Dossier Técnico Nombre Proyecto: MEJORAMIENTO FUNDICIÓN HORNO FLASH POTENCIADO – BOMBAS Y TORRE DE ENFRIAMIENTO Referencia Cliente: CODELCO CHILE – DIVISION CHUQUICAMATA OC N° 4400181308 Suministro Bombas Centrifugas B verticales TAG: 5226-BBA-004/005/006 OV200103 Contenido HOJA DE DATOS BOMBAS ......................................................................................................................... 2 HOJA DE DATOS MOTORES ....................................................................................................................20 PLANO DE DISPOSICION GENERAL ......................................................................................................27 PLANO DE MOTOR ELECTRICO .............................................................................................................40 CERTIFICADO DE PRUEBA DE PERFORMANCE .................................................................................42 MANUAL DE INSTALACION, OPERACION Y MANTENIMIENTO BOMBA ..........................................49 MANUAL TECNICO DE BOMBA.............................................................................................................162 CATALOGO DE REDUCTOR ..................................................................................................................234 GUIA DE DESPACHO ..............................................................................................................................239 Cristian Corvalan Alvaro Reyes N/A N/A N/A Ingeniero de Proyectos Administrador de Proyectos Producción Servicios Despachos 1 HOJA DE DATOS BOMBAS Cristian Corvalan Alvaro Reyes N/A N/A N/A Ingeniero de Proyectos Administrador de Proyectos Producción Servicios Despachos 2 1.2 Hojas de datos formato KSB – TAG 5220-BBA- 004-005 Chile S.A. Casa Matriz ▪ Av. Las Esteras Sur 2851, Quilicura, Santiago ▪ Tel. +56 2 677-8300, Fax +56 2 677-8301 ▪ www.ksb.cl Sucursal Iquique ▪ Bolívar 202, Of 902, Iquique ▪ Tel. +56 57 473-753 Sucursal Copiapó ▪ Centro Comercial Puerta Sur ▪ Panamericana Nº 200 ▪ local A2 ▪ Copiapó Sucursal Antofagasta ▪ Av. El Coihue 441, Parque Industrial La Portada, Antofagasta ▪ Tel. +56 55 63-8900, Fax +56 55 63-8901 Sucursal Calama ▪ Av. Chorrillos 1631 Villa Finca San Juan Calama, Oficina 402, cuarto piso Torre 1. Calama ▪ +56 55 63-8950 Sucursal Concepción ▪ Marco Polo 9038, Flex Center Bío-Bío, Local 1, Hualpén, Concepción ▪ Tel. +56 41 240-8000, Fax +56 41 240-8001 CST Temuco ▪ AV. Manuel Recabarren 02930, Camino a Labranza, Temuco ▪ Tel.+ 56 45 254-545 Oficina Puerto Montt ▪ Av. Juan Soler Manfredini 41, Of 604, Torre Costanera, Puerto Montt ▪ Tel. +56 65 31-3000, Fax +56 65 31-0022 3 Offer Ref Date Prepared By Department : : : : IEE-16-530 26-Jan-18 Omar Yusaf Export Sales Offered To Attn Department Project Deep Well Turbine B22B/1 1 Electric Motor Item No Quantity Offer Revision Medium : : : : KSB Chile Stefano Moletto Sales - Offer Pump Type Size Stages Drive 0.5 Operating data Operation point Medium Temperature Density NPSH pump Flow Head (pump) Head (stage) Internal losses Head/Stage Efficiency (pump) Efficiency (stage) Power input Pump Length (ET) Min Submergence from Floor Speed Recommended Drive Rating 01 (1100 m3/hr) 3 Raw Water 0.213 0 Dimensions Design point °C 25 0.998 6.0 1100 24 24.7 0.7 24.7 72.8 75.0 98.7 3000 1500 1450 125 CCW ISO-9906 II B 3 kg/dm m 3 m /h m m m m % % kW mm mm 1/min kW Direction of rotation viewed from the driver's end Performance Testing Min. Flow 700 Shutoff Head 32 m Max. power 110 50 Hz Material of Construction Suction Strainer Bowl Assembly Impeller Pump shaft Wearing Ring Bowl Bearing Shaft Coupling Motor Stool Stainless Steel GG-25 G CuSn-10 1.4021 GG-25 Thordon 1.4021 R St 37-2 Column pipe Column shaft Top shaft Column bearings Discharge Head Shaft seal Painting Fasteners Technical Offer ASTM A 53 1.4021 1.4021 Thordon GG-25 / R St 37-2 Gland Packing Standard A4-70 4 Offer Ref Date Prepared By Department Curve (B22B) : : : : IEE-16-530 26-Jan-18 Omar Yusaf Export Sales Offered To Attn Department Revision Speed Impeller Trim Curve : : : : KSB Chile Stefano Moletto Sales 1450 rpm Ø360/310 5 Offer Ref Date Prepared By Department : : : : IEE-16-530 26-Jan-18 Omar Yusaf Export Sales Offered To Attn Department Project : : : : KSB Chile Stefano Moletto Sales - GA-Drawing All Dimensions in mm Item No 01 (1100 m3/hr) DN 400 Delivery Flange ASME B16.5 Class 150 Ø400 Ø560 Ø400 1220 1050 Min Sub 730 1500 270 Sump depth (Considered) Pump length Floor-strainer clearance Dia / length of strainer Dia. / length of bowl Dia. / length Column pipe Pump Weight (kg) 3270 3000 270 400/730 560/1050 400/1220 - Pump execution Performance testing Material / pressure test Delivery flange rating DN size Flanged ISO-9906 2B EN 10204 (2.1 / 2.2) ASME B16.5 Class 150 400 Min. Submergence from Floor 1500 GA-Drawing 6 7 HOJA DE DATOS Motor Trifásico de Inducción - Rotor de Jaula Cliente : Línea del producto : W22 NEMA Premium Efficiency Carcasa : 504/5T Potencia : 150 HP (110 kW) Polos : 4 Frecuencia : 50 Hz Tensión nominal : 460 V Corriente nominal : 168 A Corriente de arranque : 1210 A Ia/In (p.u.) : 7.2 Cód. H Corriente en vacío : 51.6 A Rotación nominal : 1490 rpm Deslizamiento : 0.67 % Par nominal : 717 Nm Par de arranque : 260 % Par mínimo : 220 % Par máximo : 270 % Clase de aislamiento : F Factor de servicio : 1.15 Momento de inercia (J) : 2.94 kgm² 75% 50% Empezar Potencia 95.8 95.2 Rendimiento (%) 0.83 0.76 0.38 Factor de potencia Tiempo de rotor bloqueado Elevación de temperatura4 Régimen de servicio Temperatura ambiente Altitud Grado de protección Método de enfriamiento Forma constructiva Sentido de giro¹ Nivel de ruido² Método de arranque Masa aproximada³ Categoría 100% 95.8 0.86 Límite de funcionamiento con el convertidor 25 Hz hasta 50 Hz (Par variable): 712 Nm Delantero Trasero 6319-C3 6316-C3 5000 h 6000 h 45 g 34 g MOBIL POLYREX EM Tipo de rodamiento Intervalo de lubricación Cantidad de lubricante Tipo de lubricante : : : : : : : : : : : : : 32 s (caliente) 57 s (frío) 80 K Cont.(S1) -20 °C hasta +40 °C 2800 m IP55 IC411 - TEFC W-6 Ambos 71.0 dB(A) Convertidor 1095 kg A Tipo de carga : Par parabólico Par de la carga : 712 Nm Inercia de la carga (J=GD²/4) : 2.98 kgm² Tensión de pico fase-fase máxima dV/dt Rise time Esfuerzos en la base Tracción máxima Compresión máxima <= 2000 V <= 6500 V/μs >= 0,1 μs : 10214 N : 20956 N Normas Notas: Especificación Ensayos Ruido : MG1 - Part 20 : MG1 - Part 20 : MG1 - Part 9 Esta revisión substituye y anula la emisión anterior, la cual deberá ser eliminada. (1) Mirando la punta delantera del eje del motor. (2) Medido a 1m y con tolerancia de +3dB(A). Vibración Tolerancia : MG1 - Part 7 : MG1 - Part 12 Los valores indicados son valores promedio con base en ensayos y para alimentación en red senoidal, sujetos a las tolerancias de la norma NEMA MG 1-12. (3) Masa aproximada sujeto a cambios después del proceso de fabricación. (4) En 100% de la carga total. Rev. Resumen de los cambios Ejecutado Verificado Fecha Ejecutor vlucero Verificador AUTOMATICO Pagina Revisión Fecha 30/01/2018 1/1 0 Propriedad de WEG S/A. Prohibida la reproducción sin permiso. 267540/2018 8 No se considera en Motor: -Sensor de Vibración -Test con inspección -Monitor de Vibraciones -Surge Protections -Encoder Chile S.A. Casa Matriz ƒ Av. Las Esteras Sur 2851, Quilicura, Santiago ƒ Tel. +56 2 677-8300, Fax +56 2 677-8301 ƒ www.ksb.cl Sucursal Iquique ŀ Bolívar 202, Of 902, Iquique ŀ Tel. +56 57 473-753 Sucursal Copiapó ŀ Centro Comercial Puerta Sur ƒ Panamericana Nº 200 ƒ local A2 ƒ Copiapó Sucursal Antofagasta ƒ Av. El Coihue 441, Parque Industrial La Portada, Antofagasta ƒ Tel. +56 55 63-8900, Fax +56 55 63-8901 Sucursal Calama ƒ Av. Chorrillos 1631 Villa Finca San Juan Calama, Oficina 402, cuarto piso Torre 1. Calama ƒ +56 55 63-8950 Sucursal Concepción ƒ Marco Polo 9038, Flex Center Bío-Bío, Local 1, Hualpén, Concepción ƒ Tel. +56 41 240-8000, Fax +56 41 240-8001 CST Temuco ŀ AV. Manuel Recabarren 02930, Camino a Labranza, Temuco ŀ Tel.+ 56 45 254-545 Oficina Puerto Montt ƒ Av. Juan Soler Manfredini 41, Of 604, Torre Costanera, Puerto Montt ƒ Tel. +56 65 31-3000, Fax +56 65 31-0022 9 10 1.3 Hojas de datos formato KSB – TAG 5220-BBA-006 Chile S.A. Casa Matriz ▪ Av. Las Esteras Sur 2851, Quilicura, Santiago ▪ Tel. +56 2 677-8300, Fax +56 2 677-8301 ▪ www.ksb.cl Sucursal Iquique ▪ Bolívar 202, Of 902, Iquique ▪ Tel. +56 57 473-753 Sucursal Copiapó ▪ Centro Comercial Puerta Sur ▪ Panamericana Nº 200 ▪ local A2 ▪ Copiapó Sucursal Antofagasta ▪ Av. El Coihue 441, Parque Industrial La Portada, Antofagasta ▪ Tel. +56 55 63-8900, Fax +56 55 63-8901 Sucursal Calama ▪ Av. Chorrillos 1631 Villa Finca San Juan Calama, Oficina 402, cuarto piso Torre 1. Calama ▪ +56 55 63-8950 Sucursal Concepción ▪ Marco Polo 9038, Flex Center Bío-Bío, Local 1, Hualpén, Concepción ▪ Tel. +56 41 240-8000, Fax +56 41 240-8001 CST Temuco ▪ AV. Manuel Recabarren 02930, Camino a Labranza, Temuco ▪ Tel.+ 56 45 254-545 Oficina Puerto Montt ▪ Av. Juan Soler Manfredini 41, Of 604, Torre Costanera, Puerto Montt ▪ Tel. +56 65 31-3000, Fax +56 65 31-0022 11 Offer Ref Date Prepared By Department : : : : IEE-16-530 26-Jan-18 Omar Yusaf Export Sales Offered To Attn Department Project Deep Well Turbine B22B/1 1 Electric Motor Item No Quantity Offer Revision Medium : : : : KSB Chile Stefano Moletto Sales - Offer Pump Type Size Stages Drive 0.5 Operating data Operation point Medium Temperature Density NPSH pump Flow Head (pump) Head (stage) Internal losses Head/Stage Efficiency (pump) Efficiency (stage) Power input Pump Length (ET) Min Submergence from Floor Speed Recommended Drive Rating 01 (1100 m3/hr) 3 Raw Water 0.213 0 Dimensions Design point °C 25 0.998 6.0 1100 24 24.7 0.7 24.7 72.8 75.0 98.7 3000 1500 1450 125 CCW ISO-9906 II B 3 kg/dm m 3 m /h m m m m % % kW mm mm 1/min kW Direction of rotation viewed from the driver's end Performance Testing Min. Flow 700 Shutoff Head 32 m Max. power 110 50 Hz Material of Construction Suction Strainer Bowl Assembly Impeller Pump shaft Wearing Ring Bowl Bearing Shaft Coupling Motor Stool Stainless Steel GG-25 G CuSn-10 1.4021 GG-25 Thordon 1.4021 R St 37-2 Column pipe Column shaft Top shaft Column bearings Discharge Head Shaft seal Painting Fasteners Technical Offer ASTM A 53 1.4021 1.4021 Thordon GG-25 / R St 37-2 Gland Packing Standard A4-70 12 Offer Ref Date Prepared By Department Curve (B22B) : : : : IEE-16-530 26-Jan-18 Omar Yusaf Export Sales Offered To Attn Department Revision Speed Impeller Trim Curve : : : : KSB Chile Stefano Moletto Sales 1450 rpm Ø360/310 13 Offer Ref Date Prepared By Department : : : : IEE-16-530 26-Jan-18 Omar Yusaf Export Sales Offered To Attn Department Project : : : : KSB Chile Stefano Moletto Sales - GA-Drawing All Dimensions in mm Item No 01 (1100 m3/hr) DN 400 Delivery Flange ASME B16.5 Class 150 Ø400 Ø560 Ø400 1220 1050 Min Sub 730 1500 270 Sump depth (Considered) Pump length Floor-strainer clearance Dia / length of strainer Dia. / length of bowl Dia. / length Column pipe Pump Weight (kg) 3270 3000 270 400/730 560/1050 400/1220 - Pump execution Performance testing Material / pressure test Delivery flange rating DN size Flanged ISO-9906 2B EN 10204 (2.1 / 2.2) ASME B16.5 Class 150 400 Min. Submergence from Floor 1500 GA-Drawing 14 15 Engine Performance Data Industrial Cummins Inc QSB6.7 Columbus, Indiana 47202-3005 http://www.cummins.com Compression Ratio: Fuel System: Emission Certification: 160 BHP (119 kW) @ 1800 RPM 540 lb-ft (732 N-m) @ 1300 RPM Configuration D31303CX03 FR91447 17.2:1 Bosch Electronic U.S. EPA Tier 3, CARB Tier 3, EU Stage III Displacement: Aspiration: CPL Code 40426 Revision 20-Dec-2010 408 in3 (6.7 L) Turbocharged and Charge Air Cooled All data is based on the engine operating with fuel system, water pump, and 9.84 in H2O (2.45 kPa) inlet air restriction with 3.94 in (100 mm) inner diameter, and with 1.97 in Hg (7 kPa) exhaust restriction with 2.95 in (75 mm) inner diameter; not included are alternator, fan, optional equipment and driven components. Coolant flows and heat rejection data based on coolants as 50% ethylene glycol/50% water. All data is subject to change without notice. Rating Type: Continuous/WMR Torque Output RPM 800 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 lb-ft 500 516 524 532 540 526 510 496 482 467 N-m 678 700 710 721 732 713 691 672 654 633 Power Output RPM 800 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 hp 76 98 110 122 134 140 146 151 156 160 kW 57 73 82 91 100 104 109 113 116 119 Fuel Consumption RPM 800 1,000 1,200 1,500 1,600 1,700 1,800 lb/hp-hr 0.372 0.358 0.36 0.396 0.395 0.386 0.388 g/kW-hr 226 218 219 241 240 235 236 Curves shown above represent gross engine performance capabilities obtained and corrected in accordance with SAE J1995 conditions of 29.61 in Hg (100 kPa) barometric pressure [300ft (91m) altitude] 77 deg F (25 deg C) inlet air temperature, and 0.30 in Hg (1kPa) water vapor pressure with No. 2 diesel fuel. The engine may be operated up to 12,001 ft (3,658 m) altitude before electronic derate is applied. STATUS FOR CURVES AND DATA: Final-(Measured data) CHIEF ENGINEER: TOLERANCE: Within +/- 5 % Scott A Henry Bold entries revised after 1-Dec-2010 ? 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com 16 FR91447 (Continued) Page: 2 Intake Air System Maximum allowable air temperature rise over ambient at Intake Manifold (Naturally Aspirated Engines) or Turbo Compressor inlet (Turbo-charged Engines): (This parameter impacts emissions, LAT and/or altitude capability) 30.6 delta deg F 17 delta deg C 140 deg F 60 deg C Cooling System Maximum intake manifold temperature at 25 deg C (77 F) ambient Maximum allowable pressure drop across charge air cooler and OEM CAC piping (IMPD): Maximum Intake Manifold Temperature Differential (Ambient to IMT) (IMTD): Intake manifold temperature for full Fan-ON Maximum coolant temperature for engine protection controls Maximum coolant operating temperature at engine outlet (max. top tank temp): 4 63 109 237 225 in-Hg delta deg F deg F deg F deg F 13.6 35 43 114 107 kPa delta deg C deg C deg C deg C Exhaust System Maximum exhaust back pressure: Recommended exhaust piping size (inner diameter): 3.01 in-Hg 2.95 in 10 kPa 75 mm Lubrication System Nominal operating oil pressure @ minimum low idle @ maximum rated speed Minimum engine oil pressure for engine protection devices @ minimum low idle 10 psi 55.1 psi 69 kPa 380 kPa 7.5 psi 52 kPa Fuel System Fuel cooling requirements (with diesel fuel) Maximum heat rejection to return fuel at max. coolant and inlet fuel temperature: @ fuel return flow rate of: @ fuel return temperature prior to cooler: Maximum supply fuel flow: Maximum return fuel flow: Engine fuel compatibility (consult Service Bulletin #3379001 for appropriate use of other fuels) Maximum fuel inlet pressure: 452 lb/hr 366 lb/hr DF1, DF2, B5, B20 15 psi 205 kg/hr 166 kg/hr 100 kPa Performance Data Maximum low idle speed: Minimum low idle speed: Minimum engine speed for full load sustained operation: 1,200 RPM 600 RPM 1,700 RPM Rated Power Engine Speed Output Power Torque 1,800 RPM 160 hp 467 lb-ft Friction Horsepower Intake Manifold Pressure Turbo Comp. Outlet Pressure Turbo Comp. Outlet Temperature Inlet Air Flow Charge Air Flow Exhaust Gas Flow Exhaust Gas Temperature Maximum Fuel Flow to Pump Heat Rejection to Coolant Heat Rejection to Fuel Heat Rejection to Ambient Heat Rejection to Exhaust 25 41 43 309 439 31.7 1,015 855 245 3,736 63 529 6,580 hp in-Hg in-Hg deg F ft3/min lb/min ft3/min deg F lb/hr BTU/min BTU/min BTU/min BTU/min Maximum Power Torque Peak 119 kW 633 N-m 1,300 RPM 134 hp 540 lb-ft 100 kW 732 N-m 19 137 144 154 207 14.4 479 457 111 66 1 9 116 15 38 39 306 314 23 873 1,051 179 3,549 34 1,115 6,130 11 128 132 152 148 10 412 566 81 62 1 20 108 kW kPa kPa deg C L/s kg/min L/s deg C kg/hr kW kW kW kW hp in-Hg in-Hg deg F ft3/min lb/min ft3/min deg F lb/hr BTU/min BTU/min BTU/min BTU/min kW kPa kPa deg C L/s kg/min L/s deg C kg/hr kW kW kW kW **When operating Naturally Aspirated engines above SAE J1995 conditions, it should be noted that smoke levels will increase due to combustion inefficiencies associated with a reduction in the air to fuel mixture. Bold entries revised after 1-Dec-2010 ? 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com 17 FR91447 (Continued) Page: 3 Cranking System (Cold Starting Capability) Unaided Cold Start: Minimum cranking speed Minimum ambient temperature for unaided cold start Breakaway torque at minimum unaided cold start temperature: Aided Cold Start: Minimum ambient temperature with Grid Heater only Minimum ambient temperature with Ether only Minimum ambient temperature with coolant and lube heater only Cold starting aids available Maximum parasitic load at 10 deg F @ 750 RPM 120 RPM 10.4 deg F 258 lb-ft -12 deg C 350 N-m -26 deg F -32 deg C -26 deg F -32 deg C -40 deg F -40 deg C Ether, Intake Manifold Heater, Block Heater, Oil Pan Heater 372 lb-ft 505 N-m Noise Emissions Top Right Side Left Side Front 90 93 94 93 dBa dBa dBa dBa Estimated Free Field Sound Pressure Level at 3.28ft (1m) and Full-Load Governed Speed (Excludes Noise from Intake, Exhaust, Cooling System and Driven Components) Change Log Date Author Change Description 3/11/2009 David P Howarth Changed COnfiguration and Chief Engineer End of Report Bold entries revised after 1-Dec-2010 ? 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com 18 19 HOJA DE DATOS MOTORES Cristian Corvalan Alvaro Reyes N/A N/A N/A Ingeniero de Proyectos Administrador de Proyectos Producción Servicios Despachos 20 HOJA DE DATOS Motor Trifásico de Inducción - Rotor de Jaula Cliente : Línea del producto : W22 NEMA Premium Efficiency Carcasa : 504/5T Potencia : 150 HP (110 kW) Polos : 4 Frecuencia : 50 Hz Tensión nominal : 460 V Corriente nominal : 168 A Corriente de arranque : 1210 A Ia/In (p.u.) : 7.2 Cód. H Corriente en vacío : 51.6 A Rotación nominal : 1490 rpm Deslizamiento : 0.67 % Par nominal : 717 Nm Par de arranque : 260 % Par mínimo : 220 % Par máximo : 270 % Clase de aislamiento : F Factor de servicio : 1.15 Momento de inercia (J) : 2.94 kgm² Empezar 50% 75% Potencia 95.2 95.8 Rendimiento (%) 0.38 0.76 0.83 Factor de potencia Tiempo de rotor bloqueado Elevación de temperatura4 Régimen de servicio Temperatura ambiente Altitud Grado de protección Método de enfriamiento Forma constructiva Sentido de giro¹ Nivel de ruido² Método de arranque Masa aproximada³ Categoría 100% 95.8 0.86 Límite de funcionamiento con el convertidor 25 Hz hasta 50 Hz (Par variable): 712 Nm Delantero Trasero 6319-C3 6316-C3 5000 h 6000 h 45 g 34 g MOBIL POLYREX EM Tipo de rodamiento Intervalo de lubricación Cantidad de lubricante Tipo de lubricante Normas : MG1 - Part 20 : MG1 - Part 20 : MG1 - Part 9 Esta revisión substituye y anula la emisión anterior, la cual deberá ser eliminada. (1) Mirando la punta delantera del eje del motor. (2) Medido a 1m y con tolerancia de +3dB(A). 32 s (caliente) 57 s (frío) 80 K Cont.(S1) -20 °C hasta +40 °C 2800 m IP55 IC411 - TEFC W-6 Ambos 71.0 dB(A) Convertidor 1095 kg A Tipo de carga : Par parabólico Par de la carga : 712 Nm Inercia de la carga (J=GD²/4) : 2.98 kgm² Tensión de pico fase-fase máxima dV/dt Rise time Esfuerzos en la base Tracción máxima Compresión máxima <= 2000 V <= 6500 V/µs >= 0,1 µs : 10214 N : 20956 C ENR TIFICADO WEG MOTORES - Documento no sujeto para aprobación. - En caso de comentarios habrá prorrogación en el plazo de entrega. Notas: Especificación Ensayos Ruido : : : : : : : : : : : : : Vibración Tolerancia : MG1 - Part 7 : MG1 - Part 12 Los valores indicados son valores promedio con base en ensayos y para alimentación en red senoidal, sujetos a las tolerancias de la norma NEMA MG 1-12. (3) Masa aproximada sujeto a cambios después del proceso de fabricación. (4) En 100% de la carga total. Rev. Resumen de los cambios Ejecutado Verificado Ejecutor vlucero Verificador AUTOMATICO Pagina Fecha 30/01/2018 1/6 Fecha 267540/2018 Propriedad de WEG S/A. Prohibida la reproducción sin permiso. Revisión 0 21 CURVA DE PAR Y CORRIENTE X ROTACIÓN Motor Trifásico de Inducción - Rotor de Jaula Cliente : Línea del producto : W22 NEMA Premium Efficiency 10.0 2.7 B - Corriente en relación a la nominal 3.0 9.0 A 2.4 8.0 A - Par en relación al par nominal B 2.1 7.0 1.8 6.0 1.5 5.0 1.2 4.0 0.9 3.0 0.6 2.0 0.3 1.0 0.0 0 10 20 30 40 50 60 70 Rotación en porcentaje de la rotación sincrónica 80 90 0.0 100 CERTIFICADO WEG MOTORES - Documento no sujeto para aprobación. - En caso de comentarios habrá prorrogación en el plazo de entrega. Desempeño : 150 HP (110 kW) 460 V 50 Hz 4P 504/5T Corriente nominal Ia/In (p.u.) Par nominal Par de arranque Par máximo Rotación nominal : : : : : : 168 A 7.2 Cód. H 717 Nm 260 % 270 % 1490 rpm Momento de inercia (J) Régimen de servicio Clase de aislamiento Factor de servicio Elevación de temperatura Categoría : : : : : : 2.94 kgm² Cont.(S1) F 1.15 80 K A Tiempo de rotor bloqueado 100% : 32 s (caliente) 57 s (frío) Inercia de la carga (J=GD²/4) : 2.98 kgm² Rev. Resumen de los cambios Ejecutado Verificado Ejecutor vlucero Verificador AUTOMATICO Pagina Fecha 30/01/2018 2/6 Fecha 267540/2018 Propriedad de WEG S/A. Prohibida la reproducción sin permiso. Revisión 0 22 CURVA DE DESEMPEÑO EN CARGA Motor Trifásico de Inducción - Rotor de Jaula Cliente : Línea del producto : W22 NEMA Premium Efficiency 90 0.9 1.0 80 0.8 2.0 70 0.7 60 0.6 4.0 50 0.5 5.0 40 0.4 0.0 C A B 3.0 400 B - Factor de potencia (p.u.) 300 200 D 0 10 20 30 40 50 60 70 D - Corriente en 460 V (A) A - Rendimiento (%) 1.0 C - Deslizamiento (%) 100 100 80 90 100 110 0 130 120 Potencia provista en porcentaje de la nominal CERTIFICADO WEG MOTORES Desempeño : 150 HP (110 kW) 460 V 50 Hz 4P 504/5T Corriente nominal Ia/In (p.u.) Par nominal Par de arranque Par máximo Rotación nominal : : : : : : 168 A 7.2 Cód. H 717 Nm 260 % 270 % 1490 rpm Rev. Resumen de los cambios Momento de inercia (J) Régimen de servicio Clase de aislamiento Factor de servicio Elevación de temperatura Categoría Ejecutado - Documento no sujeto para aprobación. - En caso de comentarios habrá prorrogación en el de entrega. : plazo 2.94 kgm² : : : : : Cont.(S1) F 1.15 80 K A Verificado Ejecutor vlucero Verificador AUTOMATICO Pagina Fecha 30/01/2018 3/6 Fecha 267540/2018 Propriedad de WEG S/A. Prohibida la reproducción sin permiso. Revisión 0 23 CURVA DE LÍMITE TÉRMICO Motor Trifásico de Inducción - Rotor de Jaula Cliente : Línea del producto : W22 NEMA Premium Efficiency 100000 A 1000 C 100 C - Rotor bloqueado (frío) B - Rotor bloqueado (caliente) A - Sobrecarga Tiempo (s) 10000 B 10 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 I/In Desempeño : 150 HP (110 kW) 460 V 50 Hz 4P 504/5T Corriente nominal Ia/In (p.u.) Par nominal Par de arranque Par máximo Rotación nominal : : : : : : 168 A 7.2 Cód. H 717 Nm 260 % 270 % 1490 rpm Constante de calentamiento Constante de enfriamento Momento de inercia (J) Régimen de servicio Clase de aislamiento Factor de servicio Elevación de temperatura Categoría : : : : : : 2.94 kgm² Cont.(S1) F 1.15 80 K A CERTIFICADO : 46.1 min : 138.4 min Rev. Resumen de los cambios WEG MOTORES Ejecutado - Documento no sujeto para aprobación. - En caso de comentarios Verificado habrá prorrogaciónFecha en el plazo de entrega. Ejecutor vlucero Verificador AUTOMATICO Pagina 267540/2018 Fecha 30/01/2018 4/6 Propriedad de WEG S/A. Prohibida la reproducción sin permiso. Revisión 0 24 CURVA CONVERTIDOR CON PAR DE LA CARGA Motor Trifásico de Inducción - Rotor de Jaula : Línea del producto : W22 NEMA Premium Efficiency 1000 200 900 180 800 160 A A - Curva de derating B - Curva de par de carga C - Curva de corriente Par [Nm] 700 140 C 600 120 500 100 400 80 300 Corriente [A] Cliente 60 B 200 40 100 20 0 0 9 18 27 36 45 54 Frecuência [Hz] 63 72 81 0 90 CERTIFICADO WEG MOTORES - Documento no sujeto para aprobación. - En caso de comentarios habrá prorrogación en el plazo de entrega. Desempeño : 150 HP (110 kW) 460 V 50 Hz 4P 504/5T Corriente nominal Ia/In (p.u.) Par nominal Par de arranque Par máximo Rotación nominal Máxima potencia absorbida Frecuencia mínima Frecuencia máxima : : : : : : 168 A 7.2 Cód. H 717 Nm 260 % 270 % 1490 rpm : 151 HP : 25 Hz : 50 Hz Rev. Resumen de los cambios Momento de inercia (J) Régimen de servicio Clase de aislamiento Factor de servicio Elevación de temperatura Categoría Par máximo Rotación mínima Rotación máxima Ejecutado : : : : : : : : : 2.94 kgm² Cont.(S1) F 1.15 80 K A 722 Nm 750 rpm 1500 rpm Verificado Ejecutor vlucero Verificador AUTOMATICO Pagina Fecha 30/01/2018 5/6 Fecha 267540/2018 Propriedad de WEG S/A. Prohibida la reproducción sin permiso. Revisión 0 25 CURVA DE OPERACIÓN COM INVERSOR Motor Trifásico de Inducción - Rotor de Jaula Cliente : Línea del producto : W22 NEMA Premium Efficiency 3000 500 200.0 2700 450 180.0 2400 400 160.0 A 2100 350 140.0 Par [Nm] B 1800 300 120.0 1500 250 100.0 1200 200 80.0 D Tensión [V] C 300 0 0 9 18 27 36 45 54 Frecuência [Hz] 63 72 81 Potencia [HP] 600 A - Curva de la tensión B - Curva de la potencia C - Curva del par D - Curva del par máximo 900 90 CERTIFICADO WEG MOTORES - Documento no sujeto para aprobación. - En caso de comentarios habrá prorrogación en el plazo de entrega. Desempeño : 150 HP (110 kW) 460 V 50 Hz 4P 504/5T Corriente nominal Ia/In (p.u.) Par nominal Par de arranque Par máximo Rotación nominal : : : : : : 168 A 7.2 Cód. H 717 Nm 260 % 270 % 1490 rpm Límite de funcionamiento con el convertidor 25 Hz hasta 50 Hz (Par variable): 712 Nm Rev. Resumen de los cambios Momento de inercia (J) Régimen de servicio Clase de aislamiento Factor de servicio Elevación de temperatura Categoría : : : : : : 2.94 kgm² Cont.(S1) F 1.15 80 K A Tensión de pico fase-fase máxima dV/dt Rise time Ejecutado <= 2000 V <= 6500 V/µs >= 0,1 µs Verificado Ejecutor vlucero Verificador AUTOMATICO Pagina Fecha 30/01/2018 6/6 Fecha 267540/2018 Propriedad de WEG S/A. Prohibida la reproducción sin permiso. Revisión 0 26 PLANO DE DISPOSICIÓN GENERAL Cristian Corvalan Alvaro Reyes N/A N/A N/A Ingeniero de Proyectos Administrador de Proyectos Producción Servicios Despachos 27 28 29 30 31 32 List of components B22B/1 (Motor driven) Schutzvermerk ISO 16016 Copyright to ISO 16016 En accord avec ISO 16016 Auftrags-Nr. / Pos. Order number / item. N° de commande / Pos. Serien-Nr. Serial number N° de fabrication 9973733700 / 100 Teile-Nr. Part number Repère ME Menge/Einh. Quantity/unit Quant./Pompe Name Name Nom Stellenkurzz. Dept. code Sigle Abdul Haseeb Engg. Dept. Datum Date Date 17.09.2018 Bennennung Description Désignation Werkstoff Material Matériaux 106 PC 1 SUCTION CASING SAUGGEHAEUSE DN400 EN-GJL-250 107 PC 1 DISCHARGE CASING DRUCKGEHAEUSE DN400 EN-GJL-250 112 PC 1 PUMP BOWL B22B LEITSCHAUFELGEHAEUS E EN-GJL-250 13-17 PC 1 STRAINER SCHUTZSIEB DN400 1.4301 144 PC 1 DISCHARGE ELBOW AUSLAUFKRUEMMER DN400-60 EN-GJL-250 145.1 PC 1 ADAPTER VERBINDUNGSSTUECK DN 400 EN-GJL-250 145.2 PC 1 ADAPTER VERBINDUNGSSTUECK R1/4XG1/2X3 7 1.4301+C 145.3 PC 1 ADAPTER VERBINDUNGSSTUECK G3/8XG3/8X8 1.4021 4 211 PC 1 PUMP SHAFT PUMPENWELLE 93/60X1202 1.4021 213 PC 1 TOP SHAFT ANTRIEBSWELLE 60X2077 1.4021 230 PC 1 IMPELLER LAUFRAD 416X402X52 CC480K-GS 271 PC 1 SAND GUARD SANDGLOCKE 52/85X15 1.4021 320 PC 2 ANGULAR CONTACT BALL BEARING SCHRAEGKUGELLAGER 7319B-TVP CB ST 331 PC 1 BEARING PEDESTAL LAGERBOCK 7319X2 S235JR 341 PC 1 MOTOR STOOL ANTRIEBSLATERNE DWT DN400 + NEMA S235JR 350 PC 1 BEARING HOUSING LAGERGEHAEUSE 7319B EN-GJL-250 360 PC 1 BEARING COVER LAGERDECKEL 110,6/270X20 S235JR ,5 383 PC 1 BEARING SPIDER LAGERSTERN 400X92 EN-GJL-250 400.1 PC 1 GASKET FLACHDICHTUNG IBC 400PN10X2 DPAF 400.2 PC 1 GASKET FLACHDICHTUNG IBC 400PN10X2 DPAF Seite 1 von 7 33 List of components B22B/1 (Motor driven) Schutzvermerk ISO 16016 Copyright to ISO 16016 En accord avec ISO 16016 Auftrags-Nr. / Pos. Order number / item. N° de commande / Pos. Serien-Nr. Serial number N° de fabrication 9973733700 / 100 Teile-Nr. Part number Repère ME Menge/Einh. Quantity/unit Quant./Pompe Name Name Nom Stellenkurzz. Dept. code Sigle Abdul Haseeb Engg. Dept. Datum Date Date 17.09.2018 Bennennung Description Désignation Werkstoff Material Matériaux 411.1 PC 1 SEALING RING DICHTRING A 21 X 26 DPAF 411.2 PC 1 SEALING RING DICHTRING A 60 X 68 DPAF 411.3 PC 1 SEALING RING DICHTRING C 17X21 ST-ASBFREI 411.4 PC 1 SEALING RING DICHTRING C 21X26 ST-ASBFREI 411.5 PC 1 SEALING RING DICHTRING C 21X26 ST-ASBFREI 411.6 PC 1 SEALING RING DICHTRING C 17X21 ST-ASBFREI 411.7 PC 1 SEALING RING DICHTRING C 21X26 ST-ASBFREI 412.1 PC 1 O-RING O-RING 420,00X 4,00- NBR 80 N-B 412.2 PC 1 O-RING O-RING 420,00X 4,00- NBR 80 N-B 412.3 PC 2 O-RING O-RING 420,00X 4,00- NBR 80 N-B 412.4 PC 1 O-RING O-RING 420,00X 4,00- NBR 80 N-B 412.5 PC 1 O-RING O-RING 56,00X 2,50N-B NBR 80 452 PC 1 GLAND FOLLOWER STOPFBUCHSBRILLE 70 EN-GJL-200 458 PC 1 LANTERN RING SPERRRING 70 1.4021 461 M 0.800 PACKING PACKUNG 12 X 12 BU 5846 500 PC 2 FIXING RING PASSRING 60 1.4021 502 PC 1 CASING WEAR RING SPALTRING 345/365X42 EN-GJL-250 503 PC 1 IMPELLER WEAR RING LAUFRING 330/344,7X40 EN-GJL-250 505 PC 1 LOOSE COLLAR SCHULTERRING 60/130X145 EN-GJL-250 506 PC 1 RETAINING RING HALTERING 66 1.4122+QT750 507 PC 1 THROWER SPRITZRING 60/230X18 1.4301 Seite 2 von 7 34 List of components B22B/1 (Motor driven) Schutzvermerk ISO 16016 Copyright to ISO 16016 En accord avec ISO 16016 Auftrags-Nr. / Pos. Order number / item. N° de commande / Pos. Serien-Nr. Serial number N° de fabrication 9973733700 / 100 Teile-Nr. Part number Repère ME Menge/Einh. Quantity/unit Quant./Pompe Name Name Nom Stellenkurzz. Dept. code Sigle Abdul Haseeb Engg. Dept. Datum Date Date 17.09.2018 Bennennung Description Désignation Werkstoff Material Matériaux 521 PC 1 STAGE SLEEVE STUFENHUELSE 80/100X289 1.4021 524.1 PC 1 SHAFT PROTECTING 59,85/70X170 1.4122+QT750 SLEEVE WELLENSCHUTZHUELSE 524.2 PC 1 SHAFT PROTECTING C 70 SLEEVE WELLENSCHUTZHUELSE 1.4122+QT750 529 PC 1 BEARING SLEEVE LAGERHUELSE 52/65X180 F1004333016 THORDON SXL 541 PC 1 INTERSTAGE BUSH STUFENBUCHSE 101/131X100 F1004333015 THORDON SXL 545 PC 1 BEARING BUSH LAGERBUCHSE 71/92X140 THORDON SXL 550 PC 2 WASHER SCHEIBE 8 A2 554.1 PC 8 LOCK WASHER SICHERUNGSSCHEIBE BM6 A4 554.2 PC 8 LOCK WASHER SICHERUNGSSCHEIBE BM6 A4 561 PC 4 GROOVED PIN KERBNAGEL 6 X 16 A2 595 PC 8 BUFFER PUFFER 4BN / 5BN NBR 80 636 PC 1 BUTTON HEAD LUBRICATING NIPPLE FLACHSCHMIERNIPPEL AR 1/4 - 16 ST 710.1 FT 1.500 PIPE ROHR 1/2 INCH JM+Z 710.2 M 0.400 TUBE ROHR 8XID6 1.4571+C 711 PC 1 COLUMN PIPE STEIGROHR A 400X1186 PN 16 A53 GR A TYPE E 731.1 PC 1 ELBOW WINKEL ELBOW A1 1/2 JM+Z 731.2 PC 1 PIPE UNION VERSCHRAUBUNG 1/2 INCH JM+Z 731.3 PC 1 HEXAGON NIPPLE DOPPELNIPPEL 1/2IN JM+Z 731.4 PC 2 PIPE UNION VERSCHRAUBUNG DL 8 D-G1/4 1.4571+C Seite 3 von 7 35 List of components B22B/1 (Motor driven) Schutzvermerk ISO 16016 Copyright to ISO 16016 En accord avec ISO 16016 Auftrags-Nr. / Pos. Order number / item. N° de commande / Pos. Serien-Nr. Serial number N° de fabrication 9973733700 / 100 Teile-Nr. Part number Repère ME Menge/Einh. Quantity/unit Quant./Pompe Name Name Nom Stellenkurzz. Dept. code Sigle Abdul Haseeb Engg. Dept. Datum Date Date 17.09.2018 Bennennung Description Désignation Werkstoff Material Matériaux 81-92.1 PC 2 COVER PLATE ABDECKBLECH 1X220X328 1.4301 81-92.2 PC 2 COVER PLATE ABDECKBLECH 1X290X300 1.4301 840.1 PC 1 COUPLING KUPPLUNG 80X186 PS EN-GJL-250 840.2 PC 1 COUPLING KUPPLUNG 4BN/4BN-H MS EN-GJL-250 851 PC 1 CONICAL COUPLING KEGELKUPPLUNG 60 1.4021 863 PC 1 COUPLING SHELL KUPPLUNGSSCHALE 60 1.4021 864 PC 1 COUPLING SLEEVE KUPPLUNGSHUELSE 60 1.4021 866 PC 8 COUPLING PIN KUPPLUNGSBOLZEN 4BN/5BN E295 89-4 PC 4 SHIM UNTERLEGBLECH A80X80X15 S235JR 893 PC 1 SOLEPLATE AUFSETZPLATTE 1000X1000X4 S235JR 0 898 PC 4 FOUNDATION BLOCK FUNDAMENTKLOTZ A 3XM24 EN-GJL-200 900 PC 4 COUNTERSUNK HEAD SCREW SENKSCHRAUBE M4X12 A2-70 901.1 PC 12 HEXAGON HEAD SCREW SECHSKANTSCHRAUBE M24 X 90 A4-70 901.2 PC 16 HEXAGON HEAD SCREW SECHSKANTSCHRAUBE M24 X 90 A4-70 901.3 PC 16 HEXAGON HEAD SCREW SECHSKANTSCHRAUBE M24 X 125 A4-70 901.4 PC 2 HEXAGON HEAD SCREW SECHSKANTSCHRAUBE M16 X 35 A4-70 901.5 PC 4 HEXAGON HEAD SCREW SECHSKANTSCHRAUBE M12 X 30 A4-70 901.6 PC 16 HEXAGON HEAD SCREW SECHSKANTSCHRAUBE M24 X 105 A4-70 901.7 PC 4 HEXAGON HEAD SCREW SECHSKANTSCHRAUBE M24 X 70 A4-70 901.8 PC 4 HEXAGON HEAD SCREW 6KT-SCHRAUBE M 16 X 70 A4-70 Seite 4 von 7 36 List of components B22B/1 (Motor driven) Schutzvermerk ISO 16016 Copyright to ISO 16016 En accord avec ISO 16016 Auftrags-Nr. / Pos. Order number / item. N° de commande / Pos. Serien-Nr. Serial number N° de fabrication 9973733700 / 100 Teile-Nr. Part number Repère ME Menge/Einh. Quantity/unit Quant./Pompe Name Name Nom Stellenkurzz. Dept. code Sigle Abdul Haseeb Engg. Dept. Bennennung Description Désignation Datum Date Date 17.09.2018 Werkstoff Material Matériaux 902.1 PC 12 STUD STIFTSCHRAUBE M 24 X 60 A4-70 902.2 PC 16 STUD STIFTSCHRAUBE M 24 X 50 A4-70 902.3 PC 8 STUD STIFTSCHRAUBE M 20 X 45 A4-70 902.4 PC 2 STUD STIFTSCHRAUBE M 16 X 50 A4-70 902.5 PC 8 STUD STIFTSCHRAUBE M 16 X 50 A4-70 902.6 PC 8 STUD STIFTSCHRAUBE M 20 X 45 A4-70 903.1 PC 1 SCREW PLUG G 1/2 A VERSCHLUSSSCHRAUBE A4 903.2 PC 1 SCREW PLUG G2A VERSCHLUSSSCHRAUBE A4 903.3 PC 1 SCREW PLUG G 3/8 A VERSCHLUSSSCHRAUBE A4 903.4 PC 1 SCREW PLUG G 1/2 A VERSCHLUSSSCHRAUBE A4 903.5 PC 1 SCREW PLUG G 1/2 A VERSCHLUSSSCHRAUBE A4 903.6 PC 1 SCREW PLUG G 3/8 A VERSCHLUSSSCHRAUBE A4 903.7 PC 1 SCREW PLUG G 1/2 A VERSCHLUSSSCHRAUBE A4 904.1 PC 3 GRUB SCREW GEWINDESTIFT M 4 X 10 A4-70 904.2 PC 1 GRUB SCREW GEWINDESTIFT M 6X 10 A4-70 904.3 PC 2 GRUB SCREW GEWINDESTIFT M 12 X 25 A4-70 914.1 PC 8 PAN HEAD SCREW FLACHKOPFSCHRAUBE A M6 X 16 11 A4-70 914.2 PC 8 HEXAGON SOCKET HEAD CAP SCREW ZYLINDERSCHRAUBE M16 X 35 A4-70 914.3 PC 4 HEXAGON SOCKET HEAD CAP SCREW ZYLINDERSCHRAUBE M16 X 20 A4-70 Seite 5 von 7 37 List of components B22B/1 (Motor driven) Schutzvermerk ISO 16016 Copyright to ISO 16016 En accord avec ISO 16016 Auftrags-Nr. / Pos. Order number / item. N° de commande / Pos. Serien-Nr. Serial number N° de fabrication 9973733700 / 100 Teile-Nr. Part number Repère ME Menge/Einh. Quantity/unit Quant./Pompe Name Name Nom Stellenkurzz. Dept. code Sigle Abdul Haseeb Engg. Dept. Bennennung Description Désignation Datum Date Date 17.09.2018 Werkstoff Material Matériaux 914.4 PC 4 HEXAGON SOCKET HEAD CAP SCREW ZYLINDERSCHRAUBE M 8 X 40 A4-70 914.5 PC 8 PAN HEAD SCREW FLACHKOPFSCHRAUBE A M6 X 16 11 A4-70 920.1 PC 12 HEXAGON NUT SECHSKANTMUTTER M24 A4-70 920.10 PC 1 NUT MUTTER A M 58X1,5 1.4021 920.11 PC 8 HEXAGON NUT SECHSKANTMUTTER M16 A4-70 920.12 PC 8 HEXAGON NUT SECHSKANTMUTTER M20 A4-70 920.13 PC 8 HEXAGON NUT SECHSKANTMUTTER M 16 6 920.14 PC 16 HEXAGON NUT SECHSKANTMUTTER M24 A4-70 920.2 PC 12 HEXAGON NUT SECHSKANTMUTTER M24 A4-70 920.3 PC 1 DOUBLE FLATTED NUT 2KT-MUTTER M 64X2 LH 1.4571 920.4 PC 16 HEXAGON NUT SECHSKANTMUTTER M24 A4-70 920.5 PC 16 HEXAGON NUT SECHSKANTMUTTER M24 A4-70 920.6 PC 16 HEXAGON NUT SECHSKANTMUTTER M24 A4-70 920.7 PC 8 HEXAGON NUT SECHSKANTMUTTER M20 A4-70 920.8 PC 2 HEXAGON NUT SECHSKANTMUTTER M16 A4-70 920.9 PC 1 SLOTTED ROUND NUT NUTMUTTER KM 18 ST 930 PC 8 RETAINING WASHER SICHERUNGSSCHEIBE 19 SPRING STEEL 931.1 PC 1 LOCK WASHER SICHERUNGSBLECH K 66 A4 931.2 PC 1 LOCK WASHER SICHERUNGSBLECH MB 18 ST 931.3 PC 4 LOCK WASHER SICHERUNGSBLECH 4BN SPRING STEEL Seite 6 von 7 38 List of components B22B/1 (Motor driven) Schutzvermerk ISO 16016 Copyright to ISO 16016 En accord avec ISO 16016 Auftrags-Nr. / Pos. Order number / item. N° de commande / Pos. Serien-Nr. Serial number N° de fabrication 9973733700 / 100 Teile-Nr. Part number Repère ME Menge/Einh. Quantity/unit Quant./Pompe Name Name Nom Stellenkurzz. Dept. code Sigle Abdul Haseeb Engg. Dept. Bennennung Description Désignation Datum Date Date 17.09.2018 Werkstoff Material Matériaux 940.1 PC 2 PARALLEL KEY PASSFEDER A 20X12X120 1.4571 940.2 PC 1 PARALLEL KEY PASSFEDER C 10X6X22 1.4571 940.3 PC 1 PARALLEL KEY PASSFEDER A 18X11X65 1.4021 940.4 PC 1 PARALLEL KEY PASSFEDER A 16X10X80 1.4021+QT800 Seite 7 von 7 39 PLANO DE MOTOR ELECTRICO Cristian Corvalan Alvaro Reyes N/A N/A N/A Ingeniero de Proyectos Administrador de Proyectos Producción Servicios Despachos 40 41 CERTIFICADO DE PRUEBAS DE PERFORMANCE Cristian Corvalan Alvaro Reyes N/A N/A N/A Ingeniero de Proyectos Administrador de Proyectos Producción Servicios Despachos 42 KSB TEST REPORT PUMP SERIAL No. CUSTOMER PROJECT/TYPE PUMP TYPE IMPELLER DIA mm 9973733700/100/1 KSB CHILE S.A. / COMUNA DE QUILICURA / SANTIAGO B22B/1 353/303 Pump Data Specified Units Capacity Q Stage Head H st Pump Head H ESK Losses H vesk Stage eff. Pump Eff. Nom. power Pump Drive rating Speed nom. NPSH r 1100 24.70 24.00 0.70 75.0 72.8 98.70 110 1490 6.0 Specific Gravity 0.998 FLOWMETER INLET DIA OUTLET DIA SHAFT DIA MEASURED SPEED MEASURED FLOW Discharge Pressure Discharge Head (p1) Datum Head (z1) Tot. Dis. Head (h1) ESK Losses Vel. Head loss (v2/2g) TOT. DYN. HEAD (H) mm mm mm mm r.p.m. m 3 /hr bar m m m m m m AVERAGE AMPS Standard Units m 3 /h m m m % % kW kW rpm m 1100 24.7 24.0 0.70 75.0 72.8 98.7 110 1490 6.0 Point 1 500 Point 2 0.5 m 400 0.4 m m 3 /h m m m % % kW kW rpm m Point 3 Report No. 115/2018 Order No. IEZ-1444 Date 20.08.2018 Motor Data Motor Motor No. Rating Speed @ F.L. Full Load Current PF @ F.L. Point 4 SIEMENS LPK07111328 134 kW 1489 rpm 246.9 A 0.87 Point 5 Point 6 1500 1505 1505 1502 1509 1503 692 900 1104 1330 1562 1784 2.88 29.40 1.34 30.74 0.277 0.119 2.60 26.55 1.34 27.89 0.469 0.202 2.25 22.97 1.34 24.31 0.705 0.304 1.85 18.89 1.34 20.23 1.023 0.441 1.38 14.09 1.34 15.43 1.411 0.608 0.60 6.13 1.34 7.47 1.841 0.793 31.14 28.56 25.32 21.69 17.45 10.10 A 186.0 190.0 196.0 198.0 199.0 187.0 VOLTAGE POWER FACTOR V cos Ø 392 0.83 397 0.83 398 0.84 399 0.83 398 0.84 396 0.83 MOTOR INPUT MOTOR EFF MOTOR OUTPUT kW % kW 106.0 93 109.0 93 113.0 93 114.0 93 115.0 93 107.0 93 98.58 101.37 105.09 106.02 106.95 99.51 NET PUMP INPUT kW 98.58 101.37 105.09 106.02 106.95 99.51 STAGE EFF PUMP EFF Q m 3 /h at r.p.m. Head st m at r.p.m. kW on Water at r.p.m. % % 1490 1490 1490 59.53 59.03 687.39 30.73 96.62 69.05 67.95 891.03 27.99 98.37 72.45 70.46 1093.00 24.82 101.98 74.11 70.65 1319.37 21.35 103.50 69.40 63.82 1542.33 17.01 102.96 49.31 40.34 1768.57 9.93 96.95 96.43 98.17 101.78 103.29 102.75 96.76 kW on media SG = 0.998 REMARKS: Q-H curve passes through tolerance range of specified testing standard. Pump efficiency is okay. CONCLUSION:Pump performance is satisfactory. TEST INFORMATION TESTING STANDARD ISO 9906/2B TESTED BY:FAISAL NAEEM PRODUCTION OFFICER CHECKED BY:WAQAS AHMAD DY. MANAGER PRODUCTION APPROVED BY:BADSHAH MUHAMMAD DY. MANAGER QHSE DATE DATE DATE 20.08.2018 20.08.2018 20.08.2018 43 Performance Curves Stage Head (m) Client: KSB CHILE S.A. / COMUNA DE QUILICURA / SANTIAGO Project: Type & Size: B22B/1 W/O No.: 9973733700/100/1 Rated Specs: Impeller Dia. 353/303 Stage Head: 24.7 m Liquid: WATER Capacity: 1100 m3/h Temp.: 25 °C Speed: 1490 rpm Sp. Gravity: 0.998 Driver Output: 110 kW 32 Duty Point 28 Q-H Curve 24 20 16 12 8 4 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 1400 1500 1600 1700 1800 1900 2000 100 90 Stage Efficiency (%) 80 70 60 50 40 30 20 10 0 140 130 Pump Input (kW) 120 110 100 90 ` ` 80 70 60 50 600 700 800 900 1000 1100 1200 1300 Discharge (m3/h) 44 KSB TEST REPORT PUMP SERIAL No. CUSTOMER PROJECT/TYPE PUMP TYPE IMPELLER DIA mm 9973733700/100/2 KSB CHILE S.A. / COMUNA DE QUILICURA / SANTIAGO B22B/1 353/303 Pump Data Specified Units Capacity Q Stage Head H st Pump Head H ESK Losses H vesk Stage eff. Pump Eff. Nom. power Pump Drive rating Speed nom. NPSH r 1100 24.70 24.00 0.70 75.0 72.8 98.70 110 1490 6.0 Specific Gravity 0.998 FLOWMETER INLET DIA OUTLET DIA SHAFT DIA MEASURED SPEED MEASURED FLOW Discharge Pressure Discharge Head (p1) Datum Head (z1) Tot. Dis. Head (h1) ESK Losses Vel. Head loss (v2/2g) TOT. DYN. HEAD (H) mm mm mm mm r.p.m. m 3 /hr bar m m m m m m AVERAGE AMPS Standard Units m 3 /h m m m % % kW kW rpm m 1100 24.7 24.0 0.70 75.0 72.8 98.7 110 1490 6.0 Point 1 500 Point 2 0.5 m 400 0.4 m m 3 /h m m m % % kW kW rpm m Point 3 Report No. 116/2018 Order No. IEZ-1444 Date 25.08.2018 Motor Data Motor Motor No. Rating Speed @ F.L. Full Load Current PF @ F.L. Point 4 SIEMENS LPK07111328 134 kW 1489 rpm 246.9 A 0.87 Point 5 Point 6 1495 1500 1501 1496 1492 1492 681 898 1110 1324 1558 1778 2.85 29.10 1.34 30.44 0.268 0.115 2.55 26.04 1.34 27.38 0.467 0.201 2.25 22.97 1.34 24.31 0.713 0.307 1.80 18.38 1.34 19.72 1.014 0.437 1.25 12.76 1.34 14.10 1.404 0.605 0.45 4.59 1.34 5.93 1.829 0.787 30.82 28.04 25.33 21.17 16.11 8.55 A 187.0 190.0 197.0 200.0 195.0 185.0 VOLTAGE POWER FACTOR V cos Ø 397 0.82 401 0.82 401 0.83 402 0.83 400 0.82 399 0.82 MOTOR INPUT MOTOR EFF MOTOR OUTPUT kW % kW 106.0 93 108.0 93 113.0 93 115.0 93 111.0 93 104.0 93 98.58 100.44 105.09 106.95 103.23 96.72 NET PUMP INPUT kW 98.58 100.44 105.09 106.95 103.23 96.72 STAGE EFF PUMP EFF Q m 3 /h at r.p.m. Head st m at r.p.m. kW on Water at r.p.m. % % 1490 1490 1490 57.99 57.51 678.72 30.62 97.59 68.28 67.18 892.01 27.67 98.44 72.87 70.86 1101.87 24.96 102.80 71.37 67.99 1318.69 21.00 105.67 66.22 60.48 1555.91 16.07 102.82 42.81 33.67 1775.62 8.53 96.33 97.40 98.25 102.59 105.46 102.61 96.14 kW on media SG = 0.998 REMARKS: Q-H curve passes through tolerance range of specified testing standard. Pump efficiency is okay. CONCLUSION:Pump performance is satisfactory. TEST INFORMATION TESTING STANDARD ISO 9906/2B TESTED BY:FAISAL NAEEM PRODUCTION OFFICER CHECKED BY:WAQAS AHMAD DY. MANAGER PRODUCTION APPROVED BY:BADSHAH MUHAMMAD DY. MANAGER QHSE DATE DATE DATE 25.08.2018 25.08.2018 25.08.2018 45 Performance Curves Stage Head (m) Client: KSB CHILE S.A. / COMUNA DE QUILICURA / SANTIAGO Project: Type & Size: B22B/1 W/O No.: 9973733700/100/2 Rated Specs: Impeller Dia. 353/303 Stage Head: 24.7 m Liquid: WATER Capacity: 1100 m3/h Temp.: 25 °C Speed: 1490 rpm Sp. Gravity: 0.998 Driver Output: 110 kW 32 Duty Point 28 Q-H Curve 24 20 16 12 8 4 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 1400 1500 1600 1700 1800 1900 2000 100 90 Stage Efficiency (%) 80 70 60 50 40 30 20 10 0 140 130 Pump Input (kW) 120 110 100 90 ` ` 80 70 60 50 600 700 800 900 1000 1100 1200 1300 Discharge (m3/h) 46 KSB TEST REPORT PUMP SERIAL No. CUSTOMER PROJECT/TYPE PUMP TYPE IMPELLER DIA mm 9973733700/200/1 KSB CHILE S.A. / COMUNA DE QUILICURA / SANTIAGO B22B/1 353/303 Pump Data Specified Units Capacity Q Stage Head H st Pump Head H ESK Losses H vesk Stage eff. Pump Eff. Nom. power Pump Drive rating Speed nom. NPSH r 1100 24.70 24.00 0.70 75.0 72.8 98.70 110 1490 6.0 Specific Gravity 0.998 FLOWMETER INLET DIA OUTLET DIA SHAFT DIA MEASURED SPEED MEASURED FLOW Discharge Pressure Discharge Head (p1) Datum Head (z1) Tot. Dis. Head (h1) ESK Losses Vel. Head loss (v2/2g) TOT. DYN. HEAD (H) mm mm mm mm r.p.m. m 3 /hr bar m m m m m m AVERAGE AMPS Standard Units m 3 /h m m m % % kW kW rpm m 1100 24.7 24.0 0.70 75.0 72.8 98.7 110 1490 6.0 Point 1 500 Point 2 0.5 m 400 0.4 m m 3 /h m m m % % kW kW rpm m Point 3 Report No. 117/2018 Order No. IEZ-1444 Date 25.08.2018 Motor Data Motor Motor No. Rating Speed @ F.L. Full Load Current PF @ F.L. Point 4 SIEMENS LPK07111328 134 kW 1489 rpm 246.9 A 0.87 Point 5 Point 6 1509 1503 1495 1506 1506 1504 651 889 1116 1337 1560 1772 2.90 29.61 1.34 30.95 0.245 0.106 2.55 26.04 1.34 27.38 0.457 0.197 2.15 21.95 1.34 23.29 0.721 0.310 1.83 18.68 1.34 20.02 1.034 0.445 1.29 13.17 1.34 14.51 1.408 0.606 0.50 5.11 1.34 6.45 1.817 0.782 31.30 28.03 24.32 21.50 16.52 9.04 A 188.0 189.0 191.0 197.0 196.0 186.0 VOLTAGE POWER FACTOR V cos Ø 404 0.82 406 0.82 403 0.82 404 0.83 405 0.82 406 0.81 MOTOR INPUT MOTOR EFF MOTOR OUTPUT kW % kW 108.0 93 108.0 93 109.0 93 114.0 93 113.0 93 106.0 93 100.44 100.44 101.37 106.02 105.09 98.58 NET PUMP INPUT kW 100.44 100.44 101.37 106.02 105.09 98.58 STAGE EFF PUMP EFF Q m 3 /h at r.p.m. Head st m at r.p.m. kW on Water at r.p.m. % % 1490 1490 1490 55.25 54.84 642.80 30.52 96.69 67.57 66.50 881.31 27.55 97.86 72.93 70.80 1112.27 24.16 100.36 73.85 70.34 1322.80 21.05 102.68 66.81 61.15 1543.43 16.18 101.78 44.27 35.40 1755.51 8.88 95.85 96.50 97.66 100.16 102.47 101.57 95.66 kW on media SG = 0.998 REMARKS: Q-H curve passes through tolerance range of specified testing standard. Pump efficiency is okay. CONCLUSION:Pump performance is satisfactory. TEST INFORMATION TESTING STANDARD ISO 9906/2B TESTED BY:FAISAL NAEEM PRODUCTION OFFICER CHECKED BY:WAQAS AHMAD DY. MANAGER PRODUCTION APPROVED BY:BADSHAH MUHAMMAD DY. MANAGER QHSE DATE DATE DATE 25.08.2018 25.08.2018 25.08.2018 47 Performance Curves Stage Head (m) Client: KSB CHILE S.A. / COMUNA DE QUILICURA / SANTIAGO Project: Type & Size: B22B/1 W/O No.: 9973733700/200/1 Rated Specs: Impeller Dia. 353/303 Stage Head: 24.7 m Liquid: WATER Capacity: 1100 m3/h Temp.: 25 °C Speed: 1490 rpm Sp. Gravity: 0.998 Driver Output: 110 kW 32 Duty Point 28 Q-H Curve 24 20 16 12 8 4 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 1400 1500 1600 1700 1800 1900 2000 100 90 Stage Efficiency (%) 80 70 60 50 40 30 20 10 0 140 130 Pump Input (kW) 120 110 100 90 ` ` 80 70 60 50 600 700 800 900 1000 1100 1200 1300 Discharge (m3/h) 48 MANUAL DE INSTALACION OPERACIÓN Y MANTENIMIENTO BOMBA Cristian Corvalan Alvaro Reyes N/A N/A N/A Ingeniero de Proyectos Administrador de Proyectos Producción Servicios Despachos 49 B-Pump Installation/Operating Manual 50 Legal information/Copyright Installation/Operating Manual B-pump Original operating manual All rights reserved. The contents provided herein must neither be distributed, copied, reproduced, edited or processed for any other purpose, nor otherwise transmitted, published or made available to a third party without the manufacturer's express written consent. Subject to technical modification without prior notice. 51 Contents Contents 1 General ..................................................................................................6 1.1 Principles ...........................................................................................................6 1.2 Installation of partly completed machinery .................................................... 6 1.3 Target group ..................................................................................................... 6 1.4 Other applicable documents ............................................................................ 6 1.5 Symbols .............................................................................................................6 2 Safety .....................................................................................................8 2.1 Key to safety symbols/markings ....................................................................... 8 2.2 General .............................................................................................................. 8 2.3 Intended use .....................................................................................................8 2.4 Personnel qualification and training ............................................................... 9 2.5 Consequences and risks caused by non-compliance with these operating instructions ........................................................................................................ 9 2.6 Safety awareness ..............................................................................................9 2.7 Safety information for the operator/user ..................................................... 10 2.8 Safety information for maintenance, inspection and installation work ..... 10 2.9 Unauthorised modes of operation ................................................................ 10 2.10 Explosion protection ...................................................................................... 10 3 Transport/Temporary Storage/Disposal .............................................12 3.1 Checking the condition upon delivery .......................................................... 12 3.2 Transport ......................................................................................................... 12 3.3 Storage/preservation ...................................................................................... 13 3.4 Return to supplier ........................................................................................... 13 3.5 Disposal ...........................................................................................................14 4 Description of the Pump (Set) ............................................................15 4.1 General description ........................................................................................ 15 4.2 Designation ..................................................................................................... 15 4.3 Name plate ...................................................................................................... 15 4.4 Design details .................................................................................................. 15 4.5 Configuration and function ........................................................................... 16 4.6 Noise characteristics .......................................................................................17 4.7 Scope of supply ............................................................................................... 17 4.8 Dimensions and weights ................................................................................17 5 Installation at Site ...............................................................................19 5.1 Safety regulations ........................................................................................... 19 5.2 Checks to be carried out prior to installation ............................................... 19 5.3 Installing the pump set .................................................................................. 20 5.4 Connecting the piping ...................................................................................22 5.5 Enclosure/insulation .......................................................................................23 B-Pump 3 of 58 52 Contents 5.6 Aligning the pump and motor ...................................................................... 23 5.7 Permissible forces and moments at the pump nozzles ................................ 24 5.8 Auxiliary connections .....................................................................................25 5.9 Connection to power supply .......................................................................... 25 5.10 Checking the direction of rotation ................................................................ 26 5.11 Removing the transport lock ......................................................................... 26 5.12 Filling in lubricants .........................................................................................27 6 Commissioning/Start-up/Shutdown ...................................................28 6.1 Commissioning/start-up ................................................................................. 28 6.2 Operating limits .............................................................................................. 32 6.3 Shutdown/storage/preservation .................................................................... 35 6.4 Returning to service .......................................................................................35 7 Servicing/Maintenance .......................................................................37 7.1 Safety regulations ........................................................................................... 37 7.2 Maintenance/inspection ................................................................................. 38 7.3 Drainage/cleaning ..........................................................................................43 7.4 Dismantling the pump set .............................................................................. 43 7.5 Reassembling the pump set ........................................................................... 45 7.6 Spare parts stock ............................................................................................. 46 8 Trouble-shooting ................................................................................49 8.1 Explanation of faults ...................................................................................... 53 9 Related Documents ............................................................................54 10 EC Declaration of Conformity ............................................................55 11 Certificate of Decontamination .........................................................56 Index ....................................................................................................57 4 of 58 B-Pump 53 Glossary Glossary Certificate of decontamination A certificate of decontamination is enclosed by the customer when returning the product to the manufacturer to certify that the product has been properly drained to eliminate any environmental and health hazards arising from components in contact with the fluid handled. Discharge line The line which is connected to the discharge nozzle Pump Machine without drive, additional components or accessories Pump set Complete pump set consisting of pump, drive, additional components and accessories Suction lift line/suction head line The line which is connected to the suction nozzle Hydraulic system The part of the pump in which the kinetic energy is converted into pressure energy B-Pump 5 of 58 54 1 General 1 General 1.1 Principles This operating manual is supplied as an integral part of the type series and variants indicated on the front cover. The manual describes the proper and safe use of this equipment in all phases of operation. The name plate indicates the type series and size, the main operating data, the order number and the order item number. The order number and order item number uniquely identify the pump (set) and serve as identification for all further business processes. In the event of damage, immediately contact your nearest KSB service centre to maintain the right to claim under warranty. Noise characteristics (⇨ Section 4.6 Page 17) 1.2 Installation of partly completed machinery To install partly completed machinery supplied by KSB, refer to the sub-sections under Servicing/Maintenance. 1.3 Target group This operating manual is aimed at the target group of trained and qualified specialist technical personnel. (⇨ Section 2.4 Page 9) 1.4 Other applicable documents Table 1: Overview of other applicable documents Document Data sheet General arrangement drawing/ outline drawing Drawing of auxiliary connections Contents Description of the technical data of the pump (set) Description of mating and installation dimensions for the pump (set), weights Description of auxiliary connections 1) Hydraulic characteristic curve General assembly drawing Sub-supplier product literature1) Spare parts lists1) Piping layout1) List of components Installation manual1) Characteristic curves for the head, NPSH required and power input as a function of flow rate Q Sectional drawing of the pump Operating manuals and other product literature describing accessories and integrated machinery components Description of spare parts Description of auxiliary piping Description of all pump components Description of the installation of other types of installation and components For accessories and/or integrated machinery components observe the relevant manufacturer's product literature. 1.5 Symbols Table 2: Symbols used in this manual Symbol ✓ ⊳ 1) Description Conditions which need to be fulfilled before proceeding with the step-by-step instructions Safety instructions If agreed to be included in the scope of supply 6 of 58 B-Pump 55 1 General Symbol ⇨ ⇨ 1. Description Result of an action Cross-references Step-by-step instructions 2. Note Recommendations and important information on how to handle the product B-Pump 7 of 58 56 2 Safety 2 Safety ! DANGER All the information contained in this section refers to hazardous situations. 2.1 Key to safety symbols/markings Table 3: Definition of safety symbols/markings Symbol ! DANGER ! WARNING CAUTION Description DANGER This signal word indicates a high-risk hazard which, if not avoided, will result in death or serious injury. WARNING This signal word indicates a medium-risk hazard which, if not avoided, could result in death or serious injury. CAUTION This signal word indicates a hazard which, if not avoided, could result in damage to the machine and its functions. Explosion protection This symbol identifies information about avoiding explosions in potentially explosive atmospheres in accordance with EC Directive 94/9/EC (ATEX). General hazard In conjunction with one of the signal words this symbol indicates a hazard which will or could result in death or serious injury. Electrical hazard In conjunction with one of the signal words this symbol indicates a hazard involving electrical voltage and identifies information about protection against electrical voltage. Machine damage In conjunction with the signal word CAUTION this symbol indicates a hazard for the machine and its functions. 2.2 General This manual contains general installation, operating and maintenance instructions that must be observed to ensure safe pump operation and prevent personal injury and damage to property. The safety information in all sections of this manual must be complied with. This manual must be read and completely understood by the specialist personnel/ operators responsible prior to installation and commissioning. The contents of this manual must be available to the specialist personnel at the site at all times. Information attached directly to the pump must always be complied with and be kept in a perfectly legible condition at all times. This applies to, for example: ▪ Arrow indicating the direction of rotation ▪ Markings for connections ▪ Name plate The operator is responsible for ensuring compliance with all local regulations not taken into account in this manual. 2.3 Intended use The pump (set) must only be operated within the operating limits described in the other applicable documents. ▪ Only operate pumps/pump sets which are in perfect technical condition. ▪ Do not operate the pump (set) in partially assembled condition. ▪ Only use the pump to handle the fluids described in the data sheet or product literature of the pump model or variant. 8 of 58 B-Pump 57 2 Safety ▪ Never operate the pump without the fluid to be handled. ▪ Observe the minimum flow rates indicated in the data sheet or product literature (to prevent overheating, bearing damage, etc.). ▪ Observe the maximum flow rates indicated in the data sheet or product literature (to prevent overheating, mechanical seal damage, cavitation damage, bearing damage, etc.). ▪ Do not throttle the flow rate on the suction side of the pump (to prevent cavitation and bearing damage). ▪ Observe the minimum water levels as specified in the product literature. ▪ Consult the manufacturer about any use or mode of operation not described in the data sheet or product literature. Prevention of foreseeable misuse ▪ Never open discharge-side shut-off elements further than permitted. – The maximum flow rate specified in the data sheet or product literature would be exceeded. – Risk of cavitation damage ▪ Never exceed the permissible operating limits specified in the data sheet or product literature regarding pressure, temperature, etc. ▪ Observe all safety information and instructions in this manual. 2.4 Personnel qualification and training All personnel involved must be fully qualified to transport, install, operate, maintain and inspect the machinery this manual refers to. The responsibilities, competence and supervision of all personnel involved in transport, installation, operation, maintenance and inspection must be clearly defined by the operator. Deficits in knowledge must be rectified by means of training and instruction provided by sufficiently trained specialist personnel. If required, the operator can commission the manufacturer/supplier to train the personnel. Training on the pump (set) must always be supervised by technical specialist personnel. 2.5 Consequences and risks caused by non-compliance with these operating instructions ▪ Non-compliance with these operating instructions will lead to forfeiture of warranty cover and of any and all rights to claims for damages. ▪ Non-compliance can, for example, have the following consequences: – Hazards to persons due to electrical, thermal, mechanical and chemical effects and explosions – Failure of important product functions – Failure of prescribed maintenance and servicing practices – Hazard to the environment due to leakage of hazardous substances 2.6 Safety awareness In addition to the safety information contained in this manual and the intended use, the following safety regulations shall be complied with: ▪ Accident prevention, health and safety regulations ▪ Explosion protection regulations ▪ Safety regulations for handling hazardous substances ▪ Applicable standards and laws B-Pump 9 of 58 58 2 Safety 2.7 Safety information for the operator/user ▪ The operator shall fit contact guards for hot, cold and moving parts and check that the guards function properly. ▪ Do not remove any contact guards while the pump is running. The only exception is the guard of the packing chamber. ▪ Provide the personnel with protective equipment and make sure it is used. ▪ Contain leakages (e.g. at the shaft seal) of hazardous fluids handled (e.g. explosive, toxic, hot) so as to avoid any danger to persons and the environment. Adhere to all relevant laws. ▪ Eliminate all electrical hazards. (In this respect refer to the applicable national safety regulations and/or regulations issued by the local energy supply companies.) ▪ Provided that switching off the pump does not increase potential risk, fit an emergency-stop control device in the immediate vicinity of the pump (set) during pump set installation. 2.8 Safety information for maintenance, inspection and installation work ▪ Modifications or alterations of the pump are only permitted with the manufacturer's prior consent. ▪ Use only original spare parts or parts authorised by the manufacturer. The use of other parts can invalidate any liability of the manufacturer for resulting damage. ▪ The operator ensures that all maintenance, inspection and installation work is performed by authorised, qualified specialist personnel who are thoroughly familiar with the manual. ▪ Only carry out work on the pump (set) during standstill of the pump. ▪ The pump casing must have cooled down to ambient temperature. ▪ Pump pressure must have been released and the pump must have been drained. ▪ When taking the pump set out of service always adhere to the procedure described in the manual. (⇨ Section 6.3 Page 35) ▪ Decontaminate pumps which handle fluids posing a health hazard. (⇨ Section 7.3 Page 43) ▪ As soon as the work has been completed, re-install and/or re-activate any safetyrelevant and protective devices. Before returning the product to service, observe all instructions on commissioning. (⇨ Section 6.1 Page 28) 2.9 Unauthorised modes of operation Never operate the pump (set) outside the limits stated in the data sheet and in this manual. The warranty relating to the operating reliability and safety of the supplied pump (set) is only valid if the equipment is used in accordance with its intended use. 2.10 Explosion protection ! DANGER Always observe the information on explosion protection given in this section when operating the pump (set) in potentially explosive atmospheres. Only pumps/pump sets marked as explosion-proof and identified as such in the data sheet may be used in potentially explosive atmospheres. Special conditions apply to the operation of explosion-proof pump sets to EC Directive 94/9/EC (ATEX). The explosion-proof status of the pump set is only assured if the pump set is used in accordance with its intended use. Never operate the pump set outside the limits stated in the data sheet and on the name plate. 10 of 58 B-Pump 59 2 Safety Prevent impermissible modes of operation at all times. For information on application options of individual components (if any) in potentially explosive atmospheres, refer to the manufacturer's product literature. 2.10.1 Repair Special regulations apply to repair work on explosion-proof pumps. Modifications or alteration of the pump set could affect explosion protection and are only permitted after consultation with the manufacturer. Repair work at the flameproof joints must only be performed in accordance with the manufacturer's instructions. Repair to the values in tables 1 and 2 of EN 60079-1 is not permitted. B-Pump 11 of 58 60 3 Transport/Temporary Storage/Disposal 3 Transport/Temporary Storage/Disposal 3.1 Checking the condition upon delivery 1. On transfer of goods, check each packaging unit for damage. 2. In the event of in-transit damage, assess the exact damage, document it and notify KSB or the supplying dealer (as applicable) and the insurer about the damage in writing immediately. 3.2 Transport DANGER Lifting lugs of pump/motor overloaded Danger to life from falling parts! ▷ Never transport the pump set components (pump/motor) in any way other than those illustrated in the section on transport options. ▷ Refer to the weights of the individual components stated in the manufacturer's product literature. DANGER The pump or individual components could slip out of the suspension arrangement Danger to life from falling parts! ▷ Always transport the pump or components in the specified position. ▷ Never attach the suspension arrangement to free shaft areas on the pump. ▷ Refer to the weights indicated for the individual components. ▷ Comply with the applicable health and safety regulations. ▷ Use suitable, permitted lifting accessories. DANGER Improper transport Risk of injury from lifting heavy components! ▷ Select lifting accessories which are suitable for the component weight. ▷ Always use the attachment points provided for the lifting accessories. ▷ Comply with the applicable health and safety regulations. WARNING Pump set tipping over or rolling off Risk of personal injury! ▷ Always secure vertically positioned pump sets against tipping over. ▷ Always secure horizontally positioned pump sets against rolling off. 2) 1. Refer to the weights of the individual components stated in the general arrangement drawing and/or the manufacturer's product literature. 2. Select suitable lifting equipment. 3. Transport the pump/pump set and individual components as illustrated.2) See other applicable documents for transport options 12 of 58 B-Pump 61 3 Transport/Temporary Storage/Disposal 2. Always flush and clean the pump, particularly if it has been used for handling noxious, explosive, hot or other hazardous fluids. 3. If the pump set has handled fluids whose residues could lead to corrosion in the presence of atmospheric humidity or could ignite upon contact with oxygen, the pump set must also be neutralised, and anhydrous inert gas must be blown through the pump to ensure drying. 4. Always complete and enclose a certificate of decontamination when returning the pump (set). Always indicate any safety and decontamination measures taken. (⇨ Section 11 Page 56) NOTE If required, a blank certificate of decontamination can be downloaded from the KSB web site at: www.ksb.com/certificate_of_decontamination 3.5 Disposal WARNING Fluids, consumables and supplies which are hot or pose a health hazard Hazard to persons and the environment! ▷ Collect and properly dispose of flushing fluid and any residues of the fluid handled. ▷ Wear safety clothing and a protective mask, if required. ▷ Observe all legal regulations on the disposal of fluids posing a health hazard. 14 of 58 1. Dismantle the pump (set). Collect greases and other lubricants during dismantling. 2. Separate and sort the pump materials, e.g. by: - Metals - Plastics - Electronic waste - Greases and other lubricants 3. Dispose of materials in accordance with local regulations or in another controlled manner. B-Pump 62 3 Transport/Temporary Storage/Disposal 2. Always flush and clean the pump, particularly if it has been used for handling noxious, explosive, hot or other hazardous fluids. 3. If the pump set has handled fluids whose residues could lead to corrosion in the presence of atmospheric humidity or could ignite upon contact with oxygen, the pump set must also be neutralised, and anhydrous inert gas must be blown through the pump to ensure drying. 4. Always complete and enclose a certificate of decontamination when returning the pump (set). Always indicate any safety and decontamination measures taken. (⇨ Section 11 Page 56) NOTE If required, a blank certificate of decontamination can be downloaded from the KSB web site at: www.ksb.com/certificate_of_decontamination 3.5 Disposal WARNING Fluids, consumables and supplies which are hot or pose a health hazard Hazard to persons and the environment! ▷ Collect and properly dispose of flushing fluid and any residues of the fluid handled. ▷ Wear safety clothing and a protective mask, if required. ▷ Observe all legal regulations on the disposal of fluids posing a health hazard. 14 of 58 1. Dismantle the pump (set). Collect greases and other lubricants during dismantling. 2. Separate and sort the pump materials, e.g. by: - Metals - Plastics - Electronic waste - Greases and other lubricants 3. Dispose of materials in accordance with local regulations or in another controlled manner. B-Pump 63 4 Description of the Pump (Set) 4 Description of the Pump (Set) 4.1 General description ▪ Deep-well turbine pump with mixed flow impeller. ▪ Electric motor or combustion engine. ▪ Discharge nozzle arranged above or below floor and variant for dry installation. ▪ Application: non-corrosive fluids, industry, water supply, fire-fighting systems, general industry, pressure boosting, irrigation,… ▪ Single-stage or multistage hydraulic system Pump for use in water works, irrigation and drainage pumping systems, power stations and industrial water supply. 4.2 Designation Example: B 16 B/2 VN / V1 Table 4: Key to the designation Code B 16 B 2 VN V1 Description Type series Well diameter in inches (16 = 16") Hydraulic system (B impeller) Number of stages of the hydraulic system Type of installation (VN = Discharge nozzle above floor3)) Type of drive (V1 = direct drive by vertical electric motor3)) 4.3 Name plate 1 KSB Pumps Co. Ltd. DWT 2013 B 16 B/2 VN / V1 P-No. 9971312132 / 000100 Q 400 m3/h H 43 m n 1450 1/min 2 3 4 5 Mat.-No. 6 7 8 ZN 3804 - H52x74 Fig. 1: Name plate (example) 1 3 5 7 Pump type Order number Speed Order item number 2 4 6 8 Designation of the pump set Flow rate Year of supply Head 4.4 Design details Design ▪ Centrifugal pump 3) Refer to the general arrangement drawing/outline drawing B-Pump 15 of 58 64 4 Description of the Pump (Set) ▪ Vertical installation ▪ Single-stage or multi-stage ▪ Nominal diameter of the discharge nozzles: 80 mm to 500 mm ▪ Hole diameter: 6" to 24" Pump casing ▪ Radially split relative to the shaft ▪ Suction/discharge casing, 1 or more pump bowls ▪ Replaceable casing wear rings Impeller4) ▪ Single-entry mixed flow impeller, hydraulically unbalanced ▪ Optionally with impeller wear rings ▪ Axially locked in position on the shaft via locking and stage sleeves Pump, intermediate and top shafts4) ▪ Connected via threaded, conical or split muff coupling ▪ Torque transmission from pump shaft to impeller/coupling(s) via locking sleeve(s) or key(s) Shaft seal4) ▪ Gland packing ▪ Mechanical seal ▪ With or without shaft protecting sleeve Shaft guide bearing ▪ Medium-lubricated plain bearings ▪ Pump shaft supported by bearing bush in each pump bowl (B series: additional support by bearing bushes in suction/discharge casing) ▪ Intermediate shaft supported by bearing spiders in bearing bushes installed between column pipes ▪ Shaft protecting sleeves (stage sleeves) from size B14 in pump bowl and in all column pipe bearings Thrust and radial bearing4) ▪ Grease-packed rolling element bearings ▪ Angular contact ball bearings in back-to-back arrangement ▪ Uncooled Direction of rotation The pump's direction of rotation is anti-clockwise, seen from the top shaft of the pump. 4.5 Configuration and function Configuration 4) 5) See general assembly drawing5) See other applicable documents for delivered design See other applicable documents for delivered design 16 of 58 B-Pump 65 4 Description of the Pump (Set) Design Function Sealing Pump and motor are connected by a coupling depending on the variant (see other applicable documents). The stage casings, column pipes and distributor casings are centred via flange connections and bolted together. If necessary, a suction strainer with or without foot valve may be installed upstream of the pump to protect the pump against coarse particles and foreign objects. The fluid enters the suction casing via a suction strainer (if any) and flows to the suction impeller (connected to the rotating shaft) at a given pressure. In the impeller, the kinetic energy is imparted to the fluid handled and converted to pressure. The fluid flows from the impeller to the pump bowl where its pressure is further increased via further partial conversion of the kinetic energy. This procedure is repeated from one stage to the next with the effect that the pressure increases at each stage by the same amount, i.e. by the discharge pressure per stage. After the last pump bowl, the fluid flows through the discharge casing into the column pipe. The clearance gap at the casing wear ring prevents any fluid from flowing back from the stage casing into the suction area of the previous impeller. The pump discharge pressure creates an axial force at the rotor of single-stage and multistage centrifugal pumps, which is absorbed by the thrust bearing in the motor stool together with the weight of the complete pump rotor and the radial forces. The thrust and radial bearing also positions the rotor axially. The pump is sealed by a shaft seal (mechanical seal or gland packing). 4.6 Noise characteristics Surface sound pressure level LpA6): see data sheet for values. 4.7 Scope of supply Depending on the model, the following items are included in the scope of supply: ▪ Pump ▪ Drive ▪ Base frame, supporting frame, foundation blocks, foundation rails, foundation ring ▪ Coupling, coupling guard ▪ Cardan shaft, guard ▪ Fasteners for pump and base frame ▪ Optional accessories: – Vibration monitoring – Temperature monitoring device (PT 100) – Constant level oiler – Pressure gauge – Measuring nipple for shock pulse measurement – Cyclone 4.8 Dimensions and weights ▪ For pump dimensions and weights, please refer to the pump data sheet. ▪ For motor dimensions and weights, please refer to the motor documentation. 6) Spatial average; as per ISO 3744 and EN 12639; valid for pump operation in the Q/Qopt = 0.80 - 1.1 range and for noncavitating operation. If noise levels are to be warranted, add an allowance of +3 dB for measuring and manufacturing tolerances. B-Pump 17 of 58 66 5 Installation at Site 5 Installation at Site 5.1 Safety regulations For all work involving assembly, reassembly and installation, observe the following safety information: DANGER Improper installation in potentially explosive atmospheres Explosion hazard! Damage to the pump set! ▷ Comply with the applicable local explosion protection regulations. ▷ Observe the information in the data sheet and on the name plates of pump and motor. DANGER Improper transport Risk of injury from lifting heavy components! ▷ Select lifting accessories which are suitable for the component weight. ▷ Always use the attachment points provided for the lifting accessories. ▷ Comply with the applicable health and safety regulations. DANGER Pump in a vertical position tipping over Danger to life from pump or components tipping over! ▷ Attach the components to be installed to the hoisting tackle and keep them secured until the screwed connections have been fastened. ▷ Always install the pump (set) in the sequence described. ▷ Always place components in their centre of gravity position on a suitable surface to prevent them from tipping over. 5.2 Checks to be carried out prior to installation Place of installation WARNING Installation on mounting surfaces which are unsecured and cannot support the load Personal injury and damage to property! ▷ Observe the required compressive strength class C25/30 of the concrete in exposure class XC1 to EN 206-1. ▷ The mounting surface must have set and must be completely horizontal and even. ▷ Observe the weights indicated. 1. Check the structural requirements. All structural work required must have been prepared in accordance with the dimensions stated in the outline drawing/general arrangement drawing. B-Pump 19 of 58 67 5 Installation at Site Suction head/suction lift line WARNING Foreign objects in the intake/suction line Personal injury and damage to property! ▷ Make sure that the intake area (e.g.: intake chamber/intake channel) is clean and free from foreign objects. ▷ Make sure that the suction line is clean and free from foreign objects. ▷ Protect intake area leading into any existing suction line against ingress of foreign matter. ▷ Any existing suction-side flow distribution equipment must be installed firmly and securely. 1. Check suction-side conditions. No foreign objects must enter the pump. 2. Clean the intake or suction line as necessary. 3. Install suction strainer if required. 5.3 Installing the pump set NOTE See other applicable documents for the type of installation of the delivered design. NOTE See other applicable documents for other types of installation than those documented here. Depending on the type of installation, relevant instructions need to be carried out as applicable: ▪ Prepare and install the base frame/supporting frame/foundation blocks/ foundation rails/foundation ring. ▪ Install the pump and motor on the prepared base frame/supporting frame/ foundation blocks/foundation rails/foundation ring. ▪ Check the alignment of pump and motor. ▪ Align the pump with the piping. ▪ Install and align the coupling. ▪ Connect the piping. ▪ Perform precision alignment of pump and motor, if possible with larger motors. ▪ Remove any transport locks. Installation on existing elements DANGER The pump or individual components could slip out of the suspension arrangement Danger to life from falling parts! ▷ Always transport the pump or components in the specified position. ▷ Never attach the suspension arrangement to free shaft areas on the pump. ▷ Refer to the weights and centre of gravity indicated for the individual components. ▷ Observe the applicable local health and safety regulations. ▷ Use suitable, permitted lifting accessories. 20 of 58 B-Pump 68 5 Installation at Site Suction head/suction lift line WARNING Foreign objects in the intake/suction line Personal injury and damage to property! ▷ Make sure that the intake area (e.g.: intake chamber/intake channel) is clean and free from foreign objects. ▷ Make sure that the suction line is clean and free from foreign objects. ▷ Protect intake area leading into any existing suction line against ingress of foreign matter. ▷ Any existing suction-side flow distribution equipment must be installed firmly and securely. 1. Check suction-side conditions. No foreign objects must enter the pump. 2. Clean the intake or suction line as necessary. 3. Install suction strainer if required. 5.3 Installing the pump set NOTE See other applicable documents for the type of installation of the delivered design. NOTE See other applicable documents for other types of installation than those documented here. Depending on the type of installation, relevant instructions need to be carried out as applicable: ▪ Prepare and install the base frame/supporting frame/foundation blocks/ foundation rails/foundation ring. ▪ Install the pump and motor on the prepared base frame/supporting frame/ foundation blocks/foundation rails/foundation ring. ▪ Check the alignment of pump and motor. ▪ Align the pump with the piping. ▪ Install and align the coupling. ▪ Connect the piping. ▪ Perform precision alignment of pump and motor, if possible with larger motors. ▪ Remove any transport locks. Installation on existing elements DANGER The pump or individual components could slip out of the suspension arrangement Danger to life from falling parts! ▷ Always transport the pump or components in the specified position. ▷ Never attach the suspension arrangement to free shaft areas on the pump. ▷ Refer to the weights and centre of gravity indicated for the individual components. ▷ Observe the applicable local health and safety regulations. ▷ Use suitable, permitted lifting accessories. 20 of 58 B-Pump 69 5 Installation at Site DANGER Incorrect assembly Risk of injury from lifting heavy components and placing them upright ▷ Only transport and place the pump and individual components upright in the specified position. ▷ Select a suitable lifting accessory according to the weight of the component and the installation requirements. ▷ Always use the attachment points provided for the lifting accessories. ✓ The relevant general arrangement drawing is available. ✓ The foundation has the required strength and characteristics for the loads indicated in the general arrangement drawing. ✓ The foundation complies with the dimensions given in the general arrangement drawing. 1. Transport and place the pump (set) upright in accordance with the other applicable documents. 2. Lower the pump onto the foundation elements provided. 3. Align the pump with the piping and connect it to the foundation. 4. Mount the motor and motor stool as described in the motor manufacturer's operating instructions. 5. Align the coupling as described in the coupling manufacturer's operating manual. 5.3.1 Checking and adjusting the pump rotor clearance CAUTION Incorrect pump rotor adjustment Damage to the pump/pump set components ▷ Establish the permissible clearance by axially raising the pump rotor as per the value specified for the axial clearance in the general assembly drawing. (⇨ Section 9 Page 54) NOTE The rotor must be checked and re-adjusted after the first installation or following complete dismantling! Check and re-adjustment are always carried out before the motor and the coupling plate are fitted! ✓ Suitably dimensioned lifting equipment and lifting accessories are available. ✓ The pump has been completely assembled. ✓ The motor has not been mounted. ✓ The hexagon nuts for fine-adjustment of the gland have been loosened. ✓ The pump rotor rests with the blades inside the wear ring. 1. The pump rotor position is set with the pump in an upright position. 2. Establish the permissible clearance by raising the pump rotor in axial direction. 3. Measure the distance from the contact face of the motor stool to the end of the top shaft and record the measured value. 4. Raise the pump rotor carefully by turning the adjusting nut clockwise until the pump rotor has reached the value specified for the axial clearance in the general assembly drawing. 5. After raising the rotor by the value specified for the axial clearance, turn the adjusting nut further until the holes of the locking screws align with the next threaded holes. Note: This causes the permissible clearance to increase slightly in size. B-Pump 21 of 58 70 5 Installation at Site 6. Mount the locking screws of the adjusting nut. 7. Try turning the pump rotor by hand to see if it seizes up. 5.4 Connecting the piping DANGER Impermissible loads acting on the pump nozzles Danger to life from leakage of hot, toxic, corrosive or flammable fluids! ▷ Do not use the pump as an anchorage point for the piping. ▷ The pipelines have been anchored in close proximity to the pump and connected without transmitting any stresses or strains. ▷ Observe permissible forces and moments at the pump nozzles. ▷ Take appropriate measures to compensate thermal expansion of the piping. CAUTION Incorrect earthing during welding work at the piping Destruction of rolling element bearings (pitting effect)! ▷ Never earth the electric welding equipment on the pump or baseplate. ▷ Prevent current flowing through the rolling element bearings. NOTE It is recommended to install check and shut-off elements in the system, depending on the type of plant and pump. However, such elements must not obstruct proper drainage or hinder disassembly of the pump. ✓ The suction lift line has been laid with a rising slope, the suction head line with a downward slope towards the pump. ✓ A flow stabilisation section having a length equivalent to at least twice the diameter of the suction flange has been provided upstream of the suction flange. ✓ The nominal diameters of the pipelines are equal to or greater than the nominal diameters of the pump nozzles. A hydraulically optimised elbow is provided between the suction lift line/suction head line and the pump. ✓ To prevent excessive pressure losses, adapters to larger diameters have a diffuser angle of approx. 8°. ✓ The pipelines have been anchored in close proximity to the pump and connected without transmitting any stresses or strains. 1. Thoroughly clean, flush and blow through all vessels, pipelines and connections (especially of new installations). 2. Before installing the pump in the piping, remove the flange covers on the suction and discharge nozzles of the pump. Fig. 2: Connection with expansion joints 3. 22 of 58 If the owner/operator supplies an expansion joint, it has to be braced with external tie rods to prevent impermissible reaction forces. It is impermissible to connect the pump with unbraced expansion joints. B-Pump 71 5 Installation at Site CAUTION Welding beads, scale and other impurities in the piping Damage to the pump! ▷ Remove any impurities from the piping. ▷ If necessary, install a filter/strainer. 4. If required, install a filter/strainer in the piping. 5. Connect the pump nozzles to the piping. CAUTION Aggressive flushing and pickling agents Damage to the pump! ▷ Match the cleaning operation mode and duration for flushing and pickling service to the casing and seal materials used. 5.5 Enclosure/insulation WARNING Failure to re-install or re-activate protective devices Risk of injury from moving parts or escaping fluid! ▷ As soon as the work is completed, re-install and/or re-activate any safetyrelevant and protective devices. WARNING Distributor casing and bearing housing take on the same temperature as the fluid handled. Risk of burns! ▷ Insulate the distributor casing. ▷ Fit protective equipment. CAUTION Heat build-up in the bearing housing Damage to the bearing! ▷ Never insulate the bearing housing and bearing cover. 5.6 Aligning the pump and motor DANGER Inadmissible temperatures at the coupling or bearings due to misalignment of the coupling Explosion hazard! Risk of burns! ▷ Make sure that the coupling is correctly aligned at all times. CAUTION Misalignment of pump and motor shafts Damage to pump, motor and coupling! ▷ Always check the coupling after the pump has been installed and connected to the piping. B-Pump 23 of 58 72 5 Installation at Site B B 2 1 A A 1 Fig. 3: Checking the coupling alignment 1 Straight-edge 2 Gauge ✓ The coupling guard and footboard, if any, have been removed. 1. Place the straight-edge axially on both coupling halves. 2. Leave the straight-edge in this position and turn the coupling by hand. The coupling is aligned correctly if the distances A) and B) to the respective shafts are the same at all points around the circumference. The radial and axial deviation between the two coupling halves must not exceed 0.05 mm. Observe the coupling manufacturer's operating manual! 3. In case of misalignment, loosen the bolts on the motor and re-align. 4. Re-tighten the bolts. 5. Check coupling and shaft for proper functioning. Check that coupling/shaft can be rotated by hand. 6. Re-install the coupling guard and footboard, if any. 7. Check the distance between coupling and coupling guard. The coupling guard must not touch the coupling. 5.7 Permissible forces and moments at the pump nozzles Fig. 4: Permissible forces and moments See the general arrangement drawing for forces and moments at the pump nozzles. The values indicated do not apply to reaction forces from unbraced expansion joints! (See the general arrangement drawing for permissible values, or contact KSB) The resulting permissible forces have been determined according to The data on forces and moments apply to static piping loads only. If the limits are exceeded, they must be checked and verified. If a computerised strength analysis is required, please contact KSB. The values are only applicable if the pump is installed on completely grouted elements and bolted to a rigid and level foundation. 24 of 58 B-Pump 73 5 Installation at Site 5.8 Auxiliary connections WARNING Screw plugs subjected to pressure Risk of injuries by parts flying off and escaping fluid! ▷ Never use screw plugs for releasing pressure from the pump casing. ▷ Always use suitable venting devices (e.g. vent valve). WARNING Failure to use or incorrect use of auxiliary connections (e.g. barrier fluid, flushing liquid, etc.) Risk of injury from escaping fluid! Risk of burns! Malfunction of the pump! ▷ Refer to the general arrangement drawing, the piping layout and pump markings (if any) for the quantity, dimensions and locations of auxiliary connections. ▷ Use the auxiliary connections provided. See the general arrangement drawing for auxiliary connections 5.9 Connection to power supply DANGER Incorrect electrical installation Explosion hazard! ▷ For electrical installation, also observe the requirements of IEC 60079-14. ▷ Always connect explosion-proof motors via a motor protection switch. DANGER Work on the pump set by unqualified personnel Danger of death from electric shock! ▷ Always have the electrical connections installed by a trained and qualified electrician. ▷ Observe IEC 60364 (DIN VDE 0100) regulations and, for explosion-proof pump sets, IEC 60079 (DIN VDE 0165). ▷ Observe the motor manufacturer's operating instructions. WARNING Unintentional starting of pump set Risk of injury by moving parts! ▷ Make sure that the pump set cannot be started up unintentionally. ▷ Always make sure the electrical connections are disconnected before carrying out work on the pump set. WARNING Incorrect connection to the mains Damage to the mains network, short circuit! ▷ Observe the technical specifications of the local energy supply companies. 1. Check the available mains voltage against the data on the motor name plate. 2. Select an appropriate start-up method. B-Pump 25 of 58 74 5 Installation at Site NOTE A motor protection device is recommended. 5.9.1 Earthing DANGER Electrostatic charging Explosion hazard! Fire hazard! Damage to the pump set! ▷ Connect the PE conductor to the earthing terminal provided. 5.10 Checking the direction of rotation DANGER Temperature increase resulting from contact between rotating and stationary components Explosion hazard! Damage to the pump set! ▷ Never check the direction of rotation by starting up the unfilled pump set. ▷ Separate the pump from the motor to check the direction of rotation. DANGER Rotating shaft during direction of rotation check Risk of injury! ▷ Maintain a safe distance to the pump set. ▷ Comply with the general health and safety regulations. CAUTION Drive and pump running in the wrong direction of rotation Damage to the pump! ▷ Refer to the arrow indicating the direction of rotation on the pump. ▷ Check the direction of rotation. If required, check the electrical connection and correct the direction of rotation. ✓ The pump has been completely separated from the motor. ✓ All components at the motor (e.g. coupling half at the motor shaft) have been secured. 1. Start the motor and stop it again immediately to determine the motor's direction of rotation. 2. Check the direction of rotation. The motor's direction of rotation must match the arrow indicating the direction of rotation on the pump. 3. If the motor runs in the wrong direction of rotation, check the electrical connection of the motor and the control system, if applicable. 5.11 Removing the transport lock Remove the transport lock, if any. 26 of 58 B-Pump 75 5 Installation at Site 5.12 Filling in lubricants CAUTION Temporary storage of the pump set too long Contamination, condensation, resinification or leakage of the grease! ▷ Check for contamination and condensation. ▷ Change the complete grease fill before returning the pump set to service. ▷ Replace the grease fill every time the bearings are dismantled. Grease-lubricated bearings Oil-lubricated bearings Grease-lubricated bearings have been packed with grease at the factory. Fill the bearing housings with lubricant up to the mark. Oil quality: see data sheet Oil quantity: see data sheet CAUTION Insufficient quantity of lubricant in bearing housing Damage to the bearings! ▷ Check the lubricant level regularly. ▷ Always fill the bearing housing up to the mark. NOTE An excessively high oil level or grease quantity can lead to a temperature rise and to leakage of the fluid handled or oil. B-Pump 27 of 58 76 6 Commissioning/Start-up/Shutdown 6 Commissioning/Start-up/Shutdown 6.1 Commissioning/start-up 6.1.1 Prerequisites for commissioning/start-up Before commissioning/starting up the pump set, make sure that the following conditions are met: ▪ The pump set has been properly connected to the electric power supply and is equipped with all protection devices. (⇨ Section 5.9 Page 25) ▪ The pump has been flooded up to the specified minimum water level. (See general arrangement drawing) ▪ The direction of rotation has been checked. (⇨ Section 5.10 Page 26) ▪ All auxiliary connections required are connected and operational. ▪ The transport lock has been removed. ▪ The lubricants have been checked and filled in. ▪ After prolonged shutdown of the pump (set), the required activities have been carried out. (⇨ Section 6.4 Page 35) ▪ The coupling alignment has been checked. 6.1.2 Priming and venting the pump DANGER Risk of potentially explosive atmosphere inside the pump Explosion hazard! ▷ Before starting up the pump, vent the suction line and the pump and prime them with the fluid to be handled. DANGER Shaft seal failure caused by dry running Hot fluid may escape! ▷ Before start-up, flood the pump and the suction line, if any, up to the minimum water level specified. 1. Close all drains and drain lines. 2. Flood the pump and the suction line, if any, up to the minimum water level specified. For suction lift operation, evacuate the pump. 3. Fully open the shut-off element in the suction line. 4. If the discharge line is equipped with a check valve, the shut-off element in the discharge line may remain open as long as there is some back pressure. If this is not the case, the shut-off element in the discharge line must be closed. 5. Fully open all auxiliary connections (barrier fluid, flushing fluid etc.). If liquid is supplied from an external source, make sure the data indicated in the data sheet (pressure, flow rate, etc.) is observed. 6. Open the venting element/ensure proper venting. ⇨ The shut-off element in the discharge line opens as flow starts (e.g. swing check valve) or is opened immediately before pump start-up (e.g. gate valve already slightly open when pump is started). 28 of 58 B-Pump 77 6 Commissioning/Start-up/Shutdown 6.1.3 Start-up DANGER Non-compliance with the permissible pressure and temperature limits if the pump is operated with the suction and/or discharge line closed. Explosion hazard! Leakage of hot or toxic fluids! ▷ Never operate the pump with the shut-off elements in the suction line and/or discharge line closed. ▷ Only start up the pump set with the discharge-side shut-off element slightly or fully open. DANGER Excessive temperatures due to dry running or excessive gas content in the fluid handled Explosion hazard! Damage to the pump set! ▷ Never operate the pump set without liquid fill. ▷ Prime the pump as specified. ▷ Always operate the pump within the permissible operating range. WARNING Pump set with high noise levels Damage to hearing! ▷ Persons must only enter the vicinity of the running pump set if they are wearing protective clothing/ear protection. ▷ See noise characteristics. (⇨ Section 4.6 Page 17) CAUTION Abnormal noises, vibrations, temperatures or leakage Damage to the pump! ▷ Switch off the pump (set) immediately. ▷ Eliminate the causes before returning the pump set to service. ✓ Intake area (e.g. intake chamber) and system piping have been cleaned. ✓ Pump, suction line and inlet tank, if any, have been vented and primed with the fluid to be handled. ✓ The lines for priming and venting have been closed. CAUTION Start-up against open discharge line Motor overload! ▷ Make sure the motor has sufficient power reserves. 1. Fully open the shut-off element in the suction head/suction lift line. 2. Close or slightly open the shut-off element in the discharge line. 3. Start up the motor. 4. Immediately after the pump has reached full rotational speed, slowly open the shut-off element in the discharge line and adjust it to comply with the duty point. B-Pump 29 of 58 78 6 Commissioning/Start-up/Shutdown DANGER Seal leakages at operating temperature Hot or toxic fluid could escape! ▷ After the operating temperature has been reached and/or in the event of leakage, switch off the pump set and tighten the bolts on the casing to the specified torques. ▷ If there is leakage at the shaft seal, check the coupling alignment and re-align if necessary. 6.1.4 Mechanical seal Gland packing Checking the shaft seal The mechanical seal only leaks slightly or invisibly (as vapour) during operation. Mechanical seals are maintenance-free. The gland packing must drip slightly during operation. (approx. 20 drops per minute) DANGER The temperatures at the gland packing have risen above the permissible limits Explosion hazard! ▷ Gland packings are not approved for use in potentially explosive atmospheres. ▷ Immediately switch off the pump set! The minimum leakage required depends on the fluid handled, pressure, sliding velocity and temperature. See data sheet for the leakage rates at the gland packing. CAUTION Excessive leakage or no leakage at the gland packing Damage to the pump! ▷ Excessive leakage: Re-tighten the gland follower until the required leakage rate is reached. ▷ No leakage: Switch off the pump set immediately. WARNING Work in the immediate vicinity of rotating parts Risk of hand injuries! ▷ Always have this work performed by trained personnel. ▷ Take particular caution when performing this work. Adjusting the leakage Prior to commissioning 1. Only lightly tighten the nuts of the gland follower by hand. 2. Use a feeler gauge to verify that the gland follower is mounted centred and at a right angle to the shaft. ⇨ The gland must leak after the pump has been primed. (Only applies to pumps with suction lift line and the respective excess inlet pressure.) After five minutes of operation The leakage can be reduced. 1. Tighten the nuts of the gland follower by 1/6 turn. 2. Monitor the leakage for another five minutes. Excessive leakage: Repeat steps 1 and 2 until the minimum value has been reached. 30 of 58 B-Pump 79 6 Commissioning/Start-up/Shutdown Not enough leakage: Slightly loosen the nuts at the gland follower. No leakage: Switch off the pump set immediately! Loosen the gland follower and repeat start-up. Checking for leakage After the leakage has been adjusted, monitor the leakage for about two hours at maximum fluid temperature. Check that enough leakage occurs at the gland seal at minimum fluid pressure. Shutdown 6.1.5 CAUTION Reverse flow of fluid handled (not applicable to pumps with reverse rotation lock) Motor or winding damage! Excessive reverse runaway speed of the motor! ▷ Thrust bearing damage following prolonged periods of reverse rotation. (Applies to the radial bearing of the oil-lubricated plain bearing design) ▷ Observe the permissible reverse runaway speed of the motor. See the manufacturer's product literature included with the supplied documentation. ▷ Close the shut-off elements. ✓ The shut-off element in the suction line is and remains open. 1. Close the shut-off element in the discharge line slowly. 2. Switch off the motor immediately after closing the shut-off element and make sure the pump set runs down smoothly to a standstill. NOTE If the discharge line is equipped with a non-return or check valve, the shut-off element in the discharge line may remain open, provided the site's requirements and regulations are taken into account and observed. NOTE If shut-off is not possible, the pump will run in reverse direction. The reverse runaway speed must be lower than the rated speed. For prolonged shutdown periods: 1. Close the shut-off element in the suction line, if any. 2. Close the auxiliary connections. CAUTION Risk of freezing during prolonged pump shutdown periods Damage to the pump! ▷ Drain the pump and the cooling/heating chambers (if any) or otherwise protect them against freezing. B-Pump 31 of 58 80 6 Commissioning/Start-up/Shutdown 6.2 Operating limits DANGER Non-compliance with operating limits for pressure, temperature, fluid handled and speed Explosion hazard! Hot or toxic fluid could escape! ▷ Comply with the operating data indicated in the data sheet. ▷ Never use the pump for handling fluids it is not designed for. ▷ Avoid prolonged operation against a closed shut-off element. ▷ Never operate the pump at temperatures, pressures or rotational speeds exceeding those specified in the data sheet or on the name plate unless the written consent of the manufacturer has been obtained. 6.2.1 Maximum operating pressure CAUTION Permissible operating pressure exceeded Damage to connections and seals! ▷ Never exceed the operating pressure specified in the data sheet. The maximum operating pressure depends on the pump size, pump material and nominal pressure of the flange design. Neither the material / size dependent maximum pressure nor the maximum nominal pressure of the flange must be exceeded. Maximum operating pressure: see data sheet. 6.2.2 Temperature of the fluid handled CAUTION Fluid temperature too high or too low Damage to the pump! ▷ Avoid prolonged operation against a closed shut-off element. ▷ Never operate the pump at temperatures above or below those specified in the data sheet or on the name plate unless the written consent of the manufacturer has been obtained. If the values are not indicated in the data sheet, the following temperature limits apply. The temperatures must neither be below nor above these limits. Table 5: Temperature limits of the fluid handled Minimum fluid temperature Maximum fluid temperature 6.2.3 0 °C + 60 °C Abrasive fluids/solids CAUTION Abrasive particles or solids in the fluid Damage to the pump! ▷ Observe the limits specified indicated in the data sheet. ▷ Flush the piping prior to commissioning. ▷ Install a filter in the system, if required. 32 of 58 B-Pump 81 6 Commissioning/Start-up/Shutdown Do not exceed the maximum permissible solids content specified in the data sheet. When the pump handles fluids containing abrasive substances, increased wear of the hydraulic system and the shaft seal are to be expected. In this case, reduce the intervals commonly recommended for servicing and maintenance. NOTE Solids, especially long fibres, plastic residues or similar solids can lead to clogging of the barrier or flushing lines and to mechanical seal damage. 6.2.4 Hydraulic operating range CAUTION Non-compliance with hydraulic operating limits Damage to the pump and motor ▷ Observe the limits in the data sheet. ▷ Brief passage through the critical range below Qmin is permissible during startup. General information on the hydraulic operating range H Qmin System curve B Q-Hcurve Qmax NPSHRequired NPSHAvailable Q A A C Fig. 5: Pump operating range NPSH Available A C Inlet pressure available in the system Operating limit Operating range without NPSH safety allowance NPSH Required inlet pressure Required B Operating point The flow rate Q will develop automatically as a function of the discharge head H, in line with the pump's characteristic curve. The pump's permissible operating range has limits that are independent of each other in terms of their cause. Low flow operating limit This limit is indicated in the H/Q characteristic by Qmin or by discontinuation of the characteristic curve in the diagram. NPSH-related limits under off-design conditions The low flow and overload limits are determined by the ratio of NPSHRequired to NPSHAvailable. B-Pump 33 of 58 82 6 Commissioning/Start-up/Shutdown The NPSH limits are determined as follows: The intersections of NPSHRequired and NPSHAvailable are projected onto the H/Q characteristic, where they represent the operating limits. If the pump set is operated outside its operating limits or system-related changes occur, check the NPSH values. If necessary, consult your nearest customer service centre. 6.2.5 Frequency of starts DANGER Excessive surface temperature of the motor Explosion hazard! Damage to the motor! ▷ In case of explosion-proof motors, observe the frequency of starts specified in the manufacturer's product literature. CAUTION Re-starting while motor is still running down Damage to the pump (set)! ▷ Do not re-start the pump set before the pump rotor has come to a standstill. The frequency of starts is usually determined by the maximum temperature increase of the motor. This largely depends on the power reserves of the motor in steadystate operation and on the starting conditions (DOL, star-delta, moments of inertia, etc). Observe the motor manufacturer's operating instructions. 6.2.6 Fluid handled 6.2.6.1 Temperature of the fluid handled CAUTION Fluid temperature too high or too low Damage to the pump! ▷ Avoid prolonged operation against a closed shut-off element. ▷ Never operate the pump at temperatures above or below those specified in the data sheet or on the name plate unless the written consent of the manufacturer has been obtained. If the values are not indicated in the data sheet, the following temperature limits apply. The temperatures must neither be below nor above these limits. Table 6: Temperature limits of the fluid handled Minimum fluid temperature Maximum fluid temperature 6.2.6.2 0 °C + 60 °C Abrasive fluids/solids CAUTION Abrasive particles or solids in the fluid Damage to the pump! ▷ Observe the limits specified indicated in the data sheet. ▷ Flush the piping prior to commissioning. ▷ Install a filter in the system, if required. 34 of 58 B-Pump 83 6 Commissioning/Start-up/Shutdown Do not exceed the maximum permissible solids content specified in the data sheet. When the pump handles fluids containing abrasive substances, increased wear of the hydraulic system and the shaft seal are to be expected. In this case, reduce the intervals commonly recommended for servicing and maintenance. NOTE Solids, especially long fibres, plastic residues or similar solids can lead to clogging of the barrier or flushing lines and to mechanical seal damage. 6.3 Shutdown/storage/preservation 6.3.1 Measures to be taken for shutdown The pump (set) remains installed ✓ Sufficient fluid is supplied for the functional check run of the pump.7) 1. For prolonged shutdown periods, start up the pump (set) regularly between once a month and once every three months for approximately five minutes. This will prevent the formation of deposits within the pump and the pump intake area.7) The pump (set) is removed from the pipe and stored ✓ The pump has been properly drained and the safety instructions for dismantling the pump have been observed. 1. Spray-coat the inside wall of the pump casing, and in particular the impeller clearance areas, with a preservative. 2. Spray the preservative through the suction and discharge nozzles. It is advisable to then close the pump nozzles (e.g. with plastic caps or similar). 3. Oil or grease all exposed machined parts and surfaces of the pump (with silicone-free oil and grease, food-approved if required) to protect them against corrosion. 4. Contact KSB regarding preservation of the bearing. 5. Remove the gland packing. If the pump set is to be stored temporarily, only preserve the wetted components made of low-alloy materials. Commercially available preservatives can be used for this purpose. Observe the manufacturer's instructions for application/removal. Observe any additional instructions and information provided 6.4 Returning to service For returning the pump to service observe the sections on commissioning/start-up (⇨ Section 6.1 Page 28) and the operating limits (⇨ Section 6.2 Page 32) . In addition, carry out all servicing/maintenance operations before returning the pump (set) to service. (⇨ Section 7 Page 37) WARNING Failure to re-install or re-activate protective devices Risk of personal injury from moving parts or escaping fluid! ▷ As soon as the work is complete, re-install and/or re-activate any safety-relevant and protective devices. 7) If the intake area (e.g. intake elbow) and the pump have been drained, special measures must be taken for the functional check run. See section on routine maintenance and inspection intervals or contact KSB. B-Pump 35 of 58 84 7 Servicing/Maintenance 7 Servicing/Maintenance 7.1 Safety regulations DANGER Improperly serviced pump set Explosion hazard! Damage to the pump set! ▷ Service the pump set regularly. ▷ Prepare a maintenance schedule with special emphasis on lubricants, shaft seal and coupling. The operator ensures that all maintenance, inspection and installation work is performed by authorised, qualified specialist personnel who are thoroughly familiar with the manual. WARNING Unintentional starting of pump set Risk of injury by moving parts! ▷ Make sure that the pump set cannot be started up unintentionally. ▷ Always make sure the electrical connections are disconnected before carrying out work on the pump set. WARNING Fluids and supplies posing a health hazard and/or hot fluids or supplies Risk of injury! ▷ Observe all relevant laws. ▷ When draining the fluid take appropriate measures to protect persons and the environment. ▷ Decontaminate pumps which handle fluids posing a health hazard. WARNING Insufficient stability Risk of crushing hands and feet! ▷ During assembly/dismantling, secure the pump (set)/pump parts to prevent tipping or falling over. A regular maintenance schedule will help avoid expensive repairs and contribute to trouble-free, reliable operation of the pump (set)and pump components with a minimum of maintenance expenditure and work. NOTE All maintenance, service and installation work can be carried out by KSB Service. See data sheet for contact addresses Never use force when dismantling and reassembling the pump set. B / BU B-Pump 37 of 58 85 7 Servicing/Maintenance 7 Servicing/Maintenance 7.1 Safety regulations DANGER Improperly serviced pump set Explosion hazard! Damage to the pump set! ▷ Service the pump set regularly. ▷ Prepare a maintenance schedule with special emphasis on lubricants, shaft seal and coupling. The operator ensures that all maintenance, inspection and installation work is performed by authorised, qualified specialist personnel who are thoroughly familiar with the manual. WARNING Unintentional starting of pump set Risk of injury by moving parts! ▷ Make sure that the pump set cannot be started up unintentionally. ▷ Always make sure the electrical connections are disconnected before carrying out work on the pump set. WARNING Fluids and supplies posing a health hazard and/or hot fluids or supplies Risk of injury! ▷ Observe all relevant laws. ▷ When draining the fluid take appropriate measures to protect persons and the environment. ▷ Decontaminate pumps which handle fluids posing a health hazard. WARNING Insufficient stability Risk of crushing hands and feet! ▷ During assembly/dismantling, secure the pump (set)/pump parts to prevent tipping or falling over. A regular maintenance schedule will help avoid expensive repairs and contribute to trouble-free, reliable operation of the pump (set)and pump components with a minimum of maintenance expenditure and work. NOTE All maintenance, service and installation work can be carried out by KSB Service. See data sheet for contact addresses Never use force when dismantling and reassembling the pump set. B-Pump 37 of 58 86 7 Servicing/Maintenance 7.2 Maintenance/inspection 7.2.1 Supervision of operation DANGER Risk of potentially explosive atmosphere inside the pump Explosion hazard! ▷ The pump internals in contact with the fluid to be handled, including the seal chamber and auxiliary systems must be filled with the fluid to be handled at all times. ▷ Provide sufficient inlet pressure. ▷ Provide an appropriate monitoring system. DANGER Excessive temperatures as a result of bearings running hot or defective bearing seals Explosion hazard! Fire hazard! Damage to the pump set! ▷ Regularly check the lubricant level. ▷ Regularly check the temperatures of the rolling element bearings/bearing housing. ▷ Regularly check the rolling element bearings for running noises. DANGER Excessive temperatures due to dry-running Explosion hazard! Fire hazard! Damage to the pump set! ▷ Never operate the pump set without liquid fill. ▷ Never close the shut-off element in the suction line and/or supply line during pump operation. CAUTION Impermissibly high temperature of fluid handled Damage to the pump! ▷ Prolonged operation against a closed shut-off element is not permitted (heating up of the fluid). ▷ Observe the temperature limits in the data sheet and in the section on operating limits. (⇨ Section 6.2 Page 32) While the pump is in operation, observe and check the following: ▪ The pump must run quietly and free from vibrations at all times. ▪ In case of oil lubrication, ensure the oil level is correct. (⇨ Section 5.12 Page 27) ▪ Check the shaft seal. (⇨ Section 6.1.4 Page 30) ▪ Check the static seals for leakage. ▪ Check the rolling element bearings for running noises. Vibrations, noise and an increase in current input occurring during unchanged operating conditions indicate wear. ▪ Monitor the correct functioning of any auxiliary connections. ▪ Monitor the stand-by pump. To make sure that the stand-by pumps are ready for operation, start them up once a month. 38 of 58 B-Pump 87 7 Servicing/Maintenance ▪ Monitor the bearing temperature. The bearing temperature must not exceed the value specified in the data sheet (measured on the outside of the bearing housing). If temperature monitoring is provided, the bearing temperatures indicated in the data sheet apply to the measuring points of the sensors. ▪ Check the flexible or torsion-resistant elements of the coupling/Cardan shaft and replace as necessary. ▪ Check any pressure gauges. ▪ Check the drive as described in the manufacturer's product literature. ▪ Check that the fitted coupling guard does not touch the coupling. ▪ Make sure that the earth connection is fitted and marked. ▪ Cooling system (if any) Take the pump out of service at least once a year to thoroughly clean the cooling system. CAUTION Operation outside the permissible bearing temperature Damage to the pump! ▷ The bearing temperature of the pump (set) must never exceed the value specified in the data sheet (measured on the outside of the bearing housing). NOTE After commissioning, increased temperatures may occur at grease-lubricated rolling element bearings due to the running-in process. The final bearing temperature is only reached after a certain period of operation (up to 48 hours depending on the conditions). 7.2.2 Inspection work DANGER Excessive temperatures caused by friction, impact or frictional sparks Explosion hazard! Fire hazard! Damage to the pump set! ▷ Regularly check the coupling guard, plastic components and other guards of rotating parts for deformation and sufficient distance from rotating parts. 7.2.2.1 General information Check and service all components of the pump set as described in the corresponding operating manuals provided by the manufacturers. The manufacturer's product literature is included with the order documents which are supplied with the delivery. 7.2.2.2 Routine maintenance and inspection intervals Table 7: Routine maintenance and inspection intervals Interval Daily B-Pump Number of Time persons 1 6 min. 1 6 min. Maintenance job ▪ Check shaft seal leakage. ▪ Check the oil level and top up the oil, if required (only for oillubricated bearings) 39 of 58 88 7 Servicing/Maintenance Interval Weekly Monthly 8) 8) Every 4 years or if discharge head drops Number of Time Maintenance job persons 1 15 min. ▪ Check pump operation (inlet pressure, head, bearing temperature, noise and vibrations). 1 15 min. ▪ Check torsional play/condition of the coupling/Cardan shaft (see operating manual for the coupling/Cardan shaft). 1 15 min. ▪ Switch to a stand-by pump, if any, or carry out a functional check run (5 minutes). 1 15 min. ▪ Re-lubricate grease-packed rolling element bearings, relubrication quantity see data sheet 1 15 min. ▪ Check oil-lubricated rolling element bearings 9) ▪ Generally inspect and overhaul 2 the pump in accordance with the operating instructions. ▪ Check and replace, if necessary: – Bearings, casing wear ring, impeller wear ring, shaft protecting sleeve – Impeller and shaft – Fit new seals and gaskets. 7.2.2.3 Checking the clearances Excessive clearances will affect pump performance. Losses in efficiency and discharge head will occur. To check the clearance gaps, remove the rotor. If the clearance gap is larger than permitted, replace the casing wear ring and impeller wear ring (if any). See data sheet for clearances. NOTE If the max. clearance gaps specified are exceeded, replace the components affected. 7.2.2.4 Cleaning filters CAUTION Insufficient inlet pressure due to clogged filter/strainer in the suction line Damage to the pump! ▷ Monitor contamination of filter/strainer with suitable means (e.g. differential pressure gauge). ▷ Clean filter/strainer at appropriate intervals. 8) 9) See data sheet for intervals Depending on work required due to operating hours, operating conditions etc. 40 of 58 B-Pump 89 7 Servicing/Maintenance 7.2.2.5 Lubrication and lubricant change of thrust bearings DANGER Excessive temperatures as a result of bearings running hot or defective bearing seals Explosion hazard! Fire hazard! Damage to the pump set! ▷ Regularly check the bearing seals. ▷ Regularly check the condition of the lubricant. ▷ Regularly check the oil level and top up the oil (oil-lubricated bearings only). CAUTION Temporary storage of the pump set too long Deposits, condensation, resinification or leakage of grease! ▷ Change the complete grease fill before returning the pump set to service. ▷ Replace the grease fill every time the bearings are dismantled. CAUTION Pump stored too long or incorrectly Damage to the pump! ▷ Check especially the rolling element bearings and the lubricant. If any damage is suspected, replace the rolling element bearings. 7.2.2.5.1 Grease lubrication The bearings are supplied packed with high-quality grease. 7.2.2.5.1.1 Re-lubricating with grease WARNING Work in the immediate vicinity of rotating parts Risk of hand injuries! ▷ Always have this work performed by trained personnel. ▷ Take particular caution when performing this work. CAUTION Contaminated lubricating nipples Contamination of the lubricating grease! ▷ Clean the grease lubricating nipples before re-lubricating them. 1. Clean the lubricating nipples, if contaminated. 2. Position the grease press on the lubricating nipple. 3. Press in the grease. 7.2.2.5.1.2 Changing the grease ✓ The bearing assembly must be dismantled to change the grease. 1. Thoroughly clean bearing, bearing housing and bearing cover with petrol, benzene or a similar cleaning agent. Carefully remove the cleaning agent from the components again. 2. Check that all parts are in perfect working order. Replace any damaged parts. 3. Completely fill the cavities between the rolling elements of the bearings with grease. B-Pump 41 of 58 90 7 Servicing/Maintenance 4. Fill the cavities in the bearing cover with grease until they are about half full. 7.2.2.5.1.3 Intervals ▪ Re-lubricating with grease: see data sheet for intervals, at least every 2 years ▪ Changing the grease: every time the pump is dismantled 7.2.2.5.1.4 Grease quality ▪ Grease quality: see data sheet 7.2.2.5.1.5 Grease quantity ▪ Quantities for lubrication and re-lubrication: see data sheet 7.2.2.5.2 Oil lubrication The rolling element bearings are usually lubricated with mineral oil. 7.2.2.5.2.1 Topping up/changing the lubricant CAUTION Insufficient quantity of lubricant in bearing housing Damage to the bearings! ▷ Check the lubricant level regularly. ▷ Fill the bearing housing up to the mark. NOTE An excessively high oil level or grease quantity can lead to a temperature rise and to leakage of the fluid handled or oil. Oil is usually topped up during standstill of the pump. If it is unavoidable to top up the constant level-oiler with the pump running, temporary oil leakage may occur. Provide an appropriate drip collector. WARNING Lubricants posing a health hazard and/or hot lubricants Hazard to persons and the environment! ▷ When draining the lubricant take appropriate measures to protect persons and the environment. ▷ Wear safety clothing and a protective mask, if required. ▷ Collect and dispose of any lubricants. ▷ Observe all legal regulations on the disposal of fluids posing a health hazard. ✓ A suitable container for the used oil is on hand. 42 of 58 1. Place the container beneath the lubricant draining element. 2. Unscrew/open the lubricant draining element and drain the lubricant. 3. Once the bearing housing has run empty, close the lubricant drain. 4. Remove the venting element. 5. Fill the lubricant up to the mark using the opening provided for the venting element. 6. After a short time, check whether the oil level has dropped at the marking. If the oil level is too low, top it up with oil. B-Pump 91 7 Servicing/Maintenance 7.2.2.5.2.2 Intervals ▪ Oil change interval: see data sheet 7.2.2.5.2.3 Oil quality ▪ Oil quality: see data sheet 7.2.2.5.2.4 Oil quantity ▪ Oil quantity: see data sheet 7.3 Drainage/cleaning WARNING Fluids, consumables and supplies which are hot or pose a health hazard Hazard to persons and the environment! ▷ Collect and properly dispose of flushing fluid and any residues of the fluid handled. ▷ Wear safety clothing and a protective mask, if required. ▷ Observe all legal regulations on the disposal of fluids posing a health hazard. If the fluids handled by the pump (set) leave residues which might lead to corrosion damage when coming into contact with atmospheric humidity, or which might ignite when coming into contact with oxygen, the pump (set) must be flushed through, neutralised, and anhydrous inert gas must be blown through the pump for drying purposes. If available, use the suction-side connections to drain the fluid handled (see general arrangement drawing/outline drawing). 7.4 Dismantling the pump set 7.4.1 General information/Safety regulations DANGER Insufficient preparation of work on the pump (set) Risk of injury! ▷ Properly shut down the pump set. ▷ Close the shut-off elements in suction and discharge line. ▷ Drain the pump and release the pump pressure. ▷ Close any auxiliary connections. ▷ Allow the pump set to cool down to ambient temperature. WARNING Unqualified personnel performing work on the pump (set) Risk of injury! ▷ Always have repair and maintenance work performed by specially trained, qualified personnel. WARNING Improper lifting/moving of heavy assemblies or components Personal injury and damage to property! ▷ Use suitable transport devices, lifting equipment and lifting tackle to move heavy assemblies or components. B-Pump 43 of 58 92 7 Servicing/Maintenance WARNING Unintentional starting of pump set Risk of injury by moving parts! ▷ Make sure that the pump set cannot be started up unintentionally. ▷ Always make sure the electrical connections are disconnected before carrying out work on the pump set. WARNING Hot surface Risk of injury! ▷ Allow the pump set to cool down to ambient temperature. WARNING Components with sharp edges Risk of cutting or shearing injuries! ▷ Always use appropriate caution for installation and dismantling work. ▷ Wear work gloves. Observe the general safety instructions and information. (⇨ Section 2.8 Page 10) For any work on the motor, observe the instructions of the relevant motor manufacturer. For dismantling and reassembly refer to the general assembly drawing. In the event of damage you can always contact our service staff. Preparing the pump set 7.4.2 DANGER The pump or individual components could slip out of the suspension arrangement Danger to life from falling parts! ▷ Always transport the pump or components in the specified position. ▷ Never attach the suspension arrangement to the free shaft end of the pump. ▷ Refer to the weight of the individual components and the centre of gravity. ▷ Observe the applicable local accident prevention regulations. ▷ Use suitable, permitted lifting accessories, e.g. self-tightening lifting tongs. DANGER Pump (set) tipping over Danger to life from pump or components tipping over! ▷ Never undo screwed connections without suspending and securing the components to be dismantled in a hoisting tackle. ▷ Only dismantle the pump (set) in the specified order. ▷ Only deposit components on suitable surfaces and in centre-of-gravity position, so that they cannot tip over. NOTE Vertical installation For dismantling a vertically installed pump, the complete pump has to be removed and placed in horizontal position. Then, the complete rotor can be removed and dismantled. 44 of 58 B-Pump 93 7 Servicing/Maintenance Preparing for dismantling ✓ The gate valves in the suction and discharge lines have been closed. ✓ The motor has been disconnected from the power supply and secured against unintentional start-up. ✓ The pump has been drained. 1. Remove the flushing line and any auxiliary feed lines connected to the pump. 2. Remove coupling guard 681 and guard plates 680. 3. Separate the pump-end coupling half as described in the operating instructions for the coupling. (See the manufacturer's product literature included with the supplied documentation.) Dismantling the supplied design/installation 7.4.3 NOTE See other applicable documents for removing and dismantling the delivered design/ installation. 7.5 Reassembling the pump set 7.5.1 General information/Safety regulations DANGER The pump or individual components could slip out of the suspension arrangement Danger to life from falling parts! ▷ Always transport the pump or components in the specified position. ▷ Never attach the suspension arrangement to the free shaft end of the pump. ▷ Refer to the weight of the individual components and the centre of gravity. ▷ Observe the applicable local accident prevention regulations. ▷ Use suitable, permitted lifting accessories, e.g. self-tightening lifting tongs. DANGER Pump (set) tipping over Danger to life from pump or components tipping over! ▷ Never undo screwed connections without suspending and securing the components to be dismantled in a hoisting tackle. ▷ Only dismantle the pump (set) in the specified order. ▷ Only deposit components on suitable surfaces and in centre-of-gravity position, so that they cannot tip over. WARNING Improper lifting/moving of heavy assemblies or components Personal injury and damage to property! ▷ Use suitable transport devices, lifting equipment and lifting tackle to move heavy assemblies or components. WARNING Unqualified personnel performing work on the pump (set) Risk of injury! ▷ Always have repair and maintenance work performed by specially trained, qualified personnel. B-Pump 45 of 58 94 7 Servicing/Maintenance WARNING Unintentional starting of pump set Risk of injury by moving parts! ▷ Make sure that the pump set cannot be started up unintentionally. ▷ Always make sure the electrical connections are disconnected before carrying out work on the pump set. CAUTION Improper reassembly Damage to the pump! ▷ Reassemble the pump (set) in accordance with the general rules of sound engineering practice. ▷ Replace any damaged/worn parts. ▷ Use original spare parts only. WARNING Components heated up for installation Risk of burns to hands! ▷ Wear protective gloves suitable for installation work. ▷ Let components cool down after installation. Observe the general safety instructions and information. (⇨ Section 2.8 Page 10) For any work on the motor, observe the instructions of the relevant motor manufacturer. For dismantling and reassembly refer to the general assembly drawing. In case of damage you can always contact our service staff. Sequence O-rings/V-rings Always reassemble the pump in accordance with the corresponding general assembly drawing and installation instructions. ▪ Never use O-rings that have been glued together from material sold by the metre. ▪ Replace all O-rings and V-rings and clean their locating fits on the shaft. Fit all sealing elements on the relevant components before starting with the assembly. Assembly adhesives ▪ Observe the installation instructions regarding cleaning, lubricating and sealing agents. ▪ Remove any residues of liquid sealants before starting with the assembly. Tightening torques For reassembly, tighten all screws and bolts as specified in this manual. 7.5.2 Assembling the supplied design/installation NOTE See other applicable documents for installing and assembling the delivered design/ installation. 7.6 Spare parts stock 7.6.1 Ordering spare parts Please order any replacement or spare parts required from: 46 of 58 B-Pump 95 7 Servicing/Maintenance KSB Pumps Company Limited 16/2, Sir Aga Khan Road Lahore, Pakistan Telefax: +92 42 3636 8878-4 Telephone: +92 42 3630 4173-4 Always quote the following data when ordering replacement or spare parts: ▪ Type series ▪ Size ▪ KSB order number ▪ Year of construction Refer to the name plate for all data. Also specify the following data: ▪ Description ▪ Part No. ▪ Quantity of spare parts ▪ Shipping address ▪ Mode of dispatch (freight, mail, express freight, air freight) Refer to the general assembly drawing/list of components for part numbers and descriptions. 7.6.2 Recommended spare parts stock for 2 years' operation to DIN 24296 Table 8: Quantity of spare parts for recommended spare parts stock Part No. 211 212 213 230 231 11) 12) 13) Number of pumps (including stand-by pumps) 10)11) 320 321 382.1 384 400.1-x 411.1 x . 412.1-x 422.1-x 433 10) Description Pump shaft Intermediate shaft10)12) Top shaft10) Impeller11) Suction stage impeller12)11) Rotor11) (for multistage pumps) Angular contact ball bearing Deep-groove ball bearing12) Bearing carrier13) Thrust collar13) Gasket Joint ring O-ring Felt ring Mechanical seal Mechanical seal, complete11) Primary ring11) Mating ring11) O-rings11) Secondary seal at mating ring11) 2 3 1 1*n12) 1 1*n12) 1 1 1 1 1 1 4*n12) 4*n12) 4*n12) 4*n12) 1 1 1*n12) 1 1*n12) 1 1 1 1 1 1 6*n12) 6*n12) 6*n12) 6*n12) 1 2 2 2 2 3 3 3 3 4 5 6/7 Quantity of spare parts 1 2 2 1*n12) 2*n12) 2*n12) 1 2 2 1*n12) 2*n12) 2*n12) 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 8*n12) 8*n12) 9*n12) 8*n12) 8*n12) 9*n12) 8*n12) 8*n12) 9*n12) 8*n12) 8*n12) 9*n12) 2 2 2 4 4 4 4 5 5 5 5 6 6 7 7 8/9 10 and more 2 2*n12) 2 2*n12) 2 2 3 3 4 4 12*n12) 12*n12) 12*n12) 10*n12) 3 20 % 20 % 20 % 20 % 20 % 20 % 25 % 25 % 50 % 50 % 150 % 150 % 150 % 100 % 25 % 7 7 9 9 90 % 90 % 100 % 100 % With keys, shaft bolts/screws and shaft nuts Optional If any If the thrust and radial bearing is a plain bearing B-Pump 47 of 58 96 7 Servicing/Maintenance Part No. Description Number of pumps (including stand-by pumps) Set of springs11) 461 502 503 521 524.1-x 526/920.x 529 540 541 52-1 544 545.1-x 840 851/852 920.1 931.1 x . 14) 15) Gland packing (set)14) Casing wear ring Impeller wear ring12) Stage sleeve12)15) Shaft protecting sleeve (shaft seal)12) Centring sleeve/locknut15) Bearing sleeve (shaft protecting sleeve) Bush (thrust and radial bearing)13) Interstage bush12)15) Locking sleeve, complete12)15) Threaded bush15) Bearing bush Torquetransmitting coupling elements Conical/threaded coupling Nut with two flats12)15) Lockwasher12)15) 2 3 4 5 1 4 2*n 2*n 2*n 2 1 4 2*n 2*n 2*n 2 1 2 1 3 1 4 2 5 1 2*n 1*n 2 2*n 1 1 3*n 1*n 3 3*n 1 2 4*n 1*n 4 4*n 2 1*n 1 1 1*n 1 1 2*n 2 2 6/7 8/9 10 and more 2 8 4*n 4*n 4*n 4 20 % 100 % 50 % 50 % 50 % 50 % 2 7 2 9 20 % 100 % 2 5*n 2*n 5 5*n 2 3 7*n 2*n 7 7*n 3 4 9*n 2*n 9 9*n 4 50 % 100 % 20 % 2*n 2 2 3*n 3 3 4*n 4 4 30 % 30 % 30 % Quantity of spare parts 1 1 2 6 6 6 2*n 3*n 3*n 2*n 3*n 3*n 2*n 3*n 3*n 2 3 3 100 % 30 % Supplied by the metre Not considered in DIN 24296 48 of 58 B-Pump 97 8 Trouble-shooting 8 Trouble-shooting WARNING Improper remedial work on the pump (set) Risk of injury! ▷ For any work performed in order to remedy faults on the pump (set) observe the relevant information given in this operating manual or the product literature provided by the accessories manufacturers. A Pump pressure is too low B Excessive pump discharge pressure C Excessive flow rate D Pump delivers insufficient flow rate E Excessive power consumption F Pump is running but does not deliver G Pump stops during operation H Vibrations and noise during pump operation I Impermissible rise of temperature inside the pump J Excessive bearing temperature K Excessive leakage at the shaft seal L Motor is overloaded M Leakage at the pump Table 9: Trouble-shooting A B C D E F G H I J K L M Possible cause Remedy16) ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ Operating point B does not match ▪ Re-adjust to duty point the Q and H performance data (e.g. close/open shut-off calculated in advance. element accordingly). ✘ ✘ Pump or piping are not completely ▪ Vent pump. ✘ vented. ✘ ✘ ✘ ✘ ✘ ✘ Inlet line or impeller clogged ▪ Clean the impeller. ▪ Check system for impurities. ▪ Remove deposits in pump and/or piping. ✘ ✘ ✘ ✘ ✘ Formation of air pockets in the piping ✘ ✘ ✘ ✘ ✘ NSPH available/water level too low. ▪ Check any strainers installed/ suction opening. ▪ Fit venting device. ▪ Alter piping layout. ▪ Check operating mode. ▪ Increase back pressure by throttling. ▪ Correct suction conditions. ▪ Increase suction head. ▪ Install pump at a lower level. ▪ Fully open the shut-off element in the inlet line, if any. ▪ Alter the inlet line if piping losses are too high, if any. 16) Pump pressure must be released before attempting to remedy faults on parts which are subjected to pressure. B-Pump 49 of 58 98 8 Trouble-shooting 8 Trouble-shooting WARNING Improper remedial work on the pump (set) Risk of injury! ▷ For any work performed in order to remedy faults on the pump (set) observe the relevant information given in this operating manual or the product literature provided by the accessories manufacturers. A Pump pressure is too low B Excessive pump discharge pressure C Excessive flow rate D Pump delivers insufficient flow rate E Excessive power consumption F Pump is running but does not deliver G Pump stops during operation H Vibrations and noise during pump operation I Impermissible rise of temperature inside the pump J Excessive bearing temperature K Excessive leakage at the shaft seal L Motor is overloaded M Leakage at the pump Table 9: Trouble-shooting A B C D E F G H I J K L M Possible cause Remedy16) ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ Operating point B does not match ▪ Re-adjust to duty point the Q and H performance data (e.g. close/open shut-off calculated in advance. element accordingly). ✘ ✘ Pump or piping are not completely ▪ Vent pump. ✘ vented. ✘ ✘ ✘ ✘ ✘ ✘ Inlet line or impeller clogged ▪ Clean the impeller. ▪ Check system for impurities. ▪ Remove deposits in pump and/or piping. ✘ ✘ ✘ ✘ ✘ Formation of air pockets in the piping ✘ ✘ ✘ ✘ ✘ NSPH available/water level too low. ▪ Check any strainers installed/ suction opening. ▪ Fit venting device. ▪ Alter piping layout. ▪ Check operating mode. ▪ Increase back pressure by throttling. ▪ Correct suction conditions. ▪ Increase suction head. ▪ Install pump at a lower level. ▪ Fully open the shut-off element in the inlet line, if any. ▪ Alter the inlet line if piping losses are too high, if any. 16) Pump pressure must be released before attempting to remedy faults on parts which are subjected to pressure. B-Pump 49 of 58 99 8 Trouble-shooting A B C D E F G H I J K L ✘ M Possible cause Shaft seal worn/Score marks or roughness on shaft protecting sleeve. Remedy16) ▪ Check flushing liquid/barrier fluid pressure. ▪ Clean barrier fluid, supply external barrier fluid, if necessary, or increase barrier fluid pressure. ▪ Fit new shaft seal. ▪ Replace worn components by new ones. ✘ ✘ ✘ ✘ ✘ ✘ Unfavourable flow to pump suction nozzle ✘ Gland follower, seal cover excessively tightened or tightened askew, incorrect packing material. ▪ Replace shaft protecting sleeve. ▪ Check the inflow conditions of the intake reservoir and intake chamber. ▪ Check whether pipe routing results in swirling or irregular flow (e.g. downstream of elbow) and correct, if necessary. ▪ Correct. ▪ Replace. ▪ Correct. ▪ Replace gland packing. ✘ ✘ ✘ Lack of cooling liquid or dirty cooling chamber. ▪ Replace worn components by new ones. ▪ Check flushing liquid/barrier fluid pressure. ▪ Clean barrier fluid, supply external barrier fluid, if necessary, or increase barrier fluid pressure. ▪ Increase cooling liquid quantity. ✘ ✘ ✘ Pump is warped or sympathetic vibrations in the piping. Increased axial thrust ▪ Clean coolant/cooling chamber. ▪ Re-align pump/drive. ▪ Check piping connections and secure fixing of pump; improve fixing of piping, if necessary. ▪ Fix pipelines using antivibration material. ▪ Check duty point/pump selection. ▪ Check operating mode. ✘ ✘ ✘ 16) Insufficient or excessive quantity of lubricant or unsuitable lubricant Non-compliance with specified coupling distance ▪ Check suction side flow conditions. ▪ Clean the bearings. ▪ Top up, reduce or change lubricant. ▪ Correct distance in accordance with the general arrangement drawing. Pump pressure must be released before attempting to remedy faults on parts which are subjected to pressure. B-Pump 51 of 58 100 8 Trouble-shooting A B C D E F ✘ ✘ ✘ G H I J K L M Possible cause Remedy16) ✘ Motor is running on 2 phases only. ▪ Replace defective fuses. ▪ Check electrical connections. ✘ ✘ ✘ Rotor out of balance ▪ Check switchgear. ▪ Clean the rotor. ▪ Check run-out; re-align, if necessary. ✘ ✘ ✘ ✘ ✘ Defective bearing(s) Flow rate is too low. ▪ Re-balance the rotor. ▪ Replace. ▪ Re-adjust to duty point. ▪ Fully open shut-off element in suction/inlet line. ▪ Fully open shut-off element in discharge line. ✘ ✘ In star-delta operation, motor sticks at star stage ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ▪ Re-calculate or measure hydraulic losses HV. ▪ Check electrical connections. ▪ Check switchgear. Impermissible air or gas content in fluid handled ▪ Close or only slightly open the shut-off element in the discharge line during start-up. ▪ Check suction line for leakage, seal if necessary. Air intake at pump inlet (e.g. airentraining vortices) ▪ Replace defective parts. ▪ Check intake area for airentraining vortices. ▪ Correct suction conditions. ▪ Reduce flow velocity at suction line inlet. ✘ Cavitation (rattling noise) ▪ Increase suction head. ▪ Correct suction conditions. ▪ Check operating mode. ▪ Increase suction head. ✘ ✘ ✘ ✘ Foundation not rigid enough. ✘ ✘ ✘ ✘ Impermissible single-pump/parallel operation. ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ Shaft is out of true. Impeller rubs against casing components. Operating voltage is too low. Excessive surface pressure in the mechanical seal's sealing clearance, lack of lubricant/circulation liquid ▪ Install pump at a lower level. ▪ Check. ▪ Correct. ▪ Re-adjust to duty point. ▪ Alter system conditions. ▪ Adjust pump characteristic H. ▪ Replace. ▪ Check rotor. ▪ Check impeller position. ▪ Verify that piping has been connected without transmitting any stresses or strains. ▪ Increase the operating voltage. ▪ Check installation dimensions. 18) 16) Pump pressure must be released before attempting to remedy faults on parts which are subjected to pressure. 18) Separate pump/pump set from the power supply and depressurise! 52 of 58 B-Pump 101 8 Trouble-shooting 8.1 Explanation of faults The example illustrated in the diagram serves to facilitate understanding of the causes of faults/malfunctions and their remedies described in the Trouble-shooting section. Many operating faults/malfunctions on pumps are caused by hydraulic phenomena. The hydraulic behaviour of a pump is illustrated by its characteristic curves H, P, Eta and NPSH in combination with the system characteristic curves HA and NPSHA as a function of flow rate Q. The operating point B is given by the intersection between the system curve HA and the pump's characteristic curve H. If the cause of a fault or malfunction is unclear, consult your nearest KSB service centre. P HA B HV Hgeo Eta NPSH H NPSHA Q Fig. 6: Adjusting to the duty point P B H Eta Q Pump power output Operating point Head Efficiency Flow rate B-Pump HA Hv NPSH NPSHA Hgeo System curve Hydraulic losses (system) Required inlet pressure Inlet pressure available in the system Static head 53 of 58 102 9 Related Documents 9 Related Documents NOTE See separately compiled documents. 54 of 58 B-Pump 103 10 EC Declaration of Conformity 10 EC Declaration of Conformity Manufacturer: KSB Pumps Company Limited 16/2, Sir Aga Khan Road Lahore (Pakistan) The manufacturer herewith declares that the product: B-Pump KSB order number: ................................................................................................... ▪ is in conformity with the provisions of the following Directives as amended from time to time: – Pump (set): Machinery Directive 2006/42/EC The manufacturer also declares that ▪ the following harmonised international standards have been applied: – ISO 12100 – EN 809 Person authorised to compile the technical file: Christian Saar Head of Product Development Borehole Pumps and Motors KSB Aktiengesellschaft Neue Industriestr. 8 66424 Homburg (Germany) The EC Declaration of Conformity was issued in/on: Place, date ..............................19)............................. Name Function Company Address 19) A signed, legally binding declaration of conformity is supplied with the product. B-Pump 55 of 58 104 11 Certificate of Decontamination 11 Certificate of Decontamination Type: Order number/ Order item number20): ................................................................................................................................ ................................................................................................................................ Delivery date: ................................................................................................................................ Field of application: ................................................................................................................................ Fluid handled20): ................................................................................................................................ Please tick where applicable20): ⃞ Radioactive ⃞ Explosive ⃞ Corrosive ⃞ Toxic ⃞ Harmful ⃞ Bio-hazardous ⃞ Highly flammable ⃞ Safe Reason for return20): ................................................................................................................................ Comments: ................................................................................................................................ ................................................................................................................................ The product/accessories have been carefully drained, cleaned and decontaminated inside and outside prior to dispatch/ placing at your disposal. We herewith declare that this product is free from hazardous chemicals, biological and radioactive substances. On seal-less pumps, the rotor has been removed from the pump for cleaning. ⃞ ⃞ No special safety precautions are required for further handling. The following safety precautions are required for flushing fluids, fluid residues and disposal: ............................................................................................................................................................... ............................................................................................................................................................... We confirm that the above data and information are correct and complete and that dispatch is effected in accordance with the relevant legal provisions. .................................................................... Place, date and signature 20) ....................................................... Address ....................................................... Company stamp Required fields 56 of 58 B-Pump 105 Index Index A Mechanical seal 30 Misuse 9 Abrasive fluids 33, 35 Applications 8 Auxiliary connections 25 N Noise characteristics 17 B O Bearing temperature 39 Bearings 13 C Certificate of decontamination 56 Commissioning/start-up 28 D Operating limits 32 Order number 6 Ordering spare parts 47 Other applicable documents 6 P Partly completed machinery 6 Permissible forces and moments at the pump nozzles 24 Piping 22 Preservation 13, 35 Priming and venting 28 Pump casing 16 Design 15 Dismantling 44 Disposal 14 E Explosion protection 10, 19, 23, 25, 26, 28, 29, 30, 32, 34, 37, 38, 39, 41 R F Reassembly 46 Return to supplier 14 Returning to service 35 Running noises 38 Filter 40 Filters 23 Frequency of starts 34 S Impeller type 16 Installation at site 19 Intended use 8 Safety 8 Safety awareness 9 Scope of supply 17 Shaft guide bearing 16 Shaft seal 16 Shutdown 35 Spare parts stock 47 Start-up 29 Storage 35 M T Maintenance 37 Trouble-shooting 49 G Gland packing 30 I B-Pump 57 of 58 106 107 Motores | Automação | Energia | Transmissão & Distribuição | Tintas Manual Geral de Instalação, Operação e Manutenção de Motores Elétricos Installation, Operation and Maintenance Manual of Electric Motors Manual General de Instalación, Operación y Mantenimiento de Motores Eléctricos -- 108 www.weg.net Português 2 54 Español 106 ESPAÑOL English 106 Motores Eléctricos 109 www.weg.net Manual General de Instalación, Operación y Mantenimiento de Motores Eléctricos Este manual presenta informaciones referentes a los motores eléctricos WEG de inducción con rotor de jaula, con rotor de imanes permanentes o híbridos, de baja y alta tensión, en las carcasas IEC 56 a 630 y NEMA 42 a 9606/10. Las líneas listadas abajo poseen informaciones adicionales, encontradas en manuales específicos: J Motores para extracción de humo (Smoke Extraction Motor); J Motores con freno electromagnético; J Motores para Áreas Clasificadas. Estos productos están de acuerdo con las siguientes normas, cuando son aplicables: J NBR 17094-1: Máquinas Eléctricas Giratorias - Motores de Inducción - Parte 1: J Trifásicos J NBR 17094-2: Máquinas Eléctricas Giratorias - Motores de Inducción - Parte 1: J Monofásicos J IEC 60034-1: Rotating Electrical Machines - Part 1: J Rating and Performance J NEMA MG 1: Motors and Generators J CSA C 22.2 N°100: Motors and Generatorss J UL 1004-1: Rotating Electrical Machines – General Requirements En caso de dudas sobre la aplicabilidad de este material, contacte a WEG. Motores Eléctricos 107 110 www.weg.net INDICE 1. DIFINICIONES ........................................................................................................... 110 2. RECOMENDACIONES INICIALES ........................................................................... 111 2.1.SEÑALES DE ADVERTENCIA .............................................................................................................111 2.2. VERIFICACIÓN EN LA RECEPCIÓN.................................................................................................111 2.3. PLACAS DE IDENTIFICACIÓN ......................................................................................................... 112 3. SEGURIDAD .............................................................................................................. 115 4. MANIPULACION Y TRANSPORTE ..................................................................................................... 116 4.1. IZAMIENTO ........................................................................................................................................ 116 4.1.1. Motores horizontales con un ojal de izamiento ................................................................... 117 4.1.2. Motores horizontales con dos o más ojales de izamiento ................................................. 117 4.1.3. Motores verticales ................................................................................................................... 118 4.1.3.1. Procedimiento para colocación de motores W22 en posición vertical.......................... 119 4.1.3.2. Procedimiento para colocación de motores HGF en posición vertical ......................... 120 4.2. PROCEDIMIENTO PARA VIRADA DE MOTORES W22 VERTICALES .......................................... 121 ESPAÑOL 5. ALMACENADO......................................................................................................... 123 5.1. SUPERFICIES MECANIZADAS EXPUESTAS .................................................................................. 123 5.2. APILAMIENTO ................................................................................................................................... 123 5.3. COJINETES........................................................................................................................................ 124 5.3.1. Cojinetes de rodamiento lubricados a grasa ....................................................................... 124 5.3.2. Cojinetes de rodamiento con lubricación a aceite ............................................................. 124 5.3.3. Cojinetesde rodamiento con lubricación de tipo Oil Mist.................................................. 125 5.3.4. Cojinetes de deslizamiento .................................................................................................... 125 5.4. RESISTENCIA DE AISLAMIENTO.................................................................................................... 125 5.4.1. Procedimiento para medición de la resistencia de aislamiento ........................................ 125 6. INSTALACION ...........................................................................................................128 6.1. CIMIENTOS PARA EL MOTOR ......................................................................................................... 129 6.2. FIJACION DEL MOTOR .................................................................................................................... 130 6.2.1. Fijación por las patas .............................................................................................................. 131 6.2.2. Fijación por brida .................................................................................................................... 132 6.2.3. Fijación por pad ....................................................................................................................... 132 6.3. BALANCEO ........................................................................................................................................ 133 6.4. ACOPLAMIENTOS ............................................................................................................................ 133 6.4.1. Acoplamiento directo .............................................................................................................. 133 6.4.2. Acoplamiento por engrenaje ................................................................................................. 133 6.4.3. Acoplamiento por poleas y correas ...................................................................................... 133 6.4.4. Acoplamiento de motores equipados con cojinetes de deslizamento............................. 133 6.5. NIVELACION ...................................................................................................................................... 134 6.6. ALINEAMIENTO................................................................................................................................. 134 6.7. CONEXION DE MOTORES LUBRICADOS A ACEITE O DE TIPO OIL MIST ................................ 135 6.8. CONEXION DEL SISTEMA DE REFRIGERACION A AGUA ........................................................... 135 6.9. CONEXION ELECTRICA ................................................................................................................... 135 108 Motores Eléctricos 111 www.weg.net 6.10. CONEXION DE LOS DISPOSITIVOS DE PROTECCION TERMICA ............................................. 136 6.11. TERMORESISTORES (Pt-100) ........................................................................................................ 137 6.12. METODOS DE PARTIDA ................................................................................................................. 139 6.13. MOTORES ALIMENTADOS POR CONVERTIDOR DE FRECUENCIA ......................................... 140 6.13.1. Uso de Filtros (dV/dt) ............................................................................................................. 140 6.13.1.1. Motor con alambre circular esmaltado ............................................................................ 140 6.13.1.2. Motor con bobina preformada .......................................................................................... 140 6.13.2. Aislamiento de los Cojinetes ................................................................................................ 141 6.13.3. Frecuencia de Conmutación ................................................................................................ 141 6.13.4. Limite de la rotación mecánica ............................................................................................ 141 7. OPERACION ..............................................................................................................142 7.1. PARTIDA DEL MOTOR ...................................................................................................................... 142 7.2. CONDICIONES DE OPERACIÓN ..................................................................................................... 144 7.2.1. Límites de la severidad de vibración ..................................................................................... 145 8. MANTENIMIENTO ....................................................................................................146 8.1. INSPECCION GENERA .................................................................................................................... 146 8.2. LUBRICACION .................................................................................................................................. 146 ESPAÑOL 8.2.1. Cojinetes de rodamiento lubricados a grasa ....................................................................... 147 8.2.1.1. Motores sin grasera.............................................................................................................. 149 8.2.1.2. Motores con grasera............................................................................................................ 149 8.2.1.3. Compatibilidad de la grasa Mobil Polyrex EM con otras grasas.................................... 149 8.2.2. Cojinetes de rodamiento lubricados a aceite...................................................................... 150 8.2.3. Cojinetes de rodamiento con lubricación del tipo Oil Mist ............................................... 150 8.2.4. Cojinetes de deslizamiento .................................................................................................... 150 8.3. DESMONTAJE Y MONTAJE ............................................................................................................. 151 8.3.1. Caja de conexión .................................................................................................................... 152 8.4. PROCEDIMIENTO PARA ADECUACION DE LA RESISTENCIA DE AISLAMIENTO ................... 152 8.5. PARTES Y PIEZAS ............................................................................................................................ 153 9. INFORMACIONES AMBIENTALES ..........................................................................154 9.1. EMBALAJE ........................................................................................................................................ 154 9.2. PRODUCTO ..................................................................................................................................... 154 10. PROBLEMAS Y SOLUCIONES...............................................................................155 11. TERMINO DE GARANTIA .......................................................................................156 12. TERMINO DE CONFORMIDAD ..............................................................................157 Motores Eléctricos 109 112 www.weg.net 1. DEFINICIONES Balanceo: procedimiento por el cual la distribución de masa de un cuerpo es verificada y, si es necesario, ajustada para garantizar que el desbalance residual o las vibraciones y fuerzas en los cojinetes en la frecuencia de rotación mecánica estén dentro de los límites especificados en las normas internacionales. Grado de balanceo: indica la amplitud de pico de la velocidad de vibración, expresada en mm/s, de un rotor girando libre en el espacio y es producto de un desbalance específico y la velocidad angular del rotor a la velocidad máxima de operación. Parte puesta a tierra: partes metálicas eléctricamente conectadas al sistema de puesta a tierra. Parte viva: Conductor o parte conductora destinada a ser energizada en condiciones normales de uso, incluyendo el conductor neutro. Personal autorizado: trabajador que tiene anuencia formal de la empresa. Personal capacitado: trabajador que atienda las siguientes condiciones, simultaneamente: reciba capacitación bajo orientación y responsabilidad de profesional habilitado y autorizado; J bajo responsabilidad de profesional habilitado y autorizado. J Nota: La capacitación sólo es válida para la empresa que lo capacitó y en las condiciones establecidas por el profesional habilitado y autorizado responsable por la capacitación. Personal habilitado: trabajador previamente calificado y con registro en el consejo de clase competente. ESPAÑOL Personal calificado: trabajador que compruebe conclusión de curso específico en el área eléctrica por el sistema oficial de enseñanza. 110 Motores Eléctricos 113 www.weg.net 2. RECOMENDACIONES INICIALES Los motores eléctricos poseen circuitos energizados, componentes giratorios y superficies calientes, durante su operación normal, que pueden causar daños personales. De esta forma, todas las actividades relacionadas a su transporte, almacenado, instalación, operación y mantenimiento deben ser realizadas por personal capacitado. Deben ser observadas las normas y procedimientos vigentes en el país de instalación. La no observación de las instrucciones indicadas en este manual y demás referencias en el sitio web: www.weg.net puede resultar en serios daños personales y materiales y anular la garantía del producto. En este manual no son presentadas todas las informaciones detalladas sobre posibles variantes constructivas ni considerados todos los casos de montaje, operación o mantenimiento. Este documento contiene informaciones necesarias para que las personas capacitadas puedan ejecutar el servicio. Las imágenes presentadas son meramente ilustrativas. Para motores utilizados para extracción de humo (Smoke Extraction Motors), consulte también las instrucciones del manual 50026367 (inglés) disponible en el sitio web www.weg.net. Para operación de motores con freno, consultar las informaciones del manual del motofreno WEG 50000701 (portugués) / 50006742 (inglés) o motofreno Intorq 50021505 (portugués) / 50021973 (inglés) disponibles en el sitio web www.weg.net. La correcta definición de las características del ambiente y de la aplicación es de responsabilidad del usuario. ESPAÑOL Durante el período de garantía del motor, los servicios de reparación, revisión y recuperación deben ser realizadas por Asistentes Técnicos autorizados WEG para continuidad del término de garantía. 2.1. SENALES DE ADVERTENCIA Advertencia sobre seguridad y garantía. 2.2. VERIFICACION EN LA RECEPCION Todos los motores son testeados durante el proceso de fabricación. En la recepción del motor, verifique si ocurrieron daños durante el transporte. Ante la ocurrencia de cualquier daño, regístrelo por escrito junto al agente transportador, y comuníquelo inmediatamente a la compañía aseguradora y a WEG. La no comunicación puede resultar en la cancelación de la garantía. Se debe realizar una inspección completa en el producto: J Verifique si los datos contenidos en la placa de identificación están de acuerdo con el pedido de compra; J Remueva los dispositivos de trabado del eje (en caso que existan) y gire manualmente el eje para verificar si el mismo gira libremente. J Asegúrese que el motor no haya sido expuesto a polvareda y humedad excesiva durante el transporte. No remueva la grasa de protección de la punta del eje, ni los tapones que cierran los agujeros de la caja de conexión, si existen. Estos ítems de protección deben ser mantenidos hasta que la instalación completa sea concluída. Motores Eléctricos 111 114 www.weg.net 2.3. PLACAS DE IDENTIFICACION ESPAÑOL La placa de identificación contiene las informaciones que describen las características constructivas y el desempeño del motor. En la Figura 2-1 y Figura 2-2 son presentados ejemplos de diseños de placas de identificación. Figura 2.1 - Placa de identificación de motores IEC 112 Motores Eléctricos 115 www.weg.net ESPAÑOL Figura 2.1 - Placa de identificación de motores IEC Motores Eléctricos 113 116 ESPAÑOL www.weg.net Figura 2.2 - Placa de identificación de motores NEMA 114 Motores Eléctricos 117 www.weg.net 3. SEGURIDAD Durante la instalación y mantenimiento, los motores deben estar desconectados de la red, completamente parados y deben ser tomados cuidados adicionales para evitar partidas accidentales. Los profesionales que trabajan en instalaciones eléctricas, sea en el montaje, en la operación o en el mantenimiento, deben utilizar herramientas apropiadas y ser instruidos sobre la aplicación de las normas y prescripciones de seguridad, inclusive sobre el uso de Equipamientos de Protección Individual (EPI), los que deben ser cuidadosamente observados. Los motores eléctricos poseen circuitos energizados, componentes giratorios y superficies calientes, durante su operación normal, que pueden causar daños personales. De esta forma, todas las actividades relacionadas a su transporte, almacenado, instalación, operación y mantenimiento deben ser realizadas por personal capacitado. Deben ser seguidas las instrucciones sobre seguridad, instalación, mantenimiento e inspección de acuerdo con las normas vigentes en cada país. ESPAÑOL Motores Eléctricos 115 118 www.weg.net 4. MANIPULACION Y TRANSPORTE Los motores embalados individualmente no deben ser izados por el eje o por el embalaje, sino por el(los) ojal(es) de izamiento (cuando existan) y con dispositivos adecuados. Los ojales de izamiento son dimensionados para soportar tan solo la masa del motor indicada en la placa de identificación. Los motores suministrados en palés deben ser izados por la base de palé. El embalaje no debe ser tumbado bajo ninguna circunstancia. No utilice los ojales de izamiento para suspender el motor en conjunto con otros equipamientos, como por ejemplo: bases, poleas, ventiladores, bombas, reductores, etc. No deben ser utilizados ojales damnificados, por ejemplo, con rajaduras, deformaciones, etc. Verificar sus condiciones antes de utilizarlos. Los ojales de izamiento en componentes como tapas, kit de ventilación forzada, entre otros, deben ser utilizados solamente para el izamiento de estos componentes de manera aislada, nunca del motor completo. Todo el movimiento debe ser realizado de forma suave, sin impactos, en caso contrario los rodamientos pueden ser dañados, así como los ojales ser expuestos a esfuerzos excesivos, pudiendo provocar el rompimiento de los mismos. ESPAÑOL Los dispositivos de trabado del eje (utilizados para protección durante el transporte), en motores con rodamientos de rodillos o contacto angular, deben ser utilizados para todo y cualquier transporte del motor, aunque eso requiera el desplazamiento de la máquina accionada. Todos los motores HGF, independientemente del tipo de cojinete, deben tener su rotor trabado para transporte. 4.1. IZAMIENTO Antes de iniciar cualquier proceso de izamiento, asegúrese de que los ojales estén adecuadamente fijados, totalmente atornillados y con su base en contacto con la superficie a ser izada, conforme Figura 4-1. La Figura 4-2 ejemplifica el uso incorrecto. Asegúrese de que el equipamiento utilizado en el izamiento y sus dimensiones sean adecuados al tamaño del ojal y de la masa del motor. Figura 4.1 – Manera correcta de fijación del ojal de izamiento. Figura 4.2 – Manera incorrecta de fijación del ojal de izamiento. El centro de gravedad de los motores varía en función de la potencia y los accesorios instalados. Respete los ángulos máximos, durante el izamiento, informados en los subtópicos a seguir. 116 Motores Eléctricos 119 www.weg.net 4.1.1. Motores horizontales con un ojal de izamiento Para motores con un ojal de izamiento, el ángulo máximo resultante durante el proceso de izamiento no podrá exceder 30° en relación al eje vertical, conforme Figura 4.3. 30° Máx. Figura 4.3 – Ángulo máximo resultante para motores con un ojal de izamiento. 4.1.2. Motores horizontales con dos o más ojales de izamiento Para motores que poseen dos o más ojales para el izamiento, todos los ojales suministrados deben ser utilizados simultáneamente para el izamiento. Existen dos disposiciones de ojales posibles (verticales e inclinados), conforme son presentadas a seguir: J Motores con ojales verticales, conforme Figura 4.4, el ángulo máximo resultante debe ser de 45° en relación al eje vertical. Se recomienda la utilización de una barra separadora (spreader bar), para mantener el elemento de izamiento (corriente o cable) en el eje vertical y evitar daños a la superficie del motor. ESPAÑOL 45° Máx. Figura 4.4 – Ángulo máximo resultante para motores con dos o más ojales de izamiento. Para motores HGF, conforme Figura 4.5, el ángulo máximo resultante debe ser de 30° en relación al eje vertical. 30° Máx. Figura 4.5 – Ángulo máximo resultante para motores HGF horizontales. Motores Eléctricos 117 120 www.weg.net J Motores con ojales inclinados, conforme Figura 4.6, es necesaria la utilización de una barra separadora (spreader bar), para mantener el elemento de izamiento (corriente, cable, etc.) en el eje vertical y así también evitar daños a la superficie del motor. Figura 4.6 – Uso de barra separadora en el izamiento. 4.1.3. Motores verticales ESPAÑOL Para motores verticales, conforme Figura 4.7, es necesaria la utilización de una barra separadora (spreader bar), para mantener el elemento de izamiento (corriente, cable) en el eje vertical y así también evitar daños a la superficie del motor. Figura 4.7 – Izamiento de motores verticales. Utilice siempre los ojales que están dispuestos en la parte superior del motor en relación a la posición de montaje y diametralmente opuestos. Ver Figura 4.8. Figura 4.8 – Izamiento de motores HGF. 118 Motores Eléctricos 121 www.weg.net 4.1.3.1. Procedimiento para colocación de motores W22 en posición vertical De forma general, por cuestiones de seguridad durante el transporte, los motores verticales son embalados y suministrados en la posición horizontal. Para la colocación de motores W22 con ojales inclinados (ver Figura 4.6) en la vertical, deben ser seguidos los pasos abajo descritos: 1. Asegúrese de que los ojales están adecuadamente fijos, conforme Figura 4.1; 2. Remover el motor del embalaje, utilizando los ojales superiores, conforme Figura 4.9; Figura 4.9 – Remoción del motor del embalaje. 3. Instalar el segundo par de ojales, conforme Figura 4.10; ESPAÑOL Figura 4.10 – Instalación del segundo par de ojales. 4. 4. Reducir la carga sobre el primer par de ojales para iniciar a rotación del motor, conforme Figura 4.11. Este procedimiento debe ser realizado de forma lenta y cautelosa. Figura 4.11 – Resultado final: motor posicionado de forma vertical. Motores Eléctricos 119 122 www.weg.net 4.1.3.2. Procedimiento para colocación de motores HGF en posición vertical Los motores verticales HGF son suministrados con ocho puntos de izamiento, cuatro en la parte delantera y cuatro en la parte trasera, generalmente son transportados en la posición horizontal, no obstante, para la instalación precisan ser colocados en la posición vertical. Para la colocación de motores HGF en la posición vertical, deben ser seguidos los pasos de abajo: 1. Levante el motor a través d los cuatro ojales laterales, utilizando dos grúas, ver Figura 4.12; Figura 4.12 – Izamiento del motor HGF utilizando dos grúas. ESPAÑOL 2. Baje la grúa que está sujeta a la parte delantera del motor y al mismo tempo levante la grúa que está sujeta al lado trasero del motor hasta que el motor se equilibre, ver Figura 4.13. Figura 4.13 - Colocación de motor HGF en posición vertical. 3. Suelte la grúa sujeta a la parte delantera del motor y gire el motor 180° para posibilitar la fijación de la grúa suelta en los otros dos ojales de la parte trasera del motor, ver Figura 4.14. Figura 4.14 –Suspensión de motor HGF por los ojales traseros. 120 Motores Eléctricos 123 www.weg.net 4. Fije la grúa suelta a los otros dos ojales de la parte trasera del motor y levántela hasta que el motor quede en la posición vertical, ver Figura 4.15. Figura 4.15 - Motor HGF en posición vertical. Estos procedimientos sirven para movimientos de motores construidos con montaje en posición vertical. Estos mismos procedimientos pueden ser utilizados para la colocación del motor de posición horizontal a posición vertical y viceversa. 4.2 PROCEDIMIENTO PARA VIRADA DE MOTORES W22 VERTICALES Para realizar la virada de motores W22 originalmente en la posición vertical, siga los pasos mostrados abajo: 1. Asegúrese que los ojales estén fijados adecuadamente, conforme ítem 4.1; ESPAÑOL 2. Instale el primer par de ojales y suspenda el motor, ver Figura 4.16; Figura 4.16 – Instalación del primer par de ojales. 3. Instalar el segundo par de ojales, ver Figura 4.17; Figura 4.17 – Instalación del segundo par de ojales. Motores Eléctricos 121 124 www.weg.net 4. Reduzca la carga sobre el primer par de ojales para iniciar la rotación del motor, conforme Figura 4.18. Este procedimiento debe ser realizado de forma lenta y cautelosa. Figura 4.18 – Motor posicionado de forma vertical. ESPAÑOL 5. Remueva el primer par de ojales, ver Figura 4.19 Figura 4.19 – Resultado final: motor posicionado de forma horizontal. 122 Motores Eléctricos 125 www.weg.net 5. ALMACENADO Si los motores no fueran instalados de inmediato, se recomienda almacenarlos en local seco con humedad relativa del aire de hasta 60%, con temperatura ambiente por encima de 5°C y por debajo de 40°C, libre de polvo, vibraciones, gases, agentes corrosivos, con temperatura uniforme, en posición normal y sin apoyar otros objetos sobre los mismos. Remueva las poleas, en caso que existan, de la punta del eje, la que debe ser mantenida libre y con grasa protectora para evitar corrosión. Los motores deben ser almacenados de tal modo que el drenaje de agua condensada sea facilitado. En caso que el motor posea resistencia de calentamiento, ésta deberá ser energizada siempre que el motor no esté en operación. Esto se aplica también a los casos en que el motor está instalado, pero fuera de uso por un largo período. En estas situaciones, dependiendo de las condiciones del ambiente, podrá ocurrir condensación de agua en el interior del motor, provocando una caída en la resistencia de aislamiento. Las resistencias de calentamiento nunca deben estar energizadas mientras el motor esté operando. 5.1. SUPERFICIES MECANIZADAS EXPUESTAS Todas las superficies mecanizadas expuestas (por ejemplo, punta de eje y brida) son protegidas en la fábrica por un inhibidor de oxidación temporario. Esta película protectora debe ser reaplicada periódicamente durante el período de almacenado (por lo menos a cada seis meses) o cuando fuera removida o estuviera deteriorada. 5.2. APILAMIENTO Tabela 5.1 - Apilamiento máximo recomendado. Tipo de Embalaje Caja de Cartón Jaula de madera Carcasas IEC 63 a 132 NEMA 143 a 215 IEC 63 a 315 NEMA 48 a 504/5 Cantidad máxima de apilamiento Indicada en la pestaña superior de la caja de cartón ESPAÑOL El apilamiento de embalajes durante el almacenado no debe sobrepasar los 5 metros de altura, obedeciendo los criterios de la Tabla 5.1: 06 IEC 355 NEMA 586/7 y 588/9 03 HGF IEC 315 a 630 HGF NEMA 5000 a 9600 Indicado en el propio embalaje Notas: 1) No apile embalajes mayores sobre menores. 2) Posicione correctamente un embalaje sobre el otro (ver Figura 5.1 y Figura 5.2). X Figura 5.1 - Montaje adecuado. Figura 5.2 - Montaje inadecuado. Motores Eléctricos 123 126 www.weg.net 3) Las patas de los embalajes superiores deben estar apoyadas sobre calces de madera (Figura 5.3) no sobre cintas de acero ni pueden permanecer sin apoyo (Figura 5.4). Figura 5.3 - Apilamiento adecuado. X Figura 5.4 - Apilamiento inadecuado. ESPAÑOL 4) Para el apilamiento de un volumen menor sobre un volumen mayor, agregue varas transversales entre los mismos cuando el mayor no ofrezca resistencia al peso del menor (ver Figura 5.5). Esta situación normalmente ocurre con los volúmenes de los motores de carcasa por encima de la IEC 225S/M (NEMA 364/5T). Figura 5.5 - Utilización de varas adicionales para apilamiento. 5.3. COJINETES 5.3.1. Cojinetes de rodamiento lubricados a grasa Se recomienda girar el eje del motor por lo menos una vez al mes (manualmente, al menos cinco vueltas, dejando el eje en posición diferente de la original). Obs.: en caso que el motor posea dispositivo de trabado del eje, el mismo debe ser retirado antes de girar el eje y ser colocado una vez más antes de levantar el motor. Los motores verticales pueden ser almacenados en posición vertical o en posición horizontal. Para motores con rodamiento abierto almacenados por más de seis meses, los rodamientos deben ser relubricados, conforme el ítem 8.2, antes de la entrada en operación. En caso que el motor permanezca almacenado por un período superior a dos años, se recomienda sustituir los rodamientos, o de otra forma, deben ser removidos, lavados, inspeccionados y relubricados conforme el ítem 8.2. 5.3.2. Cojinetes de rodamiento con lubricación a aceite El motor debe ser almacenado en su posición original de funcionamiento, y con aceite en los cojinetes. El nivel de aceite debe ser respetado, permaneciendo en la mitad del visor de nivel. Durante el período de almacenado, se debe, retirar el dispositivo de trabado del eje y, mensualmente, rotar el eje manualmente cinco vueltas, para hacer circular el aceite y conservar el cojinete en buenas condiciones. Siendo necesario mover el motor, el dispositivo de trabado del eje debe ser reinstalado. Para motores almacenados por más de seis meses, los rodamientos deben ser relubricados, conforme el ítem 8.2, antes de su puesta en operación. En caso que el motor permanezca almacenado por un período superior a dos años, se recomienda sustituir los rodamientos o entonces removerlos, lavarlos, inspeccionarlos y relubricarlos conforme el ítem 8.2. El aceite de los cojinetes de los motores verticales, que son transportados en posición horizontal, es retirado para evitar derramamiento durante el transporte. Tras la recepción, estos motores deben ser puestos en posición vertical y sus cojinetes deben ser lubricados. 124 Motores Eléctricos 127 www.weg.net 5.3.3. Cojinetes de rodamiento con lubricación de tipo Oil Mist El motor debe ser almacenado en su posición horizontal. Rellene los cojinetes con aceite mineral ISO VG 68 con la cantidad de aceite indicada en la Tabla 5.2 (también válida para rodamientos con dimensiones equivalentes). Tras a colocación de aceite en los cojinetes, gire el eje (como mínimo cinco vueltas). Durante el período de almacenado, se debe retirar el dispositivo de trabado del eje (cuando es suministrado) y semanalmente rotar el eje manualmente 5 vueltas, dejando el mismo en posición diferente de la original. Siendo necesario mover el motor, el dispositivo de trabado del eje debe ser reinstalado. En caso que el motor permanezca almacenado por un período superior a dos años, se recomienda sustituir los rodamientos o entonces removerlos, lavarlos, inspeccionarlos y relubricarlos conforme el ítem 8.2. Tabela 5.2 - Cantidad de aceite por rodamiento Tamaño de Rodamiento 6201 6202 6203 6204 6205 6206 6207 6208 6209 6211 6212 6307 6308 Cantidad de Aceite (ml) 15 15 15 25 25 35 35 40 40 45 50 45 55 Tamaño de Rodamiento 6309 6311 6312 6314 6315 6316 6317 6319 6320 6322 6324 6326 6328 Cantidad de Aceite (ml) 65 90 105 150 200 250 300 350 400 550 600 650 700 5.3.4. Cojinetes de deslizamiento ESPAÑOL Durante cualquier manipulación del motor, los cojinetes deben estar sin aceite. De esa forma, antes de la entrada en operación, todo el aceite de los cojinetes debe ser drenado. Luego de la instalación, en caso que el sistema de niebla no esté en operación, el aceite debe ser recolocado para garantizar la conservación del cojinete. En este caso, se debe también proceder con el giro semanal del eje. El motor debe ser almacenado en su posición original de funcionamiento, y con aceite en los cojinetes. El nivel de aceite debe ser respetado, permaneciendo en la mitad del visor de nivel. Durante el período de almacenado, se debe, retirar el dispositivo de trabado del eje y, mensualmente, rotar el eje manualmente 5 vueltas, para hacer circular el aceite y conservar el cojinete en buenas condiciones. En caso que sea necesario mover el motor, el dispositivo de trabado del eje debe ser reinstalado. Para motores almacenados por más de seis meses, los rodamientos deben ser relubricados, conforme el ítem 8.2, antes de su puesta en operación. En caso que el motor permanezca almacenado por un período mayor que el intervalo de cambio de aceite, o no sea posible rotar el eje del motor, el aceite debe ser drenado y debe ser aplicada una protección anticorrosiva y deshumidificadores. 5.4. RESISTENCIA DE AISLAMIENTO Se recomienda medir periódicamente la resistencia de aislamiento de los motores, para de esa forma evaluar las condiciones de almacenado bajo el punto de vista eléctrico. Si fueran observadas caídas en los valores de Resistencia de Aislamiento, las condiciones del almacenado deben ser analizadas, evaluadas y corregidas, cuando sea necesario. 5.4.1. Procedimiento para medición de la resistencia de aislamiento La medición de la resistencia de aislamiento debe ser realizada en área segura. La resistencia de aislamiento debe ser medida con un megóhmetro y con el motor parado, frío y completamente desconectado de la red eléctrica. Para evitar el riesgo de shock eléctrico, descargue los terminales inmediatamente antes y después de cada medición. En caso que el motor posea capacitores, éstos deben ser descargados. Motores Eléctricos 125 128 www.weg.net Es recomendable que cada fase sea aislada y testeada separadamente, permitiendo que sea hecha una comparación entre la resistencia de aislamiento entre cada fase. Para testear una de las fases, las demás fases deben estar puestas a tierra. El test de todas las fases simultáneamente evalúa solamente la resistencia de aislamiento contra tierra. En este caso no es evaluada la resistencia de aislamiento entre las fases. Los cables de alimentación, llaves, condensadores, y otros equipamientos externos conectados al motor pueden influenciar considerablemente la medición de la resistencia de aislamiento. Al realizar estas mediciones, todos los equipamientos externos deben estar desconectados y puestos a tierra. La lectura de la resistencia de aislamiento debe ser realizada luego de ser aplicada la tensión ser por el período de un minuto (1 min). La tensión a ser aplicada debe obedecer la Tabla 5.3. Tabela 5.3 – Tensión para medición de la resistencia de aislamiento. Tensión nominal del motor (V) < 1000V 1000 - 2500 2501 - 5000 5001 - 12000 > 12000 Tensión aplicada para la medición de la resistencia de aislamiento (V) 500 500 - 1000 1000 - 2500 2500 - 5000 5000 - 10000 La medición de la resistencia de aislamiento debe ser corregida para la temperatura de 40°C conforme Tabla 5.4. Tabela 5.4 - Factor de Corrección de la Resistencia de Aislamiento para 40°C. Factor de corrección de la Resistencia de Aislamiento para 40°C Temperatura de Medición de la Resistencia de Aislamiento (°C) Factor de corrección de la Resistencia de Aislamiento para 40°C 10 0,125 30 0,500 0,536 ESPAÑOL Temperatura de Medición de la Resistencia de Aislamiento (°C) 11 0,134 31 12 0,144 32 0,574 13 0,154 33 0,616 14 0,165 34 0,660 15 0,177 35 0,707 16 0,189 36 0,758 17 0,203 37 0,812 18 0,218 38 0,871 19 0,233 39 0,933 20 0,250 40 1,000 21 0,268 41 1,072 22 0,287 42 1,149 23 0,308 43 1,231 24 0,330 44 1,320 25 0,354 45 1,414 26 0,379 46 1,516 27 0,406 47 1,625 28 0,435 48 1,741 29 0,467 49 1,866 30 0,500 50 2,000 La condición del aislamiento del motor deberá ser evaluada comparándose el valor medido con los valores de la Tabla 5 5 (referenciados a 40°C): Tabela 5.5 – Avaliação do sistema de isolamento. 126 Valor Límite para tensión nominal hasta 1,1 kV (MΩ) Valor Límite para tensión nominal por encima de 1,1 kV (MΩ) Situación Hasta 5 HASTA 100 Peligroso, el motor no debe operar en esa condición. Regular Entre 5 y 100 Entre 100 y 500 Entre 100 y 500 Por encima de 500 Bueno Por encima de 500 Por encima de 1000 Excelente Motores Eléctricos 129 www.weg.net Los dados indicados en la tabla sirven simplemente como valores de referencia. Se sugiere mantener el histórico de la resistencia de aislamiento del motor durante toda su vida. Si la resistencia de aislamiento estuviera baja, el estator del motor puede estar húmedo. En ese caso, se recomienda llevarlo a un Asistente Técnico Autorizado WEG para que sean realizadas la evaluación y la reparación adecuadas. Este servicio no está cubierto por el Término de Garantía. Para procedimiento de adecuación de la resistencia de aislamiento, ver ítem 8.4. ESPAÑOL Motores Eléctricos 127 130 www.weg.net 6. INSTALACION La instalación de motores debe ser hecha por profesionales capacitados con conocimientos sobre las normas y las prescripciones de seguridad. ESPAÑOL Antes de continuar con el procedimiento de instalación deben ser evaluados algunos puntos: 1. Resistencia de aislamiento: debe estar dentro de los valores aceptables. Ver ítem 5.4. 2. Cojinetes: a. rodamientos: si presentan señales de oxidación, deben ser sustituidos. En caso que no presenten oxidación, realice el procedimiento de relubricación conforme es descrito en el ítem 8.2. Motores almacenados por un período superior a dos años deben tener sus rodamientos sustituidos antes de ser puestos en operación. b. cojinetes de deslizamiento: para motores almacenados por un período igual o mayor que el intervalo de cambio de aceite, deben tener su aceite sustituido. En caso que el aceite haya sido retirado, es necesario retirar el deshumificador y recolocar el aceite en el cojinete. Por mayores informaciones vea el ítem 8.2. 3. Condición de los condensadores de partida: para motores monofásicos almacenados por un período mayor a dos años, es recomendado que sus condensadores de partida sean sustituidos. 4. Caja de conexión: a. deben estar limpias y secas en su interior. b. los elementos de contacto deben estar libres de oxidación y correctamente conectados. Ver ítems 6.9 y 6.10. c. las entradas de cables no utilizadas deben estar correctamente selladas, la tapa de la caja de conexión debe ser cerrada y los sellados deben estar en condiciones apropiadas para atender el grado de protección del motor. 5. Ventilación: las aletas, la entrada y la salida de aire deben estar limpias y desobstruidas. La distancia de instalación recomendada entre las entradas de aire del motor y la pared no debe ser inferior a ¼ (un cuarto) del diámetro de la entrada de aire. Se debe asegurar espacio suficiente para la realización de servicios de limpieza. Ver ítem 7. 6. Acoplamiento: remover el dispositivo de trabado del eje (si existe) y la grasa de protección contra corrosión de la punta del eje y de la brida solamente puco antes de instalar el motor. Ver ítem 6.4. 7. Drenaje: Siempre deben estar posicionados de forma que el drenaje sea facilitado (en el punto más bajo. En caso que exista una flecha indicadora, el drenaje debe ser montado para que la misma apunte hacia abajo). Para motores con grado de protección IP55, los drenajes de goma (si están disponibles) pueden permanecer en la posición abierta (ver Figura 6.1). Para grados de protección más elevados (por ejemplo, IP56, IP65 y IP66), los drenajes (independientemente del tipo) deben permanecer en la posición cerrada (ver Figura 6.2), siendo abiertos solamente durante el mantenimiento del motor para permitir el drenaje del agua condensada (ver ítem 8.1). Los motores con lubricación de tipo Oil Mist deben tener sus drenajes conectados a un sistema de recolección específico (ver Figura 6.12). Figura 6.1 - Detalle del drenaje de goma montado en la posición abierto. Figura 6.2 - Detalle del drenaje de goma montado en posición cerrado. 128 Motores Eléctricos 131 www.weg.net 8. Recomendaciones adicionales a. verifique el sentido de rotación del motor, encendiéndolo a vacío antes de acoplarlo a la carga. b. para motores montados en posición vertical con la punta de eje hacia abajo, se recomienda el uso de sombrerete para evitar a penetración de cuerpos extraños en el interior del motor. c. para motores montados en la posición vertical con la punta de eje hacia arriba, se recomienda el uso de un deflector de agua (water slinger ring) para evitar la penetración de agua por el eje. Remueva o fije completamente la chaveta antes de encender el motor. 6.1. CIMIENTOS PARA EL MOTOR El cimiento es el elemento estructural, base natural o preparada, destinada a soportar los esfuerzos producidos por los equipamientos instalados, permitiendo la operación de éstos con estabilidad, desempeño y seguridad. El proyecto de cimientos debe considerar las estructuras adyacentes para evitar influencia de un equipamiento sobre el otro, a fin de que no ocurra propagación de vibraciones. Los cimientos deben ser planos y su elección, detallado y ejecución, exige las características: a) De la construcción del propio equipamiento, implicando no solamente los valores y forma de actuación de las cargas, sino que también su finalidad y los límites máximos de las deformaciones y vibraciones compatibles en cada caso (ejemplo, motores con valores reducidos de: nivel de vibración, planicidad de las patas, concentricidad de la brida, pulso de la brida, etc.); . Cuando el motor sea suministrado con tornillo de alineamiento/nivelación, deberá ser prevista en la base una superficie que permita el alineamiento/nivelación. ESPAÑOL b) De las construcciones vecinas, comprendiendo el estado de conservación, estimativa de las cargas máximas aplicadas, tipo de cimiento y fijación empleadas, así como los niveles de vibración transmitidos por estas construcciones. Los esfuerzos generados durante la operación, por la carga accionada, deben ser considerados como parte del dimensionamiento de los cimientos. El usuario es totalmente responsable por el proyecto, preparación y ejecución de los cimientos. Los motores pueden ser montados sobre: J Bases de concreto: más recomendadas y usuales para los motores de gran porte (ver Figura 6.3); J Bases metálicas: más comunes para motores de pequeño porte (ver Figura 6.4). Figura 6.3 – Motor instalado sobre base de concreto. Figura 6.4 – Motor instalado sobre base metálica. Motores Eléctricos 129 132 www.weg.net En las bases metálicas y de concreto puede existir un sistema de deslizamiento. Normalmente son utilizados en aplicaciones en que el accionamiento ocurre por poleas y correas. Son más flexibles permitiendo montajes y desmontajes más rápidas, además de permitir ajustes en la tensión de la correa. Otro aspecto importante es la posición de los tornillos de trabado de la base, que deben ser opuestos y en posición diagonal. El riel más cercano a la polea motora es colocado de forma que el tornillo de posicionamiento permanezca entre el motor y la máquina accionada. El otro riel debe ser colocado con el tornillo en posición opuesta (diagonal), como es presentado en la Figura 6.5. Para facilitar el montaje, las bases pueden poseer características como: resaltes y/o huecos; J tornillos de anclaje con placas sueltas; J tornillos fundidos en el concreto; J tornillos de nivelación; J tornillos de posicionamiento; J bloques de hierro o de acero, placas con superficies planas. ESPAÑOL J Figura 6.5 – Motor instalado sobre base deslizante. También se recomienda que luego de la instalación del motor, las partes metálicas expuestas sean protegidas contra oxidación. 6.2. FIJACION DEL MOTOR 6.2.1. Fijación por las patas El dimensional de la perforación de las patas, basado en las normas IEC o NEMA, es informado en el catálogo técnico del producto. El motor debe ser apoyado sobre la base, alineado y nivelado a fin de que no provoque vibraciones ni esfuerzos excesivos en el eje o en los cojinetes. Para más detalles, consulte El ítem 6.3 y 6.6. Se recomienda que el tornillo de fijación tenga longitud roscada libre de 1,5 veces el diámetro del tornillo. En aplicaciones severas, puede ser necesaria la utilización de una longitud roscada libre mayor. La Figura 6.4 representa la fijación del motor con patas indicando la longitud libre mínima del tornillo. L = 1.5 x D D Figura 6.6 – Representación de la fijación del motor por patas. 130 Motores Eléctricos 133 www.weg.net 6.2.2. Fijación por brida El dimensional de la brida, basado en las normas IEC o NEMA, es informado en el catálogo electrónico o en el catálogo técnico del producto. La brida del motor debe ser apoyada en la base, que debe poseer un dimensional de encaje adecuado para el tamaño de la brida del motor y así asegurar la concentricidad del conjunto. Dependiendo del tipo de brida, la fijación puede ser realizada desde el motor hacia la base (brida FF(IEC) o D (NEMA)) o desde la base hacia el motor (brida C (DIN o NEMA)). Para fijación desde la base hacia el motor, la determinación de la longitud del tornillo debe tomar en consideración la espesura de la base del usuario y la profundidad de la rosca de la brida del motor. En los casos que el agujero de la brida es pasante, la longitud del tornillo de fijación del motor no debe exceder la longitud roscada de la brida para evitar contacto con la bobina del motor. Para fijación del motor a la base, se recomienda que el tornillo de fijación tenga longitud roscada libre de 1,5 veces el diámetro del tornillo. En aplicaciones severas, puede ser necesaria la utilización de una longitud roscada libre mayor. Para fijación de motores de gran porte y/o en aplicaciones severas, se recomienda que, además de la fijación por brida, el motor sea apoyado (por patas o pad). El motor nunca puede ser apoyado sobre sus aletas. Ver Figura 6.7. ESPAÑOL Figura 6.7 – Representación de la fijación del motor con brida y apoyo en la base de la carcasa. Para aplicación de motores con la presencia de líquidos en el interior de la brida (ej.: aceite), el sellado del motor debe ser adecuado para impedir la penetración de líquidos en el interior del motor. 6.2.3. Fijación por pad Este tipo de fijación es normalmente utilizado en ductos de ventilación. La fijación del motor es hecha a través de perforaciones roscadas en la estructura del motor, cuyo dimensional es informado en el catálogo electrónico o en el catálogo técnico del producto. El dimensionamiento de la varilla de fijación/tornillo del motor debe tomar en consideración el dimensional del ducto de ventilación o base de instalación y la profundidad de la rosca en el motor. Las varillas de fijación y la pared del ducto deben tener rigidez suficiente para evitar la vibración excesiva del conjunto (motor y ventilador). La Figura 6.8 representa la fijación por pad’s. Figura 6.8 – Representación de la fijación del motor en el interior de un ducto de ventilación. Motores Eléctricos 131 134 www.weg.net 6.3. BALANCEO Equipamientos desbalanceados generan vibraciones que pueden causar daños al motor. Los motores WEG son balanceados dinámicamente con “media chaveta” en vacío (desacoplados). Deben ser solicitados balanceos especiales en el momento de la compra. Los elementos de transmisión tales como poleas, acoplamientos, etc., deben ser balanceados antes de ser instalados en los ejes de los motores. El grado de calidad de balanceo del motor sigue las normas vigentes para cada línea de producto. Se recomienda que los desvíos máximos de balanceo sean registrados en el informe de instalación. 6.4. ACOPLAMIENTOS Los acoplamientos son utilizados para la transmisión del torque del motor hacia la máquina accionada. Al utilizar un acoplamiento, deben ser observados los tópicos abajo: J Utilice herramientas apropiadas para el montaje y desmontaje de los acoplamientos y así evitar daños al motor. J Se recomienda la utilización de acoplamientos flexibles, capaces de absorber pequeños desalineamientos durante la operación del equipamiento. J Las cargas máximas y límites de velocidad informados en los catálogos de los fabricantes de los acoplamientos y del motor no deben ser excedidos. Realice la nivelación y el alineamiento del motor conforme ítems 6.5 y 6.6, respectivamente. J ESPAÑOL Los motores accionados sin elementos de transmisión acoplados deben tener su chaveta firmemente fijada o removida, para prevenir accidentes. 6.4.1. Acoplamiento directo Cuando el eje del motor está acoplado directamente al eje de la carga accionada, sin el uso de elementos de transmisión, presenta acoplamiento directo. El acoplamiento directo ofrece menor costo, mayor seguridad contra accidentes y ocupa menos espacio. En aplicaciones con acoplamiento directo, se recomienda el uso de rodamientos de esferas. 6.4.2. Acoplamiento por engranaje El acoplamiento por engranajes es utilizado cuando existe la necesidad de una reducción de velocidad. Es imprescindible que los ejes estén perfectamente alineados, rigurosamente paralelos (en caso de engranajes rectos) y en el ángulo de engranaje (en caso de engranajes cónicos o helicoidales). 6.4.3. Acoplamiento por poleas y correas Es un tipo de transmisión utilizado cuando existe la necesidad de una relación de velocidades entre el motor y la carga accionada. Una tensión excesiva en las correas damnifica los rodamientos y puede provocar la ruptura del eje del motor. 6.4.4. Acoplamiento de motores equipados con cojinetes de deslizamiento Los motores equipados con cojinetes de deslizamiento deben estar acoplados directamente a la máquina accionada o por medio de un reductor. Los cojinetes de deslizamiento no permiten el acoplamiento a través de poleas y correas. 132 Motores Eléctricos 135 www.weg.net Los motores equipados con cojinetes de deslizamiento poseen 3 (tres) marcas en la punta del eje, donde la marca central es la indicación del centro magnético y las otras 2 (dos) marcas externas indican los límites de movimiento axial permitidos para el rotor, conforme Figura 6.9. El motor debe ser acoplado de manera que la flecha fijada en la carcasa del cojinete quede posicionada sobre la marca central, cuando el motor esté en operación. Durante la partida, o incluso en operación, el rotor puede moverse libremente entre las dos ranuras externas, en caso que la máquina accionada ejerza algún esfuerzo axial sobre el eje del motor. No obstante, el motor no puede operar de manera constante con esfuerzo axial sobre el cojinete, bajo ningún concepto. HOLGURA AXIAL Figura 6.9 - Holgura axial en motor equipado con cojinete de deslizamiento. Al evaluar el acoplamiento, se debe considerar la holgura axial máxima del cojinete conforme la Tabla 6.1. Las holguras axiales de la máquina accionada y del acoplamiento influencian en la holgura máxima del cojinete. Tabela 6.1 Holguras utilizadas en cojinetes de deslizamiento. Holgura axial total (mm) 3+3=6 4+4=8 5 + 5 =10 7,5 + 7,5 = 15 ESPAÑOL Tamaño del cojinete 9* 11* 14* 18 * para motores conforme la norma API 541, la holgura axial total es 12.7 mm. Los cojinetes de deslizamiento utilizados por WEG no fueron proyectados para soportar un esfuerzo axial continuo. La operación continua de la máquina, en sus límites de holgura axial, no es recomendada. 6.5. NIVELACION La nivelación del motor debe ser realizada para corregir eventuales desvíos de planicidad, que puedan existir provenientes de otros procesos y acomodaciones de los materiales. La nivelación puede ser realizada por medio de un tornillo de nivelación fijado a la pata o brida del motor, o por medio de finas chapas de compensación. Tras la nivelación, la diferencia de altura entre la base de fijación del motor y el motor no debe exceder 0,1 mm. En caso que sea utilizada una base metálica para ajustar la altura de la punta de eje del motor con la punta de eje de la máquina accionada, ésta debe ser nivelada en la base de concreto. Se recomienda que los desvíos máximos de nivelación sean registrados y almacenados en el informe de instalación. 6.6. ALINEAMIENTO El alineamiento entre la máquina motora y la accionada es una de las variables que más contribuyen para prolongar la vida del motor. El desalineamiento entre los acoplamientos genera elevadas cargas que reducen la vida útil de los cojinetes, provocan vibraciones y, en casos extremos, pueden causar la ruptura del eje. La Figura 6.10 ilustra el desalineamiento entre el motor y el equipamiento accionado. Eje del Accionador El desalineamiento máximo ocurre aquí Eje del Accionado Offset accinado Offset accinador mils o mm. mils o mm. Figura 6.10 – Condición típica de desalineamiento. Motores Eléctricos 133 136 www.weg.net Para efectuar un buen alineamiento del motor, se deben utilizar herramientas y dispositivos adecuados, tales como reloj comparador, instrumento de alineamiento a laser, entre otros. El eje debe ser alineado axialmente y radialmente con el eje de la máquina accionada El valor leído en relojes comparadores para el alineamiento, de acuerdo con la Figura 6.11, no debe exceder 0,03 mm, considerando un giro completo del eje. Debe existir una holgura entre los acoplamientos, para compensar la dilatación térmica de los ejes, conforme especificación del fabricante del acoplamiento. Reloj comparador Trazo de referencia GAP Alineamiento paralelo Alineamiento angular Figura 6.11 – Alineamiento con reloj comparador En caso que el alineamiento sea realizado a través de un instrumento a laser, deben ser seguidas las instrucciones y recomendaciones suministradas por el fabricante del instrumento. La verificación del alineamiento debe ser realizada a temperatura ambiente y a la temperatura de trabajo de los equipamientos. ESPAÑOL Es recomendado que el alineamiento de los acoplamientos sea verificado periódicamente. Para acoplamiento por poleas y correas, el alineamiento debe ser realizado de tal modo que el centro de la polea motora esté en el mismo plano del centro de la polea movida y los ejes del motor y de la máquina estén perfectamente paralelos. Luego de la realización de los procedimientos descritos anteriormente, se debe certificar que los dispositivos de montaje del motor no permitan alteraciones en el alineamiento y en la nivelación y no causen daños al equipamiento. Se recomienda que los desvíos máximos de alineamiento sean registrados y almacenados en el informe de instalación. 6.7. CONEXION DE MOTORES LUBRICADOS A ACEITE O DE TIPO OIL MIST En motores con lubricación a aceite o de tipo oil mist, se debe conectar los tubos de lubricación existentes (entrada, salida del cojinete y drenaje del motor), conforme es indicado en la Figura 6.12. El sistema de lubricación debe garantizar lubricación continua del cojinete, de acuerdo con las especificaciones del fabricante de este sistema. Entrada Drenaje Salida Figura 6.12 – Sistema de alimentación y drenaje para motores lubricados por aceite o de tipo Oil Mist. 134 Motores Eléctricos 137 www.weg.net 6.8. CONEXION DEL SISTEMA DE REFRIGERACION A AGUA En motores con refrigeración a agua, debe ser prevista la instalación de ductos en la entrada y salida de agua del motor para garantizar su refrigeración. Se debe observar, conforme el ítem 7.2, el flujo mínimo y la temperatura del agua en la instalación. 6.9. CONEXION ELECTRICA Para el dimensionamiento de los cables de alimentación y dispositivos de maniobra y protección deben ser considerados: corriente nominal del motor, factor de servicio, corriente de partida, condiciones del ambiente y de la instalación, la máxima caída de tensión, etc. conforme las normas vigentes. Todos los motores deben ser instalados con sistemas de protección contra sobrecarga. Para motores trifásicos se recomienda la instalación de sistemas de protección contra falta de fase. Antes de conectar el motor, verifique si la tensión y la frecuencia de la red son las mismas marcadas en la placa de identificación del motor. Siga el diagrama de conexión indicado en la placa de identificación del motor. Para evitar accidentes, verifique si la puesta a tierra fue realizada conforme las normas vigentes. Asegúrese que el motor esté conectado correctamente a la red de alimentación eléctrica a través de contactos seguros y permanentes. Para motores sin placa de bornes, aísle los cables terminales del motor, utilizando materiales aislantes compatibles con la tensión de alimentación y con la clase de aislamiento informada en la placa de identificación. La distancia de aislamiento (ver Figura 6.13) entre partes vivas no aisladas entre sí y entre partes vivas y partes puestas a tierra debe respetar los valores indicados en la Tabla 6.2. ESPAÑOL Para la conexión del cable de alimentación y del sistema de puesta a tierra deben ser respetados los torques de apriete indicados en la Tabla 8.7. Distancia de aislamiento Distancia de aislamiento Distancia de aislamiento Distancia de aislamiento Figura 6.13 - Representación de la distancia de aislamiento. Tabela 6.2 - Distancia mínima de aislamiento (mm) x tensión de alimentación. Tensión U ≤ 440 V 440 < U ≤ 690V 690 < U ≤ 1000V 1000 < U ≤ 6900V 6900 < U ≤ 11000V 11000<U ≤ 16500V Distancia mínima de aislamiento (mm) 4 5.5 8 45 70 105 Motores Eléctricos 135 138 www.weg.net Aunque el motor esté apagado, puede existir energía eléctrica en el interior de la caja de conexión utilizada para la alimentación de las resistencias de calentamiento o inclusive para energizar el devanado, cuando éste esté siendo utilizado como elemento de calentamiento. Los condensadores de motores pueden retener energía eléctrica, incluso con el motor apagado. No toque los condensadores ni los terminales del motor sin antes verificar la existencia de tensión en los mismos. Luego de efectuar la conexión del motor, asegúrese de que ningún cuerpo extraño haya permanecido en el interior de la caja de conexión. Las entradas de la(s) caja(s) de conexión deben ser cerradas/protegidas para de esa forma garantizar el grado de protección del indicado en la placa de identificación del motor. Las entradas de cables utilizadas para alimentación y control deben emplear componentes (como, por ejemplo, prensacables y electroductos) que cumplan las normas y reglamentaciones vigentes en cada país. En caso que existan accesorios, como freno y ventilación forzada, los mismos deben ser conectados a la red de alimentación, siguiendo las informaciones de sus placas de identificación y los cuidados indicados anteriormente. ESPAÑOL Todas las protecciones, inclusive las contra sobretensión, deben ser ajustadas tomando como base las condiciones nominales de la máquina. Esta protección también tendrá que proteger el motor en caso de cortocircuito, falta de fase, o rotor bloqueado. Los ajustes de los dispositivos de seguridad de los motores deben ser hechos según las normas vigentes. Verifique el sentido de rotación del motor. En caso que no haya ninguna limitación debido a la utilización de ventiladores unidireccionales, es posible cambiar el sentido de giro de motores trifásicos, invirtiendo dos fases de alimentación. Para motores monofásicos, verifique el esquema de conexión en la placa de identificación. 6.10. CONEXION DE LOS DISPOSITIVOS DE PROTECCIÓN TERMICA Cuando es suministrado con dispositivos de protección o de monitoreo de temperatura, como: protector térmico bimetálico (termostatos), termistores, protectores térmicos del tipo Automático, PT-100 (RTD), etc., sus terminales deben ser conectados a los dispositivos de control correspondientes, de acuerdo con las placas de identificación de los accesorios. La no observación de este procedimiento puede resultar en la cancelación de la garantía y riesgo para la instalación. No aplique tensión de test superior a 2,5 V para termistores y corriente mayor a 5 mA para RTDs (PT-100). El esquema de conexión de los protectores térmicos bimetálicos (termostatos) y termistores es mostrado en la Figura 6.14 y Figura 6.15, respectivamente. Figura 6.14 - Conexión de los protectores térmicos bimetálicos (termostatos). 136 Motores Eléctricos 139 www.weg.net Figura 6.15 - Conexión de los termistores. Los límites de temperatura de alarma y apagado de las protecciones térmicas pueden ser definidos de acuerdo con la aplicación, no obstante, no deben sobrepasar los valores indicados en la Tabla 6.3. Tabela 6.3 - Temperatura máxima de actuación de las protecciones térmicas. Componente Clase de Aislamiento Devanado Cojinete Temperatura máxima de operación (°C) Alarma Apagado B - 130 F 130 155 H 155 180 Todas 110 120 ESPAÑOL Notas: 1) La cantidad y el tipo de protección térmica instalados en el motor son informados en las placas de identificación de los accesorios del mismo. 2) En el caso de protección térmica con resistencia calibrada (por ejemplo, PT-100), el sistema de protección debe ser ajustado a la temperatura de operación indicada en la Tabla 6.3. 6.11. TERMORESISTORES (PT-100) Son elementos, cuya operación está basada en la característica de variación de la resistencia con la temperatura, intrínseca en algunos materiales (generalmente platina, níquel o cobre). Poseen resistencia calibrada, que varía linealmente con la temperatura, posibilitando un acompañamiento continuo del proceso de calentamiento del motor por el display del controlador, con alto grado de precisión y sensibilidad de respuesta. Su aplicación es amplia en los diversos sectores de técnicas de medición y automatización de temperatura de las industrias. Generalmente, se aplica en instalaciones de gran responsabilidad como, por ejemplo, en régimen intermitente muy irregular. El mismo detector puede servir tanto para alarma como para apagado. La equivalencia entre la resistencia del PT-100 y la temperatura es presentada en la Tabla 6.4 y Figura 6.16. Motores Eléctricos 137 140 www.weg.net ESPAÑOL Tabela 6.4 - Equivalencia entre la resistencia del PT-100 y la temperatura. ºC Ω ºC Ω ºC Ω ºC Ω ºC Ω -29 88.617 17 106.627 63 124.390 109 141.908 155 159.180 -28 89.011 18 107.016 64 124.774 110 142.286 156 159.553 -27 89.405 19 107.404 65 125.157 111 142.664 157 159.926 -26 89.799 20 107.793 66 125.540 112 143.042 158 160.298 -25 90.193 21 108.181 67 125.923 113 143.420 159 160.671 -24 90.587 22 108.570 68 126.306 114 143.797 160 161.043 -23 90.980 23 108.958 69 126.689 115 144.175 161 161.415 -22 91.374 24 109.346 70 127.072 116 144.552 162 161.787 -21 91.767 25 109.734 71 127.454 117 144.930 163 162.159 -20 92.160 26 110.122 72 127.837 118 145.307 164 162.531 -19 92.553 27 110.509 73 128.219 119 145.684 165 162.903 -18 92.946 28 110.897 74 128.602 120 146.061 166 163.274 -17 93.339 29 111.284 75 128.984 121 146.438 167 163.646 -16 93.732 30 111.672 76 129.366 122 146.814 168 164.017 -15 94.125 31 112.059 77 129.748 123 147.191 169 164.388 164.760 -14 94.517 32 112.446 78 130.130 124 147.567 170 -13 94.910 33 112.833 79 130.511 125 147.944 171 165.131 -12 95.302 34 113.220 80 130.893 126 148.320 172 165.501 -11 95.694 35 113.607 81 131.274 127 148.696 173 165.872 -10 96.086 36 113.994 82 131.656 128 149.072 174 166.243 -9 96.478 37 114.380 83 132.037 129 149.448 175 166.613 -8 96.870 38 114.767 84 132.418 130 149.824 176 166.984 167.354 -7 97.262 39 115.153 85 132.799 131 150.199 177 -6 97.653 40 115.539 86 133.180 132 150.575 178 167.724 -5 98.045 41 115.925 87 133.561 133 150.950 179 168.095 -4 98.436 42 116.311 88 133.941 134 151.326 180 168.465 -3 98.827 43 116.697 89 134.322 135 151.701 181 168.834 169.204 -2 99.218 44 117.083 90 134.702 136 152.076 182 -1 99.609 45 117.469 91 135.083 137 152.451 183 169.574 0 100.000 46 117.854 92 135.463 138 152.826 184 169.943 1 100.391 47 118.240 93 135.843 139 153.200 185 170.313 2 100.781 48 118.625 94 136.223 140 153.575 186 170.682 3 101.172 49 119.010 95 136.603 141 153.950 187 171.051 4 101.562 50 119.395 96 136.982 142 154.324 188 171.420 171.789 5 101.953 51 119.780 97 137.362 143 154.698 189 6 102.343 52 120.165 98 137.741 144 155.072 190 172.158 7 102.733 53 120.550 99 138.121 145 155.446 191 172.527 8 103.123 54 120.934 100 138.500 146 155.820 192 172.895 9 103.513 55 121.319 101 138.879 147 156.194 193 173.264 10 103.902 56 121.703 102 139.258 148 156.568 194 173.632 11 104.292 57 122.087 103 139.637 149 156.941 195 174.000 12 104.681 58 122.471 104 140.016 150 157.315 196 174.368 13 105.071 59 122.855 105 140.395 151 157.688 197 174.736 14 105.460 60 123.239 106 140.773 152 158.061 198 175.104 15 105.849 61 123.623 107 141.152 153 158.435 199 175.472 16 106.238 62 124.007 108 141.530 154 158.808 200 175.840 Figura 6.16 – Resistencia óhmica del PT-100 - temperatura. 138 Motores Eléctricos 141 www.weg.net 6.12. METODOS DE PARTIDA Siempre que sea posible, la partida del motor debe ser directa (en plena tensión). Es el método más simple, sin embargo, solamente es viable cuando la corriente de partida no afecta la red de alimentación. Es importante seguir las reglas vigentes de la concesionaria de energía eléctrica. En los casos en que la corriente de partida del motor es alta, pueden ocurrir las siguientes consecuencias: a) Elevada caída de tensión en el sistema de alimentación de la red, provocando interferencia en los equipamientos instalados en este sistema; b) El superdimensionamiento del sistema de protección (cables, contactores), lo que eleva los costos de la instalación. En caso que la partida directa no sea posible debido a los problemas citados arriba, se puede usar el método de partida indirecta compatible con la carga y la tensión del motor, para reducir la corriente de partida. Cuando es utilizado un método de partida con tensión reducida, el torque de partida del motor también será reducido. La Tabla 6.5 indica los métodos de partida indirecta posibles de ser utilizados, de acuerdo con la cantidad de cables del motor. Tabela 6.5 - Métodos de partida - cantidad de cables. Cantidad de cables 3 cables 6 cables 9 cables 12 cables ESPAÑOL Métodos de partidas posibles Llave Compensadora Soft – Starter Llave Estrella - Triángulo Llave Compensadora Soft - Starter Llave Serie - Paralela Llave Compensadora Soft - Starter Llave Estrella - Triángulo Llave Serie - Paralela Llave Compensadora Soft - Starter La Tabla 6.6 indica ejemplos de métodos de partida indirecta posibles de ser utilizados, de acuerdo con la tensión indicada en la placa de identificación del motor y la tensión de la red eléctrica. Tabela 6.6 Tensión de la placa de identificación 220/380 V 220/440 V 230/460 V 380/660 V 220/380/440 V - Métodos de partida x tensión. Tensión de Servicio Partida con llave Estrella - Triángulo Partida con llave Compensadora Partida con llave Serie - Paralela Partida con Soft-Starter 220 V 380 V 220 V 440 V 230 V 460 V 380 V SÍ NO NO NO NO NO SÍ SÍ SÍ SÍ SÍ SÍ SÍ SÍ NO NO SÍ NO SÍ NO NO SÍ SÍ SÍ SÍ SÍ SÍ SÍ 220 V 380 V 440 V SÍ NO SÍ SÍ SÍ SÍ SÍ SÍ NO SÍ SÍ SÍ Los motores WQuattro deben ser accionados directamente a partir de la red o por convertidor de frecuencia en modo escalar. Otro método de partida posible que no sobrecargue la red de alimentación es la utilización de un convertidor de frecuencia. Para más informaciones sobre motores alimentados con convertidor de frecuencia ver ítem 6.13. Motores Eléctricos 139 142 www.weg.net 6.13. MOTORES ALIMENTADOS POR CONVERTIDOR DE FRECUENCIA La operación con convertidor de frecuencia debe ser informada en el momento de la compra debido a posibles diferencias constructivas necesarias para ese tipo de accionamiento. Los motores Wmagnet deben ser accionados solamente por convertidor de frecuencia WEG. El convertidor utilizado para accionar motores con tensión de alimentación hasta 690V debe poseer modulación PWM con control vectorial. Cuando un motor opera con convertidor de frecuencia por debajo de la frecuencia nominal, es necesario reducir el torque suministrado por el motor, a fin de evitar sobrecalentamiento. Los valores de reducción de torque (derating torque) pueden ser encontrados en el ítem 6.4 de la “Guía Técnica Motores de Inducción Alimentados por Convertidores de Frecuencia PWM” disponible en www.weg.net. ESPAÑOL Para operación por encima de la frecuencia nominal debe ser observado: J Operación con potencia constante; J El motor puede suministrar como máximo 95% de la potencia nominal; J Respetar la rotación máxima, considerando los siguientes criterios: J máxima frecuencia de operación informada en la placa adicional; J límite de rotación mecánica del motor. J torque máximo del motor, conforme la ecuación: Rotación máxima = Rotación nominal x Cmáx/Cn 1.5 Los recomendaciones para los cables de conexión entre motor y convertidor son indicadas en el ítem 6.8 de la “Guía Técnica de Motores de Inducción alimentados por Convertidores de Frecuencia PWM” disponible en www.weg.net. 6.13.1. Uso de Filtros (dV/dt) 6.13.1.1. Motor con alambre circular esmaltado Los motores con tensión nominal de hasta 690 V, cuando son alimentados por convertidores de frecuencia, no requieren filtros, cuando son observados los criterios de abajo: Criterios para utilización de motores de alambre circular esmaltado alimentados por convertidor de frecuencia 1 Tensión de operación Tensión de pico en el dV/dt en la salida del Rise Time3 del MTBP3 Tiempo entre 2 del motor motor (máx.) convertidor (máx.) convertidor (mín.) pulsos (min) Vnon ≤ 460 V ≤ 1600 V ≤ 5200 V/μs 460 < Vnon ≤ 575 V ≤ 1800 V ≤ 6500 V/μs ≥ 0,1 μs ≥ 6 μs ≤ 1600 V ≤ 5200 V/μs 575 < Vnon ≤ 690 V4 ≤ 2200 V ≤ 7800 V/μs 575 < Vnon ≤ 690 V5 1. Para motores con alambre circular esmaltado con tensión 690 < Vnon ≤ 1100 V, consulte a WEG. 2. Para motores con doble tensión, ejemplo 380/660V, deben ser observados los criterios de la tensión menor (380V). 3. Informaciones suministradas por el fabricante del convertidor. 4. Cuando no es informado en el momento de la compra que el motor operará con convertidor de frecuencia. 5. Cuando es informado en el momento de la compra que el motor operará con convertidor de frecuencia. 6.13.1.2. Motor con bobina preformada Los motores con bobina preformada (media tensión, independientemente del tamaño de la carcasa y baja tensión a partir de la carcasa IEC 500 / NEMA 80) especificados para utilización con convertidor de frecuencia no requieren filtros, si son observados los criterios de la Tabla 6.7. 140 Motores Eléctricos 143 www.weg.net Tabela 6.7 - Criterios para utilización de motores con bobina preformada alimentados con convertidor de frecuencia. Tensión de operación del motor 690 < Vnon ≤ 4160 V 4160 < Vnon ≤ 6600 V Aislamiento de la espira (fase-fase) dV/dt en los Tensión de pico en terminales del los terminales del motor motor ≤ 5900 V ≤ 500 V/μs ≤ 9300 V ≤ 2700 V/μs ≤ 9300 V ≤ 500 V/μs ≤ 12700 V ≤ 1500 V/μs Tipo de modulación Senoidal PWM Senoidal PWM Aislamiento principal (fase-tierra) dV/dt en los Tensión de pico en terminales del los terminales del motor motor ≤ 3400 V ≤ 500 V/μs ≤ 5400 V ≤ 2700 V/μs ≤ 5400 V ≤ 500 V/μs ≤ 7400 V ≤ 1500 V/μs 6.13.2. Aislamiento de los Cojinetes Como modelo, solamente motores en carcasa IEC 400 (NEMA 68) y superiores son suministrados con cojinete aislado. Se recomienda aislar los cojinetes para operación con convertidor de frecuencia de acuerdo con la Tabla 6.8. Tabela 6.8 - Recomendación sobre el aislamiento de los cojinetes para motores accionados por convertidor de frecuencia. Carcasa IEC 315 e 355 NEMA 445/7, 447/9, L447/9, 504/5, 5006/7/8, 5009/10/11, 586/7, 5807/8/9, 5810/11/12 e 588/9 IEC 400 y superior NEMA 6800 y superior Recomendación Un cojinete aislado Puesta a tierra entre eje y carcasa por medio de escobilla Cojinete trasero aislado Puesta a tierra entre eje y carcasa por medio de escobilla Para motores suministrados con sistema de puesta a tierra del eje, debe ser observado constantemente el estado de conservación de la escobilla y, al llegar al fin de su vida útil, la misma debe ser sustituida por otra de su misma calidad. ESPAÑOL 6.13.3. Frecuencia de Conmutación La frecuencia mínima de conmutación del convertidor deberá ser de 2,5 kHz. Se recomienda que la frecuencia máxima de conmutación del convertidor sea de 5 kHz. La no observación de los criterios y recomendaciones expuestos en este manual puede resultar en la anulación de la garantía del producto. 6.13.4. Límite de la rotación mecánica La Tabla 6.9 muestra las rotaciones máximas permitidas para motores accionados por convertidor de frecuencia. Tabela 6.9 - Rotación máxima del motor (en RPM). Carcasa 90 – 100 112 132 160 180 200 225 250 280 315 355 2 polos 7000 7000 6000 5000 4500 4000 3600 3600 3600 3600 3600 4 polos 7000 6000 5500 5000 4000 3800 3600 3600 3000 2500 1800 6 polos 7000 6000 5500 5000 4000 3800 3600 3600 3000 2500 1800 8 polos 7000 6000 5500 5000 4000 3800 3600 3600 3000 2500 1800 Nota: para seleccionar la rotación máxima permitida para el motor, considere la curva de reducción de torque del motor. Para más informaciones sobre el uso de convertidor de frecuencia, o acerca de cómo dimensionarlo correctamente para su aplicación, favor contacte a WEG o consulte la “Guía Técnica de Motores de Inducción Alimentados por Convertidores de Frecuencia PWM” disponible en www.weg.net. Motores Eléctricos 141 144 www.weg.net 7. OPERACION 7.1. PARTIDA DEL MOTOR Luego de ejecutar los procedimientos de instalación, algunos aspectos deben ser verificados antes de la partida inicial del motor, principalmente si el motor no fue colocado inmediatamente en operación tras su instalación. Aquí deben ser verificados los siguientes ítems: J J J J J J J J J ESPAÑOL J J J Si los datos que constan en la placa de identificación (tensión, corriente, esquema de conexión, grado de protección, refrigeración, factor de servicio, entre otras) están de acuerdo con la aplicación. El correcto montaje y alineamiento del conjunto (motor + máquina accionada). El sistema de accionamiento del motor, considerando que la rotación del motor no sobrepase la velocidad máxima establecida en la Tabla 6.9. La resistencia de aislamiento del motor, conforme ítem 5.4. El sentido de rotación del motor. La integridad de la caja de conexión, que debe estar limpia y seca, sus elementos de contacto libres de oxidación, sus sellados en condiciones apropiadas de uso y sus entradas de cables correctamente cerradas/protegidas de acuerdo con el grado de protección. Las conexiones del motor, verificando si fueron correctamente realizadas, inclusive puesta a tierra y cables auxiliares, conforme recomendaciones del ítem 6.9. El correcto funcionamiento de los accesorios (freno, encoder, protección térmica, ventilación forzada, etc.) instalados en el motor. La condición de los rodamientos. Si presentan señales de oxidación, deben ser substituidos. En caso que no presenten oxidación, realice el procedimiento de relubricación conforme descrito en el ítem 8.2. Aquellos motores instalados hace más de dos años, que no entraron en operación, deben tener sus rodamientos substituidos antes de ser puestos en operación. En motores con cojinetes de deslizamiento debe ser verificado: J el nivel correcto de aceite del cojinete. El mismo debe estar en la mitad del visor (ver Figura 6.9). J que el motor no parta ni opere con cargas radiales o axiales. J que cuando el motor sea almacenado por un período igual o mayor al intervalo de cambio de aceite, el aceite deberá ser cambiado antes de la puesta en funcionamiento. El análisis de la condición de los condensadores, si existen. Para motores instalados por un período superior a dos años, pero que no entraron en operación, se recomienda la substitución de sus condensadores de partida de motores monofásicos. Que entradas y salidas de aire estén completamente desobstruidas. El mínimo espacio libre hasta la pared más próxima (L) debe ser ¼ del diámetro de la entrada de aire de la deflectora (D), ver Figura 7.1. El aire en la entrada del motor debe estar a temperatura ambiente. Figura 7.1 - Distancia mínima del motor hasta la pared. Como referencia, pueden ser seguidas las distancias mínimas presentadas en la Tabla 7.1. 142 Motores Eléctricos 145 www.weg.net Tabela 7.1 - Distancia mínima entre la tapa deflectora y la pared. Carcasa IEC 63 71 80 90 100 112 132 160 180 200 225 250 280 315 355 J J Distancia entre la tapa deflectora y la pared (L) NEMA 143/5 182/4 213/5 254/6 284/6 324/6 364/5 404/5 444/5 445/7 447/9 L447/9 504/5 586/7 588/9 mm 25 26 30 33 36 41 50 65 68 78 pulgadas 0,96 1,02 1,18 1,30 1,43 1,61 1,98 2,56 2,66 3,08 85 3,35 108 4,23 122 4,80 136 5,35 que los flujos y las temperaturas del agua estén correctas, cuando es utilizada en la refrigeración del motor. Ver ítem 7.2. que todas las partes giratorias, como poleas, acoplamientos, ventiladores externos, eje, etc., estén protegidas contra toques accidentales. Luego de haber sido realizadas todas las verificaciones, siga el procedimiento de abajo para efectuar la partida de motor: J Encienda la máquina sin ninguna carga (cuando sea posible), accionando la llave de partida como si fuese un pulso, verificando el sentido de rotación, la presencia de ruido, vibración u otra condición anormal de operación. J Encienda nuevamente el motor, debiendo partir y funcionar de manera suave. En caso que eso no ocurra, apáguelo y verifique nuevamente el sistema de montaje y las conexiones antes de una nueva partida. En caso de vibraciones excesivas, verifique si los tornillos de fijación están adecuadamente apretados o si la vibración es proveniente de máquinas adyacentes. Verifique periódicamente la vibración, respetando los límites presentados en el ítem 7.2.1. Opere el motor bajo carga nominal por un pequeño período de tiempo y compare la corriente de operación con la corriente indicada en la placa de identificación. Se recomienda que algunas variables del motor sean acompañadas hasta su equilibrio térmico: corriente, tensión, temperatura en los cojinetes y en la superficie externa de la carcasa, vibración y ruido. Se recomienda que los valores de corriente y tensión sean registrados en el informe de instalación. J J J J ESPAÑOL Otros testes y verificaciones que no constan en esta relación pueden hacerse necesarios, en función de las características específicas de la instalación, aplicación y/o del motor. Debido al valor elevado de la corriente de partida de los motores de inducción, el tiempo gastado en la aceleración en las cargas de inercia apreciable resulta en la elevación rápida de la temperatura del motor. Si el intervalo entre partidas sucesivas es muy reducido, resultará en un aumento de la temperatura en los devanados, damnificándolos o reduciendo su vida útil. En caso que no sea especificado régimen de servicio diferente a S1 en la placa de identificación del motor, los motores están aptos para: J dos partidas sucesivas, siendo la primera hecha con el motor frío, es decir, con sus devanados a temperatura ambiente y una segunda partida a seguir, no obstante, luego que el motor haya sido desacelerado hasta alcanzar su reposo. J una partida con el motor a caliente, o sea, con los devanados a la temperatura de régimen. El ítem 10 lista algunos problemas de mal funcionamiento del motor, con sus posibles causas. Motores Eléctricos 143 146 www.weg.net 7.2. CONDICIONES DE OPERACION En caso que ninguna otra condición sea informada en el momento de la compra, los motores eléctricos son proyectados para operar a una altitud limitada a 1000 m por encima del nivel del mar y en temperatura ambiente entre -20°C y +40°C. Cualquier variación de las condiciones del ambiente, donde el motor operará, debe estar indicada en la placa de identificación del motor. Algunos componentes precisan ser cambiados, cuando la temperatura ambiente es diferente de la indicada arriba. Favor contactar a WEG para verificar las características especiales. El ambiente en el local de instalación deberá tener condiciones de renovación de aire del orden de 1m³ por segundo para cada 100 kW o fracción de potencia del motor. Para motores ventilados, que no poseen ventilador propio, la ventilación adecuada del motor es de responsabilidad del fabricante del equipamiento. En caso que no haya especificación de la velocidad de aire mínima entre las aletas del motor en una placa de identificación, deben ser seguidos los valores indicados en la Tabla 7.2. Los valores presentados en la Tabla 7.2 son válidos para motores aleteados alimentados en la frecuencia de 60 Hz. Para obtención de las velocidades mínimas de aire en 50 Hz se deben multiplicar los valores de la tabla por 0,83. Tabela 7.2 - Velocidad mínima de aire entre las aletas del motor (m/s). Carcasa IEC 63 a 90 160 a 200 NEMA 143/5 182/4 y 213/5 364/5 to 444/5 225 a 280 364/5 to 444/5 315 a 355 445/7 to 588/9 ESPAÑOL 100 a 132 Polos 2 4 6 8 14 7 5 4 18 10 8 6 20 22 25 20 22 25 12 18 20 7 12 15 Las variaciones de la tensión y frecuencia de alimentación pueden afectar las características de desempeño y la compatibilidad electromagnética del motor. Estas variaciones de alimentación deben seguir los valores establecidos en las normas vigentes. Ejemplos: J ABNT NBR-17094 - Partes 1 y 2. El motor está apto para proveer torque nominal, bajo las siguientes zonas de variación de tensión y frecuencia: J Zona A: r5% de tensión yr2% de frecuencia J Zona B: r10% de tensión y +3% -5% de frecuencia Cuando es operado en la Zona A o B, el motor puede presentar variaciones de desempeño y alcanzar temperaturas más elevadas. Estas variaciones son mayores para la operación en la zona B. No es recomendada una operación prolongada del motor en la zona B. J IEC 60034-1. El motor está apto para proveer torque nominal, bajo las siguientes zonas de variación de tensión y frecuencia: J Zona A: r5% de tensión y r2% de frecuencia J Zona B: r10% de tensión y +3% -5% de frecuencia. Cuando es operado en la Zona A o B, el motor puede presentar variaciones de desempeño y alcanzar temperaturas más elevadas. Estas variaciones son mayores para la operación en la zona B. No es recomendada la operación prolongada del motor en la zona B. Para motores multitensión (ejemplo 380415/660 V) es permitida una variación de tensión de r5%. J NEMA MG-1 Parte 12. El motor está apto para operar en una de las siguientes variaciones: J r10% de tensión, con frecuencia nominal; J r5 de frecuencia, con tensión nominal; J Una combinación de variación de tensión y frecuencia de r10%, desde que la variación de frecuencia no sea superior a r5%.. Para motores que son enfriados a través del aire ambiente, las entradas y salidas de aire deben ser limpiadas en intervalos regulares para garantizar una libre circulación del aire. El aire caliente no debe retornar hacia el motor. El aire utilizado para refrigeración del motor debe estar a temperatura ambiente, limitada a la franja de temperatura indicada en la placa de identificación del motor (cuando no sea indicado, considere una franja de temperatura entre -20°C y +40°C). Para motores refrigerados a agua, los valores del flujo de agua para cada tamaño de carcasa, así como la máxima elevación de temperatura del agua luego de circular por el motor, son mostrados en la Tabla 7 3. La temperatura del agua en la entrada no debe exceder 40°C. 144 Motores Eléctricos 147 www.weg.net Tabela 7.3 - Flujo y máxima elevación de temperatura del agua. Carcasa IEC 180 200 225 250 280 315 355 NEMA 284/6 324/6 364/5 404/5 444/5 445/7 447/9 504/5 586/7 588/9 Flujo (litros/minuto) Máxima Elevación de temperatura del agua (°C) 12 12 12 12 5 5 5 5 15 6 16 6 25 6 Para motores con lubricación de tipo Oil Mist, en caso de falla del sistema de bombeo de aceite, es permitida una operación en régimen continuo con el tiempo máximo de una hora de operación. Considerando que el calor del sol causa aumento de la temperatura de operación, los motores instalados externamente deben siempre estar protegidos contra la incidencia directa de los rayos solares. Posibles desvíos en relación a la operación normal (actuación de protecciones térmicas, aumento del nivel de ruido, vibración, temperatura y corriente) deben ser examinados y eliminados por personal capacitado. En caso de dudas, apague el motor inmediatamente y contacte a un Asistente Técnico Autorizado WEG. Motores equipados con rodamiento de rodillos necesitan de una carga radial mínima para asegurar su operación normal. En caso de dudas, contacte a WEG. La severidad de vibración es el máximo valor de vibración encontrada, entre todos los puntos y direcciones recomendados. La Tabla 7.4 indica los valores admisibles de la severidad de vibración recomendados en la norma IEC 6003414 para las carcasas IEC 56 a 400, para los grados de vibración A y B. Los límites de severidad de la Tabla 7.4 son presentados en términos del valor medio cuadrático (= valor RMS o valor eficaz) de la velocidad de vibración en mm/s medidos en condición de suspensión libre (base elástica). ESPAÑOL 7.2.1. Límites de la severidad de vibración Tabela 7.4 - Limites recomendados para la severidad de vibración de acuerdo con la norma IEC 60034-14. Altura del eje [mm] Grado de vibración A B 56 ≤ H ≤ 132 132 < H ≤ 280 H > 280 Severidad de vibración en base elástica [mm/s RMS] 1,6 2,2 2,8 0,7 1,1 1,8 Notas: 1 - Los valores de la Tabla 7.4 son válidos para mediciones realizadas con la máquina desacoplada y sin carga, operando en la frecuencia y tensión nominales. 2 - Los valores de la Tabla 7.4 son válidos independientemente del sentido de rotación de la máquina. 3 - La Tabla 7.4 no se aplica para motores trifásicos con conmutador, motores monofásicos, motores trifásicos con alimentación monofásica o para máquinas fijadas en el local de instalación, acopladas en sus cargas de accionamiento o cargas accionadas. Para motor estándar, de acuerdo con la norma NEMA MG-1, el límite de vibración es de 0.15 in/s (pulgadas/ segundo pico), en la misma condición de suspensión libre y desacoplado. Nota: Para condición de operación en carga se recomienda el uso de la norma ISO 10816-3 para evaluación de los limites de vibración del motor. En la condición en carga, la vibración del motor será influenciada por varios factores, entre ellos, tipo de carga acoplada, condición de fijación del motor, condición de alineamiento con la carga, vibración de la estructura o base debido a otros equipamientos, etc. Motores Eléctricos 145 148 www.weg.net 8. MANTENIMIENTO La finalidad del mantenimiento es prolongar lo máximo posible la vida útil del equipamiento. La no observancia de uno de los ítems relacionados a seguir puede llevar a paradas no deseadas del equipamiento. En caso que, durante el mantenimiento, hubiera necesidad de transporte de los motores con rodamientos de rodillos o contacto angular, deben ser utilizados los dispositivos de trabado del eje suministrados con el motor. Todos los motores HGF, independientemente del tipo de cojinete, deben ter su eje trabado durante el transporte. Cualquier servicio en máquinas eléctricas debe ser realizado solamente por personal capacitado, utilizando sólo herramientas y métodos adecuados. Antes de iniciar cualquier servicio, las máquinas deben estar completamente paradas y desconectadas de la red de alimentación, inclusive los accesorios (resistencia de calentamiento, freno, etc.). Asistentes técnicos o personal no capacitado, sin autorización para hacer mantenimiento y/o reparar motores, son totalmente responsables por el trabajo ejecutado y por los eventuales daños que puedan ocurrir durante su funcionamiento. 8.1. INSPECCION GENERAL La frecuencia con que deben ser realizadas las inspecciones depende del tipo de motor, de la aplicación y de las condiciones del local de la instalación. Durante la inspección, se recomienda: Hacer una inspección visual del motor y del acoplamiento, observando los niveles de ruido, de la vibración, alineamiento, señales de desgastes, oxidación y piezas damnificadas. Substituir las piezas, cuando fuera necesario. JMedir la resistencia de aislamiento conforme descrito en el ítem 5.4. J Mantener la carcasa limpia, eliminando toda acumulación de aceite o de polvo en la parte externa del motor para de esta forma facilitar el intercambio de calor con el medio ambiente. JVerificar la condición del ventilador y de las entradas y salidas de aire, asegurando un libre flujo del arie; JVerificar el estado de los sellados y efectuar el cambio, si fuera necesario. JDrenar el motor. Tras el drenaje, recolocar los drenajes para garantizar nuevamente el grado de protección del motor. Los drenajes deben estar siempre posicionados de tal forma que el drenaje sea facilitado (ver ítem 6). JVerificar la conexión de los cables de alimentación, respetando las distancias de aislamiento entre partes vivas no aisladas entre sí y entre partes vivas y partes puestas a tierra de acuerdo con la Tabla 6.2. J Verificar si el apriete de los tornillos de conexión, sustentación y fijación está de acuerdo con lo indicado en la Tabla 8.7 JVerificar el estado del pasaje de los cables en la caja de conexión, los sellados de los prensacables y los sellados en las cajas de conexión y efectuar el cambio, se fuera necesario. J Verificar el estado de los cojinetes, observando la aparición de ruidos y niveles de vibración no habituales, verificando la temperatura de los cojinetes, el nivel del aceite, la condición del lubricante y el monitoreo de las horas de operación versus la vida útil informada. JRegistrar y archivar todas las modificaciones realizadas en el motor. ESPAÑOL J No reutilice piezas dañadas o desgastadas. Substitúyalas por nuevas, originales de fábrica. 8.2. LUBRICACION La correcta lubricación es de vital importancia para el buen funcionamiento del motor. Utilice el tipo y cantidad de grasa o aceite especificados y seguir los intervalos de relubricación recomendados para los cojinetes. Estas informaciones pueden ser encontradas en la placa de identificación y este procedimiento debe ser realizado conforme el tipo de lubrificante (aceite o grasa). Cuando el motor utilice protección térmica en el cojinete, deben ser respetados los límites de temperatura de operación indicados en la Tabla 6.3. Los motores para aplicaciones especiales pueden presentar temperaturas máximas de operación diferentes a las indicadas en la tabla. El descarte de la grasa y/o aceite debe seguir las recomendaciones vigentes de cada país. La utilización de motor en ambientes y/o aplicaciones especiales siempre requiere una consulta previa a WEG. 146 Motores Eléctricos 149 www.weg.net 8.2.1. Cojinetes de rodamiento lubricados a grasa Grasa en exceso provoca calentamiento del cojinete y su consecuente falla. Los intervalos de lubricación especificados en las Tabla 8.1, Tabla 8.2, Tabla 8.3 y Tabla 8.4 consideran una temperatura ambiente de 40°C, rotación nominal del motor, instalación horizontal, grasa Mobil Polyrex EM, y son determinados siguiendo el criterio de la norma ISO 281, o sea, se estima que 90% de los rodamientos atienden los valores calculados. Cualquier variación de los parámetros indicados arriba debe ser evaluada puntualmente. Tabela 8.1- Intervalo de lubricación para rodamientos de esferas. Carcasa IEC 160 180 200 254/6 284/6 324/6 364/5 404/5 444/5 445/7 447/9 L447/9 504/5 5008 5010/11 586/7 588/9 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 6309 6311 6312 6314 13 18 21 27 2 4 6 8 6316 8 6319 6322 20000 20000 20000 20000 20000 25000 25000 13700 11500 17000 14000 20000 20000 25000 25000 11900 9800 15000 12000 20000 20000 25000 25000 4500 11600 16400 19700 5000 14000 20000 24000 9000 13000 17400 7200 10800 3600 9700 14200 17300 *Mediante consulta 8500 12800 15900 *Mediante consulta 7000 11000 14000 5100 9200 11000 16000 20000 9000 13000 4000 12000 17000 20000 *Mediante consulta 10000 16000 20000 *Mediante consulta 8000 13000 17000 6000 11000 15100 11800 19000 14000 20000 18000 14400 20000 20000 14000 *Mediante consulta 3500 20000 20000 10400 14900 18700 9600 *Mediante consulta 2400 20000 20000 20000 20000 45 60 20000 20000 34 2 4 6 8 4 6 Intervalos de relubricación (horas) ODP W21 W22 (Envoltorio abierto) (Envoltorio cerrado) (Envoltorio Cerrado) 50 Hz 60 Hz 50 Hz 60 Hz 50 Hz 60 Hz 18100 15700 22000 20000 4000 13000 18000 20000 3000 Motores Eléctricos 147 ESPAÑOL 225 250 280 315 355 NEMA Cantidad de Polos Rodamiento grasa (g) 150 www.weg.net Tabela 8.2- Intervalo de lubricación para rodamientos de rodillos. Intervalos de relubricación (horas) Carcasa IEC Polos Rodamiento Cantidad de grasa (g) NEMA 160 50 Hz 2 4 6 8 2 4 6 8 2 254/6 180 284/6 200 13 NU311 18 NU312 6 8 4 6 8 4 6 8 364/5 404/5 444/5 445/7 447/9 L447/9 504/5 5008 5010/11 586/7 588/9 ESPAÑOL NU309 4 324/6 "225 250 280 315 355" ODP W21 W22 (Envoltorio abierto) (Envoltorio Cerrado) (Envoltorio Cerrado) 21 60 Hz 19600 50 Hz 13300 60 Hz 9800 50 Hz 16000 60 Hz 12000 20000 20000 20000 25000 25000 18400 12800 9200 6400 19100 11000 8000 20000 20000 20000 25000 25000 15200 10200 7600 20000 20000 5100 9000 17200 20000 20000 20000 25000 20000 NU314 27 NU316 34 NU319 45 NU322 60 4 6 8 4 6 8 6000 21000 17800 14200 20000 20000 15200 12000 19000 20000 8900 13100 16900 7600 11600 15500 12000 9400 6000 4700 7000 5000 19600 20000 8800 15600 20000 15200 20000 6600 11800 20000 9800 13700 4400 7800 11500 7600 12200 3300 5900 10700 12000 17000 5000 9000 14000 9000 15000 4000 7000 13000 20000 7100 11000 15100 6000 9500 13800 25000 11000 16000 20000 9000 14000 19000 9000 13000 19000 7000 12000 17000 Tabela 8.3 - Intervalo de lubricación para rodamiento de esferas - línea HGF. Carcasa IEC NEMA 315L/A/B e 315C/D/E 5006/7/8T e 5009/10/11T 355L/A/B e 355C/D/E 5807/8/9T e 5810/11/12T 400L/A/B e 400 C/D/E 6806/7/8T e 6809/10/11T Rodamiento Cantidad de grasa (g) 50 Hz 60 Hz 2 6314 6320 6316 6314 6322 6319 6315 6324 6319 6220 6328 6322 6328 6322 27 50 34 27 60 45 30 72 45 31 93 60 93 60 3100 4500 4500 3100 4500 4500 2700 4500 4500 2500 4500 4500 4500 4500 2100 4500 4500 2100 4500 4500 1800 4500 4500 1400 3300 4500 4500 4500 6330 104 4200 2800 6324 6330 6324 6330 6324 6330 6324 72 104 72 104 72 104 72 4500 4500 4500 4200 4500 4500 4500 4500 4500 4500 2800 4500 4500 4500 4–8 2 4–8 2 4–8 2 450 7006/10 4 6–8 4 500 8006/10 6–8 4 500 8006/10 6–8 560 630 148 8806/10 9606/10 Motores Eléctricos Intervalos de Lubricación (horas) Polos 4-8 4-8 *Mediante consulta 151 www.weg.net Tabela 8.4 - Intervalo de lubricación para rodamiento de rodillos - línea HGF. Carcasa IEC NEMA 315L/A/B e 5006/7/8 e 315C/D/E 5009/10/11 355L/A/B e 5807/8/9 e 355C/D/E 5810/11/12 400L/A/B e 6806/7/8 e 400C/D/E 6809/10/11 450 7006/10 500 8006/10 560 8806/10 630 9606/10 Polos 4 6-8 4 6-8 4 6-8 4 6 8 4 6 8 4 6-8 4 6 8 Rodamiento Cantidad de grasa (g) NU320 50 NU322 60 NU324 72 NU328 93 NU330 104 NU228 + 6228 NU232 + 6232 75 106 92 120 140 Intervalos de Lubricación (horas) 50 Hz 60 Hz 4300 2900 4500 4500 3500 2200 4500 4500 2900 1800 4500 4500 2000 1400 4500 3200 4500 4500 1700 1000 4100 2900 4500 4500 2600 1600 4500 4500 1800 1000 4300 3100 4500 4500 Para cada incremento de 15°C en la temperatura ambiente, el intervalo de relubricación deberá ser reducido por la mitad. Los motores originales de fábrica, para posición horizontal, pero instalados en posición vertical (con autorización de WEG), deben tener su intervalo de relubricación reducido por la mitad. ESPAÑOL Para aplicaciones especiales, tales como: altas y bajas temperaturas, ambientes agresivos, variación de velocidad (accionamiento por convertidor de frecuencia), etc., entre en contacto con WEG para obtener informaciones referentes al tipo de grasa e intervalos de lubricación a ser utilizados. 8.2.1.1. Motores sin grasera En motores sin grasera, la lubricación debe ser efectuada conforme el plano de mantenimiento preventivo existente. El desmontaje y montaje del motor deben ser hechos conforme el ítem 8.3. En motores con rodamientos blindados (por ejemplo, ZZ, DDU, 2RS, VV), los rodamientos deben ser substituidos al final de la vida útil de la grasa. 8.2.1.2. Motores con grasera En motores con grasera, es recomendado lubricar los rodamientos con el motor parado, procediendo de la siguiente manera: JLimpie las proximidades del orificio de entrada de grasa; JRetire la protección de salida de grasa; J Coloque aproximadamente mitad de la grasa total recomendada y gire el motor durante aproximadamente 1 (un) minuto en la rotación nominal; JApague el motor y coloque el resto de la grasa; J Recoloque las protecciones de entrada y salida de grasa. Para lubricación, es indicado el uso de lubricador manual. En motores suministrados con dispositivo de resorte, el exceso de grasa debe ser removido, halando la varilla del resorte y limpiándolo, hasta que no presente más grasa. 8.2.1.3. Compatibilidad de la grasa Mobil Polyrex EM con otras grasas La grasa Mobil Polyrex EM posee espesante de poliurea y aceite mineral, siendo compatible con otras grasas que contengan: J Espesante de litio o complejo de litio o poliurea y aceite mineral altamente refinado; J La grasa aplicada debe poseer, en su formulación, aditivos inhibidores de corrosión y oxidación. A pesar de que la grasa Mobil Polyrex EM es compatible con los tipos de grasa indicados arriba, no es recomendada la mezcla de grasas. En caso que necesite de otro tipo de grasa, contacte a WEG. Motores Eléctricos 149 152 www.weg.net 8.2.2. Cojinetes de rodamiento lubricados a aceite En motores con rodamientos lubricados a aceite, el cambio de aceite debe ser hecho con el motor parado, siguiendo los procedimientos abajo: J abra la respiración de entrada de aceite; J retire el tapón de salida de aceite J abra la válvula y drene todo el aceite; J cierre la válvula; J recoloque el tapón; J abastezca con la cantidad y especificación de aceite indicadas en la placa de identificación; J verifique si el nivel del aceite está en la mitad del visor; J cierre la respiración de la entrada de aceite; J asegúrese de que no hay pérdida y que todos los orificios roscados no utilizados estén cerrados. El cambio de aceite de los cojinetes debe ser realizado en el intervalo indicado en la placa de identificación o siempre que el lubrificante presente alteraciones en sus características (viscosidad, pH, etc.). El nivel de aceite debe ser mantenido en la mitad del visor de aceite y acompañado diariamente. El uso de lubricantes con otras viscosidades requiere contacto previo con WEG. Obs.: los motores HGF verticales para alto empuje son suministrados con cojinetes delanteros lubricados a grasa y con cojinetes traseros, a aceite. Los cojinetes delanteros deben seguir las recomendaciones del ítem 8.2.1. La Tabla 8.5 presenta la cantidad y especificación de aceite para esa configuración. Montaje Alto Empuje ESPAÑOL Tabla 8 5 – Características de lubricación para motores HGF vertical de alto empuje. Carcasa IEC 315L/A/B e 315C/D/E 355L/A/B e 355C/D/E 400L/A/B e 400C/D/E NEMA 5006/7/8T e 5009/10/11T 5807/8/9T e 5810/11/12T 6806/7/8T e 6809/10/11T 450 7006/10 Polos Rodamiento Aceite (L) 4-8 29320 20 4-8 29320 26 4-8 29320 37 4-8 29320 45 Intervalo (h) Lubricante Especificación Lubricante 8000 Renolin DTA 40 / SHC 629 Aceite mineral ISO VG150 con aditivos antiespuma y antioxidantes 8.2.3. Cojinetes de rodamiento con lubricación de tipo Oil Mist Verifique el estado de los sellados y, siempre que fuera necesario algún cambio, use solamente piezas originales. Realice la limpieza de los componentes antes del montaje (anillos de fijación, tapas, etc.). Aplique sellajuntas resistente al aceite lubricante utilizado, entre los anillos de fijación y las tapas. A conexión de los sistemas de entrada, salida y drenaje de aceite deben ser realizados conforme la Figura 6.12. 8.2.4. Cojinetes de deslizamiento Para los cojinetes de deslizamiento, el cambio de aceite debe ser hecho en los intervalos indicados en la Tabla 8.6 y debe ser realizado, adoptando los siguientes procedimientos: Jpara el cojinete trasero, retire la tapa de inspección de la deflectora. Jdrene el aceite a través del drenaje localizado en la parte inferior de la carcasa del cojinete (ver Figura 8 1). J cierre la salida de aceite. Jretire el tapón de la entrada de aceite. J abastezca con el aceite especificado y con la cantidad indicada en la Tabla 8.6. J verifique si el nivel del aceite está en la mitad del visor. J cierre la entrada de aceite. J asegúrese de que no existe pérdida 150 Motores Eléctricos 153 www.weg.net Entrada de aceite Visor del nivel de aceite Salida de aceite Figura 8.1 - Cojinete de deslizamiento. Tabela 8.6 Carcasa IEC NEMA 315L/A/B y 315C/D/E 5006/7/8T y 5009/10/11T 355L/A/B y 355C/D/E 5807/8/9T y 5810/11/12T 400L/A/B y 400C/D/E 6806/7/8 y 6809/10/11T – Características de lubricación para cojinetes de deslizamiento. Polos 2 Cojinete 9-80 7006/10 5006/7/8T y 5009/10/11T 9-90 355L/A/B y 355C/D/E 5807/8/9T y 5810/11/12T 9-100 400L/A/B y 400C/D/E 6806/7/8 y 6809/10/11T 450 7006/10 500 8006/10 2.8 Lubricante Especificación Lubrificante 8000 Renolin DTA 10 Aceite mineral ISO VG32 con aditivos antiespuma y antioxidantes 8000 Renolin DTA 15 Aceite mineral ISO VG46 con aditivos antiespuma y antioxidantes Intervalo (h) 2.8 4-8 11-110 4.7 ESPAÑOL 450 315L/A/B y 315C/D/E Aceite (L) 11-125 El cambio de aceite de los cojinetes debe ser realizado en el intervalo indicado en la placa de identificación o siempre que el lubricante presente alteraciones en sus características (viscosidad, pH, etc.). El nivel de aceite debe ser mantenido en la mitad del visor y seguido diariamente. No podrán ser usados lubrificantes con otras viscosidades sin antes consultar a WEG. 8.3. DESMONTAJE Y MONTAJE Los servicios de reparación en motores deben ser efectuados solamente por personal capacitado siguiendo las normas vigentes del país. Sólo deben ser utilizadas herramientas y métodos adecuados. Cualquier servicio de desmontaje y montaje debe ser realizado con el motor totalmente desenergizado y completamente parado. El motor apagado también puede presentar energía eléctrica en el interior de la caja de conexión:, en las resistencias de calentamiento, en el devanado y en los capacitores. Los motores accionados por convertidor de frecuencia pueden estar energizados incluso con el motor parado. Antes de iniciar el procedimiento de desmontaje, registre las condiciones actuales de la instalación, tales como conexiones de los terminales de alimentación del motor y alineamiento / nivelación, los que deben ser considerados durante el montaje posterior. Realice el desmontaje de manera cuidadosa, sin causar impactos contra las superficies mecanizadas y / o en las roscas. Motores Eléctricos 151 154 www.weg.net Monte el motor en una superficie plana para garantizar una buena base de apoyo. Los motores sin patas deben ser calzados/trabados para evitar accidentes. Deben ser tomados cuidados adicionales para no dañar las partes aisladas que operan bajo tensión eléctrica, como por ejemplo, devanados, cojinetes aislados, cables de alimentación, etc. Los elementos de sellado, como por ejemplo, juntas y sellados de los cojinetes deben ser cambiados siempre que presenten desgaste o estén damnificados. Los motores con grado de protección superior a IP55 son suministrados con producto sellante Loctite 5923 (Henkel) en las juntas y tornillos. Antes de montar los componentes, limpie las superficies y aplique una nueva camada de este producto. ESPAÑOL 8.3.1. Caja de conexión Al retirar la tapa de la caja de conexión para la conexión/desconexión de los cables de alimentación y accesorios, deben ser adoptados los siguientes cuidados: J Asegúrese que durante la remoción de los tornillos, la tapa de la caja no dañe los componentes instalados en su interior. J En caso que la caja de conexión sea suministrada con ojal de suspensión, éste debe ser utilizado para mover la tapa de la caja de conexión. J Para motores suministrados con placa de bornes, deben ser asegurados los torques de apriete especificados en la Tabla 8.7. J Verifique que los cables no entren en contacto con superficies con esquinas vivas. J Adopte los debidos cuidados para garantizar que el grado de protección inicial, indicado en la placa de identificación del motor no sea alterado. Las entradas de cables para la alimentación y control deben utilizar siempre componentes (como, por ejemplo, prensacables y electroductos) que atiendan las normas y reglamentaciones vigentes de cada país. J Asegúrese que la ventana de alivio de presión, cuando exista, no esté dañada. Las juntas de sellado de la caja de conexión deben estar en perfecto estado para reutilización y deben ser posicionadas correctamente para garantizar el grado de protección. JVerifique los torques de apriete de los tornillos de fijación de la tapa de la caja conforme Tabla 8 7. Tabela 8.7 Tipo de tornillo y Junta – Torques de apriete para elementos de fijación [Nm]. M4 M5 M6 M8 M10 M16 M20 55 a 85 120 a 180 230 a 360 - - - - 13 a 20 25 a 37 40 a 55 50 a 65 - 4a8 8 a 15 - - - - - - 8 a 15 18 a 30 25 a 40 35 a 50 - Placa de bornes 1,5 a 4 4 a 6,5 6,5 a 9 10 a 18 18 a 30 35 a 50 - Puesta a tierra 3a5 5 a 10 10 a 18 30 a 50 55 a 85 120 a 180 - Tornillo sextavado externo/interno (s/ junta) 4a7 7 a 12 16 a 30 30 a 50 Tornillo ranura combinada (s/ junta) 3a5 5 a 10 10 a 18 Tornillo sextavado externo/interno (c/ junta con batiente metálica/cordón) - - Tornillo ranura combinada (c/ junta plana y/o batiente metálica/cordón) 3a5 Tornillo sextavado externo/interno (c/ junta plana) M12 8.4. PROCEDIMIENTO PARA ADECUACION DE LA RESISTENCIA DE AISLAMIENTO El motor debe ser desmontado y sus tapas, rotor completo (con eje), ventilador, deflectora y caja de conexión deben ser separados, de modo que apenas la carcasa con el estator pase por un proceso de secado en una horno apropiado, por un período de dos horas, a una temperatura no superior a 120ºC. Para motores mayores, puede ser necesario aumentar el tiempo de secado. Luego de ese período de secado, deje el estator enfriar hasta que llegue a temperatura ambiente y repita la medición de la resistencia de aislamiento, conforme ítem 5.4. En caso necesario, se debe repetir el proceso de secado del estator. Si, luego de repetidos los procesos de secado del estator, la resistencia de aislamiento no vuelve a los niveles aceptables, se recomienda hacer un análisis exhaustivo de las causas que llevaron a la caída del aislamiento del devanado y, eventualmente podrá culminar con el rebobinado del motor. 152 Motores Eléctricos 155 www.weg.net Para evitar el riesgo de shock eléctrico, descargue los terminales inmediatamente antes y después de cada medición. En caso que el motor posea condensadores, éstos deben ser descargados. 8.5. PARTES Y PIEZAS Al solicitar piezas para reposición, informe la designación completa del motor, así como su código y número de serie, que pueden ser encontrados en la placa de identificación del motor. Las partes y piezas deben ser adquiridas de la red de Asistencia Técnica Autorizada WEG. El uso de piezas no originales puede resultar en la caída de desempeño y causar falla en el motor. Las piezas sobresalientes deben ser almacenadas en local seco con una humedad relativa del aire de hasta 60%, con temperatura ambiente mayor a 5°C y menor a 40°C, libre de polvo, vibraciones, gases, agentes corrosivos, sin variaciones bruscas de temperatura, en su posición normal y sin apoyar otros objetos sobre las mismas. ESPAÑOL Figura 8.2 - Vista explotada de los componentes de un motor W22. Motores Eléctricos 153 156 www.weg.net 9. INFORMACIONES AMBIENTALES 9.1. EMBALAGEM Los motores eléctricos son suministrados en embalajes de cartón, plástico o madera. Estos materiales son reciclables o reutilizables y deben recibir el destino correcto, conforme las normas vigentes de cada país. Toda la madera utilizada en los embalajes de los motores WEG proviene de reforestación y no es sometida a ningún tratamiento químico para su conservación. 9.2. PRODUCTO Los motores eléctricos, bajo el aspecto constructivo, son fabricados esencialmente con metales ferrosos (acero, hierro fundido), metales no ferrosos (cobre, aluminio) y plástico. ESPAÑOL El motor eléctrico, de manera general, es un producto que posee una vida útil larga, no obstante en cuanto a su descarte, WEG recomienda que los materiales del embalaje y del producto sean debidamente separados y enviados a reciclaje. Los materiales no reciclables deben, como determina la legislación ambiental, ser dispuestos de forma adecuada, o sea, en aterramientos industriales, coprocesados en hornos de cemento o incinerados. Los prestadores de servicios de reciclaje, disposición en aterramiento industrial, coprocesamiento o incineración de residuos deben estar debidamente licenciados por el órgano ambiental de cada estado para realizar estas actividades. 154 Motores Eléctricos 157 www.weg.net 10. PROBLEMAS Y SOLUCIONES Las instrucciones a seguir presentan una relación de problemas comunes con posibles soluciones. En caso de duda, contacte al Asistente Técnico Autorizado, o a WEG. Problema El motor no parte, ni acoplado ni desacoplado Cuando acoplado con carga, el motor no parte o parte muy lentamente y no alcanza la rotación nominal Ruido elevado / anormal Calentamiento del cojinete Solución Interrupción en la alimentación del motor Verifique el circuito de comando y los cables de alimentación del motor Fusibles quemados Substituya los fusibles Corrija las conexiones del motor conforme Error en la conexión del motor el diagrama de conexión Cojinete trabado Verifique si el cojinete gira libremente. Carga con torque muy elevado durante la No aplique carga en la máquina accionada partida durante la partida Verifique el dimensionamiento de la Caída de tensión muy alta en los cables de instalación (transformador, sección de los alimentación cables, relés, disyuntores, etc.) Defecto en los componentes de transmisión Verifique la transmisión de fuerza, el o en la máquina accionada acoplamiento y el alineamiento Realinee/nivele el motor y la máquina Base desalineada/desnivelada. accionada Desbalance de los componentes o de la Rehaga el balanceo máquina accionada Tipos diferentes de balanceo entre motor y acoplamiento (media chaveta, chaveta Rehaga el balanceo entera) Sentido de rotación del motor incorrecto Invierta el sentido de rotación del motor Tornillos de fijación sueltos Reapriete los tornillos Resonancia de los cimientos Verifique el proyecto de los cimientos Rodamientos damnificados Substituya el rodamiento Limpie las entradas y salidas de aire de la deflectora, y de la carcasa Verifique las distancias mínimas entre la Refrigeración insuficiente entrada de la deflectora de aire y las paredes cercanas. Ver ítem 7 Verifique la temperatura del aire en la entrada Mida la corriente del motor, analizando su Sobrecarga aplicación y, si fuera necesario, disminuya la carga Excesivo número de partidas o momento Reduzca el número de partidas de inercia de la carga muy elevado Verifique la tensión de alimentación del Tensión muy alta motor. No sobrepase la tolerancia conforme ítem 7.2 Verifique la tensión de alimentación y la Tensión muy baja caída de tensión en el motor. No sobrepase la tolerancia conforme ítem 7.2 Verifique la conexión de todos los cables de Interrupción de un cable de alimentación alimentación Verifique si hay fusibles quemados, comandos incorrectos, desequilibrio en las Desequilibrio de tensión en los terminales tensiones de la red de alimentación, falta de de alimentación del motor fase o en los cables de conexión Sentido de rotación no compatible con el Verifique el sentido de rotación conforme la ventilador unidireccional marcación del motor Grasa / aceite en demasía Envejecimiento de la grasa / aceite Realice la limpieza del cojinete y lubríquelo según las recomendaciones Utilización de grasa / aceite no especificados Falta de grasa / aceite Lubrique según las recomendaciones Reduzca la tensión en las correas Excesivo esfuerzo axial o radial Redimensione la carga aplicada al motor Motores Eléctricos 155 ESPAÑOL Calentamiento excesivo en el motor Posibles Causas 158 www.weg.net ESPAÑOL 11. TERMINO DE GARANTIA WEG Equipamentos Elétricos S/A, Unidad Motores, ofrece garantía contra defectos de fabricación y de materiales para sus productos por un período de 18 meses, contados a partir de la fecha de emisión de la factura de la fábrica o del distribuidor/revendedor, limitado a 24 meses de la fecha de fabricación. Para motores de la línea HGF, la garantía ofrecida es por un período de 12 meses, contados a partir de la fecha de emisión de la factura de la fábrica o del distribuidor/revendedor, limitado a 18 meses de la fecha de fabricación. El párrafo anterior cuenta con los plazos de garantía legal. En caso de que un plazo de garantía diferenciado estuviese definido en la propuesta técnica comercial para un determinado suministro, éste prevalecerá por sobre los plazos definidos anteriormente. Los plazos establecidos anteriormente no dependen de la fecha de instalación, y se aplican siempre y cuando se cumpla con los siguientes requisitos: transporte, manoseo y almacenamiento adecuado; instalación correcta y en condiciones ambientales especificadas y sin presencia de agentes agresivos; operación dentro de los límites de sus capacidades y observación el Manual de Instalación, Operación y Mantenimiento; realización periódica de las debidas manutenciones preventivas; realización de reparaciones y/o modificaciones solamente por personas autorizadas por escrito por WEG; que el producto, de ocurrir alguna anomalía, esté disponible al proveedor por un período mínimo necesario para identificar la causa de la anomalía y sus debidas reparaciones; aviso inmediato por parte del comprador de los defectos ocurridos y posterior comprobación de los mismos por WEG como defectos de fabricación. La garantía no incluye servicios de instalación y desmantelamiento en las instalaciones del comprador, costos de transporte del producto y gastos de locomoción, hospedaje y alimentación del personal de Asistencia Técnica, de ser solicitado por el cliente. Los servicios en garantía se prestarán exclusivamente en oficinas de Asistencia Técnica autorizadas por WEG o en la propia fábrica. También quedan excluidos de las garantías los componentes, partes y materiales, cuya vida útil sea generalmente inferior a los 12 (doce) meses. En ninguna hipótesis la atención en garantía prorrogará los plazos de garantía del equipamiento. Aún así, el nuevo plazo de garantía equivalente al original se aplicará solamente para los componentes reparados y sustituidos por WEG. La presente garantía se limita al producto suministrado, sin que WEG se responsabilice por los daños a personas, a terceros, a otros equipamientos e instalaciones, lucros cesantes o cualquier otro daño emergente o consecuente. 156 Motores Eléctricos 159 www.weg.net 12. DECLARACIÓN DE CONFORMIDAD CE WEG Equipamentos Elétricos S/A Av. Prefeito Waldemar Grubba, 3000 89256-900 - Jaraguá do Sul – SC – Brasil, y su representante autorizado establecido en la Comunidad Europea, WEGeuro – Industria Electrica SA Rua Eng Frederico Ulrich, Apartado 6074 4476-908 – Maia – Porto – Portugal Declaran por medio de esta, que los productos: Motores de inducción WEG y componentes para utilización en estos motores: Trifásicos Carcasas IEC 63 a 630 Carcasas Nema 42, 48, 56 y 143 a 9610 ............... Monofásicos Carcasas IEC 63 a 132 Carcasas Nema 42, 48, 56 y 143 a 215 ............... ESPAÑOL Cuando instalados, mantenidos y utilizados en aplicaciones para los cuales fueron proyectados y cuando consideradas las normas debidas de instalación e instrucciones del proveedor, los mismos atienden los requisitos de las siguientes Directivas Europeas y normas donde aplicables: Directivas: Directiva de Baja Tensión 2006/95/CE Reglamento (CE) No 640/2009 Directiva 2009/125/CE Directiva de Compatibilidad Electromagnética 2004/108/CE (motores de inducción son considerados intrínsecamente favorables en términos de compatibilidad electromagnética) Normas: EN 60034-1/2-1/5/6/7/8/9/11/12/14/30 y EN 60204-1 A partir de 29/12/2009, motores eléctricos de baja tensión no son más considerados bajo escopo de la actual Directiva de Máquinas 2006/42/CE. Marca CE en: 1996 Milton Oscar Castella Director de Ingeniería Jaraguá do Sul, 12 de Febrero de 2010 Motores Eléctricos 157 160 Cod: 50033244 | Rev: 00 | Date (m/y): 08/2011 The values shown are subject to change without prior notice. WEG Equipamentos Elétricos S.A. International Division Av. Prefeito Waldemar Grubba, 3000 89256-900 - Jaraguá do Sul - SC - Brazil Phone: 55 (47) 3276-4002 Fax: 55 (47) 3276-4060 www.weg.net 161 MANUAL TECNICO DE BOMBA Cristian Corvalan Alvaro Reyes N/A N/A N/A Ingeniero de Proyectos Administrador de Proyectos Producción Servicios Despachos 162 Type Series Booklet B-Pump 1 General 1.1 Application B-Pumps are suitable for water supply schemes, irrigation schemes, lowering of ground water level and dewatering of mines, quarries, construction sites and sea water applications. These are particularly suitable for narrow bore holes. Minimum bore hole sizes required ranges from 150mm to 600mm. B-PUMP 1.2 Operating data 2600 m3/hr Capacity up to Total head up to 160 m Speed up to 3500 RPM Temperature up to 105°C Suspended Depth up to 120 m 1.3 Design Main pump parts are the Pump Bowl Assembly, Column Pipe Assembly, and Discharge Head Assembly. Bowl Assembly consists of single or multistage radially split, interchangeable intermediate bowls. Column Pipe Assembly consists of interchangeable lengths of the column pipes and variable setting depth. Discharge head assembly consists of discharge head with packed stuffing zone/mechanical seal and thrust bearing arrangement (in case of solid shaft drive only). 1.4 Designation B 10 B/7 Pump Series Minimum bore-hole, size (inches) Impeller Type, Series Number of Stages 1.5 Types of Impellers Specific Speed for Impeller Type B, nq ≈ 54 Specific Speed for Impeller Type D, nq ≈ 74 Specific Speed for Impeller Type F, nq ≈ 82 1.6 Discharge Head Executions VN = Above Floor Discharge VU = Below Floor Discharge 1.7 Drive Types Available V1 = Electric motor Type V1 (Flanged Mounted) ET = Vertical Hollow Shaft Motor (VHS) KT = Hollow Shaft Gear Head EK = Hollow Shaft Motor with Hollow Shaft Gear Head (Combination Drive) RT = Belt Head Drive – Diesel Engine via flat belt Page 1-1 of 71 Revision 02 ; 05-2015 163 Type Series Booklet B-Pump Contents List 1 General .......................................................................................................................................................... 1-1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.8.1 1.8.2 1.8.3 1.8.4 1.9 1.9.1 1.9.2 1.10 1.10.1 1.11 Application.................................................................................................................................................................................................1-1 Operating data ..........................................................................................................................................................................................1-1 Design .......................................................................................................................................................................................................1-1 Designation ...............................................................................................................................................................................................1-1 Types of Impellers.....................................................................................................................................................................................1-1 Discharge Head Executions......................................................................................................................................................................1-1 Drive Types Available ...............................................................................................................................................................................1-1 Steps for Preparing a B-Pump Offer....................................................................................................................................................1-1 Operating Data..........................................................................................................................................................................................1-1 Dimensional Details ..................................................................................................................................................................................1-1 Execution Details ......................................................................................................................................................................................1-2 Scope of Supply ........................................................................................................................................................................................1-2 Selection Chart..........................................................................................................................................................................................1-3 50 Hz.........................................................................................................................................................................................................1-3 60 Hz.........................................................................................................................................................................................................1-9 Material of Construction ............................................................................................................................................................................1-1 Possible Executions ..................................................................................................................................................................................1-2 Pump Dimensions .....................................................................................................................................................................................1-1 2 Pump Data ..................................................................................................................................................... 2-1 2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.1.8 2.2 2.2.1 2.2.2 2.2.3 2.3 2.4 2.4.1 2.4.2 2.4.3 2.5 2.5.1 Capacity Limitations ..................................................................................................................................................................................2-1 Pump media ..............................................................................................................................................................................................2-1 Capacity ....................................................................................................................................................................................................2-1 Total Head Pressure .................................................................................................................................................................................2-1 Testing Standards .....................................................................................................................................................................................2-2 Maximum Speed .......................................................................................................................................................................................2-2 Shaft Rating/Selection ..............................................................................................................................................................................2-3 Max. Number of Stages ............................................................................................................................................................................2-4 Special Limits ............................................................................................................................................................................................2-5 Start...........................................................................................................................................................................................................2-8 Starting Torque .........................................................................................................................................................................................2-8 Torque Md .................................................................................................................................................................................................2-8 Moment of inertia/ Gyration.......................................................................................................................................................................2-8 NPSH of the Pump (HH) & NPSH of the plant (HHA)................................................................................................................................2-10 Weights ...................................................................................................................................................................................................2-11 Component Weight .................................................................................................................................................................................2-11 Weight of complete Bowl assembly ........................................................................................................................................................2-13 Weight of the Pumped Medium Filling ....................................................................................................................................................2-14 Pump Filling Volume ...............................................................................................................................................................................2-14 Volume of the completely filled pump .....................................................................................................................................................2-14 3 Construction (Design) Description ................................................................................................................. 3-1 3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.2 3.2.3 3.3 3.3.1 3.3.2 3.4 3.4.1 3.4.2 3.4.3 3.5 3.6 3.6.1 3.6.2 3.7 3.7.1 3.8 3.8.1 3.8.2 3.8.3 General .....................................................................................................................................................................................................3-1 Type and Design .......................................................................................................................................................................................3-1 Arrangement and Installation ....................................................................................................................................................................3-1 Pump Casing.............................................................................................................................................................................................3-1 Suction Casing ..........................................................................................................................................................................................3-1 Intermediate Bowls....................................................................................................................................................................................3-1 Discharge Casing......................................................................................................................................................................................3-1 Impeller .....................................................................................................................................................................................................3-1 Impeller Type ............................................................................................................................................................................................3-1 Casing Wear ring ......................................................................................................................................................................................3-1 Shafts ........................................................................................................................................................................................................3-2 Pump Shaft and Column Shaft Connection ..............................................................................................................................................3-2 Drive/Top shaft..........................................................................................................................................................................................3-2 Shaft Protection.........................................................................................................................................................................................3-3 Thrust Balancing .......................................................................................................................................................................................3-3 Bearings and Lubrication ..........................................................................................................................................................................3-3 Bearing......................................................................................................................................................................................................3-3 Thrust Bearing Arrangement.....................................................................................................................................................................3-7 Shaft Sealing.............................................................................................................................................................................................3-7 Stuffing Box Packing .................................................................................................................................................................................3-7 Drive..........................................................................................................................................................................................................3-9 Types of drive............................................................................................................................................................................................3-9 Couplings ..................................................................................................................................................................................................3-9 Motor Stool and Discharge Head ............................................................................................................................................................3-10 Revision 02 ; 05-2015 164 Type Series Booklet B-Pump 3.8.4 3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.10 3.10.1 3.10.2 3.10.3 3.10.4 3.10.5 3.11 Safety against Reverse Rotation. ...........................................................................................................................................................3-10 Rising Main .............................................................................................................................................................................................3-11 Scope of Supply ......................................................................................................................................................................................3-22 Standard equipment................................................................................................................................................................................3-22 Normal Accessories ................................................................................................................................................................................3-22 Special Accessories ................................................................................................................................................................................3-22 Inlet .........................................................................................................................................................................................................3-22 Inlet Strainer............................................................................................................................................................................................3-22 Suction Strainer with Foot Valve .............................................................................................................................................................3-23 3.12.3 Suction Pipes ...............................................................................................................................................................................3-23 3.12.4 Suction Elbow ..............................................................................................................................................................................3-23 Inlet Design of Pump Chamber ...............................................................................................................................................................3-24 Protection of the Upper Surface..............................................................................................................................................................3-25 4 Illustrations................................................................................................................................................... 4-27 4.1 4.1.1 4.1.2 4.1.3 Sectional Views and List of the Individual Parts .....................................................................................................................................4-27 Pump Body..............................................................................................................................................................................................4-27 Column Pipe............................................................................................................................................................................................4-29 Discharge Head ......................................................................................................................................................................................4-31 5 Spare Parts .................................................................................................................................................. 5-36 6 Sample Sectional Drawing with Parts List ................................................................................................... 6-37 Revision 02 ; 05-2015 165 Type Series Booklet B-Pump List of Tables & Illustrations Illustration 1: Family Curves - B Type Impeller at 2900 RPM ..................................................................................................................................................................................................... 1-3 Illustration 2: Family Curves - D Type Impeller at 2900 RPM ..................................................................................................................................................................................................... 1-4 Illustration 3: Family Curves - B Type Impeller at 1450 RPM ..................................................................................................................................................................................................... 1-5 Illustration 4: Family Curves - D Type Impeller at 1450 RPM ..................................................................................................................................................................................................... 1-6 Illustration 5: Family Curves - F Type Impeller for 1450 RPM..................................................................................................................................................................................................... 1-7 Illustration 6: Family Curves - B Type Impeller for 980 RPM ...................................................................................................................................................................................................... 1-8 Illustration 7: Family Curves - B Type Impeller for 3480 & 1740 RPM......................................................................................................................................................................................1-10 Illustration 8: Family Curves - D & F Type Impeller for 3480 & 1740 RPM...............................................................................................................................................................................1-11 Table 1: Material Possibilities for the Bowl Assembly (B6-B16).................................................................................................................................................................................................. 1-1 Table 2: Material Possibilities for the Bowl Assembly (B18-B24)................................................................................................................................................................................................ 1-1 Table 3: Material Possibilities for the Column Assembly............................................................................................................................................................................................................. 1-2 Table 4: Material Possibilities for the Discharge Assembly......................................................................................................................................................................................................... 1-2 Table 5: Possible Executions of the Pump .................................................................................................................................................................................................................................. 1-2 Table 6: Various Dimensions of the pump................................................................................................................................................................................................................................... 1-1 Table 7: Minimum and Maximum capacity .................................................................................................................................................................................................................................. 2-1 Table 8: Pressure & Temperature Limitations............................................................................................................................................................................................................................. 2-1 Table 9: Maximum rotational speed of pump in RPM ................................................................................................................................................................................................................. 2-2 Table 10: Selection of column length according to pump operational speed in RPM................................................................................................................................................................. 2-2 Table 11: Bearing size according to pump operational speed in RPM. ...................................................................................................................................................................................... 2-2 Table 12: P/n maximum for the pump shaft................................................................................................................................................................................................................................. 2-3 Table 13: P/n max for intermediate shaft and maximum axial stress of the intermediate coupling............................................................................................................................................ 2-3 Table 14: Material conversion factors.......................................................................................................................................................................................................................................... 2-3 Table 15: P/n max for flexible coupling, Type of construction according to HS 173, Material GG ............................................................................................................................................. 2-4 Table 16: Maximum Number of Stages ....................................................................................................................................................................................................................................... 2-4 Table 17: Cross section of the Column pipe in cm2..................................................................................................................................................................................................................... 2-5 Table 18: Cross-section of shaft in cm2. ...................................................................................................................................................................................................................................... 2-5 Table 19: Co-efficient of elasticity of the shaft material............................................................................................................................................................................................................... 2-5 Table 20: Permissible difference in extension............................................................................................................................................................................................................................. 2-6 Figure 2: Extension difference between shaft and column pipe..................................................................................................................................................................................................2-6 Table 21: Admissible contamination ............................................................................................................................................................................................................................................ 2-6 Figure 3: Change of Q/H characteristic curve as well as efficiency curve by enlarging running clearances.............................................................................................................................. 2-7 Table 22: Correction Factor f ....................................................................................................................................................................................................................................................... 2-7 Table 23: Impeller Neck Diameters (mm).................................................................................................................................................................................................................................... 2-7 Figure 4: Starting Torque Curve .................................................................................................................................................................................................................................................. 2-8 Table 24: Pump Moment of Inertia GD2 in kgm2.......................................................................................................................................................................................................................... 2-9 Table 25: Moment of inertia GD2 in kgm2 of intermediate and drive shaft. ................................................................................................................................................................................. 2-9 Table 26: Moment of inertia GD2 for flexible coupling, according to HS 173. ...........................................................................................................................................................................2-10 Table 27: Measurement B = minimum water level over the bottom edge of the suction casing / Min. submergence. ............................................................................................................2-10 Table 28: Weight of the pump bowl assemblies in kg. ..............................................................................................................................................................................................................2-11 Table 29: Weights of the column sets in kg. VN. model / design / type. ...................................................................................................................................................................................2-13 Table 30: Weight of the Discharge Head (VN type) in kg..........................................................................................................................................................................................................2-13 Table 31: Weight of Pump Rotor in kg.......................................................................................................................................................................................................................................2-13 Figure 5: Weight of Column Shaft in kg, according to Column length L e ..................................................................................................................................................................................2-14 Table 32: Weight of the pump side of the coupling half, according to HS 173 .........................................................................................................................................................................2-14 Table 33: Content of the complete pumping unit in (dm3/m), depending on the column line –NW ..........................................................................................................................................2-14 Table 34: Impeller entry cross section in cm2.............................................................................................................................................................................................................................. 3-2 Table 35: Possible column shaft connection on pump shaft in mm. ........................................................................................................................................................................................... 3-2 Table 36: Drive shaft and key on coupling seat in mm on the pump side................................................................................................................................................................................... 3-2 Figure 6: Hydraulic axial thrust Pax in kg dependent on the total head at operating point for Impeller type B............................................................................................................................ 3-4 Figure 7: Hydraulic axial thrust Pax in kg dependent on the head at operating point for Impeller type D and F......................................................................................................................... 3-4 Table 37: BUA – Bearing permissible axial thrust kN for single and double bearing installations............................................................................................................................................. 3-5 Table 38: Possible bearings for different pump size ................................................................................................................................................................................................................... 3-5 Table 39: Clearance of pump bearing in mm .............................................................................................................................................................................................................................. 3-6 Table 40: Clearance of the intermediate shaft bearing in mm (Rising main without shaft enclosing tube) ................................................................................................................................ 3-6 Table 41: Clearance of the intermediate shaft bearing in mm (rising main with shaft enclosing tube) ...................................................................................................................................... 3-6 Table 42: Required Grease Quantity in grams ............................................................................................................................................................................................................................ 3-7 Table 43: Packing materials......................................................................................................................................................................................................................................................... 3-8 Figure 9: Friction performance depending on the stuffing box pressure at 1450 rpm. ............................................................................................................................................................... 3-8 Figure 10: Type of Drives............................................................................................................................................................................................................................................................. 3-9 Table 44: Coupling Types for various Intermediate shaft diameters........................................................................................................................................................................................... 3-9 Figure 11: Discharge Head Losses ...........................................................................................................................................................................................................................................3-10 Table 45: Bearing type, lubrication and shaft protection. ..........................................................................................................................................................................................................3-11 Figure 12: Friction losses in kW/100 m shaft length..................................................................................................................................................................................................................3-12 Table 46: Connection between column pipe diameter and possible shaft diameter of the intermediate shaft. .......................................................................................................................3-13 Table 47: Possible Column Pipe connection with Pump Bowl Assembly .................................................................................................................................................................................3-13 Table 48: VN type maximum installation depth in m depending on the diameter of the intermediate shaft in mm..................................................................................................................3-14 Table 49: VU- type maximum Installation depth in m depending on the diameter of the intermediate shaft in mm. ...............................................................................................................3-14 Table 50: set length of normal rising pipe, dependent from intermediate shaft diameter, coupling & lubrication type and max admissible speed ................................................................3-14 Revision 02 ; 05-2015 166 Type Series Booklet B-Pump Table 51: Top Pipes (Measurements in mm) ............................................................................................................................................................................................................................3-14 Figure 13: Discharge tee pipe....................................................................................................................................................................................................................................................3-14 Table 52: Discharge Tee Pipe Dimensions ...............................................................................................................................................................................................................................3-15 Figure 14: Column Pipe Friction Losses without Shaft Enclosing Tube (1200, 1600, 2100)....................................................................................................................................................3-16 Figure 15: Column Pipe Friction Losses without Shaft Enclosing Tube (1200, 1600, 2100) Higher Q. ...................................................................................................................................3-17 Figure 16: Column Pipe Friction Losses without Shaft Enclosing Tube (3050 mm).................................................................................................................................................................3-18 Figure 17: Column Pipe Friction Losses without Shaft Enclosing Tube (3050 mm) Higher Q .................................................................................................................................................3-19 Figure 18: Column Pipe Friction Losses with Shaft Enclosing Tube (2100, 3050)...................................................................................................................................................................3-20 Figure 19: Column Pipe Friction Losses with Shaft Enclosing Tube (2100, 3050) Higher Q ...................................................................................................................................................3-21 Figure 20: Flow Resistance in suction strainer with foot valve..................................................................................................................................................................................................3-22 Figure 21: Suction Elbow ...........................................................................................................................................................................................................................................................3-23 Table 53: Upper surface protection with the help of painting materials. ...................................................................................................................................................................................3-25 Table 54: Upper surface protection with the help of painting materials. ...................................................................................................................................................................................3-25 Table 55: Upper surface protection with the help of painting materials. ...................................................................................................................................................................................3-26 Figure 29: Lubrication Arrangement for Shaft Enclosing Tube .................................................................................................................................................................................................4-31 Figure 30: Motor Stool with Thrust Bearing Arrangement.........................................................................................................................................................................................................4-31 Figure 31; Discharge Piece for Shaft Enclosing Tube...............................................................................................................................................................................................................4-31 Figure 32: Stuffing Box Housing ................................................................................................................................................................................................................................................4-32 Figure 33: Motor Stool with Double Bearing Arrangement........................................................................................................................................................................................................4-32 Figure 34: Motor Stool & Discharge Head.................................................................................................................................................................................................................................4-32 Table 56: Discharge Head Dimensions .....................................................................................................................................................................................................................................4-33 Figure 39: Sectional Drawing with Parts List .............................................................................................................................................................................................................................6-37 Revision 02 ; 05-2015 167 Type Series Booklet B-Pump 1.8 Steps for Preparing a B-Pump Offer 1.8.1 Operating Data 1 Considering Capacity, Dynamic Head & rpm given by the customer check for the required pump by consulting the family curve at the given speed (See 1.9 Selection Chart) 2 Select the pump with maximum efficiency. 3 Check the max. number of stages of the selected pump. Reduce the efficiency if required as per the pump curve. On the basis of number of stages. Calculate the approximate pump input by using the formulae (Q*H*density*g/(1000*Eff. From curve/100)) for kW 4 5 (Q*H/(367*Eff. From curve/100)) for kW or [Q*H/(273*Eff. From curve/100)] for hP; can be used if the density of the medium is 1000 kg/m3 A- Determine the head loss (m) in column pipe (see 3.8.5.4.7, Figure 14 and 3.8.5.4.9, Figure 16). In case of Shaft Enclosing Tube Arrangement see 3.8.5.4.11, Figure 18. 6 B- For Friction Losses in Discharge Head, see 3.8.3.3, Figure 11 7 C- Calculate the head loss (m) due to suction strainer &/or foot valve from 3.10.2.1, Figure 20 8 Adding A, B & C in the pump head will give the bowl assembly head 9 Calculate the Pump efficiency using the relation (pump head / bowl head) * Bowl Efficiency 10 Calculate the bowl power input from the above mentioned formulae but using bowl assembly head Calc. the drive rating after adding the following factors into pump input 11 12 up to 7.5 kW (10hp) Approx. 20% from 7.5 KW to 40 Kw (53hp) Approx. 15% from 40 kW onwards Approx. 10% Note the NPSH required from the graph of the required pump If the required speed of customer is not that of the pump curve then use the following relations to calculate the new values of Q, H, Power & NPSH required 13 Q2 = (N2 / N1) * Q1 H2 = (N2 / N1)^2 * H1 P2 = (N2 / N1)^3 * P1 NPSH2 = (N2 / N1)^2 * NPSH1 14 Material combination as per type series booklet of B-Pump 15 Coating for Sea water use Special Epoxy coating 450 microns 1.8.2 16 Dimensional Details Installation Depth/Pump Length/Setting Depth or Sump Depth / Pit Depth as given by customer 17 Minimum clearance between suction strainer / foot valve & pit/sump floor = dia of the suction strainer. 18 Dia / Length of Suction Strainer as per product Introduction booklet 19 Dia / Length of Bowl Assembly as per product Introduction booklet 20 Dia of column Pipe as per product Introduction booklet 21 Length of Column Pip = 22 Dia of Discharge Head Nozzle = Dia of column pipe 23 Dia of Column Shaft is calculated on the basis of Pump input, rpm & material of shaft 24 Note the Minimum Submergence of center line of first stage impeller from the product introduction booklet of B-Pump Page 1-1 of 71 (Pump Length - Foot Valve length - Suction Strainer Length - Bowl Assy. Length) (Sump Depth - Clearance - Foot Valve length - Suction Strainer Length - Bowl Assy. Length) Revision 02 ; 05-2015 168 Type Series Booklet B-Pump 1.8.3 Execution Details 25 Pump Execution Flanged / Threaded 26 Performance Testing ISO 9906 27 Material / Pressure Test EN 10204 ( 2.1 / 2.2 ),.. 28 Delivery Flange Standard BSTable10,EN1092ASM E 29 Discharge Above / Below Floor 1.8.4 Scope of Supply 01 No. B…. Pump comprising of: Flanged/Threaded Bowl Assembly B…... 30 Flanged/Threaded Column Assembly Dis. Head Assy (V1/ET/KT/EK/RT, as per Product Introduction Booklet) Motor Stool & Thrust bearing Arrangement (only for V1 Design) 31 01 No. Suction Strainer 32 01 No. Foot Valve 33 01 Set of Erection Clamps (04 halves) 34 01 No. Mechanical Seal 35 01 No. Shaft Enclosing Tube Arrangement Page 1-2 of 71 Revision 02 ; 05-2015 169 Type Series Booklet B-Pump 1.9 Selection Chart 1.9.1 50 Hz 1.9.1.1 2900 RPM Illustration 1: Family Curves - B Type Impeller at 2900 RPM Page 1-3 of 71 Revision 02 ; 05-2015 170 Type Series Booklet B-Pump Illustration 2: Family Curves - D Type Impeller at 2900 RPM Page 1-4 of 71 Revision 02 ; 05-2015 171 Type Series Booklet B-Pump 1.9.1.2 1450 RPM Illustration 3: Family Curves - B Type Impeller at 1450 RPM Page 1-5 of 71 Revision 02 ; 05-2015 172 Type Series Booklet B-Pump Illustration 4: Family Curves - D Type Impeller at 1450 RPM Page 1-6 of 71 Revision 02 ; 05-2015 173 Type Series Booklet B-Pump Illustration 5: Family Curves - F Type Impeller for 1450 RPM Page 1-7 of 71 Revision 02 ; 05-2015 174 Type Series Booklet B-Pump 1.9.1.3 980 RPM Illustration 6: Family Curves - B Type Impeller for 980 RPM Page 1-8 of 71 Revision 02 ; 05-2015 175 Type Series Booklet B-Pump 1.9.2 60 Hz 1.9.2.1 Page 1-9 of 71 3480, 1740 RPM Revision 02 ; 05-2015 176 Type Series Booklet B-Pump Illustration 7: Family Curves - B Type Impeller for 3480 & 1740 RPM Page 1-10 of 71 Revision 02 ; 05-2015 177 Type Series Booklet B-Pump 1.10 Material of Construction Part # Part designation Cast iron Bowl Assembly (B6-B16) GG 106 Suction Piece/Casing 107 Discharge Piece/Casing 112 Intermediate Bowl/Pump Bowl 502 Wear Ring / Casing Wear Ring 230 & 503 545.1 & .3 211 G Cusn-10 GG-25 Pb Sn BZ-15 G Cu Sn-10 Bearing Sleeve / Brg. Bush (Suc & Dis piece) Pb Sn BZ-15 1.4021 Rubber Bearing 545.2 1.4021 A2/ 6.8 * Fasteners Duplex D2-02 1.4517 GGG-NiCr Nb 20 2 (Ni Resist D2) 1.4517 Casing wear Ring NA 1.4408 1.4517 1.4462 1.4571 / AISI 316 Steel / Rubber Lined Pump Shaft Coupling (Screwed/Threaded) GGG-NiCr Nb 202 D2-01 GG-25 Impeller Pump Shaft Tin Bronze BZ 1.4462 Bronze/Rub. Lined SS / Rub. Lined 1.4571 / AISI 316 Non Metallic Bearing (Thordon) 1.4462 A4 1.4462 Table 1: Material Possibilities for the Bowl Assembly (B6-B16) *On demand or as per requirement Part # Part designation Bowl Assembly (B18-B24) Cast iron Tin Bronze GG BZ-01 106 Suction Piece/Casing 107 Discharge Piece/Casing 112 Intermediate Bowl/Pump Bowl 502 Wear Ring / Casing Wear Ring GG-25 230 & 503 Impeller & Wear Ring G CuSn-10 545.1 & .3 Bearing Sleeve / Brg. Bush (Suc & Dis piece) Pb Sn BZ-15 211 Pump Shaft 1.4021 1.4571 / AISI 316 Steel/Rub.Lined Bronze/Rub.Lined Pump Shaft Coupling (Screwed/Threaded) 1.4021 1.4401 / AISI 316 Fasteners A4 545.2 852 Rubber Bearing GG-25 BZ-02 G Cu Sn-10 D2 Duplex D2-03 1.4517 GGG-NiCrNb20 2 (Ni Resist D2) 1.4517 Pb Sn BZ-15 1.4408 1.4517 1.4462 Non Metallic Bearing (Thordon) SS/Rubber 1.4571 1.4462 1.4462 Table 2: Material Possibilities for the Bowl Assembly (B18-B24) Revision 02 ; 05-2015 178 Type Series Booklet B-Pump Illustration 8: Family Curves - D & F Type Impeller for 3480 & 1740 RPM Page 1-11 of 71 Revision 02 ; 05-2015 179 Type Series Booklet B-Pump 1.11 Pump Dimensions B B B D B D F B D F B D D B B B B Size 6 7 8 8 10 10 10 12 12 12 14 14 16 18 20 22 24 Bowl Assembly Impeller Type Length of one Stage for Flanged Execution 380 445 480 535 630 580 745 610 * 690 890 955 1050 1050 Length of one Stage for Threaded Execution 435 500 535 590 675 625 745 655 735 NA NA NA NA Length of each Additional Stage 100 120 140 165 250 200 300 235 270 300 335 400 410 Max no. of Stages at 1450 rpm 25 21 18 15 9 12 8 10 8 7 6 5 3 2780 2845 2860 2845 2630 2780 2845 2725 2580 2690 2630 2650 2700 2825 2890 2905 2890 2675 2825 2845 2770 NA NA NA NA NA 140 165 190 338 390 430 472 560 600 Max length flanged execution - Max length Threaded Execution - Diameter Suction Strainer Length 240 290 Threaded 190 230 260 295 340 355 Flanged 235 275 315 310 390 470 Column Pipe Dia (inch) Minimum Submergence of 1st Impeller 3”,4” 4” ,5 ” 5”, 6” 6”, 7” 7” 8”, 10” 7”, 8” 8”, 10” 10” 10” 10”,12 ” 540 12”,14 ” --- 722 650 730 14”,16 ” 18”,20 ” 300 350 400 4” 5” 6” 7” 8” 10” 12” 14” 16” Length of Foot Valve 135 165 185 270 365 410 490 560 630 Min. Clearance B/w Suction strainer & Floor 100 125 150 175 200 250 300 350 400 Suction (inch) Strainer Dia 450 16”,18 ” 500 Table 6: Various Dimensions of the pump All dimensions in mm. *) For B14 length of single stage in case of shaft enclosing tube arrangement is (220+235+230) = 685 mm Page 1-1 of 71 Revision 02 ; 05-2015 180 Type Series Series Booklet Type Booklet B-Pump B-Pump 2 Pump Data 2.1 Capacity Limitations 2.1.1 Pump media Clean Well water Drinking water Cooling water Condensate Sea water Salty water 2.1.2 Contaminated river water brackish leach Viscous/combustible oils Capacity Qopt Capacity at best efficiency point Qmin 0.55 Qopt(B6-B16),0.65 Qopt(B18-B24) Qmax 1.35 Qopt Table 7: Minimum and Maximum capacity 2.1.3 Total Head Pressure Pump Head H = Ht + HD Ht = Head under ground level HD = Head above ground level Ht = Hgeo1 + Hw1 HD = Hgeo2 + Hw2 + 10 x (P2 – P1)/γ Hgeo1 = Geodetic head (Static Head) from water level to pump ground Hgeo2 = Geodetic head from pump ground to the center of delivery nozzle Hw1 = Frictional Losses in (an estimation can be 5% of Ht): • Suction Strainer • Suction pipe • Rising Main • Discharge Head Hw2 = Friction losses in Delivery Line P2 = Pressure on the water level from delivery side P1 = Pressure on water level from the suction side γ = Specific gravity in kg/dm3 As estimation pumping H w1 can be assumed 5% from Ht 2.1.3.1 Maximum pump pressure at outlet nozzle Figure 1: Schematic Diagram In all pump types and material variants the pump pressure Pe maximum at Q=0 should not exceed the value of 16 bar. In case of pumped media with specific gravity γ less than 1 Kg/dm3, the final pressure during hydraulic trial run with water should not exceed maximum admissible test pressure. If the values in Table 8 are exceeded, then the pump can be tested only with reduced speed. Part Max Test Pressure Max Inlet Pressure Temperature 10 bar 0oC to 105oC Suction Casing Guide Vane Casing 6” & 7” = 19.6 bar / 20 kg/cm2 Stuffing Box Casing Discharge Casing 8” to 24” = 24.5 bar / 25 kg/cm2 Column Pipe Cool Water Chamber 10 kg/cm2 Table 8: Pressure & Temperature Limitations Page 2-1 of 71 Revision 02 ; 05-2015 181 Type Series Type SeriesBooklet Booklet B-Pump B-Pump 2.1.3.2 Test Pressure with Water The test pressure is normally 1.5 times that of the operational pressure. The pressure test is done with cold water. 2.1.4 Testing Standards Testing can be performed as per following standard: ISO 9906 Class L Note: ISO 9906 Class L has replaced the following Standards 1.ANSI – Hydraulic Institute Standard 2.BS 5316 Part 1 & 2 3.ISO 3555 Class B 4. ISO 2548 Class C 5. DIN 1944 / III, II, I (with negative tolerance) 2.1.5 Maximum Speed The following speed limits must be considered: 1. Pump Size (Table 9) 2. Length of the column pipe set, categorized according to the diameter of the shaft (Table 10) 3. Angular Contact Ball Bearing (Table 11) The lowest of the above mentioned speeds is then valid for the complete pump. 2.1.5.1 Determination of Pump Size Pump size 6 7 B+D Impeller Type 8 3600 F 10 12 14 3000 16 18 20 22 1800 24 1500 1800 Table 9: Maximum rotational speed of pump in RPM 2.1.5.2 Length of Column Set Column Set Length in mm Diameter of Shaft 20 Top Column Pipe 25 30 35 45 60 70 300* 400** 3600 600 3000 1800 900 1200 Intermediate Column Pipe 3050 2200 1800 1525 1800 1800 1800 2000 3600 3000 Table 10: Selection of column length according to pump operational speed in RPM. * below DN 350, ** above DN 350 Note: For shaft diameter greater than 70, consult design office. 2.1.5.3 Angular Contact Ball Bearing (V1 arrangement) Brg. BUA Type 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 N Max. RPM 8000 7500 6700 6000 5300 4800 4500 4300 3800 3600 3400 Brg. BUA Type 7317 7318 7319 7320 7322 7324 7326 7328 7330 7332 7338 N Max. RPM 3200 3000 2800 2600 2200 1900 1800 1700 1600 1600 1200 Table 11: Bearing size according to pump operational speed in RPM. Page 2-2 of 71 Revision 02 ; 05-2015 182 Type Series Booklet B-Pump B-Pump Revision 02 ; 05-2015 183 Type Series Booklet B-Pump An example for conversion from Standard Material is: Normal Material of Intermediate Shaft = St 50 SH Shaft Diameter = 35 mm Cone Coupling P/nmax = 0.033 New Material of intermediate shaft = 1.4507 Conversion Factor =2.18 2.1.6.3 Selection of Flexible Coupling Type S0 S1 S1A 2BN 3BN 4BN 5BN P/n max 0.0012 0.0052 0.009 0.024 0.05 0.127 0.224 n max 8350 5550 4450 4500 3500 2900 2200 Table 15: P/n max for flexible coupling, Type of construction according to HS 173, Material GG P = Prime Mover rating (kW) n = revolution (RPM) In case of gear drive, of more than 5 – 20 switching in an hour the determined P/n value is to be increased by 20%. However in case of gear drive, up to 40 switching in an hour the determined P/n value is to be increased by 30%. 2.1.7 Max. Number of Stages Pump Size RPM Type 6 B 7 B 1450 25 21 2900 16 10 1750 25 21 3500 12 9 8 B 10 D B 18 8 15 12 18 6 D 5 12 F B D 14 F B 16 D D 18 B 20 B 22 24 B B 9 12 8 10 8 7 6 5 9 12 8 10 8 7 6 5 7 15 10 Table 16: Maximum Number of Stages Page 2-4 of 71 Revision 02 ; 05-2015 184 Type Series Booklet B-Pump B-Pump DIN Terminology M St 60-2 X22 Cr Ni 17 X20 Cr 13 V X10 Cr Ni Mo Ti 1810 X2Cr Ni Mo N 225 Material 1.0542.6 1.4057 1.4021.05 1.4571 1.4462 WSZ # 0361 1364 1220 1300 1647 2 Coefficient of Elasticity kg/cm Ew 6 2.1x10 6 2.1x10 6 2.1x10 6 2.3x10 6 2.03x10 Table 19:Coefficient of elasticity of Shaft Material Revision 02 ; 05-2015 185 Type Series Booklet B-Pump The axial play of the pump determines the maximal permissible extension difference (Table 20) and maximum installation depth of the pump. The measurement of the depth with reference to the axial play is required to be carried out in case of column pipe and shaft of steel at more than a certain length Lo (Table 20). In case of material of shaft with a different co-efficient of elasticity (e.g. bronze, E = 2.1x106 kg/cm 2) a recalculation is always required Pump Size 6 ∆ Permissible length(mm) 2) 7 5 Lo (M) 8 10 12 7 30 14 1) 6 16 18 20 22 10 24 16 40 50 Table 20: Permissible difference in extension 1) B14D: ∆ permissible length = 5 mm 2) In case of switched off rotor the ∆ permissible length can be greater (any questions may be directed to the design office). Figure 2: Extension difference between shaft and column pipe. (valid only for materials with a co-efficient of elasticity less than 2.1x106 kg/cm2) 2.1.8.2 Maximum Solid Contents If the flow medium contains sand or other solids, the pump parts as well as column shaft and shaft bearings are subjected to premature wear and tear depending upon the content type and grain size of the solids. In Table 21 the impurities are divided into three groups. According to the level of the impurities/suspensions the column bearing design is to be fixed, as well as the guarantee for specific parts of the pumps is to be limited or even refused. In the choice of the material, special consideration is to be given to the stability against wear and tear. Whenever there is contamination, the smallest revolution should be chosen. Group Degree impurity of Bearing 1) Solid Contents Ppm Volume % Weight % I Slight 25 <0.001 <0.002 II Moderate 25-250 0.001 to 0.01 0.0025 to 0.025 III Considerable > 250 >0.01 >0.025 Grain 2) Rising Main Guarantee Limitations Suction Casing Discharge Casing Unprotected Max 0.5 mm No (exception natural wear and tear) Protected Unprotected Liquid lubricated bearing, wear ring inter stage bush Protected Unprotected Complete pump body casing Table 21: Admissible contamination Page 2-6 of 71 Revision 02 ; 05-2015 186 Type Series Booklet B-Pump 1). Outside lubrication see 3.6.2.1, Page 3-7 2). Sharp edged Quartz (Silica) is more dangerous than rounded or soft minerals. Similarly those solids which are smaller than the bearing play or throttle gap are more detrimental to the life span of the bearings than those which are larger and cannot enter the gaps because of their size. 2.1.8.3 Tolerance – Impeller / Casing Wear Ring The gap between impeller skirt and the casing wear ring are dependent on the operational temperature and the pumping media. With the increase in the gap the head (H) and efficiency (η) are changed (see Figure 3). Casing Wear Rings are provided only on Suction Side. A tolerance of 0.3mm is taken in the impeller diameter while plotting the efficiency and head given in the selection charts. Index 1 = Operating data with enlarged running clearance (tolerance) Index 2 = Operating data without enlarged running clearance (tolerance) = Design data for index 1 Figure 3: Change of Q/H characteristic curve as well as efficiency curve by enlarging running clearances. 2.1.8.4 Drop of efficiency (η) and the Head (H) by Increased Tolerance If the operational condition demands increased play, then the resulting efficiency drops and the associated head (H) drop should be taken into account during designing the pump. The correction factor for the efficiency drop in the field of optimum efficiency should be used from Table 22. As the pumps have been provided with a casing wear ring on the suction side, the clearance gap enlargement has a very minor effect. Both the factors listed in the Table 22 can therefore be used for all practical purposes. Case Wear Ring Tolerance 0.3<s≤0.5mm Size Correction Factor f 6” – 12” 14” – 24” 0.95 0.98 Table 22: Correction Factor f According to Q-H Curve, the correction factor reaches the value 1.0 against capacity. The 0-point lies in the field between 0-point without clearance gap enlargement and a point which lie lower than 0.5 x ∆H (see Figure 3). 2.1.8.4.1 Impeller neck Diameter (Inlet) Various specifications prescribe certain tolerance dependent from impeller neck diameters. In Table 23 the diameters for individuals pump size are given. Pump Size Impeller Ø 6 7 8 18 20 22 24 B B B D 10 B D F 12 B D F 14 B D 16 B D B B B B 75 90 105 120 135 150 160 160 180 190 180 210 210 240 240 260 320 330 Table 23: Impeller Neck Diameters (mm) Page 2-7 of 71 Revision 02 ; 05-2015 187 Type Series Booklet B-Pump 2.2 Start 2.2.1 Starting Torque The initial breakaway torque amounts to approximately 15% from rated moment. In Figure 4 the approximate running at start is shown I. With open gate valve II. Against closed gate valve – Impeller type “B” III. Against closed gate valve – Impeller type “D” and “F” shown. Figure 4: Starting Torque Curve 2.2.2 Torque Md The torque can be calculated with this formula Md = P = Power requirement at the shaft (motor rating) in kW n = Revolutions of the pump rpm 9549 = Constant 9549 x P/n, where: The motor suppliers can be provided with sheet 1063.48 for pumps with impeller of high speed ‘B’ and with sheet BT 2752 for pumps with impeller of high speed ‘D’ and ‘F’; which gives detail for the torque curve in practice with sufficient exactness. 2.2.3 Moment of inertia/ Gyration The total moment of inertia of the complete pump can be calculated in the following manner: GD2 TOTAL = GD2 PUMP + n x GD2 intermediate shaft + GD2 driving shaft + GD2 coupling N = number of standard column pipe sets. Page 2-8 of 71 Revision 02 ; 05-2015 188 Type Series Booklet B-Pump 2.2.3.1 Pump Bowl Assembly Pump filled with water Pump Size 6 7 8 10 12 14 16 18 20 22 24 Impeller Type B B B D B D F B D D B D B B Stages 1 0.006 0.012 0.025 0.035 0.072 0.073 0.074 0.17 0.18 0.19 0.34 0.37 0.65 0.68 1.2 1.8 2.9 4.8 2 0.011 0.023 0.045 0.06 0.134 0.136 0.138 0.32 0.34 0.36 0.64 0.69 1.2 1.26 2.2 3.4 5.5 9.3 3 0.016 0.034 0.065 0.085 0.196 0.199 0.202 0.47 0.5 0.53 0.94 1.01 1.75 1.84 3.2 5 8.1 13.8 4 0.021 0.045 0.085 0.11 0.258 0.262 0.266 0.62 0.66 0.7 1.24 1.33 2.3 2.42 4.2 6.6 10.7 18.3 5 0.026 0.056 0.105 0.135 0.32 0.325 0.33 0.77 0.82 0.87 1.54 1.65 2.85 3 5.2 8.2 13.3 22.8 6 0.031 0.067 0.125 0.16 0.382 0.388 0.394 0.92 0.98 1.04 1.84 1.97 3.4 3.58 6.2 9.8 7 0.036 0.078 0.145 0.185 0.444 0.451 0.458 1.07 1.14 1.21 2.14 2.29 3.95 4.16 7.2 8 0.041 0.089 0.165 0.21 0.506 0.514 0.522 1.22 1.3 1.38 2.44 2.61 4.5 4.74 9 0.046 0.1 0.185 0.235 0.568 0.577 0.586 1.37 1.46 2.74 2.93 10 0.051 0.111 0.205 0.26 0.63 0.64 1.52 1.62 3.04 3.25 11 0.056 0.122 0.225 0.285 0.692 0.703 1.67 1.78 12 0.061 0.133 0.245 0.31 0.754 0.766 1.82 1.94 13 0.066 0.144 0.265 0.335 0.816 0.829 14 0.071 0.155 0.285 0.36 0.878 0.892 15 0.076 0.166 0.305 0.385 0.94 0.955 16 0.081 0.177 0.325 0.41 17 0.086 0.188 0.345 0.435 18 0.091 0.199 0.365 0.46 19 0.096 0.21 20 0.101 0.221 21 0.106 0.232 22 0.111 23 0.116 24 0.121 25 0.126 2 F B B B 2 Table 24: Pump Moment of Inertia GD in kgm . 2.2.3.2 Intermediate and Driving Shaft Shaft Drive/Top shaft Shaft – ø (mm) Length of the pipe ( mm) 300 600 900 Intermediate Shaft 1200 1525 2000 3050 20 0.0025 0.0028 0.0032 0.0035 0.0009 0.0011 0.00136 25 0.0028 0.0031 0.0035 0.0038 0.0031 0.0036 0.0049 30 0.0047 0.0054 0.0062 0.0069 0.0057 0.0083 0.094 35 0.0064 0.0079 0.0094 0.0109 0.101 0.0125 0.0164 45 0.0181 0.022 0.0259 0.0298 0.0252 60 0.066 0.078 0.090 0.102 0.147 70 0.135 0.157 0.180 0.202 0.303 2 0.0439 2 Table 25: Moment of inertia GD in kgm of intermediate and drive shaft. Page 2-9 of 71 Revision 02 ; 05-2015 189 Type Series Booklet B-Pump 2.2.3.3 Flexible Coupling Size S0 S1 S1a 2BN 3BN 4BN 5BN GD2 (kgm2) 0.0010 0.0033 0.0094 0.0214 0.0428 0.1292 0.3625 2 Table 26: Moment of inertia GD for flexible coupling, according to HS 173. For other types of coupling, moment of inertia can be taken from the respective manufacturer’s catalogue. 2.3 NPSH of the Pump (HH) & NPSH of the plant (HHA) Every impeller has its own flow pattern. The Q dependent NPSH (HH) value can be taken from the characteristic curves. This value must be minimum at the exit from the plant so that vaporization of the pumped fluid (cavitation) in the impeller is avoided. HHA > HH The (HH) values on the characteristic curve have been constructed on a 3% head drop and should be applied to the upper edge of the first impeller’s vane. It also contains a safety margin, which must not be deducted, as it takes into consideration casting inaccuracies and head losses in the pump. External safety margin should also be considered in addition to this. The minimum submergence is the minimum water level over the lower edge of the suction casing for starting the pump and is marked through the measurement “B” in the Table 27. Pump Size Impeller Type Measurement (B) [mm] 6 B 7 B 300 8 B 10 D 350 B D 400 12 F B D 14 F B D 16 B D 18 20 B B 450 22 24 B B 500 Table 27: Measurement B = minimum water level over the bottom edge of the suction casing / Min. submergence. Page 2-10 of 71 Revision 02 ; 05-2015 190 Type Series Booklet B-Pump 2.4 Weights The total unit weight consists of the following components: 1. Pump body 2. Rising main 3. Shaft enclosing Tube 4. Discharge head 5. Motor stool 6. Bearing Assembly 7. Motor (See Motor Catalogue) 2.4.1 Component Weight 2.4.1.1 Pump Bowl Assembly The weights are approximate and can be taken for all material variants; however, for price calculations these have limited application. No. of Stages Pump size 6 7 8 10 12 14 16 18 20 22 24 1 22 32 44 72 112 160 220 295 385 530 640 2 28 41 56 96 154 222 305 407 545 785 940 3 34 50 68 120 196 284 390 519 705 1040 1240 4 40 59 80 144 238 346 475 631 865 1295 1540 5 46 68 92 168 280 408 560 743 1025 1550 1840 6 52 77 104 192 322 470 645 855 1185 7 58 86 116 216 364 532 730 967 8 64 95 128 240 406 594 815 9 70 104 140 264 448 686 10 76 113 152 288 490 718 11 82 122 164 312 532 12 88 131 176 336 574 13 94 140 188 360 14 100 149 200 384 15 106 158 212 408 16 112 167 224 17 118 176 236 18 124 185 248 19 130 194 20 136 203 21 142 212 22 148 23 154 24 160 25 166 Table 28: Weight of the pump bowl assemblies in kg. Page 2-11 of 71 Revision 02 ; 05-2015 191 Type Series Booklet B-Pump 2.4.1.2 Rising main 2.4.1.2.1 Flanged execution A standard column pipe set includes: 1 column pipe with 2 Flanges 1 Bearing spider with bearing bush / rubber bearing 1 Intermediate shaft with Shaft Protecting Sleeve 1 Shaft coupling 1 set of fasteners + Gaskets/O-Rings A standard upper column pipe set (top set) consists of: 1 column pipe with 2 Flanges 1 Shaft coupling 1 2.4.1.2.2 set of fasteners + Gaskets/O-Rings Threaded Execution A standard column pipe set includes: 1 column pipe with bearing socket 1 Intermediate shaft with Shaft Protecting Sleeve 1 Shaft coupling A standard upper column pipe set consists of: 1 column pipe line (top set) with 1 Flange + 1 side threaded – maximum length of top set is 1220 mm. 1 Shaft coupling 1 Set of fasteners + Gaskets/O-Rings Following weights are of flanged column pipes without shaft enclosing tube. For threaded execution the weights can be reduced by 10%. WEIGHT OF RISING MAIN SET SHAFT Ø Rising Rising Main Nominal Diameters (NW) (mm) Main Sets 80 100 125 1525 21.7 26.7 31.8 2000 35.5 33.0 39.3 20 25 30 35 45 60 150 200 250 300 2700 43.0 42.2 50.4 3050 46.8 46.8 55.9 1525 26.7 34.7 58.6 80.1 2000 33.0 42.9 72.5 97.7 2700 42.2 54.9 92.9 123.7 3050 46.8 61.0 103.1 136.6 1525 37.1 61.5 83.4 117.6 2000 46.1 76.2 101.9 142.4 2700 59.4 97.9 129.1 178.9 3050 66.1 108.7 142.7 197.1 1525 64.1 88.3 115.8 2000 79.7 107.6 141.4 181.4 2700 102.6 136.1 179.1 229.7 3050 114.0 400 231.21 303.3 148.6 150.3 197.9 253.9 1525 96.9 127.1 157.1 2000 118.6 155.1 192.4 2700 150.7 196.4 244.3 3050 166.70 217.05 270.29 1525 350 174.4 1800 191.4 251.78 328.9 2700 246.9 319.10 412.75 Page 2-12 of 71 Revision 02 ; 05-2015 192 Type Series Booklet B-Pump 70 3050 268.47 345.28 445.33 1525 183.5 240.31 312.46 2000 212.8 275.84 356.68 2700 256.0 328.20 421.85 3050 277.58 354.38 454.44 Table 29: Weights of the column sets in kg. VN. model / design / type. 2.4.1.3 Shaft Enclosing Tube Consult Design Office 2.4.1.4 Discharge Head (type VN) without Motor stool. Discharge Head Type VN 1342A VN 1342 VN 1830 VN 2030 VN 2541A VN 2541 VN 3051 Weight 88 84 80 88 165 165 170 Table 30: Weight of the Discharge Head (VN type) in kg 2.4.1.5 Thrust Bearing Assembly Consult Design Office 2.4.1.6 Motor Stool Consult Design Office 2.4.1.7 Bearings Consult Design Office 2.4.2 Weight of complete Bowl assembly Following weights are required for the calculation of axial thrust or for the installation. 2.4.2.1 Weight of pump Rotor Assembly The complete weight of bowl assembly of 1st stage pump consists of unit weight of pump shaft, impellers, clamping sleeve and sand guard. Weight of the intermediate / column shaft is not included (see Figure 5) Pump Size 6 7 8 10 12 14 16 18 20 22 24 1st Stage 2.4 3.8 5.8 10.3 17.2 29.1 38.5 54 67 80 94 Each Additional Stage 1.2 1.8 2.8 4.9 8.4 15.1 21.7 30.5 41 52 63 Table 31: Weight of Pump Rotor in kg 2.4.2.2 Weight of the Intermediate Shaft The weight of the intermediate shaft is required only for the thrust bearing load. For the calculation of the total pump weight it is already included in the rising main. For pump rotor weight, see Table 31, in which the weight of the drive shaft is included. Refer to Figure 5 which gives weights of the shaft in kg (depending on the length Le) Page 2-13 of 71 Revision 02 ; 05-2015 193 Type Series Booklet B-Pump Figure 5: Weight of Column Shaft in kg, according to Column length L e 2.4.2.3 Weight of the Pump Side (Flexible Coupling) Size S0 S1 S1A 2BN 3BN 4BN 5BN Weight (kg) 2 3 6 9.5 15 30 58 Table 32: Weight of the pump side of the coupling half, according to HS 173 2.4.3 Weight of the Pumped Medium Filling For static calculation of the base plate, the total aggregate weight of the pump with the filling medium is required. For simplification, to measure the maximum possible weights from the drop down level to the suction strainer, generally the total volume of the medium filling the pumping unit is taken as a base. The submerged weight and the water thrust on the shafts are not considered. The weight of the medium GFg is calculated as follows: I (dm3) content of the complete pump aggregate (2.5.1) 3 γ (kg/dm ) density of the pumping medium 2.5 Pump Filling Volume 2.5.1 Volume of the completely filled pump The volume of the complete pumping unit consists of the total installation depth (including suction strainer) and the Nominal Diameter (NW) of the rising main. Pump assembly and the Discharge Head (VN) should be considered in addition to the Rising Main length. For the Discharge Head, 1 m column pipe length can be assumed. In Table 33 the content per running meter of the column line is given depending on NW. NW 80 100 125 150 175 200 I (dm3/m) 5.2 7.8 12.2 17.6 25.4 32.5 NW 250 300 350 400 500 I (dm3/m) 50.9 72.2 97.1 126 195 3 Table 33: Content of the complete pumping unit in (dm /m), depending on the column line –NW Page 2-14 of 71Revision 02 ; 05-2015 194 Type Series Booklet B-Pump Example: 1. Bowl assembly Pump without Suction Strainer Discharge head Type VN Rising Main NW 200 Installation depth = 10m (bottom of the suction casing) I = (10+1) m x 32.5 dm3/m = ~ 360dm3 Page 2-15 of 71 Revision 02 ; 05-2015 195 Type Series Booklet B-Pump 3 Construction (Design) Description 3.1 General 3.1.1 Type and Design Complete pumping unit consists of pump, rising main, discharge head, suction pipe and/or suction strainer, foot valve. The axial thrust on Rotor and Intermediate shaft is taken care by provision of angular contact ball bearings (Thrust Bearings) provided in Discharge Head Assembly for V1 design while in ET (VHS) Design, the thrust bearings are provided in the VHS Motor. Each rising main set consists of Column Pipe, Bearing Spider with Rubber or Metal Bearing, Coupling (Threaded or Cone type) and intermediate shaft with shaft protecting sleeve. 3.1.1.1 Rotational Direction Looking from the drive-end towards the pump, the rotational direction is counter-clock wise. 3.1.2 Arrangement and Installation Installation is exclusively vertical. The pumping unit has been designed to suit outdoor Installation. The thrust bearings are sealed against the penetration of dust, sand, spray water etc through radial seal ring (bottom end and bearing cover at the top end) in thrust Bearing Assembly. Discharge nozzle orientation is parallel to the axis of the shaft and is of: VN Design: Discharge nozzle above ground on discharge head. VU Design: Discharge nozzle below ground on the rising main (discharge tee pipe) Irrespective of the discharge nozzle orientation (mentioned above) installation can be of following two types Wet Installation The pump stands completely or partially installed in the pumping medium up to the level of 1 st stage impeller. The minimum submergence of the impeller of 1st stage should correspond to the measurement “B” (minimum submergence). In case there is a Suction Pipe attached with Suction Strainer then the water level can fall below the level of 1st Stage impeller. In this case care should be taken that the cavitation does not take place. For this the minimum medium level should be 1.0 x NWsuction casing over the upper edge of the suction strainer. Dry Installation Dry pit installation is also possible for DWT under special condition. The supply line is connected with the suction casing through special foot elbow .A typical unit in dry installation is also called dry pit pump. For the minimum submergence, the same applies as in case of wet installation. Complete details can be provided on a case to case basis by the design department. 3.2 Pump Casing Casing parts (suction casing, discharge casing and intermediate bowls) are vertically split with respect to the shaft. The individual casing parts are tightened together through Stud/Nut arrangement. 3.2.1 Suction Casing The suction casing has a threaded connection for suction Pipe or suction strainer up to the sizes B16D. Flanged connections can also be provided on request. From sizes B18 and above, the suction casing is available with flanged connection only. In suction casing bearings are also provided. 3.2.2 Intermediate Bowls The number of Intermediate bowls is equal to the number of stages of the pump. The Intermediate bowls have hydraulic shrouds, to guide the flow from impeller to the outlet. Each Intermediate bowl has a Rubber Bearing and a bowl sleeve. 3.2.3 Discharge Casing Discharge casing has threaded as well as flanged connections depending upon the column set assembly. The internal hub takes up the pump bearing from the discharge side as well as the lowest shaft enclosing tube in certain cases. 3.3 Impeller 3.3.1 Impeller Type Impellers are single suction, mixed flow (radial & axial). Up to size 16, impellers are fixed by providing a clamping sleeve and from size 18 and above impellers are fixed by providing a key, stage sleeve and nut on the pump shaft. 3.3.2 Casing Wear ring Suction Piece and intermediate bowls are fitted with interchangeable casing wearing rings. The material of the wearing ring has a difference of approx. 50 HBN less than the rotating part and therefore it tends to erode (for example stainless steel), hence it is required to increase the play of casing wear ring see 2.1.8.3. Page 3-1 of 71 Revision 02 ; 05-2015 196 Type Series Booklet B-Pump 3.3.2.1 Impeller – Entry Cross Sections Pump Size 6 7 8 10 12 14 16 18 20 22 24 Impeller Type B B B D B D F B D F B D B D B B B B Impeller cross section 26 38 50 76 83 115 148 118 176 210 160 263 210 327 286 429 527 536 2 Table 34: Impeller entry cross section in cm . 3.4 Shafts Pump Shaft is always subjected to pump medium. Intermediate Shaft: In standard design, Shaft Protecting Sleeve protects the shaft in the bearing area. In oil lubricated design, it is protected by shaft enclosing tube in which case oil acts as a lubricant. There is no protection in the stuffing box region. As special design the drive shaft is protected through a warm drawn up shaft-protecting sleeve in area of stuffing box packing. 3.4.1 Pump Shaft and Column Shaft Connection Coupling Pump Size Threaded 6 7 8 20 20, 25 25, 30 25, 30, 35 25, 30, 35, 45 35, 45 30 30, 35 30, 35, 45 45, 60, 70 Cone 10 12 , 14 & 16 18, 20. 22 24 Table 35: Possible column shaft connection on pump shaft in mm. If the required diameter in design calculations for intermediate shaft is greater than the one given in Table 35, then there are two possibilities as far as the pump shaft is concerned. Select complete shaft (including Top shaft) in better material. The smallest diameter to be fixed according to Table 13 and Table 14 (page 2-3) Special design. Fix intermediate shaft diameter according to Table 13, Table 46 and Table 47 (page 3-13); and use reduced lower intermediate shaft diameter according to Table 35 in a better material (Examine according to Table 14) 3.4.2 Drive/Top shaft In V1 design the top shaft passes through thrust bearing arrangement above the discharge head for taking up necessary axial thrust and in ET design (VHS drive) it passes through the motor’s hollow-shaft and is coupled with the motor coupling. BUA Bearing 7309 7311 7312 7313 7314 7315 Shaft – Ø 25 33 33 33 38 43 38 Key 1) b*h (mm) 8x 7 10 x 8 10 x 8 10 x 8 10 x 8 12 x 8 10 x 8 BUA Bearing 7317 7318 7319 7320 7322 7324 7326 Shaft – Ø 53 38 48 48 63 53 63 16 x 10 10 x 8 14 x 9 14 x 9 18 x 11 16 x 10 18 x 11 Key 1) b*h (mm) 7316 Table 36: Drive shaft and key on coupling seat in mm on the pump side. Page 3-2 of 71Revision 02 ; 05-2015 197 Type Series Booklet B-Pump 1) Measurement according to DIN 6885 b = width of fitting key, h = height of fitting key 3.4.3 Shaft Protection The intermediate and drive shafts are not protected against the medium. By the use of shaft enclosing tube only those shafts can be protected which lie above the maximum medium level. An adequate corrosion protection is possible only through selection of shaft material, which is resistant to medium. 3.5 Thrust Balancing The impeller does not take up any hydraulic axial thrust. The hydraulic axial thrust and the complete rotor and intermediate shaft weight is taken up through a thrust bearing. The hydraulic axial thrust is internal thrust of the pump and does not limit the installation work. 3.6 Bearings and Lubrication 3.6.1 Bearing There are 3 types of bearings which can be offered with B-Pump: • Grease lubricated anti-friction bearing • Medium lubricated guide bearings in pump and in the rising main. • External water / oil lubricated plain bearing in the rising main. 3.6.1.1 Thrust Bearing Arrangement The thrust bearing takes up the axial thrust directed towards suction side as well as the radial thrust. The thrust bearing with Angular Contact Bearings can also take up the additional axial force directed towards discharge side. 3.6.1.1.1 Axial Bearing Load Thrust bearing shall be loaded through following components. Pax ↓ directed towards suction side Weight of the intermediate / column shaft. Figure 5 Weight of the pump rotor. Table 31 Weight of the drive shaft. Weight of the pump-side coupling half.Table 32 Hydraulic axial thrust of the pump (Figure 6 & Figure 7) Pax ↑ directed towards delivery side Pax ↑ = Pz x Fws (max intake pressure x shaft cross section) Fws = dws2 x π/4 (cm2) Pax = Pax – Pax (kg) Pz (kg/cm2) dws (cm) intake pressure effective diameter in the shaft sealing Hydraulic axial thrust can be seen by looking the pump head from operating point in meters against pump size. As a rule the hydraulic axial thrust is directed towards the suction side of the pump. If the pump stands under intake pressure, which is higher than the atmospheric pressure the axial thrust directed toward suction side shall be relieved. Page 3-3 of 71 Revision 02 ; 05-2015 198 Type Series Booklet B-Pump Figure 6: Hydraulic axial thrust Pax in kg dependent on the total head at operating point for Impeller type B. Figure 7: Hydraulic axial thrust Pax in kg dependent on the head at operating point for Impeller type D and F Page 3-4 of 71 Revision 02 ; 05-2015 199 Type Series Booklet B-Pump The diagrams are independent from the speed and size of impeller. 3.6.1.1.2 Selection of Bearing Stool Consider speed limitations according to Table 9 & Table 10 Page 2-2. a. Bearing according Table 11 for P/N limitation. b. Check the admissible axial thrust of the bearing in O arrangement as well in tandem arrangement according to Table 37. Discharge head size 8 (Exception: size 8 with 45 and 60 BUA) and larger (from 75 BUA) a. Bearing according to Table 11 b. Checking of admissible axial thrust of bearing in O-arrangement as well in Tandem arrangement according to illustration 52. Bearing Type (BUA) Single Arrangement Pax Permissible RPM 7309 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7322 7324 7326 1450 7.686 10.833 12.149 13.736 15.124 16.909 18.182 19.454 20.992 22.645 25.802 28.612 30.264 31.917 1740 7.240 10.205 11.445 12.939 14.247 15.928 17.128 18.327 19.775 21.332 24.306 26.953 28.51 30.067 2900 6.244 8.802 9.870 11.16 12.288 13.738 14.773 15.807 17.056 18.399 20.964 23.247 24.59 25.933 Pax Permissible Bearing Type (BUA) Double (O & X) Arrangement RPM 7309 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7322 7324 7326 1450 12.397 17.546 19.835 22.123 24.793 26.954 29.116 32.913 34.329 36.363 41.322 46.280 49.587 51.239 1740 11.678 16.528 18.685 20.841 23.356 25.392 27.428 30.063 32.339 34.256 38.926 43.598 46.712 48.269 2900 10.072 14.256 16.116 17.975 20.144 21.900 23.657 25.230 27.892 29.545 33.574 37.603 40.289 41.632 Table 37: BUA – Bearing permissible axial thrust kN for single and double bearing installations. 3.6.1.1.3 Area of Usage Bearing Type Pump Size 7309 6, 7, 8, 10, 12 7311 6, 7, 8, 10, 12 7312 6, 7, 8, 10, 12 7313 6, 7, 8, 10, 12, 14 7314 6, 7, 8, 10, 12, 14 7315 6, 7, 8, 10, 12, 14,16 7316 6, 7, 8, 10, 12,14, 16, 18 7317 6, 7, 8, 10, 12,14, 16, 18 7318 6, 7, 8, 10, 12,14, 16, 18 7319 6, 7, 8, 10, 12,14, 16, 18 7320 14, 16,18,20,22,24 7322 14, 16, 18,20,22,24 7324 14,16, 18, 20,22,24 7326 16, 18,20, 22,24 Table 38: Possible bearings for different pump size Page 3-5 of 71 Revision 02 ; 05-2015 200 Type Series Booklet B-Pump 3.6.1.1.4 Bearings Temperature The permissible bearing temperatures amount to the following by a temperature of the liquid t ≤ 105oC and a surrounding temperature of 20oC: Bearing: 60oC1) 7309-7315 1) 70oC1) 7316-7326 Measured at the outer wall of the bearing cover In case the operating conditions demand higher temperatures then the bearing temperatures can be increased by 10oC Maximum. 3.6.1.2 Pump Bearing Bearings provided in the pump are guide bearings (plain bearings). They can not take up the axial forces. Bearing of the suction side is provided in suction casing and is medium lubricated. The bearing of the delivery side is fitted in the discharge piece, with the exception of B20, B22 with intermediate shaft > 60 and B24 with intermediate shaft > 80. In those case, a bearing spider is fitted in the discharge piece. 3.6.1.3 Bearing Clearance The bearing clearances given in the following section refer to the diameters of the bearings and shafts and are for new components. 3.6.1.3.1 Pumps Pump size M Pump bowl Clearance Suction casing G Delivery casing M 6–8 10 – 12 14 – 16 18 20 22 – 24 Min. 0.065 0.080 0.105 0.130 0.130 0.130 Max. 0.228 0.279 0.290 0.350 0.350 0.280 Min. 0.200 0.200 0.340 0.350 0.370 0.336 Max 0.383 0.389 0.730 0.740 0.790 0.571 Min. 0.065 0.080 0.130 0.130 0.1301) 0.1302) Max. 0.228 0.279 0.234 0.234 0.234 0.280 Table 39: Clearance of pump bearing in mm M = metal, G = rubber 1) for intermediate shaft > 60 Ø Bearing 2) for intermediate shaft > 80 Ø 3.6.1.3.2 Bearing play according to intermediate shaft Rising Main a. Standard design (medium lubricated) - without shaft enclosing tube Rubber bearing Metal bearing Clearance Intermediate shaft – Ø 20 25 30 35 45 60 70 Min. 0.31 0.32 0.33 0.34 0.35 Max 0.59 0.63 0.64 0.73 0.74 Min. 0.080 0.100 0.120 Max 0.146 0.178 0.212 Table 40: Clearance of the intermediate shaft bearing in mm (Rising main without shaft enclosing tube) b. Special Design (External Lubrication) – with Shaft enclosing tube Intermediate shaft – Ø Oil lubrication Rubber bearing 2) External water lubrication Clearance Metal bearing 20 1) 25 30 35 45 60 70 Min. 0.065 0.080 0.100 Max 0.150 0.181 0.220 Min 0.31 0.32 0.33 0.34 0.35 Max 0.59 0.63 0.64 0.73 0.74 Table 41: Clearance of the intermediate shaft bearing in mm (rising main with shaft enclosing tube) Page 3-6 of 71 Revision 02 ; 05-2015 201 Type Series Booklet B-Pump 1) Shaft without shaft protecting sleeve 2) Shaft with shaft protecting sleeve 3.6.1.3.3 Bearing Angular Contact Bearing Bearing with the suffix “UA” is for coupled arrangement through Tandem arrangement and the load distribution is even. In O-arrangement a bearing is coupled without clearance. 3.6.1.4 Friction Losses Friction losses in thrust bearings and radial bearings in the pump can be ignored. For losses in column pipe, refer to 3.8.5.4.6 3.6.2 Thrust Bearing Arrangement 3.6.2.1 Lubrication Selection of suitable lubricant depends on the operating conditions i.e.; speed, ambient temperature and operating temperature. For the selection, the bearing manufacturer’s manual shall be consulted. For special cases, the information can also be taken from lubricant manufacturers. 3.6.2.1.1 BUA- Bearing Arrangement For lubrication of the bearing, grease that has metal soaps as thickener and mineral oils as base are used. Lithium soap greases are suitable which are remarkable for resistance to temperature and are slightly water sensitive. For higher temperatures and water entry these greases are preferred. They should have the following characteristics. Drop point not under 160°C Worked penetration by 25°C 265 to 295mm/10mm 3.6.2.1.2 Re lubricating and Lubricating Time BUA- Bearing Bracket Re-greasing depends on the bearing size and lubricating time a. 1st Lubrication after 24 operating hours with three-fold grease quantity from the Table 42. b. 2nd Re-lubrication after further 24 operating hours with three-fold grease quantity from the Table 42 c. Regular re-lubrication after 800 operating hours with the normal grease quantity. Bearing Arrangement Initial Fill (grams) Re-Lubrication (grams) 7309 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7322 7324 7326 7330 O 260 260 390 390 390 900 900 900 900 900 900 900 900 900 900 T 300 300 450 450 450 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 O 35 35 50 50 50 80 80 80 80 80 80 80 80 80 80 T 50 50 70 70 70 100 100 100 100 100 100 100 100 100 100 Table 42: Required Grease Quantity in grams O = O arrangement, T = Tandem arrangement 3.7 Shaft Sealing 3.7.1 Figure 8: Stuffing Box Arrangement Stuffing Box Packing Stuffing box packing is fitted in the discharge head. Stuffing box pressure reduces with increase in installation depth, height of the rising main and the head loss because of the frictional losses in the rising main. VSM-Stuffing box Application of lantern ring is recommended only when it is required to prevent air from entering in the stuffing box zone during stand still of the pump. Sealing water quantity can be adjusted according to packing condition and lie between 30 and 200 dm3/h with a water pressure of 1-3 kg/cm2. In the sealing water pipeline non-return valve should be installed so that during operation of the pump stuffing box pressure variant/ change does not let the packing ring run dry. Page 3-7 of 71 N version VSM version Revision 02 ; 05-2015 202 Type Series Booklet B-Pump 3.7.1.1 3.7.1.2 Packing Material Material of the packing ring must be selected according to the pump media and its temperature. Use only specified gland-packing material/make. In the following table few packing types are mentioned. Designation Manufacturer Buraflon/5846 Burgmann Araflon/6426 Burgmann Isaraflon/3435 Burgmann Thermoflon/6230 Burgmann Operating Temp. Water t ≤ 105°C Table 43: Packing materials 3.7.1.2 Friction Losses The frictional losses in Stuffing Box Zone can be calculated according to figure 7. Friction Performance PR given corresponds to 1450 RPM. For other speeds, it must be converted accordingly. Example: n = 2900 rpm; 45 BUA, Stuffing Box pressure 10 kg/cm2 Frictional Loss PR [kW] PR = 2900/1450*0.8 = 1.6 kW Stuffing Box Pressure p[kg/cm2] Figure 9: Friction performance depending on the stuffing box pressure at 1450 rpm. Page 3-8 of 71 Revision 02 ; 05-2015 203 Type Series Booklet B-Pump 3.7.1.3 Leakage Water There is a leakage of medium in the Stuffing Box Zone. Its quantity depends on the stuffing box pressure, type of packing, packing material, pump speed, situation of the packing (wear) as well as the pump medium. Specification of a leakage quantity is therefore not possible. Leakage should however be at least 6 dm3/h. 3.8 Drive 3.8.1 Types of drive 1. V1 Electric motor, V1 2. Hollow shaft motor, ET 3. Hollow shaft bevel gear drive, KT 4. Hollow shaft motor with hollow shaft bevel drive, EK (combination drives) 5. Diesel Engine via flat belt – Belt Head Drive (RT) Figure 10: Type of Drives In hollow shaft drive the axial thrust of the pump (see 2.4.2) is taken up by the motor bearing. Gear drive arrangement can be adopted for driving the vertical turbine pumps through electric motors and diesel engines or as combination drives. For diesel engine installations it is to be ensured that pump and the engine should be installed on separate foundations. The minimum distance of both the shaft extensions should not be less than 1 meter. Universal joint Cardon Shafts can be used for coupling. 3.8.1.1 Driver Power Requirement / Reserve Power requirement shall be determined from the operating point of the pump, friction losses through shaft sealing (illustration 66) are still to be added. The minimum power rating of the drive shall conform to the following limitations of performance. For smooth performance requirement Up to 25 kW min. 20% From 25-75 kW min. 15% Over 75 kW min 10% 3.8.2 Couplings 3.8.2.1 Fixed Coupling – Intermediate Shaft Shaft Diameter 20 25 30 35 45 60 70 Cone Coupling Threaded Coupling Table 44: Coupling Types for various Intermediate shaft diameters Page 3-9 of 71 Revision 02 ; 05-2015 204 Type Series Booklet B-Pump 3.8.2.1.1 Switching Frequency Maximum Power transfer of the cone coupling (see 2.1.6.2 ) is measured for constant operation of the pump. The transferable efficiency diminishes to: • 0.8 times from the given values by 2-10 switching /day • 0.5 times from the given values by 10-50 switching /day Higher switching number should be avoided. No restriction exists for threaded couplings. 3.8.2.1.2 Reverse Safety For Threaded coupling designs, a Non Reverse arrangement (Back Stop Unit) is provided so that the threaded couplings do not loosen by reverse rotation. Hollow shaft motor and hollow shaft bevel drive have built-in non-reverse ratchets, V1 Design Motors do not have this arrangement. Before coupling the motor the direction of rotation shall be observed. 3.8.2.2 Flexible Coupling Coupling types according to HS 173 for Elastic Couplings shall be used. The pump side shaft diameter for the coupling to be considered according to illustration: 49. Other coupling types are also possible. Switching frequency according to manufacturer’s specification. 3.8.3 Motor Stool and Discharge Head 3.8.3.1 Motor Stool for V1 motors Motor Stools can be categorized according to the following: VN = Discharge nozzle above ground VU = Discharge nozzle below ground Motor Stool for V1 motor are steel fabricated with bearing casing including thrust bearing to take up the axial thrust and weight of the rotating parts. Motor Stool sizes are classified according to IEC-Frame reference of motors (DIN 42 676/77). For motors other than IEC-Frames, special design motor stool are fabricated. Shaft seal is provided in discharge head. The base plate is quadratic for VN type discharge head and motor stool. Discharge Head and Motor Stool are separate basically and are fastened together through stud/nut arrangement. For standard type the design pressure of discharge head is 24.5 bar. The discharge flange is generally according to BS 10 Table ‘D’. Discharge Flange can also be provided as per following standards: • ANSI B 16.5 • DIN 2533 ND 16 3.8.3.2 Discharge Head for Hollow shaft motors and gear units Discharge head for hollow shaft motor is made of grey cast iron GG-25. In VN type, the motor is directly mounted on the Discharge head. The discharge pressure is 16 kg/cm2. The discharge flange is according to BS 10 Table ‘D’. Discharge Flange can also be provided as per following standards: • ANSI B 16.5 • DIN 2533 ND 16 Discharge head selection and measurements according to 4.1.3.6.1, Table 56, Figure 36, Figure 37, Figure 35, Figure 38 3.8.3.3 Discharge Head Losses The losses in the discharge head can be calculated from following figure: Figure 11: Discharge Head Losses 3.8.4 Safety against Reverse Rotation. Hollow shaft motors and drives are always provided with non-reverse ratchet. It protects the pump from reverse rotation (Turbine operation) as a result of the back flow of the water filling present in the rising main. Page 3-10 of 71 Revision 02 ; 05-2015 205 Type Series Booklet B-Pump 3.8.5 Rising Main The price of rising main is a major part of the total price of the pumping unit of DWT. Therefore the selection of the rising main must be done very carefully. Following points have to be considered while selecting the rising main. • Discharge Flow of the pump • NW (nominal diameter) of the discharge casing (compare Table 47) • Intermediate shaft diameter (compare Table 13, Table 42 and Table 50) 3.8.5.1 Design Types of Rising Main There are following design types FG MG FGS MGS FMS MMS It means 1. F = Flange 2. M = Socket 3. G = Rubber bearing 4. M = Metal bearing 5. S = Shaft protecting sleeve FG and MG are standard types, all the other are special types. 3.8.5.2 Bearing Spider- Bearing in Rising Main Numbers of bearing spiders in all sizes are equal to the number of intermediate column pipes. Exceptions: In B20 and higher, where shaft diameter is greater than 60mm the number of bearing spider is equal to the number of intermediate columns pipes plus one. The top column pipe is not counted in the total number of columns. 3.8.5.2.1 Bearing Types / Lubrication / Shaft Protection Bearing Lubrication Shaft Protection Rubber With pumped media (Standard) Shaft protecting sleeve in 1.4301 Metal Oil: with shaft enclosing tube Shaft protecting sleeve in 1.4301 Water: with shaft enclosing tube Shaft protecting sleeve in 1.4301 Table 45: Bearing type, lubrication and shaft protection. Page 3-11 of 71 Revision 02 ; 05-2015 206 Type Series Booklet B-Pump Rubber bearing containing the support shell, the shaft-protecting sleeve shall is shrink-fitted by heating, on the shaft. 3.8.5.2.2 Bearing Lubrication 1. Pumped fluid Rubber bearings are lubricated by the pumping medium. Rubber bearings have no dry running protection. It is therefore necessary to lubricate the rubber bearings before starting of the pump through pre-lubrication arrangement provided in the pump. After a long non-operational time, pre-lubrication of the bearing is necessary. For that a container measuring 50 dm3 is provided at the height of motor stool. 2. Outside / External Lubrication. Rubber bearings in shaft enclosing tube are lubricated through outside water. If outside water is not available, a filtered pumping medium can be used instead for lubrication of the bearing. 3. Oil The metal bearing in the shaft enclosing tube are lubricated by oil from the oil tank with a solenoid valve to control the flow of the oil. 3.8.5.2.3 Friction Losses According to Figure 12, Friction Performance PRSt in kW/100 meters shaft length. Values given are for 3050 mm shaft length. For others, multiply the values in relation to the selected set length (see example) Example: Shaft 30 φ mm, setting length 1600 mm, speed 1500 RPM PRSt = 1.55 x 3050 / 1600 = 2.95 (kW/100m) Double the value in types with shaft enclosing tube. Figure 12: Friction losses in kW/100 m shaft length. Page 3-12 of 71 Revision 02 ; 05-2015 207 Type Series Booklet B-Pump 3.8.5.3 Intermediate Shaft 3.8.5.3.1 Determination of Diameter For intermediate shaft diameter carried out according to Table 13. The motor rated output is taken 1.3 times that of pump output. Through material selection the performance can be influenced very strongly (see Table 14). For selection of cone coupling consider the admissible switch frequency (3.8.2.1.1) 3.8.5.3.2 Possibilities of Installation Column pipe mm Column pipe inch 20 25 30 35 45 60 70 80 3 ○● ○● ○ ○ 100 4 ○● ○● ○● ○ 125 5 ○● ○● ○● ○● ○ 150 6 ○● ○● ○● ○● ○● 175 7 ● ○● ○● ○● ○ 200 8 ● ○ ○● ○● ○● 250 10 ○ ○● ○● ○● ○● 300 12 ○● ○● ○● ○● 400 16 ○● ○● 500 20 ○ Table 46: Connection between column pipe diameter and possible shaft diameter of the intermediate shaft. o- open shaft ●- shaft inclosing tube 3.8.5.4 Installation depth 3.8.5.4.1 Type Size Possible Column Pipe Connection Thread Execution (in inches) 3 4 5 6 7 8 10 12 Flanged Execution (in mm) 14 80 100 125 150 175 200 250 300 350 400 500 B6B B7B B8B B8D B10B B10D B10F B12B B12D B12F B14B B14D B16D B18B B20B B22B B24B Table 47: Possible Column Pipe connection with Pump Bowl Assembly Page 3-13 of 71 Revision 02 ; 05-2015 208 Type Series Booklet B-Pump 3.8.5.4.2 Maximum Installation Depth Diameter of shaft (mm) 20 25 30 35 45 60 70 Max. installation depth (m) 75 85 100 120 120 120 120 Max. Installation depth (ft) 250 275 325 395 395 395 395 Table 48: VN type maximum installation depth in m depending on the diameter of the intermediate shaft in mm. With rotations of 2 pole electric motors the maximum installation depth is 50 m. Column pipe Dia (mm) Up to 100 125-200 > 200 Max. installation depth (m) 35 30 25 Table 49: VU- type maximum Installation depth in m depending on the diameter of the intermediate shaft in mm. 3.8.5.4.3 Set Length of the Normal – Rising Pipe Length of the set Diameter of Intermediate Shaft in mm 20 Coupling 1525 25 30 G K, G Lubrication Coupling 60 70 K, G 1800 G Lubrication K, G E, F 3600 1) Max. rotation RPM Coupling 3050 45 E Max. rotation RPM 2000 35 G 30001) K, G Lubrication K, G E, F Max. rotation RPM 2200 K E 1800 Table 50: set length of normal rising pipe, dependent from intermediate shaft diameter, coupling & lubrication type and max admissible speed K = Cone Coupling E= Own Lubrication = without Shaft enclosing tube G = Thread coupling F= Outer Lubrication = with Shaft enclosing tube = 1 Bearing / Column Pipe Set = 2 Bearing / Column Pipe Set 1) from 2200 rpm 3.8.5.4.4 Set length of Upper Rising Pipe For different installation depths following lengths for top column pipe sets are available. Length 300 600 900 1200 Table 51: Top Pipes (Measurements in mm) Speed limitation can be seen from the Table 10. For the coupling selection refer to 2.1.6.3. Lengths smaller than 300 mm as well as larger than 1200 mm are not possible. Lengths other than standard sizes come under special design production program and must therefore be avoided. If there is a requirement of exact setting depth then the addition of suction pipe is recommended for obtaining exact setting depth. 3.8.5.4.5 Discharge Tee Pipe (VU-type) Discharge tee pipes are used in between the setting of normal and upper rising pipe set lengths. Because of the welded sockets, certain minimum dimensions are to be observed. Figure 13 specifies minimum dimensions for the distance between center line (vertical) of the pump and the discharge tee pipe flange as well as overhang of the discharge support. Table 52 gives the dimensions of the discharge tee pipe for B-Pump. If customer’s requirements are not available, then for standard discharge pipe of 1200mm length, the standard value for dimension ‘b’ is 500mm. Figure 13: Discharge tee pipe The discharge tee pipe is always positioned as the last/upper-most column pipe (below top pipe) in the rising main. If the discharge position requirement is deeper, then column can be added in between the top pipe and the discharge pipe. In this case it Page 3-14 of 71 Revision 02 ; 05-2015 209 Type Series Booklet B-Pump must be noted that pump assembly is not pushed out of the position due to discharge piping force and heat expansion otherwise it can even lead to break down of the pump. In addition to this, for deeper discharge setting, it should be made sure that the bearings above the discharge pipe are properly lubricated and protected against dry running, especially in free-delivery systems. Nominal Diameter (mm) 80 100 125 150 175 200 250 300 350 270 300 370 410 470 530 550 630 630 170 190 210 220 250 260 290 290 310 210 250 280 320 370 440 510 590 460 220 240 250 290 310 370 410 440 410 400 500 Contact Design Dept. Contact Design Dept. a b A A’ Table 52: Discharge Tee Pipe Dimensions 3.8.5.4.6 Column Pipe Friction Losses For shafts without shaft enclosing tube, and length of rising pipe 1200, 1600 and 2100 mm see Figure 14. For shaft without shaft enclosing tube and rising pipe length of 3050 and 2000 mm Figure 15. For shaft with shaft enclosing tube and length rising pipe 3050, 2100, and 2000 mm see Figure 18. The column pipe line losses should be maintained between 1 and 10 meter per 100 meters column pipe length. The upper limits are only allowable when setting depths are 10 meters or more. The column pipe connection combinations can be seen from the dimension tables. Page 3-15 of 71 Revision 02 ; 05-2015 210 Type Series Booklet B-Pump 3.8.5.4.7 5 ft long column friction losses (Open Line Shaft Design) Figure 14: Column Pipe Friction Losses without Shaft Enclosing Tube (1200, 1600, 2100) The values are applicable for set lengths of 1200 mm (shafts ø 30 to 110 mm). Table values are to be multiplied by 1.2, for set lengths of 1600 mm with shafts of ø 20, 25, 30, 35, and 45 mm and for set lengths of 2100 mm with shafts ø 60, 70mm. Page 3-16 of 71 Revision 02 ; 05-2015 211 Type Series Booklet B-Pump 3.8.5.4.8 5 ft long column friction losses (Open Line Shaft Design) Figure 15: Column Pipe Friction Losses without Shaft Enclosing Tube (1200, 1600, 2100) Higher Q. Page 3-17 of 71 Revision 02 ; 05-2015 212 Type Series Booklet B-Pump 3.8.5.4.9 10 ft long column friction losses (Open line shaft version) Figure 16: Column Pipe Friction Losses without Shaft Enclosing Tube (3050 mm) Page 3-18 of 71 Revision 02 ; 05-2015 213 Type Series Booklet B-Pump 3.8.5.4.10 10 ft long column friction losses (Open line shaft version) Figure 17: Column Pipe Friction Losses without Shaft Enclosing Tube (3050 mm) Higher Q Page 3-19 of 71 Revision 02 ; 05-2015 214 Type Series Booklet B-Pump 3.8.5.4.11 10 ft long column friction losses (With Shaft enclosing tube) Figure 18: Column Pipe Friction Losses with Shaft Enclosing Tube (2100, 3050) The values are valid for set lengths of 3050 mm, 2100 mm with screwed coupling; in case of cone coupling the values in the table are to be multiplied with 1.2. Page 3-20 of 71 Revision 02 ; 05-2015 215 Type Series Booklet B-Pump 3.8.5.4.12 10 ft long column friction losses (Shaft enclosing tube) Figure 19: Column Pipe Friction Losses with Shaft Enclosing Tube (2100, 3050) Higher Q Page 3-21 of 71 Revision 02 ; 05-2015 216 Type Series Booklet B-Pump 3.9 Scope of Supply 3.9.1 Standard equipment Scope of supply of DWT unit consists of the following items: Type I: 1. Complete bowl assembly 2. Rising main with rubber bearing for lubrication through pumping media 3. Discharge head assembly 4. Flexible coupling (for V1 design) 5. Priming Funnel or Tank 6. Erection & Mounting Clamps for rising main 6. Motor (if ordered) Type II Scope of supply according to I, with addition of Shaft Enclosing tube and oil lubrication arrangement for line shaft rubber bearings. Type III Scope of supply according to I, with addition of Shaft Enclosing tube and oil lubrication arrangement (oil tank) and solenoid valve, if ordered, for line shaft bronze bearings. 3.9.2 Normal Accessories The following items are not included in the standard scope of supply but they should be recommended to the customer. Drawing tool for cone coupling, impeller pulling and opening device: for tightening of clamping sleeve of impeller (up to B 16), suction strainer with foot valve (for medium lubricated design) as well as inlet strainer (for rising main with shaft enclosing tube) 3.9.3 Special Accessories • Oil level indicator, • Flow meter, • Thermometer (PT100 for thrust bearing), • Pressure controller, • Pressure/ vacuum gauge, • Foundation base frame, • Foot elbow, • Non-return valve, • Switch and control equipment. 3.10 Inlet 3.10.1 Inlet Strainer Coarse contamination is kept out of the pump through inlet strainer. If the strainer gets clogged or blocked, possibility exists that the pump runs dry and mechanical failure may occur. First indication of clogging is the reduction in capacity and head. Resistance of inlet strainer is approx. 1/3 of the suction strainer with foot valve (see Figure 20) (3.2.1 to be consulted, socket connection is possible only up to pump size B16D) Figure 20: Flow Resistance in suction strainer with foot valve Page 3-22 of 71 Revision 02 ; 05-2015 217 Type Series Booklet B-Pump 3.10.2 Suction Strainer with Foot Valve Regarding contamination the same applies as for inlet strainer. In foot valves danger exists that cone of the valve is not properly closed due to fine deposits. For long pressure lines it is recommended to install non-return valve in addition to foot valve. Through the provision of N.R.V, pressure on the pump is avoided. It should be ensured that the non-return valve reacts quickly and gets closed before the foot valve. If it is not certain, it is better to dispense with the foot valve and a pre-lubrication of the rising main. In this situation the first impeller should stand under water during the operation. If the application of foot valve due to water level cannot be avoided, then pressure impact safety must be installed with the non-return valve. Refer to (3.2.1, socket-connection is possible only to the pump size 16D) 3.10.2.1 Flow Resistance in Suction Strainer with Foot Valve If the difference between NPSH required and NPSH available is less, resistance in the suction line is to be considered while frictional losses in suction pipe can be neglected. If NPSH available is less than NPSH required, cavitation occurs in the pump. See Figure 20 3.10.3 3.12.3 Suction Pipes Standard pipes lengths are of 1500 and 3000 mm. However, for adjustment in the exact installation depths, shorter lengths can also be supplied. The diameter of the suction pipes is designed according to the connection diameter of the pump suction. The lower end of the suction pipe must be at least 1.0 NW of suction pipe under the lowest water level Ht. 3.10.4 3.12.4 Suction Elbow For dry installation pumps, special suction elbows according to Figure 21 are available. These shall be mounted axially in the ground plate of the foundation, which prevents radial shifting of the pump. To use the suction elbow a pipe length of a least 20D must be provided before the suction elbow, a straight pipe length be tried between the suction elbow and pump suction. The NPSH available values can be reduced up to 0.5 to 1.0 meters according to design of the intake. Figure 21: Suction Elbow Page 3-23 of 71 Revision 02 ; 05-2015 218 Type Series Booklet B-Pump 3.10.5 Inlet Design of Pump Chamber The correct design of inlet chamber can improve the performance of the pump considerably. In the Figure 22 few advantageous installation possibilities are presented. Dirt, sand, etc. must be separated / filtered out before intake of the pump. Figure 22: Inlet Designs of Pump Chamber Page 3-24 of 71 Revision 02 ; 05-2015 219 Type Series Booklet B-Pump 3.11 Protection of the Upper Surface All steels and casting material, with the exception of non rusting materials, have, if not mentioned specifically, a color coating (paint) according to the material norms ZN 35. For mediums which have significant corrosive properties for iron, it is not always possible to use special materials which are corrosion resistant to the pumped medium due to high costs of the material and manufacturing. The quality of the painting must be specified. Table 53, Table 54 & Table 55 give general idea of the paints/coating materials. Bowl Assembly (Standard) Inside Outside Pre-Treatment Shot Blasting, De Rusting St 2 DIN 12944 Primer 1 Component Alkyd primer Red Oxide, 0.05mm Top Coat Black Bitumen 0.08mm Column Assembly (Standard) Inside Pre-Treatment Rust Protected Outside Primer Top Coat Black Bitumen 0.08mm Discharge Head Assembly (Standard) Inside Pre-Treatment Shot Blasting, De Rusting St 2 DIN 12944 Primer 1 Component Alkyd primer Red Oxide, 0.05mm Outside Top Coat I component Alkyd based synthetic enamel, RAL 5002 (KSB Blue), 0.04mm Table 53: Upper surface protection with the help of painting materials. Bowl Assembly (Standard Epoxy) Inside Pre-Treatment Shot Blasting SA 2-1/2, DIN 12944 Outside Primer 2 Component epoxy resin based zinc paint, red thickness 0.04mm Top Coat 2 component epoxy resin based coat, black C-200, Thickness 0.3mm Column Assembly (Standard Epoxy) Inside Pre-Treatment Shot Blasting SA 2-1/2, DIN 12944 Outside Primer 2 Component epoxy resin based zinc paint, red thickness 0.04mm Top Coat 2 component epoxy resin based coat, black C-200, Thickness 0.3mm Discharge Head Assembly (Standard Epoxy) Inside Outside (In contact with medium) (Not in Contact with medium) Pre-Treatment Shot Blasting SA 2-1/2, DIN 12944 Shot Blasting, De Rusting St 2 DIN 12944 Primer 2 Component epoxy resin based zinc paint, red thickness 0.04mm 1 Component 0.05mm Top Coat 2 component epoxy resin based coat, black C-200, Thickness 0.25mm I component Alkyd based synthetic enamel, RAL 5002 (KSB Blue), 0.04mm Alkyd primer Red Oxide, Table 54: Upper surface protection with the help of painting materials. Page 3-25 of 71 Revision 02 ; 05-2015 220 Type Series Booklet B-Pump Bowl Assembly (Special Epoxy) Inside Pre-Treatment Shot Blasting SA 2-1/2, DIN 12944 Outside Primer 2 Component epoxy resin based zinc paint, red thickness 0.04mm Top Coat 2 component epoxy resin based coat, black C-200, Thickness 0.45mm Column Assembly (Special Epoxy) Inside Outside Pre-Treatment Shot Blasting SA 2-1/2, DIN 12944 Primer 2 Component epoxy resin based zinc paint, red thickness 0.04mm Top Coat 2 component epoxy resin based coat, black C-200, Thickness 0.45mm Discharge Head Assembly (Special Epoxy) Inside Outside (In contact with medium) (Not in Contact with medium) Pre-Treatment Shot Blasting SA 2-1/2, DIN 12944 Shot Blasting, De Rusting St 2 DIN 12944 Primer 2 Component epoxy resin based zinc paint, red thickness 0.04mm 1 Component Alkyd primer Red Oxide, 0.05mm Top Coat 2 component epoxy resin based coat, black C-200, Thickness 0.45mm I component Alkyd based synthetic enamel, RAL 5002 (KSB Blue), 0.04mm Table 55: Upper surface protection with the help of painting materials. Page 3-26 of 71 Revision 02 ; 05-2015 221 Type Series Booklet B-Pump 4 Illustrations 4.1 Sectional Views and List of the Individual Parts 4.1.1 Pump Body 211 902 920 545 400 270 107 901 920 112 545 902 920 320 271 106 502 541 531 545 916 400 758 In case of placing an order for spare parts the following must be given under all circumstances: Pump type, order number (see the rating plate / instructions plate), the name of the part, parts number, number of pieces, number of the sectional view, instructions about delivery / dispatch. 211 902 920 545 400 270 107 901 920 112 545 902 920 320 271 106 502 541 531 545 916 400 758 544 13-17 Figure 23: Bowl Assembly with Flanged Suction Strainer 544 13-17 Figure 24: Bowl Assembly with Threaded Suction Strainer Page 4-27 of 71 Revision 02 ; 05-2015 222 Type Series Booklet B-Pump 107 545 569 112 940 541 320 502 545 106 748 Figure 25: Bowl Assembly for B18-B24 Page 4-28 of 71 Revision 02 ; 05-2015 223 Type Series Booklet B-Pump 4.1.2 Column Pipe 4.1.2.1 Column Pipe with Shaft Enclosing Tube 711 383 Figure 26: Shaft Enclosing Tube Design 529 412 901 920 4.1.2.2 Standard Column Pipe Design with Threaded Execution 711 382 545 529 Figure 27: Threaded Column Pipe Page 4-29 of 71 Revision 02 ; 05-2015 224 Type Series Booklet B-Pump 4.1.2.3 Standard Column Pipe Design with Flanged Execution 213 711 545 901 920 383 529 212 711 852 211 Figure 28: Flanged Column Pipe In case of placing an order for spare parts, the following must be given under all circumstances: Pump type, order number (see the rating plate / instructions plate on the discharge head), the name of the part, parts number, number of pieces, number of the sectional view, instructions about delivery / dispatch. Page 4-30 of 71Revision 02 ; 05-2015 225 Type Series Booklet B-Pump 4.1.3 Discharge Head 4.1.3.1 Lubrication Arrangement for Shaft Enclosing Tube OIL TANK Figure 29: Lubrication Arrangement for Shaft Enclosing Tube 160 400 412 144 4.1.3.2 568 Motor Stool with Thrust Bearing Arrangement Figure 30: Motor Stool with Thrust Bearing Arrangement 840 400 320 350 400 4.1.3.3 Discharge Piece for Shaft Enclosing Tube Design outlet for lubrication medium 107 569 714 545 412 Figure 31; Discharge Piece for Shaft Enclosing Tube Page 4-31 of 71 Revision 02 ; 05-2015 226 Type Series Booklet B-Pump 4.1.3.4 Stuffing Box Housing 452 452 461 636 451 461 Figure 32: Stuffing Box Housing 458 451 4.1.3.5 Motor Stool with Double Bearing Arrangement 816 860 341 861 924 321 636 320 422 360 350 213 Figure 33: Motor Stool with Double Bearing Arrangement 4.1.3.6 Discharge Head with Solid Shaft and Stuffing Box Housing 341 861 421 160 526 DETAIL - X 452 461 636 451 320 350 461 144 914 x 452 902 920 Y 545 451 451 914 902 920 DETAIL , Y , Figure 34: Motor Stool & Discharge Head Page 4-32 of 71 Revision 02 ; 05-2015 227 Type Series Booklet B-Pump In case of placing an order for spare parts the following must be given under all circumstances: Pump type, order number (see the rating plate / instructions plate on the Discharge head), the name of the part, parts number, number of pieces, number of the sectional view, instructions about delivery / dispatch. Type Discharge Head Dimensions: a b e f h g NWst ShaftØ NWd VN 1342 A 425 148 210 297 350 75, 100 25, 30, 35 VN 1342 425 148 210 297 350 100, 125 VN 1830 425 148 210 297 350 VN 2030 440 171.5 200 400 VN 2541 A 600 225 290 VN 2541 600 225 VN 3051 700 290 d Foundation Bolt Material 100 M 16 x 250mm Cast Iron 25, 30, 35 125 M 16 x 250mm Cast Iron 150, 175 25, 30, 35 150 M 16 x 250mm Cast Iron 370 175, 200 25, 30, 35 200 M 16 x 250mm Cast Iron 470 430 200 25, 30, 35, 45 200 M 16 x 300mm Cast Iron 290 470 430 250 30, 35, 45 250 M 16 x 300mm Cast Iron 305 570 600 200, 250 30, 35, 45 300 M 20 x 250mm Steel Fabricated As per Flange Standard 4.1.3.6.1 Table 56: Discharge Head Dimensions Page 4-33 of 71 Revision 02 ; 05-2015 228 Type Series Booklet B-Pump Figure 36: VN 1830 & VN 2030 Figure 35: VN 1342 & VN 1342A Figure 37: VN 2541 & VN 2541A Page 4-34 of 71 Revision 02 ; 05-2015 229 Type Series Booklet B-Pump Figure 38: VN 3051 Page 4-35 of 71 Revision 02 ; 05-2015 230 Type Series Booklet B-Pump 5 Spare Parts When ordering spare parts, always please specify the item numbers, designations of the components concerned, and the works number / serial number of the pump. This will avoid any delays in delivery and possible queries. The works number of the pump is given on the title page of instruction manuals, and is also stamped on the pump rating plate. Following is the recommended spare parts list in accordance with VDMA 24296 (recommended spares). For a more specific spare parts list, please consult the O&M Manual supplied with each order. Item No. Designation Qty. 211 Pump Shaft 1 212 Column Shaft Z 213 Top Shaft 1 230 Impeller 1 271.1 Sand guard 1 Remarks 271.2 Sand guard - 320 Angular contact ball bearing - 321 Deep groove ball bearing - 382.1 Bearing body 1 384 Thrust bearing disc 1 400.1 Flat gasket 1 400.2 Flat gasket S 400.3 Flat gasket 1 400.4 Flat gasket 2 400.5 Flat gasket 1 412.1 O-ring 1 422.1 Felt ring - 422.2 Felt ring - 461 Stuffing box packing (in meters) - 502 Casing wear ring S 521 Stages sleeve S-1 Only from size 14 upwards. 524 Shaft protecting sleeve 1 If fitted. 526 Centering sleeve - 529 Bearing sleeve 1 540 Bush 1 541 Stage bush S-1 Not applicable to sizes 6-7-14 and above. 52-1 Clamping sleeve complete S Upto size 12 inclusive. 544 Threaded bush 1 545.1 Bearing bush 1 545.2 Bearing bush / rubber S 545.3 Bearing bush 1 851 Cone coupling - 852 Screwed coupling Z+1 920.1 Nut with 2 flats - Only from size 14 and upward. 931.1 Tab washer - Only from size 14 and upward. 931.2 Tab washer - Page 5-36 of 71 Revision 02 ; 05-2015 231 Type Series Booklet B-Pump 6 Sample Sectional Drawing with Parts List Figure 39: Sectional Drawing with Parts List Page 6-37 of 71 Revision 02 ; 05-2015 232 233 CATALOGO DE REDUCTOR Cristian Corvalan Alvaro Reyes N/A N/A N/A Ingeniero de Proyectos Administrador de Proyectos Producción Servicios Despachos 234 235 T.M. AmarillctGear Company LLC SELECTION OF THE PROPER DRIVE MODEL DESIGNATION: The model number designates the basic horsepower rating at 1760 RPM pump speed. The number is preceded by one ofthe following letter designations to define the type of drive: SL Standard Hollow Shaft Drive with Opposed Thrust Capacity S Standard Hollow Shaft Drive with Standard Thrust Capacity SH Standard Hollow Shaft Drive with Heavy Thrust Capacity EFFICIENCY: Through the use of high quality gears and bearings, transmission efficiency ranges from 94% to 98% varying with speed, horsepower and thrust. Actual efficiency values will be fum ished upon request. GEARS: All drives are furnished with spiral bevel gears, designed in accordance with AGMA (American Gear Manufacturers Association) standards for both strength and surface durability, employing a minimum service factor of 1.50 at rated horsepower. RATIO SELECTION- SEE PRICE LIST FOR RATIO AVAILABILITY (Speeds shown are for nominal ratios. Actual ratios may vary by up to 3%) VERTICAL SHAFT RPM SPEED INCREASERS- RATIO AND INPUT SPEED 1:1 720 870 960 1160 1460 1760 3460 720 870 960 1160 1460 1760 3460 VERTICAL SHAFT RPM 10:11 655 791 873 1055 1327 1600 3145 5:6 600 725 800 967 1217 1467 2883 3:4 540 653 720 870 1095 1320 2595 2:3 480 580 640 773 973 1173 2307 4:7 411 497 549 663 834 1006 1977 1:2 360 435 480 580 730 880 1730 SPEED DECREASERS - RATIO AND INPUT SPEED 11:10 792 957 1056 1276 1606 1936 720 870 960 1160 1460 1760 6:5 864 1044 1152 1392 1752 2112 5:4 900 1088 1200 1450 1825 2200 4:3 960 1160 1280 1547 1947 2347 3:2 1080 1305 1440 1740 2190 2640 7:4 1260 1523 1680 2030 2555 3080 2:1 1440 1740 1920 2320 2920 3520 5:2 1800 2175 2400 2900 3650 -- 3:1 2160 2610 2880 3480 - - HORSEPOWER AND THRUST RATINGS Vertical Shaft H.P. MODEL Speed Rating (RPM} 30 40 60A BOA 100A 125A 150A 200A 1160 1460 1760 1160 1460 1760 960 1160 1460 1760 960 1160 1460 1760 960 1160 1460 1760 960 1160 1460 1760 720 960 1160 1460 1760 720 960 1160 1460 1760 22 26 30 30 35 40 39 45 53 60 52 60 70 80 65 75 88 100 82 93 110 125 80 98 112 132 150 108 130 150 176 200 DOWNTHRUST CAPACITY IN POUNDS TypeSL Min. Max. 0 978 0 901 0 850 0 1495 0 1378 0 1300 0 2074 0 1955 0 1802 0 1700 0 3904 0 3680 0 3392 0 3200 0 3904 0 3680 0 3392 0 3200 0 5002 0 4715 0 4346 0 4100 0 6750 0 6100 0 5750 0 5300 0 5000 0 6750 0 6100 0 5750 0 5300 0 5000 TypeS Min. Max. 797 2358 759 2173 700 2050 1138 4600 1055 4240 1000 4000 1490 6222 1422 5865 1331 5406 1250 5100 2085 7564 1991 7130 1846 6572 1750 6200 2085 7564 1991 7130 1856 6572 1750 6200 2673 8174 2567 7705 2387 7102 2250 6700 3564 11070 3234 10004 3086 9430 2864 8692 2700 8200 3564 12150 3218 10980 3072 10350 2864 9540 2700 9000 TypeSH Min. Max. 797 3680 759 3392 700 3200 1138 6900 1055 6360 1000 6000 1490 8540 1422 8050 1331 7420 1250 7000 2085 11224 1991 10580 1846 9752 1750 9200 2085 11224 1991 10580 1856 9752 1750 9200 2673 12688 2567 11960 2387 11024 2250 10400 3564 17010 3234 15372 3086 14490 2864 13356 2700 12600 3564 18225 3218 16470 3072 15525 2864 14310 2700 13500 MODEL 250 300 350 450A 500A 600A 750A 1000G Vertical Shaft Speed (RPM) 720 960 1160 1460 1760 720 960 1160 1460 1760 720 960 1160 1480 1760 720 960 1160 1460 1760 720 960 1180 1460 1760 720 960 1160 1460 1760 720 870 960 1160 1460 1760 720 870 960 1160 1480 1760 H.P. Rating DOWNTHRUSTCAPACITY IN POUNDS TypeSL Min. MIX. 134 164 167 219 250 162 195 225 264 300 187 229 261 307 350 241 294 338 395 450 267 327 373 439 500 321 393 448 526 600 401 458 491 560 658 750 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 535 611 654 747 877 1000 0 0 0 0 0 0 8100 7320 8900 6360 6000 8100 7320 8900 6360 6000 10800 9760 9200 6480 6000 10800 10080 9760 9200 8480 8000 10800 10080 9760 9200 8480 8000 TypeS Min. 1111:. 5000 17500 15860 14950 13780 13000 17550 15880 14950 13780 13000 17550 15860 14950 13780 13000 25650 23180 21850 20140 19000 28350 25620 24150 22260 21000 36450 32940 31050 28620 27000 36450 34020 32940 31050 28620 27000 6600 6177 5964 5695 5304 5000 36450 34020 32940 31050 28620 27000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4631 4175 3979 3713 3500 5544 5005 4779 4455 4200 5940 5363 5121 4774 4500 6600 8177 5964 5895 5304 TypeSH Min. IIIli:. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4631 4175 3979 3713 3500 5544 5005 4779 4455 4200 5940 5363 5121 4774 4500 6600 8177 5964 5965 5304 5000 6600 6177 5964 5695 5304 5000 22275 20130 16975 17490 16500 22275 20130 18975 17490 16500 22275 20130 18975 17490 16500 33750 30500 28750 26500 25000 36450 32940 31050 28620 27000 43200 39040 36800 33920 32000 45225 42210 40870 38525 35510 33500 45225 42210 40870 38525 35510 33500 236 T.M 4-" XC" TAPPED HOLES f Amarillo'"Gear Company LLC STANDARD COUPLING DIMENSIONS (INCH) GIBKEYWAY DEEP IN BASE FLANGE NOM· INAL ACTUAL 314 .751 ~ ~ NON-REVERSE COUPLING 1/a .876 1 1.001 P/16 1 1/4 1.188 AG ~0 1.251 1.438 30 6~ 2% 1~ 40A 812 4% 112 408 812 4% 112 60A 11}2 4~ 112 BOA 11Y2 4~ 1¥8 100A 11Y2 4~ 1¥8 125A 11}2 4~ 1¥8 150A 1112 412 200A 250 • 300 • 350 13% 5~ 13% 5~ 13% 5~ 13% 5~ 450A 16 6 500A 16 6 600A 16 6 750A 18 6 1000G 21 8 TypeS AG CD AG - 13/4 9132 13/4 9132 1/4 -20 1/4 -20 1/4 -20 13/4 2 1/s 9132 2 1/s 2 1/2 9 2 1/2 2 1/2 9 /32 9 /32 3fs -16 2 1/2 3 1/4 3fs -16 3/s -16 3 1/4 3 1/4 9132 3 1/4 3 3/4 9132 3 3/4 3 3/4 9132 xw BX MAX. 3/sX 3/15 3fsx 3h6 2 2.001 2 3 !,6 2.188 1/2 X 1/4 1/2 X 1/4 1/2 X 1/4 2.251 1/2 X 1/4 1.938 21 1116 3/4 21 5116 1/4 -20 1/4 -20 1/4 -20 3fsx 3h6 3fs X 3/,6 1/4 -20 2.438 5fa X 5/16 2.501 5/s X 5/16 3/s 2.688 5 /s X 5/16 3fs -16 2.751 5 /s x 5/15 3/4 X 3/s 3fs -16 2.938 -16 3fs -16 29% 29% 31 }{, 355As AK BB BD XA XB XC XD XE XF XG ~s 10:V. - % % SAs 15% - 1SA ~s 1% 1% 2 2 2 Y2 Y2 Y2 134 Y2 134 % % % % 1% % 1% % 1% % 1% % 1% BE BF "As 10 % 34 12 "'As XH XJ XK XV CD 1.249 SAs x%2 1634 13% 1634 13% 1734 14% 9}{, 1.499 %xo/18 21% 18 21% 18 23 1934 9}{, 1.499 %xo/18 21% 18 21% 18 23 1934 14'!<0 1.499 %xo/18 28 235As 28 23SAs 2934 24'¥1s 14'!<0 1.874 %x"As 29)4 24'¥1s 28 23SAs 29% 24 1J!is 14'!<0 1.874 %x 31is 29)4 24'¥1s 28 23SAs 1.874 %x"As 2934 24'¥1s 2934 24'¥1s 2~6 2.436 %x SAs 29% 25}{, 29% 25M. 2~6 2.436 %x o/18 34% 30"118 34 1J!is 30"118 34 1¥18 30 31i 21!jl\e 2.936 %x% .. 1 .. .. 2 !jl\e 2.936 'l4x% 34 1¥18 30 31i .. 34 1¥18 30'¥1 21!jl\e 2.936 %x% .. 21!jl\e 2.936 %x% 42:V. 36:V. 4334 38 9132 TypeSH AJ CD 9132 13/a 1.751 TABLE OF DIMENSIONS STANDARD DRIVE (INCH) TypeSL 13/a 10-32 1/4 -20 1/4 -20 1% 115!,6 2 Horizontal Shaft U 10-32 1/4X 1/a 1/4X 1/a 1.688 MODEL 250 & SMALLER Nom· Actual Keyway AG ina I 9 /32 111!,6 2 h6 2 112 N XL 13/a 1.501 7 D BZ 10-32 17116 1 1h 2 1/4 Model BY 3/16X 3/32 1/4X 1/a 1/4X 1/s 3/sX 3/15 1.251 1 1/4 GIB KEYWAY 8.250 8.250 13.500 34 16Y2 "'As 13.500 34 16}2 % 13.500 34 16Y2 % 24 1J!is 14'!<0 13.500 34 16Y2 % 24 1J!is 14'!<0 13.500 34 16}2 % 26 14'!<0 13.500 34 16}2 % 3()13/18 1834 13.500 34 20 1M. 31"'As 1834 13.500 34 20 1M. 365As 365As 31"'118 1834 13.500 34 20 365As 3113/is 1834 13.500 34 20 45% 3834 23 13.500 34 2411 3la 3.124 'l4x% 42M 36:V. 4334 38 45% 3834 23 13.500 34 2411 3~ 3.749 :V.x ~s 42:V. 36:V. 4334 38 45% 3834 23 13.500 34 2411 42 50 42o/1s 23 13.500 34 24¥. 3% 3.749 :V.x ~. 48 41% 50 4 3.998 1xY2 62 )' 50 34 6234 50 34 6234 5034 28% 22.000 34 3011 'J!is 15% 'J!is 16% 'J!is 16% 'J!is 16% 'J!is 'J!is 'J!is 'J!is 16% 2 % 234 18% 20% 14'!<0 %-11-NC 3 22% 14')<0 %-11-NC 3 'J!is 22% 14')<0 %-11-NC 3 'J!is 22% 14'!<0 %-11-NC 3 131is +25}2 14'!<0 %-11-NC 3 131is +25}2 14'!<0 %-11-NC 3 131is +25¥. 14'!<0 %-11-NC 3 131is +26"A 14'!<0 %-11-NC 3 % 1 34 '"As 36:V. 26 "A-10-NC 3% % 1M. 1}{, 1}{, 1}{, 1}{, 1}{, % % % % % % % 1 9132 /32 9 /32 9 /32 9132 9132 9132 7116 ** .. .. 1 2 234 % 0 6% 1 34 2 234 % 0 6% 1 34 3 2 % 3¥a 434 1}2 3 2 % 3:V. 434 1}2 3 2 % 3:V. 434 1}2 3 2 % 3:V. 434 1}2 - - - 3 2 % 2M. 4Y2 2% % 2M. 4Y2 2% % 2M. 4Y2 2% % 2M. 4Y2 2% % 1"'As 4Y2 2% % 1"'As 4Y2 2% % 1"'118 4Y2 2% 1 1"'118 6 2:V. % 25As 634 3% % 3:V. 434 1 1J!is 2 Y2 5 5 Y2 5 5 2"As .. .. .. 2"As 2 "As % 7% 7% % 7% 7% 2~s % 7% 7% "A 834 834 2~s % 8 2~s 2~s 8Y2 2 15As t"XA" dimensions shown apply to 1:1 and speed increasing ratios only. Request certified drawing for others. *Models 300 and 350 furnished with external heat exchanger. **Contact factory for maximum coupling bore for Fig. 2 or Fig. 3 rotation with 1:2 or 1:3 ratio. RATIOS AND ROTATIONS: The ratio of a drive is defined as the ratio of the horizontal input speed to vertical output speed. For example, a 2:1 ratio would have a horizontal speed of twice the vertical speed. There are four rotational schemes available as shown in figures 1, 2, 3, and 4. Figure 1 is denoted as standard rotation. Figures 2, 3, and 4 are special rotation, being manufactured only on order, and are not subject to cancellation without charge for completed parts. HORSEPOWER AND THRUST BEARING RATINGS JIF' HORIZONTAL • CW VERTICAL • CCW HORIZONTAL • CCW VERTICAL • CCW HORIZONTAL· CCW VERTICAL • CW CW - Clockwise; CCW - Counterclockwise. Vertical Shaft R.P.M. Percent of Rated Horsepower Percent of Thrust Capacity Vertical Shaft R.P.M. Percent of Ratad Horsepower Percent of Thrust Capacity 430 37% 160% *2000 107% 96% 580 46% 145% *2200 112% 93% 690 52% 137% *2400 117% 90% 720 53% 135% *2600 122% 88% 870 61% 126% *2800 128% 86% 960 65% 122% *3000 134% 84% 1160 75% 115% *3460 146% 80% 1460 88% 106% *3600 150% 79% 1760 100% 100% * Cooling coils should be specified for models 40, 60A, and BOA operating at speeds above 1760 rpm. Consult with the factory on all applications when the vertical speeds exceed 1760 rpm. Maximum allowable cooling water pressure for cooling coils is 100 psi 237 and heat exchanger is 150 psi. An Introduction To Our Company In 1934, Amarillo Gear Company began designing and manufacturing Spiral Bevel Right Angle Gear Drives primarily for the irrigation industry. Because of the reliable, efficient and economic operation of these drives, they met with widespread acceptance. Today, we manufacture the largest selections of RightAngle Gear Drives available. Our standard models include a large assortment of drives in a wide range of ratios and various configurations. They are highly adaptable to many applications in many different industries. One reason for the continued growth and acceptance of Amarillo Gear Drives is their consistent quality- not only in the materials used, but in their workmanship as well. We would welcome the opportunity to supply our product for your requirements. FEATURES: Cooling coils are available on Models 40, 60A, and BOA, at additional cost. and are standard on Model1 OOA and above. Non-reverse clutches are standard on all drives. Marine options are available upon request. Our rigid castings are designed to insure correct alignment. Gears are case hardened alloy steel, lapped in pairs. All drives have positive oil pressure distribution systems. All bearings used in construction are name brand and high quality, with proven reputations for reliability; providing bearing life exceeding AGMA recommendations. ~All standard hollow shaft gear drives through Model1200 are approved by FACTORY MUTUAL for use with vertical ~fire pumps. APPROY~D SPECIAL DRIVES Drives listed in this catalog may also be available with additional options. Please contact the factory for availability and pricing of these options. For applications that require power ratings larger than listed in this catalog, please visit our website at www.amarillogear.com, under the tabs for Large Pump and Large Flood. Literature for these larger models can be selected directly from the website. Amarillo Gear Company reserves the right to make improvement modifications to our gear drives that may change the given dimensions. The dimensions shown in this brochure may not exactly reflect the dimensions of the gear drives currently being offered. Request a Certified Dimensional Print for construction use. WEIGHTS AND BOX DIMENSIONS MODEL 30 40A 408 BOA BOA 100A 125A 150A 200A 250 300 350 450A 500A 600A 750A 1000G NET DOMESTIC WEIGHT (lbs.) SKID (lbs) 110 92 220 240 230 260 325 350 345 370 385 390 430 450 630 675 760 805 1340 1420 1370 1450 1365 1465 1800 1890 2650 3055 EXPORT BOX Kilograms Pounds 125 57 275 125 310 141 390 177 410 186 430 195 505 229 810 368 900 408 1620 735 748 1650 1665 755 2165 962 3310 1501 EXPORT BOX Length 22 27 29 29 29 29 31 35 36 44 44 44 45 56 DIMENSIOI S Width 14 15 18 19 19 19 19 24 24 32 32 32 32 37 (Inches) Height 21 27 27 34 34 34 38 42 40 52 52 52 57 74 VOLUME CUBIC FEET 4 6 8 11 11 11 12 20 21 42 42 42 48 92 To view Amarillo's complete warranty terms, please visit www.amarillogear.com T.M Catalog PD 1/14 Amari lid~ Gear Company LLC Post Office Box 1789 • Amarillo, Tx 79105 • 2401 Sundown Lane (79118) • 806-622-1273 • Fax 806-622-3258 www.amarillogear.com e-mail: [email protected] © AGC 2014 DJ I II. A Marmon Water/Berkshire Hathaway Company 238 GUIA DE DESPACHO Cristian Corvalan Alvaro Reyes N/A N/A N/A Ingeniero de Proyectos Administrador de Proyectos Producción Servicios Despachos 239 240 09-10-2018 Confirmación de Asignación de Turno CONFIRMACIÓN DE ASIGNACION DE TURNO Este documento confirma los datos entregados por usted a nuestro CallCenter para la asignación de turno de Recepción para los Centros de Operaciones de LINSA, en el caso de existir alguna diferencia con los datos reales le rogamos informarnos al correo [email protected] NÚMERO TURNO DE RETIRO : 0000444077 FECHA DE REQUERIMIENTO : 16/10/2018 AM Fecha de Retiro será confirmada Sucursal : CLS SANTIAGO - CODELCO Retiro(CLS) DETALLE DE LA ENTREGA : Nombre Cliente (Destino) : CODELCO-Corp Nacional Del Cobre De Chile Solicitud Transporte : Proveedor : KSB CHILE S.A. Número de la Orden de Compra : 4400181308 Cantidad de Items a Entregar : 2 Peso total de la Carga : 1981 Cantidad de Pallets : Cantidad de Cajas : Cantidad de Bultos : 6 Cantidad de Cajones : 6 Requiere Equipo Adicional : Tipo de Vehículo : Largo : 5.12 Ancho : 1.27 Alto : 1.35 Peso : 1981 INFORMACIÓN DEL TRANSPORTISTA Y CONTACTO : Empresa de Transporte : Patente del Vehículo : Nombre del Conductor : Fono del Conductor : Situación del Conductor : Nombre Persona que Agenda y Empresa a la que Pertenece : http://bd.linsa.cl/Linsa/agenda/index.php?pagina=AgendarRetiro LOGISTICA LINSA S.A. Mario Tejeda - ( Logistica Linsa S.a. ) 241 1/2 09-10-2018 Confirmación de Asignación de Turno Fonos del Contacto : 226775420 Correo electrónico : [email protected] Favor adjuntar esta confirmación a la documentación de entrega de mercaderías (Copia Impresa de la Orden de Compra, Guías de Despacho). Pueden producirse demoras en la recepción relacionadas con la Operación de nuestros Centros. "Estimado proveedor: Como recomendación de seguridad, indicamos que toda carga que supere los 10 kg. sea embalada en cajones de madera u otro material resistente y que además contenga espacios en su parte baja, para facilitar su manipulación con equipos de grúa horquillas". No Responda este Correo. http://bd.linsa.cl/Linsa/agenda/index.php?pagina=AgendarRetiro 242 2/2 243 244 09-11-2018 Confirmación de Asignación de Turno CONFIRMACIÓN DE ASIGNACION DE TURNO Este documento confirma los datos entregados por usted a nuestro CallCenter para la asignación de turno de Recepción para los Centros de Operaciones de LINSA, en el caso de existir alguna diferencia con los datos reales le rogamos informarnos al correo [email protected] NÚMERO TURNO DE RETIRO : 0000448900 FECHA DE REQUERIMIENTO : 13/11/2018 AM Fecha de Retiro será confirmada Sucursal : CLS SANTIAGO - CODELCO Retiro(CLS) DETALLE DE LA ENTREGA : Nombre Cliente (Destino) : CODELCO-Corp Nacional Del Cobre De Chile Solicitud Transporte : Proveedor : KSB CHILE S.A. Número de la Orden de Compra : 4400181308 Cantidad de Items a Entregar : 1 Peso total de la Carga : 1750 Cantidad de Pallets : 0 Cantidad de Cajas : 0 Cantidad de Bultos : 4 Cantidad de Cajones : 4 Requiere Equipo Adicional : Tipo de Vehículo : Largo : 5 Ancho : 1.24 Alto : 1.5 Peso : 1750 INFORMACIÓN DEL TRANSPORTISTA Y CONTACTO : Empresa de Transporte : Patente del Vehículo : Nombre del Conductor : Fono del Conductor : Situación del Conductor : Nombre Persona que Agenda y Empresa a la que Pertenece : http://bd.linsa.cl/Linsa/agenda/index.php?pagina=AgendarRetiro LOGISTICA LINSA S.A. Mario Tejeda - ( Logistica Linsa S.a. ) 245 1/2 09-11-2018 Confirmación de Asignación de Turno Fonos del Contacto : 226775420 Correo electrónico : [email protected] Favor adjuntar esta confirmación a la documentación de entrega de mercaderías (Copia Impresa de la Orden de Compra, Guías de Despacho). Pueden producirse demoras en la recepción relacionadas con la Operación de nuestros Centros. "Estimado proveedor: Como recomendación de seguridad, indicamos que toda carga que supere los 10 kg. sea embalada en cajones de madera u otro material resistente y que además contenga espacios en su parte baja, para facilitar su manipulación con equipos de grúa horquillas". No Responda este Correo. http://bd.linsa.cl/Linsa/agenda/index.php?pagina=AgendarRetiro 246 2/2