MATEMÀTIQUES APLICADES A LES C.S: 1. f ‘(x) = 15 x2 + 8x – 3 2. f ‘(x) = 2 + 1 3 x 33x2 . . 3 3. f ‘(x) = (2x + 3) ln x + x + 3 4. f ‘(x) = -11 (3x – 1 )2 . 5. f ‘(x) = – x2 – 6x + 11 (x2 – 3x + 2)2 6. f ‘(x) = 3 – 2x ex 7. f ‘(x) = 4 (x2 + 3x – 2)3 · (2x + 3) 8. f ‘(x) = 2x (2x2 – 3) x4 + 3x2 +2 9. f ‘(x) = -3 (x + 2)(x – 1) . 10. f ‘(x) = = x x2 + 1 . x3 + 4x2 – 3x + 5 11. f ‘(x) = 4 · ln 4 · (3x2 + 8x – 3) 12. f ‘(x) = = - 20 (3x – 2)(2x – 8) . 13. f ‘(x) = (3x2 – 2) (x2 + 3) – 2x (x3 – 2x) ln (x3 – 2x) (x3 – 2x) (x2 + 3)2 SOLUCIONS DERIVADES 14. f ‘(x) = – 96x3 – 27x2 = –3x2 (32x + 9) 5 4 15. f ‘(x) = 27 x 5 16. f ‘(x) = ex ( x2 + 2x – 1/x – lnx) 17. f ‘(x) = 6 x3 . 18. f ‘(x) = x ex lnx – ex – 3 = ex (x lnx – 1) – 3 x ln2x x ln2x 19. f ‘(x) = 49 5 x2 5 20. f ‘(x) = – 96x3 + 81x2 – 3 21. f ‘(x) = – 5x4 – (2ex + 22. f ‘(x) = 1 x ln5 . 1 ) lnx – ( 2ex + log7x) x ln7 x 2 ln x . 23. f’ (x) = x5 (6lnx – 1) ln2x 24. f ‘(x) = 1 – x ln10·ln8·logx x 8x ln10 25. f ‘(x) = – 6x2 – 70x + 15 (– 2x2 – 5)2 26. f ‘(x) = 4x ln4 + 1/x 27. f ‘(x) = 1/x 28. f ‘(x) = x (2 – xln7) . 7x 29. f ‘(x) = 5 x ln6 30. f ‘(x) = 9x2 . 1 3 x2 . 3 31. f ‘(x) = 4 33(4x – 5)2 . 32. f ‘(x) = 5x (ln5·lnx + 1/x) 33. f ‘(x) = e-x (x3 + 3x – x + 1) = x3 + 3x – x + 1 ex 34. f ‘(x) = 1 x·lnx·ln10 . 35. f ‘(x) = e · xe-1 x2 + 1 36. f ‘(x) = 2 ·ln2·2x 37. f ‘(x) = 2x [ ln2 (ex + 3) + ex ] 38. f ‘(x) = 7x ( ln7·log5 x + 1 ) x ln5 . 39. f ‘(x) = 10·lnx – 10·logx·ln10 4x·ln2x·ln10 x2 + 2 40. f ‘(x) = 2 3x +3 (x3 + 1) ln3 . ·ln3·2x