Subido por Nelly Santiago

EJERCICIOS PAGINA 44 CALCULO

Anuncio
UNIVERSIDAD DE CIENCIAS Y ADMINISTRACIÓN
Ejercicio 9.
𝒚 = 𝟑𝒙𝟒 − 𝟐𝒙𝟐 + 𝟖
Solución
Formulas a utilizar:
𝑑
(𝑐𝑥 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑥 𝑛−1
𝑑𝑥
𝑑
(𝑐) = 0
𝑑𝑥
𝑑𝑦
𝑑
(3𝑥 4 − 2𝑥 2 + 8)
=
𝑑𝑥 𝑑𝑥
Aplicando la deriva de cada elemento de la función
𝑑
𝑑
𝑑
(3𝑥 4 ) −
(2𝑥 2 ) +
(8) = 4 ∙ 3𝑥 4−1 − 2 ∙ 2𝑥 2−1 + 0
𝑑𝑥
𝑑𝑥
𝑑𝑥
𝑑
𝑑
𝑑
(3𝑥 4 ) −
(2𝑥 2 ) +
(8) = 12𝑥 3 − 4𝑥
𝑑𝑥
𝑑𝑥
𝑑𝑥
∴
𝑑
(3𝑥 4 − 2𝑥 2 + 8) = 12𝑥 3 − 4𝑥
𝑑𝑥
Ejercicio 10.
𝒚 = 𝟒 + 𝟑𝒙 − 𝟐𝒙𝟑
Solución
Formulas a utilizar:
𝑑
(𝑐𝑥 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑥 𝑛−1
𝑑𝑥
𝑑
(𝑐) = 0
𝑑𝑥
𝑑𝑦
𝑑
(4 + 3𝑥 − 2𝑥 3 )
=
𝑑𝑥 𝑑𝑥
Aplicando la deriva de cada elemento de la función
2
𝑑
𝑑
𝑑
(4) +
(3𝑥) −
(2𝑥 3 ) = 0 + 3 − 3 ∙ 2𝑥 3−1
𝑑𝑥
𝑑𝑥
𝑑𝑥
Aplicando la derivación de cada función
𝑑
𝑑
𝑑
(4) +
(3𝑥) −
(2𝑥 3 ) = 3 − 6𝑥 2
𝑑𝑥
𝑑𝑥
𝑑𝑥
∴
𝑑
(4 + 3𝑥 − 2𝑥 3 ) = 3 − 6𝑥 2
𝑑𝑥
Ejercicio 11.
𝑠 = 𝑎𝑡 5 − 5𝑏𝑡 3
Solución
𝑑𝑠
𝑑
= (𝑎𝑡 5 − 5𝑏𝑡 3 )
𝑑𝑡 𝑑𝑡
Formulas a utilizar:
𝑑
(𝑐𝑡 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑡 𝑛−1
𝑑𝑡
Aplicando la deriva de cada elemento de la función
𝑑
𝑑
(𝑎𝑡 5 ) − (5𝑏𝑡 3 ) = 5 ∙ 𝑎𝑡 5−1 − 3 ∙ 5𝑏𝑡 3−1
𝑑𝑡
𝑑𝑡
∴
𝑑
𝑑
𝑑
(𝑎𝑡 5 ) − (5𝑏𝑡 3 ) = (𝑎𝑡 5 − 5𝑏𝑡 3 ) = 5𝑎𝑡 4 − 15𝑏𝑡 2
𝑑𝑡
𝑑𝑡
𝑑𝑡
Ejercicio 12.
𝑦=
𝑧2 𝑧7
−
2
7
Solución
𝑑𝑦
𝑑 𝑧2 𝑧7
=
( − )
𝑑𝑧 𝑑𝑧 2
7
Formulas a utilizar:
𝑑
(𝑐𝑧 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑧 𝑛−1
𝑑𝑧
Aplicando la deriva de cada elemento de la función
3
𝑑𝑦
𝑑 𝑧2 𝑧7
𝑑 𝑧2
𝑑 𝑧7
=
( − )=
( )− ( )
𝑑𝑧 𝑑𝑧 2
7
𝑑𝑧 2
𝑑𝑧 7
𝑑 𝑧2
𝑑 𝑧7
𝑧 2−1
𝑧 7−1
−7∙
( )− ( )= 2∙
𝑑𝑧 2
𝑑𝑧 7
2
7
𝑑 𝑧2
𝑑 𝑧7
𝑧
𝑧6
−
=
2
∙
−
7
∙
( )
( )
𝑑𝑧 2
𝑑𝑧 7
2
7
𝑑 𝑧2
𝑑 𝑧7
( ) − ( ) = 𝑧 − 𝑧6
𝑑𝑧 2
𝑑𝑧 7
∴
𝑑 𝑧2 𝑧7
( − ) = 𝑧 − 𝑧6
𝑑𝑧 2
7
Ejercicio 13.
𝒚 = √𝒗
Solución
Formulas a utilizar:
𝑑
(𝑐𝑥 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑥 𝑛−1
𝑑𝑥
𝑑𝑦
𝑑
=
(√𝒗)
𝑑𝑥 𝑑𝑥
1
𝑑
𝑑
(𝑣 2 )
(√𝒗) =
𝑑𝑥
𝑑𝑥
1
𝑑
1 1 𝑑𝑣
(𝑣 2 ) = 𝑥 2−1
𝑑𝑥
2
𝑑𝑥
1
𝑑
1 1 𝑑𝑣
(𝑣 2 ) = 𝑣 −2
𝑑𝑥
2
𝑑𝑥
𝑑𝑦
𝑑
1 1 𝑑𝑣 1 1 𝑑𝑣
=
=
(√𝒗) = 𝑣 −2
𝑑𝑥 𝑑𝑥
2
𝑑𝑥 2 2√𝑣 𝑑𝑥
∴
𝑑
1 1 𝑑𝑣
(√𝒗) = 2
𝑑𝑥
2 √𝑣 𝑑𝑥
Ejercicio 14.
4
𝑦=
2 3
−
𝑥 𝑥2
Solución
𝑑𝑦
𝑑 2 3
=
( − )
𝑑𝑥 𝑑𝑧 𝑥 𝑥 2
Formulas a utilizar:
𝑑
(𝑐𝑥 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑥 𝑛−1
𝑑𝑥
Aplicando la deriva de cada elemento de la función
𝑑𝑦
𝑑 2 3
𝑑 2
𝑑 3
=
( − 2) =
( )−
( )
𝑑𝑥 𝑑𝑥 𝑥 𝑥
𝑑𝑥 𝑥
𝑑𝑥 𝑥 2
𝑑 2
𝑑 3
𝑑
𝑑
(2𝑥 −1 ) − (3𝑥 −2 )
( )−
( 2) =
𝑑𝑥 𝑥
𝑑𝑥 𝑥
𝑑𝑥
𝑑𝑧
𝑑 2
𝑑 3
( )−
( ) = (−1)(2)𝑥 −1−1 − (−2)(3)𝑥 −2−1
𝑑𝑥 𝑥
𝑑𝑥 𝑥 2
𝑑 2
𝑑 3
( )−
( ) = −2𝑥 −2 + 6𝑥 −3
𝑑𝑥 𝑥
𝑑𝑥 𝑥 2
𝑑 2
𝑑 3
2
6
( )−
( 2) = − 2 + 3
𝑑𝑥 𝑥
𝑑𝑥 𝑥
𝑥
𝑥
∴
𝑑𝑦
𝑑 2 3
2
6
=
( − 2) = − 2 + 3
𝑑𝑥 𝑑𝑥 𝑥 𝑥
𝑥
𝑥
Ejercicio 15.
4
2
𝑠 = 2𝑡 3 − 3𝑡 3
Solución
4
2
𝑑𝑠
𝑑
= (2𝑡 3 − 3𝑡 3 )
𝑑𝑡 𝑑𝑡
Formulas a utilizar:
𝑑
(𝑐𝑡 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑡 𝑛−1
𝑑𝑡
Aplicando la deriva de cada elemento de la función
4
2
4
2
𝑑
𝑑
4
2
(2𝑡 3 ) − (3𝑡 3 ) = ∙ 2𝑡 3−1 − ∙ 3𝑡 3−1
𝑑𝑡
𝑑𝑡
3
3
4
2
1
𝑑
𝑑
8 1
(2𝑡 3 ) − (3𝑡 3 ) = ∙ 𝑡 3 − 2𝑡 −3
𝑑𝑡
𝑑𝑡
3
5
∴
4
2
4
2
𝑑𝑠
𝑑
𝑑
𝑑
83
2
= (2𝑡 3 − 3𝑡 3 ) = (2𝑡 3 ) − (3𝑡 3 ) = √𝑡 − 3
𝑑𝑡 𝑑𝑡
𝑑𝑡
𝑑𝑡
3
√𝑡
Ejercicio 16.
3
1
𝑦 = 2𝑥 4 + 4𝑥 −4
Solución
3
1
𝑑𝑦
𝑑
=
(2𝑥 4 + 4𝑥 −4 )
𝑑𝑥 𝑑𝑥
Formulas a utilizar:
𝑑
(𝑐𝑥 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑥 𝑛−1
𝑑𝑥
Aplicando la deriva de cada elemento de la función
3
1
3
1
𝑑
𝑑
3
1
(2𝑥 4 ) +
(4𝑥 −4 ) = ∙ 2𝑥 4−1 − ∙ 4𝑥 −4−1
𝑑𝑥
𝑑𝑥
4
4
3
1
5
𝑑
𝑑
3 1
(2𝑥 4 ) +
(4𝑥 −4 ) = 𝑥 −4 − 𝑥 −4
𝑑𝑥
𝑑𝑥
2
∴
3
1
3
1
𝑑𝑦
𝑑
𝑑
𝑑
3
1
=
(2𝑥 4 + 4𝑥 −4 ) =
(2𝑥 4 ) +
(4𝑥 −4 ) = 4 − 4
𝑑𝑥 𝑑𝑥
𝑑𝑥
𝑑𝑥
2 √𝑥 √𝑥 5
Ejercicio 17.
2
2
𝑦 = 𝑥 3 − 𝑎3
Solución
2
2
𝑑𝑦
𝑑
=
(𝑥 3 − 𝑎3 )
𝑑𝑥 𝑑𝑥
Formulas a utilizar:
𝑑
(𝑐𝑥 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑥 𝑛−1
𝑑𝑥
𝑑𝑣 𝑑𝑐
=
=0
𝑑𝑥 𝑑𝑥
Aplicando la deriva de cada elemento de la función
6
2
2
𝑑
𝑑
2 2
(𝑥 3 ) −
(𝑎3 ) = 𝑥 3−1 − 0
𝑑𝑥
𝑑𝑥
3
2
2
𝑑
𝑑
2 1
(𝑥 3 ) −
(𝑎3 ) = 𝑥 −3
𝑑𝑥
𝑑𝑥
3
∴
2
2
2
2
𝑑𝑦
𝑑
𝑑
𝑑
2
=
(𝑥 3 − 𝑎3 ) =
(𝑥 3 ) −
(𝑎3 ) = 3
𝑑𝑥 𝑑𝑥
𝑑𝑥
𝑑𝑥
3 √𝑥
Ejercicio 18
𝑎 + 𝑏𝑥 + 𝑐𝑥 2
𝑦=
𝑥
Solución
𝑑𝑦
𝑑 𝑎 + 𝑏𝑥 + 𝑐𝑥 2
=
(
)
𝑑𝑥 𝑑𝑥
𝑥
Formulas a utilizar:
𝑑
(𝑐𝑥 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑥 𝑛−1
𝑑𝑥
Aplicando la deriva de cada elemento de la función
𝑑𝑦
𝑑 𝑎 + 𝑏𝑥 + 𝑐𝑥 2
𝑑 𝑎
𝑑 𝑏𝑥
𝑑 𝑐𝑥 2
=
( )+
( )+
(
)=
(
)
𝑑𝑥 𝑑𝑥
𝑥
𝑑𝑥 𝑥
𝑑𝑥 𝑥
𝑑𝑥 𝑥
𝑑 𝑎
𝑑 𝑏𝑥
𝑑 𝑐𝑥 2
𝑑
𝑑
(𝑏) + 𝑐 (𝑥)
( )+
( )+
(
) = −𝑎𝑥 −1−1 +
𝑑𝑥 𝑥
𝑑𝑥 𝑥
𝑑𝑥 𝑥
𝑑𝑥
𝑑𝑥
𝑑 𝑎
𝑑 𝑏𝑥
𝑑 𝑐𝑥 2
( )+
( )+
(
) = −𝑎𝑥 −2 + 𝑐
𝑑𝑥 𝑥
𝑑𝑥 𝑥
𝑑𝑥 𝑥
∴
𝑑𝑦
𝑑 𝑎 + 𝑏𝑥 + 𝑐𝑥 2
𝑑 𝑎
𝑑 𝑏𝑥
𝑑 𝑐𝑥 2
𝑎
=
( )+
( )+
(
)=
(
)=𝑐− 2
𝑑𝑥 𝑑𝑥
𝑥
𝑑𝑥 𝑥
𝑑𝑥 𝑥
𝑑𝑥 𝑥
𝑥
Ejercicio 19.
𝒚=
√𝒙 𝟐
−
𝟐 √𝒙
Solución
𝑑𝑦
𝑑 √𝑥
2
=
( − )
𝑑𝑥 𝑑𝑥 2
√𝑥
Formulas a utilizar:
7
𝑑
(𝑐𝑥 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑥 𝑛−1
𝑑𝑥
Aplicando la derivada de cada función
𝑑𝑦
𝑑 √𝑥
2
𝑑 √𝑥
𝑑 2
=
( )
( − )=
( )−
𝑑𝑥 𝑑𝑥 2
𝑑𝑥 2
𝑑𝑥 √𝑥
√𝑥
1
𝑑 √𝑥
𝑑 2
1 1 1
1
( ) = ( ) ( ) 𝑥 2−1 − (2) (− ) 𝑥 −2−1
( )−
𝑑𝑥 2
𝑑𝑥 √𝑥
2 2
2
3
𝑑 √𝑥
𝑑 2
1 1
( ) = 𝑥 −2 + 𝑥 −2
( )−
𝑑𝑥 2
𝑑𝑥 √𝑥
4
𝑑 √𝑥
𝑑 2
1
1
1
1
1
1
( )=
+ 3=
+2
=
+
( )−
𝑑𝑥 2
𝑑𝑥 √𝑥
4√𝑥 𝑥 2 4√𝑥 √𝑥 3 4√𝑥 𝑥 √𝑥
∴
𝑑𝑦
𝑑 √𝑥
2
1
1
=
+
( − )=
𝑑𝑥 𝑑𝑥 2
4√𝑥 𝑥 √𝑥
√𝑥
Ejercicio 20
𝑠=
𝑎 + 𝑏𝑡 + 𝑐𝑡 2
√𝑡
Solución
𝑑𝑠
𝑑 𝑎 + 𝑏𝑡 + 𝑐𝑡 2
= (
)
𝑑𝑡 𝑑𝑡
√𝑡
Formulas a utilizar:
𝑑
(𝑐𝑡 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑡 𝑛−1
𝑑𝑡
Aplicando la derivada de cada función
𝑑𝑠
𝑑 𝑎 + 𝑏𝑡 + 𝑐𝑡 2
𝑑 𝑎
𝑑 𝑏𝑡
𝑑 𝑐𝑡 2
= (
) = ( )+ ( )+ ( )
𝑑𝑡 𝑑𝑡
𝑑𝑡 √𝑡
𝑑𝑡 √𝑡
𝑑𝑡 √𝑡
√𝑡
1
1
𝑑 𝑎
𝑑 𝑏𝑡
𝑑 𝑐𝑡 2
𝑑
𝑑
𝑑 2 −1
( ) + ( ) + ( ) = (𝑎𝑡 −2 ) + 𝑏 (𝑡 ∙ 𝑡 −2 ) + 𝑐
(𝑡 ∙ 𝑡 2 )
𝑑𝑡 √𝑡
𝑑𝑡 √𝑡
𝑑𝑡 √𝑡
𝑑𝑡
𝑑𝑥
𝑑𝑥
1
𝑑 𝑎
𝑑 𝑏𝑡
𝑑 𝑐𝑡 2
𝑑
𝑑 1
𝑑 3
( ) + ( ) + ( ) = (𝑎𝑡 −2 ) + 𝑏 (𝑡 2 ) + 𝑐 (𝑡 2 )
𝑑𝑡 √𝑡
𝑑𝑡 √𝑡
𝑑𝑡 √𝑡
𝑑𝑡
𝑑𝑥
𝑑𝑥
1
𝑑 𝑎
𝑑 𝑏𝑡
𝑑 𝑐𝑡 2
1
1 1
3 3
( ) + ( ) + ( ) = − 𝑎𝑡 −2−1 + 𝑏𝑡 2−1 + 𝑐𝑡 2−1
𝑑𝑡 √𝑡
𝑑𝑡 √𝑡
𝑑𝑡 √𝑡
2
2
2
8
3
1
𝑑 𝑎
𝑑 𝑏𝑡
𝑑 𝑐𝑡 2
1
1
3 1
( ) + ( ) + ( ) = − 𝑎𝑡 −2 + 𝑏𝑡 −2 + 𝑐𝑡 2
𝑑𝑡 √𝑡
𝑑𝑡 √𝑡
𝑑𝑡 √𝑡
2
2
2
𝑑 𝑎
𝑑 𝑏𝑡
𝑑 𝑐𝑡 2
𝑎
𝑏
3𝑐
( )+ ( )+ ( ) = − 2 +
+ √𝑡
3
𝑑𝑡 √𝑡
𝑑𝑡 √𝑡
𝑑𝑡 √𝑡
2√𝑡 2
2√𝑡
Otra forma de expresarlo
𝑑 𝑎
𝑑 𝑏𝑡
𝑑 𝑐𝑡 2
𝑎
𝑏
3𝑐√𝑡
( )+ ( )+ ( ) = −
+
+
𝑑𝑡 √𝑡
𝑑𝑡 √𝑡
𝑑𝑡 √𝑡
2
2𝑡√𝑡 2√𝑡
∴
𝑑𝑠
𝑑 𝑎 + 𝑏𝑡 + 𝑐𝑡 2
𝑎
𝑏
3𝑐√𝑡
= (
+
+
)=−
𝑑𝑡 𝑑𝑡
2
2𝑡√𝑡 2√𝑡
√𝑡
Ejercicio 21
𝒚 = √𝒂𝒙 +
𝒂
√𝒂𝒙
Solución
𝑑𝑦
𝑑
𝑎
=
(√𝑎𝑥 +
)
𝑑𝑥 𝑑𝑥
√𝑎𝑥
Formulas a utilizar:
𝑑
(𝑐𝑥 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑥 𝑛−1
𝑑𝑥
Aplicando la derivada de cada función
𝑑𝑦
𝑑
𝑎
𝑑
𝑑
𝑎
=
(√𝑎𝑥 +
)=
(
)
(√𝑎𝑥) +
𝑑𝑥 𝑑𝑥
𝑑𝑥
𝑑𝑥 √𝑎𝑥
√𝑎𝑥
1
1
1
𝑑
𝑑
𝑎
1 1
1
(
) = (𝑎2 ) ( ) 𝑥 2−1 + (𝑎) (𝑎−2 ) (− ) 𝑥 −2−1
(√𝑎𝑥) +
𝑑𝑥
𝑑𝑥 √𝑎𝑥
2
2
1
1
𝑑
𝑑
𝑎
𝑎2 1 𝑎2 3
(
) = 𝑥 −2 − 𝑥 −2
(√𝑎𝑥) +
𝑑𝑥
𝑑𝑥 √𝑎𝑥
2
2
𝑑
𝑑
𝑎
√𝑎
√𝑎
(
)=
−
(√𝑎𝑥) +
𝑑𝑥
𝑑𝑥 √𝑎𝑥
2√𝑥 2𝑥√𝑥
1
−
√𝑎 = 𝑎 ∙ 𝑎 2 =
𝑎
√𝑎
Expresado de otra forma:
9
𝑑
𝑑
𝑎
𝑎
𝑎
𝑎
𝑎
(
)=
−
=
−
(√𝑎𝑥) +
𝑑𝑥
𝑑𝑥 √𝑎𝑥
2√𝑎√𝑥 2𝑥 √𝑎√𝑥 2√𝑎𝑥 2𝑥 √𝑎𝑥
∴
𝑑𝑦
𝑑
𝑎
𝑎
𝑎
=
(√𝑎𝑥 +
)=
−
𝑑𝑥 𝑑𝑥
2√𝑎𝑥 2𝑥√𝑎𝑥
√𝑎𝑥
Ejercicio 22
𝒓 = √𝟏 − 𝟐𝜽
𝑑𝑟
𝑑
=
(√1 − 2𝜃)
𝑑𝜃 𝑑𝜃
Formulas a utilizar:
𝑑
𝑑𝑟
(𝑐𝜃 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝜃 𝑛−1
𝑑𝜃
𝑑𝜃
1
𝑑𝑟
𝑑
1
=
(√1 − 2𝜃) = (1 − 2𝜃)2−1 (−2)
𝑑𝜃 𝑑𝜃
2
1
𝑑𝑟
𝑑
=
(√1 − 2𝜃) = −(1 − 2𝜃)−2
𝑑𝜃 𝑑𝜃
𝑑𝑟
𝑑
=
(√1 − 2𝜃) =
𝑑𝜃 𝑑𝜃
∴
−1
1
(1 − 2𝜃)2
𝑑𝑟
𝑑
1
=
(√1 − 2𝜃) = −
𝑑𝜃 𝑑𝜃
√(1 − 2𝜃)
Ejercicio 23
𝟑
𝒇(𝒕) = (𝟐 − 𝟑𝒕𝟐 )
𝑑𝑠
𝑑
𝟑
= [(𝟐 − 𝟑𝒕𝟐 ) ]
𝑑𝑡 𝑑𝑡
Formulas a utilizar:
10
𝑑
𝑑𝑠
(𝑐𝑡 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑡 𝑛−1
𝑑𝑡
𝑑𝑡
𝑑𝑠
𝑑
= [(2 − 3𝑡 2 )3 ] = 3(2 − 3𝑡 2 )3−1 (−6𝑡)
𝑑𝑡 𝑑𝑡
𝑑𝑠
𝑑
[(2 − 3𝑡 2 )3 ] = −18𝑡(2 − 3𝑡 2 )2
=
𝑑𝑡 𝑑𝜃
∴
𝑑𝑠
𝑑
[(2 − 3𝑡 2 )3 ] = −18𝑡(2 − 3𝑡 2 )2
=
𝑑𝑡 𝑑𝜃
Ejercicio 24
3
𝑓(𝑥) = √4 − 9𝑥
𝑑𝑦
𝑑 3
=
[ √4 − 9𝑥 ]
𝑑𝑥 𝑑𝑥
Formulas a utilizar:
𝑑
𝑑𝑦
(𝑐𝑥 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑡 𝑛−1
𝑑𝑥
𝑑𝑥
1
𝑑𝑦
𝑑 3
1
=
[ √4 − 9𝑥 ] = (4 − 9𝑥)3−1 (−9)
𝑑𝑥 𝑑𝑥
3
2
𝑑𝑦
𝑑 3
=
[ √4 − 9𝑥 ] = −3(4 − 9𝑥)−3
𝑑𝑥 𝑑𝑥
∴
𝑑𝑦
𝑑 3
=
[ √4 − 9𝑥 ] = −
𝑑𝑥 𝑑𝑥
3
2
(4 − 9𝑥)3
Ejercicio 25
𝑦=
1
√𝑎2 − 𝑥 2
11
𝑑𝑦
𝑑
1
=
[
]
2
𝑑𝑥 𝑑𝑥 √𝑎 − 𝑥 2
Formulas a utilizar:
𝑑
𝑑𝑦
(𝑐𝑥 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑡 𝑛−1
𝑑𝑥
𝑑𝑥
1
𝑑𝑦
𝑑
1
1
=
[
] = − (𝑎2 − 𝑥 2 )−2−1 (−2𝑥)
𝑑𝑥 𝑑𝑥 √𝑎2 − 𝑥 2
2
3
𝑑𝑦
𝑑
1
=
[
] = −𝑥(𝑎2 − 𝑥 2 )−2
𝑑𝑥 𝑑𝑥 √𝑎2 − 𝑥 2
∴
𝑑𝑦
𝑑
1
=
[
]=
2
𝑑𝑥 𝑑𝑥 √𝑎 − 𝑥 2
𝑥
3
(𝑎2 − 𝑥 2 )2
Ejercicio 26
𝟑
𝒇(𝜽) = (𝟐 − 𝟓𝜽)𝟓
3
𝑑𝑟
𝑑
=
((2 − 5𝜃)5 )
𝑑𝜃 𝑑𝜃
Formulas a utilizar:
𝑑
𝑑𝑟
(𝑐𝜃 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝜃 𝑛−1
𝑑𝜃
𝑑𝜃
3
3
𝑑𝑟
𝑑
3
=
((2 − 5𝜃)5 ) = (2 − 5𝜃)5−1 (−5)
𝑑𝜃 𝑑𝜃
5
3
2
𝑑𝑟
𝑑
=
((2 − 5𝜃)5 ) = −3(1 − 2𝜃)−5
𝑑𝜃 𝑑𝜃
∴
3
𝑑𝑟
𝑑
=
((2 − 5𝜃)5 ) = −
𝑑𝜃 𝑑𝜃
3
2
(2 − 5𝜃)5
Ejercicio 27
12
𝑏 2
𝑦 = (𝑎 − )
𝑥
Solución
𝑑𝑦
𝑑
𝑏 2
=
[(𝑎 − ) ]
𝑑𝑥 𝑑𝑥
𝑥
Formulas a utilizar:
𝑑
𝑑𝑦
(𝑐𝑥 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑥 𝑛−1
𝑑𝑥
𝑑𝑥
Aplicando la deriva de cada elemento de la función
𝑑𝑦
𝑑
𝑏 2
𝑏 2−1
(−1)(−1)(𝑏𝑥 −1−1 )
=
[(𝑎 − ) ] = 2 (𝑎 − )
𝑑𝑥 𝑑𝑥
𝑥
𝑥
𝑑𝑦
𝑑
𝑏 2
𝑏
=
[(𝑎 − ) ] = 2𝑏𝑥 −2 (𝑎 − )
𝑑𝑥 𝑑𝑥
𝑥
𝑥
𝑑𝑦
𝑑
𝑏 2
2𝑏
𝑏
∴
=
[(𝑎 − ) ] = 2 (𝑎 − )
𝑑𝑥 𝑑𝑥
𝑥
𝑥
𝑥
Ejercicio 28
𝑏 3
𝑦 = (𝑎 + 2 )
𝑥
Solución
13
𝑑𝑦
𝑑
𝑏 3
=
[(𝑎 + 2 ) ]
𝑑𝑥 𝑑𝑥
𝑥
Formulas a utilizar:
𝑑
𝑑𝑦
(𝑐𝑥 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑥 𝑛−1
𝑑𝑥
𝑑𝑥
Aplicando la deriva
𝑑𝑦
𝑑
𝑏 3
𝑏 3−1
(−2𝑏𝑥 −2−1 )
=
[(𝑎 + 2 ) ] = 3 (𝑎 + 2 )
𝑑𝑥 𝑑𝑥
𝑥
𝑥
𝑑𝑦
𝑑
𝑏 3
𝑏 2
=
[(𝑎 + 2 ) ] = −6𝑏𝑥 −3 (𝑎 + 2 )
𝑑𝑥 𝑑𝑥
𝑥
𝑥
∴
𝑑𝑦
𝑑
𝑏 3
6𝑏
𝑏 2
=
[(𝑎 + 2 ) ] = − 3 (𝑎 + 2 )
𝑑𝑥 𝑑𝑥
𝑥
𝑥
𝑥
Ejercicio 29
𝑦 = 𝑥√𝑎 + 𝑏𝑥
𝑑𝑦
𝑑
=
[𝑥√𝑎 + 𝑏𝑥 ]
𝑑𝑥 𝑑𝑥
Formulas a utilizar:
14
𝑑
𝑑𝑦
(𝑐𝑥 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑥 𝑛−1
𝑑𝑥
𝑑𝑥
𝑑
𝑑𝑣
𝑑𝑢
(𝑢𝑣) = 𝑢
+𝑣
𝑑𝑥
𝑑𝑥
𝑑𝑥
1
𝑑𝑦
𝑑
𝑑
=
[𝑥√𝑎 + 𝑏𝑥 ] =
[𝑥(𝑎 + 𝑏𝑥)2 ]
𝑑𝑥 𝑑𝑥
𝑑𝑥
𝑢=𝑥
1
𝑣 = √𝑎 + 𝑏𝑥 = (𝑎 + 𝑏𝑥)2
1
1
1 𝑑
𝑑
𝑑
𝑥
[𝑥(𝑎 + 𝑏𝑥)2 ] = (𝑥) [(𝑎 + 𝑏𝑥)2 ] + (𝑎 + 𝑏𝑥)2
𝑑𝑥
𝑑𝑥
𝑑𝑥
1
1
1
𝑑
1
[𝑥(𝑎 + 𝑏𝑥)2 ] = (𝑥) ( ) (𝑏)(𝑎 + 𝑏𝑥)2−1 + (𝑎 + 𝑏𝑥)2
𝑑𝑥
2
1
1
1
𝑑
𝑏𝑥
[𝑥(𝑎 + 𝑏𝑥)2 ] = ( ) (𝑎 + 𝑏𝑥)−2 + (𝑎 + 𝑏𝑥)2
𝑑𝑥
2
1
𝑑
𝑏𝑥
+ √𝑎 + 𝑏𝑥
[𝑥(𝑎 + 𝑏𝑥)2 ] =
𝑑𝑥
2√𝑎 + 𝑏𝑥
1
𝑑
𝑏𝑥
√𝑎 + 𝑏𝑥 𝑏𝑥 + 2𝑎 + 2𝑏𝑥
+
=
[𝑥(𝑎 + 𝑏𝑥)2 ] =
𝑑𝑥
1
2√𝑎 + 𝑏𝑥
2√𝑎 + 𝑏𝑥
1
𝑑
𝑏𝑥
√𝑎 + 𝑏𝑥 𝑏𝑥 + 2𝑎 + 2𝑏𝑥 2𝑎 + 3𝑏𝑥
+
=
=
[𝑥(𝑎 + 𝑏𝑥)2 ] =
𝑑𝑥
1
2√𝑎 + 𝑏𝑥
2√𝑎 + 𝑏𝑥
2√𝑎 + 𝑏𝑥
∴
1
𝑑
2𝑎 + 3𝑏𝑥
[𝑥(𝑎 + 𝑏𝑥)2 ] =
𝑑𝑥
2√𝑎 + 𝑏𝑥
Ejercicio 30
𝑠 = 𝑡√𝑎2 + 𝑡 2
𝑑𝑠
𝑑
= [𝑡√𝑎2 + 𝑡 2 ]
𝑑𝑡 𝑑𝑡
15
Formulas a utilizar:
𝑑
𝑑𝑠
(𝑐𝑡 𝑛 ) = 𝑐 ∙ 𝑛 ∙ 𝑡 𝑛−1
𝑑𝑡
𝑑𝑡
𝑑
𝑑𝑣
𝑑𝑢
(𝑢𝑣) = 𝑢
+𝑣
𝑑𝑡
𝑑𝑡
𝑑𝑡
𝑑𝑠
𝑑
= [𝑡√𝑎2 + 𝑡 2 ]
𝑑𝑡 𝑑𝑡
1
𝑑𝑠
𝑑
𝑑
= [𝑡√𝑎2 + 𝑡 2 ] = [𝑡(𝑎2 + 𝑡 2 )2 ]
𝑑𝑡 𝑑𝑡
𝑑𝑡
𝑢=𝑡
1
𝑣 = √𝑎2 + 𝑡 2 = (𝑎2 + 𝑡 2 )2
1
1
1 𝑑
𝑑
𝑑
(𝑡)
[𝑡(𝑎2 + 𝑡 2 )2 ] = (𝑡) [(𝑎2 + 𝑡 2 )2 ] + (𝑎2 + 𝑡 2 )2
𝑑𝑡
𝑑𝑡
𝑑𝑥
1
1
1
𝑑
1
−1
[𝑡(𝑎2 + 𝑡 2 )2 ] = ( ) (𝑡)(𝑎2 + 𝑡 2 )2 (2𝑡) + (𝑎2 + 𝑡 2 )2
𝑑𝑡
2
1
1
1
𝑑
[𝑡(𝑎2 + 𝑡 2 )2 ] = (𝑎2 + 𝑡 2 )−2 + (𝑎2 + 𝑡 2 )2
𝑑𝑡
1
𝑑
1
+ √𝑎2 + 𝑡 2
[𝑡(𝑎2 + 𝑡 2 )2 ] =
𝑑𝑡
√𝑎2 + 𝑡 2
∴
1
𝑑
1
√𝑎2 + 𝑡 2 1 + 𝑎2 + 𝑡 2
+
=
[𝑡(𝑎2 + 𝑡 2 )2 ] =
𝑑𝑡
1
√𝑎2 + 𝑡 2
√𝑎2 + 𝑡 2
16
Descargar