Subido por NELSON RAUL ESCUDERO PADILLA

19 HWANG...

Anuncio
19 HWANG, Kyoung-Sub, et al., Comparative Efficacies of Collagen-Based 3D Printed PCL/PLGA/β-TCP Composite Block Bone Grafts and Biphasic Calcium Phosphate Bone
Substitute for Bone Regeneration. En: Query date: 2021-08-15 19:31:07, Materials (Basel, Switzerland). vol. 10, no. 4. 2017. ISSN 1996-1944.
20 MA, Yue, XIE, Li, YANG, Bo y TIAN, Weidong, Three-dimensional printing biotechnology for the regeneration of the tooth and tooth-supporting tissues. En: Query date: 2021-08-15
20:01:49, Biotechnology and Bioengineering [en línea], vol. 116, no. 2. 2019. p. 453. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/30475386.
21MA, Yufei, et al., Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration. En: Query date:
2021-08-15 20:01:49, ACS Applied Materials \& Interfaces [en línea], vol. 11, no. 9. 2019. pp. 9415. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/30698946.
22 NYBERG, Ethan L., et al. 3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration. En: Query date: 2021-08-15 19:31:07, Annals of biomedical
engineering, vol. 45, no. 1. 2017. p. 45-46. ISSN 1573-9686.
23 WANG, Chong, et al. Cryogenic 3D printing of dual-delivery scaffolds for improved bone regeneration with enhanced vascularization. Bioactive Materials, vol. 6, no. 1. 2021. p. 137.
DOI 10.1016/J.BIOACTMAT.2020.07.007.
24. HWANG, Op. Cit. p. 1.
25 ISHACK, Stephanie, et al. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating
scaffolds with either dipyridamole or BMP-2. En: Query date: 2021-08-15 19:31:07, Journal of biomedical materials research. Part B, Applied biomaterials, vol. 105, no. 2. 2017.
p. 366-367. ISSN 1552-4981.
26 KIM, Jun-Young, et al. Synergistic Effects of Beta Tri-Calcium Phosphate and Porcine-Derived Decellularized Bone Extracellular Matrix in 3D-Printed Polycaprolactone Scaffold on
Bone Regeneration. En: Query date: 2021-08-15 20:01:49, Macromolecular Bioscience [en línea], vol. 18, no. 6. 2018. p. 18. Disponible en:
https://www.onlinelibrary.wiley.com/doi/abs/10.1002/mabi.201800025
27 ZHENG, Chuanchuan, et al. 3D-printed HA15-loaded β-Tricalcium Phosphate/Poly (Lactic-co-glycolic acid) Bone Tissue Scaffold Promotes Bone Regeneration in Rabbit Radial
Defects. En: Query date: 2021-08-15 19:31:07, International journal of bioprinting, vol. 7, no. 1. 2021. p. 317. ISSN 2424-8002.
28 METZ, Camille, DUDA, Georg N. y CHECA, Sara, 2020. Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration. En: Query
date: 2021-08-15 19:31:07, Acta biomaterialia, vol. 101, pp. 117-118. ISSN 1878-7568.
29 ZHAI, Xinyun, et al. 3D-Printed High Strength Bioactive Supramolecular Polymer/Clay Nanocomposite Hydrogel Scaffold for Bone Regeneration. En: Query date: 2021-08-15
19:31:07, ACS biomaterials science \& engineering, vol. 3, no. 6. 2017. p. 1109-1110. ISSN 2373-9878.
30 DE LA LASTRA, Angela Alarcon, et al. Tissue Engineering Scaffolds Fabricated in Dissolvable 3D-Printed Molds for Patient-Specific Craniofacial Bone Regeneration. En: Query
date: 2021-08-15 19:31:07, Journal of functional biomaterials, vol. 9, no. 3. 2018. ISSN 2079-4983.
31 LIU, Dinghua et al. 3D printed PCL/SrHA scaffold for enhanced bone regeneration. Chemical Engineering Journal, vol. 362. 2019. p. 269-270. ISSN 1385-8947. DOI
10.1016/J.CEJ.2019.01.015.
32 ZHANG, Wenhai, et al. 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration. En: Query date: 2021-08-15 20:01:49, Biofabrication [en
línea], vol. 12, no. 3. 2020. p. 35. Disponible en: https://www.scilit.net/article/e7efb69f29d595fd2707421c114335e9.
33 HWANG. Op. Cit. p. 2.
34 KIM, Yoontae, et al. Biofabrication of 3D printed hydroxyapatite composite scaffolds for bone regeneration. En: Query date: 2021-08-15 20:01:49, Biomedical Materials [en línea],
vol. 16, no. 4, 2018. p. 2. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/33254152.
35 KIM, Ju Won, et al. Bone regeneration capability of 3D printed ceramic scaffolds. International Journal of Molecular Sciences, vol. 21, no. 14. 2020. p. 1-3. DOI
10.3390/IJMS21144837.
36 ZHENG. Op. Cit. p. 2-3.
37 QI, Xin, PEI, Peng et al. Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo. En: Query date:
2021-08-15 20:01:49, Scientific Reports [en línea], vol. 7, no. 1. 2017. p. 2. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5304193.
38 HWANG, Op. Cit. p. 2.
39 ISHACK, Op. Cit. p. 367.
40 HUANG, Ting, et al. 3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration. En: Query date: 2021-08-15 20:01:49,
Applied Surface Science [en línea], vol. 467. 2019. p. 345. Disponible en: https://www.sciencedirect.com/science/article/pii/S0169433218329416.
41 HUANG, Op. Cit. p. 346.
42 SALERNO. Op. Cit. p. 240.
43 LEE, JiUn y KIM, Geun Hyung, Three-Dimensional Hierarchical Nanofibrous Collagen Scaffold Fabricated Using Fibrillated Collagen and Pluronic F-127 for Regenerating Bone
Tissue. En: Query date: 2021-08-15 20:01:49, ACS Applied Materials \& Interfaces [en línea], vol. 10, no. 42. 2018. p. 35801. Disponible en:
https://pubs.acs.org/doi/abs/10.1021/acsami.8b14088.
44 HUANG, Boyang, et al. Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration. En: Query date: 2021-08-15 20:01:49, Materials
Science and Engineering: C [en línea], vol. 98. 2019. p. 266. Disponible en: https://www.sciencedirect.com/science/article/pii/S0928493118317491
45 CUI, Haomin, et al. Direct 3D printing of a tough hydrogel incorporated with carbon nanotubes for bone regeneration. En: Query date: 2021-08-15 19:31:07, Journal of materials
chemistry. B, vol. 7, no. 45. 2019. p. 7207. ISSN 2050-7518.
46 WANG, Zehao, et al. A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration. En: Query date: 2021-08-15 19:31:07, International
journal of nanomedicine, vol. 15. 2020. p. 6946. ISSN 1178-2013.
47 ROOPAVATH, Uday Kiran, et al. 3D printable SiO2 nanoparticle ink for patient specific bone regeneration. En: Query date: 2021-08-15 20:01:49, RSC Advances [en línea], vol. 9,
no. 41. 2019. p. 23832-23842. Disponible en: https://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra03641e#!divAbstract.
48 FENG, Chun, et al. Three-Dimensional Printing of Scaffolds with Synergistic Effects of Micro-Nano Surfaces and Hollow Channels for Bone Regeneration. En: Query date: 2021-0815 19:31:07, ACS biomaterials science \& engineering, vol. 7, no. 3. 2021. p. 872-880. ISSN 2373-9878
49 EL-HABASHY, Salma E., et al. Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone
regeneration. En: Query date: 2021-08-15 20:01:49, Biomaterials Science [en línea], vol. 9, no. 11. 2021. p. 4019. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/33899858.
51 YANG, Chen, et al. 3D-Printed Bioactive Ca3SiO5 Bone Cement Scaffolds with Nano Surface Structure for Bone Regeneration. En: Query date: 2021-08-15 19:31:07, ACS applied
materials \& interfaces, vol. 9, no. 7. 2017. p. 5757. ISSN 1944-8252.
52 ZHAO, Cancan, et al. Borocarbonitrides Nanosheets Engineered 3D-printed Scaffolds for Integrated Strategy of Osteosarcoma Therapy and Bone Regeneration. En: Query date:
2021-08-15 20:01:49, Chemical Engineering Journal [en línea], vol. 401. 2020. p. 125989. Disponible en: https://www.sciencedirect.com/science/article/pii/S1385894720321173.
53 YANG, Chen, et al. 3D Printed Fe Scaffolds with HA Nanocoating for Bone Regeneration. En: Query date: 2021-08-15 20:01:49, ACS Biomaterials Science \& Engineering [en
línea], vol. 4, no. 2. 2018. P. 608. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/33418749.
54 DOU, Yichen, et al. A hierarchical scaffold with a highly pore-interconnective 3D printed PLGA/n-HA framework and an extracellular matrix like gelatin network filler for bone
regeneration. En: Query date: 2021-08-15 20:01:49, Journal of Materials Chemistry B [en línea], vol. 9, no. 22. 2021. p. 4489. Disponible en:
https://www.ncbi.nlm.nih.gov/pubmed/34019618.
55 LU, Huigen, et al. Fabrication of graphene/gelatin/chitosan/tricalcium phosphate 3D printed scaffolds for bone tissue regeneration applications. En: Query date: 2021-08-15
20:01:49, Applied Nanoscience [en línea], vol. 11, no. 2. 2021. p. 335-346. Disponible en: https://link.springer.com/article/10.1007/s13204-020-01615-4.
56 DU, Xiaoyu, et al. 3D printing of pearl/CaSO4 composite scaffolds for bone regeneration. En: Query date: 2021-08-15 19:31:07, Journal of materials chemistry. B, vol. 6, no. 3.
2018. p. 499. ISSN 2050-7518.
57 ARÁOZ, Beatriz, et al. 3D printed poly(hydroxybutyrate-co-hydroxyvalerate)—45S5 bioactive glass composite resorbable scaffolds suitable for bone regeneration. En: Query date:
2021-08-15 20:01:49, Journal of Materials Research [en línea]. 2021. p. 1. Disponible en: https://link.springer.com/article/10.1557/s43578-021-00272-9.
58 KIM, Yoontae, et al. Biofabrication of 3D printed hydroxyapatite composite scaffolds for bone regeneration. En: Query date: 2021-08-15 20:01:49, Biomedical Materials [en línea],
vol. 16, no. 4. 2021. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/33254152.
59 ZHAI. Op. Cit. p. 1109.
60 DE LA LASTRA. Op. Cit. p. 2.
61 LIU. Op. Cit. p. 271.
62 MA, Op. Cit. p. 454.
63 ZHAI. Op. Cit. p. 1110.
64 ZHANG, Wenjie, et al. 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. En: Query date: 2021-08-15
20:01:49, Biomaterials [en línea], vol. 135. 2017. p. 86. Disponible en: https://www.sciencedirect.com/science/article/pii/S0142961217303113.
ANDERSEN, Thomas L., ABDELGAWAD, Mohamed E., KRISTENSEN, Helene B., HAUGE, Ellen M., ROLIGHED, Lars, BOLLERSLEV, Jens, KJÆRSGAARD-ANDERSEN, Per y
DELAISSE, Jean Marie, 2013. Understanding Coupling between Bone Resorption and Formation: Are Reversal Cells the Missing Link? The American Journal of Pathology, vol.
183, no. 1, pp. 235-246. ISSN 0002-9440. DOI 10.1016/J.AJPATH.2013.03.006.
ARJUN, A., SAHARAN, L. y TADESSE, Y., 2016. Design of a 3D printed hand prosthesis actuated by nylon 6-6 polymer based artificial muscles. 2016 IEEE International Conference
on Automation Science and Engineering (CASE). S.l.: s.n., pp. 910-915. ISBN 2161-8089 VO -. DOI 10.1109/COASE.2016.7743499.
BARBA, A., MAAZOUZ, Y., DIEZ-ESCUDERO, A., BIOMATERIALIA, K. Rappe-Acta y 2018, undefined, Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate
scaffolds: Effect of pore architecture. Elsevier [en línea], [Consulta: 1 agosto 2021]. Disponible en: https://www.sciencedirect.com/science/article/pii/S1742706118305208.
CAJAMARCA, L.F., MATUTE, J., CALLE, J., YUNGA, F., VARGAS, J. y URGILES, F., 2017. Design, development and implementation of a biomechanical right-hand prosthesis:
Second stage. 2017 IEEE Global Humanitarian Technology Conference (GHTC). S.l.: s.n., pp. 1-6. ISBN null VO -. DOI 10.1109/GHTC.2017.8239283.
CASTILHO, Miguel, PIRES, Ines, GOUVEIA, Barbara y RODRIGUES, Jorge, 2011. Structural evaluation of scaffolds prototypes produced by three-dimensional printing. The
International Journal of Advanced Manufacturing Technology 2011 56:5 [en línea], vol. 56, no. 5, pp. 561-569. [Consulta: 29 agosto 2021]. ISSN 1433-3015. DOI
10.1007/S00170-011-3219-4. Disponible en: https://link.springer.com/article/10.1007/s00170-011-3219-4.
CHATURVEDI, S., GUPTA, A., BHAT, A.K. y KAMAT, H.K., 2019. Functional Modification of Upper Limb Prosthesis for Below Elbow Congential Deficiencies. 2019 International
Conference on Biomedical Innovations and Applications (BIA). S.l.: s.n., pp. 1-4. ISBN null VO -. DOI 10.1109/BIA48344.2019.8967449.
.
FERNÁNDEZ-TRESGUERRES HERNÁNDEZ-GIL, Isabel, ANGEL ALOBERA GRACIA, Miguel, DEL CANTO PINGARRÓN, Mariano, BLANCO JEREZ, Luis, JUAN CARLOS, Rey y
TITULAR DDS, Profesor, Physiological bases of bone regeneration II. The remodeling process. ,
FREEMAN, Fiona E., BURDIS, Ross y KELLY, Daniel J., 2021. Printing New Bones: From Print-and-Implant Devices to Bioprinted Bone Organ Precursors. Trends in Molecular
Medicine, vol. 27, no. 7, pp. 700-711. ISSN 14714914. DOI 10.1016/j.molmed.2021.05.001.
.
.
.
LOPES, D., MARTINS-CRUZ, C., OLIVEIRA, MB, BIOMATERIALS, JF Mano- y 2018, undefined, Bone physiology as inspiration for tissue regenerative therapies. Elsevier [en línea],
[Consulta: 8 agosto 2021]. Disponible en: https://www.sciencedirect.com/science/article/pii/S0142961218306653.
MA, Yufei, HU, Nan, LIU, Juan, ZHAI, Xinyun, WU, Mingming, HU, Chengshen, LI, Long, LAI, Yuxiao, PAN, Haobo, LU, William Weijia, ZHANG, Xinzhou, LUO, Yanfeng y RUAN,
Changshun, 2019. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration. En: Query
date: 2021-08-15 20:01:49, ACS Applied Materials \& Interfaces [en línea], vol. 11, no. 9, pp. 9415-9424. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/30698946.
NYBERG, Ethan L., FARRIS, Ashley L., HUNG, Ben P., DIAS, Miguel, GARCIA, Juan R., DORAFSHAR, Amir H. y GRAYSON, Warren L., 2017. 3D-Printing Technologies for
Craniofacial Rehabilitation, Reconstruction, and Regeneration. En: Query date: 2021-08-15 19:31:07, Annals of biomedical engineering, vol. 45, no. 1, pp. 45-57. ISSN 15739686.
PATTERSON, Jennifer, MARTINO, Mikaël M. y HUBBELL, Jeffrey A., 2010. Biomimetic materials in tissue engineering. Materials Today, vol. 13, no. 1-2, pp. 14-22. ISSN 1369-7021.
DOI 10.1016/S1369-7021(10)70013-4.
RODRIGUEZ PEÑA, ALFONSO y TABORDA, LUIS LISANDRO LOPEZ, 2018. IMPLEMENTACIÓN DE CUÑA Y DESARROLLO DE HERRAMIENTA INFORMÁTICA APLICADA A
PROCESOS DE OSTEOTOMÍA UTILIZANDO TECNOLOGÍA FDM (MODELADO DE DEPOSICIÓN FUNDIDA): UN CASO CLÍNICO. S.l.: UNIVERSIDAD DEL ATLÁNTICO.
RODRIGUEZ PEÑA, ALFONSO y TABORDA, LUIS LISANDRO LOPEZ, 2019. DISEÑO Y CONSTRUCCIÓN DE UN PROTOTIPO DE MOLDE PARA RECONSTRUCCIÓN ÓSEA A
PARTIR DE TOMOGRAFÍA COMPUTARIZADA MEDIANTE IMPRESIÓN 3D. S.l.: UNIVERSIDAD DEL ATLÁNTICO.
SUÁREZ, J. Rodríguez y ARDILA, DG Restrepo, Elaboración y caracterización de componentes plásticos porosos, mediante impresión 3D para aplicaciones de regeneración ósea.
repository.usta.edu.co [en línea], [Consulta: 1 agosto 2021]. Disponible en: https://repository.usta.edu.co/handle/11634/474.
SWAIN, S.K., BHATTACHARYYA, S. y SARKAR, D., 2011. Preparation of porous scaffold from hydroxyapatite powders. Materials Science and Engineering: C, vol. 31, no. 6, pp.
1240-1244. ISSN 0928-4931. DOI 10.1016/J.MSEC.2010.11.014.
TURNBULL, G., CLARKE, J., PICARD, F., RICHES, P., JIA, L., MATERIALS, F. Han-Bioactive y 2018, undefined, 3D bioactive composite scaffolds for bone tissue engineering.
Elsevier [en línea], [Consulta: 1 agosto 2021]. Disponible en: https://www.sciencedirect.com/science/article/pii/S2452199X17300397.
WANG, Chong, HUANG, Wei, ZHOU, Yu, HE, Libing, HE, Zhi, CHEN, Ziling, HE, Xiao, TIAN, Shuo, LIAO, Jiaming, LU, Bingheng, WEI, Yen y WANG, Min, 2020. 3D printing of bone
tissue engineering scaffolds. Bioactive Materials, vol. 5, no. 1, pp. 82-91. ISSN 2452-199X. DOI 10.1016/J.BIOACTMAT.2020.01.004.
WANG, Chong, LAI, Jiahui, LI, Kai, ZHU, Shaokui, LU, Bingheng, LIU, Jia, TANG, Yujin y WEI, Yen, 2021. Cryogenic 3D printing of dual-delivery scaffolds for improved bone
regeneration with enhanced vascularization. Bioactive Materials, vol. 6, no. 1, pp. 137-145. DOI 10.1016/J.BIOACTMAT.2020.07.007.
Descargar