C H A P T E R Integration Section 4.1 4 Antiderivatives and Indefinite Integration Solutions to Odd-Numbered Exercises 1. d 3 d 9 C 3x3 C 9x4 4 dx x3 dx x 3. d 1 3 x 4x C x2 4 x 2x 2 dx 3 5. dy 3t2 dt 7. dy x3 dx y t3 C 9. 11. 3 x dx x1 3 dx 1 x3 2 dx x x 13. 1 dx 2x3 15. x 3dx Check: 19. Integrate Simplify x4 3 3 4 x 4 4 3 3 1 x2 C 2 2 1 3 x dx 2 x2 3x C 2 x 17. 21. d 3 5 x dx 5 3 3 x5 3 C x5 5 3 5 C x2 3 3 x2 C 2 C x3 2 2x 3x 2dx x 2 x3 C 25. d 2 x x3 C 2x 3x 2 dx 2 x3 2 2x 1 dx x5 2 x2 x C 5 Check: 3 d 2 5 x dx 5 C Check: d 1 4 x 2x C x3 2 dx 4 x2 3 dx C 1 C 4x2 2 C 3 2 d x2 3x C x 3 dx 2 x2 dx Check: C x1 2 C 1 2 1 x3 2 dx x 4 2x C 4 Check: 23. Check: Rewrite dx 2 2 y x5 5 d Check: t3 C 3t2 dt Given d 2 5 x dx 5 1 dx x3 Check: 2 x3 dx x2 x C x3 2 2x 1 x2 1 C 2C 2 2x d 1 1 C 3 dx 2x2 x 177 178 27. Chapter 4 x2 x 1 dx x Check: 29. Integration d 2 5 x dx 5 2 2 2 2 x3 2 x1 2 x1 2 dx x5 2 x3 2 2x1 2 C x1 23x2 5x 15 C 5 3 15 2 x3 3 x 13x 2 dx 2 2x1 2 C x3 2 x1 2 x1 3x2 x 2 dx 2 2 y5 2 dy y7 2 C 7 y2 y dy 31. 1 x3 x2 2x C 2 Check: x2 x 1 x d 2 7 y dy 7 Check: 2 C y5 2 y2 y d 3 1 2 x x 2x C 3x2 x 2 dx 2 x 13x 2 33. 37. dx 1 dx x C Check: d x C 1 dx 41. sec2 sin d tan cos C 39. d t csc t C 1 csc t cot t dt tan2 y 1 dy d 2 cos x 3 sin x C 2 sin x 3 cos x dx Check: 1 csc t cot t dt t csc t C Check: 2 sin x 3 cos x dx 2 cos x 3 sin x C 35. d tan cos C sec2 sin d Check: 43. f x cos x sec2 y dy tan y C y d Check: tan y C sec2 y tan2 y 1 dy 3 2 C 3 2C 0 x 2 2 3 45. f x 2 47. fx 1 x2 f x 2x C f x x f )x) 2x 2 y x3 3 f )x) 5 f )x) f )x) 2x x 3 2 x 3 2 1 2 3 x 3 2 3 1 Answers will vary. f 2 Answers will vary. 2x 1 dx x2 x C 1 12 1 C ⇒ C 1 x3 3 4 3 dy 2x 1, 1, 1 dx y x y 2 49. x3 C 3 4 f′ C 3 y x2 x 1 Section 4.1 51. dy cos x, 0, 4 dx y Antiderivatives and Indefinite Integration 179 53. (a) Answers will vary. y 5 cos x dx sin x C 4 sin 0 C ⇒ C 4 y sin x 4 x −3 5 −3 (b) dy 1 x 1, 4, 2 dx 2 6 x2 xC 4 y −4 42 2 4C 4 8 −2 2C x2 x2 4 y 55. fx 4x, f 0 6 f x 4x dx 2x 2 C 57. ht 8t3 5, h1 4 ht 8t3 5dt 2t4 5t C f0 6 202 C ⇒ C 6 h1 4 2 5 C ⇒ C 11 f x 2x 2 6 ht 2t4 5t 11 61. f x x3 59. f x 2 f2 5 f4 2 f 2 10 f 0 0 fx fx 2 dx 2x C1 f2 4 C1 5 ⇒ C1 1 fx 2x 1 f x 2x 1 dx x2 x C2 f 2 6 C2 10 ⇒ C2 4 f x x x 4 2 x3 2 dx 2x1 2 C1 fx f x 2 x 2x1 2 3 dx 4x1 2 3x C2 f x 4x1 h0 0 0 C 12 ⇒ C 12 ht 0.75t2 5t 12 (b) h6 0.7562 56 12 69 cm C1 3 f 0 0 0 C2 0 ⇒ C2 0 1.5t 5 dt 0.75t 2 5t C x 2 f4 C1 2 ⇒ C1 3 2 2 63. (a) ht 2 2 3x 4 x 3x 180 Chapter 4 Integration 65. f 0 4. Graph of f is given. (a) f4 1.0 (f) f is a minimum at x 3. (b) No. The slopes of the tangent lines are greater than 2 on 0, 2. Therefore, f must increase more than 4 units on 0, 4. (g) y 6 4 (c) No, f 5 < f 4 because f is decreasing on 4, 5. (d) f is an maximum at x 3.5 because f3.5 the first derivative test. 2 x 0 and −2 (e) f is concave upward when f is increasing on , 1 and 5, . f is concave downward on 1, 5. Points of inflection at x 1, 5. 67. at 32 ft sec2 vt v0 st 32t v0 0 when t time to reach 32 maximum height. s s0 6 C2 st 16t2 60t 6 Position function 32 1632 v0 v0 32t 60 15 16 15 18 8 v0 32 550 v0 187.617 ft sec 15 seconds 8 2 60 158 6 62.26 feet 73. From Exercise 71, f t 4.9t2 10t 2. 71. at 9.8 v t 9.8t 10 0 (Maximum height when v 0.) 9.8 dt 9.8t C1 9.8t 10 v0 v0 C1 ⇒ vt 9.8t v0 t 9.8t v0 dt 4.9t v0t C2 2 f 0 s0 C2 ⇒ f t 4.9t 2 v0t s0 75. 2 v02 35,200 vt 32t 60 0 t v0 v02 v02 550 64 32 The ball reaches its maximim height when f t 8 −6 32t 60dt 16t 2 60t C2 vt 6 st 16t2 v0t v0 60 C1 s 4 69. From Exercise 68, we have: 32 dt 32t C1 st 2 f 10 9.8 10 9.8 a 1.6 vt 1.6 dt 1.6t v0 1.6t, since the stone was dropped, v0 0. st 1.6t dt 0.8t2 s0 s20 0 ⇒ 0.8202 s0 0 s0 320 Thus, the height of the cliff is 320 meters. vt 1.6t v20 32 m sec 7.1 m Section 4.1 0 ≤ t ≤ 5 77. xt t3 6t2 9t 2 Antiderivatives and Indefinite Integration 1 79. vt t (a) vt xt 3t 12t 9 2 xt 3t2 4t 3 3t 1t 3 vt dt 2t1 xt 2t1 (b) vt > 0 when 0 < t < 1 or 3 < t < 5. (c) at 6t 2 0 when t 2. 2 t > 0 2 C 2 position function 1 at vt t3 2 v2 311 3 81. (a) v0 25 km hr 25 1000 250 m sec 3600 36 v13 80 km hr 80 1000 800 m sec 3600 36 2 1 acceleration 2t 3 2 83. Truck: vt 30 st 30t Let s0 0. Automobile: at 6 at a constant acceleration vt 6t Let v0 0. vt at C st 3t2 Let s0 0. v0 v13 At the point where the automobile overtakes the truck: 250 250 ⇒ vt at 36 36 30t 3t2 800 250 13a 36 36 0 3t2 30t 0 3tt 10 when t 10 sec. 550 13a 36 a st a s13 85. 2 x1 4 21 C ⇒ C 2 at vt 6t 12 6t 2 (b) t1 (a) s10 3102 300 ft 550 275 468 234 t 2 250 t 2 36 (b) v10 610 60 ft sec 1.175 m sec2 41 mph s0 0 275 132 250 13 234 2 36 189.58 m 1 mi hr5280 ft mi 22 ft sec 3600 sec hr 15 (a) t 0 5 10 15 20 25 30 V1ft sec 0 3.67 10.27 23.47 42.53 66 95.33 V2ft sec 0 30.8 55.73 74.8 88 93.87 95.33 (c) S1t S2t V1t dt 0.1068 3 0.0416 2 t t 0.3679t 3 2 V2t dt 0.1208t3 6.7991t2 0.0707t 3 2 In both cases, the constant of integration is 0 because S10 S20 0 S130 953.5 feet S230 1970.3 feet The second car was going faster than the first until the end. (b) V1t 0.1068t2 0.0416t 0.3679 V2t 0.1208t2 6.7991t 0.0707 181 182 Chapter 4 Integration 87. at k vt kt k st t2 since v0 s0 0. 2 At the time of lift-off, kt 160 and k2t2 0.7. Since k2t2 0.7, 1.4k 1.4 1.4 160 v k k k t 1.4k 1602 ⇒ k 1602 1.4 18,285.714 mihr2 7.45 ftsec2. 89. True 91. True x x dx 93. False. For example, 95. fx x dx x dx because x2 x3 C C1 3 2 x2 C 2 2 1, 0 ≤ x < 2 3x, 2 ≤ x ≤ 5 x C1, 0 ≤ x < 2 f x 3x2 C2, 2 ≤ x ≤ 5 2 f 1 3 ⇒ 1 C1 3 ⇒ C1 2 f is continuous: Values must agree at x 2: 4 6 C2 ⇒ C2 2 0 ≤ x < 2 x 2, f x 3x 2 2, 2 ≤ x ≤ 5 2 The left and right hand derivatives at x 2 do not agree. Hence f is not differentiable at x 2. Section 4.2 5 1. Area 2i 1 2 i1 5 i i1 4 3. k0 k2 5 1 21 2 3 4 5 5 35 i1 1 1 1 1 1 158 1 1 2 5 10 17 85 9 7. 8 1 3i i1 20 15. i1 9. 5 j1 2i 2 20 i2 i1 2021 420 2 8j 3 4 c c c c c 4c 5. k1 11. 2 n n i1 20 17. 2in 2in 3 i 12 i1 13. 19 i2 i1 3 n 3i 2 1 n i1 n 192039 2470 6 2