllance. D6OT· .690 in. min. (17.80 mm). (In accordance with NEMA lllandards.) Finish-Nickel Plate. Approx. Weight-8 oz. (227 g). 1. Complete threads to extend to within 2Y.o threads of seating plana. 2. Angular orientation of terminals is undefined. 3. Pitch diameter of 3/4-16 UNF-2A (COATED) threads (ASA Bl.I-1960). Maximum Ratings Collector Current (peak): 200 Amperes Collector Current (continuous): 100 Amperes Base Current (continuous): 20 Amperes Power Dissipation: 625 Watts at Tc = 75°C Operating and Storage Temperature: -500 C to +2oo·C Applications • High Frequency Inverters • Motor Controls • Switching Regulators • VLF Transmitters Features • Triple Diffused Design • CBE Construction • 625 Watt Power Capability *Note: Disc package (D62T) available. consult factory. Example: Obtain device performance for your application by selecting proper Order Code. DEVELOPMENTAL PRODUCT These devices are developmental types intended for engineering evaluation. Specifications and data are subject to change without prior notice. Westinghouse assumes no obligation for notice of change o~ future manufacture of these products. The above number describes a stud mount transistor. rated at 400 volts, with a gain of 10 at 60 amperes. T33 Electrical Charactaristics· (TeASE =26°C un Ie•• otherWise specHled) Min. Test Conditions VCEO (SUS) Collector-Emitter Sustaining Voltage IC = 200mA IB = 0 3OO~s Pulse See Page T33 Collector Cutoff Current (Base Emitter. Reverse Biased) At RatedVcE VBE (OFF) = -1.5V, 10 100 ICEV Collector Cutoff Current (Base Emitter Reverse Biased) .B 3 mA lEBO Emitter Cutoff Current At Rated VCE VBE(OFF) = -1.5V, Tc = 150°C VEB -7V 1 mA HFE DC Current Gain Ie = 5OA, VCE = 2.5V hFE DC Current Gain Ic VCE (SAT) Collector-Emitter Saturation Voltage IC = 50A, IB = 6A .75 1.25 : IC = 50A, IB = 6A 1.0 1.5 \ VBE(SAT) Base-Emitter Saturation Voltage Output Capacitance frEST = 1 MHZ, VCB Gain-Bandwidth Product frEST R9JC Thermal Resistance Junction to Case VCE 1\) Turn-On Delay VCC = 200v, Ie = 50A Rise Time , ~ ; ___I 7 = 20V = looJls 2% Fall Time IITn 30 20 ~ - ......... .... ~ 10 100 25°C 1000 C 1: ~ " U ci " i1 10 Collector Current. Ie. Amperes Ji! Typical Input 4--A--4--I---I Maximum Forward Bias Safe Operating Area One Second Non-Repetitive Pulse i\ 100 0." 10 ," " '" "'-, 100 10 Collector-Emitter Voltage. VeE. Volts c~:~e:,:~cs-l-~~_-I-_~_~ ~--r--r--r-4-~4--4--+-~ "j!' 6~-+--~--~-+f-~--~-+--~ E ~ ~ u J 2~-+--~--~~--~--~-+--~ 0~~---.·5~~--~--~--'~.5--~--~2 Ba.. Emitter Voltage. VBE. Volts T34 Consult factory for additional pulsed S.O A. capability curves. ~A I \ .. .. Volts Volts ppf 10 MHZ \ 0.2 Duty Cycle < Typical hFEIIS. Ie VCE = 2.5V TC = 25°C i 2500 = 1 MHZ, IC = SA, VCE = lOV IBI = IB2 = SA, tp Resistive Load Switch Times Storage Time 15 5 = 10V COB i 10 = gOA. VCE = 2.5V fr ~r w Units Characteristic ICEV Typ. Mex. Symbol I °C/W 100 ns 0.5 ps 2.5· Jls 0.5 ~s • DB 54-000 A8 PRINTED IN U.S.A.