Subido por ingmet2002

KSB TORRE ENFRIAMIENTO

Anuncio
Dossier Técnico
Nombre Proyecto:
MEJORAMIENTO FUNDICIÓN HORNO FLASH
POTENCIADO – BOMBAS Y TORRE DE
ENFRIAMIENTO
Referencia Cliente:
CODELCO CHILE – DIVISION CHUQUICAMATA
OC N° 4400181308
Suministro Bombas Centrifugas B verticales
TAG: 5226-BBA-004/005/006
OV200103
Contenido
HOJA DE DATOS BOMBAS ......................................................................................................................... 2
HOJA DE DATOS MOTORES ....................................................................................................................20
PLANO DE DISPOSICION GENERAL ......................................................................................................27
PLANO DE MOTOR ELECTRICO .............................................................................................................40
CERTIFICADO DE PRUEBA DE PERFORMANCE .................................................................................42
MANUAL DE INSTALACION, OPERACION Y MANTENIMIENTO BOMBA ..........................................49
MANUAL TECNICO DE BOMBA.............................................................................................................162
CATALOGO DE REDUCTOR ..................................................................................................................234
GUIA DE DESPACHO ..............................................................................................................................239
Cristian Corvalan
Alvaro Reyes
N/A
N/A
N/A
Ingeniero de Proyectos
Administrador de
Proyectos
Producción
Servicios
Despachos
1
HOJA DE DATOS BOMBAS
Cristian Corvalan
Alvaro Reyes
N/A
N/A
N/A
Ingeniero de Proyectos
Administrador de
Proyectos
Producción
Servicios
Despachos
2
1.2
Hojas de datos formato KSB – TAG 5220-BBA- 004-005
Chile S.A.
Casa Matriz ▪ Av. Las Esteras Sur 2851, Quilicura, Santiago ▪ Tel. +56 2 677-8300, Fax +56 2 677-8301 ▪ www.ksb.cl
Sucursal Iquique ▪ Bolívar 202, Of 902, Iquique ▪ Tel. +56 57 473-753
Sucursal Copiapó ▪ Centro Comercial Puerta Sur ▪ Panamericana Nº 200 ▪ local A2 ▪ Copiapó
Sucursal Antofagasta ▪ Av. El Coihue 441, Parque Industrial La Portada, Antofagasta ▪ Tel. +56 55 63-8900, Fax +56 55 63-8901
Sucursal Calama ▪ Av. Chorrillos 1631 Villa Finca San Juan Calama, Oficina 402, cuarto piso Torre 1. Calama ▪ +56 55 63-8950
Sucursal Concepción ▪ Marco Polo 9038, Flex Center Bío-Bío, Local 1, Hualpén, Concepción ▪ Tel. +56 41 240-8000, Fax +56 41 240-8001
CST Temuco ▪ AV. Manuel Recabarren 02930, Camino a Labranza, Temuco ▪ Tel.+ 56 45 254-545
Oficina Puerto Montt ▪ Av. Juan Soler Manfredini 41, Of 604, Torre Costanera, Puerto Montt ▪ Tel. +56 65 31-3000, Fax +56 65 31-0022
3
Offer Ref
Date
Prepared By
Department
:
:
:
:
IEE-16-530
26-Jan-18
Omar Yusaf
Export Sales
Offered To
Attn
Department
Project
Deep Well Turbine
B22B/1
1
Electric Motor
Item No
Quantity
Offer Revision
Medium
:
:
:
:
KSB Chile
Stefano Moletto
Sales
-
Offer
Pump Type
Size
Stages
Drive
0.5
Operating data
Operation point
Medium Temperature
Density
NPSH pump
Flow
Head (pump)
Head (stage)
Internal losses
Head/Stage
Efficiency (pump)
Efficiency (stage)
Power input
Pump Length (ET)
Min Submergence from Floor
Speed
Recommended Drive Rating
01 (1100 m3/hr)
3
Raw Water
0.213 0
Dimensions
Design point
°C
25
0.998
6.0
1100
24
24.7
0.7
24.7
72.8
75.0
98.7
3000
1500
1450
125
CCW
ISO-9906 II B
3
kg/dm
m
3
m /h
m
m
m
m
%
%
kW
mm
mm
1/min
kW
Direction of rotation viewed from the driver's end
Performance Testing
Min. Flow
700
Shutoff Head
32 m
Max. power
110
50 Hz
Material of Construction
Suction Strainer
Bowl Assembly
Impeller
Pump shaft
Wearing Ring
Bowl Bearing
Shaft Coupling
Motor Stool
Stainless Steel
GG-25
G CuSn-10
1.4021
GG-25
Thordon
1.4021
R St 37-2
Column pipe
Column shaft
Top shaft
Column bearings
Discharge Head
Shaft seal
Painting
Fasteners
Technical Offer
ASTM A 53
1.4021
1.4021
Thordon
GG-25 / R St 37-2
Gland Packing
Standard
A4-70
4
Offer Ref
Date
Prepared By
Department
Curve (B22B)
:
:
:
:
IEE-16-530
26-Jan-18
Omar Yusaf
Export Sales
Offered To
Attn
Department
Revision
Speed
Impeller Trim
Curve
:
:
:
:
KSB Chile
Stefano Moletto
Sales
1450 rpm
Ø360/310
5
Offer Ref
Date
Prepared By
Department
:
:
:
:
IEE-16-530
26-Jan-18
Omar Yusaf
Export Sales
Offered To
Attn
Department
Project
:
:
:
:
KSB Chile
Stefano Moletto
Sales
-
GA-Drawing
All Dimensions in mm
Item No
01 (1100 m3/hr)
DN 400
Delivery Flange
ASME B16.5 Class 150
Ø400
Ø560
Ø400
1220
1050
Min Sub
730
1500
270
Sump depth (Considered)
Pump length
Floor-strainer clearance
Dia / length of strainer
Dia. / length of bowl
Dia. / length Column pipe
Pump Weight (kg)
3270
3000
270
400/730
560/1050
400/1220
-
Pump execution
Performance testing
Material / pressure test
Delivery flange rating
DN size
Flanged
ISO-9906 2B
EN 10204 (2.1 / 2.2)
ASME B16.5 Class 150
400
Min. Submergence from
Floor
1500
GA-Drawing
6
7
HOJA DE DATOS
Motor Trifásico de Inducción - Rotor de Jaula
Cliente
:
Línea del producto
: W22 NEMA Premium Efficiency
Carcasa
: 504/5T
Potencia
: 150 HP (110 kW)
Polos
: 4
Frecuencia
: 50 Hz
Tensión nominal
: 460 V
Corriente nominal
: 168 A
Corriente de arranque
: 1210 A
Ia/In (p.u.)
: 7.2 Cód. H
Corriente en vacío
: 51.6 A
Rotación nominal
: 1490 rpm
Deslizamiento
: 0.67 %
Par nominal
: 717 Nm
Par de arranque
: 260 %
Par mínimo
: 220 %
Par máximo
: 270 %
Clase de aislamiento
: F
Factor de servicio
: 1.15
Momento de inercia (J)
: 2.94 kgm²
75%
50%
Empezar
Potencia
95.8
95.2
Rendimiento (%)
0.83
0.76
0.38
Factor de potencia
Tiempo de rotor bloqueado
Elevación de temperatura4
Régimen de servicio
Temperatura ambiente
Altitud
Grado de protección
Método de enfriamiento
Forma constructiva
Sentido de giro¹
Nivel de ruido²
Método de arranque
Masa aproximada³
Categoría
100%
95.8
0.86
Límite de funcionamiento con el convertidor
25 Hz hasta 50 Hz (Par variable): 712 Nm
Delantero
Trasero
6319-C3
6316-C3
5000 h
6000 h
45 g
34 g
MOBIL POLYREX EM
Tipo de rodamiento
Intervalo de lubricación
Cantidad de lubricante
Tipo de lubricante
:
:
:
:
:
:
:
:
:
:
:
:
:
32 s (caliente) 57 s (frío)
80 K
Cont.(S1)
-20 °C hasta +40 °C
2800 m
IP55
IC411 - TEFC
W-6
Ambos
71.0 dB(A)
Convertidor
1095 kg
A
Tipo de carga
: Par parabólico
Par de la carga
: 712 Nm
Inercia de la carga (J=GD²/4) : 2.98 kgm²
Tensión de pico fase-fase máxima
dV/dt
Rise time
Esfuerzos en la base
Tracción máxima
Compresión máxima
<= 2000 V
<= 6500 V/μs
>= 0,1 μs
: 10214 N
: 20956 N
Normas
Notas:
Especificación
Ensayos
Ruido
: MG1 - Part 20
: MG1 - Part 20
: MG1 - Part 9
Esta revisión substituye y anula la emisión anterior, la cual deberá ser eliminada.
(1) Mirando la punta delantera del eje del motor.
(2) Medido a 1m y con tolerancia de +3dB(A).
Vibración
Tolerancia
: MG1 - Part 7
: MG1 - Part 12
Los valores indicados son valores promedio con base en
ensayos y para alimentación en red senoidal, sujetos a las
tolerancias de la norma NEMA MG 1-12.
(3) Masa aproximada sujeto a cambios después del proceso de fabricación.
(4) En 100% de la carga total.
Rev.
Resumen de los cambios
Ejecutado
Verificado
Fecha
Ejecutor
vlucero
Verificador
AUTOMATICO
Pagina
Revisión
Fecha
30/01/2018
1/1
0
Propriedad de WEG S/A. Prohibida la reproducción sin permiso.
267540/2018
8
No se considera en Motor:
-Sensor de Vibración
-Test con inspección
-Monitor de Vibraciones
-Surge Protections
-Encoder
Chile S.A.
Casa Matriz ƒ Av. Las Esteras Sur 2851, Quilicura, Santiago ƒ Tel. +56 2 677-8300, Fax +56 2 677-8301 ƒ www.ksb.cl
Sucursal Iquique ŀ Bolívar 202, Of 902, Iquique ŀ Tel. +56 57 473-753
Sucursal Copiapó ŀ Centro Comercial Puerta Sur ƒ Panamericana Nº 200 ƒ local A2 ƒ Copiapó
Sucursal Antofagasta ƒ Av. El Coihue 441, Parque Industrial La Portada, Antofagasta ƒ Tel. +56 55 63-8900, Fax +56 55 63-8901
Sucursal Calama ƒ Av. Chorrillos 1631 Villa Finca San Juan Calama, Oficina 402, cuarto piso Torre 1. Calama ƒ +56 55 63-8950
Sucursal Concepción ƒ Marco Polo 9038, Flex Center Bío-Bío, Local 1, Hualpén, Concepción ƒ Tel. +56 41 240-8000, Fax +56 41 240-8001
CST Temuco ŀ AV. Manuel Recabarren 02930, Camino a Labranza, Temuco ŀ Tel.+ 56 45 254-545
Oficina Puerto Montt ƒ Av. Juan Soler Manfredini 41, Of 604, Torre Costanera, Puerto Montt ƒ Tel. +56 65 31-3000, Fax +56 65 31-0022
9
10
1.3
Hojas de datos formato KSB – TAG 5220-BBA-006
Chile S.A.
Casa Matriz ▪ Av. Las Esteras Sur 2851, Quilicura, Santiago ▪ Tel. +56 2 677-8300, Fax +56 2 677-8301 ▪ www.ksb.cl
Sucursal Iquique ▪ Bolívar 202, Of 902, Iquique ▪ Tel. +56 57 473-753
Sucursal Copiapó ▪ Centro Comercial Puerta Sur ▪ Panamericana Nº 200 ▪ local A2 ▪ Copiapó
Sucursal Antofagasta ▪ Av. El Coihue 441, Parque Industrial La Portada, Antofagasta ▪ Tel. +56 55 63-8900, Fax +56 55 63-8901
Sucursal Calama ▪ Av. Chorrillos 1631 Villa Finca San Juan Calama, Oficina 402, cuarto piso Torre 1. Calama ▪ +56 55 63-8950
Sucursal Concepción ▪ Marco Polo 9038, Flex Center Bío-Bío, Local 1, Hualpén, Concepción ▪ Tel. +56 41 240-8000, Fax +56 41 240-8001
CST Temuco ▪ AV. Manuel Recabarren 02930, Camino a Labranza, Temuco ▪ Tel.+ 56 45 254-545
Oficina Puerto Montt ▪ Av. Juan Soler Manfredini 41, Of 604, Torre Costanera, Puerto Montt ▪ Tel. +56 65 31-3000, Fax +56 65 31-0022
11
Offer Ref
Date
Prepared By
Department
:
:
:
:
IEE-16-530
26-Jan-18
Omar Yusaf
Export Sales
Offered To
Attn
Department
Project
Deep Well Turbine
B22B/1
1
Electric Motor
Item No
Quantity
Offer Revision
Medium
:
:
:
:
KSB Chile
Stefano Moletto
Sales
-
Offer
Pump Type
Size
Stages
Drive
0.5
Operating data
Operation point
Medium Temperature
Density
NPSH pump
Flow
Head (pump)
Head (stage)
Internal losses
Head/Stage
Efficiency (pump)
Efficiency (stage)
Power input
Pump Length (ET)
Min Submergence from Floor
Speed
Recommended Drive Rating
01 (1100 m3/hr)
3
Raw Water
0.213 0
Dimensions
Design point
°C
25
0.998
6.0
1100
24
24.7
0.7
24.7
72.8
75.0
98.7
3000
1500
1450
125
CCW
ISO-9906 II B
3
kg/dm
m
3
m /h
m
m
m
m
%
%
kW
mm
mm
1/min
kW
Direction of rotation viewed from the driver's end
Performance Testing
Min. Flow
700
Shutoff Head
32 m
Max. power
110
50 Hz
Material of Construction
Suction Strainer
Bowl Assembly
Impeller
Pump shaft
Wearing Ring
Bowl Bearing
Shaft Coupling
Motor Stool
Stainless Steel
GG-25
G CuSn-10
1.4021
GG-25
Thordon
1.4021
R St 37-2
Column pipe
Column shaft
Top shaft
Column bearings
Discharge Head
Shaft seal
Painting
Fasteners
Technical Offer
ASTM A 53
1.4021
1.4021
Thordon
GG-25 / R St 37-2
Gland Packing
Standard
A4-70
12
Offer Ref
Date
Prepared By
Department
Curve (B22B)
:
:
:
:
IEE-16-530
26-Jan-18
Omar Yusaf
Export Sales
Offered To
Attn
Department
Revision
Speed
Impeller Trim
Curve
:
:
:
:
KSB Chile
Stefano Moletto
Sales
1450 rpm
Ø360/310
13
Offer Ref
Date
Prepared By
Department
:
:
:
:
IEE-16-530
26-Jan-18
Omar Yusaf
Export Sales
Offered To
Attn
Department
Project
:
:
:
:
KSB Chile
Stefano Moletto
Sales
-
GA-Drawing
All Dimensions in mm
Item No
01 (1100 m3/hr)
DN 400
Delivery Flange
ASME B16.5 Class 150
Ø400
Ø560
Ø400
1220
1050
Min Sub
730
1500
270
Sump depth (Considered)
Pump length
Floor-strainer clearance
Dia / length of strainer
Dia. / length of bowl
Dia. / length Column pipe
Pump Weight (kg)
3270
3000
270
400/730
560/1050
400/1220
-
Pump execution
Performance testing
Material / pressure test
Delivery flange rating
DN size
Flanged
ISO-9906 2B
EN 10204 (2.1 / 2.2)
ASME B16.5 Class 150
400
Min. Submergence from
Floor
1500
GA-Drawing
14
15
Engine Performance Data
Industrial
Cummins Inc
QSB6.7
Columbus, Indiana 47202-3005
http://www.cummins.com
Compression Ratio:
Fuel System:
Emission Certification:
160 BHP (119 kW) @ 1800 RPM
540 lb-ft (732 N-m) @ 1300 RPM
Configuration
D31303CX03
FR91447
17.2:1
Bosch Electronic
U.S. EPA Tier 3, CARB Tier 3, EU Stage III
Displacement:
Aspiration:
CPL Code
40426
Revision
20-Dec-2010
408 in3 (6.7 L)
Turbocharged and Charge Air Cooled
All data is based on the engine operating with fuel system, water pump, and 9.84 in H2O (2.45 kPa) inlet air restriction with 3.94 in (100 mm)
inner diameter, and with 1.97 in Hg (7 kPa) exhaust restriction with 2.95 in (75 mm) inner diameter; not included are alternator, fan, optional
equipment and driven components. Coolant flows and heat rejection data based on coolants as 50% ethylene glycol/50% water. All data is
subject to change without notice.
Rating Type: Continuous/WMR
Torque Output
RPM
800
1,000
1,100
1,200
1,300
1,400
1,500
1,600
1,700
1,800
lb-ft
500
516
524
532
540
526
510
496
482
467
N-m
678
700
710
721
732
713
691
672
654
633
Power Output
RPM
800
1,000
1,100
1,200
1,300
1,400
1,500
1,600
1,700
1,800
hp
76
98
110
122
134
140
146
151
156
160
kW
57
73
82
91
100
104
109
113
116
119
Fuel Consumption
RPM
800
1,000
1,200
1,500
1,600
1,700
1,800
lb/hp-hr
0.372
0.358
0.36
0.396
0.395
0.386
0.388
g/kW-hr
226
218
219
241
240
235
236
Curves shown above represent gross engine performance capabilities obtained and corrected in accordance with SAE J1995 conditions of 29.61
in Hg (100 kPa) barometric pressure [300ft (91m) altitude] 77 deg F (25 deg C) inlet air temperature, and 0.30 in Hg (1kPa) water vapor pressure
with No. 2 diesel fuel. The engine may be operated up to 12,001 ft (3,658 m) altitude before electronic derate is applied.
STATUS FOR CURVES AND DATA: Final-(Measured data)
CHIEF ENGINEER:
TOLERANCE: Within +/- 5 %
Scott A Henry
Bold entries revised after 1-Dec-2010
? 2010, Cummins Inc., All Rights Reserved
Cummins Confidential and Proprietary
Controlled copy is located on gce.cummins.com
16
FR91447
(Continued) Page: 2
Intake Air System
Maximum allowable air temperature rise over ambient at Intake Manifold (Naturally
Aspirated Engines) or Turbo Compressor inlet (Turbo-charged Engines): (This
parameter impacts emissions, LAT and/or altitude capability)
30.6 delta deg F
17 delta deg C
140 deg F
60 deg C
Cooling System
Maximum intake manifold temperature at 25 deg C (77 F) ambient
Maximum allowable pressure drop across charge air cooler and OEM CAC piping
(IMPD):
Maximum Intake Manifold Temperature Differential (Ambient to IMT) (IMTD):
Intake manifold temperature for full Fan-ON
Maximum coolant temperature for engine protection controls
Maximum coolant operating temperature at engine outlet (max. top tank temp):
4
63
109
237
225
in-Hg
delta deg F
deg F
deg F
deg F
13.6
35
43
114
107
kPa
delta deg C
deg C
deg C
deg C
Exhaust System
Maximum exhaust back pressure:
Recommended exhaust piping size (inner diameter):
3.01 in-Hg
2.95 in
10 kPa
75 mm
Lubrication System
Nominal operating oil pressure
@ minimum low idle
@ maximum rated speed
Minimum engine oil pressure for engine protection devices
@ minimum low idle
10 psi
55.1 psi
69 kPa
380 kPa
7.5 psi
52 kPa
Fuel System
Fuel cooling requirements (with diesel fuel)
Maximum heat rejection to return fuel at max. coolant and inlet fuel temperature:
@ fuel return flow rate of:
@ fuel return temperature prior to cooler:
Maximum supply fuel flow:
Maximum return fuel flow:
Engine fuel compatibility (consult Service Bulletin #3379001 for appropriate use of other fuels)
Maximum fuel inlet pressure:
452 lb/hr
366 lb/hr
DF1, DF2, B5, B20
15 psi
205 kg/hr
166 kg/hr
100 kPa
Performance Data
Maximum low idle speed:
Minimum low idle speed:
Minimum engine speed for full load sustained operation:
1,200 RPM
600 RPM
1,700 RPM
Rated Power
Engine Speed
Output Power
Torque
1,800 RPM
160 hp
467 lb-ft
Friction Horsepower
Intake Manifold Pressure
Turbo Comp. Outlet Pressure
Turbo Comp. Outlet Temperature
Inlet Air Flow
Charge Air Flow
Exhaust Gas Flow
Exhaust Gas Temperature
Maximum Fuel Flow to Pump
Heat Rejection to Coolant
Heat Rejection to Fuel
Heat Rejection to Ambient
Heat Rejection to Exhaust
25
41
43
309
439
31.7
1,015
855
245
3,736
63
529
6,580
hp
in-Hg
in-Hg
deg F
ft3/min
lb/min
ft3/min
deg F
lb/hr
BTU/min
BTU/min
BTU/min
BTU/min
Maximum Power
Torque Peak
119 kW
633 N-m
1,300 RPM
134 hp
540 lb-ft
100 kW
732 N-m
19
137
144
154
207
14.4
479
457
111
66
1
9
116
15
38
39
306
314
23
873
1,051
179
3,549
34
1,115
6,130
11
128
132
152
148
10
412
566
81
62
1
20
108
kW
kPa
kPa
deg C
L/s
kg/min
L/s
deg C
kg/hr
kW
kW
kW
kW
hp
in-Hg
in-Hg
deg F
ft3/min
lb/min
ft3/min
deg F
lb/hr
BTU/min
BTU/min
BTU/min
BTU/min
kW
kPa
kPa
deg C
L/s
kg/min
L/s
deg C
kg/hr
kW
kW
kW
kW
**When operating Naturally Aspirated engines above SAE J1995 conditions, it should be noted that smoke levels will increase due to combustion inefficiencies associated with a reduction in the air to
fuel mixture.
Bold entries revised after 1-Dec-2010
? 2010, Cummins Inc., All Rights Reserved
Cummins Confidential and Proprietary
Controlled copy is located on gce.cummins.com
17
FR91447
(Continued) Page: 3
Cranking System (Cold Starting Capability)
Unaided Cold Start:
Minimum cranking speed
Minimum ambient temperature for unaided cold start
Breakaway torque at minimum unaided cold start temperature:
Aided Cold Start:
Minimum ambient temperature with Grid Heater only
Minimum ambient temperature with Ether only
Minimum ambient temperature with coolant and lube heater only
Cold starting aids available
Maximum parasitic load at 10 deg F @ 750 RPM
120 RPM
10.4 deg F
258 lb-ft
-12 deg C
350 N-m
-26 deg F
-32 deg C
-26 deg F
-32 deg C
-40 deg F
-40 deg C
Ether, Intake Manifold Heater, Block Heater,
Oil Pan Heater
372 lb-ft
505 N-m
Noise Emissions
Top
Right Side
Left Side
Front
90
93
94
93
dBa
dBa
dBa
dBa
Estimated Free Field Sound Pressure Level at 3.28ft (1m) and Full-Load Governed Speed
(Excludes Noise from Intake, Exhaust, Cooling System and Driven Components)
Change Log
Date
Author
Change Description
3/11/2009
David P Howarth
Changed COnfiguration and Chief Engineer
End of Report
Bold entries revised after 1-Dec-2010
? 2010, Cummins Inc., All Rights Reserved
Cummins Confidential and Proprietary
Controlled copy is located on gce.cummins.com
18
19
HOJA DE DATOS MOTORES
Cristian Corvalan
Alvaro Reyes
N/A
N/A
N/A
Ingeniero de Proyectos
Administrador de
Proyectos
Producción
Servicios
Despachos
20
HOJA DE DATOS
Motor Trifásico de Inducción - Rotor de Jaula
Cliente
:
Línea del producto
: W22 NEMA Premium Efficiency
Carcasa
: 504/5T
Potencia
: 150 HP (110 kW)
Polos
: 4
Frecuencia
: 50 Hz
Tensión nominal
: 460 V
Corriente nominal
: 168 A
Corriente de arranque
: 1210 A
Ia/In (p.u.)
: 7.2 Cód. H
Corriente en vacío
: 51.6 A
Rotación nominal
: 1490 rpm
Deslizamiento
: 0.67 %
Par nominal
: 717 Nm
Par de arranque
: 260 %
Par mínimo
: 220 %
Par máximo
: 270 %
Clase de aislamiento
: F
Factor de servicio
: 1.15
Momento de inercia (J)
: 2.94 kgm²
Empezar
50%
75%
Potencia
95.2
95.8
Rendimiento (%)
0.38
0.76
0.83
Factor de potencia
Tiempo de rotor bloqueado
Elevación de temperatura4
Régimen de servicio
Temperatura ambiente
Altitud
Grado de protección
Método de enfriamiento
Forma constructiva
Sentido de giro¹
Nivel de ruido²
Método de arranque
Masa aproximada³
Categoría
100%
95.8
0.86
Límite de funcionamiento con el convertidor
25 Hz hasta 50 Hz (Par variable): 712 Nm
Delantero
Trasero
6319-C3
6316-C3
5000 h
6000 h
45 g
34 g
MOBIL POLYREX EM
Tipo de rodamiento
Intervalo de lubricación
Cantidad de lubricante
Tipo de lubricante
Normas
: MG1 - Part 20
: MG1 - Part 20
: MG1 - Part 9
Esta revisión substituye y anula la emisión anterior, la cual deberá ser eliminada.
(1) Mirando la punta delantera del eje del motor.
(2) Medido a 1m y con tolerancia de +3dB(A).
32 s (caliente) 57 s (frío)
80 K
Cont.(S1)
-20 °C hasta +40 °C
2800 m
IP55
IC411 - TEFC
W-6
Ambos
71.0 dB(A)
Convertidor
1095 kg
A
Tipo de carga
: Par parabólico
Par de la carga
: 712 Nm
Inercia de la carga (J=GD²/4) : 2.98 kgm²
Tensión de pico fase-fase máxima
dV/dt
Rise time
Esfuerzos en la base
Tracción máxima
Compresión máxima
<= 2000 V
<= 6500 V/µs
>= 0,1 µs
: 10214 N
: 20956
C ENR
TIFICADO
WEG MOTORES
- Documento no sujeto para
aprobación.
- En caso de comentarios
habrá prorrogación en el
plazo de entrega.
Notas:
Especificación
Ensayos
Ruido
:
:
:
:
:
:
:
:
:
:
:
:
:
Vibración
Tolerancia
: MG1 - Part 7
: MG1 - Part 12
Los valores indicados son valores promedio con base en
ensayos y para alimentación en red senoidal, sujetos a las
tolerancias de la norma NEMA MG 1-12.
(3) Masa aproximada sujeto a cambios después del proceso de fabricación.
(4) En 100% de la carga total.
Rev.
Resumen de los cambios
Ejecutado
Verificado
Ejecutor
vlucero
Verificador
AUTOMATICO
Pagina
Fecha
30/01/2018
1/6
Fecha
267540/2018
Propriedad de WEG S/A. Prohibida la reproducción sin permiso.
Revisión
0 21
CURVA DE PAR Y CORRIENTE X ROTACIÓN
Motor Trifásico de Inducción - Rotor de Jaula
Cliente
:
Línea del producto
: W22 NEMA Premium Efficiency
10.0
2.7
B - Corriente en relación a la nominal
3.0
9.0
A
2.4
8.0
A - Par en relación al par nominal
B
2.1
7.0
1.8
6.0
1.5
5.0
1.2
4.0
0.9
3.0
0.6
2.0
0.3
1.0
0.0
0
10
20
30
40
50
60
70
Rotación en porcentaje de la rotación sincrónica
80
90
0.0
100
CERTIFICADO
WEG MOTORES
- Documento no sujeto para
aprobación.
- En caso de comentarios
habrá prorrogación en el
plazo de entrega.
Desempeño
: 150 HP (110 kW) 460 V 50 Hz 4P 504/5T
Corriente nominal
Ia/In (p.u.)
Par nominal
Par de arranque
Par máximo
Rotación nominal
:
:
:
:
:
:
168 A
7.2 Cód. H
717 Nm
260 %
270 %
1490 rpm
Momento de inercia (J)
Régimen de servicio
Clase de aislamiento
Factor de servicio
Elevación de temperatura
Categoría
:
:
:
:
:
:
2.94 kgm²
Cont.(S1)
F
1.15
80 K
A
Tiempo de rotor bloqueado 100% : 32 s (caliente) 57 s (frío)
Inercia de la carga (J=GD²/4)
: 2.98 kgm²
Rev.
Resumen de los cambios
Ejecutado
Verificado
Ejecutor
vlucero
Verificador
AUTOMATICO
Pagina
Fecha
30/01/2018
2/6
Fecha
267540/2018
Propriedad de WEG S/A. Prohibida la reproducción sin permiso.
Revisión
0 22
CURVA DE DESEMPEÑO EN CARGA
Motor Trifásico de Inducción - Rotor de Jaula
Cliente
:
Línea del producto
: W22 NEMA Premium Efficiency
90
0.9
1.0
80
0.8
2.0
70
0.7
60
0.6
4.0
50
0.5
5.0
40
0.4
0.0
C
A
B
3.0
400
B - Factor de potencia (p.u.)
300
200
D
0
10
20
30
40
50
60
70
D - Corriente en 460 V (A)
A - Rendimiento (%)
1.0
C - Deslizamiento (%)
100
100
80
90
100
110
0
130
120
Potencia provista en porcentaje de la nominal
CERTIFICADO
WEG MOTORES
Desempeño
: 150 HP (110 kW) 460 V 50 Hz 4P 504/5T
Corriente nominal
Ia/In (p.u.)
Par nominal
Par de arranque
Par máximo
Rotación nominal
:
:
:
:
:
:
168 A
7.2 Cód. H
717 Nm
260 %
270 %
1490 rpm
Rev.
Resumen de los cambios
Momento de inercia (J)
Régimen de servicio
Clase de aislamiento
Factor de servicio
Elevación de temperatura
Categoría
Ejecutado
- Documento no sujeto para
aprobación.
- En caso de comentarios
habrá prorrogación en el
de entrega.
: plazo
2.94 kgm²
:
:
:
:
:
Cont.(S1)
F
1.15
80 K
A
Verificado
Ejecutor
vlucero
Verificador
AUTOMATICO
Pagina
Fecha
30/01/2018
3/6
Fecha
267540/2018
Propriedad de WEG S/A. Prohibida la reproducción sin permiso.
Revisión
0 23
CURVA DE LÍMITE TÉRMICO
Motor Trifásico de Inducción - Rotor de Jaula
Cliente
:
Línea del producto
: W22 NEMA Premium Efficiency
100000
A
1000
C
100
C - Rotor bloqueado (frío)
B - Rotor bloqueado (caliente)
A - Sobrecarga
Tiempo (s)
10000
B
10
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
I/In
Desempeño
: 150 HP (110 kW) 460 V 50 Hz 4P 504/5T
Corriente nominal
Ia/In (p.u.)
Par nominal
Par de arranque
Par máximo
Rotación nominal
:
:
:
:
:
:
168 A
7.2 Cód. H
717 Nm
260 %
270 %
1490 rpm
Constante de calentamiento
Constante de enfriamento
Momento de inercia (J)
Régimen de servicio
Clase de aislamiento
Factor de servicio
Elevación de temperatura
Categoría
:
:
:
:
:
:
2.94 kgm²
Cont.(S1)
F
1.15
80 K
A
CERTIFICADO
: 46.1 min
: 138.4 min
Rev.
Resumen de los cambios
WEG MOTORES
Ejecutado
- Documento no sujeto para
aprobación.
- En caso de comentarios
Verificado
habrá prorrogaciónFecha
en el
plazo de entrega.
Ejecutor
vlucero
Verificador
AUTOMATICO
Pagina
267540/2018
Fecha
30/01/2018
4/6
Propriedad de WEG S/A. Prohibida la reproducción sin permiso.
Revisión
0 24
CURVA CONVERTIDOR CON PAR DE LA CARGA
Motor Trifásico de Inducción - Rotor de Jaula
:
Línea del producto
: W22 NEMA Premium Efficiency
1000
200
900
180
800
160
A
A - Curva de derating
B - Curva de par de carga
C - Curva de corriente
Par [Nm]
700
140
C
600
120
500
100
400
80
300
Corriente [A]
Cliente
60
B
200
40
100
20
0
0
9
18
27
36
45
54
Frecuência [Hz]
63
72
81
0
90
CERTIFICADO
WEG MOTORES
- Documento no sujeto para
aprobación.
- En caso de comentarios
habrá prorrogación en el
plazo de entrega.
Desempeño
: 150 HP (110 kW) 460 V 50 Hz 4P 504/5T
Corriente nominal
Ia/In (p.u.)
Par nominal
Par de arranque
Par máximo
Rotación nominal
Máxima potencia absorbida
Frecuencia mínima
Frecuencia máxima
:
:
:
:
:
:
168 A
7.2 Cód. H
717 Nm
260 %
270 %
1490 rpm
: 151 HP
: 25 Hz
: 50 Hz
Rev.
Resumen de los cambios
Momento de inercia (J)
Régimen de servicio
Clase de aislamiento
Factor de servicio
Elevación de temperatura
Categoría
Par máximo
Rotación mínima
Rotación máxima
Ejecutado
:
:
:
:
:
:
:
:
:
2.94 kgm²
Cont.(S1)
F
1.15
80 K
A
722 Nm
750 rpm
1500 rpm
Verificado
Ejecutor
vlucero
Verificador
AUTOMATICO
Pagina
Fecha
30/01/2018
5/6
Fecha
267540/2018
Propriedad de WEG S/A. Prohibida la reproducción sin permiso.
Revisión
0 25
CURVA DE OPERACIÓN COM INVERSOR
Motor Trifásico de Inducción - Rotor de Jaula
Cliente
:
Línea del producto
: W22 NEMA Premium Efficiency
3000
500 200.0
2700
450 180.0
2400
400 160.0
A
2100
350 140.0
Par [Nm]
B
1800
300 120.0
1500
250 100.0
1200
200 80.0
D
Tensión [V]
C
300
0
0
9
18
27
36
45
54
Frecuência [Hz]
63
72
81
Potencia [HP]
600
A - Curva de la tensión
B - Curva de la potencia
C - Curva del par
D - Curva del par máximo
900
90
CERTIFICADO
WEG MOTORES
- Documento no sujeto para
aprobación.
- En caso de comentarios
habrá prorrogación en el
plazo de entrega.
Desempeño
: 150 HP (110 kW) 460 V 50 Hz 4P 504/5T
Corriente nominal
Ia/In (p.u.)
Par nominal
Par de arranque
Par máximo
Rotación nominal
:
:
:
:
:
:
168 A
7.2 Cód. H
717 Nm
260 %
270 %
1490 rpm
Límite de funcionamiento con el convertidor
25 Hz hasta 50 Hz (Par variable): 712 Nm
Rev.
Resumen de los cambios
Momento de inercia (J)
Régimen de servicio
Clase de aislamiento
Factor de servicio
Elevación de temperatura
Categoría
:
:
:
:
:
:
2.94 kgm²
Cont.(S1)
F
1.15
80 K
A
Tensión de pico fase-fase máxima
dV/dt
Rise time
Ejecutado
<= 2000 V
<= 6500 V/µs
>= 0,1 µs
Verificado
Ejecutor
vlucero
Verificador
AUTOMATICO
Pagina
Fecha
30/01/2018
6/6
Fecha
267540/2018
Propriedad de WEG S/A. Prohibida la reproducción sin permiso.
Revisión
0 26
PLANO DE DISPOSICIÓN GENERAL
Cristian Corvalan
Alvaro Reyes
N/A
N/A
N/A
Ingeniero de Proyectos
Administrador de
Proyectos
Producción
Servicios
Despachos
27
28
29
30
31
32
List of components
B22B/1 (Motor driven)
Schutzvermerk ISO 16016
Copyright to ISO 16016
En accord avec ISO 16016
Auftrags-Nr. / Pos.
Order number / item.
N° de commande / Pos.
Serien-Nr.
Serial number
N° de fabrication
9973733700 / 100
Teile-Nr.
Part number
Repère
ME
Menge/Einh.
Quantity/unit
Quant./Pompe
Name
Name
Nom
Stellenkurzz.
Dept. code
Sigle
Abdul Haseeb
Engg. Dept.
Datum
Date
Date
17.09.2018
Bennennung
Description
Désignation
Werkstoff
Material
Matériaux
106
PC
1
SUCTION CASING
SAUGGEHAEUSE
DN400
EN-GJL-250
107
PC
1
DISCHARGE CASING
DRUCKGEHAEUSE
DN400
EN-GJL-250
112
PC
1
PUMP BOWL
B22B
LEITSCHAUFELGEHAEUS
E
EN-GJL-250
13-17
PC
1
STRAINER
SCHUTZSIEB
DN400
1.4301
144
PC
1
DISCHARGE ELBOW
AUSLAUFKRUEMMER
DN400-60
EN-GJL-250
145.1
PC
1
ADAPTER
VERBINDUNGSSTUECK
DN 400
EN-GJL-250
145.2
PC
1
ADAPTER
VERBINDUNGSSTUECK
R1/4XG1/2X3
7
1.4301+C
145.3
PC
1
ADAPTER
VERBINDUNGSSTUECK
G3/8XG3/8X8 1.4021
4
211
PC
1
PUMP SHAFT
PUMPENWELLE
93/60X1202
1.4021
213
PC
1
TOP SHAFT
ANTRIEBSWELLE
60X2077
1.4021
230
PC
1
IMPELLER
LAUFRAD
416X402X52
CC480K-GS
271
PC
1
SAND GUARD
SANDGLOCKE
52/85X15
1.4021
320
PC
2
ANGULAR CONTACT
BALL BEARING
SCHRAEGKUGELLAGER
7319B-TVP
CB
ST
331
PC
1
BEARING PEDESTAL
LAGERBOCK
7319X2
S235JR
341
PC
1
MOTOR STOOL
ANTRIEBSLATERNE
DWT DN400
+ NEMA
S235JR
350
PC
1
BEARING HOUSING
LAGERGEHAEUSE
7319B
EN-GJL-250
360
PC
1
BEARING COVER
LAGERDECKEL
110,6/270X20 S235JR
,5
383
PC
1
BEARING SPIDER
LAGERSTERN
400X92
EN-GJL-250
400.1
PC
1
GASKET
FLACHDICHTUNG
IBC
400PN10X2
DPAF
400.2
PC
1
GASKET
FLACHDICHTUNG
IBC
400PN10X2
DPAF
Seite 1 von 7
33
List of components
B22B/1 (Motor driven)
Schutzvermerk ISO 16016
Copyright to ISO 16016
En accord avec ISO 16016
Auftrags-Nr. / Pos.
Order number / item.
N° de commande / Pos.
Serien-Nr.
Serial number
N° de fabrication
9973733700 / 100
Teile-Nr.
Part number
Repère
ME
Menge/Einh.
Quantity/unit
Quant./Pompe
Name
Name
Nom
Stellenkurzz.
Dept. code
Sigle
Abdul Haseeb
Engg. Dept.
Datum
Date
Date
17.09.2018
Bennennung
Description
Désignation
Werkstoff
Material
Matériaux
411.1
PC
1
SEALING RING
DICHTRING
A 21 X 26
DPAF
411.2
PC
1
SEALING RING
DICHTRING
A 60 X 68
DPAF
411.3
PC
1
SEALING RING
DICHTRING
C 17X21
ST-ASBFREI
411.4
PC
1
SEALING RING
DICHTRING
C 21X26
ST-ASBFREI
411.5
PC
1
SEALING RING
DICHTRING
C 21X26
ST-ASBFREI
411.6
PC
1
SEALING RING
DICHTRING
C 17X21
ST-ASBFREI
411.7
PC
1
SEALING RING
DICHTRING
C 21X26
ST-ASBFREI
412.1
PC
1
O-RING
O-RING
420,00X 4,00- NBR 80
N-B
412.2
PC
1
O-RING
O-RING
420,00X 4,00- NBR 80
N-B
412.3
PC
2
O-RING
O-RING
420,00X 4,00- NBR 80
N-B
412.4
PC
1
O-RING
O-RING
420,00X 4,00- NBR 80
N-B
412.5
PC
1
O-RING
O-RING
56,00X 2,50N-B
NBR 80
452
PC
1
GLAND FOLLOWER
STOPFBUCHSBRILLE
70
EN-GJL-200
458
PC
1
LANTERN RING
SPERRRING
70
1.4021
461
M
0.800
PACKING
PACKUNG
12 X 12
BU 5846
500
PC
2
FIXING RING
PASSRING
60
1.4021
502
PC
1
CASING WEAR RING
SPALTRING
345/365X42
EN-GJL-250
503
PC
1
IMPELLER WEAR RING
LAUFRING
330/344,7X40 EN-GJL-250
505
PC
1
LOOSE COLLAR
SCHULTERRING
60/130X145
EN-GJL-250
506
PC
1
RETAINING RING
HALTERING
66
1.4122+QT750
507
PC
1
THROWER
SPRITZRING
60/230X18
1.4301
Seite 2 von 7
34
List of components
B22B/1 (Motor driven)
Schutzvermerk ISO 16016
Copyright to ISO 16016
En accord avec ISO 16016
Auftrags-Nr. / Pos.
Order number / item.
N° de commande / Pos.
Serien-Nr.
Serial number
N° de fabrication
9973733700 / 100
Teile-Nr.
Part number
Repère
ME
Menge/Einh.
Quantity/unit
Quant./Pompe
Name
Name
Nom
Stellenkurzz.
Dept. code
Sigle
Abdul Haseeb
Engg. Dept.
Datum
Date
Date
17.09.2018
Bennennung
Description
Désignation
Werkstoff
Material
Matériaux
521
PC
1
STAGE SLEEVE
STUFENHUELSE
80/100X289
1.4021
524.1
PC
1
SHAFT PROTECTING
59,85/70X170 1.4122+QT750
SLEEVE
WELLENSCHUTZHUELSE
524.2
PC
1
SHAFT PROTECTING
C 70
SLEEVE
WELLENSCHUTZHUELSE
1.4122+QT750
529
PC
1
BEARING SLEEVE
LAGERHUELSE
52/65X180
F1004333016
THORDON SXL
541
PC
1
INTERSTAGE BUSH
STUFENBUCHSE
101/131X100
F1004333015
THORDON SXL
545
PC
1
BEARING BUSH
LAGERBUCHSE
71/92X140
THORDON SXL
550
PC
2
WASHER
SCHEIBE
8
A2
554.1
PC
8
LOCK WASHER
SICHERUNGSSCHEIBE
BM6
A4
554.2
PC
8
LOCK WASHER
SICHERUNGSSCHEIBE
BM6
A4
561
PC
4
GROOVED PIN
KERBNAGEL
6 X 16
A2
595
PC
8
BUFFER
PUFFER
4BN / 5BN
NBR 80
636
PC
1
BUTTON HEAD
LUBRICATING NIPPLE
FLACHSCHMIERNIPPEL
AR 1/4 - 16
ST
710.1
FT
1.500
PIPE
ROHR
1/2 INCH
JM+Z
710.2
M
0.400
TUBE
ROHR
8XID6
1.4571+C
711
PC
1
COLUMN PIPE
STEIGROHR
A 400X1186
PN 16
A53 GR A TYPE E
731.1
PC
1
ELBOW
WINKEL
ELBOW A1
1/2
JM+Z
731.2
PC
1
PIPE UNION
VERSCHRAUBUNG
1/2 INCH
JM+Z
731.3
PC
1
HEXAGON NIPPLE
DOPPELNIPPEL
1/2IN
JM+Z
731.4
PC
2
PIPE UNION
VERSCHRAUBUNG
DL 8 D-G1/4
1.4571+C
Seite 3 von 7
35
List of components
B22B/1 (Motor driven)
Schutzvermerk ISO 16016
Copyright to ISO 16016
En accord avec ISO 16016
Auftrags-Nr. / Pos.
Order number / item.
N° de commande / Pos.
Serien-Nr.
Serial number
N° de fabrication
9973733700 / 100
Teile-Nr.
Part number
Repère
ME
Menge/Einh.
Quantity/unit
Quant./Pompe
Name
Name
Nom
Stellenkurzz.
Dept. code
Sigle
Abdul Haseeb
Engg. Dept.
Datum
Date
Date
17.09.2018
Bennennung
Description
Désignation
Werkstoff
Material
Matériaux
81-92.1
PC
2
COVER PLATE
ABDECKBLECH
1X220X328
1.4301
81-92.2
PC
2
COVER PLATE
ABDECKBLECH
1X290X300
1.4301
840.1
PC
1
COUPLING
KUPPLUNG
80X186 PS
EN-GJL-250
840.2
PC
1
COUPLING
KUPPLUNG
4BN/4BN-H
MS
EN-GJL-250
851
PC
1
CONICAL COUPLING
KEGELKUPPLUNG
60
1.4021
863
PC
1
COUPLING SHELL
KUPPLUNGSSCHALE
60
1.4021
864
PC
1
COUPLING SLEEVE
KUPPLUNGSHUELSE
60
1.4021
866
PC
8
COUPLING PIN
KUPPLUNGSBOLZEN
4BN/5BN
E295
89-4
PC
4
SHIM
UNTERLEGBLECH
A80X80X15
S235JR
893
PC
1
SOLEPLATE
AUFSETZPLATTE
1000X1000X4 S235JR
0
898
PC
4
FOUNDATION BLOCK
FUNDAMENTKLOTZ
A 3XM24
EN-GJL-200
900
PC
4
COUNTERSUNK HEAD
SCREW
SENKSCHRAUBE
M4X12
A2-70
901.1
PC
12
HEXAGON HEAD SCREW
SECHSKANTSCHRAUBE
M24 X 90
A4-70
901.2
PC
16
HEXAGON HEAD SCREW
SECHSKANTSCHRAUBE
M24 X 90
A4-70
901.3
PC
16
HEXAGON HEAD SCREW
SECHSKANTSCHRAUBE
M24 X 125
A4-70
901.4
PC
2
HEXAGON HEAD SCREW
SECHSKANTSCHRAUBE
M16 X 35
A4-70
901.5
PC
4
HEXAGON HEAD SCREW
SECHSKANTSCHRAUBE
M12 X 30
A4-70
901.6
PC
16
HEXAGON HEAD SCREW
SECHSKANTSCHRAUBE
M24 X 105
A4-70
901.7
PC
4
HEXAGON HEAD SCREW
SECHSKANTSCHRAUBE
M24 X 70
A4-70
901.8
PC
4
HEXAGON HEAD SCREW
6KT-SCHRAUBE
M 16 X 70
A4-70
Seite 4 von 7
36
List of components
B22B/1 (Motor driven)
Schutzvermerk ISO 16016
Copyright to ISO 16016
En accord avec ISO 16016
Auftrags-Nr. / Pos.
Order number / item.
N° de commande / Pos.
Serien-Nr.
Serial number
N° de fabrication
9973733700 / 100
Teile-Nr.
Part number
Repère
ME
Menge/Einh.
Quantity/unit
Quant./Pompe
Name
Name
Nom
Stellenkurzz.
Dept. code
Sigle
Abdul Haseeb
Engg. Dept.
Bennennung
Description
Désignation
Datum
Date
Date
17.09.2018
Werkstoff
Material
Matériaux
902.1
PC
12
STUD
STIFTSCHRAUBE
M 24 X 60
A4-70
902.2
PC
16
STUD
STIFTSCHRAUBE
M 24 X 50
A4-70
902.3
PC
8
STUD
STIFTSCHRAUBE
M 20 X 45
A4-70
902.4
PC
2
STUD
STIFTSCHRAUBE
M 16 X 50
A4-70
902.5
PC
8
STUD
STIFTSCHRAUBE
M 16 X 50
A4-70
902.6
PC
8
STUD
STIFTSCHRAUBE
M 20 X 45
A4-70
903.1
PC
1
SCREW PLUG
G 1/2 A
VERSCHLUSSSCHRAUBE
A4
903.2
PC
1
SCREW PLUG
G2A
VERSCHLUSSSCHRAUBE
A4
903.3
PC
1
SCREW PLUG
G 3/8 A
VERSCHLUSSSCHRAUBE
A4
903.4
PC
1
SCREW PLUG
G 1/2 A
VERSCHLUSSSCHRAUBE
A4
903.5
PC
1
SCREW PLUG
G 1/2 A
VERSCHLUSSSCHRAUBE
A4
903.6
PC
1
SCREW PLUG
G 3/8 A
VERSCHLUSSSCHRAUBE
A4
903.7
PC
1
SCREW PLUG
G 1/2 A
VERSCHLUSSSCHRAUBE
A4
904.1
PC
3
GRUB SCREW
GEWINDESTIFT
M 4 X 10
A4-70
904.2
PC
1
GRUB SCREW
GEWINDESTIFT
M 6X 10
A4-70
904.3
PC
2
GRUB SCREW
GEWINDESTIFT
M 12 X 25
A4-70
914.1
PC
8
PAN HEAD SCREW
FLACHKOPFSCHRAUBE
A M6 X 16 11
A4-70
914.2
PC
8
HEXAGON SOCKET
HEAD CAP SCREW
ZYLINDERSCHRAUBE
M16 X 35
A4-70
914.3
PC
4
HEXAGON SOCKET
HEAD CAP SCREW
ZYLINDERSCHRAUBE
M16 X 20
A4-70
Seite 5 von 7
37
List of components
B22B/1 (Motor driven)
Schutzvermerk ISO 16016
Copyright to ISO 16016
En accord avec ISO 16016
Auftrags-Nr. / Pos.
Order number / item.
N° de commande / Pos.
Serien-Nr.
Serial number
N° de fabrication
9973733700 / 100
Teile-Nr.
Part number
Repère
ME
Menge/Einh.
Quantity/unit
Quant./Pompe
Name
Name
Nom
Stellenkurzz.
Dept. code
Sigle
Abdul Haseeb
Engg. Dept.
Bennennung
Description
Désignation
Datum
Date
Date
17.09.2018
Werkstoff
Material
Matériaux
914.4
PC
4
HEXAGON SOCKET
HEAD CAP SCREW
ZYLINDERSCHRAUBE
M 8 X 40
A4-70
914.5
PC
8
PAN HEAD SCREW
FLACHKOPFSCHRAUBE
A M6 X 16 11
A4-70
920.1
PC
12
HEXAGON NUT
SECHSKANTMUTTER
M24
A4-70
920.10
PC
1
NUT
MUTTER
A M 58X1,5
1.4021
920.11
PC
8
HEXAGON NUT
SECHSKANTMUTTER
M16
A4-70
920.12
PC
8
HEXAGON NUT
SECHSKANTMUTTER
M20
A4-70
920.13
PC
8
HEXAGON NUT
SECHSKANTMUTTER
M 16
6
920.14
PC
16
HEXAGON NUT
SECHSKANTMUTTER
M24
A4-70
920.2
PC
12
HEXAGON NUT
SECHSKANTMUTTER
M24
A4-70
920.3
PC
1
DOUBLE FLATTED NUT
2KT-MUTTER
M 64X2 LH
1.4571
920.4
PC
16
HEXAGON NUT
SECHSKANTMUTTER
M24
A4-70
920.5
PC
16
HEXAGON NUT
SECHSKANTMUTTER
M24
A4-70
920.6
PC
16
HEXAGON NUT
SECHSKANTMUTTER
M24
A4-70
920.7
PC
8
HEXAGON NUT
SECHSKANTMUTTER
M20
A4-70
920.8
PC
2
HEXAGON NUT
SECHSKANTMUTTER
M16
A4-70
920.9
PC
1
SLOTTED ROUND NUT
NUTMUTTER
KM 18
ST
930
PC
8
RETAINING WASHER
SICHERUNGSSCHEIBE
19
SPRING STEEL
931.1
PC
1
LOCK WASHER
SICHERUNGSBLECH
K 66
A4
931.2
PC
1
LOCK WASHER
SICHERUNGSBLECH
MB 18
ST
931.3
PC
4
LOCK WASHER
SICHERUNGSBLECH
4BN
SPRING STEEL
Seite 6 von 7
38
List of components
B22B/1 (Motor driven)
Schutzvermerk ISO 16016
Copyright to ISO 16016
En accord avec ISO 16016
Auftrags-Nr. / Pos.
Order number / item.
N° de commande / Pos.
Serien-Nr.
Serial number
N° de fabrication
9973733700 / 100
Teile-Nr.
Part number
Repère
ME
Menge/Einh.
Quantity/unit
Quant./Pompe
Name
Name
Nom
Stellenkurzz.
Dept. code
Sigle
Abdul Haseeb
Engg. Dept.
Bennennung
Description
Désignation
Datum
Date
Date
17.09.2018
Werkstoff
Material
Matériaux
940.1
PC
2
PARALLEL KEY
PASSFEDER
A 20X12X120
1.4571
940.2
PC
1
PARALLEL KEY
PASSFEDER
C 10X6X22
1.4571
940.3
PC
1
PARALLEL KEY
PASSFEDER
A 18X11X65
1.4021
940.4
PC
1
PARALLEL KEY
PASSFEDER
A 16X10X80
1.4021+QT800
Seite 7 von 7
39
PLANO DE MOTOR ELECTRICO
Cristian Corvalan
Alvaro Reyes
N/A
N/A
N/A
Ingeniero de Proyectos
Administrador de
Proyectos
Producción
Servicios
Despachos
40
41
CERTIFICADO DE PRUEBAS DE
PERFORMANCE
Cristian Corvalan
Alvaro Reyes
N/A
N/A
N/A
Ingeniero de Proyectos
Administrador de
Proyectos
Producción
Servicios
Despachos
42
KSB TEST REPORT
PUMP SERIAL No.
CUSTOMER
PROJECT/TYPE
PUMP TYPE
IMPELLER DIA mm
9973733700/100/1
KSB CHILE S.A. / COMUNA DE QUILICURA / SANTIAGO
B22B/1
353/303
Pump Data
Specified Units
Capacity Q
Stage Head H st
Pump Head H
ESK Losses H vesk
Stage eff.
Pump Eff.
Nom. power Pump
Drive rating
Speed nom.
NPSH r
1100
24.70
24.00
0.70
75.0
72.8
98.70
110
1490
6.0
Specific Gravity
0.998
FLOWMETER
INLET DIA
OUTLET DIA
SHAFT DIA
MEASURED SPEED
MEASURED FLOW
Discharge Pressure
Discharge Head (p1)
Datum Head (z1)
Tot. Dis. Head (h1)
ESK Losses
Vel. Head loss (v2/2g)
TOT. DYN. HEAD (H)
mm
mm
mm
mm
r.p.m.
m 3 /hr
bar
m
m
m
m
m
m
AVERAGE AMPS
Standard Units
m 3 /h
m
m
m
%
%
kW
kW
rpm
m
1100
24.7
24.0
0.70
75.0
72.8
98.7
110
1490
6.0
Point 1
500
Point 2
0.5 m
400
0.4 m
m 3 /h
m
m
m
%
%
kW
kW
rpm
m
Point 3
Report No.
115/2018
Order No.
IEZ-1444
Date
20.08.2018
Motor Data
Motor
Motor No.
Rating
Speed @ F.L.
Full Load Current
PF @ F.L.
Point 4
SIEMENS
LPK07111328
134 kW
1489 rpm
246.9 A
0.87
Point 5
Point 6
1500
1505
1505
1502
1509
1503
692
900
1104
1330
1562
1784
2.88
29.40
1.34
30.74
0.277
0.119
2.60
26.55
1.34
27.89
0.469
0.202
2.25
22.97
1.34
24.31
0.705
0.304
1.85
18.89
1.34
20.23
1.023
0.441
1.38
14.09
1.34
15.43
1.411
0.608
0.60
6.13
1.34
7.47
1.841
0.793
31.14
28.56
25.32
21.69
17.45
10.10
A
186.0
190.0
196.0
198.0
199.0
187.0
VOLTAGE
POWER FACTOR
V
cos Ø
392
0.83
397
0.83
398
0.84
399
0.83
398
0.84
396
0.83
MOTOR INPUT
MOTOR EFF
MOTOR OUTPUT
kW
%
kW
106.0
93
109.0
93
113.0
93
114.0
93
115.0
93
107.0
93
98.58
101.37
105.09
106.02
106.95
99.51
NET PUMP INPUT
kW
98.58
101.37
105.09
106.02
106.95
99.51
STAGE EFF
PUMP EFF
Q m 3 /h at r.p.m.
Head st m at r.p.m.
kW on Water at r.p.m.
%
%
1490
1490
1490
59.53
59.03
687.39
30.73
96.62
69.05
67.95
891.03
27.99
98.37
72.45
70.46
1093.00
24.82
101.98
74.11
70.65
1319.37
21.35
103.50
69.40
63.82
1542.33
17.01
102.96
49.31
40.34
1768.57
9.93
96.95
96.43
98.17
101.78
103.29
102.75
96.76
kW on media
SG =
0.998
REMARKS:
Q-H curve passes through tolerance range of specified testing standard.
Pump efficiency is okay.
CONCLUSION:Pump performance is satisfactory.
TEST INFORMATION
TESTING STANDARD
ISO 9906/2B
TESTED BY:FAISAL NAEEM
PRODUCTION OFFICER
CHECKED BY:WAQAS AHMAD
DY. MANAGER PRODUCTION
APPROVED BY:BADSHAH MUHAMMAD
DY. MANAGER QHSE
DATE
DATE
DATE
20.08.2018
20.08.2018
20.08.2018
43
Performance Curves
Stage Head (m)
Client:
KSB CHILE S.A. / COMUNA DE QUILICURA / SANTIAGO
Project:
Type & Size: B22B/1
W/O No.:
9973733700/100/1
Rated Specs:
Impeller Dia. 353/303
Stage Head:
24.7 m
Liquid:
WATER
Capacity:
1100 m3/h
Temp.:
25
°C
Speed:
1490 rpm
Sp. Gravity: 0.998
Driver Output:
110 kW
32
Duty Point
28
Q-H Curve
24
20
16
12
8
4
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
1400
1500
1600
1700
1800
1900
2000
100
90
Stage Efficiency (%)
80
70
60
50
40
30
20
10
0
140
130
Pump Input (kW)
120
110
100
90
` `
80
70
60
50
600
700
800
900
1000
1100
1200
1300
Discharge (m3/h)
44
KSB TEST REPORT
PUMP SERIAL No.
CUSTOMER
PROJECT/TYPE
PUMP TYPE
IMPELLER DIA mm
9973733700/100/2
KSB CHILE S.A. / COMUNA DE QUILICURA / SANTIAGO
B22B/1
353/303
Pump Data
Specified Units
Capacity Q
Stage Head H st
Pump Head H
ESK Losses H vesk
Stage eff.
Pump Eff.
Nom. power Pump
Drive rating
Speed nom.
NPSH r
1100
24.70
24.00
0.70
75.0
72.8
98.70
110
1490
6.0
Specific Gravity
0.998
FLOWMETER
INLET DIA
OUTLET DIA
SHAFT DIA
MEASURED SPEED
MEASURED FLOW
Discharge Pressure
Discharge Head (p1)
Datum Head (z1)
Tot. Dis. Head (h1)
ESK Losses
Vel. Head loss (v2/2g)
TOT. DYN. HEAD (H)
mm
mm
mm
mm
r.p.m.
m 3 /hr
bar
m
m
m
m
m
m
AVERAGE AMPS
Standard Units
m 3 /h
m
m
m
%
%
kW
kW
rpm
m
1100
24.7
24.0
0.70
75.0
72.8
98.7
110
1490
6.0
Point 1
500
Point 2
0.5 m
400
0.4 m
m 3 /h
m
m
m
%
%
kW
kW
rpm
m
Point 3
Report No.
116/2018
Order No.
IEZ-1444
Date
25.08.2018
Motor Data
Motor
Motor No.
Rating
Speed @ F.L.
Full Load Current
PF @ F.L.
Point 4
SIEMENS
LPK07111328
134 kW
1489 rpm
246.9 A
0.87
Point 5
Point 6
1495
1500
1501
1496
1492
1492
681
898
1110
1324
1558
1778
2.85
29.10
1.34
30.44
0.268
0.115
2.55
26.04
1.34
27.38
0.467
0.201
2.25
22.97
1.34
24.31
0.713
0.307
1.80
18.38
1.34
19.72
1.014
0.437
1.25
12.76
1.34
14.10
1.404
0.605
0.45
4.59
1.34
5.93
1.829
0.787
30.82
28.04
25.33
21.17
16.11
8.55
A
187.0
190.0
197.0
200.0
195.0
185.0
VOLTAGE
POWER FACTOR
V
cos Ø
397
0.82
401
0.82
401
0.83
402
0.83
400
0.82
399
0.82
MOTOR INPUT
MOTOR EFF
MOTOR OUTPUT
kW
%
kW
106.0
93
108.0
93
113.0
93
115.0
93
111.0
93
104.0
93
98.58
100.44
105.09
106.95
103.23
96.72
NET PUMP INPUT
kW
98.58
100.44
105.09
106.95
103.23
96.72
STAGE EFF
PUMP EFF
Q m 3 /h at r.p.m.
Head st m at r.p.m.
kW on Water at r.p.m.
%
%
1490
1490
1490
57.99
57.51
678.72
30.62
97.59
68.28
67.18
892.01
27.67
98.44
72.87
70.86
1101.87
24.96
102.80
71.37
67.99
1318.69
21.00
105.67
66.22
60.48
1555.91
16.07
102.82
42.81
33.67
1775.62
8.53
96.33
97.40
98.25
102.59
105.46
102.61
96.14
kW on media
SG =
0.998
REMARKS:
Q-H curve passes through tolerance range of specified testing standard.
Pump efficiency is okay.
CONCLUSION:Pump performance is satisfactory.
TEST INFORMATION
TESTING STANDARD
ISO 9906/2B
TESTED BY:FAISAL NAEEM
PRODUCTION OFFICER
CHECKED BY:WAQAS AHMAD
DY. MANAGER PRODUCTION
APPROVED BY:BADSHAH MUHAMMAD
DY. MANAGER QHSE
DATE
DATE
DATE
25.08.2018
25.08.2018
25.08.2018
45
Performance Curves
Stage Head (m)
Client:
KSB CHILE S.A. / COMUNA DE QUILICURA / SANTIAGO
Project:
Type & Size: B22B/1
W/O No.:
9973733700/100/2
Rated Specs:
Impeller Dia. 353/303
Stage Head:
24.7 m
Liquid:
WATER
Capacity:
1100 m3/h
Temp.:
25
°C
Speed:
1490 rpm
Sp. Gravity: 0.998
Driver Output:
110 kW
32
Duty Point
28
Q-H Curve
24
20
16
12
8
4
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
1400
1500
1600
1700
1800
1900
2000
100
90
Stage Efficiency (%)
80
70
60
50
40
30
20
10
0
140
130
Pump Input (kW)
120
110
100
90
` `
80
70
60
50
600
700
800
900
1000
1100
1200
1300
Discharge (m3/h)
46
KSB TEST REPORT
PUMP SERIAL No.
CUSTOMER
PROJECT/TYPE
PUMP TYPE
IMPELLER DIA mm
9973733700/200/1
KSB CHILE S.A. / COMUNA DE QUILICURA / SANTIAGO
B22B/1
353/303
Pump Data
Specified Units
Capacity Q
Stage Head H st
Pump Head H
ESK Losses H vesk
Stage eff.
Pump Eff.
Nom. power Pump
Drive rating
Speed nom.
NPSH r
1100
24.70
24.00
0.70
75.0
72.8
98.70
110
1490
6.0
Specific Gravity
0.998
FLOWMETER
INLET DIA
OUTLET DIA
SHAFT DIA
MEASURED SPEED
MEASURED FLOW
Discharge Pressure
Discharge Head (p1)
Datum Head (z1)
Tot. Dis. Head (h1)
ESK Losses
Vel. Head loss (v2/2g)
TOT. DYN. HEAD (H)
mm
mm
mm
mm
r.p.m.
m 3 /hr
bar
m
m
m
m
m
m
AVERAGE AMPS
Standard Units
m 3 /h
m
m
m
%
%
kW
kW
rpm
m
1100
24.7
24.0
0.70
75.0
72.8
98.7
110
1490
6.0
Point 1
500
Point 2
0.5 m
400
0.4 m
m 3 /h
m
m
m
%
%
kW
kW
rpm
m
Point 3
Report No.
117/2018
Order No.
IEZ-1444
Date
25.08.2018
Motor Data
Motor
Motor No.
Rating
Speed @ F.L.
Full Load Current
PF @ F.L.
Point 4
SIEMENS
LPK07111328
134 kW
1489 rpm
246.9 A
0.87
Point 5
Point 6
1509
1503
1495
1506
1506
1504
651
889
1116
1337
1560
1772
2.90
29.61
1.34
30.95
0.245
0.106
2.55
26.04
1.34
27.38
0.457
0.197
2.15
21.95
1.34
23.29
0.721
0.310
1.83
18.68
1.34
20.02
1.034
0.445
1.29
13.17
1.34
14.51
1.408
0.606
0.50
5.11
1.34
6.45
1.817
0.782
31.30
28.03
24.32
21.50
16.52
9.04
A
188.0
189.0
191.0
197.0
196.0
186.0
VOLTAGE
POWER FACTOR
V
cos Ø
404
0.82
406
0.82
403
0.82
404
0.83
405
0.82
406
0.81
MOTOR INPUT
MOTOR EFF
MOTOR OUTPUT
kW
%
kW
108.0
93
108.0
93
109.0
93
114.0
93
113.0
93
106.0
93
100.44
100.44
101.37
106.02
105.09
98.58
NET PUMP INPUT
kW
100.44
100.44
101.37
106.02
105.09
98.58
STAGE EFF
PUMP EFF
Q m 3 /h at r.p.m.
Head st m at r.p.m.
kW on Water at r.p.m.
%
%
1490
1490
1490
55.25
54.84
642.80
30.52
96.69
67.57
66.50
881.31
27.55
97.86
72.93
70.80
1112.27
24.16
100.36
73.85
70.34
1322.80
21.05
102.68
66.81
61.15
1543.43
16.18
101.78
44.27
35.40
1755.51
8.88
95.85
96.50
97.66
100.16
102.47
101.57
95.66
kW on media
SG =
0.998
REMARKS:
Q-H curve passes through tolerance range of specified testing standard.
Pump efficiency is okay.
CONCLUSION:Pump performance is satisfactory.
TEST INFORMATION
TESTING STANDARD
ISO 9906/2B
TESTED BY:FAISAL NAEEM
PRODUCTION OFFICER
CHECKED BY:WAQAS AHMAD
DY. MANAGER PRODUCTION
APPROVED BY:BADSHAH MUHAMMAD
DY. MANAGER QHSE
DATE
DATE
DATE
25.08.2018
25.08.2018
25.08.2018
47
Performance Curves
Stage Head (m)
Client:
KSB CHILE S.A. / COMUNA DE QUILICURA / SANTIAGO
Project:
Type & Size: B22B/1
W/O No.:
9973733700/200/1
Rated Specs:
Impeller Dia. 353/303
Stage Head:
24.7 m
Liquid:
WATER
Capacity:
1100 m3/h
Temp.:
25
°C
Speed:
1490 rpm
Sp. Gravity: 0.998
Driver Output:
110 kW
32
Duty Point
28
Q-H Curve
24
20
16
12
8
4
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
1400
1500
1600
1700
1800
1900
2000
100
90
Stage Efficiency (%)
80
70
60
50
40
30
20
10
0
140
130
Pump Input (kW)
120
110
100
90
` `
80
70
60
50
600
700
800
900
1000
1100
1200
1300
Discharge (m3/h)
48
MANUAL DE INSTALACION OPERACIÓN Y
MANTENIMIENTO BOMBA
Cristian Corvalan
Alvaro Reyes
N/A
N/A
N/A
Ingeniero de Proyectos
Administrador de
Proyectos
Producción
Servicios
Despachos
49
B-Pump
Installation/Operating Manual
50
Legal information/Copyright
Installation/Operating Manual B-pump
Original operating manual
All rights reserved. The contents provided herein must neither be distributed, copied, reproduced, edited or
processed for any other purpose, nor otherwise transmitted, published or made available to a third party without
the manufacturer's express written consent.
Subject to technical modification without prior notice.
51
Contents
Contents
1
General ..................................................................................................6
1.1
Principles ...........................................................................................................6
1.2
Installation of partly completed machinery .................................................... 6
1.3
Target group ..................................................................................................... 6
1.4
Other applicable documents ............................................................................ 6
1.5
Symbols .............................................................................................................6
2
Safety .....................................................................................................8
2.1
Key to safety symbols/markings ....................................................................... 8
2.2
General .............................................................................................................. 8
2.3
Intended use .....................................................................................................8
2.4
Personnel qualification and training ............................................................... 9
2.5
Consequences and risks caused by non-compliance with these operating
instructions ........................................................................................................ 9
2.6
Safety awareness ..............................................................................................9
2.7
Safety information for the operator/user ..................................................... 10
2.8
Safety information for maintenance, inspection and installation work ..... 10
2.9
Unauthorised modes of operation ................................................................ 10
2.10
Explosion protection ...................................................................................... 10
3
Transport/Temporary Storage/Disposal .............................................12
3.1
Checking the condition upon delivery .......................................................... 12
3.2
Transport ......................................................................................................... 12
3.3
Storage/preservation ...................................................................................... 13
3.4
Return to supplier ........................................................................................... 13
3.5
Disposal ...........................................................................................................14
4
Description of the Pump (Set) ............................................................15
4.1
General description ........................................................................................ 15
4.2
Designation ..................................................................................................... 15
4.3
Name plate ...................................................................................................... 15
4.4
Design details .................................................................................................. 15
4.5
Configuration and function ........................................................................... 16
4.6
Noise characteristics .......................................................................................17
4.7
Scope of supply ............................................................................................... 17
4.8
Dimensions and weights ................................................................................17
5
Installation at Site ...............................................................................19
5.1
Safety regulations ........................................................................................... 19
5.2
Checks to be carried out prior to installation ............................................... 19
5.3
Installing the pump set .................................................................................. 20
5.4
Connecting the piping ...................................................................................22
5.5
Enclosure/insulation .......................................................................................23
B-Pump
3 of 58
52
Contents
5.6
Aligning the pump and motor ...................................................................... 23
5.7
Permissible forces and moments at the pump nozzles ................................ 24
5.8
Auxiliary connections .....................................................................................25
5.9
Connection to power supply .......................................................................... 25
5.10
Checking the direction of rotation ................................................................ 26
5.11
Removing the transport lock ......................................................................... 26
5.12
Filling in lubricants .........................................................................................27
6
Commissioning/Start-up/Shutdown ...................................................28
6.1
Commissioning/start-up ................................................................................. 28
6.2
Operating limits .............................................................................................. 32
6.3
Shutdown/storage/preservation .................................................................... 35
6.4
Returning to service .......................................................................................35
7
Servicing/Maintenance .......................................................................37
7.1
Safety regulations ........................................................................................... 37
7.2
Maintenance/inspection ................................................................................. 38
7.3
Drainage/cleaning ..........................................................................................43
7.4
Dismantling the pump set .............................................................................. 43
7.5
Reassembling the pump set ........................................................................... 45
7.6
Spare parts stock ............................................................................................. 46
8
Trouble-shooting ................................................................................49
8.1
Explanation of faults ...................................................................................... 53
9
Related Documents ............................................................................54
10
EC Declaration of Conformity ............................................................55
11
Certificate of Decontamination .........................................................56
Index ....................................................................................................57
4 of 58
B-Pump
53
Glossary
Glossary
Certificate of decontamination
A certificate of decontamination is enclosed by
the customer when returning the product to
the manufacturer to certify that the product
has been properly drained to eliminate any
environmental and health hazards arising from
components in contact with the fluid handled.
Discharge line
The line which is connected to the discharge
nozzle
Pump
Machine without drive, additional components
or accessories
Pump set
Complete pump set consisting of pump, drive,
additional components and accessories
Suction lift line/suction head line
The line which is connected to the suction
nozzle
Hydraulic system
The part of the pump in which the kinetic
energy is converted into pressure energy
B-Pump
5 of 58
54
1 General
1 General
1.1 Principles
This operating manual is supplied as an integral part of the type series and variants
indicated on the front cover. The manual describes the proper and safe use of this
equipment in all phases of operation.
The name plate indicates the type series and size, the main operating data, the order
number and the order item number. The order number and order item number
uniquely identify the pump (set) and serve as identification for all further business
processes.
In the event of damage, immediately contact your nearest KSB service centre to
maintain the right to claim under warranty.
Noise characteristics (⇨ Section 4.6 Page 17)
1.2 Installation of partly completed machinery
To install partly completed machinery supplied by KSB, refer to the sub-sections
under Servicing/Maintenance.
1.3 Target group
This operating manual is aimed at the target group of trained and qualified specialist
technical personnel. (⇨ Section 2.4 Page 9)
1.4 Other applicable documents
Table 1: Overview of other applicable documents
Document
Data sheet
General arrangement drawing/
outline drawing
Drawing of auxiliary connections
Contents
Description of the technical data of the pump (set)
Description of mating and installation dimensions
for the pump (set), weights
Description of auxiliary connections
1)
Hydraulic characteristic curve
General assembly drawing
Sub-supplier product literature1)
Spare parts lists1)
Piping layout1)
List of components
Installation manual1)
Characteristic curves for the head, NPSH required
and power input as a function of flow rate Q
Sectional drawing of the pump
Operating manuals and other product literature
describing accessories and integrated machinery
components
Description of spare parts
Description of auxiliary piping
Description of all pump components
Description of the installation of other types of
installation and components
For accessories and/or integrated machinery components observe the relevant
manufacturer's product literature.
1.5 Symbols
Table 2: Symbols used in this manual
Symbol
✓
⊳
1)
Description
Conditions which need to be fulfilled before proceeding with the
step-by-step instructions
Safety instructions
If agreed to be included in the scope of supply
6 of 58
B-Pump
55
1 General
Symbol
⇨
⇨
1.
Description
Result of an action
Cross-references
Step-by-step instructions
2.
Note
Recommendations and important information on how to handle
the product
B-Pump
7 of 58
56
2 Safety
2 Safety
!
DANGER
All the information contained in this section refers to hazardous situations.
2.1 Key to safety symbols/markings
Table 3: Definition of safety symbols/markings
Symbol
!
DANGER
!
WARNING
CAUTION
Description
DANGER
This signal word indicates a high-risk hazard which, if not avoided,
will result in death or serious injury.
WARNING
This signal word indicates a medium-risk hazard which, if not
avoided, could result in death or serious injury.
CAUTION
This signal word indicates a hazard which, if not avoided, could
result in damage to the machine and its functions.
Explosion protection
This symbol identifies information about avoiding explosions in
potentially explosive atmospheres in accordance with EC Directive
94/9/EC (ATEX).
General hazard
In conjunction with one of the signal words this symbol indicates a
hazard which will or could result in death or serious injury.
Electrical hazard
In conjunction with one of the signal words this symbol indicates a
hazard involving electrical voltage and identifies information about
protection against electrical voltage.
Machine damage
In conjunction with the signal word CAUTION this symbol indicates
a hazard for the machine and its functions.
2.2 General
This manual contains general installation, operating and maintenance instructions
that must be observed to ensure safe pump operation and prevent personal injury
and damage to property.
The safety information in all sections of this manual must be complied with.
This manual must be read and completely understood by the specialist personnel/
operators responsible prior to installation and commissioning.
The contents of this manual must be available to the specialist personnel at the site
at all times.
Information attached directly to the pump must always be complied with and be
kept in a perfectly legible condition at all times. This applies to, for example:
▪ Arrow indicating the direction of rotation
▪ Markings for connections
▪ Name plate
The operator is responsible for ensuring compliance with all local regulations not
taken into account in this manual.
2.3 Intended use
The pump (set) must only be operated within the operating limits described in the
other applicable documents.
▪ Only operate pumps/pump sets which are in perfect technical condition.
▪ Do not operate the pump (set) in partially assembled condition.
▪ Only use the pump to handle the fluids described in the data sheet or product
literature of the pump model or variant.
8 of 58
B-Pump
57
2 Safety
▪ Never operate the pump without the fluid to be handled.
▪ Observe the minimum flow rates indicated in the data sheet or product literature
(to prevent overheating, bearing damage, etc.).
▪ Observe the maximum flow rates indicated in the data sheet or product
literature (to prevent overheating, mechanical seal damage, cavitation damage,
bearing damage, etc.).
▪ Do not throttle the flow rate on the suction side of the pump (to prevent
cavitation and bearing damage).
▪ Observe the minimum water levels as specified in the product literature.
▪ Consult the manufacturer about any use or mode of operation not described in
the data sheet or product literature.
Prevention of foreseeable misuse
▪ Never open discharge-side shut-off elements further than permitted.
– The maximum flow rate specified in the data sheet or product literature
would be exceeded.
– Risk of cavitation damage
▪ Never exceed the permissible operating limits specified in the data sheet or
product literature regarding pressure, temperature, etc.
▪ Observe all safety information and instructions in this manual.
2.4 Personnel qualification and training
All personnel involved must be fully qualified to transport, install, operate, maintain
and inspect the machinery this manual refers to.
The responsibilities, competence and supervision of all personnel involved in
transport, installation, operation, maintenance and inspection must be clearly
defined by the operator.
Deficits in knowledge must be rectified by means of training and instruction
provided by sufficiently trained specialist personnel. If required, the operator can
commission the manufacturer/supplier to train the personnel.
Training on the pump (set) must always be supervised by technical specialist
personnel.
2.5 Consequences and risks caused by non-compliance with these operating
instructions
▪ Non-compliance with these operating instructions will lead to forfeiture of
warranty cover and of any and all rights to claims for damages.
▪ Non-compliance can, for example, have the following consequences:
– Hazards to persons due to electrical, thermal, mechanical and chemical
effects and explosions
– Failure of important product functions
– Failure of prescribed maintenance and servicing practices
– Hazard to the environment due to leakage of hazardous substances
2.6 Safety awareness
In addition to the safety information contained in this manual and the intended use,
the following safety regulations shall be complied with:
▪ Accident prevention, health and safety regulations
▪ Explosion protection regulations
▪ Safety regulations for handling hazardous substances
▪ Applicable standards and laws
B-Pump
9 of 58
58
2 Safety
2.7 Safety information for the operator/user
▪ The operator shall fit contact guards for hot, cold and moving parts and check
that the guards function properly.
▪ Do not remove any contact guards while the pump is running. The only
exception is the guard of the packing chamber.
▪ Provide the personnel with protective equipment and make sure it is used.
▪ Contain leakages (e.g. at the shaft seal) of hazardous fluids handled (e.g.
explosive, toxic, hot) so as to avoid any danger to persons and the environment.
Adhere to all relevant laws.
▪ Eliminate all electrical hazards. (In this respect refer to the applicable national
safety regulations and/or regulations issued by the local energy supply
companies.)
▪ Provided that switching off the pump does not increase potential risk, fit an
emergency-stop control device in the immediate vicinity of the pump (set) during
pump set installation.
2.8 Safety information for maintenance, inspection and installation work
▪ Modifications or alterations of the pump are only permitted with the
manufacturer's prior consent.
▪ Use only original spare parts or parts authorised by the manufacturer. The use of
other parts can invalidate any liability of the manufacturer for resulting damage.
▪ The operator ensures that all maintenance, inspection and installation work is
performed by authorised, qualified specialist personnel who are thoroughly
familiar with the manual.
▪ Only carry out work on the pump (set) during standstill of the pump.
▪ The pump casing must have cooled down to ambient temperature.
▪ Pump pressure must have been released and the pump must have been drained.
▪ When taking the pump set out of service always adhere to the procedure
described in the manual. (⇨ Section 6.3 Page 35)
▪ Decontaminate pumps which handle fluids posing a health hazard. (⇨ Section 7.3
Page 43)
▪ As soon as the work has been completed, re-install and/or re-activate any safetyrelevant and protective devices. Before returning the product to service, observe
all instructions on commissioning. (⇨ Section 6.1 Page 28)
2.9 Unauthorised modes of operation
Never operate the pump (set) outside the limits stated in the data sheet and in this
manual.
The warranty relating to the operating reliability and safety of the supplied pump
(set) is only valid if the equipment is used in accordance with its intended use.
2.10 Explosion protection
!
DANGER
Always observe the information on explosion protection given in this section when
operating the pump (set) in potentially explosive atmospheres.
Only pumps/pump sets marked as explosion-proof and identified as such in the data
sheet may be used in potentially explosive atmospheres.
Special conditions apply to the operation of explosion-proof pump sets to EC
Directive 94/9/EC (ATEX).
The explosion-proof status of the pump set is only assured if the pump set is used in
accordance with its intended use.
Never operate the pump set outside the limits stated in the data sheet and on the
name plate.
10 of 58
B-Pump
59
2 Safety
Prevent impermissible modes of operation at all times.
For information on application options of individual components (if any) in
potentially explosive atmospheres, refer to the manufacturer's product literature.
2.10.1
Repair
Special regulations apply to repair work on explosion-proof pumps. Modifications or
alteration of the pump set could affect explosion protection and are only permitted
after consultation with the manufacturer.
Repair work at the flameproof joints must only be performed in accordance with the
manufacturer's instructions. Repair to the values in tables 1 and 2 of EN 60079-1 is
not permitted.
B-Pump
11 of 58
60
3 Transport/Temporary Storage/Disposal
3 Transport/Temporary Storage/Disposal
3.1 Checking the condition upon delivery
1.
On transfer of goods, check each packaging unit for damage.
2.
In the event of in-transit damage, assess the exact damage, document it and
notify KSB or the supplying dealer (as applicable) and the insurer about the
damage in writing immediately.
3.2 Transport
DANGER
Lifting lugs of pump/motor overloaded
Danger to life from falling parts!
▷ Never transport the pump set components (pump/motor) in any way other than
those illustrated in the section on transport options.
▷ Refer to the weights of the individual components stated in the manufacturer's
product literature.
DANGER
The pump or individual components could slip out of the suspension arrangement
Danger to life from falling parts!
▷ Always transport the pump or components in the specified position.
▷ Never attach the suspension arrangement to free shaft areas on the pump.
▷ Refer to the weights indicated for the individual components.
▷ Comply with the applicable health and safety regulations.
▷ Use suitable, permitted lifting accessories.
DANGER
Improper transport
Risk of injury from lifting heavy components!
▷ Select lifting accessories which are suitable for the component weight.
▷ Always use the attachment points provided for the lifting accessories.
▷ Comply with the applicable health and safety regulations.
WARNING
Pump set tipping over or rolling off
Risk of personal injury!
▷ Always secure vertically positioned pump sets against tipping over.
▷ Always secure horizontally positioned pump sets against rolling off.
2)
1.
Refer to the weights of the individual components stated in the general
arrangement drawing and/or the manufacturer's product literature.
2.
Select suitable lifting equipment.
3.
Transport the pump/pump set and individual components as illustrated.2)
See other applicable documents for transport options
12 of 58
B-Pump
61
3 Transport/Temporary Storage/Disposal
2.
Always flush and clean the pump, particularly if it has been used for handling
noxious, explosive, hot or other hazardous fluids.
3.
If the pump set has handled fluids whose residues could lead to corrosion in the
presence of atmospheric humidity or could ignite upon contact with oxygen,
the pump set must also be neutralised, and anhydrous inert gas must be blown
through the pump to ensure drying.
4.
Always complete and enclose a certificate of decontamination when returning
the pump (set).
Always indicate any safety and decontamination measures taken. (⇨ Section 11
Page 56)
NOTE
If required, a blank certificate of decontamination can be downloaded from the
KSB web site at: www.ksb.com/certificate_of_decontamination
3.5 Disposal
WARNING
Fluids, consumables and supplies which are hot or pose a health hazard
Hazard to persons and the environment!
▷ Collect and properly dispose of flushing fluid and any residues of the fluid
handled.
▷ Wear safety clothing and a protective mask, if required.
▷ Observe all legal regulations on the disposal of fluids posing a health hazard.
14 of 58
1.
Dismantle the pump (set).
Collect greases and other lubricants during dismantling.
2.
Separate and sort the pump materials, e.g. by:
- Metals
- Plastics
- Electronic waste
- Greases and other lubricants
3.
Dispose of materials in accordance with local regulations or in another
controlled manner.
B-Pump
62
3 Transport/Temporary Storage/Disposal
2.
Always flush and clean the pump, particularly if it has been used for handling
noxious, explosive, hot or other hazardous fluids.
3.
If the pump set has handled fluids whose residues could lead to corrosion in the
presence of atmospheric humidity or could ignite upon contact with oxygen,
the pump set must also be neutralised, and anhydrous inert gas must be blown
through the pump to ensure drying.
4.
Always complete and enclose a certificate of decontamination when returning
the pump (set).
Always indicate any safety and decontamination measures taken. (⇨ Section 11
Page 56)
NOTE
If required, a blank certificate of decontamination can be downloaded from the
KSB web site at: www.ksb.com/certificate_of_decontamination
3.5 Disposal
WARNING
Fluids, consumables and supplies which are hot or pose a health hazard
Hazard to persons and the environment!
▷ Collect and properly dispose of flushing fluid and any residues of the fluid
handled.
▷ Wear safety clothing and a protective mask, if required.
▷ Observe all legal regulations on the disposal of fluids posing a health hazard.
14 of 58
1.
Dismantle the pump (set).
Collect greases and other lubricants during dismantling.
2.
Separate and sort the pump materials, e.g. by:
- Metals
- Plastics
- Electronic waste
- Greases and other lubricants
3.
Dispose of materials in accordance with local regulations or in another
controlled manner.
B-Pump
63
4 Description of the Pump (Set)
4 Description of the Pump (Set)
4.1 General description
▪ Deep-well turbine pump with mixed flow impeller.
▪ Electric motor or combustion engine.
▪ Discharge nozzle arranged above or below floor and variant for dry installation.
▪ Application: non-corrosive fluids, industry, water supply, fire-fighting systems,
general industry, pressure boosting, irrigation,…
▪ Single-stage or multistage hydraulic system
Pump for use in water works, irrigation and drainage pumping systems, power
stations and industrial water supply.
4.2 Designation
Example: B 16 B/2 VN / V1
Table 4: Key to the designation
Code
B
16
B
2
VN
V1
Description
Type series
Well diameter in inches (16 = 16")
Hydraulic system (B impeller)
Number of stages of the hydraulic system
Type of installation (VN = Discharge nozzle above floor3))
Type of drive (V1 = direct drive by vertical electric motor3))
4.3 Name plate
1
KSB Pumps Co. Ltd.
DWT
2013
B 16 B/2 VN / V1
P-No. 9971312132 / 000100
Q 400 m3/h
H 43 m
n 1450 1/min
2
3
4
5
Mat.-No.
6
7
8
ZN 3804 - H52x74
Fig. 1: Name plate (example)
1
3
5
7
Pump type
Order number
Speed
Order item number
2
4
6
8
Designation of the pump set
Flow rate
Year of supply
Head
4.4 Design details
Design
▪ Centrifugal pump
3)
Refer to the general arrangement drawing/outline drawing
B-Pump
15 of 58
64
4 Description of the Pump (Set)
▪ Vertical installation
▪ Single-stage or multi-stage
▪ Nominal diameter of the discharge nozzles: 80 mm to 500 mm
▪ Hole diameter: 6" to 24"
Pump casing
▪ Radially split relative to the shaft
▪ Suction/discharge casing, 1 or more pump bowls
▪ Replaceable casing wear rings
Impeller4)
▪ Single-entry mixed flow impeller, hydraulically unbalanced
▪ Optionally with impeller wear rings
▪ Axially locked in position on the shaft via locking and stage sleeves
Pump, intermediate and top shafts4)
▪ Connected via threaded, conical or split muff coupling
▪ Torque transmission from pump shaft to impeller/coupling(s) via locking sleeve(s)
or key(s)
Shaft seal4)
▪ Gland packing
▪ Mechanical seal
▪ With or without shaft protecting sleeve
Shaft guide bearing
▪ Medium-lubricated plain bearings
▪ Pump shaft supported by bearing bush in each pump bowl
(B series: additional support by bearing bushes in suction/discharge casing)
▪ Intermediate shaft supported by bearing spiders in bearing bushes installed
between column pipes
▪ Shaft protecting sleeves (stage sleeves)
from size B14 in pump bowl and in all column pipe bearings
Thrust and radial bearing4)
▪ Grease-packed rolling element bearings
▪ Angular contact ball bearings in back-to-back arrangement
▪ Uncooled
Direction of rotation
The pump's direction of rotation is anti-clockwise, seen from the top shaft of the
pump.
4.5 Configuration and function
Configuration
4)
5)
See general assembly drawing5)
See other applicable documents for delivered design
See other applicable documents for delivered design
16 of 58
B-Pump
65
4 Description of the Pump (Set)
Design
Function
Sealing
Pump and motor are connected by a coupling depending on the variant (see other
applicable documents).
The stage casings, column pipes and distributor casings are centred via flange
connections and bolted together.
If necessary, a suction strainer with or without foot valve may be installed upstream
of the pump to protect the pump against coarse particles and foreign objects.
The fluid enters the suction casing via a suction strainer (if any) and flows to the
suction impeller (connected to the rotating shaft) at a given pressure. In the impeller,
the kinetic energy is imparted to the fluid handled and converted to pressure.
The fluid flows from the impeller to the pump bowl where its pressure is further
increased via further partial conversion of the kinetic energy.
This procedure is repeated from one stage to the next with the effect that the
pressure increases at each stage by the same amount, i.e. by the discharge pressure
per stage.
After the last pump bowl, the fluid flows through the discharge casing into the
column pipe.
The clearance gap at the casing wear ring prevents any fluid from flowing back from
the stage casing into the suction area of the previous impeller.
The pump discharge pressure creates an axial force at the rotor of single-stage and
multistage centrifugal pumps, which is absorbed by the thrust bearing in the motor
stool together with the weight of the complete pump rotor and the radial forces.
The thrust and radial bearing also positions the rotor axially.
The pump is sealed by a shaft seal (mechanical seal or gland packing).
4.6 Noise characteristics
Surface sound pressure level LpA6): see data sheet for values.
4.7 Scope of supply
Depending on the model, the following items are included in the scope of supply:
▪ Pump
▪ Drive
▪ Base frame, supporting frame, foundation blocks, foundation rails, foundation
ring
▪ Coupling, coupling guard
▪ Cardan shaft, guard
▪ Fasteners for pump and base frame
▪ Optional accessories:
– Vibration monitoring
– Temperature monitoring device (PT 100)
– Constant level oiler
– Pressure gauge
– Measuring nipple for shock pulse measurement
– Cyclone
4.8 Dimensions and weights
▪ For pump dimensions and weights, please refer to the pump data sheet.
▪ For motor dimensions and weights, please refer to the motor documentation.
6)
Spatial average; as per ISO 3744 and EN 12639; valid for pump operation in the Q/Qopt = 0.80 - 1.1 range and for noncavitating operation. If noise levels are to be warranted, add an allowance of +3 dB for measuring and manufacturing
tolerances.
B-Pump
17 of 58
66
5 Installation at Site
5 Installation at Site
5.1 Safety regulations
For all work involving assembly, reassembly and installation, observe the following
safety information:
DANGER
Improper installation in potentially explosive atmospheres
Explosion hazard!
Damage to the pump set!
▷ Comply with the applicable local explosion protection regulations.
▷ Observe the information in the data sheet and on the name plates of pump and
motor.
DANGER
Improper transport
Risk of injury from lifting heavy components!
▷ Select lifting accessories which are suitable for the component weight.
▷ Always use the attachment points provided for the lifting accessories.
▷ Comply with the applicable health and safety regulations.
DANGER
Pump in a vertical position tipping over
Danger to life from pump or components tipping over!
▷ Attach the components to be installed to the hoisting tackle and keep them
secured until the screwed connections have been fastened.
▷ Always install the pump (set) in the sequence described.
▷ Always place components in their centre of gravity position on a suitable
surface to prevent them from tipping over.
5.2 Checks to be carried out prior to installation
Place of installation
WARNING
Installation on mounting surfaces which are unsecured and cannot support the load
Personal injury and damage to property!
▷ Observe the required compressive strength class C25/30 of the concrete in
exposure class XC1 to EN 206-1.
▷ The mounting surface must have set and must be completely horizontal and
even.
▷ Observe the weights indicated.
1.
Check the structural requirements.
All structural work required must have been prepared in accordance with the
dimensions stated in the outline drawing/general arrangement drawing.
B-Pump
19 of 58
67
5 Installation at Site
Suction head/suction lift line
WARNING
Foreign objects in the intake/suction line
Personal injury and damage to property!
▷ Make sure that the intake area (e.g.: intake chamber/intake channel) is clean
and free from foreign objects.
▷ Make sure that the suction line is clean and free from foreign objects.
▷ Protect intake area leading into any existing suction line against ingress of
foreign matter.
▷ Any existing suction-side flow distribution equipment must be installed firmly
and securely.
1.
Check suction-side conditions. No foreign objects must enter the pump.
2.
Clean the intake or suction line as necessary.
3.
Install suction strainer if required.
5.3 Installing the pump set
NOTE
See other applicable documents for the type of installation of the delivered design.
NOTE
See other applicable documents for other types of installation than those
documented here.
Depending on the type of installation, relevant instructions need to be carried out as
applicable:
▪ Prepare and install the base frame/supporting frame/foundation blocks/
foundation rails/foundation ring.
▪ Install the pump and motor on the prepared base frame/supporting frame/
foundation blocks/foundation rails/foundation ring.
▪ Check the alignment of pump and motor.
▪ Align the pump with the piping.
▪ Install and align the coupling.
▪ Connect the piping.
▪ Perform precision alignment of pump and motor, if possible with larger motors.
▪ Remove any transport locks.
Installation on existing elements
DANGER
The pump or individual components could slip out of the suspension arrangement
Danger to life from falling parts!
▷ Always transport the pump or components in the specified position.
▷ Never attach the suspension arrangement to free shaft areas on the pump.
▷ Refer to the weights and centre of gravity indicated for the individual
components.
▷ Observe the applicable local health and safety regulations.
▷ Use suitable, permitted lifting accessories.
20 of 58
B-Pump
68
5 Installation at Site
Suction head/suction lift line
WARNING
Foreign objects in the intake/suction line
Personal injury and damage to property!
▷ Make sure that the intake area (e.g.: intake chamber/intake channel) is clean
and free from foreign objects.
▷ Make sure that the suction line is clean and free from foreign objects.
▷ Protect intake area leading into any existing suction line against ingress of
foreign matter.
▷ Any existing suction-side flow distribution equipment must be installed firmly
and securely.
1.
Check suction-side conditions. No foreign objects must enter the pump.
2.
Clean the intake or suction line as necessary.
3.
Install suction strainer if required.
5.3 Installing the pump set
NOTE
See other applicable documents for the type of installation of the delivered design.
NOTE
See other applicable documents for other types of installation than those
documented here.
Depending on the type of installation, relevant instructions need to be carried out as
applicable:
▪ Prepare and install the base frame/supporting frame/foundation blocks/
foundation rails/foundation ring.
▪ Install the pump and motor on the prepared base frame/supporting frame/
foundation blocks/foundation rails/foundation ring.
▪ Check the alignment of pump and motor.
▪ Align the pump with the piping.
▪ Install and align the coupling.
▪ Connect the piping.
▪ Perform precision alignment of pump and motor, if possible with larger motors.
▪ Remove any transport locks.
Installation on existing elements
DANGER
The pump or individual components could slip out of the suspension arrangement
Danger to life from falling parts!
▷ Always transport the pump or components in the specified position.
▷ Never attach the suspension arrangement to free shaft areas on the pump.
▷ Refer to the weights and centre of gravity indicated for the individual
components.
▷ Observe the applicable local health and safety regulations.
▷ Use suitable, permitted lifting accessories.
20 of 58
B-Pump
69
5 Installation at Site
DANGER
Incorrect assembly
Risk of injury from lifting heavy components and placing them upright
▷ Only transport and place the pump and individual components upright in the
specified position.
▷ Select a suitable lifting accessory according to the weight of the component
and the installation requirements.
▷ Always use the attachment points provided for the lifting accessories.
✓ The relevant general arrangement drawing is available.
✓ The foundation has the required strength and characteristics for the loads
indicated in the general arrangement drawing.
✓ The foundation complies with the dimensions given in the general arrangement
drawing.
1.
Transport and place the pump (set) upright in accordance with the other
applicable documents.
2.
Lower the pump onto the foundation elements provided.
3.
Align the pump with the piping and connect it to the foundation.
4.
Mount the motor and motor stool as described in the motor manufacturer's
operating instructions.
5.
Align the coupling as described in the coupling manufacturer's operating
manual.
5.3.1
Checking and adjusting the pump rotor clearance
CAUTION
Incorrect pump rotor adjustment
Damage to the pump/pump set components
▷ Establish the permissible clearance by axially raising the pump rotor as per the
value specified for the axial clearance in the general assembly drawing. (⇨
Section 9 Page 54)
NOTE
The rotor must be checked and re-adjusted after the first installation or following
complete dismantling!
Check and re-adjustment are always carried out before the motor and the coupling
plate are fitted!
✓ Suitably dimensioned lifting equipment and lifting accessories are available.
✓ The pump has been completely assembled.
✓ The motor has not been mounted.
✓ The hexagon nuts for fine-adjustment of the gland have been loosened.
✓ The pump rotor rests with the blades inside the wear ring.
1.
The pump rotor position is set with the pump in an upright position.
2.
Establish the permissible clearance by raising the pump rotor in axial direction.
3.
Measure the distance from the contact face of the motor stool to the end of the
top shaft and record the measured value.
4.
Raise the pump rotor carefully by turning the adjusting nut clockwise until the
pump rotor has reached the value specified for the axial clearance in the
general assembly drawing.
5.
After raising the rotor by the value specified for the axial clearance, turn the
adjusting nut further until the holes of the locking screws align with the next
threaded holes. Note: This causes the permissible clearance to increase slightly
in size.
B-Pump
21 of 58
70
5 Installation at Site
6.
Mount the locking screws of the adjusting nut.
7.
Try turning the pump rotor by hand to see if it seizes up.
5.4 Connecting the piping
DANGER
Impermissible loads acting on the pump nozzles
Danger to life from leakage of hot, toxic, corrosive or flammable fluids!
▷ Do not use the pump as an anchorage point for the piping.
▷ The pipelines have been anchored in close proximity to the pump and
connected without transmitting any stresses or strains.
▷ Observe permissible forces and moments at the pump nozzles.
▷ Take appropriate measures to compensate thermal expansion of the piping.
CAUTION
Incorrect earthing during welding work at the piping
Destruction of rolling element bearings (pitting effect)!
▷ Never earth the electric welding equipment on the pump or baseplate.
▷ Prevent current flowing through the rolling element bearings.
NOTE
It is recommended to install check and shut-off elements in the system, depending
on the type of plant and pump. However, such elements must not obstruct proper
drainage or hinder disassembly of the pump.
✓ The suction lift line has been laid with a rising slope, the suction head line with a
downward slope towards the pump.
✓ A flow stabilisation section having a length equivalent to at least twice the
diameter of the suction flange has been provided upstream of the suction flange.
✓ The nominal diameters of the pipelines are equal to or greater than the nominal
diameters of the pump nozzles. A hydraulically optimised elbow is provided
between the suction lift line/suction head line and the pump.
✓ To prevent excessive pressure losses, adapters to larger diameters have a diffuser
angle of approx. 8°.
✓ The pipelines have been anchored in close proximity to the pump and connected
without transmitting any stresses or strains.
1.
Thoroughly clean, flush and blow through all vessels, pipelines and connections
(especially of new installations).
2.
Before installing the pump in the piping, remove the flange covers on the
suction and discharge nozzles of the pump.
Fig. 2: Connection with expansion joints
3.
22 of 58
If the owner/operator supplies an expansion joint, it has to be braced with
external tie rods to prevent impermissible reaction forces.
It is impermissible to connect the pump with unbraced expansion joints.
B-Pump
71
5 Installation at Site
CAUTION
Welding beads, scale and other impurities in the piping
Damage to the pump!
▷ Remove any impurities from the piping.
▷ If necessary, install a filter/strainer.
4.
If required, install a filter/strainer in the piping.
5.
Connect the pump nozzles to the piping.
CAUTION
Aggressive flushing and pickling agents
Damage to the pump!
▷ Match the cleaning operation mode and duration for flushing and pickling
service to the casing and seal materials used.
5.5 Enclosure/insulation
WARNING
Failure to re-install or re-activate protective devices
Risk of injury from moving parts or escaping fluid!
▷ As soon as the work is completed, re-install and/or re-activate any safetyrelevant and protective devices.
WARNING
Distributor casing and bearing housing take on the same temperature as the fluid
handled.
Risk of burns!
▷ Insulate the distributor casing.
▷ Fit protective equipment.
CAUTION
Heat build-up in the bearing housing
Damage to the bearing!
▷ Never insulate the bearing housing and bearing cover.
5.6 Aligning the pump and motor
DANGER
Inadmissible temperatures at the coupling or bearings due to misalignment of the
coupling
Explosion hazard!
Risk of burns!
▷ Make sure that the coupling is correctly aligned at all times.
CAUTION
Misalignment of pump and motor shafts
Damage to pump, motor and coupling!
▷ Always check the coupling after the pump has been installed and connected to
the piping.
B-Pump
23 of 58
72
5 Installation at Site
B
B
2
1
A
A
1
Fig. 3: Checking the coupling alignment
1
Straight-edge
2
Gauge
✓ The coupling guard and footboard, if any, have been removed.
1.
Place the straight-edge axially on both coupling halves.
2.
Leave the straight-edge in this position and turn the coupling by hand.
The coupling is aligned correctly if the distances A) and B) to the respective
shafts are the same at all points around the circumference.
The radial and axial deviation between the two coupling halves must not
exceed 0.05 mm. Observe the coupling manufacturer's operating manual!
3.
In case of misalignment, loosen the bolts on the motor and re-align.
4.
Re-tighten the bolts.
5.
Check coupling and shaft for proper functioning. Check that coupling/shaft can
be rotated by hand.
6.
Re-install the coupling guard and footboard, if any.
7.
Check the distance between coupling and coupling guard. The coupling guard
must not touch the coupling.
5.7 Permissible forces and moments at the pump nozzles
Fig. 4: Permissible forces and moments
See the general arrangement drawing for forces and moments at the pump nozzles.
The values indicated do not apply to reaction forces from unbraced expansion joints!
(See the general arrangement drawing for permissible values, or contact KSB)
The resulting permissible forces have been determined according to
The data on forces and moments apply to static piping loads only. If the limits are
exceeded, they must be checked and verified.
If a computerised strength analysis is required, please contact KSB.
The values are only applicable if the pump is installed on completely grouted
elements and bolted to a rigid and level foundation.
24 of 58
B-Pump
73
5 Installation at Site
5.8 Auxiliary connections
WARNING
Screw plugs subjected to pressure
Risk of injuries by parts flying off and escaping fluid!
▷ Never use screw plugs for releasing pressure from the pump casing.
▷ Always use suitable venting devices (e.g. vent valve).
WARNING
Failure to use or incorrect use of auxiliary connections (e.g. barrier fluid, flushing
liquid, etc.)
Risk of injury from escaping fluid!
Risk of burns!
Malfunction of the pump!
▷ Refer to the general arrangement drawing, the piping layout and pump
markings (if any) for the quantity, dimensions and locations of auxiliary
connections.
▷ Use the auxiliary connections provided.
See the general arrangement drawing for auxiliary connections
5.9 Connection to power supply
DANGER
Incorrect electrical installation
Explosion hazard!
▷ For electrical installation, also observe the requirements of IEC 60079-14.
▷ Always connect explosion-proof motors via a motor protection switch.
DANGER
Work on the pump set by unqualified personnel
Danger of death from electric shock!
▷ Always have the electrical connections installed by a trained and qualified
electrician.
▷ Observe IEC 60364 (DIN VDE 0100) regulations and, for explosion-proof pump
sets, IEC 60079 (DIN VDE 0165).
▷ Observe the motor manufacturer's operating instructions.
WARNING
Unintentional starting of pump set
Risk of injury by moving parts!
▷ Make sure that the pump set cannot be started up unintentionally.
▷ Always make sure the electrical connections are disconnected before carrying
out work on the pump set.
WARNING
Incorrect connection to the mains
Damage to the mains network, short circuit!
▷ Observe the technical specifications of the local energy supply companies.
1.
Check the available mains voltage against the data on the motor name plate.
2.
Select an appropriate start-up method.
B-Pump
25 of 58
74
5 Installation at Site
NOTE
A motor protection device is recommended.
5.9.1
Earthing
DANGER
Electrostatic charging
Explosion hazard!
Fire hazard!
Damage to the pump set!
▷ Connect the PE conductor to the earthing terminal provided.
5.10 Checking the direction of rotation
DANGER
Temperature increase resulting from contact between rotating and stationary
components
Explosion hazard!
Damage to the pump set!
▷ Never check the direction of rotation by starting up the unfilled pump set.
▷ Separate the pump from the motor to check the direction of rotation.
DANGER
Rotating shaft during direction of rotation check
Risk of injury!
▷ Maintain a safe distance to the pump set.
▷ Comply with the general health and safety regulations.
CAUTION
Drive and pump running in the wrong direction of rotation
Damage to the pump!
▷ Refer to the arrow indicating the direction of rotation on the pump.
▷ Check the direction of rotation. If required, check the electrical connection and
correct the direction of rotation.
✓ The pump has been completely separated from the motor.
✓ All components at the motor (e.g. coupling half at the motor shaft) have been
secured.
1.
Start the motor and stop it again immediately to determine the motor's
direction of rotation.
2.
Check the direction of rotation.
The motor's direction of rotation must match the arrow indicating the direction
of rotation on the pump.
3.
If the motor runs in the wrong direction of rotation, check the electrical
connection of the motor and the control system, if applicable.
5.11 Removing the transport lock
Remove the transport lock, if any.
26 of 58
B-Pump
75
5 Installation at Site
5.12 Filling in lubricants
CAUTION
Temporary storage of the pump set too long
Contamination, condensation, resinification or leakage of the grease!
▷ Check for contamination and condensation.
▷ Change the complete grease fill before returning the pump set to service.
▷ Replace the grease fill every time the bearings are dismantled.
Grease-lubricated
bearings
Oil-lubricated
bearings
Grease-lubricated bearings have been packed with grease at the factory.
Fill the bearing housings with lubricant up to the mark.
Oil quality: see data sheet
Oil quantity: see data sheet
CAUTION
Insufficient quantity of lubricant in bearing housing
Damage to the bearings!
▷ Check the lubricant level regularly.
▷ Always fill the bearing housing up to the mark.
NOTE
An excessively high oil level or grease quantity can lead to a temperature rise and
to leakage of the fluid handled or oil.
B-Pump
27 of 58
76
6 Commissioning/Start-up/Shutdown
6 Commissioning/Start-up/Shutdown
6.1 Commissioning/start-up
6.1.1
Prerequisites for commissioning/start-up
Before commissioning/starting up the pump set, make sure that the following
conditions are met:
▪ The pump set has been properly connected to the electric power supply and is
equipped with all protection devices. (⇨ Section 5.9 Page 25)
▪ The pump has been flooded up to the specified minimum water level. (See
general arrangement drawing)
▪ The direction of rotation has been checked. (⇨ Section 5.10 Page 26)
▪ All auxiliary connections required are connected and operational.
▪ The transport lock has been removed.
▪ The lubricants have been checked and filled in.
▪ After prolonged shutdown of the pump (set), the required activities have been
carried out. (⇨ Section 6.4 Page 35)
▪ The coupling alignment has been checked.
6.1.2
Priming and venting the pump
DANGER
Risk of potentially explosive atmosphere inside the pump
Explosion hazard!
▷ Before starting up the pump, vent the suction line and the pump and prime
them with the fluid to be handled.
DANGER
Shaft seal failure caused by dry running
Hot fluid may escape!
▷ Before start-up, flood the pump and the suction line, if any, up to the minimum
water level specified.
1.
Close all drains and drain lines.
2.
Flood the pump and the suction line, if any, up to the minimum water level
specified.
For suction lift operation, evacuate the pump.
3.
Fully open the shut-off element in the suction line.
4.
If the discharge line is equipped with a check valve, the shut-off element in the
discharge line may remain open as long as there is some back pressure. If this is
not the case, the shut-off element in the discharge line must be closed.
5.
Fully open all auxiliary connections (barrier fluid, flushing fluid etc.).
If liquid is supplied from an external source, make sure the data indicated in the
data sheet (pressure, flow rate, etc.) is observed.
6.
Open the venting element/ensure proper venting.
⇨ The shut-off element in the discharge line opens as flow starts (e.g. swing check
valve) or is opened immediately before pump start-up (e.g. gate valve already
slightly open when pump is started).
28 of 58
B-Pump
77
6 Commissioning/Start-up/Shutdown
6.1.3
Start-up
DANGER
Non-compliance with the permissible pressure and temperature limits if the pump is
operated with the suction and/or discharge line closed.
Explosion hazard!
Leakage of hot or toxic fluids!
▷ Never operate the pump with the shut-off elements in the suction line and/or
discharge line closed.
▷ Only start up the pump set with the discharge-side shut-off element slightly or
fully open.
DANGER
Excessive temperatures due to dry running or excessive gas content in the fluid
handled
Explosion hazard!
Damage to the pump set!
▷ Never operate the pump set without liquid fill.
▷ Prime the pump as specified.
▷ Always operate the pump within the permissible operating range.
WARNING
Pump set with high noise levels
Damage to hearing!
▷ Persons must only enter the vicinity of the running pump set if they are wearing
protective clothing/ear protection.
▷ See noise characteristics. (⇨ Section 4.6 Page 17)
CAUTION
Abnormal noises, vibrations, temperatures or leakage
Damage to the pump!
▷ Switch off the pump (set) immediately.
▷ Eliminate the causes before returning the pump set to service.
✓ Intake area (e.g. intake chamber) and system piping have been cleaned.
✓ Pump, suction line and inlet tank, if any, have been vented and primed with the
fluid to be handled.
✓ The lines for priming and venting have been closed.
CAUTION
Start-up against open discharge line
Motor overload!
▷ Make sure the motor has sufficient power reserves.
1.
Fully open the shut-off element in the suction head/suction lift line.
2.
Close or slightly open the shut-off element in the discharge line.
3.
Start up the motor.
4.
Immediately after the pump has reached full rotational speed, slowly open the
shut-off element in the discharge line and adjust it to comply with the duty
point.
B-Pump
29 of 58
78
6 Commissioning/Start-up/Shutdown
DANGER
Seal leakages at operating temperature
Hot or toxic fluid could escape!
▷ After the operating temperature has been reached and/or in the event of
leakage, switch off the pump set and tighten the bolts on the casing to the
specified torques.
▷ If there is leakage at the shaft seal, check the coupling alignment and re-align if
necessary.
6.1.4
Mechanical seal
Gland packing
Checking the shaft seal
The mechanical seal only leaks slightly or invisibly (as vapour) during operation.
Mechanical seals are maintenance-free.
The gland packing must drip slightly during operation.
(approx. 20 drops per minute)
DANGER
The temperatures at the gland packing have risen above the permissible limits
Explosion hazard!
▷ Gland packings are not approved for use in potentially explosive atmospheres.
▷ Immediately switch off the pump set!
The minimum leakage required depends on the fluid handled, pressure, sliding
velocity and temperature.
See data sheet for the leakage rates at the gland packing.
CAUTION
Excessive leakage or no leakage at the gland packing
Damage to the pump!
▷ Excessive leakage: Re-tighten the gland follower until the required leakage rate
is reached.
▷ No leakage: Switch off the pump set immediately.
WARNING
Work in the immediate vicinity of rotating parts
Risk of hand injuries!
▷ Always have this work performed by trained personnel.
▷ Take particular caution when performing this work.
Adjusting the leakage
Prior to commissioning
1.
Only lightly tighten the nuts of the gland follower by hand.
2.
Use a feeler gauge to verify that the gland follower is mounted centred and at
a right angle to the shaft.
⇨ The gland must leak after the pump has been primed.
(Only applies to pumps with suction lift line and the respective excess inlet
pressure.)
After five minutes
of operation
The leakage can be reduced.
1.
Tighten the nuts of the gland follower by 1/6 turn.
2.
Monitor the leakage for another five minutes.
Excessive leakage:
Repeat steps 1 and 2 until the minimum value has been reached.
30 of 58
B-Pump
79
6 Commissioning/Start-up/Shutdown
Not enough leakage:
Slightly loosen the nuts at the gland follower.
No leakage:
Switch off the pump set immediately!
Loosen the gland follower and repeat start-up.
Checking for leakage
After the leakage has been adjusted, monitor the leakage for about two hours at
maximum fluid temperature.
Check that enough leakage occurs at the gland seal at minimum fluid pressure.
Shutdown
6.1.5
CAUTION
Reverse flow of fluid handled (not applicable to pumps with reverse rotation lock)
Motor or winding damage!
Excessive reverse runaway speed of the motor!
▷ Thrust bearing damage following prolonged periods of reverse rotation.
(Applies to the radial bearing of the oil-lubricated plain bearing design)
▷ Observe the permissible reverse runaway speed of the motor. See the
manufacturer's product literature included with the supplied documentation.
▷ Close the shut-off elements.
✓ The shut-off element in the suction line is and remains open.
1.
Close the shut-off element in the discharge line slowly.
2.
Switch off the motor immediately after closing the shut-off element and make
sure the pump set runs down smoothly to a standstill.
NOTE
If the discharge line is equipped with a non-return or check valve, the shut-off
element in the discharge line may remain open, provided the site's requirements
and regulations are taken into account and observed.
NOTE
If shut-off is not possible, the pump will run in reverse direction.
The reverse runaway speed must be lower than the rated speed.
For prolonged shutdown periods:
1.
Close the shut-off element in the suction line, if any.
2.
Close the auxiliary connections.
CAUTION
Risk of freezing during prolonged pump shutdown periods
Damage to the pump!
▷ Drain the pump and the cooling/heating chambers (if any) or otherwise protect
them against freezing.
B-Pump
31 of 58
80
6 Commissioning/Start-up/Shutdown
6.2 Operating limits
DANGER
Non-compliance with operating limits for pressure, temperature, fluid handled and
speed
Explosion hazard!
Hot or toxic fluid could escape!
▷ Comply with the operating data indicated in the data sheet.
▷ Never use the pump for handling fluids it is not designed for.
▷ Avoid prolonged operation against a closed shut-off element.
▷ Never operate the pump at temperatures, pressures or rotational speeds
exceeding those specified in the data sheet or on the name plate unless the
written consent of the manufacturer has been obtained.
6.2.1
Maximum operating pressure
CAUTION
Permissible operating pressure exceeded
Damage to connections and seals!
▷ Never exceed the operating pressure specified in the data sheet.
The maximum operating pressure depends on the pump size, pump material and
nominal pressure of the flange design.
Neither the material / size dependent maximum pressure nor the maximum nominal
pressure of the flange must be exceeded.
Maximum operating pressure: see data sheet.
6.2.2
Temperature of the fluid handled
CAUTION
Fluid temperature too high or too low
Damage to the pump!
▷ Avoid prolonged operation against a closed shut-off element.
▷ Never operate the pump at temperatures above or below those specified in the
data sheet or on the name plate unless the written consent of the manufacturer
has been obtained.
If the values are not indicated in the data sheet, the following temperature limits
apply. The temperatures must neither be below nor above these limits.
Table 5: Temperature limits of the fluid handled
Minimum fluid temperature
Maximum fluid temperature
6.2.3
0 °C
+ 60 °C
Abrasive fluids/solids
CAUTION
Abrasive particles or solids in the fluid
Damage to the pump!
▷ Observe the limits specified indicated in the data sheet.
▷ Flush the piping prior to commissioning.
▷ Install a filter in the system, if required.
32 of 58
B-Pump
81
6 Commissioning/Start-up/Shutdown
Do not exceed the maximum permissible solids content specified in the data sheet.
When the pump handles fluids containing abrasive substances, increased wear of the
hydraulic system and the shaft seal are to be expected. In this case, reduce the
intervals commonly recommended for servicing and maintenance.
NOTE
Solids, especially long fibres, plastic residues or similar solids can lead to clogging of
the barrier or flushing lines and to mechanical seal damage.
6.2.4
Hydraulic operating range
CAUTION
Non-compliance with hydraulic operating limits
Damage to the pump and motor
▷ Observe the limits in the data sheet.
▷ Brief passage through the critical range below Qmin is permissible during startup.
General information on the hydraulic operating range
H
Qmin
System curve
B
Q-Hcurve
Qmax
NPSHRequired
NPSHAvailable
Q
A
A
C
Fig. 5: Pump operating range
NPSH
Available
A
C
Inlet pressure available in
the system
Operating limit
Operating range without
NPSH safety allowance
NPSH
Required inlet pressure
Required
B
Operating point
The flow rate Q will develop automatically as a function of the discharge head H, in
line with the pump's characteristic curve. The pump's permissible operating range has
limits that are independent of each other in terms of their cause.
Low flow operating limit
This limit is indicated in the H/Q characteristic by Qmin or by discontinuation of the
characteristic curve in the diagram.
NPSH-related limits under off-design conditions
The low flow and overload limits are determined by the ratio of NPSHRequired to
NPSHAvailable.
B-Pump
33 of 58
82
6 Commissioning/Start-up/Shutdown
The NPSH limits are determined as follows:
The intersections of NPSHRequired and NPSHAvailable are projected onto the H/Q
characteristic, where they represent the operating limits.
If the pump set is operated outside its operating limits or system-related changes
occur, check the NPSH values.
If necessary, consult your nearest customer service centre.
6.2.5
Frequency of starts
DANGER
Excessive surface temperature of the motor
Explosion hazard!
Damage to the motor!
▷ In case of explosion-proof motors, observe the frequency of starts specified in
the manufacturer's product literature.
CAUTION
Re-starting while motor is still running down
Damage to the pump (set)!
▷ Do not re-start the pump set before the pump rotor has come to a standstill.
The frequency of starts is usually determined by the maximum temperature increase
of the motor. This largely depends on the power reserves of the motor in steadystate operation and on the starting conditions (DOL, star-delta, moments of inertia,
etc).
Observe the motor manufacturer's operating instructions.
6.2.6
Fluid handled
6.2.6.1
Temperature of the fluid handled
CAUTION
Fluid temperature too high or too low
Damage to the pump!
▷ Avoid prolonged operation against a closed shut-off element.
▷ Never operate the pump at temperatures above or below those specified in the
data sheet or on the name plate unless the written consent of the manufacturer
has been obtained.
If the values are not indicated in the data sheet, the following temperature limits
apply. The temperatures must neither be below nor above these limits.
Table 6: Temperature limits of the fluid handled
Minimum fluid temperature
Maximum fluid temperature
6.2.6.2
0 °C
+ 60 °C
Abrasive fluids/solids
CAUTION
Abrasive particles or solids in the fluid
Damage to the pump!
▷ Observe the limits specified indicated in the data sheet.
▷ Flush the piping prior to commissioning.
▷ Install a filter in the system, if required.
34 of 58
B-Pump
83
6 Commissioning/Start-up/Shutdown
Do not exceed the maximum permissible solids content specified in the data sheet.
When the pump handles fluids containing abrasive substances, increased wear of the
hydraulic system and the shaft seal are to be expected. In this case, reduce the
intervals commonly recommended for servicing and maintenance.
NOTE
Solids, especially long fibres, plastic residues or similar solids can lead to clogging of
the barrier or flushing lines and to mechanical seal damage.
6.3 Shutdown/storage/preservation
6.3.1
Measures to be taken for shutdown
The pump (set) remains installed
✓ Sufficient fluid is supplied for the functional check run of the pump.7)
1.
For prolonged shutdown periods, start up the pump (set) regularly between
once a month and once every three months for approximately five minutes.
This will prevent the formation of deposits within the pump and the pump
intake area.7)
The pump (set) is removed from the pipe and stored
✓ The pump has been properly drained and the safety instructions for dismantling
the pump have been observed.
1.
Spray-coat the inside wall of the pump casing, and in particular the impeller
clearance areas, with a preservative.
2.
Spray the preservative through the suction and discharge nozzles.
It is advisable to then close the pump nozzles (e.g. with plastic caps or similar).
3.
Oil or grease all exposed machined parts and surfaces of the pump (with
silicone-free oil and grease, food-approved if required) to protect them against
corrosion.
4.
Contact KSB regarding preservation of the bearing.
5.
Remove the gland packing.
If the pump set is to be stored temporarily, only preserve the wetted components
made of low-alloy materials. Commercially available preservatives can be used for
this purpose. Observe the manufacturer's instructions for application/removal.
Observe any additional instructions and information provided
6.4 Returning to service
For returning the pump to service observe the sections on commissioning/start-up
(⇨ Section 6.1 Page 28) and the operating limits (⇨ Section 6.2 Page 32) .
In addition, carry out all servicing/maintenance operations before returning the
pump (set) to service. (⇨ Section 7 Page 37)
WARNING
Failure to re-install or re-activate protective devices
Risk of personal injury from moving parts or escaping fluid!
▷ As soon as the work is complete, re-install and/or re-activate any safety-relevant
and protective devices.
7)
If the intake area (e.g. intake elbow) and the pump have been drained, special measures must be taken for the functional
check run. See section on routine maintenance and inspection intervals or contact KSB.
B-Pump
35 of 58
84
7 Servicing/Maintenance
7 Servicing/Maintenance
7.1 Safety regulations
DANGER
Improperly serviced pump set
Explosion hazard!
Damage to the pump set!
▷ Service the pump set regularly.
▷ Prepare a maintenance schedule with special emphasis on lubricants, shaft seal
and coupling.
The operator ensures that all maintenance, inspection and installation work is
performed by authorised, qualified specialist personnel who are thoroughly familiar
with the manual.
WARNING
Unintentional starting of pump set
Risk of injury by moving parts!
▷ Make sure that the pump set cannot be started up unintentionally.
▷ Always make sure the electrical connections are disconnected before carrying
out work on the pump set.
WARNING
Fluids and supplies posing a health hazard and/or hot fluids or supplies
Risk of injury!
▷ Observe all relevant laws.
▷ When draining the fluid take appropriate measures to protect persons and the
environment.
▷ Decontaminate pumps which handle fluids posing a health hazard.
WARNING
Insufficient stability
Risk of crushing hands and feet!
▷ During assembly/dismantling, secure the pump (set)/pump parts to prevent
tipping or falling over.
A regular maintenance schedule will help avoid expensive repairs and contribute to
trouble-free, reliable operation of the pump (set)and pump components with a
minimum of maintenance expenditure and work.
NOTE
All maintenance, service and installation work can be carried out by KSB Service.
See data sheet for contact addresses
Never use force when dismantling and reassembling the pump set.
B / BU
B-Pump
37 of 58
85
7 Servicing/Maintenance
7 Servicing/Maintenance
7.1 Safety regulations
DANGER
Improperly serviced pump set
Explosion hazard!
Damage to the pump set!
▷ Service the pump set regularly.
▷ Prepare a maintenance schedule with special emphasis on lubricants, shaft seal
and coupling.
The operator ensures that all maintenance, inspection and installation work is
performed by authorised, qualified specialist personnel who are thoroughly familiar
with the manual.
WARNING
Unintentional starting of pump set
Risk of injury by moving parts!
▷ Make sure that the pump set cannot be started up unintentionally.
▷ Always make sure the electrical connections are disconnected before carrying
out work on the pump set.
WARNING
Fluids and supplies posing a health hazard and/or hot fluids or supplies
Risk of injury!
▷ Observe all relevant laws.
▷ When draining the fluid take appropriate measures to protect persons and the
environment.
▷ Decontaminate pumps which handle fluids posing a health hazard.
WARNING
Insufficient stability
Risk of crushing hands and feet!
▷ During assembly/dismantling, secure the pump (set)/pump parts to prevent
tipping or falling over.
A regular maintenance schedule will help avoid expensive repairs and contribute to
trouble-free, reliable operation of the pump (set)and pump components with a
minimum of maintenance expenditure and work.
NOTE
All maintenance, service and installation work can be carried out by KSB Service.
See data sheet for contact addresses
Never use force when dismantling and reassembling the pump set.
B-Pump
37 of 58
86
7 Servicing/Maintenance
7.2 Maintenance/inspection
7.2.1
Supervision of operation
DANGER
Risk of potentially explosive atmosphere inside the pump
Explosion hazard!
▷ The pump internals in contact with the fluid to be handled, including the seal
chamber and auxiliary systems must be filled with the fluid to be handled at all
times.
▷ Provide sufficient inlet pressure.
▷ Provide an appropriate monitoring system.
DANGER
Excessive temperatures as a result of bearings running hot or defective bearing seals
Explosion hazard!
Fire hazard!
Damage to the pump set!
▷ Regularly check the lubricant level.
▷ Regularly check the temperatures of the rolling element bearings/bearing
housing.
▷ Regularly check the rolling element bearings for running noises.
DANGER
Excessive temperatures due to dry-running
Explosion hazard!
Fire hazard!
Damage to the pump set!
▷ Never operate the pump set without liquid fill.
▷ Never close the shut-off element in the suction line and/or supply line during
pump operation.
CAUTION
Impermissibly high temperature of fluid handled
Damage to the pump!
▷ Prolonged operation against a closed shut-off element is not permitted
(heating up of the fluid).
▷ Observe the temperature limits in the data sheet and in the section on
operating limits. (⇨ Section 6.2 Page 32)
While the pump is in operation, observe and check the following:
▪ The pump must run quietly and free from vibrations at all times.
▪ In case of oil lubrication, ensure the oil level is correct. (⇨ Section 5.12 Page 27)
▪ Check the shaft seal. (⇨ Section 6.1.4 Page 30)
▪ Check the static seals for leakage.
▪ Check the rolling element bearings for running noises.
Vibrations, noise and an increase in current input occurring during unchanged
operating conditions indicate wear.
▪ Monitor the correct functioning of any auxiliary connections.
▪ Monitor the stand-by pump.
To make sure that the stand-by pumps are ready for operation, start them up
once a month.
38 of 58
B-Pump
87
7 Servicing/Maintenance
▪ Monitor the bearing temperature.
The bearing temperature must not exceed the value specified in the data sheet
(measured on the outside of the bearing housing).
If temperature monitoring is provided, the bearing temperatures indicated in the
data sheet apply to the measuring points of the sensors.
▪ Check the flexible or torsion-resistant elements of the coupling/Cardan shaft and
replace as necessary.
▪ Check any pressure gauges.
▪ Check the drive as described in the manufacturer's product literature.
▪ Check that the fitted coupling guard does not touch the coupling.
▪ Make sure that the earth connection is fitted and marked.
▪ Cooling system (if any)
Take the pump out of service at least once a year to thoroughly clean the cooling
system.
CAUTION
Operation outside the permissible bearing temperature
Damage to the pump!
▷ The bearing temperature of the pump (set) must never exceed the value
specified in the data sheet (measured on the outside of the bearing housing).
NOTE
After commissioning, increased temperatures may occur at grease-lubricated rolling
element bearings due to the running-in process. The final bearing temperature is
only reached after a certain period of operation (up to 48 hours depending on the
conditions).
7.2.2
Inspection work
DANGER
Excessive temperatures caused by friction, impact or frictional sparks
Explosion hazard!
Fire hazard!
Damage to the pump set!
▷ Regularly check the coupling guard, plastic components and other guards of
rotating parts for deformation and sufficient distance from rotating parts.
7.2.2.1
General information
Check and service all components of the pump set as described in the corresponding
operating manuals provided by the manufacturers.
The manufacturer's product literature is included with the order documents which
are supplied with the delivery.
7.2.2.2
Routine maintenance and inspection intervals
Table 7: Routine maintenance and inspection intervals
Interval
Daily
B-Pump
Number of Time
persons
1
6 min.
1
6 min.
Maintenance job
▪ Check shaft seal leakage.
▪ Check the oil level and top up
the oil, if required (only for oillubricated bearings)
39 of 58
88
7 Servicing/Maintenance
Interval
Weekly
Monthly
8)
8)
Every 4 years or if
discharge head drops
Number of Time
Maintenance job
persons
1
15 min. ▪ Check pump operation
(inlet pressure, head, bearing
temperature, noise and
vibrations).
1
15 min. ▪ Check torsional play/condition of
the coupling/Cardan shaft (see
operating manual for the
coupling/Cardan shaft).
1
15 min. ▪ Switch to a stand-by pump, if
any, or carry out a functional
check run (5 minutes).
1
15 min. ▪ Re-lubricate grease-packed
rolling element bearings, relubrication quantity see data
sheet
1
15 min. ▪ Check oil-lubricated rolling
element bearings
9)
▪ Generally inspect and overhaul
2
the pump in accordance with the
operating instructions.
▪ Check and replace, if necessary:
– Bearings, casing wear ring,
impeller wear ring, shaft
protecting sleeve
– Impeller and shaft
– Fit new seals and gaskets.
7.2.2.3
Checking the clearances
Excessive clearances will affect pump performance. Losses in efficiency and discharge
head will occur.
To check the clearance gaps, remove the rotor. If the clearance gap is larger than
permitted, replace the casing wear ring and impeller wear ring (if any).
See data sheet for clearances.
NOTE
If the max. clearance gaps specified are exceeded, replace the components affected.
7.2.2.4
Cleaning filters
CAUTION
Insufficient inlet pressure due to clogged filter/strainer in the suction line
Damage to the pump!
▷ Monitor contamination of filter/strainer with suitable means (e.g. differential
pressure gauge).
▷ Clean filter/strainer at appropriate intervals.
8)
9)
See data sheet for intervals
Depending on work required due to operating hours, operating conditions etc.
40 of 58
B-Pump
89
7 Servicing/Maintenance
7.2.2.5
Lubrication and lubricant change of thrust bearings
DANGER
Excessive temperatures as a result of bearings running hot or defective bearing seals
Explosion hazard!
Fire hazard!
Damage to the pump set!
▷ Regularly check the bearing seals.
▷ Regularly check the condition of the lubricant.
▷ Regularly check the oil level and top up the oil (oil-lubricated bearings only).
CAUTION
Temporary storage of the pump set too long
Deposits, condensation, resinification or leakage of grease!
▷ Change the complete grease fill before returning the pump set to service.
▷ Replace the grease fill every time the bearings are dismantled.
CAUTION
Pump stored too long or incorrectly
Damage to the pump!
▷ Check especially the rolling element bearings and the lubricant. If any damage
is suspected, replace the rolling element bearings.
7.2.2.5.1 Grease lubrication
The bearings are supplied packed with high-quality grease.
7.2.2.5.1.1
Re-lubricating with grease
WARNING
Work in the immediate vicinity of rotating parts
Risk of hand injuries!
▷ Always have this work performed by trained personnel.
▷ Take particular caution when performing this work.
CAUTION
Contaminated lubricating nipples
Contamination of the lubricating grease!
▷ Clean the grease lubricating nipples before re-lubricating them.
1.
Clean the lubricating nipples, if contaminated.
2.
Position the grease press on the lubricating nipple.
3.
Press in the grease.
7.2.2.5.1.2
Changing the grease
✓ The bearing assembly must be dismantled to change the grease.
1.
Thoroughly clean bearing, bearing housing and bearing cover with petrol,
benzene or a similar cleaning agent. Carefully remove the cleaning agent from
the components again.
2.
Check that all parts are in perfect working order. Replace any damaged parts.
3.
Completely fill the cavities between the rolling elements of the bearings with
grease.
B-Pump
41 of 58
90
7 Servicing/Maintenance
4.
Fill the cavities in the bearing cover with grease until they are about half full.
7.2.2.5.1.3
Intervals
▪ Re-lubricating with grease: see data sheet for intervals, at least every 2 years
▪ Changing the grease: every time the pump is dismantled
7.2.2.5.1.4
Grease quality
▪ Grease quality: see data sheet
7.2.2.5.1.5
Grease quantity
▪ Quantities for lubrication and re-lubrication: see data sheet
7.2.2.5.2 Oil lubrication
The rolling element bearings are usually lubricated with mineral oil.
7.2.2.5.2.1
Topping up/changing the lubricant
CAUTION
Insufficient quantity of lubricant in bearing housing
Damage to the bearings!
▷ Check the lubricant level regularly.
▷ Fill the bearing housing up to the mark.
NOTE
An excessively high oil level or grease quantity can lead to a temperature rise and
to leakage of the fluid handled or oil.
Oil is usually topped up during standstill of the pump. If it is unavoidable to top up
the constant level-oiler with the pump running, temporary oil leakage may occur.
Provide an appropriate drip collector.
WARNING
Lubricants posing a health hazard and/or hot lubricants
Hazard to persons and the environment!
▷ When draining the lubricant take appropriate measures to protect persons and
the environment.
▷ Wear safety clothing and a protective mask, if required.
▷ Collect and dispose of any lubricants.
▷ Observe all legal regulations on the disposal of fluids posing a health hazard.
✓ A suitable container for the used oil is on hand.
42 of 58
1.
Place the container beneath the lubricant draining element.
2.
Unscrew/open the lubricant draining element and drain the lubricant.
3.
Once the bearing housing has run empty, close the lubricant drain.
4.
Remove the venting element.
5.
Fill the lubricant up to the mark using the opening provided for the venting
element.
6.
After a short time, check whether the oil level has dropped at the marking. If
the oil level is too low, top it up with oil.
B-Pump
91
7 Servicing/Maintenance
7.2.2.5.2.2
Intervals
▪ Oil change interval: see data sheet
7.2.2.5.2.3
Oil quality
▪ Oil quality: see data sheet
7.2.2.5.2.4
Oil quantity
▪ Oil quantity: see data sheet
7.3 Drainage/cleaning
WARNING
Fluids, consumables and supplies which are hot or pose a health hazard
Hazard to persons and the environment!
▷ Collect and properly dispose of flushing fluid and any residues of the fluid
handled.
▷ Wear safety clothing and a protective mask, if required.
▷ Observe all legal regulations on the disposal of fluids posing a health hazard.
If the fluids handled by the pump (set) leave residues which might lead to corrosion
damage when coming into contact with atmospheric humidity, or which might ignite
when coming into contact with oxygen, the pump (set) must be flushed through,
neutralised, and anhydrous inert gas must be blown through the pump for drying
purposes.
If available, use the suction-side connections to drain the fluid handled (see general
arrangement drawing/outline drawing).
7.4 Dismantling the pump set
7.4.1
General information/Safety regulations
DANGER
Insufficient preparation of work on the pump (set)
Risk of injury!
▷ Properly shut down the pump set.
▷ Close the shut-off elements in suction and discharge line.
▷ Drain the pump and release the pump pressure.
▷ Close any auxiliary connections.
▷ Allow the pump set to cool down to ambient temperature.
WARNING
Unqualified personnel performing work on the pump (set)
Risk of injury!
▷ Always have repair and maintenance work performed by specially trained,
qualified personnel.
WARNING
Improper lifting/moving of heavy assemblies or components
Personal injury and damage to property!
▷ Use suitable transport devices, lifting equipment and lifting tackle to move
heavy assemblies or components.
B-Pump
43 of 58
92
7 Servicing/Maintenance
WARNING
Unintentional starting of pump set
Risk of injury by moving parts!
▷ Make sure that the pump set cannot be started up unintentionally.
▷ Always make sure the electrical connections are disconnected before carrying
out work on the pump set.
WARNING
Hot surface
Risk of injury!
▷ Allow the pump set to cool down to ambient temperature.
WARNING
Components with sharp edges
Risk of cutting or shearing injuries!
▷ Always use appropriate caution for installation and dismantling work.
▷ Wear work gloves.
Observe the general safety instructions and information. (⇨ Section 2.8 Page 10)
For any work on the motor, observe the instructions of the relevant motor
manufacturer.
For dismantling and reassembly refer to the general assembly drawing.
In the event of damage you can always contact our service staff.
Preparing the pump set
7.4.2
DANGER
The pump or individual components could slip out of the suspension arrangement
Danger to life from falling parts!
▷ Always transport the pump or components in the specified position.
▷ Never attach the suspension arrangement to the free shaft end of the pump.
▷ Refer to the weight of the individual components and the centre of gravity.
▷ Observe the applicable local accident prevention regulations.
▷ Use suitable, permitted lifting accessories, e.g. self-tightening lifting tongs.
DANGER
Pump (set) tipping over
Danger to life from pump or components tipping over!
▷ Never undo screwed connections without suspending and securing the
components to be dismantled in a hoisting tackle.
▷ Only dismantle the pump (set) in the specified order.
▷ Only deposit components on suitable surfaces and in centre-of-gravity position,
so that they cannot tip over.
NOTE
Vertical installation
For dismantling a vertically installed pump, the complete pump has to be removed
and placed in horizontal position. Then, the complete rotor can be removed and
dismantled.
44 of 58
B-Pump
93
7 Servicing/Maintenance
Preparing for dismantling
✓ The gate valves in the suction and discharge lines have been closed.
✓ The motor has been disconnected from the power supply and secured against
unintentional start-up.
✓ The pump has been drained.
1.
Remove the flushing line and any auxiliary feed lines connected to the pump.
2.
Remove coupling guard 681 and guard plates 680.
3.
Separate the pump-end coupling half as described in the operating instructions
for the coupling. (See the manufacturer's product literature included with the
supplied documentation.)
Dismantling the supplied design/installation
7.4.3
NOTE
See other applicable documents for removing and dismantling the delivered design/
installation.
7.5 Reassembling the pump set
7.5.1
General information/Safety regulations
DANGER
The pump or individual components could slip out of the suspension arrangement
Danger to life from falling parts!
▷ Always transport the pump or components in the specified position.
▷ Never attach the suspension arrangement to the free shaft end of the pump.
▷ Refer to the weight of the individual components and the centre of gravity.
▷ Observe the applicable local accident prevention regulations.
▷ Use suitable, permitted lifting accessories, e.g. self-tightening lifting tongs.
DANGER
Pump (set) tipping over
Danger to life from pump or components tipping over!
▷ Never undo screwed connections without suspending and securing the
components to be dismantled in a hoisting tackle.
▷ Only dismantle the pump (set) in the specified order.
▷ Only deposit components on suitable surfaces and in centre-of-gravity position,
so that they cannot tip over.
WARNING
Improper lifting/moving of heavy assemblies or components
Personal injury and damage to property!
▷ Use suitable transport devices, lifting equipment and lifting tackle to move
heavy assemblies or components.
WARNING
Unqualified personnel performing work on the pump (set)
Risk of injury!
▷ Always have repair and maintenance work performed by specially trained,
qualified personnel.
B-Pump
45 of 58
94
7 Servicing/Maintenance
WARNING
Unintentional starting of pump set
Risk of injury by moving parts!
▷ Make sure that the pump set cannot be started up unintentionally.
▷ Always make sure the electrical connections are disconnected before carrying
out work on the pump set.
CAUTION
Improper reassembly
Damage to the pump!
▷ Reassemble the pump (set) in accordance with the general rules of sound
engineering practice.
▷ Replace any damaged/worn parts.
▷ Use original spare parts only.
WARNING
Components heated up for installation
Risk of burns to hands!
▷ Wear protective gloves suitable for installation work.
▷ Let components cool down after installation.
Observe the general safety instructions and information. (⇨ Section 2.8 Page 10)
For any work on the motor, observe the instructions of the relevant motor
manufacturer.
For dismantling and reassembly refer to the general assembly drawing.
In case of damage you can always contact our service staff.
Sequence
O-rings/V-rings
Always reassemble the pump in accordance with the corresponding general assembly
drawing and installation instructions.
▪ Never use O-rings that have been glued together from material sold by the
metre.
▪ Replace all O-rings and V-rings and clean their locating fits on the shaft. Fit all
sealing elements on the relevant components before starting with the assembly.
Assembly adhesives
▪ Observe the installation instructions regarding cleaning, lubricating and sealing
agents.
▪ Remove any residues of liquid sealants before starting with the assembly.
Tightening torques
For reassembly, tighten all screws and bolts as specified in this manual.
7.5.2
Assembling the supplied design/installation
NOTE
See other applicable documents for installing and assembling the delivered design/
installation.
7.6 Spare parts stock
7.6.1
Ordering spare parts
Please order any replacement or spare parts required from:
46 of 58
B-Pump
95
7 Servicing/Maintenance
KSB Pumps Company Limited
16/2, Sir Aga Khan Road
Lahore, Pakistan
Telefax: +92 42 3636 8878-4
Telephone: +92 42 3630 4173-4
Always quote the following data when ordering replacement or spare parts:
▪ Type series
▪ Size
▪ KSB order number
▪ Year of construction
Refer to the name plate for all data.
Also specify the following data:
▪ Description
▪ Part No.
▪ Quantity of spare parts
▪ Shipping address
▪ Mode of dispatch (freight, mail, express freight, air freight)
Refer to the general assembly drawing/list of components for part numbers and
descriptions.
7.6.2
Recommended spare parts stock for 2 years' operation to DIN 24296
Table 8: Quantity of spare parts for recommended spare parts stock
Part No.
211
212
213
230
231
11)
12)
13)
Number of pumps (including stand-by pumps)
10)11)
320
321
382.1
384
400.1-x
411.1 x .
412.1-x
422.1-x
433
10)
Description
Pump shaft
Intermediate shaft10)12)
Top shaft10)
Impeller11)
Suction stage impeller12)11)
Rotor11) (for multistage pumps)
Angular contact ball bearing
Deep-groove ball bearing12)
Bearing carrier13)
Thrust collar13)
Gasket
Joint ring
O-ring
Felt ring
Mechanical seal
Mechanical seal,
complete11)
Primary ring11)
Mating ring11)
O-rings11)
Secondary seal at
mating ring11)
2
3
1
1*n12)
1
1*n12)
1
1
1
1
1
1
4*n12)
4*n12)
4*n12)
4*n12)
1
1
1*n12)
1
1*n12)
1
1
1
1
1
1
6*n12)
6*n12)
6*n12)
6*n12)
1
2
2
2
2
3
3
3
3
4
5
6/7
Quantity of spare parts
1
2
2
1*n12) 2*n12) 2*n12)
1
2
2
1*n12) 2*n12) 2*n12)
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
8*n12) 8*n12) 9*n12)
8*n12) 8*n12) 9*n12)
8*n12) 8*n12) 9*n12)
8*n12) 8*n12) 9*n12)
2
2
2
4
4
4
4
5
5
5
5
6
6
7
7
8/9
10
and
more
2
2*n12)
2
2*n12)
2
2
3
3
4
4
12*n12)
12*n12)
12*n12)
10*n12)
3
20 %
20 %
20 %
20 %
20 %
20 %
25 %
25 %
50 %
50 %
150 %
150 %
150 %
100 %
25 %
7
7
9
9
90 %
90 %
100 %
100 %
With keys, shaft bolts/screws and shaft nuts
Optional
If any
If the thrust and radial bearing is a plain bearing
B-Pump
47 of 58
96
7 Servicing/Maintenance
Part No.
Description
Number of pumps (including stand-by pumps)
Set of springs11)
461
502
503
521
524.1-x
526/920.x
529
540
541
52-1
544
545.1-x
840
851/852
920.1
931.1 x .
14)
15)
Gland packing (set)14)
Casing wear ring
Impeller wear ring12)
Stage sleeve12)15)
Shaft protecting sleeve
(shaft seal)12)
Centring sleeve/locknut15)
Bearing sleeve
(shaft protecting sleeve)
Bush (thrust and radial bearing)13)
Interstage bush12)15)
Locking sleeve, complete12)15)
Threaded bush15)
Bearing bush
Torquetransmitting coupling elements
Conical/threaded coupling
Nut with two flats12)15)
Lockwasher12)15)
2
3
4
5
1
4
2*n
2*n
2*n
2
1
4
2*n
2*n
2*n
2
1
2
1
3
1
4
2
5
1
2*n
1*n
2
2*n
1
1
3*n
1*n
3
3*n
1
2
4*n
1*n
4
4*n
2
1*n
1
1
1*n
1
1
2*n
2
2
6/7
8/9
10
and
more
2
8
4*n
4*n
4*n
4
20 %
100 %
50 %
50 %
50 %
50 %
2
7
2
9
20 %
100 %
2
5*n
2*n
5
5*n
2
3
7*n
2*n
7
7*n
3
4
9*n
2*n
9
9*n
4
50 %
100 %
20 %
2*n
2
2
3*n
3
3
4*n
4
4
30 %
30 %
30 %
Quantity of spare parts
1
1
2
6
6
6
2*n
3*n
3*n
2*n
3*n
3*n
2*n
3*n
3*n
2
3
3
100 %
30 %
Supplied by the metre
Not considered in DIN 24296
48 of 58
B-Pump
97
8 Trouble-shooting
8 Trouble-shooting
WARNING
Improper remedial work on the pump (set)
Risk of injury!
▷ For any work performed in order to remedy faults on the pump (set) observe
the relevant information given in this operating manual or the product
literature provided by the accessories manufacturers.
A
Pump pressure is too low
B
Excessive pump discharge pressure
C
Excessive flow rate
D
Pump delivers insufficient flow rate
E
Excessive power consumption
F
Pump is running but does not deliver
G
Pump stops during operation
H
Vibrations and noise during pump operation
I
Impermissible rise of temperature inside the pump
J
Excessive bearing temperature
K
Excessive leakage at the shaft seal
L
Motor is overloaded
M
Leakage at the pump
Table 9: Trouble-shooting
A B C D E F G H I J K L M Possible cause
Remedy16)
✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
✘
Operating point B does not match
▪ Re-adjust to duty point
the Q and H performance data
(e.g. close/open shut-off
calculated in advance.
element accordingly).
✘
✘
Pump or piping are not completely ▪ Vent pump.
✘
vented.
✘
✘
✘ ✘ ✘ ✘
Inlet line or impeller clogged
▪ Clean the impeller.
▪ Check system for impurities.
▪ Remove deposits in pump
and/or piping.
✘
✘
✘ ✘ ✘
Formation of air pockets in the
piping
✘
✘
✘ ✘ ✘
NSPH available/water level too
low.
▪ Check any strainers installed/
suction opening.
▪ Fit venting device.
▪ Alter piping layout.
▪ Check operating mode.
▪ Increase back pressure by
throttling.
▪ Correct suction conditions.
▪ Increase suction head.
▪ Install pump at a lower level.
▪ Fully open the shut-off
element in the inlet line, if
any.
▪ Alter the inlet line if piping
losses are too high, if any.
16)
Pump pressure must be released before attempting to remedy faults on parts which are subjected to pressure.
B-Pump
49 of 58
98
8 Trouble-shooting
8 Trouble-shooting
WARNING
Improper remedial work on the pump (set)
Risk of injury!
▷ For any work performed in order to remedy faults on the pump (set) observe
the relevant information given in this operating manual or the product
literature provided by the accessories manufacturers.
A
Pump pressure is too low
B
Excessive pump discharge pressure
C
Excessive flow rate
D
Pump delivers insufficient flow rate
E
Excessive power consumption
F
Pump is running but does not deliver
G
Pump stops during operation
H
Vibrations and noise during pump operation
I
Impermissible rise of temperature inside the pump
J
Excessive bearing temperature
K
Excessive leakage at the shaft seal
L
Motor is overloaded
M
Leakage at the pump
Table 9: Trouble-shooting
A B C D E F G H I J K L M Possible cause
Remedy16)
✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
✘
Operating point B does not match
▪ Re-adjust to duty point
the Q and H performance data
(e.g. close/open shut-off
calculated in advance.
element accordingly).
✘
✘
Pump or piping are not completely ▪ Vent pump.
✘
vented.
✘
✘
✘ ✘ ✘ ✘
Inlet line or impeller clogged
▪ Clean the impeller.
▪ Check system for impurities.
▪ Remove deposits in pump
and/or piping.
✘
✘
✘ ✘ ✘
Formation of air pockets in the
piping
✘
✘
✘ ✘ ✘
NSPH available/water level too
low.
▪ Check any strainers installed/
suction opening.
▪ Fit venting device.
▪ Alter piping layout.
▪ Check operating mode.
▪ Increase back pressure by
throttling.
▪ Correct suction conditions.
▪ Increase suction head.
▪ Install pump at a lower level.
▪ Fully open the shut-off
element in the inlet line, if
any.
▪ Alter the inlet line if piping
losses are too high, if any.
16)
Pump pressure must be released before attempting to remedy faults on parts which are subjected to pressure.
B-Pump
49 of 58
99
8 Trouble-shooting
A B C D E
F
G H
I
J
K L
✘
M Possible cause
Shaft seal worn/Score marks or
roughness on shaft protecting
sleeve.
Remedy16)
▪ Check flushing liquid/barrier
fluid pressure.
▪ Clean barrier fluid, supply
external barrier fluid, if
necessary, or increase barrier
fluid pressure.
▪ Fit new shaft seal.
▪ Replace worn components by
new ones.
✘
✘
✘
✘
✘
✘
Unfavourable flow to pump
suction nozzle
✘
Gland follower, seal cover
excessively tightened or tightened
askew, incorrect packing material.
▪ Replace shaft protecting
sleeve.
▪ Check the inflow conditions of
the intake reservoir and intake
chamber.
▪ Check whether pipe routing
results in swirling or irregular
flow (e.g. downstream of
elbow) and correct, if
necessary.
▪ Correct.
▪ Replace.
▪ Correct.
▪ Replace gland packing.
✘ ✘ ✘
Lack of cooling liquid or dirty
cooling chamber.
▪ Replace worn components by
new ones.
▪ Check flushing liquid/barrier
fluid pressure.
▪ Clean barrier fluid, supply
external barrier fluid, if
necessary, or increase barrier
fluid pressure.
▪ Increase cooling liquid
quantity.
✘
✘
✘
Pump is warped or sympathetic
vibrations in the piping.
Increased axial thrust
▪ Clean coolant/cooling
chamber.
▪ Re-align pump/drive.
▪ Check piping connections and
secure fixing of pump; improve
fixing of piping, if necessary.
▪ Fix pipelines using antivibration material.
▪ Check duty point/pump
selection.
▪ Check operating mode.
✘
✘
✘
16)
Insufficient or excessive quantity of
lubricant or unsuitable lubricant
Non-compliance with specified
coupling distance
▪ Check suction side flow
conditions.
▪ Clean the bearings.
▪ Top up, reduce or change
lubricant.
▪ Correct distance in accordance
with the general arrangement
drawing.
Pump pressure must be released before attempting to remedy faults on parts which are subjected to pressure.
B-Pump
51 of 58
100
8 Trouble-shooting
A B C D E F
✘
✘ ✘
G H
I
J
K L M Possible cause
Remedy16)
✘
Motor is running on 2 phases only. ▪ Replace defective fuses.
▪ Check electrical connections.
✘
✘ ✘
Rotor out of balance
▪ Check switchgear.
▪ Clean the rotor.
▪ Check run-out; re-align, if
necessary.
✘
✘ ✘
✘ ✘
Defective bearing(s)
Flow rate is too low.
▪ Re-balance the rotor.
▪ Replace.
▪ Re-adjust to duty point.
▪ Fully open shut-off element in
suction/inlet line.
▪ Fully open shut-off element in
discharge line.
✘
✘
In star-delta operation, motor
sticks at star stage
✘
✘
✘
✘
✘
✘ ✘ ✘
▪ Re-calculate or measure
hydraulic losses HV.
▪ Check electrical connections.
▪ Check switchgear.
Impermissible air or gas content in
fluid handled
▪ Close or only slightly open the
shut-off element in the
discharge line during start-up.
▪ Check suction line for leakage,
seal if necessary.
Air intake at pump inlet (e.g. airentraining vortices)
▪ Replace defective parts.
▪ Check intake area for airentraining vortices.
▪ Correct suction conditions.
▪ Reduce flow velocity at suction
line inlet.
✘
Cavitation (rattling noise)
▪ Increase suction head.
▪ Correct suction conditions.
▪ Check operating mode.
▪ Increase suction head.
✘
✘
✘
✘
Foundation not rigid enough.
✘ ✘ ✘
✘
Impermissible single-pump/parallel
operation.
✘
✘
✘ ✘ ✘
✘
✘
✘
Shaft is out of true.
Impeller rubs against casing
components.
Operating voltage is too low.
Excessive surface pressure in the
mechanical seal's sealing clearance,
lack of lubricant/circulation liquid
▪ Install pump at a lower level.
▪ Check.
▪ Correct.
▪ Re-adjust to duty point.
▪ Alter system conditions.
▪ Adjust pump characteristic H.
▪ Replace.
▪ Check rotor.
▪ Check impeller position.
▪ Verify that piping has been
connected without
transmitting any stresses or
strains.
▪ Increase the operating voltage.
▪ Check installation dimensions.
18)
16)
Pump pressure must be released before attempting to remedy faults on parts which are subjected to pressure.
18)
Separate pump/pump set from the power supply and depressurise!
52 of 58
B-Pump
101
8 Trouble-shooting
8.1 Explanation of faults
The example illustrated in the diagram serves to facilitate understanding of the
causes of faults/malfunctions and their remedies described in the Trouble-shooting
section.
Many operating faults/malfunctions on pumps are caused by hydraulic phenomena.
The hydraulic behaviour of a pump is illustrated by its characteristic curves H, P, Eta
and NPSH in combination with the system characteristic curves HA and NPSHA as a
function of flow rate Q. The operating point B is given by the intersection between
the system curve HA and the pump's characteristic curve H.
If the cause of a fault or malfunction is unclear, consult your nearest KSB service
centre.
P
HA
B
HV
Hgeo
Eta
NPSH
H
NPSHA
Q
Fig. 6: Adjusting to the duty point
P
B
H
Eta
Q
Pump power output
Operating point
Head
Efficiency
Flow rate
B-Pump
HA
Hv
NPSH
NPSHA
Hgeo
System curve
Hydraulic losses (system)
Required inlet pressure
Inlet pressure available in the system
Static head
53 of 58
102
9 Related Documents
9 Related Documents
NOTE
See separately compiled documents.
54 of 58
B-Pump
103
10 EC Declaration of Conformity
10 EC Declaration of Conformity
Manufacturer:
KSB Pumps Company Limited
16/2, Sir Aga Khan Road
Lahore (Pakistan)
The manufacturer herewith declares that the product:
B-Pump
KSB order number: ...................................................................................................
▪ is in conformity with the provisions of the following Directives as amended from time to time:
– Pump (set): Machinery Directive 2006/42/EC
The manufacturer also declares that
▪ the following harmonised international standards have been applied:
– ISO 12100
– EN 809
Person authorised to compile the technical file:
Christian Saar
Head of Product Development Borehole Pumps and Motors
KSB Aktiengesellschaft
Neue Industriestr. 8
66424 Homburg (Germany)
The EC Declaration of Conformity was issued in/on:
Place, date
..............................19).............................
Name
Function
Company
Address
19)
A signed, legally binding declaration of conformity is supplied with the product.
B-Pump
55 of 58
104
11 Certificate of Decontamination
11 Certificate of Decontamination
Type:
Order number/
Order item number20):
................................................................................................................................
................................................................................................................................
Delivery date:
................................................................................................................................
Field of application:
................................................................................................................................
Fluid handled20):
................................................................................................................................
Please tick where applicable20):
⃞
Radioactive
⃞
Explosive
⃞
Corrosive
⃞
Toxic
⃞
Harmful
⃞
Bio-hazardous
⃞
Highly flammable
⃞
Safe
Reason for return20):
................................................................................................................................
Comments:
................................................................................................................................
................................................................................................................................
The product/accessories have been carefully drained, cleaned and decontaminated inside and outside prior to dispatch/
placing at your disposal.
We herewith declare that this product is free from hazardous chemicals, biological and radioactive substances.
On seal-less pumps, the rotor has been removed from the pump for cleaning.
⃞
⃞
No special safety precautions are required for further handling.
The following safety precautions are required for flushing fluids, fluid residues and disposal:
...............................................................................................................................................................
...............................................................................................................................................................
We confirm that the above data and information are correct and complete and that dispatch is effected in accordance with
the relevant legal provisions.
....................................................................
Place, date and signature
20)
.......................................................
Address
.......................................................
Company stamp
Required fields
56 of 58
B-Pump
105
Index
Index
A
Mechanical seal 30
Misuse 9
Abrasive fluids 33, 35
Applications 8
Auxiliary connections 25
N
Noise characteristics 17
B
O
Bearing temperature 39
Bearings 13
C
Certificate of decontamination 56
Commissioning/start-up 28
D
Operating limits 32
Order number 6
Ordering spare parts 47
Other applicable documents 6
P
Partly completed machinery 6
Permissible forces and moments at the pump nozzles
24
Piping 22
Preservation 13, 35
Priming and venting 28
Pump casing 16
Design 15
Dismantling 44
Disposal 14
E
Explosion protection 10, 19, 23, 25, 26, 28, 29, 30, 32,
34, 37, 38, 39, 41
R
F
Reassembly 46
Return to supplier 14
Returning to service 35
Running noises 38
Filter 40
Filters 23
Frequency of starts 34
S
Impeller type 16
Installation at site 19
Intended use 8
Safety 8
Safety awareness 9
Scope of supply 17
Shaft guide bearing 16
Shaft seal 16
Shutdown 35
Spare parts stock 47
Start-up 29
Storage 35
M
T
Maintenance 37
Trouble-shooting 49
G
Gland packing 30
I
B-Pump
57 of 58
106
107
Motores | Automação | Energia | Transmissão & Distribuição | Tintas
Manual Geral de Instalação, Operação e
Manutenção de Motores Elétricos
Installation, Operation and Maintenance
Manual of Electric Motors
Manual General de Instalación, Operación
y Mantenimiento de Motores Eléctricos
--
108
www.weg.net
Português
2
54
Español
106
ESPAÑOL
English
106
Motores Eléctricos
109
www.weg.net
Manual General de Instalación, Operación y
Mantenimiento de Motores Eléctricos
Este manual presenta informaciones referentes a los motores eléctricos WEG de
inducción con rotor de jaula, con rotor de imanes permanentes o híbridos, de
baja y alta tensión, en las carcasas IEC 56 a 630 y NEMA 42 a 9606/10.
Las líneas listadas abajo poseen informaciones adicionales, encontradas en
manuales específicos:
J Motores para extracción de humo (Smoke Extraction Motor);
J Motores con freno electromagnético;
J Motores para Áreas Clasificadas.
Estos productos están de acuerdo con las siguientes normas, cuando son
aplicables:
J NBR 17094-1: Máquinas Eléctricas Giratorias - Motores de Inducción - Parte 1:
J Trifásicos
J NBR 17094-2: Máquinas Eléctricas Giratorias - Motores de Inducción - Parte 1:
J Monofásicos
J IEC 60034-1: Rotating Electrical Machines - Part 1:
J Rating and Performance
J NEMA MG 1: Motors and Generators
J CSA C 22.2 N°100: Motors and Generatorss
J UL 1004-1: Rotating Electrical Machines – General Requirements
En caso de dudas sobre la aplicabilidad de este material, contacte a WEG.
Motores Eléctricos
107
110
www.weg.net
INDICE
1. DIFINICIONES ........................................................................................................... 110
2. RECOMENDACIONES INICIALES ........................................................................... 111
2.1.SEÑALES DE ADVERTENCIA .............................................................................................................111
2.2. VERIFICACIÓN EN LA RECEPCIÓN.................................................................................................111
2.3. PLACAS DE IDENTIFICACIÓN ......................................................................................................... 112
3. SEGURIDAD .............................................................................................................. 115
4. MANIPULACION Y TRANSPORTE ..................................................................................................... 116
4.1. IZAMIENTO ........................................................................................................................................ 116
4.1.1. Motores horizontales con un ojal de izamiento ................................................................... 117
4.1.2. Motores horizontales con dos o más ojales de izamiento ................................................. 117
4.1.3. Motores verticales ................................................................................................................... 118
4.1.3.1. Procedimiento para colocación de motores W22 en posición vertical.......................... 119
4.1.3.2. Procedimiento para colocación de motores HGF en posición vertical ......................... 120
4.2. PROCEDIMIENTO PARA VIRADA DE MOTORES W22 VERTICALES .......................................... 121
ESPAÑOL
5. ALMACENADO......................................................................................................... 123
5.1. SUPERFICIES MECANIZADAS EXPUESTAS .................................................................................. 123
5.2. APILAMIENTO ................................................................................................................................... 123
5.3. COJINETES........................................................................................................................................ 124
5.3.1. Cojinetes de rodamiento lubricados a grasa ....................................................................... 124
5.3.2. Cojinetes de rodamiento con lubricación a aceite ............................................................. 124
5.3.3. Cojinetesde rodamiento con lubricación de tipo Oil Mist.................................................. 125
5.3.4. Cojinetes de deslizamiento .................................................................................................... 125
5.4. RESISTENCIA DE AISLAMIENTO.................................................................................................... 125
5.4.1. Procedimiento para medición de la resistencia de aislamiento ........................................ 125
6. INSTALACION ...........................................................................................................128
6.1. CIMIENTOS PARA EL MOTOR ......................................................................................................... 129
6.2. FIJACION DEL MOTOR .................................................................................................................... 130
6.2.1. Fijación por las patas .............................................................................................................. 131
6.2.2. Fijación por brida .................................................................................................................... 132
6.2.3. Fijación por pad ....................................................................................................................... 132
6.3. BALANCEO ........................................................................................................................................ 133
6.4. ACOPLAMIENTOS ............................................................................................................................ 133
6.4.1. Acoplamiento directo .............................................................................................................. 133
6.4.2. Acoplamiento por engrenaje ................................................................................................. 133
6.4.3. Acoplamiento por poleas y correas ...................................................................................... 133
6.4.4. Acoplamiento de motores equipados con cojinetes de deslizamento............................. 133
6.5. NIVELACION ...................................................................................................................................... 134
6.6. ALINEAMIENTO................................................................................................................................. 134
6.7. CONEXION DE MOTORES LUBRICADOS A ACEITE O DE TIPO OIL MIST ................................ 135
6.8. CONEXION DEL SISTEMA DE REFRIGERACION A AGUA ........................................................... 135
6.9. CONEXION ELECTRICA ................................................................................................................... 135
108
Motores Eléctricos
111
www.weg.net
6.10. CONEXION DE LOS DISPOSITIVOS DE PROTECCION TERMICA ............................................. 136
6.11. TERMORESISTORES (Pt-100) ........................................................................................................ 137
6.12. METODOS DE PARTIDA ................................................................................................................. 139
6.13. MOTORES ALIMENTADOS POR CONVERTIDOR DE FRECUENCIA ......................................... 140
6.13.1. Uso de Filtros (dV/dt) ............................................................................................................. 140
6.13.1.1. Motor con alambre circular esmaltado ............................................................................ 140
6.13.1.2. Motor con bobina preformada .......................................................................................... 140
6.13.2. Aislamiento de los Cojinetes ................................................................................................ 141
6.13.3. Frecuencia de Conmutación ................................................................................................ 141
6.13.4. Limite de la rotación mecánica ............................................................................................ 141
7. OPERACION ..............................................................................................................142
7.1. PARTIDA DEL MOTOR ...................................................................................................................... 142
7.2. CONDICIONES DE OPERACIÓN ..................................................................................................... 144
7.2.1. Límites de la severidad de vibración ..................................................................................... 145
8. MANTENIMIENTO ....................................................................................................146
8.1. INSPECCION GENERA .................................................................................................................... 146
8.2. LUBRICACION .................................................................................................................................. 146
ESPAÑOL
8.2.1. Cojinetes de rodamiento lubricados a grasa ....................................................................... 147
8.2.1.1. Motores sin grasera.............................................................................................................. 149
8.2.1.2. Motores con grasera............................................................................................................ 149
8.2.1.3. Compatibilidad de la grasa Mobil Polyrex EM con otras grasas.................................... 149
8.2.2. Cojinetes de rodamiento lubricados a aceite...................................................................... 150
8.2.3. Cojinetes de rodamiento con lubricación del tipo Oil Mist ............................................... 150
8.2.4. Cojinetes de deslizamiento .................................................................................................... 150
8.3. DESMONTAJE Y MONTAJE ............................................................................................................. 151
8.3.1. Caja de conexión .................................................................................................................... 152
8.4. PROCEDIMIENTO PARA ADECUACION DE LA RESISTENCIA DE AISLAMIENTO ................... 152
8.5. PARTES Y PIEZAS ............................................................................................................................ 153
9. INFORMACIONES AMBIENTALES ..........................................................................154
9.1. EMBALAJE ........................................................................................................................................ 154
9.2. PRODUCTO ..................................................................................................................................... 154
10. PROBLEMAS Y SOLUCIONES...............................................................................155
11. TERMINO DE GARANTIA .......................................................................................156
12. TERMINO DE CONFORMIDAD ..............................................................................157
Motores Eléctricos
109
112
www.weg.net
1. DEFINICIONES
Balanceo: procedimiento por el cual la distribución de masa de un cuerpo es verificada y, si es necesario,
ajustada para garantizar que el desbalance residual o las vibraciones y fuerzas en los cojinetes en la frecuencia
de rotación mecánica estén dentro de los límites especificados en las normas internacionales.
Grado de balanceo: indica la amplitud de pico de la velocidad de vibración, expresada en mm/s, de un rotor
girando libre en el espacio y es producto de un desbalance específico y la velocidad angular del rotor a la
velocidad máxima de operación.
Parte puesta a tierra: partes metálicas eléctricamente conectadas al sistema de puesta a tierra.
Parte viva: Conductor o parte conductora destinada a ser energizada en condiciones normales de uso,
incluyendo el conductor neutro.
Personal autorizado: trabajador que tiene anuencia formal de la empresa.
Personal capacitado: trabajador que atienda las siguientes condiciones, simultaneamente:
reciba capacitación bajo orientación y responsabilidad de profesional habilitado y autorizado;
J bajo responsabilidad de profesional habilitado y autorizado.
J
Nota: La capacitación sólo es válida para la empresa que lo capacitó y en las condiciones establecidas por el profesional habilitado y
autorizado responsable por la capacitación.
Personal habilitado: trabajador previamente calificado y con registro en el consejo de clase competente.
ESPAÑOL
Personal calificado: trabajador que compruebe conclusión de curso específico en el área eléctrica por el
sistema oficial de enseñanza.
110
Motores Eléctricos
113
www.weg.net
2. RECOMENDACIONES INICIALES
Los motores eléctricos poseen circuitos energizados, componentes giratorios y superficies
calientes, durante su operación normal, que pueden causar daños personales. De esta forma,
todas las actividades relacionadas a su transporte, almacenado, instalación, operación y
mantenimiento deben ser realizadas por personal capacitado.
Deben ser observadas las normas y procedimientos vigentes en el país de instalación.
La no observación de las instrucciones indicadas en este manual y demás referencias en el sitio web:
www.weg.net puede resultar en serios daños personales y materiales y anular la garantía del producto.
En este manual no son presentadas todas las informaciones detalladas sobre posibles variantes constructivas
ni considerados todos los casos de montaje, operación o mantenimiento. Este documento contiene
informaciones necesarias para que las personas capacitadas puedan ejecutar el servicio. Las imágenes
presentadas son meramente ilustrativas.
Para motores utilizados para extracción de humo (Smoke Extraction Motors), consulte también las
instrucciones del manual 50026367 (inglés) disponible en el sitio web www.weg.net.
Para operación de motores con freno, consultar las informaciones del manual del motofreno WEG 50000701
(portugués) / 50006742 (inglés) o motofreno Intorq 50021505 (portugués) / 50021973 (inglés) disponibles en el
sitio web www.weg.net.
La correcta definición de las características del ambiente y de la aplicación es de responsabilidad
del usuario.
ESPAÑOL
Durante el período de garantía del motor, los servicios de reparación, revisión y recuperación deben
ser realizadas por Asistentes Técnicos autorizados WEG para continuidad del término de garantía.
2.1. SENALES DE ADVERTENCIA
Advertencia sobre seguridad y garantía.
2.2. VERIFICACION EN LA RECEPCION
Todos los motores son testeados durante el proceso de fabricación.
En la recepción del motor, verifique si ocurrieron daños durante el transporte. Ante la ocurrencia de cualquier
daño, regístrelo por escrito junto al agente transportador, y comuníquelo inmediatamente a la compañía
aseguradora y a WEG. La no comunicación puede resultar en la cancelación de la garantía.
Se debe realizar una inspección completa en el producto:
J Verifique si los datos contenidos en la placa de identificación están de acuerdo con el pedido de compra;
J Remueva los dispositivos de trabado del eje (en caso que existan) y gire manualmente el eje para verificar si
el mismo gira libremente.
J Asegúrese que el motor no haya sido expuesto a polvareda y humedad excesiva durante el transporte.
No remueva la grasa de protección de la punta del eje, ni los tapones que cierran los agujeros de la caja de
conexión, si existen. Estos ítems de protección deben ser mantenidos hasta que la instalación completa sea
concluída.
Motores Eléctricos
111
114
www.weg.net
2.3. PLACAS DE IDENTIFICACION
ESPAÑOL
La placa de identificación contiene las informaciones que describen las características constructivas y el
desempeño del motor. En la Figura 2-1 y Figura 2-2 son presentados ejemplos de diseños de placas de
identificación.
Figura 2.1 - Placa de identificación de motores IEC
112
Motores Eléctricos
115
www.weg.net
ESPAÑOL
Figura 2.1 - Placa de identificación de motores IEC
Motores Eléctricos
113
116
ESPAÑOL
www.weg.net
Figura 2.2 - Placa de identificación de motores NEMA
114
Motores Eléctricos
117
www.weg.net
3. SEGURIDAD
Durante la instalación y mantenimiento, los motores deben estar desconectados de la red,
completamente parados y deben ser tomados cuidados adicionales para evitar partidas
accidentales.
Los profesionales que trabajan en instalaciones eléctricas, sea en el montaje, en la operación o en
el mantenimiento, deben utilizar herramientas apropiadas y ser instruidos sobre la aplicación de las
normas y prescripciones de seguridad, inclusive sobre el uso de Equipamientos de Protección
Individual (EPI), los que deben ser cuidadosamente observados.
Los motores eléctricos poseen circuitos energizados, componentes giratorios y superficies
calientes, durante su operación normal, que pueden causar daños personales. De esta forma,
todas las actividades relacionadas a su transporte, almacenado, instalación, operación y
mantenimiento deben ser realizadas por personal capacitado.
Deben ser seguidas las instrucciones sobre seguridad, instalación, mantenimiento e inspección de acuerdo
con las normas vigentes en cada país.
ESPAÑOL
Motores Eléctricos
115
118
www.weg.net
4. MANIPULACION Y TRANSPORTE
Los motores embalados individualmente no deben ser izados por el eje o por el embalaje, sino por el(los)
ojal(es) de izamiento (cuando existan) y con dispositivos adecuados. Los ojales de izamiento son
dimensionados para soportar tan solo la masa del motor indicada en la placa de identificación. Los motores
suministrados en palés deben ser izados por la base de palé.
El embalaje no debe ser tumbado bajo ninguna circunstancia.
No utilice los ojales de izamiento para suspender el motor en conjunto con otros equipamientos,
como por ejemplo: bases, poleas, ventiladores, bombas, reductores, etc.
No deben ser utilizados ojales damnificados, por ejemplo, con rajaduras, deformaciones, etc. Verificar sus
condiciones antes de utilizarlos.
Los ojales de izamiento en componentes como tapas, kit de ventilación forzada, entre otros, deben ser
utilizados solamente para el izamiento de estos componentes de manera aislada, nunca del motor
completo.
Todo el movimiento debe ser realizado de forma suave, sin impactos, en caso contrario los rodamientos
pueden ser dañados, así como los ojales ser expuestos a esfuerzos excesivos, pudiendo provocar el
rompimiento de los mismos.
ESPAÑOL
Los dispositivos de trabado del eje (utilizados para protección durante el transporte), en motores
con rodamientos de rodillos o contacto angular, deben ser utilizados para todo y cualquier
transporte del motor, aunque eso requiera el desplazamiento de la máquina accionada.
Todos los motores HGF, independientemente del tipo de cojinete, deben tener su rotor trabado para
transporte.
4.1. IZAMIENTO
Antes de iniciar cualquier proceso de izamiento, asegúrese de que los ojales estén adecuadamente
fijados, totalmente atornillados y con su base en contacto con la superficie a ser izada, conforme
Figura 4-1. La Figura 4-2 ejemplifica el uso incorrecto.
Asegúrese de que el equipamiento utilizado en el izamiento y sus dimensiones sean adecuados al tamaño
del ojal y de la masa del motor.
Figura 4.1 – Manera correcta de fijación
del ojal de izamiento.
Figura 4.2 – Manera incorrecta de
fijación del ojal de izamiento.
El centro de gravedad de los motores varía en función de la potencia y los accesorios instalados.
Respete los ángulos máximos, durante el izamiento, informados en los subtópicos a seguir.
116
Motores Eléctricos
119
www.weg.net
4.1.1. Motores horizontales con un ojal de izamiento
Para motores con un ojal de izamiento, el ángulo máximo resultante durante el proceso de izamiento no podrá
exceder 30° en relación al eje vertical, conforme Figura 4.3.
30° Máx.
Figura 4.3 – Ángulo máximo resultante para motores con un ojal de izamiento.
4.1.2. Motores horizontales con dos o más ojales de izamiento
Para motores que poseen dos o más ojales para el izamiento, todos los ojales suministrados deben ser
utilizados simultáneamente para el izamiento.
Existen dos disposiciones de ojales posibles (verticales e inclinados), conforme son presentadas a seguir:
J
Motores con ojales verticales, conforme Figura 4.4, el ángulo máximo resultante debe ser de 45° en relación
al eje vertical. Se recomienda la utilización de una barra separadora (spreader bar), para mantener el
elemento de izamiento (corriente o cable) en el eje vertical y evitar daños a la superficie del motor.
ESPAÑOL
45° Máx.
Figura 4.4 – Ángulo máximo resultante para motores con dos o más ojales de izamiento.
Para motores HGF, conforme Figura 4.5, el ángulo máximo resultante debe ser de 30° en relación al eje
vertical.
30° Máx.
Figura 4.5 – Ángulo máximo resultante para motores HGF horizontales.
Motores Eléctricos
117
120
www.weg.net
J
Motores con ojales inclinados, conforme Figura 4.6, es necesaria la utilización de una barra separadora
(spreader bar), para mantener el elemento de izamiento (corriente, cable, etc.) en el eje vertical y así también
evitar daños a la superficie del motor.
Figura 4.6 – Uso de barra separadora en el izamiento.
4.1.3. Motores verticales
ESPAÑOL
Para motores verticales, conforme Figura 4.7, es necesaria la utilización de una barra separadora (spreader bar),
para mantener el elemento de izamiento (corriente, cable) en el eje vertical y así también evitar daños a la
superficie del motor.
Figura 4.7 – Izamiento de motores verticales.
Utilice siempre los ojales que están dispuestos en la parte superior del motor en relación a la
posición de montaje y diametralmente opuestos. Ver Figura 4.8.
Figura 4.8 – Izamiento de motores HGF.
118
Motores Eléctricos
121
www.weg.net
4.1.3.1. Procedimiento para colocación de motores W22 en posición vertical
De forma general, por cuestiones de seguridad durante el transporte, los motores verticales son embalados y
suministrados en la posición horizontal.
Para la colocación de motores W22 con ojales inclinados (ver Figura 4.6) en la vertical, deben ser seguidos los
pasos abajo descritos:
1. Asegúrese de que los ojales están adecuadamente fijos, conforme Figura 4.1;
2. Remover el motor del embalaje, utilizando los ojales superiores, conforme Figura 4.9;
Figura 4.9 – Remoción del motor del embalaje.
3. Instalar el segundo par de ojales, conforme Figura 4.10;
ESPAÑOL
Figura 4.10 – Instalación del segundo par de ojales.
4. 4. Reducir la carga sobre el primer par de ojales para iniciar a rotación del motor, conforme Figura 4.11.
Este procedimiento debe ser realizado de forma lenta y cautelosa.
Figura 4.11 – Resultado final: motor posicionado de forma vertical.
Motores Eléctricos
119
122
www.weg.net
4.1.3.2. Procedimiento para colocación de motores HGF en posición vertical
Los motores verticales HGF son suministrados con ocho puntos de izamiento, cuatro en la parte delantera y
cuatro en la parte trasera, generalmente son transportados en la posición horizontal, no obstante, para la
instalación precisan ser colocados en la posición vertical.
Para la colocación de motores HGF en la posición vertical, deben ser seguidos los pasos de abajo:
1. Levante el motor a través d los cuatro ojales laterales, utilizando dos grúas, ver Figura 4.12;
Figura 4.12 – Izamiento del motor HGF utilizando dos grúas.
ESPAÑOL
2. Baje la grúa que está sujeta a la parte delantera del motor y al mismo tempo levante la grúa que está sujeta
al lado trasero del motor hasta que el motor se equilibre, ver Figura 4.13.
Figura 4.13 - Colocación de motor HGF en posición vertical.
3. Suelte la grúa sujeta a la parte delantera del motor y gire el motor 180° para posibilitar la fijación de la
grúa suelta en los otros dos ojales de la parte trasera del motor, ver Figura 4.14.
Figura 4.14 –Suspensión de motor HGF por los ojales traseros.
120
Motores Eléctricos
123
www.weg.net
4. Fije la grúa suelta a los otros dos ojales de la parte trasera del motor y levántela hasta que el motor quede
en la posición vertical, ver Figura 4.15.
Figura 4.15 - Motor HGF en posición vertical.
Estos procedimientos sirven para movimientos de motores construidos con montaje en posición vertical. Estos
mismos procedimientos pueden ser utilizados para la colocación del motor de posición horizontal a posición
vertical y viceversa.
4.2 PROCEDIMIENTO PARA VIRADA DE MOTORES W22 VERTICALES
Para realizar la virada de motores W22 originalmente en la posición vertical, siga los pasos mostrados abajo:
1. Asegúrese que los ojales estén fijados adecuadamente, conforme ítem 4.1;
ESPAÑOL
2. Instale el primer par de ojales y suspenda el motor, ver Figura 4.16;
Figura 4.16 – Instalación del primer par de ojales.
3. Instalar el segundo par de ojales, ver Figura 4.17;
Figura 4.17 – Instalación del segundo par de ojales.
Motores Eléctricos
121
124
www.weg.net
4. Reduzca la carga sobre el primer par de ojales para iniciar la rotación del motor, conforme Figura 4.18. Este
procedimiento debe ser realizado de forma lenta y cautelosa.
Figura 4.18 – Motor posicionado de forma vertical.
ESPAÑOL
5. Remueva el primer par de ojales, ver Figura 4.19
Figura 4.19 – Resultado final: motor posicionado de forma horizontal.
122
Motores Eléctricos
125
www.weg.net
5. ALMACENADO
Si los motores no fueran instalados de inmediato, se recomienda almacenarlos en local seco con humedad
relativa del aire de hasta 60%, con temperatura ambiente por encima de 5°C y por debajo de 40°C, libre de
polvo, vibraciones, gases, agentes corrosivos, con temperatura uniforme, en posición normal y sin apoyar otros
objetos sobre los mismos. Remueva las poleas, en caso que existan, de la punta del eje, la que debe ser
mantenida libre y con grasa protectora para evitar corrosión. Los motores deben ser almacenados de tal modo
que el drenaje de agua condensada sea facilitado.
En caso que el motor posea resistencia de calentamiento, ésta deberá ser energizada siempre que el motor no
esté en operación. Esto se aplica también a los casos en que el motor está instalado, pero fuera de uso por un
largo período. En estas situaciones, dependiendo de las condiciones del ambiente, podrá ocurrir condensación
de agua en el interior del motor, provocando una caída en la resistencia de aislamiento.
Las resistencias de calentamiento nunca deben estar energizadas mientras el motor esté
operando.
5.1. SUPERFICIES MECANIZADAS EXPUESTAS
Todas las superficies mecanizadas expuestas (por ejemplo, punta de eje y brida) son protegidas en la fábrica
por un inhibidor de oxidación temporario. Esta película protectora debe ser reaplicada periódicamente durante
el período de almacenado (por lo menos a cada seis meses) o cuando fuera removida o estuviera deteriorada.
5.2. APILAMIENTO
Tabela 5.1 - Apilamiento máximo recomendado.
Tipo de Embalaje
Caja de Cartón
Jaula de madera
Carcasas
IEC 63 a 132
NEMA 143 a 215
IEC 63 a 315
NEMA 48 a 504/5
Cantidad máxima de apilamiento
Indicada en la pestaña superior
de la caja de cartón
ESPAÑOL
El apilamiento de embalajes durante el almacenado no debe sobrepasar los 5 metros de altura, obedeciendo
los criterios de la Tabla 5.1:
06
IEC 355
NEMA 586/7 y 588/9
03
HGF IEC 315 a 630
HGF NEMA 5000 a 9600
Indicado en el propio embalaje
Notas:
1) No apile embalajes mayores sobre menores.
2) Posicione correctamente un embalaje sobre el otro (ver Figura 5.1 y Figura 5.2).
X
Figura 5.1 - Montaje adecuado.
Figura 5.2 - Montaje inadecuado.
Motores Eléctricos
123
126
www.weg.net
3) Las patas de los embalajes superiores deben estar apoyadas sobre calces de madera (Figura 5.3) no sobre
cintas de acero ni pueden permanecer sin apoyo (Figura 5.4).
Figura 5.3 - Apilamiento adecuado.
X
Figura 5.4 - Apilamiento inadecuado.
ESPAÑOL
4) Para el apilamiento de un volumen menor sobre un volumen mayor, agregue varas transversales entre los
mismos cuando el mayor no ofrezca resistencia al peso del menor (ver Figura 5.5). Esta situación normalmente
ocurre con los volúmenes de los motores de carcasa por encima de la IEC 225S/M (NEMA 364/5T).
Figura 5.5 - Utilización de varas adicionales para apilamiento.
5.3. COJINETES
5.3.1. Cojinetes de rodamiento lubricados a grasa
Se recomienda girar el eje del motor por lo menos una vez al mes (manualmente, al menos cinco vueltas, dejando el
eje en posición diferente de la original). Obs.: en caso que el motor posea dispositivo de trabado del eje, el mismo
debe ser retirado antes de girar el eje y ser colocado una vez más antes de levantar el motor.
Los motores verticales pueden ser almacenados en posición vertical o en posición horizontal.
Para motores con rodamiento abierto almacenados por más de seis meses, los rodamientos deben ser
relubricados, conforme el ítem 8.2, antes de la entrada en operación.
En caso que el motor permanezca almacenado por un período superior a dos años, se recomienda sustituir los
rodamientos, o de otra forma, deben ser removidos, lavados, inspeccionados y relubricados conforme el ítem 8.2.
5.3.2. Cojinetes de rodamiento con lubricación a aceite
El motor debe ser almacenado en su posición original de funcionamiento, y con aceite en los cojinetes. El nivel
de aceite debe ser respetado, permaneciendo en la mitad del visor de nivel.
Durante el período de almacenado, se debe, retirar el dispositivo de trabado del eje y, mensualmente, rotar el
eje manualmente cinco vueltas, para hacer circular el aceite y conservar el cojinete en buenas condiciones.
Siendo necesario mover el motor, el dispositivo de trabado del eje debe ser reinstalado.
Para motores almacenados por más de seis meses, los rodamientos deben ser relubricados, conforme el ítem
8.2, antes de su puesta en operación.
En caso que el motor permanezca almacenado por un período superior a dos años, se recomienda sustituir los
rodamientos o entonces removerlos, lavarlos, inspeccionarlos y relubricarlos conforme el ítem 8.2.
El aceite de los cojinetes de los motores verticales, que son transportados en posición horizontal, es retirado
para evitar derramamiento durante el transporte. Tras la recepción, estos motores deben ser puestos en
posición vertical y sus cojinetes deben ser lubricados.
124
Motores Eléctricos
127
www.weg.net
5.3.3. Cojinetes de rodamiento con lubricación de tipo Oil Mist
El motor debe ser almacenado en su posición horizontal. Rellene los cojinetes con aceite mineral ISO VG 68
con la cantidad de aceite indicada en la Tabla 5.2 (también válida para rodamientos con dimensiones
equivalentes). Tras a colocación de aceite en los cojinetes, gire el eje (como mínimo cinco vueltas).
Durante el período de almacenado, se debe retirar el dispositivo de trabado del eje (cuando es suministrado) y
semanalmente rotar el eje manualmente 5 vueltas, dejando el mismo en posición diferente de la original.
Siendo necesario mover el motor, el dispositivo de trabado del eje debe ser reinstalado.
En caso que el motor permanezca almacenado por un período superior a dos años, se recomienda sustituir los
rodamientos o entonces removerlos, lavarlos, inspeccionarlos y relubricarlos conforme el ítem 8.2.
Tabela 5.2 - Cantidad de aceite por rodamiento
Tamaño de Rodamiento
6201
6202
6203
6204
6205
6206
6207
6208
6209
6211
6212
6307
6308
Cantidad de Aceite (ml)
15
15
15
25
25
35
35
40
40
45
50
45
55
Tamaño de Rodamiento
6309
6311
6312
6314
6315
6316
6317
6319
6320
6322
6324
6326
6328
Cantidad de Aceite (ml)
65
90
105
150
200
250
300
350
400
550
600
650
700
5.3.4. Cojinetes de deslizamiento
ESPAÑOL
Durante cualquier manipulación del motor, los cojinetes deben estar sin aceite. De esa forma, antes de la
entrada en operación, todo el aceite de los cojinetes debe ser drenado. Luego de la instalación, en caso que el
sistema de niebla no esté en operación, el aceite debe ser recolocado para garantizar la conservación del
cojinete. En este caso, se debe también proceder con el giro semanal del eje.
El motor debe ser almacenado en su posición original de funcionamiento, y con aceite en los cojinetes. El nivel
de aceite debe ser respetado, permaneciendo en la mitad del visor de nivel.
Durante el período de almacenado, se debe, retirar el dispositivo de trabado del eje y, mensualmente, rotar el
eje manualmente 5 vueltas, para hacer circular el aceite y conservar el cojinete en buenas condiciones. En
caso que sea necesario mover el motor, el dispositivo de trabado del eje debe ser reinstalado.
Para motores almacenados por más de seis meses, los rodamientos deben ser relubricados, conforme el ítem
8.2, antes de su puesta en operación.
En caso que el motor permanezca almacenado por un período mayor que el intervalo de cambio de aceite, o
no sea posible rotar el eje del motor, el aceite debe ser drenado y debe ser aplicada una protección
anticorrosiva y deshumidificadores.
5.4. RESISTENCIA DE AISLAMIENTO
Se recomienda medir periódicamente la resistencia de aislamiento de los motores, para de esa forma evaluar
las condiciones de almacenado bajo el punto de vista eléctrico. Si fueran observadas caídas en los valores de
Resistencia de Aislamiento, las condiciones del almacenado deben ser analizadas, evaluadas y corregidas,
cuando sea necesario.
5.4.1. Procedimiento para medición de la resistencia de aislamiento
La medición de la resistencia de aislamiento debe ser realizada en área segura.
La resistencia de aislamiento debe ser medida con un megóhmetro y con el motor parado, frío y
completamente desconectado de la red eléctrica.
Para evitar el riesgo de shock eléctrico, descargue los terminales inmediatamente antes y después
de cada medición. En caso que el motor posea capacitores, éstos deben ser descargados.
Motores Eléctricos
125
128
www.weg.net
Es recomendable que cada fase sea aislada y testeada separadamente, permitiendo que sea hecha una
comparación entre la resistencia de aislamiento entre cada fase. Para testear una de las fases, las demás fases
deben estar puestas a tierra.
El test de todas las fases simultáneamente evalúa solamente la resistencia de aislamiento contra tierra. En este
caso no es evaluada la resistencia de aislamiento entre las fases.
Los cables de alimentación, llaves, condensadores, y otros equipamientos externos conectados al motor
pueden influenciar considerablemente la medición de la resistencia de aislamiento. Al realizar estas
mediciones, todos los equipamientos externos deben estar desconectados y puestos a tierra.
La lectura de la resistencia de aislamiento debe ser realizada luego de ser aplicada la tensión ser por el período
de un minuto (1 min). La tensión a ser aplicada debe obedecer la Tabla 5.3.
Tabela 5.3 – Tensión para medición de la resistencia de aislamiento.
Tensión nominal del motor (V)
< 1000V
1000 - 2500
2501 - 5000
5001 - 12000
> 12000
Tensión aplicada para la medición de la resistencia de aislamiento (V)
500
500 - 1000
1000 - 2500
2500 - 5000
5000 - 10000
La medición de la resistencia de aislamiento debe ser corregida para la temperatura de 40°C conforme Tabla 5.4.
Tabela 5.4 - Factor de Corrección de la Resistencia de Aislamiento para 40°C.
Factor de corrección de la
Resistencia de Aislamiento
para 40°C
Temperatura de Medición
de la Resistencia de
Aislamiento (°C)
Factor de corrección de la
Resistencia de Aislamiento
para 40°C
10
0,125
30
0,500
0,536
ESPAÑOL
Temperatura de Medición
de la Resistencia de
Aislamiento (°C)
11
0,134
31
12
0,144
32
0,574
13
0,154
33
0,616
14
0,165
34
0,660
15
0,177
35
0,707
16
0,189
36
0,758
17
0,203
37
0,812
18
0,218
38
0,871
19
0,233
39
0,933
20
0,250
40
1,000
21
0,268
41
1,072
22
0,287
42
1,149
23
0,308
43
1,231
24
0,330
44
1,320
25
0,354
45
1,414
26
0,379
46
1,516
27
0,406
47
1,625
28
0,435
48
1,741
29
0,467
49
1,866
30
0,500
50
2,000
La condición del aislamiento del motor deberá ser evaluada comparándose el valor medido con los valores de
la Tabla 5 5 (referenciados a 40°C):
Tabela 5.5 – Avaliação do sistema de isolamento.
126
Valor Límite para tensión
nominal hasta 1,1 kV (MΩ)
Valor Límite para tensión nominal
por encima de 1,1 kV (MΩ)
Situación
Hasta 5
HASTA 100
Peligroso, el motor no debe
operar en esa condición.
Regular
Entre 5 y 100
Entre 100 y 500
Entre 100 y 500
Por encima de 500
Bueno
Por encima de 500
Por encima de 1000
Excelente
Motores Eléctricos
129
www.weg.net
Los dados indicados en la tabla sirven simplemente como valores de referencia. Se sugiere mantener el
histórico de la resistencia de aislamiento del motor durante toda su vida.
Si la resistencia de aislamiento estuviera baja, el estator del motor puede estar húmedo. En ese caso, se
recomienda llevarlo a un Asistente Técnico Autorizado WEG para que sean realizadas la evaluación y la
reparación adecuadas. Este servicio no está cubierto por el Término de Garantía.
Para procedimiento de adecuación de la resistencia de aislamiento, ver ítem 8.4.
ESPAÑOL
Motores Eléctricos
127
130
www.weg.net
6. INSTALACION
La instalación de motores debe ser hecha por profesionales capacitados con conocimientos sobre
las normas y las prescripciones de seguridad.
ESPAÑOL
Antes de continuar con el procedimiento de instalación deben ser evaluados algunos puntos:
1. Resistencia de aislamiento: debe estar dentro de los valores aceptables. Ver ítem 5.4.
2. Cojinetes:
a. rodamientos: si presentan señales de oxidación, deben ser sustituidos. En caso que no presenten
oxidación, realice el procedimiento de relubricación conforme es descrito en el ítem 8.2. Motores
almacenados por un período superior a dos años deben tener sus rodamientos sustituidos antes de ser
puestos en operación.
b. cojinetes de deslizamiento: para motores almacenados por un período igual o mayor que el intervalo de
cambio de aceite, deben tener su aceite sustituido. En caso que el aceite haya sido retirado, es necesario
retirar el deshumificador y recolocar el aceite en el cojinete. Por mayores informaciones vea el ítem 8.2.
3. Condición de los condensadores de partida: para motores monofásicos almacenados por un período mayor
a dos años, es recomendado que sus condensadores de partida sean sustituidos.
4. Caja de conexión:
a. deben estar limpias y secas en su interior.
b. los elementos de contacto deben estar libres de oxidación y correctamente conectados. Ver ítems 6.9 y
6.10.
c. las entradas de cables no utilizadas deben estar correctamente selladas, la tapa de la caja de conexión
debe ser cerrada y los sellados deben estar en condiciones apropiadas para atender el grado de
protección del motor.
5. Ventilación: las aletas, la entrada y la salida de aire deben estar limpias y desobstruidas. La distancia de
instalación recomendada entre las entradas de aire del motor y la pared no debe ser inferior a ¼ (un cuarto)
del diámetro de la entrada de aire. Se debe asegurar espacio suficiente para la realización de servicios de
limpieza. Ver ítem 7.
6. Acoplamiento: remover el dispositivo de trabado del eje (si existe) y la grasa de protección contra corrosión
de la punta del eje y de la brida solamente puco antes de instalar el motor. Ver ítem 6.4.
7. Drenaje: Siempre deben estar posicionados de forma que el drenaje sea facilitado (en el punto más bajo. En
caso que exista una flecha indicadora, el drenaje debe ser montado para que la misma apunte hacia abajo).
Para motores con grado de protección IP55, los drenajes de goma (si están disponibles) pueden
permanecer en la posición abierta (ver Figura 6.1).
Para grados de protección más elevados (por ejemplo, IP56, IP65 y IP66), los drenajes (independientemente
del tipo) deben permanecer en la posición cerrada (ver Figura 6.2), siendo abiertos solamente durante el
mantenimiento del motor para permitir el drenaje del agua condensada (ver ítem 8.1).
Los motores con lubricación de tipo Oil Mist deben tener sus drenajes conectados a un sistema de
recolección específico (ver Figura 6.12).
Figura 6.1 - Detalle del drenaje de goma montado en la posición abierto.
Figura 6.2 - Detalle del drenaje de goma montado en posición cerrado.
128
Motores Eléctricos
131
www.weg.net
8. Recomendaciones adicionales
a. verifique el sentido de rotación del motor, encendiéndolo a vacío antes de acoplarlo a la carga.
b. para motores montados en posición vertical con la punta de eje hacia abajo, se recomienda el uso de
sombrerete para evitar a penetración de cuerpos extraños en el interior del motor.
c. para motores montados en la posición vertical con la punta de eje hacia arriba, se recomienda el uso de
un deflector de agua (water slinger ring) para evitar la penetración de agua por el eje.
Remueva o fije completamente la chaveta antes de encender el motor.
6.1. CIMIENTOS PARA EL MOTOR
El cimiento es el elemento estructural, base natural o preparada, destinada a soportar los esfuerzos
producidos por los equipamientos instalados, permitiendo la operación de éstos con estabilidad, desempeño y
seguridad.
El proyecto de cimientos debe considerar las estructuras adyacentes para evitar influencia de un equipamiento
sobre el otro, a fin de que no ocurra propagación de vibraciones.
Los cimientos deben ser planos y su elección, detallado y ejecución, exige las características:
a) De la construcción del propio equipamiento, implicando no solamente los valores y forma de actuación de
las cargas, sino que también su finalidad y los límites máximos de las deformaciones y vibraciones
compatibles en cada caso (ejemplo, motores con valores reducidos de: nivel de vibración, planicidad de las
patas, concentricidad de la brida, pulso de la brida, etc.); .
Cuando el motor sea suministrado con tornillo de alineamiento/nivelación, deberá ser prevista en la base una
superficie que permita el alineamiento/nivelación.
ESPAÑOL
b) De las construcciones vecinas, comprendiendo el estado de conservación, estimativa de las cargas
máximas aplicadas, tipo de cimiento y fijación empleadas, así como los niveles de vibración transmitidos por
estas construcciones.
Los esfuerzos generados durante la operación, por la carga accionada, deben ser considerados
como parte del dimensionamiento de los cimientos.
El usuario es totalmente responsable por el proyecto, preparación y ejecución de los cimientos.
Los motores pueden ser montados sobre:
J Bases de concreto: más recomendadas y usuales para los motores de gran porte (ver Figura 6.3);
J Bases metálicas: más comunes para motores de pequeño porte (ver Figura 6.4).
Figura 6.3 – Motor instalado sobre base de concreto.
Figura 6.4 – Motor instalado sobre base metálica.
Motores Eléctricos
129
132
www.weg.net
En las bases metálicas y de concreto puede existir un sistema de deslizamiento. Normalmente son utilizados
en aplicaciones en que el accionamiento ocurre por poleas y correas. Son más flexibles permitiendo montajes
y desmontajes más rápidas, además de permitir ajustes en la tensión de la correa. Otro aspecto importante es
la posición de los tornillos de trabado de la base, que deben ser opuestos y en posición diagonal. El riel más
cercano a la polea motora es colocado de forma que el tornillo de posicionamiento permanezca entre el motor
y la máquina accionada. El otro riel debe ser colocado con el tornillo en posición opuesta (diagonal), como es
presentado en la Figura 6.5.
Para facilitar el montaje, las bases pueden poseer características como:
resaltes y/o huecos;
J tornillos de anclaje con placas sueltas;
J tornillos fundidos en el concreto;
J tornillos de nivelación;
J tornillos de posicionamiento;
J bloques de hierro o de acero, placas con superficies planas.
ESPAÑOL
J
Figura 6.5 – Motor instalado sobre base deslizante.
También se recomienda que luego de la instalación del motor, las partes metálicas expuestas sean protegidas
contra oxidación.
6.2. FIJACION DEL MOTOR
6.2.1. Fijación por las patas
El dimensional de la perforación de las patas, basado en las normas IEC o NEMA, es informado en el catálogo
técnico del producto.
El motor debe ser apoyado sobre la base, alineado y nivelado a fin de que no provoque vibraciones ni
esfuerzos excesivos en el eje o en los cojinetes. Para más detalles, consulte El ítem 6.3 y 6.6.
Se recomienda que el tornillo de fijación tenga longitud roscada libre de 1,5 veces el diámetro del tornillo. En
aplicaciones severas, puede ser necesaria la utilización de una longitud roscada libre mayor. La Figura 6.4
representa la fijación del motor con patas indicando la longitud libre mínima del tornillo.
L = 1.5 x D
D
Figura 6.6 – Representación de la fijación del motor por patas.
130
Motores Eléctricos
133
www.weg.net
6.2.2. Fijación por brida
El dimensional de la brida, basado en las normas IEC o NEMA, es informado en el catálogo electrónico o en el
catálogo técnico del producto.
La brida del motor debe ser apoyada en la base, que debe poseer un dimensional de encaje adecuado para el
tamaño de la brida del motor y así asegurar la concentricidad del conjunto.
Dependiendo del tipo de brida, la fijación puede ser realizada desde el motor hacia la base (brida FF(IEC) o D
(NEMA)) o desde la base hacia el motor (brida C (DIN o NEMA)).
Para fijación desde la base hacia el motor, la determinación de la longitud del tornillo debe tomar en
consideración la espesura de la base del usuario y la profundidad de la rosca de la brida del motor.
En los casos que el agujero de la brida es pasante, la longitud del tornillo de fijación del motor no
debe exceder la longitud roscada de la brida para evitar contacto con la bobina del motor.
Para fijación del motor a la base, se recomienda que el tornillo de fijación tenga longitud roscada libre de 1,5
veces el diámetro del tornillo. En aplicaciones severas, puede ser necesaria la utilización de una longitud
roscada libre mayor.
Para fijación de motores de gran porte y/o en aplicaciones severas, se recomienda que, además de la fijación
por brida, el motor sea apoyado (por patas o pad). El motor nunca puede ser apoyado sobre sus aletas. Ver
Figura 6.7.
ESPAÑOL
Figura 6.7 – Representación de la fijación del motor con brida y apoyo en la base de la carcasa.
Para aplicación de motores con la presencia de líquidos en el interior de la brida (ej.: aceite), el sellado del
motor debe ser adecuado para impedir la penetración de líquidos en el interior del motor.
6.2.3. Fijación por pad
Este tipo de fijación es normalmente utilizado en ductos de ventilación. La fijación del motor es hecha a través
de perforaciones roscadas en la estructura del motor, cuyo dimensional es informado en el catálogo
electrónico o en el catálogo técnico del producto.
El dimensionamiento de la varilla de fijación/tornillo del motor debe tomar en consideración el dimensional del
ducto de ventilación o base de instalación y la profundidad de la rosca en el motor. Las varillas de fijación y la
pared del ducto deben tener rigidez suficiente para evitar la vibración excesiva del conjunto (motor y ventilador).
La Figura 6.8 representa la fijación por pad’s.
Figura 6.8 – Representación de la fijación del motor en el interior de un ducto de ventilación.
Motores Eléctricos
131
134
www.weg.net
6.3. BALANCEO
Equipamientos desbalanceados generan vibraciones que pueden causar daños al motor. Los motores WEG
son balanceados dinámicamente con “media chaveta” en vacío (desacoplados). Deben ser solicitados
balanceos especiales en el momento de la compra.
Los elementos de transmisión tales como poleas, acoplamientos, etc., deben ser balanceados
antes de ser instalados en los ejes de los motores.
El grado de calidad de balanceo del motor sigue las normas vigentes para cada línea de producto.
Se recomienda que los desvíos máximos de balanceo sean registrados en el informe de instalación.
6.4. ACOPLAMIENTOS
Los acoplamientos son utilizados para la transmisión del torque del motor hacia la máquina accionada. Al
utilizar un acoplamiento, deben ser observados los tópicos abajo:
J Utilice herramientas apropiadas para el montaje y desmontaje de los acoplamientos y así evitar daños al
motor.
J
Se recomienda la utilización de acoplamientos flexibles, capaces de absorber pequeños desalineamientos durante la
operación del equipamiento.
J
Las cargas máximas y límites de velocidad informados en los catálogos de los fabricantes de los
acoplamientos y del motor no deben ser excedidos.
Realice la nivelación y el alineamiento del motor conforme ítems 6.5 y 6.6, respectivamente.
J
ESPAÑOL
Los motores accionados sin elementos de transmisión acoplados deben tener su chaveta
firmemente fijada o removida, para prevenir accidentes.
6.4.1. Acoplamiento directo
Cuando el eje del motor está acoplado directamente al eje de la carga accionada, sin el uso de elementos de
transmisión, presenta acoplamiento directo. El acoplamiento directo ofrece menor costo, mayor seguridad
contra accidentes y ocupa menos espacio.
En aplicaciones con acoplamiento directo, se recomienda el uso de rodamientos de esferas.
6.4.2. Acoplamiento por engranaje
El acoplamiento por engranajes es utilizado cuando existe la necesidad de una reducción de velocidad.
Es imprescindible que los ejes estén perfectamente alineados, rigurosamente paralelos (en caso de engranajes
rectos) y en el ángulo de engranaje (en caso de engranajes cónicos o helicoidales).
6.4.3. Acoplamiento por poleas y correas
Es un tipo de transmisión utilizado cuando existe la necesidad de una relación de velocidades entre el motor y
la carga accionada.
Una tensión excesiva en las correas damnifica los rodamientos y puede provocar la ruptura del eje
del motor.
6.4.4. Acoplamiento de motores equipados con cojinetes de deslizamiento
Los motores equipados con cojinetes de deslizamiento deben estar acoplados directamente a la
máquina accionada o por medio de un reductor. Los cojinetes de deslizamiento no permiten el
acoplamiento a través de poleas y correas.
132
Motores Eléctricos
135
www.weg.net
Los motores equipados con cojinetes de deslizamiento poseen 3 (tres) marcas en la punta del eje, donde la
marca central es la indicación del centro magnético y las otras 2 (dos) marcas externas indican los límites de
movimiento axial permitidos para el rotor, conforme Figura 6.9.
El motor debe ser acoplado de manera que la flecha fijada en la carcasa del cojinete quede posicionada sobre
la marca central, cuando el motor esté en operación. Durante la partida, o incluso en operación, el rotor puede
moverse libremente entre las dos ranuras externas, en caso que la máquina accionada ejerza algún esfuerzo
axial sobre el eje del motor. No obstante, el motor no puede operar de manera constante con esfuerzo axial
sobre el cojinete, bajo ningún concepto.
HOLGURA AXIAL
Figura 6.9 - Holgura axial en motor equipado con cojinete de deslizamiento.
Al evaluar el acoplamiento, se debe considerar la holgura axial máxima del cojinete conforme la
Tabla 6.1. Las holguras axiales de la máquina accionada y del acoplamiento influencian en la
holgura máxima del cojinete.
Tabela 6.1 Holguras utilizadas en cojinetes de deslizamiento.
Holgura axial total (mm)
3+3=6
4+4=8
5 + 5 =10
7,5 + 7,5 = 15
ESPAÑOL
Tamaño del cojinete
9*
11*
14*
18
* para motores conforme la norma API 541, la holgura axial total es 12.7 mm.
Los cojinetes de deslizamiento utilizados por WEG no fueron proyectados para soportar un esfuerzo axial
continuo. La operación continua de la máquina, en sus límites de holgura axial, no es recomendada.
6.5. NIVELACION
La nivelación del motor debe ser realizada para corregir eventuales desvíos de planicidad, que puedan existir
provenientes de otros procesos y acomodaciones de los materiales. La nivelación puede ser realizada por
medio de un tornillo de nivelación fijado a la pata o brida del motor, o por medio de finas chapas de
compensación. Tras la nivelación, la diferencia de altura entre la base de fijación del motor y el motor no debe
exceder 0,1 mm.
En caso que sea utilizada una base metálica para ajustar la altura de la punta de eje del motor con la punta de
eje de la máquina accionada, ésta debe ser nivelada en la base de concreto.
Se recomienda que los desvíos máximos de nivelación sean registrados y almacenados en el informe de
instalación.
6.6. ALINEAMIENTO
El alineamiento entre la máquina motora y la accionada es una de las variables que más contribuyen para
prolongar la vida del motor. El desalineamiento entre los acoplamientos genera elevadas cargas que reducen la
vida útil de los cojinetes, provocan vibraciones y, en casos extremos, pueden causar la ruptura del eje. La
Figura 6.10 ilustra el desalineamiento entre el motor y el equipamiento accionado.
Eje del Accionador
El desalineamiento
máximo ocurre
aquí
Eje del Accionado
Offset
accinado
Offset accinador
mils o mm.
mils o mm.
Figura 6.10 – Condición típica de desalineamiento.
Motores Eléctricos
133
136
www.weg.net
Para efectuar un buen alineamiento del motor, se deben utilizar herramientas y dispositivos adecuados, tales
como reloj comparador, instrumento de alineamiento a laser, entre otros. El eje debe ser alineado axialmente y
radialmente con el eje de la máquina accionada
El valor leído en relojes comparadores para el alineamiento, de acuerdo con la Figura 6.11, no debe exceder
0,03 mm, considerando un giro completo del eje. Debe existir una holgura entre los acoplamientos, para
compensar la dilatación térmica de los ejes, conforme especificación del fabricante del acoplamiento.
Reloj comparador
Trazo
de referencia
GAP
Alineamiento paralelo
Alineamiento angular
Figura 6.11 – Alineamiento con reloj comparador
En caso que el alineamiento sea realizado a través de un instrumento a laser, deben ser seguidas las
instrucciones y recomendaciones suministradas por el fabricante del instrumento.
La verificación del alineamiento debe ser realizada a temperatura ambiente y a la temperatura de trabajo de los
equipamientos.
ESPAÑOL
Es recomendado que el alineamiento de los acoplamientos sea verificado periódicamente.
Para acoplamiento por poleas y correas, el alineamiento debe ser realizado de tal modo que el centro de la
polea motora esté en el mismo plano del centro de la polea movida y los ejes del motor y de la máquina estén
perfectamente paralelos.
Luego de la realización de los procedimientos descritos anteriormente, se debe certificar que los dispositivos
de montaje del motor no permitan alteraciones en el alineamiento y en la nivelación y no causen daños al
equipamiento.
Se recomienda que los desvíos máximos de alineamiento sean registrados y almacenados en el informe de
instalación.
6.7. CONEXION DE MOTORES LUBRICADOS A ACEITE O DE TIPO OIL MIST
En motores con lubricación a aceite o de tipo oil mist, se debe conectar los tubos de lubricación existentes
(entrada, salida del cojinete y drenaje del motor), conforme es indicado en la Figura 6.12.
El sistema de lubricación debe garantizar lubricación continua del cojinete, de acuerdo con las especificaciones
del fabricante de este sistema.
Entrada
Drenaje
Salida
Figura 6.12 – Sistema de alimentación y drenaje para motores lubricados por aceite o de tipo Oil Mist.
134
Motores Eléctricos
137
www.weg.net
6.8. CONEXION DEL SISTEMA DE REFRIGERACION A AGUA
En motores con refrigeración a agua, debe ser prevista la instalación de ductos en la entrada y salida de agua
del motor para garantizar su refrigeración. Se debe observar, conforme el ítem 7.2, el flujo mínimo y la
temperatura del agua en la instalación.
6.9. CONEXION ELECTRICA
Para el dimensionamiento de los cables de alimentación y dispositivos de maniobra y protección deben ser
considerados: corriente nominal del motor, factor de servicio, corriente de partida, condiciones del ambiente y
de la instalación, la máxima caída de tensión, etc. conforme las normas vigentes.
Todos los motores deben ser instalados con sistemas de protección contra sobrecarga. Para motores
trifásicos se recomienda la instalación de sistemas de protección contra falta de fase.
Antes de conectar el motor, verifique si la tensión y la frecuencia de la red son las mismas
marcadas en la placa de identificación del motor. Siga el diagrama de conexión indicado en la
placa de identificación del motor.
Para evitar accidentes, verifique si la puesta a tierra fue realizada conforme las normas vigentes.
Asegúrese que el motor esté conectado correctamente a la red de alimentación eléctrica a través de contactos
seguros y permanentes.
Para motores sin placa de bornes, aísle los cables terminales del motor, utilizando materiales aislantes
compatibles con la tensión de alimentación y con la clase de aislamiento informada en la placa de
identificación.
La distancia de aislamiento (ver Figura 6.13) entre partes vivas no aisladas entre sí y entre partes vivas y partes
puestas a tierra debe respetar los valores indicados en la Tabla 6.2.
ESPAÑOL
Para la conexión del cable de alimentación y del sistema de puesta a tierra deben ser respetados los torques
de apriete indicados en la Tabla 8.7.
Distancia de aislamiento
Distancia de aislamiento
Distancia de aislamiento
Distancia de aislamiento
Figura 6.13 - Representación de la distancia de aislamiento.
Tabela 6.2 - Distancia mínima de aislamiento (mm) x tensión de alimentación.
Tensión
U ≤ 440 V
440 < U ≤ 690V
690 < U ≤ 1000V
1000 < U ≤ 6900V
6900 < U ≤ 11000V
11000<U ≤ 16500V
Distancia mínima de aislamiento (mm)
4
5.5
8
45
70
105
Motores Eléctricos
135
138
www.weg.net
Aunque el motor esté apagado, puede existir energía eléctrica en el interior de la caja de conexión
utilizada para la alimentación de las resistencias de calentamiento o inclusive para energizar el
devanado, cuando éste esté siendo utilizado como elemento de calentamiento.
Los condensadores de motores pueden retener energía eléctrica, incluso con el motor apagado. No toque
los condensadores ni los terminales del motor sin antes verificar la existencia de tensión en los mismos.
Luego de efectuar la conexión del motor, asegúrese de que ningún cuerpo extraño haya
permanecido en el interior de la caja de conexión.
Las entradas de la(s) caja(s) de conexión deben ser cerradas/protegidas para de esa forma
garantizar el grado de protección del indicado en la placa de identificación del motor.
Las entradas de cables utilizadas para alimentación y control deben emplear componentes (como,
por ejemplo, prensacables y electroductos) que cumplan las normas y reglamentaciones vigentes en cada
país.
En caso que existan accesorios, como freno y ventilación forzada, los mismos deben ser
conectados a la red de alimentación, siguiendo las informaciones de sus placas de identificación y
los cuidados indicados anteriormente.
ESPAÑOL
Todas las protecciones, inclusive las contra sobretensión, deben ser ajustadas tomando como base las
condiciones nominales de la máquina. Esta protección también tendrá que proteger el motor en caso de
cortocircuito, falta de fase, o rotor bloqueado.
Los ajustes de los dispositivos de seguridad de los motores deben ser hechos según las normas vigentes.
Verifique el sentido de rotación del motor. En caso que no haya ninguna limitación debido a la utilización de
ventiladores unidireccionales, es posible cambiar el sentido de giro de motores trifásicos, invirtiendo dos fases
de alimentación. Para motores monofásicos, verifique el esquema de conexión en la placa de identificación.
6.10. CONEXION DE LOS DISPOSITIVOS DE PROTECCIÓN TERMICA
Cuando es suministrado con dispositivos de protección o de monitoreo de temperatura, como: protector
térmico bimetálico (termostatos), termistores, protectores térmicos del tipo Automático, PT-100 (RTD), etc., sus
terminales deben ser conectados a los dispositivos de control correspondientes, de acuerdo con las placas de
identificación de los accesorios. La no observación de este procedimiento puede resultar en la cancelación de
la garantía y riesgo para la instalación.
No aplique tensión de test superior a 2,5 V para termistores y corriente mayor a 5 mA para RTDs
(PT-100).
El esquema de conexión de los protectores térmicos bimetálicos (termostatos) y termistores es mostrado en la
Figura 6.14 y Figura 6.15, respectivamente.
Figura 6.14 - Conexión de los protectores térmicos bimetálicos (termostatos).
136
Motores Eléctricos
139
www.weg.net
Figura 6.15 - Conexión de los termistores.
Los límites de temperatura de alarma y apagado de las protecciones térmicas pueden ser definidos de
acuerdo con la aplicación, no obstante, no deben sobrepasar los valores indicados en la Tabla 6.3.
Tabela 6.3 - Temperatura máxima de actuación de las protecciones térmicas.
Componente
Clase de Aislamiento
Devanado
Cojinete
Temperatura máxima de operación (°C)
Alarma
Apagado
B
-
130
F
130
155
H
155
180
Todas
110
120
ESPAÑOL
Notas:
1) La cantidad y el tipo de protección térmica instalados en el motor son informados en las placas de identificación de los accesorios del
mismo.
2) En el caso de protección térmica con resistencia calibrada (por ejemplo, PT-100), el sistema de protección debe ser ajustado a la
temperatura de operación indicada en la Tabla 6.3.
6.11. TERMORESISTORES (PT-100)
Son elementos, cuya operación está basada en la característica de variación de la resistencia con la
temperatura, intrínseca en algunos materiales (generalmente platina, níquel o cobre).
Poseen resistencia calibrada, que varía linealmente con la temperatura, posibilitando un acompañamiento
continuo del proceso de calentamiento del motor por el display del controlador, con alto grado de precisión y
sensibilidad de respuesta. Su aplicación es amplia en los diversos sectores de técnicas de medición y
automatización de temperatura de las industrias. Generalmente, se aplica en instalaciones de gran
responsabilidad como, por ejemplo, en régimen intermitente muy irregular. El mismo detector puede servir
tanto para alarma como para apagado.
La equivalencia entre la resistencia del PT-100 y la temperatura es presentada en la Tabla 6.4 y Figura 6.16.
Motores Eléctricos
137
140
www.weg.net
ESPAÑOL
Tabela 6.4 - Equivalencia entre la resistencia del PT-100 y la temperatura.
ºC
Ω
ºC
Ω
ºC
Ω
ºC
Ω
ºC
Ω
-29
88.617
17
106.627
63
124.390
109
141.908
155
159.180
-28
89.011
18
107.016
64
124.774
110
142.286
156
159.553
-27
89.405
19
107.404
65
125.157
111
142.664
157
159.926
-26
89.799
20
107.793
66
125.540
112
143.042
158
160.298
-25
90.193
21
108.181
67
125.923
113
143.420
159
160.671
-24
90.587
22
108.570
68
126.306
114
143.797
160
161.043
-23
90.980
23
108.958
69
126.689
115
144.175
161
161.415
-22
91.374
24
109.346
70
127.072
116
144.552
162
161.787
-21
91.767
25
109.734
71
127.454
117
144.930
163
162.159
-20
92.160
26
110.122
72
127.837
118
145.307
164
162.531
-19
92.553
27
110.509
73
128.219
119
145.684
165
162.903
-18
92.946
28
110.897
74
128.602
120
146.061
166
163.274
-17
93.339
29
111.284
75
128.984
121
146.438
167
163.646
-16
93.732
30
111.672
76
129.366
122
146.814
168
164.017
-15
94.125
31
112.059
77
129.748
123
147.191
169
164.388
164.760
-14
94.517
32
112.446
78
130.130
124
147.567
170
-13
94.910
33
112.833
79
130.511
125
147.944
171
165.131
-12
95.302
34
113.220
80
130.893
126
148.320
172
165.501
-11
95.694
35
113.607
81
131.274
127
148.696
173
165.872
-10
96.086
36
113.994
82
131.656
128
149.072
174
166.243
-9
96.478
37
114.380
83
132.037
129
149.448
175
166.613
-8
96.870
38
114.767
84
132.418
130
149.824
176
166.984
167.354
-7
97.262
39
115.153
85
132.799
131
150.199
177
-6
97.653
40
115.539
86
133.180
132
150.575
178
167.724
-5
98.045
41
115.925
87
133.561
133
150.950
179
168.095
-4
98.436
42
116.311
88
133.941
134
151.326
180
168.465
-3
98.827
43
116.697
89
134.322
135
151.701
181
168.834
169.204
-2
99.218
44
117.083
90
134.702
136
152.076
182
-1
99.609
45
117.469
91
135.083
137
152.451
183
169.574
0
100.000
46
117.854
92
135.463
138
152.826
184
169.943
1
100.391
47
118.240
93
135.843
139
153.200
185
170.313
2
100.781
48
118.625
94
136.223
140
153.575
186
170.682
3
101.172
49
119.010
95
136.603
141
153.950
187
171.051
4
101.562
50
119.395
96
136.982
142
154.324
188
171.420
171.789
5
101.953
51
119.780
97
137.362
143
154.698
189
6
102.343
52
120.165
98
137.741
144
155.072
190
172.158
7
102.733
53
120.550
99
138.121
145
155.446
191
172.527
8
103.123
54
120.934
100
138.500
146
155.820
192
172.895
9
103.513
55
121.319
101
138.879
147
156.194
193
173.264
10
103.902
56
121.703
102
139.258
148
156.568
194
173.632
11
104.292
57
122.087
103
139.637
149
156.941
195
174.000
12
104.681
58
122.471
104
140.016
150
157.315
196
174.368
13
105.071
59
122.855
105
140.395
151
157.688
197
174.736
14
105.460
60
123.239
106
140.773
152
158.061
198
175.104
15
105.849
61
123.623
107
141.152
153
158.435
199
175.472
16
106.238
62
124.007
108
141.530
154
158.808
200
175.840
Figura 6.16 – Resistencia óhmica del PT-100 - temperatura.
138
Motores Eléctricos
141
www.weg.net
6.12. METODOS DE PARTIDA
Siempre que sea posible, la partida del motor debe ser directa (en plena tensión). Es el método más simple, sin
embargo, solamente es viable cuando la corriente de partida no afecta la red de alimentación. Es importante
seguir las reglas vigentes de la concesionaria de energía eléctrica.
En los casos en que la corriente de partida del motor es alta, pueden ocurrir las siguientes consecuencias:
a) Elevada caída de tensión en el sistema de alimentación de la red, provocando interferencia en los
equipamientos instalados en este sistema;
b) El superdimensionamiento del sistema de protección (cables, contactores), lo que eleva los costos de la instalación.
En caso que la partida directa no sea posible debido a los problemas citados arriba, se puede usar el método
de partida indirecta compatible con la carga y la tensión del motor, para reducir la corriente de partida.
Cuando es utilizado un método de partida con tensión reducida, el torque de partida del motor también será
reducido.
La Tabla 6.5 indica los métodos de partida indirecta posibles de ser utilizados, de acuerdo con la cantidad de
cables del motor.
Tabela 6.5 - Métodos de partida - cantidad de cables.
Cantidad de cables
3 cables
6 cables
9 cables
12 cables
ESPAÑOL
Métodos de partidas posibles
Llave Compensadora
Soft – Starter
Llave Estrella - Triángulo
Llave Compensadora
Soft - Starter
Llave Serie - Paralela
Llave Compensadora
Soft - Starter
Llave Estrella - Triángulo
Llave Serie - Paralela
Llave Compensadora
Soft - Starter
La Tabla 6.6 indica ejemplos de métodos de partida indirecta posibles de ser utilizados, de acuerdo con la
tensión indicada en la placa de identificación del motor y la tensión de la red eléctrica.
Tabela 6.6
Tensión de la
placa de
identificación
220/380 V
220/440 V
230/460 V
380/660 V
220/380/440 V
- Métodos de partida x tensión.
Tensión de
Servicio
Partida con llave
Estrella - Triángulo
Partida con llave
Compensadora
Partida con llave
Serie - Paralela
Partida con
Soft-Starter
220 V
380 V
220 V
440 V
230 V
460 V
380 V
SÍ
NO
NO
NO
NO
NO
SÍ
SÍ
SÍ
SÍ
SÍ
SÍ
SÍ
SÍ
NO
NO
SÍ
NO
SÍ
NO
NO
SÍ
SÍ
SÍ
SÍ
SÍ
SÍ
SÍ
220 V
380 V
440 V
SÍ
NO
SÍ
SÍ
SÍ
SÍ
SÍ
SÍ
NO
SÍ
SÍ
SÍ
Los motores WQuattro deben ser accionados directamente a partir de la red o por convertidor de
frecuencia en modo escalar.
Otro método de partida posible que no sobrecargue la red de alimentación es la utilización de un convertidor
de frecuencia. Para más informaciones sobre motores alimentados con convertidor de frecuencia ver ítem 6.13.
Motores Eléctricos
139
142
www.weg.net
6.13. MOTORES ALIMENTADOS POR CONVERTIDOR DE FRECUENCIA
La operación con convertidor de frecuencia debe ser informada en el momento de la compra
debido a posibles diferencias constructivas necesarias para ese tipo de accionamiento.
Los motores Wmagnet deben ser accionados solamente por convertidor de frecuencia WEG.
El convertidor utilizado para accionar motores con tensión de alimentación hasta 690V debe poseer
modulación PWM con control vectorial.
Cuando un motor opera con convertidor de frecuencia por debajo de la frecuencia nominal, es necesario
reducir el torque suministrado por el motor, a fin de evitar sobrecalentamiento. Los valores de reducción de
torque (derating torque) pueden ser encontrados en el ítem 6.4 de la “Guía Técnica Motores de Inducción
Alimentados por Convertidores de Frecuencia PWM” disponible en www.weg.net.
ESPAÑOL
Para operación por encima de la frecuencia nominal debe ser observado:
J Operación con potencia constante;
J El motor puede suministrar como máximo 95% de la potencia nominal;
J Respetar la rotación máxima, considerando los siguientes criterios:
J máxima frecuencia de operación informada en la placa adicional;
J límite de rotación mecánica del motor.
J torque máximo del motor, conforme la ecuación:
Rotación máxima = Rotación nominal x Cmáx/Cn
1.5
Los recomendaciones para los cables de conexión entre motor y convertidor son indicadas en el ítem 6.8 de
la “Guía Técnica de Motores de Inducción alimentados por Convertidores de Frecuencia PWM” disponible en
www.weg.net.
6.13.1. Uso de Filtros (dV/dt)
6.13.1.1. Motor con alambre circular esmaltado
Los motores con tensión nominal de hasta 690 V, cuando son alimentados por convertidores de frecuencia, no
requieren filtros, cuando son observados los criterios de abajo:
Criterios para utilización de motores de alambre circular esmaltado alimentados por convertidor de frecuencia 1
Tensión de operación
Tensión de pico en el
dV/dt en la salida del
Rise Time3 del
MTBP3 Tiempo entre
2
del motor
motor (máx.)
convertidor (máx.)
convertidor (mín.)
pulsos (min)
Vnon ≤ 460 V
≤ 1600 V
≤ 5200 V/μs
460 < Vnon ≤ 575 V
≤ 1800 V
≤ 6500 V/μs
≥ 0,1 μs
≥ 6 μs
≤ 1600 V
≤ 5200 V/μs
575 < Vnon ≤ 690 V4
≤ 2200 V
≤ 7800 V/μs
575 < Vnon ≤ 690 V5
1. Para motores con alambre circular esmaltado con tensión 690 < Vnon ≤ 1100 V, consulte a WEG.
2. Para motores con doble tensión, ejemplo 380/660V, deben ser observados los criterios de la tensión menor
(380V).
3. Informaciones suministradas por el fabricante del convertidor.
4. Cuando no es informado en el momento de la compra que el motor operará con convertidor de frecuencia.
5. Cuando es informado en el momento de la compra que el motor operará con convertidor de frecuencia.
6.13.1.2. Motor con bobina preformada
Los motores con bobina preformada (media tensión, independientemente del tamaño de la carcasa y baja
tensión a partir de la carcasa IEC 500 / NEMA 80) especificados para utilización con convertidor de frecuencia
no requieren filtros, si son observados los criterios de la Tabla 6.7.
140
Motores Eléctricos
143
www.weg.net
Tabela 6.7 - Criterios para utilización de motores con bobina preformada alimentados con convertidor de frecuencia.
Tensión de
operación del
motor
690 < Vnon ≤ 4160 V
4160 < Vnon ≤ 6600 V
Aislamiento de la espira (fase-fase)
dV/dt en los
Tensión de pico en
terminales del
los terminales del
motor
motor
≤ 5900 V
≤ 500 V/μs
≤ 9300 V
≤ 2700 V/μs
≤ 9300 V
≤ 500 V/μs
≤ 12700 V
≤ 1500 V/μs
Tipo de
modulación
Senoidal
PWM
Senoidal
PWM
Aislamiento principal (fase-tierra)
dV/dt en los
Tensión de pico en
terminales del
los terminales del
motor
motor
≤ 3400 V
≤ 500 V/μs
≤ 5400 V
≤ 2700 V/μs
≤ 5400 V
≤ 500 V/μs
≤ 7400 V
≤ 1500 V/μs
6.13.2. Aislamiento de los Cojinetes
Como modelo, solamente motores en carcasa IEC 400 (NEMA 68) y superiores son suministrados con cojinete
aislado. Se recomienda aislar los cojinetes para operación con convertidor de frecuencia de acuerdo con la
Tabla 6.8.
Tabela 6.8 - Recomendación sobre el aislamiento de los cojinetes para motores accionados por convertidor de frecuencia.
Carcasa
IEC 315 e 355
NEMA 445/7, 447/9, L447/9, 504/5,
5006/7/8, 5009/10/11, 586/7, 5807/8/9,
5810/11/12 e 588/9
IEC 400 y superior
NEMA 6800 y superior
Recomendación
Un cojinete aislado
Puesta a tierra entre eje y carcasa por medio de escobilla
Cojinete trasero aislado
Puesta a tierra entre eje y carcasa por medio de escobilla
Para motores suministrados con sistema de puesta a tierra del eje, debe ser observado
constantemente el estado de conservación de la escobilla y, al llegar al fin de su vida útil, la misma
debe ser sustituida por otra de su misma calidad.
ESPAÑOL
6.13.3. Frecuencia de Conmutación
La frecuencia mínima de conmutación del convertidor deberá ser de 2,5 kHz.
Se recomienda que la frecuencia máxima de conmutación del convertidor sea de 5 kHz.
La no observación de los criterios y recomendaciones expuestos en este manual puede resultar en
la anulación de la garantía del producto.
6.13.4. Límite de la rotación mecánica
La Tabla 6.9 muestra las rotaciones máximas permitidas para motores accionados por convertidor de
frecuencia.
Tabela 6.9 - Rotación máxima del motor (en RPM).
Carcasa
90 – 100
112
132
160
180
200
225
250
280
315
355
2 polos
7000
7000
6000
5000
4500
4000
3600
3600
3600
3600
3600
4 polos
7000
6000
5500
5000
4000
3800
3600
3600
3000
2500
1800
6 polos
7000
6000
5500
5000
4000
3800
3600
3600
3000
2500
1800
8 polos
7000
6000
5500
5000
4000
3800
3600
3600
3000
2500
1800
Nota: para seleccionar la rotación máxima permitida para el motor, considere la curva de reducción de torque del motor.
Para más informaciones sobre el uso de convertidor de frecuencia, o acerca de cómo dimensionarlo
correctamente para su aplicación, favor contacte a WEG o consulte la “Guía Técnica de Motores de Inducción
Alimentados por Convertidores de Frecuencia PWM” disponible en www.weg.net.
Motores Eléctricos
141
144
www.weg.net
7. OPERACION
7.1. PARTIDA DEL MOTOR
Luego de ejecutar los procedimientos de instalación, algunos aspectos deben ser verificados antes de la
partida inicial del motor, principalmente si el motor no fue colocado inmediatamente en operación tras su
instalación. Aquí deben ser verificados los siguientes ítems:
J
J
J
J
J
J
J
J
J
ESPAÑOL
J
J
J
Si los datos que constan en la placa de identificación (tensión, corriente, esquema de conexión, grado de
protección, refrigeración, factor de servicio, entre otras) están de acuerdo con la aplicación.
El correcto montaje y alineamiento del conjunto (motor + máquina accionada).
El sistema de accionamiento del motor, considerando que la rotación del motor no sobrepase la velocidad
máxima establecida en la Tabla 6.9.
La resistencia de aislamiento del motor, conforme ítem 5.4.
El sentido de rotación del motor.
La integridad de la caja de conexión, que debe estar limpia y seca, sus elementos de contacto libres de
oxidación, sus sellados en condiciones apropiadas de uso y sus entradas de cables correctamente
cerradas/protegidas de acuerdo con el grado de protección.
Las conexiones del motor, verificando si fueron correctamente realizadas, inclusive puesta a tierra y cables
auxiliares, conforme recomendaciones del ítem 6.9.
El correcto funcionamiento de los accesorios (freno, encoder, protección térmica, ventilación forzada, etc.)
instalados en el motor.
La condición de los rodamientos. Si presentan señales de oxidación, deben ser substituidos. En caso que no
presenten oxidación, realice el procedimiento de relubricación conforme descrito en el ítem 8.2. Aquellos
motores instalados hace más de dos años, que no entraron en operación, deben tener sus rodamientos
substituidos antes de ser puestos en operación.
En motores con cojinetes de deslizamiento debe ser verificado:
J el nivel correcto de aceite del cojinete. El mismo debe estar en la mitad del visor (ver Figura 6.9).
J que el motor no parta ni opere con cargas radiales o axiales.
J que cuando el motor sea almacenado por un período igual o mayor al intervalo de cambio de aceite, el
aceite deberá ser cambiado antes de la puesta en funcionamiento.
El análisis de la condición de los condensadores, si existen. Para motores instalados por un período superior
a dos años, pero que no entraron en operación, se recomienda la substitución de sus condensadores de
partida de motores monofásicos.
Que entradas y salidas de aire estén completamente desobstruidas. El mínimo espacio libre hasta la pared
más próxima (L) debe ser ¼ del diámetro de la entrada de aire de la deflectora (D), ver Figura 7.1. El aire en la
entrada del motor debe estar a temperatura ambiente.
Figura 7.1 - Distancia mínima del motor hasta la pared.
Como referencia, pueden ser seguidas las distancias mínimas presentadas en la Tabla 7.1.
142
Motores Eléctricos
145
www.weg.net
Tabela 7.1 - Distancia mínima entre la tapa deflectora y la pared.
Carcasa
IEC
63
71
80
90
100
112
132
160
180
200
225
250
280
315
355
J
J
Distancia entre la tapa deflectora y la pared (L)
NEMA
143/5
182/4
213/5
254/6
284/6
324/6
364/5
404/5
444/5
445/7
447/9
L447/9
504/5
586/7
588/9
mm
25
26
30
33
36
41
50
65
68
78
pulgadas
0,96
1,02
1,18
1,30
1,43
1,61
1,98
2,56
2,66
3,08
85
3,35
108
4,23
122
4,80
136
5,35
que los flujos y las temperaturas del agua estén correctas, cuando es utilizada en la refrigeración del motor.
Ver ítem 7.2.
que todas las partes giratorias, como poleas, acoplamientos, ventiladores externos, eje, etc., estén
protegidas contra toques accidentales.
Luego de haber sido realizadas todas las verificaciones, siga el procedimiento de abajo para efectuar la partida
de motor:
J
Encienda la máquina sin ninguna carga (cuando sea posible), accionando la llave de partida como si fuese un pulso,
verificando el sentido de rotación, la presencia de ruido, vibración u otra condición anormal de operación.
J
Encienda nuevamente el motor, debiendo partir y funcionar de manera suave. En caso que eso no ocurra,
apáguelo y verifique nuevamente el sistema de montaje y las conexiones antes de una nueva partida.
En caso de vibraciones excesivas, verifique si los tornillos de fijación están adecuadamente apretados o si la
vibración es proveniente de máquinas adyacentes. Verifique periódicamente la vibración, respetando los
límites presentados en el ítem 7.2.1.
Opere el motor bajo carga nominal por un pequeño período de tiempo y compare la corriente de operación
con la corriente indicada en la placa de identificación.
Se recomienda que algunas variables del motor sean acompañadas hasta su equilibrio térmico: corriente,
tensión, temperatura en los cojinetes y en la superficie externa de la carcasa, vibración y ruido.
Se recomienda que los valores de corriente y tensión sean registrados en el informe de instalación.
J
J
J
J
ESPAÑOL
Otros testes y verificaciones que no constan en esta relación pueden hacerse necesarios, en función de las
características específicas de la instalación, aplicación y/o del motor.
Debido al valor elevado de la corriente de partida de los motores de inducción, el tiempo gastado en la
aceleración en las cargas de inercia apreciable resulta en la elevación rápida de la temperatura del motor. Si el
intervalo entre partidas sucesivas es muy reducido, resultará en un aumento de la temperatura en los
devanados, damnificándolos o reduciendo su vida útil. En caso que no sea especificado régimen de servicio
diferente a S1 en la placa de identificación del motor, los motores están aptos para:
J dos partidas sucesivas, siendo la primera hecha con el motor frío, es decir, con sus devanados a
temperatura ambiente y una segunda partida a seguir, no obstante, luego que el motor haya sido
desacelerado hasta alcanzar su reposo.
J una partida con el motor a caliente, o sea, con los devanados a la temperatura de régimen.
El ítem 10 lista algunos problemas de mal funcionamiento del motor, con sus posibles causas.
Motores Eléctricos
143
146
www.weg.net
7.2. CONDICIONES DE OPERACION
En caso que ninguna otra condición sea informada en el momento de la compra, los motores eléctricos son
proyectados para operar a una altitud limitada a 1000 m por encima del nivel del mar y en temperatura
ambiente entre -20°C y +40°C. Cualquier variación de las condiciones del ambiente, donde el motor operará,
debe estar indicada en la placa de identificación del motor.
Algunos componentes precisan ser cambiados, cuando la temperatura ambiente es diferente de la indicada
arriba. Favor contactar a WEG para verificar las características especiales.
El ambiente en el local de instalación deberá tener condiciones de renovación de aire del orden de 1m³ por
segundo para cada 100 kW o fracción de potencia del motor. Para motores ventilados, que no poseen
ventilador propio, la ventilación adecuada del motor es de responsabilidad del fabricante del equipamiento. En
caso que no haya especificación de la velocidad de aire mínima entre las aletas del motor en una placa de
identificación, deben ser seguidos los valores indicados en la Tabla 7.2. Los valores presentados en la Tabla 7.2
son válidos para motores aleteados alimentados en la frecuencia de 60 Hz. Para obtención de las velocidades
mínimas de aire en 50 Hz se deben multiplicar los valores de la tabla por 0,83.
Tabela 7.2 - Velocidad mínima de aire entre las aletas del motor (m/s).
Carcasa
IEC
63 a 90
160 a 200
NEMA
143/5
182/4 y
213/5
364/5 to 444/5
225 a 280
364/5 to 444/5
315 a 355
445/7 to 588/9
ESPAÑOL
100 a 132
Polos
2
4
6
8
14
7
5
4
18
10
8
6
20
22
25
20
22
25
12
18
20
7
12
15
Las variaciones de la tensión y frecuencia de alimentación pueden afectar las características de desempeño y
la compatibilidad electromagnética del motor. Estas variaciones de alimentación deben seguir los valores
establecidos en las normas vigentes. Ejemplos:
J ABNT NBR-17094 - Partes 1 y 2. El motor está apto para proveer torque nominal, bajo las siguientes zonas
de variación de tensión y frecuencia:
J Zona A: r5% de tensión yr2% de frecuencia
J Zona B: r10% de tensión y +3% -5% de frecuencia
Cuando es operado en la Zona A o B, el motor puede presentar variaciones de desempeño y alcanzar
temperaturas más elevadas. Estas variaciones son mayores para la operación en la zona B. No es
recomendada una operación prolongada del motor en la zona B.
J IEC 60034-1. El motor está apto para proveer torque nominal, bajo las siguientes zonas de variación de
tensión y frecuencia:
J Zona A: r5% de tensión y r2% de frecuencia
J Zona B: r10% de tensión y +3% -5% de frecuencia.
Cuando es operado en la Zona A o B, el motor puede presentar variaciones de desempeño y alcanzar
temperaturas más elevadas. Estas variaciones son mayores para la operación en la zona B. No es
recomendada la operación prolongada del motor en la zona B. Para motores multitensión (ejemplo 380415/660 V) es permitida una variación de tensión de r5%.
J NEMA MG-1 Parte 12. El motor está apto para operar en una de las siguientes variaciones:
J r10% de tensión, con frecuencia nominal;
J r5 de frecuencia, con tensión nominal;
J Una combinación de variación de tensión y frecuencia de r10%, desde que la variación de frecuencia no
sea superior a r5%..
Para motores que son enfriados a través del aire ambiente, las entradas y salidas de aire deben ser limpiadas
en intervalos regulares para garantizar una libre circulación del aire. El aire caliente no debe retornar hacia el
motor. El aire utilizado para refrigeración del motor debe estar a temperatura ambiente, limitada a la franja de
temperatura indicada en la placa de identificación del motor (cuando no sea indicado, considere una franja de
temperatura entre -20°C y +40°C).
Para motores refrigerados a agua, los valores del flujo de agua para cada tamaño de carcasa, así como la
máxima elevación de temperatura del agua luego de circular por el motor, son mostrados en la Tabla 7 3. La
temperatura del agua en la entrada no debe exceder 40°C.
144
Motores Eléctricos
147
www.weg.net
Tabela 7.3 - Flujo y máxima elevación de temperatura del agua.
Carcasa
IEC
180
200
225
250
280
315
355
NEMA
284/6
324/6
364/5
404/5
444/5
445/7
447/9
504/5
586/7
588/9
Flujo
(litros/minuto)
Máxima Elevación de
temperatura del agua (°C)
12
12
12
12
5
5
5
5
15
6
16
6
25
6
Para motores con lubricación de tipo Oil Mist, en caso de falla del sistema de bombeo de aceite, es permitida
una operación en régimen continuo con el tiempo máximo de una hora de operación.
Considerando que el calor del sol causa aumento de la temperatura de operación, los motores instalados
externamente deben siempre estar protegidos contra la incidencia directa de los rayos solares.
Posibles desvíos en relación a la operación normal (actuación de protecciones térmicas, aumento del nivel de
ruido, vibración, temperatura y corriente) deben ser examinados y eliminados por personal capacitado. En caso
de dudas, apague el motor inmediatamente y contacte a un Asistente Técnico Autorizado WEG.
Motores equipados con rodamiento de rodillos necesitan de una carga radial mínima para asegurar
su operación normal. En caso de dudas, contacte a WEG.
La severidad de vibración es el máximo valor de vibración encontrada, entre todos los puntos y direcciones
recomendados.
La Tabla 7.4 indica los valores admisibles de la severidad de vibración recomendados en la norma IEC 6003414 para las carcasas IEC 56 a 400, para los grados de vibración A y B.
Los límites de severidad de la Tabla 7.4 son presentados en términos del valor medio cuadrático (= valor RMS o
valor eficaz) de la velocidad de vibración en mm/s medidos en condición de suspensión libre (base elástica).
ESPAÑOL
7.2.1. Límites de la severidad de vibración
Tabela 7.4 - Limites recomendados para la severidad de vibración de acuerdo con la norma IEC 60034-14.
Altura del eje [mm]
Grado de vibración
A
B
56 ≤ H ≤ 132
132 < H ≤ 280
H > 280
Severidad de vibración en base elástica [mm/s RMS]
1,6
2,2
2,8
0,7
1,1
1,8
Notas:
1 - Los valores de la Tabla 7.4 son válidos para mediciones realizadas con la máquina desacoplada y sin carga, operando en la
frecuencia y tensión nominales.
2 - Los valores de la Tabla 7.4 son válidos independientemente del sentido de rotación de la máquina.
3 - La Tabla 7.4 no se aplica para motores trifásicos con conmutador, motores monofásicos, motores trifásicos con alimentación
monofásica o para máquinas fijadas en el local de instalación, acopladas en sus cargas de accionamiento o cargas accionadas.
Para motor estándar, de acuerdo con la norma NEMA MG-1, el límite de vibración es de 0.15 in/s (pulgadas/
segundo pico), en la misma condición de suspensión libre y desacoplado.
Nota:
Para condición de operación en carga se recomienda el uso de la norma ISO 10816-3 para evaluación de los limites de vibración del motor.
En la condición en carga, la vibración del motor será influenciada por varios factores, entre ellos, tipo de carga acoplada, condición de
fijación del motor, condición de alineamiento con la carga, vibración de la estructura o base debido a otros equipamientos, etc.
Motores Eléctricos
145
148
www.weg.net
8. MANTENIMIENTO
La finalidad del mantenimiento es prolongar lo máximo posible la vida útil del equipamiento. La no observancia
de uno de los ítems relacionados a seguir puede llevar a paradas no deseadas del equipamiento.
En caso que, durante el mantenimiento, hubiera necesidad de transporte de los motores con rodamientos de
rodillos o contacto angular, deben ser utilizados los dispositivos de trabado del eje suministrados con el motor.
Todos los motores HGF, independientemente del tipo de cojinete, deben ter su eje trabado durante el transporte.
Cualquier servicio en máquinas eléctricas debe ser realizado solamente por personal capacitado, utilizando
sólo herramientas y métodos adecuados. Antes de iniciar cualquier servicio, las máquinas deben estar
completamente paradas y desconectadas de la red de alimentación, inclusive los accesorios (resistencia de
calentamiento, freno, etc.).
Asistentes técnicos o personal no capacitado, sin autorización para hacer mantenimiento y/o reparar motores,
son totalmente responsables por el trabajo ejecutado y por los eventuales daños que puedan ocurrir durante
su funcionamiento.
8.1. INSPECCION GENERAL
La frecuencia con que deben ser realizadas las inspecciones depende del tipo de motor, de la aplicación y de
las condiciones del local de la instalación. Durante la inspección, se recomienda:
Hacer una inspección visual del motor y del acoplamiento, observando los niveles de ruido, de la vibración,
alineamiento, señales de desgastes, oxidación y piezas damnificadas. Substituir las piezas, cuando fuera
necesario.
JMedir la resistencia de aislamiento conforme descrito en el ítem 5.4.
J Mantener la carcasa limpia, eliminando toda acumulación de aceite o de polvo en la parte externa del motor
para de esta forma facilitar el intercambio de calor con el medio ambiente.
JVerificar la condición del ventilador y de las entradas y salidas de aire, asegurando un libre flujo del arie;
JVerificar el estado de los sellados y efectuar el cambio, si fuera necesario.
JDrenar
el motor. Tras el drenaje, recolocar los drenajes para garantizar nuevamente el grado de protección del
motor. Los drenajes deben estar siempre posicionados de tal forma que el drenaje sea facilitado (ver ítem 6).
JVerificar la conexión de los cables de alimentación, respetando las distancias de aislamiento entre partes
vivas no aisladas entre sí y entre partes vivas y partes puestas a tierra de acuerdo con la Tabla 6.2.
J Verificar si el apriete de los tornillos de conexión, sustentación y fijación está de acuerdo con lo indicado en la
Tabla 8.7
JVerificar el estado del pasaje de los cables en la caja de conexión, los sellados de los prensacables y los
sellados en las cajas de conexión y efectuar el cambio, se fuera necesario.
J Verificar el estado de los cojinetes, observando la aparición de ruidos y niveles de vibración no habituales,
verificando la temperatura de los cojinetes, el nivel del aceite, la condición del lubricante y el monitoreo de las
horas de operación versus la vida útil informada.
JRegistrar y archivar todas las modificaciones realizadas en el motor.
ESPAÑOL
J
No reutilice piezas dañadas o desgastadas. Substitúyalas por nuevas, originales de fábrica.
8.2. LUBRICACION
La correcta lubricación es de vital importancia para el buen funcionamiento del motor.
Utilice el tipo y cantidad de grasa o aceite especificados y seguir los intervalos de relubricación recomendados
para los cojinetes. Estas informaciones pueden ser encontradas en la placa de identificación y este
procedimiento debe ser realizado conforme el tipo de lubrificante (aceite o grasa).
Cuando el motor utilice protección térmica en el cojinete, deben ser respetados los límites de temperatura de
operación indicados en la Tabla 6.3.
Los motores para aplicaciones especiales pueden presentar temperaturas máximas de operación diferentes a
las indicadas en la tabla.
El descarte de la grasa y/o aceite debe seguir las recomendaciones vigentes de cada país.
La utilización de motor en ambientes y/o aplicaciones especiales siempre requiere una consulta
previa a WEG.
146
Motores Eléctricos
149
www.weg.net
8.2.1. Cojinetes de rodamiento lubricados a grasa
Grasa en exceso provoca calentamiento del cojinete y su consecuente falla.
Los intervalos de lubricación especificados en las Tabla 8.1, Tabla 8.2, Tabla 8.3 y Tabla 8.4 consideran una
temperatura ambiente de 40°C, rotación nominal del motor, instalación horizontal, grasa Mobil Polyrex EM, y
son determinados siguiendo el criterio de la norma ISO 281, o sea, se estima que 90% de los rodamientos
atienden los valores calculados. Cualquier variación de los parámetros indicados arriba debe ser evaluada
puntualmente.
Tabela 8.1- Intervalo de lubricación para rodamientos de esferas.
Carcasa
IEC
160
180
200
254/6
284/6
324/6
364/5
404/5
444/5
445/7
447/9
L447/9
504/5
5008
5010/11
586/7
588/9
2
4
6
8
2
4
6
8
2
4
6
8
2
4
6
8
6309
6311
6312
6314
13
18
21
27
2
4
6
8
6316
8
6319
6322
20000
20000
20000
20000
20000
25000
25000
13700
11500
17000
14000
20000
20000
25000
25000
11900
9800
15000
12000
20000
20000
25000
25000
4500
11600
16400
19700
5000
14000
20000
24000
9000
13000
17400
7200
10800
3600
9700
14200
17300
*Mediante
consulta
8500
12800
15900
*Mediante
consulta
7000
11000
14000
5100
9200
11000
16000
20000
9000
13000
4000
12000
17000
20000
*Mediante
consulta
10000
16000
20000
*Mediante
consulta
8000
13000
17000
6000
11000
15100
11800
19000
14000
20000
18000
14400
20000
20000
14000
*Mediante
consulta
3500
20000
20000
10400
14900
18700
9600
*Mediante
consulta
2400
20000
20000
20000
20000
45
60
20000
20000
34
2
4
6
8
4
6
Intervalos de relubricación (horas)
ODP
W21
W22
(Envoltorio abierto)
(Envoltorio cerrado)
(Envoltorio Cerrado)
50 Hz
60 Hz
50 Hz
60 Hz
50 Hz
60 Hz
18100
15700
22000
20000
4000
13000
18000
20000
3000
Motores Eléctricos
147
ESPAÑOL
225
250
280
315
355
NEMA
Cantidad de
Polos Rodamiento
grasa (g)
150
www.weg.net
Tabela 8.2- Intervalo de lubricación para rodamientos de rodillos.
Intervalos de relubricación (horas)
Carcasa
IEC
Polos
Rodamiento
Cantidad de
grasa (g)
NEMA
160
50 Hz
2
4
6
8
2
4
6
8
2
254/6
180
284/6
200
13
NU311
18
NU312
6
8
4
6
8
4
6
8
364/5
404/5
444/5
445/7
447/9
L447/9
504/5
5008
5010/11
586/7
588/9
ESPAÑOL
NU309
4
324/6
"225
250
280
315
355"
ODP
W21
W22
(Envoltorio abierto) (Envoltorio Cerrado) (Envoltorio Cerrado)
21
60 Hz
19600
50 Hz
13300
60 Hz
9800
50 Hz
16000
60 Hz
12000
20000
20000
20000
25000
25000
18400
12800
9200
6400
19100
11000
8000
20000
20000
20000
25000
25000
15200
10200
7600
20000
20000
5100
9000
17200
20000
20000
20000
25000
20000
NU314
27
NU316
34
NU319
45
NU322
60
4
6
8
4
6
8
6000
21000
17800
14200
20000
20000
15200
12000
19000
20000
8900
13100
16900
7600
11600
15500
12000
9400
6000
4700
7000
5000
19600
20000
8800
15600
20000
15200
20000
6600
11800
20000
9800
13700
4400
7800
11500
7600
12200
3300
5900
10700
12000
17000
5000
9000
14000
9000
15000
4000
7000
13000
20000
7100
11000
15100
6000
9500
13800
25000
11000
16000
20000
9000
14000
19000
9000
13000
19000
7000
12000
17000
Tabela 8.3 - Intervalo de lubricación para rodamiento de esferas - línea HGF.
Carcasa
IEC
NEMA
315L/A/B e
315C/D/E
5006/7/8T e
5009/10/11T
355L/A/B e
355C/D/E
5807/8/9T e
5810/11/12T
400L/A/B e 400
C/D/E
6806/7/8T e
6809/10/11T
Rodamiento
Cantidad de
grasa (g)
50 Hz
60 Hz
2
6314
6320
6316
6314
6322
6319
6315
6324
6319
6220
6328
6322
6328
6322
27
50
34
27
60
45
30
72
45
31
93
60
93
60
3100
4500
4500
3100
4500
4500
2700
4500
4500
2500
4500
4500
4500
4500
2100
4500
4500
2100
4500
4500
1800
4500
4500
1400
3300
4500
4500
4500
6330
104
4200
2800
6324
6330
6324
6330
6324
6330
6324
72
104
72
104
72
104
72
4500
4500
4500
4200
4500
4500
4500
4500
4500
4500
2800
4500
4500
4500
4–8
2
4–8
2
4–8
2
450
7006/10
4
6–8
4
500
8006/10
6–8
4
500
8006/10
6–8
560
630
148
8806/10
9606/10
Motores Eléctricos
Intervalos de Lubricación (horas)
Polos
4-8
4-8
*Mediante consulta
151
www.weg.net
Tabela 8.4 - Intervalo de lubricación para rodamiento de rodillos - línea HGF.
Carcasa
IEC
NEMA
315L/A/B e
5006/7/8 e
315C/D/E
5009/10/11
355L/A/B e
5807/8/9 e
355C/D/E
5810/11/12
400L/A/B e
6806/7/8 e
400C/D/E
6809/10/11
450
7006/10
500
8006/10
560
8806/10
630
9606/10
Polos
4
6-8
4
6-8
4
6-8
4
6
8
4
6
8
4
6-8
4
6
8
Rodamiento
Cantidad de
grasa (g)
NU320
50
NU322
60
NU324
72
NU328
93
NU330
104
NU228 + 6228
NU232 + 6232
75
106
92
120
140
Intervalos de Lubricación (horas)
50 Hz
60 Hz
4300
2900
4500
4500
3500
2200
4500
4500
2900
1800
4500
4500
2000
1400
4500
3200
4500
4500
1700
1000
4100
2900
4500
4500
2600
1600
4500
4500
1800
1000
4300
3100
4500
4500
Para cada incremento de 15°C en la temperatura ambiente, el intervalo de relubricación deberá ser reducido
por la mitad.
Los motores originales de fábrica, para posición horizontal, pero instalados en posición vertical (con
autorización de WEG), deben tener su intervalo de relubricación reducido por la mitad.
ESPAÑOL
Para aplicaciones especiales, tales como: altas y bajas temperaturas, ambientes agresivos, variación de
velocidad (accionamiento por convertidor de frecuencia), etc., entre en contacto con WEG para obtener
informaciones referentes al tipo de grasa e intervalos de lubricación a ser utilizados.
8.2.1.1. Motores sin grasera
En motores sin grasera, la lubricación debe ser efectuada conforme el plano de mantenimiento preventivo
existente. El desmontaje y montaje del motor deben ser hechos conforme el ítem 8.3.
En motores con rodamientos blindados (por ejemplo, ZZ, DDU, 2RS, VV), los rodamientos deben ser
substituidos al final de la vida útil de la grasa.
8.2.1.2. Motores con grasera
En motores con grasera, es recomendado lubricar los rodamientos con el motor parado, procediendo de la
siguiente manera:
JLimpie las proximidades del orificio de entrada de grasa;
JRetire la protección de salida de grasa;
J
Coloque aproximadamente mitad de la grasa total recomendada y gire el motor durante aproximadamente 1
(un) minuto en la rotación nominal;
JApague el motor y coloque el resto de la grasa;
J Recoloque las protecciones de entrada y salida de grasa.
Para lubricación, es indicado el uso de lubricador manual.
En motores suministrados con dispositivo de resorte, el exceso de grasa debe ser removido, halando la varilla
del resorte y limpiándolo, hasta que no presente más grasa.
8.2.1.3. Compatibilidad de la grasa Mobil Polyrex EM con otras grasas
La grasa Mobil Polyrex EM posee espesante de poliurea y aceite mineral, siendo compatible con otras grasas
que contengan:
J
Espesante de litio o complejo de litio o poliurea y aceite mineral altamente refinado;
J
La grasa aplicada debe poseer, en su formulación, aditivos inhibidores de corrosión y oxidación.
A pesar de que la grasa Mobil Polyrex EM es compatible con los tipos de grasa indicados arriba, no es
recomendada la mezcla de grasas.
En caso que necesite de otro tipo de grasa, contacte a WEG.
Motores Eléctricos
149
152
www.weg.net
8.2.2. Cojinetes de rodamiento lubricados a aceite
En motores con rodamientos lubricados a aceite, el cambio de aceite debe ser hecho con el motor parado,
siguiendo los procedimientos abajo:
J
abra la respiración de entrada de aceite;
J
retire el tapón de salida de aceite
J
abra la válvula y drene todo el aceite;
J cierre la válvula;
J
recoloque el tapón;
J
abastezca con la cantidad y especificación de aceite indicadas en la placa de identificación;
J
verifique si el nivel del aceite está en la mitad del visor;
J cierre la respiración de la entrada de aceite;
J
asegúrese de que no hay pérdida y que todos los orificios roscados no utilizados estén cerrados.
El cambio de aceite de los cojinetes debe ser realizado en el intervalo indicado en la placa de identificación o
siempre que el lubrificante presente alteraciones en sus características (viscosidad, pH, etc.).
El nivel de aceite debe ser mantenido en la mitad del visor de aceite y acompañado diariamente.
El uso de lubricantes con otras viscosidades requiere contacto previo con WEG.
Obs.: los motores HGF verticales para alto empuje son suministrados con cojinetes delanteros lubricados a
grasa y con cojinetes traseros, a aceite. Los cojinetes delanteros deben seguir las recomendaciones del ítem
8.2.1. La Tabla 8.5 presenta la cantidad y especificación de aceite para esa configuración.
Montaje Alto Empuje
ESPAÑOL
Tabla 8 5 – Características de lubricación para motores HGF vertical de alto empuje.
Carcasa
IEC
315L/A/B e
315C/D/E
355L/A/B e
355C/D/E
400L/A/B e
400C/D/E
NEMA
5006/7/8T e
5009/10/11T
5807/8/9T e
5810/11/12T
6806/7/8T e
6809/10/11T
450
7006/10
Polos
Rodamiento
Aceite (L)
4-8
29320
20
4-8
29320
26
4-8
29320
37
4-8
29320
45
Intervalo (h)
Lubricante
Especificación
Lubricante
8000
Renolin
DTA 40 /
SHC 629
Aceite mineral
ISO VG150 con
aditivos
antiespuma y
antioxidantes
8.2.3. Cojinetes de rodamiento con lubricación de tipo Oil Mist
Verifique el estado de los sellados y, siempre que fuera necesario algún cambio, use solamente piezas
originales. Realice la limpieza de los componentes antes del montaje (anillos de fijación, tapas, etc.).
Aplique sellajuntas resistente al aceite lubricante utilizado, entre los anillos de fijación y las tapas.
A conexión de los sistemas de entrada, salida y drenaje de aceite deben ser realizados conforme la
Figura 6.12.
8.2.4. Cojinetes de deslizamiento
Para los cojinetes de deslizamiento, el cambio de aceite debe ser hecho en los intervalos indicados en la Tabla
8.6 y debe ser realizado, adoptando los siguientes procedimientos:
Jpara el cojinete trasero, retire la tapa de inspección de la deflectora.
Jdrene el aceite a través del drenaje localizado en la parte inferior de la carcasa del cojinete (ver Figura 8 1).
J cierre la salida de aceite.
Jretire el tapón de la entrada de aceite.
J
abastezca con el aceite especificado y con la cantidad indicada en la Tabla 8.6.
J
verifique si el nivel del aceite está en la mitad del visor.
J
cierre la entrada de aceite.
J
asegúrese de que no existe pérdida
150
Motores Eléctricos
153
www.weg.net
Entrada de aceite
Visor del nivel de aceite
Salida de aceite
Figura 8.1 - Cojinete de deslizamiento.
Tabela 8.6
Carcasa
IEC
NEMA
315L/A/B y
315C/D/E
5006/7/8T y
5009/10/11T
355L/A/B y
355C/D/E
5807/8/9T y
5810/11/12T
400L/A/B y
400C/D/E
6806/7/8 y
6809/10/11T
– Características de lubricación para cojinetes de deslizamiento.
Polos
2
Cojinete
9-80
7006/10
5006/7/8T y
5009/10/11T
9-90
355L/A/B y
355C/D/E
5807/8/9T y
5810/11/12T
9-100
400L/A/B y
400C/D/E
6806/7/8 y
6809/10/11T
450
7006/10
500
8006/10
2.8
Lubricante
Especificación
Lubrificante
8000
Renolin
DTA 10
Aceite mineral
ISO VG32 con
aditivos
antiespuma y
antioxidantes
8000
Renolin DTA
15
Aceite mineral
ISO VG46 con
aditivos
antiespuma y
antioxidantes
Intervalo (h)
2.8
4-8
11-110
4.7
ESPAÑOL
450
315L/A/B y
315C/D/E
Aceite (L)
11-125
El cambio de aceite de los cojinetes debe ser realizado en el intervalo indicado en la placa de identificación o
siempre que el lubricante presente alteraciones en sus características (viscosidad, pH, etc.).
El nivel de aceite debe ser mantenido en la mitad del visor y seguido diariamente.
No podrán ser usados lubrificantes con otras viscosidades sin antes consultar a WEG.
8.3. DESMONTAJE Y MONTAJE
Los servicios de reparación en motores deben ser efectuados solamente por personal capacitado
siguiendo las normas vigentes del país. Sólo deben ser utilizadas herramientas y métodos
adecuados.
Cualquier servicio de desmontaje y montaje debe ser realizado con el motor totalmente
desenergizado y completamente parado.
El motor apagado también puede presentar energía eléctrica en el interior de la caja de conexión:, en las
resistencias de calentamiento, en el devanado y en los capacitores.
Los motores accionados por convertidor de frecuencia pueden estar energizados incluso con el motor
parado.
Antes de iniciar el procedimiento de desmontaje, registre las condiciones actuales de la instalación, tales como
conexiones de los terminales de alimentación del motor y alineamiento / nivelación, los que deben ser
considerados durante el montaje posterior.
Realice el desmontaje de manera cuidadosa, sin causar impactos contra las superficies mecanizadas y / o en
las roscas.
Motores Eléctricos
151
154
www.weg.net
Monte el motor en una superficie plana para garantizar una buena base de apoyo. Los motores sin patas
deben ser calzados/trabados para evitar accidentes.
Deben ser tomados cuidados adicionales para no dañar las partes aisladas que operan bajo tensión eléctrica,
como por ejemplo, devanados, cojinetes aislados, cables de alimentación, etc.
Los elementos de sellado, como por ejemplo, juntas y sellados de los cojinetes deben ser cambiados siempre
que presenten desgaste o estén damnificados.
Los motores con grado de protección superior a IP55 son suministrados con producto sellante Loctite 5923
(Henkel) en las juntas y tornillos. Antes de montar los componentes, limpie las superficies y aplique una nueva
camada de este producto.
ESPAÑOL
8.3.1. Caja de conexión
Al retirar la tapa de la caja de conexión para la conexión/desconexión de los cables de alimentación y
accesorios, deben ser adoptados los siguientes cuidados:
J
Asegúrese que durante la remoción de los tornillos, la tapa de la caja no dañe los componentes instalados en
su interior.
J
En caso que la caja de conexión sea suministrada con ojal de suspensión, éste debe ser utilizado para mover
la tapa de la caja de conexión.
J
Para motores suministrados con placa de bornes, deben ser asegurados los torques de apriete especificados
en la Tabla 8.7.
J
Verifique que los cables no entren en contacto con superficies con esquinas vivas.
J
Adopte los debidos cuidados para garantizar que el grado de protección inicial, indicado en la placa de
identificación del motor no sea alterado. Las entradas de cables para la alimentación y control deben utilizar
siempre componentes (como, por ejemplo, prensacables y electroductos) que atiendan las normas y
reglamentaciones vigentes de cada país.
J Asegúrese que la ventana de alivio de presión, cuando exista, no esté dañada. Las juntas de sellado de la
caja de conexión deben estar en perfecto estado para reutilización y deben ser posicionadas correctamente
para garantizar el grado de protección.
JVerifique los torques de apriete de los tornillos de fijación de la tapa de la caja conforme Tabla 8 7.
Tabela 8.7
Tipo de tornillo y Junta
– Torques de apriete para elementos de fijación [Nm].
M4
M5
M6
M8
M10
M16
M20
55 a 85
120 a 180
230 a
360
-
-
-
-
13 a 20
25 a 37
40 a 55
50 a 65
-
4a8
8 a 15
-
-
-
-
-
-
8 a 15
18 a 30
25 a 40
35 a 50
-
Placa de bornes
1,5 a 4
4 a 6,5
6,5 a 9
10 a 18
18 a 30
35 a 50
-
Puesta a tierra
3a5
5 a 10
10 a 18
30 a 50
55 a 85
120 a 180
-
Tornillo sextavado externo/interno
(s/ junta)
4a7
7 a 12
16 a 30
30 a 50
Tornillo ranura combinada (s/ junta)
3a5
5 a 10
10 a 18
Tornillo sextavado externo/interno
(c/ junta con batiente metálica/cordón)
-
-
Tornillo ranura combinada (c/ junta
plana y/o batiente metálica/cordón)
3a5
Tornillo sextavado externo/interno
(c/ junta plana)
M12
8.4. PROCEDIMIENTO PARA ADECUACION DE LA RESISTENCIA DE AISLAMIENTO
El motor debe ser desmontado y sus tapas, rotor completo (con eje), ventilador, deflectora y caja de conexión
deben ser separados, de modo que apenas la carcasa con el estator pase por un proceso de secado en una
horno apropiado, por un período de dos horas, a una temperatura no superior a 120ºC. Para motores mayores,
puede ser necesario aumentar el tiempo de secado. Luego de ese período de secado, deje el estator enfriar
hasta que llegue a temperatura ambiente y repita la medición de la resistencia de aislamiento, conforme ítem
5.4. En caso necesario, se debe repetir el proceso de secado del estator.
Si, luego de repetidos los procesos de secado del estator, la resistencia de aislamiento no vuelve a los niveles
aceptables, se recomienda hacer un análisis exhaustivo de las causas que llevaron a la caída del aislamiento
del devanado y, eventualmente podrá culminar con el rebobinado del motor.
152
Motores Eléctricos
155
www.weg.net
Para evitar el riesgo de shock eléctrico, descargue los terminales inmediatamente antes y después
de cada medición. En caso que el motor posea condensadores, éstos deben ser descargados.
8.5. PARTES Y PIEZAS
Al solicitar piezas para reposición, informe la designación completa del motor, así como su código y número de
serie, que pueden ser encontrados en la placa de identificación del motor.
Las partes y piezas deben ser adquiridas de la red de Asistencia Técnica Autorizada WEG. El uso de piezas no
originales puede resultar en la caída de desempeño y causar falla en el motor.
Las piezas sobresalientes deben ser almacenadas en local seco con una humedad relativa del aire de hasta
60%, con temperatura ambiente mayor a 5°C y menor a 40°C, libre de polvo, vibraciones, gases, agentes
corrosivos, sin variaciones bruscas de temperatura, en su posición normal y sin apoyar otros objetos sobre las
mismas.
ESPAÑOL
Figura 8.2 - Vista explotada de los componentes de un motor W22.
Motores Eléctricos
153
156
www.weg.net
9. INFORMACIONES AMBIENTALES
9.1. EMBALAGEM
Los motores eléctricos son suministrados en embalajes de cartón, plástico o madera. Estos materiales son
reciclables o reutilizables y deben recibir el destino correcto, conforme las normas vigentes de cada país. Toda
la madera utilizada en los embalajes de los motores WEG proviene de reforestación y no es sometida a ningún
tratamiento químico para su conservación.
9.2. PRODUCTO
Los motores eléctricos, bajo el aspecto constructivo, son fabricados esencialmente con metales ferrosos
(acero, hierro fundido), metales no ferrosos (cobre, aluminio) y plástico.
ESPAÑOL
El motor eléctrico, de manera general, es un producto que posee una vida útil larga, no obstante en cuanto a
su descarte, WEG recomienda que los materiales del embalaje y del producto sean debidamente separados y
enviados a reciclaje.
Los materiales no reciclables deben, como determina la legislación ambiental, ser dispuestos de forma
adecuada, o sea, en aterramientos industriales, coprocesados en hornos de cemento o incinerados. Los
prestadores de servicios de reciclaje, disposición en aterramiento industrial, coprocesamiento o incineración de
residuos deben estar debidamente licenciados por el órgano ambiental de cada estado para realizar estas
actividades.
154
Motores Eléctricos
157
www.weg.net
10. PROBLEMAS Y SOLUCIONES
Las instrucciones a seguir presentan una relación de problemas comunes con posibles soluciones. En caso de
duda, contacte al Asistente Técnico Autorizado, o a WEG.
Problema
El motor no parte, ni acoplado ni
desacoplado
Cuando acoplado con carga, el motor no
parte o parte muy lentamente y no alcanza
la rotación nominal
Ruido elevado / anormal
Calentamiento del cojinete
Solución
Interrupción en la alimentación del motor
Verifique el circuito de comando y los
cables de alimentación del motor
Fusibles quemados
Substituya los fusibles
Corrija las conexiones del motor conforme
Error en la conexión del motor
el diagrama de conexión
Cojinete trabado
Verifique si el cojinete gira libremente.
Carga con torque muy elevado durante la
No aplique carga en la máquina accionada
partida
durante la partida
Verifique el dimensionamiento de la
Caída de tensión muy alta en los cables de
instalación (transformador, sección de los
alimentación
cables, relés, disyuntores, etc.)
Defecto en los componentes de transmisión Verifique la transmisión de fuerza, el
o en la máquina accionada
acoplamiento y el alineamiento
Realinee/nivele el motor y la máquina
Base desalineada/desnivelada.
accionada
Desbalance de los componentes o de la
Rehaga el balanceo
máquina accionada
Tipos diferentes de balanceo entre motor y
acoplamiento (media chaveta, chaveta
Rehaga el balanceo
entera)
Sentido de rotación del motor incorrecto
Invierta el sentido de rotación del motor
Tornillos de fijación sueltos
Reapriete los tornillos
Resonancia de los cimientos
Verifique el proyecto de los cimientos
Rodamientos damnificados
Substituya el rodamiento
Limpie las entradas y salidas de aire de la
deflectora, y de la carcasa
Verifique las distancias mínimas entre la
Refrigeración insuficiente
entrada de la deflectora de aire y las
paredes cercanas. Ver ítem 7
Verifique la temperatura del aire en la
entrada
Mida la corriente del motor, analizando su
Sobrecarga
aplicación y, si fuera necesario, disminuya la
carga
Excesivo número de partidas o momento
Reduzca el número de partidas
de inercia de la carga muy elevado
Verifique la tensión de alimentación del
Tensión muy alta
motor. No sobrepase la tolerancia conforme
ítem 7.2
Verifique la tensión de alimentación y la
Tensión muy baja
caída de tensión en el motor. No sobrepase
la tolerancia conforme ítem 7.2
Verifique la conexión de todos los cables de
Interrupción de un cable de alimentación
alimentación
Verifique si hay fusibles quemados,
comandos incorrectos, desequilibrio en las
Desequilibrio de tensión en los terminales
tensiones de la red de alimentación, falta de
de alimentación del motor
fase o en los cables de conexión
Sentido de rotación no compatible con el
Verifique el sentido de rotación conforme la
ventilador unidireccional
marcación del motor
Grasa / aceite en demasía
Envejecimiento de la grasa / aceite
Realice la limpieza del cojinete y lubríquelo
según las recomendaciones
Utilización de grasa / aceite no
especificados
Falta de grasa / aceite
Lubrique según las recomendaciones
Reduzca la tensión en las correas
Excesivo esfuerzo axial o radial
Redimensione la carga aplicada al motor
Motores Eléctricos
155
ESPAÑOL
Calentamiento excesivo en el motor
Posibles Causas
158
www.weg.net
ESPAÑOL
11. TERMINO DE GARANTIA
WEG Equipamentos Elétricos S/A, Unidad Motores, ofrece garantía contra defectos de fabricación y de
materiales para sus productos por un período de 18 meses, contados a partir de la fecha de emisión de
la factura de la fábrica o del distribuidor/revendedor, limitado a 24 meses de la fecha de fabricación. Para
motores de la línea HGF, la garantía ofrecida es por un período de 12 meses, contados a partir de la fecha
de emisión de la factura de la fábrica o del distribuidor/revendedor, limitado a 18 meses de la fecha de
fabricación.
El párrafo anterior cuenta con los plazos de garantía legal. En caso de que un plazo de garantía
diferenciado estuviese definido en la propuesta técnica comercial para un determinado suministro, éste
prevalecerá por sobre los plazos definidos anteriormente.
Los plazos establecidos anteriormente no dependen de la fecha de instalación, y se aplican siempre
y cuando se cumpla con los siguientes requisitos: transporte, manoseo y almacenamiento adecuado;
instalación correcta y en condiciones ambientales especificadas y sin presencia de agentes agresivos;
operación dentro de los límites de sus capacidades y observación el Manual de Instalación, Operación
y Mantenimiento; realización periódica de las debidas manutenciones preventivas; realización de
reparaciones y/o modificaciones solamente por personas autorizadas por escrito por WEG; que el
producto, de ocurrir alguna anomalía, esté disponible al proveedor por un período mínimo necesario para
identificar la causa de la anomalía y sus debidas reparaciones; aviso inmediato por parte del comprador de
los defectos ocurridos y posterior comprobación de los mismos por WEG como defectos de fabricación. La
garantía no incluye servicios de instalación y desmantelamiento en las instalaciones del comprador, costos
de transporte del producto y gastos de locomoción, hospedaje y alimentación del personal de Asistencia
Técnica, de ser solicitado por el cliente. Los servicios en garantía se prestarán exclusivamente en oficinas
de Asistencia Técnica autorizadas por WEG o en la propia fábrica.
También quedan excluidos de las garantías los componentes, partes y materiales, cuya vida útil sea
generalmente inferior a los 12 (doce) meses.
En ninguna hipótesis la atención en garantía prorrogará los plazos de garantía del equipamiento. Aún así,
el nuevo plazo de garantía equivalente al original se aplicará solamente para los componentes reparados y
sustituidos por WEG.
La presente garantía se limita al producto suministrado, sin que WEG se responsabilice por los daños
a personas, a terceros, a otros equipamientos e instalaciones, lucros cesantes o cualquier otro daño
emergente o consecuente.
156
Motores Eléctricos
159
www.weg.net
12. DECLARACIÓN DE CONFORMIDAD CE
WEG Equipamentos Elétricos S/A
Av. Prefeito Waldemar Grubba, 3000
89256-900 - Jaraguá do Sul – SC – Brasil,
y su representante autorizado establecido en la Comunidad Europea,
WEGeuro – Industria Electrica SA
Rua Eng Frederico Ulrich, Apartado 6074
4476-908 – Maia – Porto – Portugal
Declaran por medio de esta, que los productos:
Motores de inducción WEG y componentes para utilización en estos motores:
Trifásicos
Carcasas IEC 63 a 630
Carcasas Nema 42, 48, 56 y 143 a 9610
...............
Monofásicos
Carcasas IEC 63 a 132
Carcasas Nema 42, 48, 56 y 143 a 215
...............
ESPAÑOL
Cuando instalados, mantenidos y utilizados en aplicaciones para los cuales fueron proyectados y
cuando consideradas las normas debidas de instalación e instrucciones del proveedor, los mismos
atienden los requisitos de las siguientes Directivas Europeas y normas donde aplicables:
Directivas:
Directiva de Baja Tensión 2006/95/CE
Reglamento (CE) No 640/2009
Directiva 2009/125/CE
Directiva de Compatibilidad Electromagnética 2004/108/CE (motores de inducción son considerados
intrínsecamente favorables en términos de compatibilidad electromagnética)
Normas:
EN 60034-1/2-1/5/6/7/8/9/11/12/14/30 y EN 60204-1
A partir de 29/12/2009, motores eléctricos de baja tensión no son más considerados bajo escopo de la
actual Directiva de Máquinas 2006/42/CE.
Marca CE en: 1996
Milton Oscar Castella
Director de Ingeniería
Jaraguá do Sul, 12 de Febrero de 2010
Motores Eléctricos
157
160
Cod: 50033244 | Rev: 00 | Date (m/y): 08/2011
The values shown are subject to change without prior notice.
WEG Equipamentos Elétricos S.A.
International Division
Av. Prefeito Waldemar Grubba, 3000
89256-900 - Jaraguá do Sul - SC - Brazil
Phone: 55 (47) 3276-4002
Fax: 55 (47) 3276-4060
www.weg.net
161
MANUAL TECNICO DE BOMBA
Cristian Corvalan
Alvaro Reyes
N/A
N/A
N/A
Ingeniero de Proyectos
Administrador de
Proyectos
Producción
Servicios
Despachos
162
Type Series Booklet
B-Pump
1 General
1.1 Application
B-Pumps are suitable for water supply schemes, irrigation schemes, lowering of ground
water level and dewatering of mines, quarries, construction sites and sea water
applications. These are particularly suitable for narrow bore holes. Minimum bore hole
sizes required ranges from 150mm to 600mm.
B-PUMP
1.2 Operating data
2600 m3/hr
Capacity up to
Total head up to
160 m
Speed up to
3500 RPM
Temperature up to
105°C
Suspended Depth up to
120 m
1.3 Design
Main pump parts are the Pump Bowl Assembly, Column Pipe Assembly, and Discharge
Head Assembly. Bowl Assembly consists of single or multistage radially split,
interchangeable intermediate bowls. Column Pipe Assembly consists of
interchangeable lengths of the column pipes and variable setting depth. Discharge
head assembly consists of discharge head with packed stuffing zone/mechanical seal
and thrust bearing arrangement (in case of solid shaft drive only).
1.4 Designation
B
10
B/7
Pump Series
Minimum bore-hole, size (inches)
Impeller Type, Series
Number of Stages
1.5 Types of Impellers
Specific Speed for Impeller Type B,
nq ≈ 54
Specific Speed for Impeller Type D,
nq ≈ 74
Specific Speed for Impeller Type F,
nq ≈ 82
1.6 Discharge Head Executions
VN =
Above Floor Discharge
VU =
Below Floor Discharge
1.7 Drive Types Available
V1 =
Electric motor Type V1 (Flanged Mounted)
ET =
Vertical Hollow Shaft Motor (VHS)
KT =
Hollow Shaft Gear Head
EK =
Hollow Shaft Motor with Hollow Shaft Gear Head (Combination Drive)
RT =
Belt Head Drive – Diesel Engine via flat belt
Page 1-1 of 71
Revision 02 ; 05-2015
163
Type Series Booklet
B-Pump
Contents List
1
General .......................................................................................................................................................... 1-1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.8.1
1.8.2
1.8.3
1.8.4
1.9
1.9.1
1.9.2
1.10
1.10.1
1.11
Application.................................................................................................................................................................................................1-1
Operating data ..........................................................................................................................................................................................1-1
Design .......................................................................................................................................................................................................1-1
Designation ...............................................................................................................................................................................................1-1
Types of Impellers.....................................................................................................................................................................................1-1
Discharge Head Executions......................................................................................................................................................................1-1
Drive Types Available ...............................................................................................................................................................................1-1
Steps for Preparing a B-Pump Offer....................................................................................................................................................1-1
Operating Data..........................................................................................................................................................................................1-1
Dimensional Details ..................................................................................................................................................................................1-1
Execution Details ......................................................................................................................................................................................1-2
Scope of Supply ........................................................................................................................................................................................1-2
Selection Chart..........................................................................................................................................................................................1-3
50 Hz.........................................................................................................................................................................................................1-3
60 Hz.........................................................................................................................................................................................................1-9
Material of Construction ............................................................................................................................................................................1-1
Possible Executions ..................................................................................................................................................................................1-2
Pump Dimensions .....................................................................................................................................................................................1-1
2
Pump Data ..................................................................................................................................................... 2-1
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.2
2.2.1
2.2.2
2.2.3
2.3
2.4
2.4.1
2.4.2
2.4.3
2.5
2.5.1
Capacity Limitations ..................................................................................................................................................................................2-1
Pump media ..............................................................................................................................................................................................2-1
Capacity ....................................................................................................................................................................................................2-1
Total Head Pressure .................................................................................................................................................................................2-1
Testing Standards .....................................................................................................................................................................................2-2
Maximum Speed .......................................................................................................................................................................................2-2
Shaft Rating/Selection ..............................................................................................................................................................................2-3
Max. Number of Stages ............................................................................................................................................................................2-4
Special Limits ............................................................................................................................................................................................2-5
Start...........................................................................................................................................................................................................2-8
Starting Torque .........................................................................................................................................................................................2-8
Torque Md .................................................................................................................................................................................................2-8
Moment of inertia/ Gyration.......................................................................................................................................................................2-8
NPSH of the Pump (HH) & NPSH of the plant (HHA)................................................................................................................................2-10
Weights ...................................................................................................................................................................................................2-11
Component Weight .................................................................................................................................................................................2-11
Weight of complete Bowl assembly ........................................................................................................................................................2-13
Weight of the Pumped Medium Filling ....................................................................................................................................................2-14
Pump Filling Volume ...............................................................................................................................................................................2-14
Volume of the completely filled pump .....................................................................................................................................................2-14
3
Construction (Design) Description ................................................................................................................. 3-1
3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3.4
3.4.1
3.4.2
3.4.3
3.5
3.6
3.6.1
3.6.2
3.7
3.7.1
3.8
3.8.1
3.8.2
3.8.3
General .....................................................................................................................................................................................................3-1
Type and Design .......................................................................................................................................................................................3-1
Arrangement and Installation ....................................................................................................................................................................3-1
Pump Casing.............................................................................................................................................................................................3-1
Suction Casing ..........................................................................................................................................................................................3-1
Intermediate Bowls....................................................................................................................................................................................3-1
Discharge Casing......................................................................................................................................................................................3-1
Impeller .....................................................................................................................................................................................................3-1
Impeller Type ............................................................................................................................................................................................3-1
Casing Wear ring ......................................................................................................................................................................................3-1
Shafts ........................................................................................................................................................................................................3-2
Pump Shaft and Column Shaft Connection ..............................................................................................................................................3-2
Drive/Top shaft..........................................................................................................................................................................................3-2
Shaft Protection.........................................................................................................................................................................................3-3
Thrust Balancing .......................................................................................................................................................................................3-3
Bearings and Lubrication ..........................................................................................................................................................................3-3
Bearing......................................................................................................................................................................................................3-3
Thrust Bearing Arrangement.....................................................................................................................................................................3-7
Shaft Sealing.............................................................................................................................................................................................3-7
Stuffing Box Packing .................................................................................................................................................................................3-7
Drive..........................................................................................................................................................................................................3-9
Types of drive............................................................................................................................................................................................3-9
Couplings ..................................................................................................................................................................................................3-9
Motor Stool and Discharge Head ............................................................................................................................................................3-10
Revision 02 ; 05-2015
164
Type Series Booklet
B-Pump
3.8.4
3.8.5
3.9
3.9.1
3.9.2
3.9.3
3.10
3.10.1
3.10.2
3.10.3
3.10.4
3.10.5
3.11
Safety against Reverse Rotation. ...........................................................................................................................................................3-10
Rising Main .............................................................................................................................................................................................3-11
Scope of Supply ......................................................................................................................................................................................3-22
Standard equipment................................................................................................................................................................................3-22
Normal Accessories ................................................................................................................................................................................3-22
Special Accessories ................................................................................................................................................................................3-22
Inlet .........................................................................................................................................................................................................3-22
Inlet Strainer............................................................................................................................................................................................3-22
Suction Strainer with Foot Valve .............................................................................................................................................................3-23
3.12.3 Suction Pipes ...............................................................................................................................................................................3-23
3.12.4 Suction Elbow ..............................................................................................................................................................................3-23
Inlet Design of Pump Chamber ...............................................................................................................................................................3-24
Protection of the Upper Surface..............................................................................................................................................................3-25
4
Illustrations................................................................................................................................................... 4-27
4.1
4.1.1
4.1.2
4.1.3
Sectional Views and List of the Individual Parts .....................................................................................................................................4-27
Pump Body..............................................................................................................................................................................................4-27
Column Pipe............................................................................................................................................................................................4-29
Discharge Head ......................................................................................................................................................................................4-31
5
Spare Parts .................................................................................................................................................. 5-36
6
Sample Sectional Drawing with Parts List ................................................................................................... 6-37
Revision 02 ; 05-2015
165
Type Series Booklet
B-Pump
List of Tables & Illustrations
Illustration 1: Family Curves - B Type Impeller at 2900 RPM ..................................................................................................................................................................................................... 1-3
Illustration 2: Family Curves - D Type Impeller at 2900 RPM ..................................................................................................................................................................................................... 1-4
Illustration 3: Family Curves - B Type Impeller at 1450 RPM ..................................................................................................................................................................................................... 1-5
Illustration 4: Family Curves - D Type Impeller at 1450 RPM ..................................................................................................................................................................................................... 1-6
Illustration 5: Family Curves - F Type Impeller for 1450 RPM..................................................................................................................................................................................................... 1-7
Illustration 6: Family Curves - B Type Impeller for 980 RPM ...................................................................................................................................................................................................... 1-8
Illustration 7: Family Curves - B Type Impeller for 3480 & 1740 RPM......................................................................................................................................................................................1-10
Illustration 8: Family Curves - D & F Type Impeller for 3480 & 1740 RPM...............................................................................................................................................................................1-11
Table 1: Material Possibilities for the Bowl Assembly (B6-B16).................................................................................................................................................................................................. 1-1
Table 2: Material Possibilities for the Bowl Assembly (B18-B24)................................................................................................................................................................................................ 1-1
Table 3: Material Possibilities for the Column Assembly............................................................................................................................................................................................................. 1-2
Table 4: Material Possibilities for the Discharge Assembly......................................................................................................................................................................................................... 1-2
Table 5: Possible Executions of the Pump .................................................................................................................................................................................................................................. 1-2
Table 6: Various Dimensions of the pump................................................................................................................................................................................................................................... 1-1
Table 7: Minimum and Maximum capacity .................................................................................................................................................................................................................................. 2-1
Table 8: Pressure & Temperature Limitations............................................................................................................................................................................................................................. 2-1
Table 9: Maximum rotational speed of pump in RPM ................................................................................................................................................................................................................. 2-2
Table 10: Selection of column length according to pump operational speed in RPM................................................................................................................................................................. 2-2
Table 11: Bearing size according to pump operational speed in RPM. ...................................................................................................................................................................................... 2-2
Table 12: P/n maximum for the pump shaft................................................................................................................................................................................................................................. 2-3
Table 13: P/n max for intermediate shaft and maximum axial stress of the intermediate coupling............................................................................................................................................ 2-3
Table 14: Material conversion factors.......................................................................................................................................................................................................................................... 2-3
Table 15: P/n max for flexible coupling, Type of construction according to HS 173, Material GG ............................................................................................................................................. 2-4
Table 16: Maximum Number of Stages ....................................................................................................................................................................................................................................... 2-4
Table 17: Cross section of the Column pipe in cm2..................................................................................................................................................................................................................... 2-5
Table 18: Cross-section of shaft in cm2. ...................................................................................................................................................................................................................................... 2-5
Table 19: Co-efficient of elasticity of the shaft material............................................................................................................................................................................................................... 2-5
Table 20: Permissible difference in extension............................................................................................................................................................................................................................. 2-6
Figure 2: Extension difference between shaft and column pipe..................................................................................................................................................................................................2-6
Table 21: Admissible contamination ............................................................................................................................................................................................................................................ 2-6
Figure 3: Change of Q/H characteristic curve as well as efficiency curve by enlarging running clearances.............................................................................................................................. 2-7
Table 22: Correction Factor f ....................................................................................................................................................................................................................................................... 2-7
Table 23: Impeller Neck Diameters (mm).................................................................................................................................................................................................................................... 2-7
Figure 4: Starting Torque Curve .................................................................................................................................................................................................................................................. 2-8
Table 24: Pump Moment of Inertia GD2 in kgm2.......................................................................................................................................................................................................................... 2-9
Table 25: Moment of inertia GD2 in kgm2 of intermediate and drive shaft. ................................................................................................................................................................................. 2-9
Table 26: Moment of inertia GD2 for flexible coupling, according to HS 173. ...........................................................................................................................................................................2-10
Table 27: Measurement B = minimum water level over the bottom edge of the suction casing / Min. submergence. ............................................................................................................2-10
Table 28: Weight of the pump bowl assemblies in kg. ..............................................................................................................................................................................................................2-11
Table 29: Weights of the column sets in kg. VN. model / design / type. ...................................................................................................................................................................................2-13
Table 30: Weight of the Discharge Head (VN type) in kg..........................................................................................................................................................................................................2-13
Table 31: Weight of Pump Rotor in kg.......................................................................................................................................................................................................................................2-13
Figure 5: Weight of Column Shaft in kg, according to Column length L e ..................................................................................................................................................................................2-14
Table 32: Weight of the pump side of the coupling half, according to HS 173 .........................................................................................................................................................................2-14
Table 33: Content of the complete pumping unit in (dm3/m), depending on the column line –NW ..........................................................................................................................................2-14
Table 34: Impeller entry cross section in cm2.............................................................................................................................................................................................................................. 3-2
Table 35: Possible column shaft connection on pump shaft in mm. ........................................................................................................................................................................................... 3-2
Table 36: Drive shaft and key on coupling seat in mm on the pump side................................................................................................................................................................................... 3-2
Figure 6: Hydraulic axial thrust Pax in kg dependent on the total head at operating point for Impeller type B............................................................................................................................ 3-4
Figure 7: Hydraulic axial thrust Pax in kg dependent on the head at operating point for Impeller type D and F......................................................................................................................... 3-4
Table 37: BUA – Bearing permissible axial thrust kN for single and double bearing installations............................................................................................................................................. 3-5
Table 38: Possible bearings for different pump size ................................................................................................................................................................................................................... 3-5
Table 39: Clearance of pump bearing in mm .............................................................................................................................................................................................................................. 3-6
Table 40: Clearance of the intermediate shaft bearing in mm (Rising main without shaft enclosing tube) ................................................................................................................................ 3-6
Table 41: Clearance of the intermediate shaft bearing in mm (rising main with shaft enclosing tube) ...................................................................................................................................... 3-6
Table 42: Required Grease Quantity in grams ............................................................................................................................................................................................................................ 3-7
Table 43: Packing materials......................................................................................................................................................................................................................................................... 3-8
Figure 9: Friction performance depending on the stuffing box pressure at 1450 rpm. ............................................................................................................................................................... 3-8
Figure 10: Type of Drives............................................................................................................................................................................................................................................................. 3-9
Table 44: Coupling Types for various Intermediate shaft diameters........................................................................................................................................................................................... 3-9
Figure 11: Discharge Head Losses ...........................................................................................................................................................................................................................................3-10
Table 45: Bearing type, lubrication and shaft protection. ..........................................................................................................................................................................................................3-11
Figure 12: Friction losses in kW/100 m shaft length..................................................................................................................................................................................................................3-12
Table 46: Connection between column pipe diameter and possible shaft diameter of the intermediate shaft. .......................................................................................................................3-13
Table 47: Possible Column Pipe connection with Pump Bowl Assembly .................................................................................................................................................................................3-13
Table 48: VN type maximum installation depth in m depending on the diameter of the intermediate shaft in mm..................................................................................................................3-14
Table 49: VU- type maximum Installation depth in m depending on the diameter of the intermediate shaft in mm. ...............................................................................................................3-14
Table 50: set length of normal rising pipe, dependent from intermediate shaft diameter, coupling & lubrication type and max admissible speed ................................................................3-14
Revision 02 ; 05-2015
166
Type Series Booklet
B-Pump
Table 51: Top Pipes (Measurements in mm) ............................................................................................................................................................................................................................3-14
Figure 13: Discharge tee pipe....................................................................................................................................................................................................................................................3-14
Table 52: Discharge Tee Pipe Dimensions ...............................................................................................................................................................................................................................3-15
Figure 14: Column Pipe Friction Losses without Shaft Enclosing Tube (1200, 1600, 2100)....................................................................................................................................................3-16
Figure 15: Column Pipe Friction Losses without Shaft Enclosing Tube (1200, 1600, 2100) Higher Q. ...................................................................................................................................3-17
Figure 16: Column Pipe Friction Losses without Shaft Enclosing Tube (3050 mm).................................................................................................................................................................3-18
Figure 17: Column Pipe Friction Losses without Shaft Enclosing Tube (3050 mm) Higher Q .................................................................................................................................................3-19
Figure 18: Column Pipe Friction Losses with Shaft Enclosing Tube (2100, 3050)...................................................................................................................................................................3-20
Figure 19: Column Pipe Friction Losses with Shaft Enclosing Tube (2100, 3050) Higher Q ...................................................................................................................................................3-21
Figure 20: Flow Resistance in suction strainer with foot valve..................................................................................................................................................................................................3-22
Figure 21: Suction Elbow ...........................................................................................................................................................................................................................................................3-23
Table 53: Upper surface protection with the help of painting materials. ...................................................................................................................................................................................3-25
Table 54: Upper surface protection with the help of painting materials. ...................................................................................................................................................................................3-25
Table 55: Upper surface protection with the help of painting materials. ...................................................................................................................................................................................3-26
Figure 29: Lubrication Arrangement for Shaft Enclosing Tube .................................................................................................................................................................................................4-31
Figure 30: Motor Stool with Thrust Bearing Arrangement.........................................................................................................................................................................................................4-31
Figure 31; Discharge Piece for Shaft Enclosing Tube...............................................................................................................................................................................................................4-31
Figure 32: Stuffing Box Housing ................................................................................................................................................................................................................................................4-32
Figure 33: Motor Stool with Double Bearing Arrangement........................................................................................................................................................................................................4-32
Figure 34: Motor Stool & Discharge Head.................................................................................................................................................................................................................................4-32
Table 56: Discharge Head Dimensions .....................................................................................................................................................................................................................................4-33
Figure 39: Sectional Drawing with Parts List .............................................................................................................................................................................................................................6-37
Revision 02 ; 05-2015
167
Type Series Booklet
B-Pump
1.8 Steps for Preparing a B-Pump Offer
1.8.1
Operating Data
1
Considering Capacity, Dynamic Head & rpm given by the customer check for the required pump by consulting the family
curve at the given speed (See 1.9 Selection Chart)
2
Select the pump with maximum efficiency.
3
Check the max. number of stages of the selected pump.
Reduce the efficiency if required as per the pump curve. On the basis of number of stages.
Calculate the approximate pump input by using the formulae (Q*H*density*g/(1000*Eff. From curve/100)) for kW
4
5
(Q*H/(367*Eff. From curve/100)) for kW or [Q*H/(273*Eff. From curve/100)] for hP; can be used if the density of the medium
is 1000 kg/m3
A- Determine the head loss (m) in column pipe (see 3.8.5.4.7, Figure 14 and 3.8.5.4.9, Figure 16). In case of Shaft
Enclosing Tube Arrangement see 3.8.5.4.11, Figure 18.
6
B- For Friction Losses in Discharge Head, see 3.8.3.3, Figure 11
7
C- Calculate the head loss (m) due to suction strainer &/or foot valve from 3.10.2.1, Figure 20
8
Adding A, B & C in the pump head will give the bowl assembly head
9
Calculate the Pump efficiency using the relation (pump head / bowl head) * Bowl Efficiency
10
Calculate the bowl power input from the above mentioned formulae but using bowl assembly head
Calc. the drive rating after adding the following factors into pump input
11
12
up to 7.5 kW (10hp)
Approx. 20%
from 7.5 KW to 40 Kw (53hp)
Approx. 15%
from 40 kW onwards
Approx. 10%
Note the NPSH required from the graph of the required pump
If the required speed of customer is not that of the pump curve then use the following relations to calculate the new values
of Q, H, Power & NPSH required
13
Q2 = (N2 / N1) * Q1
H2 = (N2 / N1)^2 * H1
P2 = (N2 / N1)^3 * P1
NPSH2 = (N2 / N1)^2 * NPSH1
14
Material combination as per type series booklet of B-Pump
15
Coating for Sea water use Special Epoxy coating 450 microns
1.8.2
16
Dimensional Details
Installation Depth/Pump Length/Setting Depth
or Sump Depth / Pit Depth as given by customer
17
Minimum clearance between suction strainer / foot valve & pit/sump floor = dia of the suction strainer.
18
Dia / Length of Suction Strainer as per product Introduction booklet
19
Dia / Length of Bowl Assembly as per product Introduction booklet
20
Dia of column Pipe as per product Introduction booklet
21
Length of Column Pip =
22
Dia of Discharge Head Nozzle = Dia of column pipe
23
Dia of Column Shaft is calculated on the basis of Pump input, rpm & material of shaft
24
Note the Minimum Submergence of center line of first stage impeller from the product introduction booklet of B-Pump
Page 1-1 of 71
(Pump Length - Foot Valve length - Suction Strainer Length - Bowl Assy. Length)
(Sump Depth - Clearance - Foot Valve length - Suction Strainer Length - Bowl Assy. Length)
Revision 02 ; 05-2015
168
Type Series Booklet
B-Pump
1.8.3
Execution Details
25
Pump Execution
Flanged / Threaded
26
Performance Testing
ISO 9906
27
Material / Pressure Test
EN 10204 ( 2.1 / 2.2 ),..
28
Delivery Flange Standard
BSTable10,EN1092ASM E
29
Discharge Above / Below Floor
1.8.4
Scope of Supply
01 No. B…. Pump comprising of:
Flanged/Threaded Bowl Assembly B…...
30
Flanged/Threaded Column Assembly
Dis. Head Assy (V1/ET/KT/EK/RT, as per Product Introduction Booklet)
Motor Stool & Thrust bearing Arrangement (only for V1 Design)
31
01 No. Suction Strainer
32
01 No. Foot Valve
33
01 Set of Erection Clamps (04 halves)
34
01 No. Mechanical Seal
35
01 No. Shaft Enclosing Tube Arrangement
Page 1-2 of 71
Revision 02 ; 05-2015
169
Type Series Booklet
B-Pump
1.9 Selection Chart
1.9.1
50 Hz
1.9.1.1
2900 RPM
Illustration 1: Family Curves - B Type Impeller at 2900 RPM
Page 1-3 of 71
Revision 02 ; 05-2015
170
Type Series Booklet
B-Pump
Illustration 2: Family Curves - D Type Impeller at 2900 RPM
Page 1-4 of 71
Revision 02 ; 05-2015
171
Type Series Booklet
B-Pump
1.9.1.2
1450 RPM
Illustration 3: Family Curves - B Type Impeller at 1450 RPM
Page 1-5 of 71
Revision 02 ; 05-2015
172
Type Series Booklet
B-Pump
Illustration 4: Family Curves - D Type Impeller at 1450 RPM
Page 1-6 of 71
Revision 02 ; 05-2015
173
Type Series Booklet
B-Pump
Illustration 5: Family Curves - F Type Impeller for 1450 RPM
Page 1-7 of 71
Revision 02 ; 05-2015
174
Type Series Booklet
B-Pump
1.9.1.3
980 RPM
Illustration 6: Family Curves - B Type Impeller for 980 RPM
Page 1-8 of 71
Revision 02 ; 05-2015
175
Type Series Booklet
B-Pump
1.9.2
60 Hz
1.9.2.1
Page 1-9 of 71
3480, 1740 RPM
Revision 02 ; 05-2015
176
Type Series Booklet
B-Pump
Illustration 7: Family Curves - B Type Impeller for 3480 & 1740 RPM
Page 1-10 of 71 Revision 02 ; 05-2015
177
Type Series Booklet
B-Pump
1.10 Material of Construction
Part #
Part designation
Cast iron
Bowl Assembly (B6-B16)
GG
106
Suction Piece/Casing
107
Discharge Piece/Casing
112
Intermediate Bowl/Pump Bowl
502
Wear Ring / Casing Wear Ring
230 & 503
545.1 & .3
211
G Cusn-10
GG-25
Pb Sn BZ-15
G Cu Sn-10
Bearing Sleeve / Brg. Bush
(Suc & Dis piece)
Pb Sn BZ-15
1.4021
Rubber Bearing
545.2
1.4021
A2/ 6.8 *
Fasteners
Duplex
D2-02
1.4517
GGG-NiCr Nb 20 2 (Ni Resist D2)
1.4517
Casing wear Ring NA
1.4408
1.4517
1.4462
1.4571 / AISI 316
Steel / Rubber Lined
Pump Shaft Coupling (Screwed/Threaded)
GGG-NiCr Nb 202
D2-01
GG-25
Impeller
Pump Shaft
Tin Bronze
BZ
1.4462
Bronze/Rub. Lined
SS / Rub. Lined
1.4571 / AISI 316
Non Metallic Bearing
(Thordon)
1.4462
A4
1.4462
Table 1: Material Possibilities for the Bowl Assembly (B6-B16)
*On demand or as per requirement
Part #
Part designation
Bowl Assembly (B18-B24)
Cast iron
Tin Bronze
GG
BZ-01
106
Suction Piece/Casing
107
Discharge Piece/Casing
112
Intermediate Bowl/Pump Bowl
502
Wear Ring / Casing Wear Ring
GG-25
230 & 503
Impeller & Wear Ring
G CuSn-10
545.1 & .3
Bearing Sleeve / Brg. Bush
(Suc & Dis piece)
Pb Sn BZ-15
211
Pump Shaft
1.4021
1.4571 / AISI 316
Steel/Rub.Lined
Bronze/Rub.Lined
Pump Shaft Coupling (Screwed/Threaded)
1.4021
1.4401 / AISI 316
Fasteners
A4
545.2
852
Rubber Bearing
GG-25
BZ-02
G Cu Sn-10
D2
Duplex
D2-03
1.4517
GGG-NiCrNb20 2
(Ni Resist D2)
1.4517
Pb Sn BZ-15
1.4408
1.4517
1.4462
Non Metallic Bearing
(Thordon)
SS/Rubber
1.4571
1.4462
1.4462
Table 2: Material Possibilities for the Bowl Assembly (B18-B24)
Revision 02 ; 05-2015
178
Type Series Booklet
B-Pump
Illustration 8: Family Curves - D & F Type Impeller for 3480 & 1740 RPM
Page 1-11 of 71
Revision 02 ; 05-2015
179
Type Series Booklet
B-Pump
1.11 Pump Dimensions
B
B
B
D
B
D
F
B
D
F
B
D
D
B
B
B
B
Size
6
7
8
8
10
10
10
12
12
12
14
14
16
18
20
22
24
Bowl Assembly
Impeller Type
Length of one
Stage
for
Flanged
Execution
380
445
480
535
630
580
745
610 *
690
890
955
1050
1050
Length of one
Stage
for
Threaded
Execution
435
500
535
590
675
625
745
655
735
NA
NA
NA
NA
Length of each
Additional Stage
100
120
140
165
250
200
300
235
270
300
335
400
410
Max
no.
of
Stages at 1450
rpm
25
21
18
15
9
12
8
10
8
7
6
5
3
2780
2845
2860
2845
2630
2780
2845
2725
2580
2690
2630
2650
2700
2825
2890
2905
2890
2675
2825
2845
2770
NA
NA
NA
NA
NA
140
165
190
338
390
430
472
560
600
Max length
flanged
execution
-
Max length
Threaded
Execution
-
Diameter
Suction
Strainer
Length
240
290
Threaded
190
230
260
295
340
355
Flanged
235
275
315
310
390
470
Column Pipe Dia (inch)
Minimum Submergence
of 1st Impeller
3”,4”
4”
,5
”
5”, 6”
6”,
7”
7”
8”,
10”
7”,
8”
8”,
10”
10”
10”
10”,12
”
540
12”,14
”
---
722
650
730
14”,16
”
18”,20
”
300
350
400
4”
5”
6”
7”
8”
10”
12”
14”
16”
Length of Foot Valve
135
165
185
270
365
410
490
560
630
Min. Clearance B/w
Suction strainer & Floor
100
125
150
175
200
250
300
350
400
Suction
(inch)
Strainer
Dia
450
16”,18
”
500
Table 6: Various Dimensions of the pump
All dimensions in mm.
*) For B14 length of single stage in case of shaft enclosing tube arrangement is (220+235+230) = 685 mm
Page 1-1 of 71
Revision 02 ; 05-2015
180
Type Series
Series Booklet
Type
Booklet
B-Pump
B-Pump
2 Pump Data
2.1 Capacity Limitations
2.1.1
Pump media
Clean
Well water
Drinking water
Cooling water
Condensate
Sea water
Salty water
2.1.2
Contaminated
river water
brackish
leach
Viscous/combustible
oils
Capacity
Qopt
Capacity at best efficiency point
Qmin
0.55 Qopt(B6-B16),0.65 Qopt(B18-B24)
Qmax
1.35 Qopt
Table 7: Minimum and Maximum capacity
2.1.3
Total Head Pressure
Pump Head H
= Ht + HD
Ht
= Head under ground level
HD
= Head above ground level
Ht
= Hgeo1 + Hw1
HD
= Hgeo2 + Hw2 + 10 x (P2 – P1)/γ
Hgeo1
= Geodetic head (Static Head) from water level to pump ground
Hgeo2
= Geodetic head from pump ground to the center of delivery nozzle
Hw1
= Frictional Losses in (an estimation can be 5% of Ht):
•
Suction Strainer
•
Suction pipe
•
Rising Main
•
Discharge Head
Hw2
= Friction losses in Delivery Line
P2
= Pressure on the water level from delivery side
P1
= Pressure on water level from the suction side
γ
= Specific gravity in kg/dm3
As estimation pumping H w1 can be assumed 5% from Ht
2.1.3.1
Maximum pump pressure at outlet nozzle
Figure 1: Schematic Diagram
In all pump types and material variants the pump pressure Pe maximum at Q=0 should not exceed the value of 16
bar. In case of pumped media with specific gravity γ less than 1 Kg/dm3, the final pressure during hydraulic trial run with water should not exceed maximum
admissible test pressure. If the values in Table 8 are exceeded, then the pump can be tested only with reduced speed.
Part
Max Test Pressure
Max Inlet Pressure
Temperature
10 bar
0oC to 105oC
Suction Casing
Guide Vane Casing
6” & 7” = 19.6 bar / 20 kg/cm2
Stuffing Box Casing
Discharge Casing
8” to 24” = 24.5 bar / 25 kg/cm2
Column Pipe
Cool Water Chamber
10 kg/cm2
Table 8: Pressure & Temperature Limitations
Page 2-1 of 71 Revision 02 ; 05-2015
181
Type Series
Type
SeriesBooklet
Booklet
B-Pump
B-Pump
2.1.3.2
Test Pressure with Water
The test pressure is normally 1.5 times that of the operational pressure. The pressure test is done with cold water.
2.1.4
Testing Standards
Testing can be performed as per following standard: ISO 9906 Class L
Note: ISO 9906 Class L has replaced the following Standards
1.ANSI – Hydraulic Institute Standard 2.BS 5316 Part 1 & 2
3.ISO 3555 Class B
4. ISO 2548 Class C
5. DIN 1944 / III, II, I (with negative tolerance)
2.1.5
Maximum Speed
The following speed limits must be considered:
1. Pump Size (Table 9)
2. Length of the column pipe set, categorized according to the diameter of the shaft (Table 10)
3. Angular Contact Ball Bearing (Table 11)
The lowest of the above mentioned speeds is then valid for the complete pump.
2.1.5.1
Determination of Pump Size
Pump size
6
7
B+D
Impeller Type
8
3600
F
10
12
14
3000
16
18
20
22
1800
24
1500
1800
Table 9: Maximum rotational speed of pump in RPM
2.1.5.2
Length of Column Set
Column Set Length in mm
Diameter of Shaft
20
Top Column
Pipe
25
30
35
45
60
70
300*
400**
3600
600
3000
1800
900
1200
Intermediate
Column Pipe
3050
2200
1800
1525
1800
1800
1800
2000
3600
3000
Table 10: Selection of column length according to pump operational speed in RPM.
* below DN 350, ** above DN 350
Note: For shaft diameter greater than 70, consult design office.
2.1.5.3
Angular Contact Ball Bearing (V1 arrangement)
Brg. BUA Type
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
N Max. RPM
8000
7500
6700
6000
5300
4800
4500
4300
3800
3600
3400
Brg. BUA Type
7317
7318
7319
7320
7322
7324
7326
7328
7330
7332
7338
N Max. RPM
3200
3000
2800
2600
2200
1900
1800
1700
1600
1600
1200
Table 11: Bearing size according to pump operational speed in RPM.
Page 2-2 of 71 Revision 02 ; 05-2015
182
Type Series Booklet
B-Pump
B-Pump
Revision 02 ; 05-2015
183
Type Series Booklet
B-Pump
An example for conversion from Standard Material is:
Normal Material of Intermediate Shaft
= St 50 SH
Shaft Diameter
= 35 mm
Cone Coupling P/nmax
= 0.033
New Material of intermediate shaft
= 1.4507
Conversion Factor
=2.18
2.1.6.3
Selection of Flexible Coupling
Type
S0
S1
S1A
2BN
3BN
4BN
5BN
P/n max
0.0012
0.0052
0.009
0.024
0.05
0.127
0.224
n max
8350
5550
4450
4500
3500
2900
2200
Table 15: P/n max for flexible coupling, Type of construction according to HS 173, Material GG
P
=
Prime Mover rating (kW)
n
=
revolution (RPM)
In case of gear drive, of more than 5 – 20 switching in an hour the determined P/n value is to be increased by 20%. However in case of gear drive, up to 40
switching in an hour the determined P/n value is to be increased by 30%.
2.1.7
Max. Number of Stages
Pump Size
RPM
Type
6
B
7
B
1450
25
21
2900
16
10
1750
25
21
3500
12
9
8
B
10
D
B
18
8
15
12
18
6
D
5
12
F
B
D
14
F
B
16
D
D
18
B
20
B
22
24
B
B
9
12
8
10
8
7
6
5
9
12
8
10
8
7
6
5
7
15
10
Table 16: Maximum Number of Stages
Page 2-4 of 71 Revision 02 ; 05-2015
184
Type Series Booklet
B-Pump
B-Pump
DIN Terminology
M St 60-2
X22 Cr Ni 17
X20 Cr 13 V
X10 Cr Ni Mo Ti 1810
X2Cr Ni Mo N 225
Material
1.0542.6
1.4057
1.4021.05
1.4571
1.4462
WSZ #
0361
1364
1220
1300
1647
2
Coefficient of Elasticity kg/cm Ew
6
2.1x10
6
2.1x10
6
2.1x10
6
2.3x10
6
2.03x10
Table 19:Coefficient of elasticity of Shaft Material
Revision 02 ; 05-2015
185
Type Series Booklet
B-Pump
The axial play of the pump determines the maximal permissible extension difference (Table 20) and maximum installation depth of the pump. The measurement of
the depth with reference to the axial play is required to be carried out in case of column pipe and shaft of steel at more than a certain length Lo (Table 20). In case
of material of shaft with a different co-efficient of elasticity (e.g. bronze, E = 2.1x106 kg/cm 2) a recalculation is always required
Pump Size
6
∆ Permissible length(mm)
2)
7
5
Lo (M)
8
10
12
7
30
14 1)
6
16
18
20
22
10
24
16
40
50
Table 20: Permissible difference in extension
1) B14D: ∆
permissible length = 5 mm
2) In case of switched off rotor the ∆
permissible length can be greater (any questions may be directed to the design office).
Figure 2: Extension difference between shaft and column pipe.
(valid only for materials with a co-efficient of elasticity less than 2.1x106 kg/cm2)
2.1.8.2
Maximum Solid Contents
If the flow medium contains sand or other solids, the pump parts as well as column shaft and shaft bearings are subjected to premature wear and tear depending
upon the content type and grain size of the solids. In Table 21 the impurities are divided into three groups. According to the level of the impurities/suspensions the
column bearing design is to be fixed, as well as the guarantee for specific parts of the pumps is to be limited or even refused. In the choice of the material, special
consideration is to be given to the stability against wear and tear. Whenever there is contamination, the smallest revolution should be chosen.
Group
Degree
impurity
of
Bearing 1)
Solid Contents
Ppm
Volume
%
Weight %
I
Slight
25
<0.001
<0.002
II
Moderate
25-250
0.001 to
0.01
0.0025 to
0.025
III
Considerable
> 250
>0.01
>0.025
Grain
2)
Rising
Main
Guarantee Limitations
Suction
Casing
Discharge
Casing
Unprotected
Max 0.5
mm
No (exception natural wear and tear)
Protected
Unprotected
Liquid lubricated bearing,
wear ring inter stage bush
Protected
Unprotected
Complete pump body
casing
Table 21: Admissible contamination
Page 2-6 of 71
Revision 02 ; 05-2015
186
Type Series Booklet
B-Pump
1). Outside lubrication see 3.6.2.1, Page 3-7
2). Sharp edged Quartz (Silica) is more dangerous than rounded or soft minerals. Similarly those solids which are smaller than the bearing play or throttle gap are
more detrimental to the life span of the bearings than those which are larger and cannot enter the gaps because of their size.
2.1.8.3
Tolerance – Impeller / Casing Wear Ring
The gap between impeller skirt and the casing wear ring are dependent on the operational temperature and the pumping media. With the increase in the gap the
head (H) and efficiency (η) are changed (see Figure 3).
Casing Wear Rings are provided only on Suction Side. A tolerance of 0.3mm is taken in the impeller diameter while plotting the efficiency and head given in the
selection charts.
Index 1
=
Operating data with enlarged running clearance (tolerance)
Index 2
=
Operating data without enlarged running clearance (tolerance) =
Design data for index 1
Figure 3: Change of Q/H characteristic curve as well as efficiency curve by enlarging running clearances.
2.1.8.4
Drop of efficiency (η) and the Head (H) by Increased Tolerance
If the operational condition demands increased play, then the resulting efficiency drops and the associated head (H) drop should be taken into account during
designing the pump. The correction factor for the efficiency drop in the field of optimum efficiency should be used from Table 22. As the pumps have been
provided with a casing wear ring on the suction side, the clearance gap enlargement has a very minor effect. Both the factors listed in the Table 22 can therefore
be used for all practical purposes.
Case Wear Ring
Tolerance 0.3<s≤0.5mm
Size
Correction Factor f
6” – 12”
14” – 24”
0.95
0.98
Table 22: Correction Factor f
According to Q-H Curve, the correction factor reaches the value 1.0 against capacity. The 0-point lies in the field between 0-point without clearance gap
enlargement and a point which lie lower than 0.5 x ∆H (see Figure 3).
2.1.8.4.1
Impeller neck Diameter (Inlet)
Various specifications prescribe certain tolerance dependent from impeller neck diameters. In Table 23 the diameters for individuals pump size are given.
Pump Size
Impeller Ø
6
7
8
18
20
22
24
B
B
B
D
10
B
D
F
12
B
D
F
14
B
D
16
B
D
B
B
B
B
75
90
105
120
135
150
160
160
180
190
180
210
210
240
240
260
320
330
Table 23: Impeller Neck Diameters (mm)
Page 2-7 of 71
Revision 02 ; 05-2015
187
Type Series Booklet
B-Pump
2.2 Start
2.2.1
Starting Torque
The initial breakaway torque amounts to approximately 15% from rated moment. In Figure 4 the approximate running at start is shown
I. With open gate valve
II. Against closed gate valve – Impeller type “B”
III. Against closed gate valve – Impeller type “D” and “F” shown.
Figure 4: Starting Torque Curve
2.2.2
Torque Md
The torque can be calculated with this formula
Md
=
P
=
Power requirement at the shaft (motor rating) in kW
n
=
Revolutions of the pump rpm
9549
=
Constant
9549 x P/n, where:
The motor suppliers can be provided with sheet 1063.48 for pumps with impeller of high speed ‘B’ and with sheet BT 2752 for pumps with impeller of high speed
‘D’ and ‘F’; which gives detail for the torque curve in practice with sufficient exactness.
2.2.3
Moment of inertia/ Gyration
The total moment of inertia of the complete pump can be calculated in the following manner:
GD2 TOTAL
=
GD2 PUMP + n x GD2 intermediate shaft + GD2 driving shaft + GD2 coupling
N
=
number of standard column pipe sets.
Page 2-8 of 71
Revision 02 ; 05-2015
188
Type Series Booklet
B-Pump
2.2.3.1
Pump Bowl Assembly
Pump filled with water
Pump
Size
6
7
8
10
12
14
16
18
20
22
24
Impeller
Type
B
B
B
D
B
D
F
B
D
D
B
D
B
B
Stages 1
0.006
0.012
0.025
0.035
0.072
0.073
0.074
0.17
0.18
0.19
0.34
0.37
0.65
0.68
1.2
1.8
2.9
4.8
2
0.011
0.023
0.045
0.06
0.134
0.136
0.138
0.32
0.34
0.36
0.64
0.69
1.2
1.26
2.2
3.4
5.5
9.3
3
0.016
0.034
0.065
0.085
0.196
0.199
0.202
0.47
0.5
0.53
0.94
1.01
1.75
1.84
3.2
5
8.1
13.8
4
0.021
0.045
0.085
0.11
0.258
0.262
0.266
0.62
0.66
0.7
1.24
1.33
2.3
2.42
4.2
6.6
10.7
18.3
5
0.026
0.056
0.105
0.135
0.32
0.325
0.33
0.77
0.82
0.87
1.54
1.65
2.85
3
5.2
8.2
13.3
22.8
6
0.031
0.067
0.125
0.16
0.382
0.388
0.394
0.92
0.98
1.04
1.84
1.97
3.4
3.58
6.2
9.8
7
0.036
0.078
0.145
0.185
0.444
0.451
0.458
1.07
1.14
1.21
2.14
2.29
3.95
4.16
7.2
8
0.041
0.089
0.165
0.21
0.506
0.514
0.522
1.22
1.3
1.38
2.44
2.61
4.5
4.74
9
0.046
0.1
0.185
0.235
0.568
0.577
0.586
1.37
1.46
2.74
2.93
10
0.051
0.111
0.205
0.26
0.63
0.64
1.52
1.62
3.04
3.25
11
0.056
0.122
0.225
0.285
0.692
0.703
1.67
1.78
12
0.061
0.133
0.245
0.31
0.754
0.766
1.82
1.94
13
0.066
0.144
0.265
0.335
0.816
0.829
14
0.071
0.155
0.285
0.36
0.878
0.892
15
0.076
0.166
0.305
0.385
0.94
0.955
16
0.081
0.177
0.325
0.41
17
0.086
0.188
0.345
0.435
18
0.091
0.199
0.365
0.46
19
0.096
0.21
20
0.101
0.221
21
0.106
0.232
22
0.111
23
0.116
24
0.121
25
0.126
2
F
B
B
B
2
Table 24: Pump Moment of Inertia GD in kgm .
2.2.3.2
Intermediate and Driving Shaft
Shaft
Drive/Top shaft
Shaft – ø (mm)
Length of the pipe ( mm)
300
600
900
Intermediate Shaft
1200
1525
2000
3050
20
0.0025
0.0028
0.0032
0.0035
0.0009
0.0011
0.00136
25
0.0028
0.0031
0.0035
0.0038
0.0031
0.0036
0.0049
30
0.0047
0.0054
0.0062
0.0069
0.0057
0.0083
0.094
35
0.0064
0.0079
0.0094
0.0109
0.101
0.0125
0.0164
45
0.0181
0.022
0.0259
0.0298
0.0252
60
0.066
0.078
0.090
0.102
0.147
70
0.135
0.157
0.180
0.202
0.303
2
0.0439
2
Table 25: Moment of inertia GD in kgm of intermediate and drive shaft.
Page 2-9 of 71
Revision 02 ; 05-2015
189
Type Series Booklet
B-Pump
2.2.3.3
Flexible Coupling
Size
S0
S1
S1a
2BN
3BN
4BN
5BN
GD2 (kgm2)
0.0010
0.0033
0.0094
0.0214
0.0428
0.1292
0.3625
2
Table 26: Moment of inertia GD for flexible coupling, according to HS 173.
For other types of coupling, moment of inertia can be taken from the respective manufacturer’s catalogue.
2.3 NPSH of the Pump (HH) & NPSH of the plant (HHA)
Every impeller has its own flow pattern. The Q dependent NPSH (HH) value can be taken from the characteristic curves. This value must be minimum at the exit
from the plant so that vaporization of the pumped fluid (cavitation) in the impeller is avoided.
HHA > HH
The (HH) values on the characteristic curve have been constructed on a 3% head drop and should be applied to the upper edge of the first impeller’s vane. It also
contains a safety margin, which must not be deducted, as it takes into consideration casting inaccuracies and head losses in the pump.
External safety margin should also be considered in addition to this.
The minimum submergence is the minimum water level over the lower edge of the suction casing for starting the pump and is marked through the measurement
“B” in the Table 27.
Pump Size
Impeller Type
Measurement (B) [mm]
6
B
7
B
300
8
B
10
D
350
B
D
400
12
F
B
D
14
F
B
D
16
B
D
18
20
B
B
450
22
24
B
B
500
Table 27: Measurement B = minimum water level over the bottom edge of the suction casing / Min. submergence.
Page 2-10 of 71 Revision 02 ; 05-2015
190
Type Series Booklet
B-Pump
2.4 Weights
The total unit weight consists of the following components:
1. Pump body
2. Rising main
3. Shaft enclosing Tube
4. Discharge head
5. Motor stool
6. Bearing Assembly
7. Motor (See Motor Catalogue)
2.4.1
Component Weight
2.4.1.1
Pump Bowl Assembly
The weights are approximate and can be taken for all material variants; however, for price calculations these have limited application.
No. of Stages
Pump size
6
7
8
10
12
14
16
18
20
22
24
1
22
32
44
72
112
160
220
295
385
530
640
2
28
41
56
96
154
222
305
407
545
785
940
3
34
50
68
120
196
284
390
519
705
1040
1240
4
40
59
80
144
238
346
475
631
865
1295
1540
5
46
68
92
168
280
408
560
743
1025
1550
1840
6
52
77
104
192
322
470
645
855
1185
7
58
86
116
216
364
532
730
967
8
64
95
128
240
406
594
815
9
70
104
140
264
448
686
10
76
113
152
288
490
718
11
82
122
164
312
532
12
88
131
176
336
574
13
94
140
188
360
14
100
149
200
384
15
106
158
212
408
16
112
167
224
17
118
176
236
18
124
185
248
19
130
194
20
136
203
21
142
212
22
148
23
154
24
160
25
166
Table 28: Weight of the pump bowl assemblies in kg.
Page 2-11 of 71 Revision 02 ; 05-2015
191
Type Series Booklet
B-Pump
2.4.1.2
Rising main
2.4.1.2.1
Flanged execution
A standard column pipe set includes:
1
column pipe with 2 Flanges
1
Bearing spider with bearing bush / rubber bearing
1
Intermediate shaft with Shaft Protecting Sleeve
1
Shaft coupling
1
set of fasteners + Gaskets/O-Rings
A standard upper column pipe set (top set) consists of:
1
column pipe with 2 Flanges
1
Shaft coupling
1
2.4.1.2.2
set of fasteners + Gaskets/O-Rings
Threaded Execution
A standard column pipe set includes:
1
column pipe with bearing socket
1
Intermediate shaft with Shaft Protecting Sleeve
1
Shaft coupling
A standard upper column pipe set consists of:
1
column pipe line (top set) with 1 Flange + 1 side threaded – maximum length of top set is 1220 mm.
1
Shaft coupling
1
Set of fasteners + Gaskets/O-Rings
Following weights are of flanged column pipes without shaft enclosing tube. For threaded execution the weights can be reduced by 10%.
WEIGHT OF RISING MAIN SET
SHAFT Ø
Rising
Rising Main Nominal Diameters (NW)
(mm)
Main Sets
80
100
125
1525
21.7
26.7
31.8
2000
35.5
33.0
39.3
20
25
30
35
45
60
150
200
250
300
2700
43.0
42.2
50.4
3050
46.8
46.8
55.9
1525
26.7
34.7
58.6
80.1
2000
33.0
42.9
72.5
97.7
2700
42.2
54.9
92.9
123.7
3050
46.8
61.0
103.1
136.6
1525
37.1
61.5
83.4
117.6
2000
46.1
76.2
101.9
142.4
2700
59.4
97.9
129.1
178.9
3050
66.1
108.7
142.7
197.1
1525
64.1
88.3
115.8
2000
79.7
107.6
141.4
181.4
2700
102.6
136.1
179.1
229.7
3050
114.0
400
231.21
303.3
148.6
150.3
197.9
253.9
1525
96.9
127.1
157.1
2000
118.6
155.1
192.4
2700
150.7
196.4
244.3
3050
166.70
217.05
270.29
1525
350
174.4
1800
191.4
251.78
328.9
2700
246.9
319.10
412.75
Page 2-12 of 71 Revision 02 ; 05-2015
192
Type Series Booklet
B-Pump
70
3050
268.47
345.28
445.33
1525
183.5
240.31
312.46
2000
212.8
275.84
356.68
2700
256.0
328.20
421.85
3050
277.58
354.38
454.44
Table 29: Weights of the column sets in kg. VN. model / design / type.
2.4.1.3
Shaft Enclosing Tube
Consult Design Office
2.4.1.4
Discharge Head (type VN) without Motor stool.
Discharge Head Type
VN 1342A
VN 1342
VN 1830
VN 2030
VN 2541A
VN 2541
VN 3051
Weight
88
84
80
88
165
165
170
Table 30: Weight of the Discharge Head (VN type) in kg
2.4.1.5
Thrust Bearing Assembly
Consult Design Office
2.4.1.6
Motor Stool
Consult Design Office
2.4.1.7
Bearings
Consult Design Office
2.4.2
Weight of complete Bowl assembly
Following weights are required for the calculation of axial thrust or for the installation.
2.4.2.1
Weight of pump Rotor Assembly
The complete weight of bowl assembly of 1st stage pump consists of unit weight of pump shaft, impellers, clamping sleeve and sand guard. Weight of the
intermediate / column shaft is not included (see Figure 5)
Pump Size
6
7
8
10
12
14
16
18
20
22
24
1st Stage
2.4
3.8
5.8
10.3
17.2
29.1
38.5
54
67
80
94
Each Additional Stage
1.2
1.8
2.8
4.9
8.4
15.1
21.7
30.5
41
52
63
Table 31: Weight of Pump Rotor in kg
2.4.2.2
Weight of the Intermediate Shaft
The weight of the intermediate shaft is required only for the thrust bearing load. For the calculation of the total pump weight it is already included in the rising main.
For pump rotor weight, see Table 31, in which the weight of the drive shaft is included.
Refer to Figure 5 which gives weights of the shaft in kg (depending on the length Le)
Page 2-13 of 71 Revision 02 ; 05-2015
193
Type Series Booklet
B-Pump
Figure 5: Weight of Column Shaft in kg, according to Column length L e
2.4.2.3
Weight of the Pump Side (Flexible Coupling)
Size
S0
S1
S1A
2BN
3BN
4BN
5BN
Weight (kg)
2
3
6
9.5
15
30
58
Table 32: Weight of the pump side of the coupling half, according to HS 173
2.4.3
Weight of the Pumped Medium Filling
For static calculation of the base plate, the total aggregate weight of the pump with the filling medium is required.
For simplification, to measure the maximum possible weights from the drop down level to the suction strainer, generally the total volume of the medium filling the
pumping unit is taken as a base. The submerged weight and the water thrust on the shafts are not considered.
The weight of the medium GFg is calculated as follows:
I (dm3)
content of the complete pump aggregate (2.5.1)
3
γ (kg/dm )
density of the pumping medium
2.5 Pump Filling Volume
2.5.1
Volume of the completely filled pump
The volume of the complete pumping unit consists of the total installation depth (including suction strainer) and the Nominal Diameter (NW) of the rising main.
Pump assembly and the Discharge Head (VN) should be considered in addition to the Rising Main length. For the Discharge Head, 1 m column pipe length can be
assumed. In Table 33 the content per running meter of the column line is given depending on NW.
NW
80
100
125
150
175
200
I (dm3/m)
5.2
7.8
12.2
17.6
25.4
32.5
NW
250
300
350
400
500
I (dm3/m)
50.9
72.2
97.1
126
195
3
Table 33: Content of the complete pumping unit in (dm /m), depending on the column line –NW
Page 2-14 of 71Revision 02 ; 05-2015
194
Type Series Booklet
B-Pump
Example:
1.
Bowl assembly
Pump without Suction Strainer
Discharge head Type VN
Rising Main NW 200
Installation depth = 10m (bottom of the suction casing)
I = (10+1) m x 32.5 dm3/m = ~ 360dm3
Page 2-15 of 71 Revision 02 ; 05-2015
195
Type Series Booklet
B-Pump
3 Construction (Design) Description
3.1 General
3.1.1
Type and Design
Complete pumping unit consists of pump, rising main, discharge head, suction pipe and/or suction strainer, foot valve. The axial thrust on Rotor and
Intermediate shaft is taken care by provision of angular contact ball bearings (Thrust Bearings) provided in Discharge Head Assembly for V1 design while in ET
(VHS) Design, the thrust bearings are provided in the VHS Motor. Each rising main set consists of Column Pipe, Bearing Spider with Rubber or Metal Bearing,
Coupling (Threaded or Cone type) and intermediate shaft with shaft protecting sleeve.
3.1.1.1
Rotational Direction
Looking from the drive-end towards the pump, the rotational direction is counter-clock wise.
3.1.2
Arrangement and Installation
Installation is exclusively vertical. The pumping unit has been designed to suit outdoor Installation. The thrust bearings are sealed against the penetration of
dust, sand, spray water etc through radial seal ring (bottom end and bearing cover at the top end) in thrust Bearing Assembly.
Discharge nozzle orientation is parallel to the axis of the shaft and is of:
VN Design:
Discharge nozzle above ground on discharge head.
VU Design:
Discharge nozzle below ground on the rising main (discharge tee pipe)
Irrespective of the discharge nozzle orientation (mentioned above) installation can be of following two types
Wet Installation
The pump stands completely or partially installed in the pumping medium up to the level of 1 st stage impeller. The minimum submergence of the impeller of 1st
stage should correspond to the measurement “B” (minimum submergence). In case there is a Suction Pipe attached with Suction Strainer then the water level
can fall below the level of 1st Stage impeller. In this case care should be taken that the cavitation does not take place. For this the minimum medium level
should be 1.0 x NWsuction casing over the upper edge of the suction strainer.
Dry Installation
Dry pit installation is also possible for DWT under special condition. The supply line is connected with the suction casing through special foot elbow .A typical
unit in dry installation is also called dry pit pump. For the minimum submergence, the same applies as in case of wet installation. Complete details can be
provided on a case to case basis by the design department.
3.2 Pump Casing
Casing parts (suction casing, discharge casing and intermediate bowls) are vertically split with respect to the shaft. The individual casing parts are tightened
together through Stud/Nut arrangement.
3.2.1
Suction Casing
The suction casing has a threaded connection for suction Pipe or suction strainer up to the sizes B16D. Flanged connections can also be provided on request.
From sizes B18 and above, the suction casing is available with flanged connection only. In suction casing bearings are also provided.
3.2.2
Intermediate Bowls
The number of Intermediate bowls is equal to the number of stages of the pump. The Intermediate bowls have hydraulic shrouds, to guide the flow from impeller
to the outlet.
Each Intermediate bowl has a Rubber Bearing and a bowl sleeve.
3.2.3
Discharge Casing
Discharge casing has threaded as well as flanged connections depending upon the column set assembly. The internal hub takes up the pump bearing from the
discharge side as well as the lowest shaft enclosing tube in certain cases.
3.3 Impeller
3.3.1
Impeller Type
Impellers are single suction, mixed flow (radial & axial). Up to size 16, impellers are fixed by providing a clamping sleeve and from size 18 and above impellers
are fixed by providing a key, stage sleeve and nut on the pump shaft.
3.3.2
Casing Wear ring
Suction Piece and intermediate bowls are fitted with interchangeable casing wearing rings.
The material of the wearing ring has a difference of approx. 50 HBN less than the rotating part and therefore it tends to erode (for example stainless steel),
hence it is required to increase the play of casing wear ring see 2.1.8.3.
Page 3-1 of 71 Revision 02 ; 05-2015
196
Type Series Booklet
B-Pump
3.3.2.1
Impeller – Entry Cross Sections
Pump Size
6
7
8
10
12
14
16
18
20
22
24
Impeller Type
B
B
B
D
B
D
F
B
D
F
B
D
B
D
B
B
B
B
Impeller cross section
26
38
50
76
83
115
148
118
176
210
160
263
210
327
286
429
527
536
2
Table 34: Impeller entry cross section in cm .
3.4 Shafts
Pump Shaft is always subjected to pump medium.
Intermediate Shaft: In standard design, Shaft Protecting Sleeve protects the shaft in the bearing area. In oil lubricated design, it is protected by shaft enclosing
tube in which case oil acts as a lubricant.
There is no protection in the stuffing box region.
As special design the drive shaft is protected through a warm drawn up shaft-protecting sleeve in area of stuffing box packing.
3.4.1
Pump Shaft and Column Shaft Connection
Coupling
Pump Size
Threaded
6
7
8
20
20, 25
25, 30
25, 30, 35
25, 30, 35, 45
35, 45
30
30, 35
30, 35, 45
45, 60, 70
Cone
10
12 , 14 & 16
18, 20. 22 24
Table 35: Possible column shaft connection on pump shaft in mm.
If the required diameter in design calculations for intermediate shaft is greater than the one given in Table 35, then there are two possibilities as far as the pump
shaft is concerned.
Select complete shaft (including Top shaft) in better material. The smallest diameter to be fixed according to Table 13 and Table 14 (page 2-3)
Special design. Fix intermediate shaft diameter according to Table 13, Table 46 and Table 47 (page 3-13); and use reduced lower intermediate shaft diameter
according to Table 35 in a better material (Examine according to Table 14)
3.4.2
Drive/Top shaft
In V1 design the top shaft passes through thrust bearing arrangement above the discharge head for taking up necessary axial thrust and in ET design (VHS
drive) it passes through the motor’s hollow-shaft and is coupled with the motor coupling.
BUA Bearing
7309
7311
7312
7313
7314
7315
Shaft – Ø
25
33
33
33
38
43
38
Key 1) b*h (mm)
8x 7
10 x 8
10 x 8
10 x 8
10 x 8
12 x 8
10 x 8
BUA Bearing
7317
7318
7319
7320
7322
7324
7326
Shaft – Ø
53
38
48
48
63
53
63
16 x 10
10 x 8
14 x 9
14 x 9
18 x 11
16 x 10
18 x 11
Key
1)
b*h (mm)
7316
Table 36: Drive shaft and key on coupling seat in mm on the pump side.
Page 3-2 of 71Revision 02 ; 05-2015
197
Type Series Booklet
B-Pump
1) Measurement according to DIN 6885
b = width of fitting key, h = height of fitting key
3.4.3
Shaft Protection
The intermediate and drive shafts are not protected against the medium. By the use of shaft enclosing tube only those shafts can be protected which lie above
the maximum medium level. An adequate corrosion protection is possible only through selection of shaft material, which is resistant to medium.
3.5 Thrust Balancing
The impeller does not take up any hydraulic axial thrust. The hydraulic axial thrust and the complete rotor and intermediate shaft weight is taken up through a
thrust bearing. The hydraulic axial thrust is internal thrust of the pump and does not limit the installation work.
3.6 Bearings and Lubrication
3.6.1
Bearing
There are 3 types of bearings which can be offered with B-Pump:
•
Grease lubricated anti-friction bearing
•
Medium lubricated guide bearings in pump and in the rising main.
•
External water / oil lubricated plain bearing in the rising main.
3.6.1.1
Thrust Bearing Arrangement
The thrust bearing takes up the axial thrust directed towards suction side as well as the radial thrust. The thrust bearing with Angular Contact Bearings can also
take up the additional axial force directed towards discharge side.
3.6.1.1.1
Axial Bearing Load
Thrust bearing shall be loaded through following components.
Pax ↓ directed towards suction side
Weight of the intermediate / column shaft. Figure 5
Weight of the pump rotor. Table 31
Weight of the drive shaft.
Weight of the pump-side coupling half.Table 32
Hydraulic axial thrust of the pump (Figure 6 & Figure 7)
Pax ↑ directed towards delivery side
Pax ↑ = Pz x Fws (max intake pressure x shaft cross section)
Fws = dws2 x π/4 (cm2)
Pax = Pax – Pax (kg)
Pz (kg/cm2)
dws (cm)
intake pressure
effective diameter in the shaft sealing
Hydraulic axial thrust can be seen by looking the pump head from operating point in meters against pump size.
As a rule the hydraulic axial thrust is directed towards the suction side of the pump. If the pump stands under intake pressure, which is higher than the
atmospheric pressure the axial thrust directed toward suction side shall be relieved.
Page 3-3 of 71 Revision 02 ; 05-2015
198
Type Series Booklet
B-Pump
Figure 6: Hydraulic axial thrust Pax in kg dependent on the total head at operating point for Impeller type B.
Figure 7: Hydraulic axial thrust Pax in kg dependent on the head at operating point for Impeller type D and F
Page 3-4 of 71 Revision 02 ; 05-2015
199
Type Series Booklet
B-Pump
The diagrams are independent from the speed and size of impeller.
3.6.1.1.2
Selection of Bearing Stool
Consider speed limitations according to Table 9 & Table 10 Page 2-2.
a. Bearing according Table 11 for P/N limitation.
b. Check the admissible axial thrust of the bearing in O arrangement as well in tandem arrangement according to Table 37.
Discharge head size 8 (Exception: size 8 with 45 and 60 BUA) and larger (from 75 BUA)
a. Bearing according to Table 11
b. Checking of admissible axial thrust of bearing in O-arrangement as well in Tandem arrangement according to illustration 52.
Bearing Type (BUA) Single Arrangement
Pax
Permissible
RPM
7309
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7322
7324
7326
1450
7.686
10.833
12.149
13.736
15.124
16.909
18.182
19.454
20.992
22.645
25.802
28.612
30.264
31.917
1740
7.240
10.205
11.445
12.939
14.247
15.928
17.128
18.327
19.775
21.332
24.306
26.953
28.51
30.067
2900
6.244
8.802
9.870
11.16
12.288
13.738
14.773
15.807
17.056
18.399
20.964
23.247
24.59
25.933
Pax
Permissible
Bearing Type (BUA) Double (O & X) Arrangement
RPM
7309
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7322
7324
7326
1450
12.397
17.546
19.835
22.123
24.793
26.954
29.116
32.913
34.329
36.363
41.322
46.280
49.587
51.239
1740
11.678
16.528
18.685
20.841
23.356
25.392
27.428
30.063
32.339
34.256
38.926
43.598
46.712
48.269
2900
10.072
14.256
16.116
17.975
20.144
21.900
23.657
25.230
27.892
29.545
33.574
37.603
40.289
41.632
Table 37: BUA – Bearing permissible axial thrust kN for single and double bearing installations.
3.6.1.1.3
Area of Usage
Bearing Type
Pump Size
7309
6, 7, 8, 10, 12
7311
6, 7, 8, 10, 12
7312
6, 7, 8, 10, 12
7313
6, 7, 8, 10, 12, 14
7314
6, 7, 8, 10, 12, 14
7315
6, 7, 8, 10, 12, 14,16
7316
6, 7, 8, 10, 12,14, 16, 18
7317
6, 7, 8, 10, 12,14, 16, 18
7318
6, 7, 8, 10, 12,14, 16, 18
7319
6, 7, 8, 10, 12,14, 16, 18
7320
14, 16,18,20,22,24
7322
14, 16, 18,20,22,24
7324
14,16, 18, 20,22,24
7326
16, 18,20, 22,24
Table 38: Possible bearings for different pump size
Page 3-5 of 71
Revision 02 ; 05-2015
200
Type Series Booklet
B-Pump
3.6.1.1.4
Bearings Temperature
The permissible bearing temperatures amount to the following by a temperature of the liquid t ≤ 105oC and a surrounding temperature of 20oC:
Bearing:
60oC1)
7309-7315
1)
70oC1)
7316-7326
Measured at the outer wall of the bearing cover
In case the operating conditions demand higher temperatures then the bearing temperatures can be increased by 10oC Maximum.
3.6.1.2
Pump Bearing
Bearings provided in the pump are guide bearings (plain bearings). They can not take up the axial forces. Bearing of the suction side is provided in suction
casing and is medium lubricated.
The bearing of the delivery side is fitted in the discharge piece, with the exception of B20, B22 with intermediate shaft > 60 and B24 with intermediate shaft >
80. In those case, a bearing spider is fitted in the discharge piece.
3.6.1.3
Bearing Clearance
The bearing clearances given in the following section refer to the diameters of the bearings and shafts and are for new components.
3.6.1.3.1
Pumps
Pump size
M
Pump bowl
Clearance
Suction casing
G
Delivery casing
M
6–8
10 – 12
14 – 16
18
20
22 – 24
Min.
0.065
0.080
0.105
0.130
0.130
0.130
Max.
0.228
0.279
0.290
0.350
0.350
0.280
Min.
0.200
0.200
0.340
0.350
0.370
0.336
Max
0.383
0.389
0.730
0.740
0.790
0.571
Min.
0.065
0.080
0.130
0.130
0.1301)
0.1302)
Max.
0.228
0.279
0.234
0.234
0.234
0.280
Table 39: Clearance of pump bearing in mm
M = metal, G = rubber
1)
for intermediate shaft > 60 Ø Bearing
2)
for intermediate shaft > 80 Ø
3.6.1.3.2
Bearing play according to intermediate shaft
Rising Main
a. Standard design (medium lubricated) - without shaft enclosing tube
Rubber bearing
Metal bearing
Clearance
Intermediate shaft – Ø
20
25
30
35
45
60
70
Min.
0.31
0.32
0.33
0.34
0.35
Max
0.59
0.63
0.64
0.73
0.74
Min.
0.080
0.100
0.120
Max
0.146
0.178
0.212
Table 40: Clearance of the intermediate shaft bearing in mm (Rising main without shaft enclosing tube)
b. Special Design (External Lubrication) – with Shaft enclosing tube
Intermediate shaft – Ø
Oil lubrication
Rubber bearing 2)
External water lubrication
Clearance
Metal bearing
20
1)
25
30
35
45
60
70
Min.
0.065
0.080
0.100
Max
0.150
0.181
0.220
Min
0.31
0.32
0.33
0.34
0.35
Max
0.59
0.63
0.64
0.73
0.74
Table 41: Clearance of the intermediate shaft bearing in mm (rising main with shaft enclosing tube)
Page 3-6 of 71
Revision 02 ; 05-2015
201
Type Series Booklet
B-Pump
1)
Shaft without shaft protecting sleeve
2)
Shaft with shaft protecting sleeve
3.6.1.3.3
Bearing
Angular Contact Bearing
Bearing with the suffix “UA” is for coupled arrangement through Tandem arrangement and the load distribution is even. In O-arrangement a bearing is coupled
without clearance.
3.6.1.4
Friction Losses
Friction losses in thrust bearings and radial bearings in the pump can be ignored. For losses in column pipe, refer to 3.8.5.4.6
3.6.2
Thrust Bearing Arrangement
3.6.2.1
Lubrication
Selection of suitable lubricant depends on the operating conditions i.e.; speed, ambient temperature and operating temperature.
For the selection, the bearing manufacturer’s manual shall be consulted. For special cases, the information can also be taken from lubricant manufacturers.
3.6.2.1.1
BUA- Bearing Arrangement
For lubrication of the bearing, grease that has metal soaps as thickener and mineral oils as base are used.
Lithium soap greases are suitable which are remarkable for resistance to temperature and are slightly water sensitive. For higher temperatures and water entry
these greases are preferred.
They should have the following characteristics.
Drop point
not under 160°C
Worked penetration by 25°C
265 to 295mm/10mm
3.6.2.1.2
Re lubricating and Lubricating Time
BUA- Bearing Bracket
Re-greasing depends on the bearing size and lubricating time
a. 1st Lubrication after 24 operating hours with three-fold grease quantity from the Table 42.
b. 2nd Re-lubrication after further 24 operating hours with three-fold grease quantity from the Table 42
c. Regular re-lubrication after 800 operating hours with the normal grease quantity.
Bearing
Arrangement
Initial Fill (grams)
Re-Lubrication
(grams)
7309
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7322
7324
7326
7330
O
260
260
390
390
390
900
900
900
900
900
900
900
900
900
900
T
300
300
450
450
450
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
O
35
35
50
50
50
80
80
80
80
80
80
80
80
80
80
T
50
50
70
70
70
100
100
100
100
100
100
100
100
100
100
Table 42: Required Grease Quantity in grams
O = O arrangement, T = Tandem arrangement
3.7 Shaft Sealing
3.7.1
Figure 8: Stuffing
Box Arrangement
Stuffing Box Packing
Stuffing box packing is fitted in the discharge head.
Stuffing box pressure reduces with increase in installation depth, height of
the rising main and the head loss because of the frictional losses in the rising
main.
VSM-Stuffing box
Application of lantern ring is recommended only when it is required to
prevent air from entering in the stuffing box zone during stand still of the
pump.
Sealing water quantity can be adjusted according to packing condition and lie
between 30 and 200 dm3/h with a water pressure of 1-3 kg/cm2. In the
sealing water pipeline non-return valve should be installed so that during
operation of the pump stuffing box pressure variant/ change does not let the
packing ring run dry.
Page 3-7 of 71
N version
VSM version
Revision 02 ; 05-2015
202
Type Series Booklet
B-Pump
3.7.1.1
3.7.1.2 Packing Material
Material of the packing ring must be selected according to the pump media and its temperature. Use only specified gland-packing material/make. In the
following table few packing types are mentioned.
Designation
Manufacturer
Buraflon/5846
Burgmann
Araflon/6426
Burgmann
Isaraflon/3435
Burgmann
Thermoflon/6230
Burgmann
Operating Temp.
Water t ≤ 105°C
Table 43: Packing materials
3.7.1.2
Friction Losses
The frictional losses in Stuffing Box Zone can be calculated according to
figure 7. Friction Performance PR given corresponds to 1450 RPM. For
other speeds, it must be converted accordingly.
Example:
n = 2900 rpm; 45 BUA, Stuffing Box pressure 10 kg/cm2
Frictional Loss PR [kW]
PR = 2900/1450*0.8 = 1.6 kW
Stuffing Box Pressure p[kg/cm2]
Figure 9: Friction performance depending on the stuffing box pressure at 1450 rpm.
Page 3-8 of 71
Revision 02 ; 05-2015
203
Type Series Booklet
B-Pump
3.7.1.3
Leakage Water
There is a leakage of medium in the Stuffing Box Zone. Its quantity depends on the stuffing box pressure, type of packing, packing material, pump speed,
situation of the packing (wear) as well as the pump medium. Specification of a leakage quantity is therefore not possible. Leakage should however be at least 6
dm3/h.
3.8 Drive
3.8.1
Types of drive
1. V1 Electric motor, V1
2. Hollow shaft motor, ET
3. Hollow shaft bevel gear drive, KT
4. Hollow shaft motor with hollow shaft bevel drive, EK (combination drives)
5. Diesel Engine via flat belt – Belt Head Drive (RT)
Figure 10: Type of Drives
In hollow shaft drive the axial thrust of the pump (see 2.4.2) is taken up by the motor bearing. Gear drive arrangement can be adopted for driving the vertical
turbine pumps through electric motors and diesel engines or as combination drives.
For diesel engine installations it is to be ensured that pump and the engine should be installed on separate foundations. The minimum distance of both the shaft
extensions should not be less than 1 meter. Universal joint Cardon Shafts can be used for coupling.
3.8.1.1
Driver Power Requirement / Reserve
Power requirement shall be determined from the operating point of the pump, friction losses through shaft sealing (illustration 66) are still to be added. The
minimum power rating of the drive shall conform to the following limitations of performance.
For smooth performance requirement
Up to 25 kW
min. 20%
From 25-75 kW
min. 15%
Over 75 kW
min 10%
3.8.2
Couplings
3.8.2.1
Fixed Coupling – Intermediate Shaft
Shaft Diameter
20
25
30
35
45
60
70
Cone Coupling
Threaded Coupling
Table 44: Coupling Types for various Intermediate shaft diameters
Page 3-9 of 71
Revision 02 ; 05-2015
204
Type Series Booklet
B-Pump
3.8.2.1.1
Switching Frequency
Maximum Power transfer of the cone coupling (see 2.1.6.2 ) is measured for constant operation of the pump. The transferable efficiency diminishes to:
•
0.8 times from the given values by 2-10 switching /day
•
0.5 times from the given values by 10-50 switching /day
Higher switching number should be avoided.
No restriction exists for threaded couplings.
3.8.2.1.2
Reverse Safety
For Threaded coupling designs, a Non Reverse arrangement (Back Stop Unit) is provided so that the threaded couplings do not loosen by reverse rotation.
Hollow shaft motor and hollow shaft bevel drive have built-in non-reverse ratchets, V1 Design Motors do not have this arrangement. Before coupling the motor
the direction of rotation shall be observed.
3.8.2.2
Flexible Coupling
Coupling types according to HS 173 for Elastic Couplings shall be used. The pump side shaft diameter for the coupling to be considered according to
illustration: 49. Other coupling types are also possible.
Switching frequency according to manufacturer’s specification.
3.8.3
Motor Stool and Discharge Head
3.8.3.1
Motor Stool for V1 motors
Motor Stools can be categorized according to the following:
VN
=
Discharge nozzle above ground
VU
=
Discharge nozzle below ground
Motor Stool for V1 motor are steel fabricated with bearing casing including thrust bearing to take up the axial thrust and weight of the rotating parts.
Motor Stool sizes are classified according to IEC-Frame reference of motors (DIN 42 676/77). For motors other than IEC-Frames, special design motor stool are
fabricated. Shaft seal is provided in discharge head.
The base plate is quadratic for VN type discharge head and motor stool. Discharge Head and Motor Stool are separate basically and are fastened together
through stud/nut arrangement. For standard type the design pressure of discharge head is 24.5 bar. The discharge flange is generally according to BS 10 Table
‘D’. Discharge Flange can also be provided as per following standards:
•
ANSI B 16.5
•
DIN 2533 ND 16
3.8.3.2
Discharge Head for Hollow shaft motors and
gear units
Discharge head for hollow shaft motor is made of grey cast iron GG-25. In
VN type, the motor is directly mounted on the Discharge head. The
discharge pressure is 16 kg/cm2. The discharge flange is according to BS
10 Table ‘D’. Discharge Flange can also be provided as per following
standards:
•
ANSI B 16.5
•
DIN 2533 ND 16
Discharge head selection and measurements according to 4.1.3.6.1, Table
56, Figure 36, Figure 37, Figure 35, Figure 38
3.8.3.3
Discharge Head Losses
The losses in the discharge head can be calculated from following figure:
Figure 11: Discharge Head Losses
3.8.4
Safety against Reverse Rotation.
Hollow shaft motors and drives are always provided with non-reverse
ratchet. It protects the pump from reverse rotation (Turbine operation) as a
result of the back flow of the water filling present in the rising main.
Page 3-10 of 71 Revision 02 ; 05-2015
205
Type Series Booklet
B-Pump
3.8.5
Rising Main
The price of rising main is a major part of the total price of the pumping unit of DWT. Therefore the selection of the rising main must be done very carefully.
Following points have to be considered while selecting the rising main.
•
Discharge Flow of the pump
•
NW (nominal diameter) of the discharge casing (compare Table 47)
•
Intermediate shaft diameter (compare Table 13, Table 42 and Table 50)
3.8.5.1
Design Types of Rising Main
There are following design types
FG
MG
FGS
MGS
FMS
MMS
It means
1.
F = Flange
2.
M = Socket
3.
G = Rubber bearing
4.
M = Metal bearing
5.
S = Shaft protecting sleeve
FG and MG are standard types, all the other are special types.
3.8.5.2
Bearing Spider- Bearing in Rising Main
Numbers of bearing spiders in all sizes are equal to the number of intermediate column pipes.
Exceptions:
In B20 and higher, where shaft diameter is greater than 60mm the number of bearing spider is equal to the number of intermediate columns pipes plus one. The
top column pipe is not counted in the total number of columns.
3.8.5.2.1
Bearing Types / Lubrication / Shaft Protection
Bearing
Lubrication
Shaft Protection
Rubber
With pumped media (Standard)
Shaft protecting sleeve in 1.4301
Metal
Oil: with shaft enclosing tube
Shaft protecting sleeve in 1.4301
Water: with shaft enclosing tube
Shaft protecting sleeve in 1.4301
Table 45: Bearing type, lubrication and shaft protection.
Page 3-11 of 71
Revision 02 ; 05-2015
206
Type Series Booklet
B-Pump
Rubber bearing containing the support shell, the shaft-protecting sleeve shall is shrink-fitted by heating, on the shaft.
3.8.5.2.2
Bearing Lubrication
1. Pumped fluid
Rubber bearings are lubricated by the pumping medium. Rubber bearings have no dry running protection. It is therefore necessary to lubricate the rubber
bearings before starting of the pump through pre-lubrication arrangement provided in the pump. After a long non-operational time, pre-lubrication of the bearing
is necessary. For that a container measuring 50 dm3 is provided at the height of motor stool.
2. Outside / External Lubrication.
Rubber bearings in shaft enclosing tube are lubricated through outside water. If outside water is not available, a filtered pumping medium can be used instead
for lubrication of the bearing.
3. Oil
The metal bearing in the shaft enclosing tube are lubricated by oil from the oil tank with a solenoid valve to control the flow of the oil.
3.8.5.2.3
Friction Losses
According to Figure 12, Friction Performance PRSt in kW/100 meters shaft length. Values given are for 3050 mm shaft length. For others, multiply the values in
relation to the selected set length (see example)
Example:
Shaft 30 φ mm, setting length 1600 mm, speed 1500 RPM
PRSt
= 1.55 x 3050 / 1600 = 2.95 (kW/100m)
Double the value in types with shaft enclosing tube.
Figure 12: Friction losses in kW/100 m shaft length.
Page 3-12 of 71
Revision 02 ; 05-2015
207
Type Series Booklet
B-Pump
3.8.5.3
Intermediate Shaft
3.8.5.3.1
Determination of Diameter
For intermediate shaft diameter carried out according to Table 13. The motor rated output is taken 1.3 times that of pump output.
Through material selection the performance can be influenced very strongly (see Table 14). For selection of cone coupling consider the admissible switch
frequency (3.8.2.1.1)
3.8.5.3.2
Possibilities of Installation
Column pipe
mm
Column pipe
inch
20
25
30
35
45
60
70
80
3
○●
○●
○
○
100
4
○●
○●
○●
○
125
5
○●
○●
○●
○●
○
150
6
○●
○●
○●
○●
○●
175
7
●
○●
○●
○●
○
200
8
●
○
○●
○●
○●
250
10
○
○●
○●
○●
○●
300
12
○●
○●
○●
○●
400
16
○●
○●
500
20
○
Table 46: Connection between column pipe diameter and possible shaft diameter of the intermediate shaft.
o- open shaft ●- shaft inclosing tube
3.8.5.4
Installation depth
3.8.5.4.1
Type
Size
Possible Column Pipe Connection
Thread Execution (in inches)
3
4
5
6
7
8
10
12
Flanged Execution (in mm)
14
80
100
125
150
175
200
250
300
350
400
500
B6B
B7B
B8B
B8D
B10B
B10D
B10F
B12B
B12D
B12F
B14B
B14D
B16D
B18B
B20B
B22B
B24B
Table 47: Possible Column Pipe connection with Pump Bowl Assembly
Page 3-13 of 71
Revision 02 ; 05-2015
208
Type Series Booklet
B-Pump
3.8.5.4.2
Maximum Installation Depth
Diameter of shaft (mm)
20
25
30
35
45
60
70
Max. installation depth (m)
75
85
100
120
120
120
120
Max. Installation depth (ft)
250
275
325
395
395
395
395
Table 48: VN type maximum installation depth in m depending on the diameter of the intermediate shaft in mm.
With rotations of 2 pole electric motors the maximum installation depth is 50 m.
Column pipe Dia (mm)
Up to 100
125-200
> 200
Max. installation depth (m)
35
30
25
Table 49: VU- type maximum Installation depth in m depending on the diameter of the intermediate shaft in mm.
3.8.5.4.3
Set Length of the Normal – Rising Pipe
Length of the set
Diameter of Intermediate Shaft in mm
20
Coupling
1525
25
30
G
K, G
Lubrication
Coupling
60
70
K, G
1800
G
Lubrication
K, G
E, F
3600 1)
Max. rotation RPM
Coupling
3050
45
E
Max. rotation RPM
2000
35
G
30001)
K, G
Lubrication
K, G
E, F
Max. rotation RPM
2200
K
E
1800
Table 50: set length of normal rising pipe, dependent from intermediate shaft diameter, coupling & lubrication type and max admissible speed
K
=
Cone Coupling
E=
Own Lubrication = without Shaft enclosing tube
G
=
Thread coupling
F=
Outer Lubrication = with Shaft enclosing tube
= 1 Bearing / Column Pipe Set
= 2 Bearing / Column Pipe Set
1) from 2200 rpm
3.8.5.4.4
Set length of Upper Rising Pipe
For different installation depths following lengths for top column pipe sets are available.
Length
300
600
900
1200
Table 51: Top Pipes (Measurements in mm)
Speed limitation can be seen from the Table 10. For the coupling selection refer to
2.1.6.3. Lengths smaller than 300 mm as well as larger than 1200 mm are not
possible. Lengths other than standard sizes come under special design production
program and must therefore be avoided. If there is a requirement of exact setting depth
then the addition of suction pipe is recommended for obtaining exact setting depth.
3.8.5.4.5
Discharge Tee Pipe (VU-type)
Discharge tee pipes are used in between the setting of normal and upper rising pipe
set lengths. Because of the welded sockets, certain minimum dimensions are to be
observed.
Figure 13 specifies minimum dimensions for the distance between center line (vertical)
of the pump and the discharge tee pipe flange as well as overhang of the discharge
support. Table 52 gives the dimensions of the discharge tee pipe for B-Pump.
If customer’s requirements are not available, then for standard discharge pipe of
1200mm length, the standard value for dimension ‘b’ is 500mm.
Figure 13: Discharge tee pipe
The discharge tee pipe is always positioned as the last/upper-most column pipe (below
top pipe) in the rising main. If the discharge position requirement is deeper, then
column can be added in between the top pipe and the discharge pipe. In this case it
Page 3-14 of 71
Revision 02 ; 05-2015
209
Type Series Booklet
B-Pump
must be noted that pump assembly is not pushed out of the position due to discharge piping force and heat expansion otherwise it can even lead to break down
of the pump. In addition to this, for deeper discharge setting, it should be made sure that the bearings above the discharge pipe are properly lubricated and
protected against dry running, especially in free-delivery systems.
Nominal Diameter (mm)
80
100
125
150
175
200
250
300
350
270
300
370
410
470
530
550
630
630
170
190
210
220
250
260
290
290
310
210
250
280
320
370
440
510
590
460
220
240
250
290
310
370
410
440
410
400
500
Contact
Design
Dept.
Contact
Design
Dept.
a
b
A
A’
Table 52: Discharge Tee Pipe Dimensions
3.8.5.4.6
Column Pipe Friction Losses
For shafts without shaft enclosing tube, and length of rising pipe 1200, 1600 and 2100 mm see Figure 14. For shaft without shaft enclosing tube and rising pipe
length of 3050 and 2000 mm Figure 15. For shaft with shaft enclosing tube and length rising pipe 3050, 2100, and 2000 mm see Figure 18.
The column pipe line losses should be maintained between 1 and 10 meter per 100 meters column pipe length. The upper limits are only allowable when setting
depths are 10 meters or more.
The column pipe connection combinations can be seen from the dimension tables.
Page 3-15 of 71
Revision 02 ; 05-2015
210
Type Series Booklet
B-Pump
3.8.5.4.7
5 ft long column friction losses (Open Line Shaft Design)
Figure 14: Column Pipe Friction Losses without Shaft Enclosing Tube (1200, 1600, 2100)
The values are applicable for set lengths of 1200 mm (shafts ø 30 to 110 mm). Table values are to be multiplied by 1.2, for set lengths of 1600 mm with shafts
of ø 20, 25, 30, 35, and 45 mm and for set lengths of 2100 mm with shafts ø 60, 70mm.
Page 3-16 of 71 Revision 02 ; 05-2015
211
Type Series Booklet
B-Pump
3.8.5.4.8
5 ft long column friction losses (Open Line Shaft Design)
Figure 15: Column Pipe Friction Losses without Shaft Enclosing Tube (1200, 1600, 2100) Higher Q.
Page 3-17 of 71 Revision 02 ; 05-2015
212
Type Series Booklet
B-Pump
3.8.5.4.9
10 ft long column friction losses (Open line shaft version)
Figure 16: Column Pipe Friction Losses without Shaft Enclosing Tube (3050 mm)
Page 3-18 of 71 Revision 02 ; 05-2015
213
Type Series Booklet
B-Pump
3.8.5.4.10
10 ft long column friction losses (Open line shaft version)
Figure 17: Column Pipe Friction Losses without Shaft Enclosing Tube (3050 mm) Higher Q
Page 3-19 of 71 Revision 02 ; 05-2015
214
Type Series Booklet
B-Pump
3.8.5.4.11
10 ft long column friction losses (With Shaft enclosing tube)
Figure 18: Column Pipe Friction Losses with Shaft Enclosing Tube (2100, 3050)
The values are valid for set lengths of 3050 mm, 2100 mm with screwed coupling; in case of cone coupling the values in the table are to be multiplied with 1.2.
Page 3-20 of 71 Revision 02 ; 05-2015
215
Type Series Booklet
B-Pump
3.8.5.4.12
10 ft long column friction losses (Shaft enclosing tube)
Figure 19: Column Pipe Friction Losses with Shaft Enclosing Tube (2100, 3050) Higher Q
Page 3-21 of 71 Revision 02 ; 05-2015
216
Type Series Booklet
B-Pump
3.9 Scope of Supply
3.9.1
Standard equipment
Scope of supply of DWT unit consists of the following items:
Type I:
1. Complete bowl assembly
2. Rising main with rubber bearing for lubrication through pumping media
3. Discharge head assembly
4. Flexible coupling (for V1 design)
5. Priming Funnel or Tank
6. Erection & Mounting Clamps for rising main
6. Motor (if ordered)
Type II
Scope of supply according to I, with addition of Shaft Enclosing tube and oil lubrication arrangement for line shaft rubber bearings.
Type III
Scope of supply according to I, with addition of Shaft Enclosing tube and oil lubrication arrangement (oil tank) and solenoid valve, if ordered, for line shaft
bronze bearings.
3.9.2
Normal Accessories
The following items are not included in the standard scope of supply but they should be recommended to the customer.
Drawing tool for cone coupling, impeller pulling and opening device: for tightening of clamping sleeve of impeller (up to B 16), suction strainer with foot valve (for
medium lubricated design) as well as inlet strainer (for rising main with shaft enclosing tube)
3.9.3
Special Accessories
•
Oil level indicator,
•
Flow meter,
•
Thermometer (PT100 for thrust bearing),
•
Pressure controller,
•
Pressure/ vacuum gauge,
•
Foundation base frame,
•
Foot elbow,
•
Non-return valve,
•
Switch and control equipment.
3.10 Inlet
3.10.1 Inlet Strainer
Coarse contamination is kept out of the pump through inlet strainer. If the strainer gets
clogged or blocked, possibility exists that the pump runs dry and mechanical failure may
occur. First indication of clogging is the reduction in capacity and head.
Resistance of inlet strainer is approx. 1/3 of the suction strainer with foot valve (see
Figure 20)
(3.2.1 to be consulted, socket connection is possible only up to pump size B16D)
Figure 20: Flow Resistance in suction strainer with foot valve
Page 3-22 of 71
Revision 02 ; 05-2015
217
Type Series Booklet
B-Pump
3.10.2 Suction Strainer with Foot Valve
Regarding contamination the same applies as for inlet strainer. In foot valves danger exists that cone of the valve is not properly closed due to fine deposits.
For long pressure lines it is recommended to install non-return valve in addition to foot valve. Through the provision of N.R.V, pressure on the pump is avoided.
It should be ensured that the non-return valve reacts quickly and gets closed before the foot valve.
If it is not certain, it is better to dispense with the foot valve and a pre-lubrication of the rising main. In this situation the first impeller should stand under water
during the operation. If the application of foot valve due to water level cannot be avoided, then pressure impact safety must be installed with the non-return
valve.
Refer to (3.2.1, socket-connection is possible only to the pump size 16D)
3.10.2.1
Flow Resistance in Suction Strainer with Foot Valve
If the difference between NPSH required and NPSH available is less, resistance in the suction line is to be considered while frictional losses in suction pipe can
be neglected. If NPSH available is less than NPSH required, cavitation occurs in the pump.
See Figure 20
3.10.3 3.12.3 Suction Pipes
Standard pipes lengths are of 1500 and 3000 mm. However, for adjustment in the exact installation depths, shorter lengths can also be supplied. The diameter
of the suction pipes is designed according to the connection diameter of the pump suction.
The lower end of the suction pipe must be at least 1.0 NW of suction pipe under the lowest water level Ht.
3.10.4 3.12.4 Suction Elbow
For dry installation pumps, special suction elbows according to Figure 21 are available. These shall be mounted axially in the ground plate of the foundation,
which prevents radial shifting of the pump.
To use the suction elbow a pipe length of a least 20D must be provided before the suction elbow, a straight pipe length be tried between the suction elbow and
pump suction. The NPSH available values can be reduced up to 0.5 to 1.0 meters according to design of the intake.
Figure 21: Suction Elbow
Page 3-23 of 71 Revision 02 ; 05-2015
218
Type Series Booklet
B-Pump
3.10.5 Inlet Design of Pump Chamber
The correct design of inlet chamber can improve the performance of the pump considerably. In the Figure 22 few advantageous installation possibilities are
presented. Dirt, sand, etc. must be separated / filtered out before intake of the pump.
Figure 22: Inlet Designs of Pump Chamber
Page 3-24 of 71 Revision 02 ; 05-2015
219
Type Series Booklet
B-Pump
3.11 Protection of the Upper Surface
All steels and casting material, with the exception of non rusting materials, have, if not mentioned specifically, a color coating (paint) according to the material
norms ZN 35.
For mediums which have significant corrosive properties for iron, it is not always possible to use special materials which are corrosion resistant to the pumped
medium due to high costs of the material and manufacturing. The quality of the painting must be specified.
Table 53, Table 54 & Table 55 give general idea of the paints/coating materials.
Bowl Assembly (Standard)
Inside
Outside
Pre-Treatment
Shot Blasting, De Rusting St 2 DIN 12944
Primer
1 Component Alkyd primer Red Oxide, 0.05mm
Top Coat
Black Bitumen 0.08mm
Column Assembly (Standard)
Inside
Pre-Treatment
Rust Protected
Outside
Primer
Top Coat
Black Bitumen 0.08mm
Discharge Head Assembly (Standard)
Inside
Pre-Treatment
Shot Blasting, De Rusting St 2 DIN 12944
Primer
1 Component Alkyd primer Red Oxide, 0.05mm
Outside
Top Coat
I component Alkyd based synthetic
enamel, RAL 5002 (KSB Blue), 0.04mm
Table 53: Upper surface protection with the help of painting materials.
Bowl Assembly (Standard Epoxy)
Inside
Pre-Treatment
Shot Blasting SA 2-1/2, DIN 12944
Outside
Primer
2 Component epoxy resin based zinc paint, red thickness 0.04mm
Top Coat
2 component epoxy resin based coat, black C-200, Thickness 0.3mm
Column Assembly (Standard Epoxy)
Inside
Pre-Treatment
Shot Blasting SA 2-1/2, DIN 12944
Outside
Primer
2 Component epoxy resin based zinc paint, red thickness 0.04mm
Top Coat
2 component epoxy resin based coat, black C-200, Thickness 0.3mm
Discharge Head Assembly (Standard Epoxy)
Inside
Outside
(In contact with medium)
(Not in Contact with medium)
Pre-Treatment
Shot Blasting SA 2-1/2, DIN 12944
Shot Blasting, De Rusting St 2 DIN 12944
Primer
2 Component epoxy resin based zinc
paint, red thickness 0.04mm
1 Component
0.05mm
Top Coat
2 component epoxy resin based coat,
black C-200, Thickness 0.25mm
I component Alkyd based synthetic enamel,
RAL 5002 (KSB Blue), 0.04mm
Alkyd
primer
Red
Oxide,
Table 54: Upper surface protection with the help of painting materials.
Page 3-25 of 71
Revision 02 ; 05-2015
220
Type Series Booklet
B-Pump
Bowl Assembly (Special Epoxy)
Inside
Pre-Treatment
Shot Blasting SA 2-1/2, DIN 12944
Outside
Primer
2 Component epoxy resin based zinc paint, red thickness 0.04mm
Top Coat
2 component epoxy resin based coat, black C-200, Thickness 0.45mm
Column Assembly (Special Epoxy)
Inside
Outside
Pre-Treatment
Shot Blasting SA 2-1/2, DIN 12944
Primer
2 Component epoxy resin based zinc paint, red thickness 0.04mm
Top Coat
2 component epoxy resin based coat, black C-200, Thickness 0.45mm
Discharge Head Assembly (Special Epoxy)
Inside
Outside
(In contact with medium)
(Not in Contact with medium)
Pre-Treatment
Shot Blasting SA 2-1/2, DIN 12944
Shot Blasting, De Rusting St 2 DIN 12944
Primer
2 Component epoxy resin based zinc
paint, red thickness 0.04mm
1 Component Alkyd primer Red Oxide, 0.05mm
Top Coat
2 component epoxy resin based coat,
black C-200, Thickness 0.45mm
I component Alkyd based synthetic enamel,
RAL 5002 (KSB Blue), 0.04mm
Table 55: Upper surface protection with the help of painting materials.
Page 3-26 of 71
Revision 02 ; 05-2015
221
Type Series Booklet
B-Pump
4 Illustrations
4.1 Sectional Views and List of the Individual Parts
4.1.1
Pump Body
211
902
920
545
400
270
107
901
920
112
545
902
920
320
271
106
502
541
531
545
916
400
758
In
case
of
placing an order
for spare parts
the
following
must be given
under
all
circumstances:
Pump
type,
order
number
(see the rating
plate
/
instructions
plate), the name
of the part, parts
number, number
of
pieces,
number of the
sectional view,
instructions
about delivery /
dispatch.
211
902
920
545
400
270
107
901
920
112
545
902
920
320
271
106
502
541
531
545
916
400
758
544
13-17
Figure 23: Bowl Assembly with Flanged Suction Strainer
544
13-17
Figure 24: Bowl Assembly with Threaded Suction Strainer
Page 4-27 of 71 Revision 02 ; 05-2015
222
Type Series Booklet
B-Pump
107
545
569
112
940
541
320
502
545
106
748
Figure 25: Bowl Assembly for B18-B24
Page 4-28 of 71 Revision 02 ; 05-2015
223
Type Series Booklet
B-Pump
4.1.2
Column Pipe
4.1.2.1
Column Pipe with Shaft Enclosing Tube
711
383
Figure 26: Shaft Enclosing Tube Design
529
412
901
920
4.1.2.2
Standard Column Pipe Design with Threaded Execution
711
382
545
529
Figure 27: Threaded Column Pipe
Page 4-29 of 71
Revision 02 ; 05-2015
224
Type Series Booklet
B-Pump
4.1.2.3
Standard Column Pipe Design with Flanged Execution
213
711
545
901
920
383
529
212
711
852
211
Figure 28: Flanged Column Pipe
In case of placing an order for spare parts, the following must be given under all circumstances:
Pump type, order number (see the rating plate / instructions plate on the discharge head), the name of the part, parts number, number of pieces, number of the
sectional view, instructions about delivery / dispatch.
Page 4-30 of 71Revision 02 ; 05-2015
225
Type Series Booklet
B-Pump
4.1.3
Discharge Head
4.1.3.1
Lubrication Arrangement for Shaft Enclosing Tube
OIL
TANK
Figure 29: Lubrication Arrangement for Shaft Enclosing Tube
160
400
412
144
4.1.3.2
568
Motor Stool with Thrust Bearing Arrangement
Figure 30: Motor Stool with Thrust Bearing Arrangement
840
400
320
350
400
4.1.3.3
Discharge Piece for Shaft Enclosing Tube Design
outlet for
lubrication
medium
107
569
714
545
412
Figure 31; Discharge Piece for Shaft Enclosing Tube
Page 4-31 of 71
Revision 02 ; 05-2015
226
Type Series Booklet
B-Pump
4.1.3.4
Stuffing Box Housing
452
452
461
636
451
461
Figure 32: Stuffing Box Housing
458
451
4.1.3.5
Motor Stool with Double Bearing Arrangement
816
860
341
861
924
321
636
320
422
360
350
213
Figure 33: Motor Stool with Double Bearing Arrangement
4.1.3.6
Discharge Head with Solid Shaft and Stuffing Box Housing
341
861
421
160
526
DETAIL - X
452
461
636
451
320
350
461
144
914
x
452
902
920
Y
545
451
451
914
902
920
DETAIL , Y ,
Figure 34: Motor Stool & Discharge Head
Page 4-32 of 71
Revision 02 ; 05-2015
227
Type Series Booklet
B-Pump
In case of placing an order for spare parts the following must be given under all circumstances:
Pump type, order number (see the rating plate / instructions plate on the Discharge head), the name of the part, parts number, number of pieces, number of the
sectional view, instructions about delivery / dispatch.
Type
Discharge Head Dimensions:
a
b
e
f
h
g
NWst
ShaftØ
NWd
VN 1342 A
425
148
210
297
350
75, 100
25, 30, 35
VN 1342
425
148
210
297
350
100, 125
VN 1830
425
148
210
297
350
VN 2030
440
171.5
200
400
VN 2541 A
600
225
290
VN 2541
600
225
VN 3051
700
290
d
Foundation Bolt
Material
100
M 16 x 250mm
Cast Iron
25, 30, 35
125
M 16 x 250mm
Cast Iron
150, 175
25, 30, 35
150
M 16 x 250mm
Cast Iron
370
175, 200
25, 30, 35
200
M 16 x 250mm
Cast Iron
470
430
200
25, 30, 35, 45
200
M 16 x 300mm
Cast Iron
290
470
430
250
30, 35, 45
250
M 16 x 300mm
Cast Iron
305
570
600
200, 250
30, 35, 45
300
M 20 x 250mm
Steel Fabricated
As per Flange Standard
4.1.3.6.1
Table 56: Discharge Head Dimensions
Page 4-33 of 71
Revision 02 ; 05-2015
228
Type Series Booklet
B-Pump
Figure 36: VN 1830
& VN 2030
Figure 35: VN 1342
& VN 1342A
Figure 37: VN 2541 & VN
2541A
Page 4-34 of 71
Revision 02 ; 05-2015
229
Type Series Booklet
B-Pump
Figure 38: VN 3051
Page 4-35 of 71
Revision 02 ; 05-2015
230
Type Series Booklet
B-Pump
5 Spare Parts
When ordering spare parts, always please specify the item numbers, designations of the components concerned, and the works number / serial
number of the pump. This will avoid any delays in delivery and possible queries. The works number of the pump is given on the title page of
instruction manuals, and is also stamped on the pump rating plate.
Following is the recommended spare parts list in accordance with VDMA 24296 (recommended spares).
For a more specific spare parts list, please consult the O&M Manual supplied with each order.
Item No. Designation
Qty.
211
Pump Shaft
1
212
Column Shaft
Z
213
Top Shaft
1
230
Impeller
1
271.1
Sand guard
1
Remarks
271.2
Sand guard
-
320
Angular contact ball bearing
-
321
Deep groove ball bearing
-
382.1
Bearing body
1
384
Thrust bearing disc
1
400.1
Flat gasket
1
400.2
Flat gasket
S
400.3
Flat gasket
1
400.4
Flat gasket
2
400.5
Flat gasket
1
412.1
O-ring
1
422.1
Felt ring
-
422.2
Felt ring
-
461
Stuffing box packing (in meters) -
502
Casing wear ring
S
521
Stages sleeve
S-1
Only from size 14 upwards.
524
Shaft protecting sleeve
1
If fitted.
526
Centering sleeve
-
529
Bearing sleeve
1
540
Bush
1
541
Stage bush
S-1
Not applicable to sizes 6-7-14 and above.
52-1
Clamping sleeve complete
S
Upto size 12 inclusive.
544
Threaded bush
1
545.1
Bearing bush
1
545.2
Bearing bush / rubber
S
545.3
Bearing bush
1
851
Cone coupling
-
852
Screwed coupling
Z+1
920.1
Nut with 2 flats
-
Only from size 14 and upward.
931.1
Tab washer
-
Only from size 14 and upward.
931.2
Tab washer
-
Page 5-36 of 71
Revision 02 ; 05-2015
231
Type Series Booklet
B-Pump
6 Sample Sectional Drawing with Parts List
Figure 39: Sectional Drawing with Parts List
Page 6-37 of 71
Revision 02 ; 05-2015
232
233
CATALOGO DE REDUCTOR
Cristian Corvalan
Alvaro Reyes
N/A
N/A
N/A
Ingeniero de Proyectos
Administrador de
Proyectos
Producción
Servicios
Despachos
234
235
T.M.
AmarillctGear Company LLC
SELECTION OF THE PROPER DRIVE
MODEL DESIGNATION: The model number designates the basic horsepower rating at 1760 RPM pump speed. The number is preceded
by one ofthe following letter designations to define the type of drive:
SL Standard Hollow Shaft Drive with Opposed Thrust Capacity
S Standard Hollow Shaft Drive with Standard Thrust Capacity
SH Standard Hollow Shaft Drive with Heavy Thrust Capacity
EFFICIENCY: Through the use of high quality gears and bearings, transmission efficiency ranges from 94% to 98% varying with speed,
horsepower and thrust. Actual efficiency values will be fum ished upon request.
GEARS: All drives are furnished with spiral bevel gears, designed in accordance with AGMA (American Gear Manufacturers
Association) standards for both strength and surface durability, employing a minimum service factor of 1.50 at rated horsepower.
RATIO SELECTION- SEE PRICE LIST FOR RATIO AVAILABILITY
(Speeds shown are for nominal ratios. Actual ratios may vary by up to 3%)
VERTICAL
SHAFT
RPM
SPEED INCREASERS- RATIO AND INPUT SPEED
1:1
720
870
960
1160
1460
1760
3460
720
870
960
1160
1460
1760
3460
VERTICAL
SHAFT
RPM
10:11
655
791
873
1055
1327
1600
3145
5:6
600
725
800
967
1217
1467
2883
3:4
540
653
720
870
1095
1320
2595
2:3
480
580
640
773
973
1173
2307
4:7
411
497
549
663
834
1006
1977
1:2
360
435
480
580
730
880
1730
SPEED DECREASERS - RATIO AND INPUT SPEED
11:10
792
957
1056
1276
1606
1936
720
870
960
1160
1460
1760
6:5
864
1044
1152
1392
1752
2112
5:4
900
1088
1200
1450
1825
2200
4:3
960
1160
1280
1547
1947
2347
3:2
1080
1305
1440
1740
2190
2640
7:4
1260
1523
1680
2030
2555
3080
2:1
1440
1740
1920
2320
2920
3520
5:2
1800
2175
2400
2900
3650
--
3:1
2160
2610
2880
3480
-
-
HORSEPOWER AND THRUST RATINGS
Vertical
Shaft
H.P.
MODEL
Speed Rating
(RPM}
30
40
60A
BOA
100A
125A
150A
200A
1160
1460
1760
1160
1460
1760
960
1160
1460
1760
960
1160
1460
1760
960
1160
1460
1760
960
1160
1460
1760
720
960
1160
1460
1760
720
960
1160
1460
1760
22
26
30
30
35
40
39
45
53
60
52
60
70
80
65
75
88
100
82
93
110
125
80
98
112
132
150
108
130
150
176
200
DOWNTHRUST CAPACITY
IN POUNDS
TypeSL
Min. Max.
0
978
0
901
0
850
0 1495
0 1378
0 1300
0 2074
0 1955
0 1802
0 1700
0 3904
0 3680
0 3392
0 3200
0 3904
0 3680
0 3392
0 3200
0 5002
0 4715
0 4346
0 4100
0 6750
0 6100
0 5750
0 5300
0 5000
0 6750
0 6100
0 5750
0 5300
0 5000
TypeS
Min. Max.
797 2358
759 2173
700 2050
1138 4600
1055 4240
1000 4000
1490 6222
1422 5865
1331 5406
1250 5100
2085 7564
1991 7130
1846 6572
1750 6200
2085 7564
1991 7130
1856 6572
1750 6200
2673 8174
2567 7705
2387 7102
2250 6700
3564 11070
3234 10004
3086 9430
2864 8692
2700 8200
3564 12150
3218 10980
3072 10350
2864 9540
2700 9000
TypeSH
Min. Max.
797 3680
759 3392
700 3200
1138 6900
1055 6360
1000 6000
1490 8540
1422 8050
1331 7420
1250 7000
2085 11224
1991 10580
1846 9752
1750 9200
2085 11224
1991 10580
1856 9752
1750 9200
2673 12688
2567 11960
2387 11024
2250 10400
3564 17010
3234 15372
3086 14490
2864 13356
2700 12600
3564 18225
3218 16470
3072 15525
2864 14310
2700 13500
MODEL
250
300
350
450A
500A
600A
750A
1000G
Vertical
Shaft
Speed
(RPM)
720
960
1160
1460
1760
720
960
1160
1460
1760
720
960
1160
1480
1760
720
960
1160
1460
1760
720
960
1180
1460
1760
720
960
1160
1460
1760
720
870
960
1160
1460
1760
720
870
960
1160
1480
1760
H.P.
Rating
DOWNTHRUSTCAPACITY
IN POUNDS
TypeSL
Min. MIX.
134
164
167
219
250
162
195
225
264
300
187
229
261
307
350
241
294
338
395
450
267
327
373
439
500
321
393
448
526
600
401
458
491
560
658
750
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
535
611
654
747
877
1000
0
0
0
0
0
0
8100
7320
8900
6360
6000
8100
7320
8900
6360
6000
10800
9760
9200
6480
6000
10800
10080
9760
9200
8480
8000
10800
10080
9760
9200
8480
8000
TypeS
Min.
1111:.
5000
17500
15860
14950
13780
13000
17550
15880
14950
13780
13000
17550
15860
14950
13780
13000
25650
23180
21850
20140
19000
28350
25620
24150
22260
21000
36450
32940
31050
28620
27000
36450
34020
32940
31050
28620
27000
6600
6177
5964
5695
5304
5000
36450
34020
32940
31050
28620
27000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4631
4175
3979
3713
3500
5544
5005
4779
4455
4200
5940
5363
5121
4774
4500
6600
8177
5964
5895
5304
TypeSH
Min.
IIIli:.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4631
4175
3979
3713
3500
5544
5005
4779
4455
4200
5940
5363
5121
4774
4500
6600
8177
5964
5965
5304
5000
6600
6177
5964
5695
5304
5000
22275
20130
16975
17490
16500
22275
20130
18975
17490
16500
22275
20130
18975
17490
16500
33750
30500
28750
26500
25000
36450
32940
31050
28620
27000
43200
39040
36800
33920
32000
45225
42210
40870
38525
35510
33500
45225
42210
40870
38525
35510
33500 236
T.M
4-" XC" TAPPED HOLES
f
Amarillo'"Gear Company LLC
STANDARD
COUPLING DIMENSIONS (INCH)
GIBKEYWAY
DEEP IN BASE FLANGE
NOM·
INAL
ACTUAL
314
.751
~
~
NON-REVERSE COUPLING
1/a
.876
1
1.001
P/16
1 1/4
1.188
AG
~0
1.251
1.438
30 6~ 2% 1~
40A 812 4% 112
408 812 4% 112
60A 11}2 4~ 112
BOA 11Y2 4~ 1¥8
100A 11Y2 4~ 1¥8
125A 11}2 4~ 1¥8
150A 1112 412
200A
250
• 300
• 350
13% 5~
13% 5~
13% 5~
13% 5~
450A 16 6
500A 16 6
600A 16 6
750A 18 6
1000G
21
8
TypeS
AG
CD
AG
-
13/4
9132
13/4
9132
1/4 -20
1/4 -20
1/4 -20
13/4
2 1/s
9132
2 1/s
2 1/2
9
2 1/2
2 1/2
9 /32
9 /32
3fs -16
2 1/2
3 1/4
3fs -16
3/s -16
3 1/4
3 1/4
9132
3 1/4
3 3/4
9132
3 3/4
3 3/4
9132
xw
BX
MAX.
3/sX 3/15
3fsx 3h6
2
2.001
2 3 !,6
2.188
1/2 X 1/4
1/2 X 1/4
1/2 X 1/4
2.251
1/2 X 1/4
1.938
21 1116
3/4
21 5116
1/4 -20
1/4 -20
1/4 -20
3fsx 3h6
3fs X 3/,6
1/4 -20
2.438
5fa X
5/16
2.501
5/s
X
5/16
3/s
2.688
5
/s X
5/16
3fs -16
2.751
5
/s x 5/15
3/4 X 3/s
3fs -16
2.938
-16
3fs -16
29%
29%
31 }{,
355As
AK
BB
BD
XA
XB
XC
XD
XE
XF
XG
~s
10:V.
-
%
%
SAs
15%
-
1SA
~s
1%
1%
2
2
2
Y2
Y2
Y2 134
Y2 134
%
%
%
% 1%
% 1%
% 1%
% 1%
% 1%
BE
BF
"As 10 %
34 12 "'As
XH
XJ
XK
XV
CD
1.249 SAs x%2 1634 13% 1634 13% 1734 14% 9}{,
1.499 %xo/18 21% 18 21% 18 23 1934 9}{,
1.499 %xo/18 21% 18 21% 18 23 1934 14'!<0
1.499 %xo/18 28 235As 28 23SAs 2934 24'¥1s 14'!<0
1.874 %x"As 29)4 24'¥1s 28 23SAs 29% 24 1J!is 14'!<0
1.874 %x 31is 29)4 24'¥1s 28 23SAs
1.874 %x"As 2934 24'¥1s 2934 24'¥1s
2~6 2.436 %x SAs 29% 25}{, 29% 25M.
2~6 2.436 %x o/18 34% 30"118 34 1J!is 30"118
34 1¥18 30 31i
21!jl\e 2.936 %x% ..
1
..
..
2 !jl\e 2.936 'l4x%
34 1¥18 30 31i
.. 34 1¥18 30'¥1
21!jl\e 2.936 %x% ..
21!jl\e 2.936 %x% 42:V. 36:V. 4334 38
9132
TypeSH
AJ
CD
9132
13/a
1.751
TABLE OF DIMENSIONS STANDARD DRIVE (INCH)
TypeSL
13/a
10-32
1/4 -20
1/4 -20
1%
115!,6
2
Horizontal Shaft U
10-32
1/4X 1/a
1/4X 1/a
1.688
MODEL 250 & SMALLER
Nom·
Actual Keyway AG
ina I
9 /32
111!,6
2 h6
2 112
N
XL
13/a
1.501
7
D
BZ
10-32
17116
1 1h
2 1/4
Model
BY
3/16X 3/32
1/4X 1/a
1/4X 1/s
3/sX 3/15
1.251
1 1/4
GIB
KEYWAY
8.250
8.250
13.500 34 16Y2 "'As
13.500 34 16}2 %
13.500 34 16Y2 %
24 1J!is 14'!<0 13.500 34 16Y2 %
24 1J!is 14'!<0 13.500 34 16}2 %
26 14'!<0 13.500 34 16}2 %
3()13/18 1834 13.500 34 20 1M.
31"'As 1834 13.500 34 20 1M.
365As
365As 31"'118 1834 13.500 34 20
365As 3113/is 1834 13.500 34 20
45% 3834 23 13.500 34 2411
3la 3.124 'l4x% 42M 36:V. 4334 38 45% 3834 23 13.500 34 2411
3~ 3.749 :V.x ~s 42:V. 36:V. 4334 38 45% 3834 23 13.500 34 2411
42
50 42o/1s 23 13.500 34 24¥.
3% 3.749 :V.x ~. 48 41% 50
4 3.998 1xY2 62 )' 50 34 6234 50 34 6234 5034 28% 22.000 34 3011
'J!is 15%
'J!is 16%
'J!is 16%
'J!is 16%
'J!is
'J!is
'J!is
'J!is
16%
2
%
234
18%
20% 14'!<0 %-11-NC 3
22% 14')<0 %-11-NC 3
'J!is 22% 14')<0 %-11-NC 3
'J!is 22% 14'!<0 %-11-NC 3
131is +25}2 14'!<0 %-11-NC 3
131is +25}2 14'!<0 %-11-NC 3
131is +25¥. 14'!<0 %-11-NC 3
131is +26"A 14'!<0 %-11-NC 3
%
1 34 '"As 36:V. 26 "A-10-NC 3%
%
1M.
1}{,
1}{,
1}{,
1}{,
1}{,
%
%
%
%
%
%
%
1
9132
/32
9 /32
9 /32
9132
9132
9132
7116
**
.. ..
1
2 234 % 0 6% 1 34
2 234 % 0 6% 1 34
3 2 % 3¥a 434 1}2
3 2 % 3:V. 434 1}2
3 2 % 3:V. 434 1}2
3 2 % 3:V. 434 1}2
- - -
3 2
% 2M. 4Y2 2%
% 2M. 4Y2 2%
% 2M. 4Y2 2%
% 2M. 4Y2 2%
% 1"'As 4Y2 2%
% 1"'As 4Y2 2%
% 1"'118 4Y2 2%
1 1"'118 6 2:V.
% 25As 634 3%
% 3:V. 434 1 1J!is
2
Y2 5 5
Y2 5 5 2"As
.. .. ..
2"As
2 "As
% 7% 7%
% 7% 7%
2~s
% 7% 7%
"A 834 834
2~s
%
8
2~s
2~s
8Y2 2 15As
t"XA" dimensions shown apply to 1:1 and speed increasing ratios only. Request certified drawing for others.
*Models 300 and 350 furnished with external heat exchanger.
**Contact factory for maximum coupling bore for Fig. 2 or Fig. 3 rotation with 1:2 or 1:3 ratio.
RATIOS AND ROTATIONS: The ratio of a drive is defined as the ratio of the horizontal input speed to vertical output speed. For example, a 2:1 ratio would have a
horizontal speed of twice the vertical speed. There are four rotational schemes available as shown in figures 1, 2, 3, and 4. Figure 1 is denoted as standard rotation.
Figures 2, 3, and 4 are special rotation, being manufactured only on order, and are not subject to cancellation without charge for completed parts.
HORSEPOWER AND THRUST BEARING RATINGS
JIF'
HORIZONTAL • CW
VERTICAL • CCW
HORIZONTAL • CCW
VERTICAL • CCW
HORIZONTAL· CCW
VERTICAL • CW
CW - Clockwise; CCW - Counterclockwise.
Vertical Shaft
R.P.M.
Percent of
Rated Horsepower
Percent of
Thrust Capacity
Vertical Shaft
R.P.M.
Percent of
Ratad Horsepower
Percent of
Thrust Capacity
430
37%
160%
*2000
107%
96%
580
46%
145%
*2200
112%
93%
690
52%
137%
*2400
117%
90%
720
53%
135%
*2600
122%
88%
870
61%
126%
*2800
128%
86%
960
65%
122%
*3000
134%
84%
1160
75%
115%
*3460
146%
80%
1460
88%
106%
*3600
150%
79%
1760
100%
100%
* Cooling coils should be specified for models 40, 60A, and BOA operating at speeds
above 1760 rpm. Consult with the factory on all applications when the vertical speeds
exceed 1760 rpm. Maximum allowable cooling water pressure for cooling coils is 100 psi
237
and heat exchanger is 150 psi.
An Introduction To Our Company
In 1934, Amarillo Gear Company began designing and manufacturing Spiral Bevel Right Angle Gear Drives primarily for the
irrigation industry. Because of the reliable, efficient and economic operation of these drives, they met with widespread acceptance.
Today, we manufacture the largest selections of RightAngle Gear Drives available. Our standard models include a large assortment of drives in a wide range of ratios and various configurations. They are highly adaptable to many applications in many
different industries.
One reason for the continued growth and acceptance of Amarillo Gear Drives is their consistent quality- not only in the
materials used, but in their workmanship as well.
We would welcome the opportunity to supply our product for your requirements.
FEATURES:
Cooling coils are available on Models 40, 60A, and BOA, at additional cost. and are standard on Model1 OOA and above. Non-reverse
clutches are standard on all drives. Marine options are available upon request.
Our rigid castings are designed to insure correct alignment. Gears are case hardened alloy steel, lapped in pairs. All drives
have positive oil pressure distribution systems. All bearings used in construction are name brand and high quality, with
proven reputations for reliability; providing bearing life exceeding AGMA recommendations.
~All standard hollow shaft gear drives through Model1200 are approved by FACTORY MUTUAL for use with vertical
~fire pumps.
APPROY~D
SPECIAL DRIVES
Drives listed in this catalog may also be available with additional options. Please contact the factory for availability and pricing
of these options. For applications that require power ratings larger than listed in this catalog, please visit our website at
www.amarillogear.com, under the tabs for Large Pump and Large Flood. Literature for these larger models can be selected
directly from the website.
Amarillo Gear Company reserves the right to make improvement modifications to our gear drives that may change the given dimensions. The dimensions
shown in this brochure may not exactly reflect the dimensions of the gear drives currently being offered. Request a Certified Dimensional Print for
construction use.
WEIGHTS AND BOX DIMENSIONS
MODEL
30
40A
408
BOA
BOA
100A 125A
150A
200A
250 300 350
450A
500A
600A
750A
1000G
NET
DOMESTIC
WEIGHT (lbs.) SKID (lbs)
110
92
220
240
230
260
325
350
345
370
385
390
430
450
630
675
760
805
1340
1420
1370
1450
1365
1465
1800
1890
2650
3055
EXPORT BOX
Kilograms
Pounds
125
57
275
125
310
141
390
177
410
186
430
195
505
229
810
368
900
408
1620
735
748
1650
1665
755
2165
962
3310
1501
EXPORT BOX
Length
22
27
29
29
29
29
31
35
36
44
44
44
45
56
DIMENSIOI S
Width
14
15
18
19
19
19
19
24
24
32
32
32
32
37
(Inches)
Height
21
27
27
34
34
34
38
42
40
52
52
52
57
74
VOLUME
CUBIC FEET
4
6
8
11
11
11
12
20
21
42
42
42
48
92
To view Amarillo's complete warranty terms, please visit www.amarillogear.com
T.M
Catalog PD 1/14
Amari lid~ Gear Company LLC
Post Office Box 1789 • Amarillo, Tx 79105 • 2401 Sundown Lane (79118) • 806-622-1273 • Fax 806-622-3258
www.amarillogear.com
e-mail: [email protected]
© AGC 2014
DJ
I II. A Marmon Water/Berkshire Hathaway Company
238
GUIA DE DESPACHO
Cristian Corvalan
Alvaro Reyes
N/A
N/A
N/A
Ingeniero de Proyectos
Administrador de
Proyectos
Producción
Servicios
Despachos
239
240
09-10-2018
Confirmación de Asignación de Turno
CONFIRMACIÓN DE ASIGNACION DE TURNO
Este documento confirma los datos entregados por usted a nuestro CallCenter para la asignación de turno
de Recepción para los Centros de Operaciones de LINSA, en el caso de existir alguna diferencia con los datos
reales le rogamos informarnos al correo [email protected]
NÚMERO TURNO DE RETIRO
: 0000444077
FECHA DE REQUERIMIENTO
: 16/10/2018 AM
Fecha de Retiro será confirmada
Sucursal : CLS SANTIAGO - CODELCO Retiro(CLS)
DETALLE DE LA ENTREGA :
Nombre Cliente (Destino)
: CODELCO-Corp Nacional Del Cobre De Chile
Solicitud Transporte
:
Proveedor
: KSB CHILE S.A.
Número de la Orden de Compra
: 4400181308
Cantidad de Items a Entregar
: 2
Peso total de la Carga
: 1981
Cantidad de Pallets
:
Cantidad de Cajas
:
Cantidad de Bultos
: 6
Cantidad de Cajones
: 6
Requiere Equipo Adicional
:
Tipo de Vehículo
:
Largo
: 5.12
Ancho
: 1.27
Alto
: 1.35
Peso
: 1981
INFORMACIÓN DEL TRANSPORTISTA Y CONTACTO :
Empresa de Transporte
:
Patente del Vehículo
:
Nombre del Conductor
:
Fono del Conductor
:
Situación del Conductor
:
Nombre Persona que Agenda y
Empresa a la que Pertenece
:
http://bd.linsa.cl/Linsa/agenda/index.php?pagina=AgendarRetiro
LOGISTICA LINSA S.A.
Mario Tejeda - ( Logistica Linsa S.a. )
241
1/2
09-10-2018
Confirmación de Asignación de Turno
Fonos del Contacto
:
226775420
Correo electrónico
:
[email protected]
Favor adjuntar esta confirmación a la documentación de entrega de mercaderías (Copia Impresa de
la Orden de Compra, Guías de Despacho).
Pueden producirse demoras en la recepción relacionadas con la Operación de nuestros Centros.
"Estimado proveedor:
Como recomendación de seguridad, indicamos que toda carga que supere los 10 kg. sea
embalada en cajones de madera u otro material resistente y que además contenga espacios en su parte baja,
para facilitar su manipulación con equipos de grúa horquillas".
No Responda este Correo.
http://bd.linsa.cl/Linsa/agenda/index.php?pagina=AgendarRetiro
242
2/2
243
244
09-11-2018
Confirmación de Asignación de Turno
CONFIRMACIÓN DE ASIGNACION DE TURNO
Este documento confirma los datos entregados por usted a nuestro CallCenter para la asignación de turno
de Recepción para los Centros de Operaciones de LINSA, en el caso de existir alguna diferencia con los datos
reales le rogamos informarnos al correo [email protected]
NÚMERO TURNO DE RETIRO
: 0000448900
FECHA DE REQUERIMIENTO
: 13/11/2018 AM
Fecha de Retiro será confirmada
Sucursal : CLS SANTIAGO - CODELCO Retiro(CLS)
DETALLE DE LA ENTREGA :
Nombre Cliente (Destino)
: CODELCO-Corp Nacional Del Cobre De Chile
Solicitud Transporte
:
Proveedor
: KSB CHILE S.A.
Número de la Orden de Compra
: 4400181308
Cantidad de Items a Entregar
: 1
Peso total de la Carga
: 1750
Cantidad de Pallets
: 0
Cantidad de Cajas
: 0
Cantidad de Bultos
: 4
Cantidad de Cajones
: 4
Requiere Equipo Adicional
:
Tipo de Vehículo
:
Largo
: 5
Ancho
: 1.24
Alto
: 1.5
Peso
: 1750
INFORMACIÓN DEL TRANSPORTISTA Y CONTACTO :
Empresa de Transporte
:
Patente del Vehículo
:
Nombre del Conductor
:
Fono del Conductor
:
Situación del Conductor
:
Nombre Persona que Agenda y
Empresa a la que Pertenece
:
http://bd.linsa.cl/Linsa/agenda/index.php?pagina=AgendarRetiro
LOGISTICA LINSA S.A.
Mario Tejeda - ( Logistica Linsa S.a. )
245
1/2
09-11-2018
Confirmación de Asignación de Turno
Fonos del Contacto
:
226775420
Correo electrónico
:
[email protected]
Favor adjuntar esta confirmación a la documentación de entrega de mercaderías (Copia Impresa de
la Orden de Compra, Guías de Despacho).
Pueden producirse demoras en la recepción relacionadas con la Operación de nuestros Centros.
"Estimado proveedor:
Como recomendación de seguridad, indicamos que toda carga que supere los 10 kg. sea
embalada en cajones de madera u otro material resistente y que además contenga espacios en su parte baja,
para facilitar su manipulación con equipos de grúa horquillas".
No Responda este Correo.
http://bd.linsa.cl/Linsa/agenda/index.php?pagina=AgendarRetiro
246
2/2
Descargar