Subido por Min Khant

YADANARON MULIPURPOSE HALL REPORT

Anuncio
SIMPLE TECH ONE CO., LTD.
Door fold Movable
Sliding Soundproof
Folding Partition
Wall
STRUCTURAL DESIGN REPORT
4‐24‐2020
ETABS 2016 16.2.1
MAIN FRAME.EDB
4/24/2020
3-D View
Z
HW350X350X13X13
HW350X350X13X13
X
0.00
0.50
0.70
0.90
HW350X350X13X13
HW350X350X13X13
L7
5X 5X5
L57
HW350X350X13X13
L7
5X 5X5
L57
HW350X350X13X13
L7
5X 5X5
L57
L7
5X 5X5
L57
L7
5X 5X5
L57
L7
5X 5X5
L57
L7
5X 5X5
L57
L7
5X 5X5
L57
L7
5X 5X5
L57
0.95
HW350X350X13X13
HW350X350X13X13
L7
5X 5X5
L57
HW350X350X13X13
5
F
HW350X350X13X13
HW350X350X13X13
5
E
HW350X350X13X13
HW350X350X13X13
5
D
HW350X350X13X13
5
C
HW350X350X13X13
5
B
HW350X350X13X13
5
A
HW350X350X13X13
HW350X350X13X13
HN150X75X5X7
L7
5X 5X5
L57
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
L7
5X 5X5
L57
HW350X350X13X13
HN150X75X5X7
L7
5X 5X5
L57
HW350X350X13X13
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
L7
5X 5X5
5L7
HW350X350X13X13
L7
5X 5X5
L57
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
L7
5X 5X5
L57
HW350X350X13X13
HN150X75X5X7
HN150X75X5X7
HW350X350X13X13
L7
5X 5X5
5L7
HN150X75X5X7
HW350X350X13X13
L7
5X 5X5
L57
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HN150X75X5X7
HW350X350X13X13
L7
5X 5X5
L57
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HN300X150X5.5X8
HW350X350X13X13
L7
5X 5X5
L57
HW350X350X13X13
HN300X150X5.5X8
HW350X350X13X13
ETABS 2016 16.2.1
4/24/2020
Story2
Story1
Base
ETABS 2016 16.2.1
4/24/2020
6
6
6
6
6
6
A
B
C
D
E
F
HW350X350X13X13
HW350X350X13X13
HW150X150X7X10
HW350X350X13X13
HHW150X150X7X10
W1
50
X1
50
X7
X1
0
HW150X150X7X10
HW
15
0X
15
0X
7X
10
HW
15
0X
15
0X
7X
10
HW
15
0X
15
0X
7X
10
HW
15
0X
15
0X
7X
10
HW
15
0X
15
0X
7X
10
HW
15
0X
15
0X
7X
10
HW
15
0X
15
0X
7X
10
HW
15
0X
15
0X
7X
10
HW
15
0X
15
0X
7X
10
HW
15
0X
15
0X
7X
10
HW150X150X7X10
HW
15
0X
15
0X
7X
10
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW
15
0X
15
0X
7X
10
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
10
7X
0X
15
0X
15
HW
HW150X150X7X10
HW350X350X13X13
HW150X150X7X10
Story2
HW350X350X13X13
Story1
HW350X350X13X13
Z
Base
X
0.00
MAIN FRAME.EDB
0.50
0.70
0.90
Elevation View - 6 Steel Design Sections (AISC 360-10)
0.95
ETABS 2016 16.2.1
4/24/2020
7
7
7
7
7
7
A
B
C
D
E
F
HW350X350X13X13
HW350X350X13X13
HW150X150X7X10
HW350X350X13X13
HHW150X150X7X10
W1
50
X1
50
X7
X1
0
HW150X150X7X10
HW
15
0X
15
0X
7X
10
HW
15
0X
15
0X
7X
10
HW
15
0X
15
0X
7X
10
HW
15
0X
15
0X
7X
10
HW
15
0X
15
0X
7X
10
HW
15
0X
15
0X
7X
10
HW
15
0X
15
0X
7X
10
HW
15
0X
15
0X
7X
10
HW
15
0X
15
0X
7X
10
HW
15
0X
15
0X
7X
10
HW150X150X7X10
HW
15
0X
15
0X
7X
10
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW
15
0X
15
0X
7X
10
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
HW350X350X13X13
HW350X350X13X13
10
7X
0X
15
0X
15
HW
10
7X
0X
15
0X
15
HW
HW150X150X7X10
HW350X350X13X13
HW150X150X7X10
Story2
HW350X350X13X13
Story1
HW350X350X13X13
Z
Base
X
0.00
MAIN FRAME.EDB
0.50
0.70
0.90
Elevation View - 7 Steel Design Sections (AISC 360-10)
0.95
ETABS 2016 16.2.1
4/24/2020
1
1
1
1
1
1
A
B
C
D
E
F
Story2
Z
L7
5X 5X5
5L7
HN150X75X5X7
L7
5X 5X5
L57
HW350X350X13X13
HW350X350X13X13
HW350X350X13X13
HW350X350X13X13
HW350X350X13X13
HW350X350X13X13
HW350X350X13X13
L7
5X 5X5
L57
L7
5X 5X5
L57
L7
5X 5X5
L57
X
0.00
MAIN FRAME.EDB
HW350X350X13X13
L7
5X 5X5
L57
HN150X75X5X7
L7
5X 5X5
L57
HW350X350X13X13
HN150X75X5X7
L7
5X 5X5
L57
HW350X350X13X13
L7
5X 5X5
L57
HW350X350X13X13
HW350X350X13X13
HN150X75X5X7
L7
5X 5X5
L57
0.50
0.70
0.90
Elevation View - 1 Steel Design Sections (AISC 360-10)
HW350X350X13X13
HW350X350X13X13
HW350X350X13X13
HN150X75X5X7
L7
5X 5X5
5L7
HW350X350X13X13
HW350X350X13X13
HW350X350X13X13
HN150X75X5X7
L7
5X 5X5
L57
HN150X75X5X7
L7
5X 5X5
L57
HW350X350X13X13
HW350X350X13X13
HW350X350X13X13
HN150X75X5X7
HN150X75X5X7
L7
5X 5X5
L57
HW350X350X13X13
HW350X350X13X13
HW350X350X13X13
HN150X75X5X7
L7
5X 5X5
L57
HN150X75X5X7
L7
5X 5X5
L57
HW350X350X13X13
HW350X350X13X13
HW350X350X13X13
HN150X75X5X7
L7
5X 5X5
L57
HW350X350X13X13
HW350X350X13X13
HW350X350X13X13
HN150X75X5X7
L7
5X 5X5
L57
HN150X75X5X7
HW350X350X13X13
HW350X350X13X13
HW350X350X13X13
HN150X75X5X7
HN150X75X5X7
L7
5X 5X5
L57
HW350X350X13X13
HW350X350X13X13
HN150X75X5X7
L7
5X 5X5
L57
HW350X350X13X13
HW350X350X13X13
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN300X150X5.5X8
HW350X350X13X13
Story1
HN300X150X5.5X8
0.95
Base
ETABS 2016 16.2.1
4/24/2020
595 (mm)
595 (mm)
A
B
40264 (mm)
595 (mm)
595 (mm)
C
D
E
F
1
0.00
MAIN FRAME.EDB
HW350X350X13X13
X
0.50
0.70
0.90
Plan View - Story2 - Z = 12360 (mm) Steel Design Sections (AISC 360-10)
0.95
HW350X350X13X13
HW350X350X13X13
HW350X350X13X13
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
Y
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HW350X350X13X13
2
HN150X75X5X7
6
3
7
HN150X75X5X7
4
HN150X75X5X7
1090 (mm)545 (mm)
545 (mm)1090 (mm)
5
ETABS 2016 16.2.1
4/24/2020
595 (mm)
595 (mm)
A
B
40264 (mm)
595 (mm)
595 (mm)
C
D
E
F
1
HW350X350X13X13
HW350X350X13X13
HW350X350X13X13
MAIN FRAME.EDB
HW350X350X13X13
HW350X350X13X13
HN300X150X5.5X8
HW350X350X13X13
HW350X350X13X13
HN300X150X5.5X8
X
HN300X150X5.5X8
HN150X75X5X7
0.00
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN150X75X5X7
HW350X350X13X13
HN300X150X5.5X8
HN150X75X5X7
0.50
0.70
0.90
Plan View - Story1 - Z = 10360 (mm) Steel Design Sections (AISC 360-10)
0.95
HM600X300X12X17
HN300X150X5.5X8
HM600X300X12X17
Y
HN150X75X5X7
HW350X350X13X13
HW350X350X13X13
2
HN150X75X5X7
HN300X150X5.5X8
6
3
7
HN150X75X5X7
4
HN300X150X5.5X8
HN150X75X5X7
HM600X300X12X17
HN300X150X5.5X8
HN150X75X5X7
HM600X300X12X17
1090 (mm)545 (mm)
545 (mm)1090 (mm)
5
ETABS 2016 16.2.1
4/24/2020
498
YMH WALL 2.EDB
498
498
498
498
498
498
498
498
498
498
498
498
498
498
498
498
498
498
Elevation View - 7 Joint Loads (SOUND INSULATION)
498
498
498
498
ETABS 2016 16.2.1
4/24/2020
88
48899
4848994
9
9
8
8
4
488994
4848994
9
9
8
4
8
8994
99448
994848
8
4
8
4
84899
848499 4
99
998484
8
4
8
4
99
998484
4
8
4
8
99
998484
4
8
4
8
884499
9
9
4
9884
88449
9
9
4
99884
4
4
8
98
449
YMH WALL 2.EDB
3-D View Joint Loads (SOUND INSULATION)
ETABS 2016 16.2.1
4/24/2020
408
YMH WALL 2.EDB
408
408
408
408
408
408
408
408
408
408
408
408
408
408
408
408
408
Elevation View - 7 Joint Loads (DOOR PLANK)
408
408
408
408
408
ETABS 2016 16.2.1
YMH WALL 2.EDB
4/24/2020
Elevation View - 7 - Displacements (DEFL) [mm]
ETABS 2016 16.2.1
YMH WALL 2.EDB
4/24/2020
Elevation View - 7
Axial Force Diagram
(DStlS2) [kgf]
4/24/2020
3
0.023
0.
27
3
0.
24
5
0.
09
9
0.
06
2
0.
04
6
0.
01
4
0.
02
8
0.
05
3
0.
09
9
0.
24
7
0.
31
0.0.049
24
9
0.023
49
Elevation View - 7 Steel P-M Interaction Ratios (AISC 360-10)
0.071
0.179
2
0.
0.90
17
0.034
0.047
3
0.
49
0.072
0.077
2
0.
93
0.098
0.124
0
0.
0.70
58
0.112
0.278
0
0.
24
0.112
0.313
0
0.
16
0.098
0.325
0
0.
0.50
42
0.072
0.313
0
0.
69
0.034
0.278
0
0.
95
0.071
0.124
0
0.
YMH WALL 2.EDB
43
73
9
0.4
0.00
0.077
2
0.
0.372 0.122
2
0.
0.397
0.047
1
0.179
0.278
0.175
0.122 0.372
00.049
.49
1
0.397
ETABS 2016 16.2.1
0.175
0.278
0.95
F
E
D
310
310
00
00
C
B
Y Z
1
2
73
6
4
5
A
X
31000
4/24/2020
31000
ETABS 2016 16.2.1
F
E
D
580
0
580
0
C
B
Y Z
X
1
2
73
6
4
5
A
YMH WALL 3.EDB
3-D View Frame Span Loads (SOUND INSULATION)
5800
4/24/2020
5800
ETABS 2016 16.2.1
F
E
D
470
0
470
0
C
B
Y Z
X
1
2
73
6
4
5
A
YMH WALL 3.EDB
3-D View Frame Span Loads (DOOR PLANK)
4700
4/24/2020
4700
ETABS 2016 16.2.1
ETABS 2016 16.2.1
4/24/2020
F
E
D
C
B
Y Z
X
1
2
73
6
4
5
A
YMH WALL 3.EDB
3-D View
Axial Force Diagram
(DStlS2) [kgf]
ETABS 2016 16.2.1
4/24/2020
F
E
D
C
B
4
5
A
X
1
2
73
6
Y Z
YMH WALL 3.EDB
3-D View
Moment 3-3 Diagram
(DStlS2) [kgf-mm]
ETABS 2016 16.2.1
4/24/2020
F
E
D
C
B
4
5
A
X
1
2
73
6
Y Z
YMH WALL 3.EDB
3-D View
Shear Force 2-2 Diagram
(DStlS2) [kgf]
ETABS 2016 16.2.1
4/24/2020
70
36 0.2174
0.8
0 2
0.170.0 0.00 36
4
0.8
02
0.6
52
70
0.0
0.0
0.102
0.151
0.0
0.0
52
70
0.102
0.151
0.0
0.102
0.151
0.0
0.0
52
70
0.102
0.151
02
0.6
41
0.0
0.0
75
08
0.0
75
73
0.0
0.0
0.085
0.091
0.0
0.0
73
75
0.085
0.0
91
5
09
0.0
11
0.0
82
74
1
.01
1
.01
0.0 0
74
0.0
0.0
11
0.0
74
0.0
11
87
0.070
4
17
0.
2
0.10
0.0
52
02
0.6
0.0
70
5
0.08
0.070
4
0.0
1
1
0.09
0.0
73
0.0
73
6
74
87
0.0
74
73
74
69
0.0
X
1
2
0.0
74
5
11
0.0
0.074
11
0.0
0.087
9
0.06
70
0.0
4
0
0.07
73
0.0
Y Z
87
0.0
74
0.0
0.0
11
0.0
0.074
3
0.07
76
0.0
69
0.0
11
0.0
0.074
6
0.07
9
0.06
70
0.0
79
0.0
0.087
A
9
0.07
0
0.07
73
0.0
82
0.0
11
0.0
C0.073
B .011
0
0.0
0.0
74
3
0.07
76
0.0
85
0.0
11
0.0
0.073
11
0.0
0.074
0.0
73
0.0
73
09
0.0
0.073
11
0.0
0.074
2
0.08
11
0.0
0.074
5
0.08
0.075
6
0.07
79
0.0
91
0.0
0.0
75
08
0.0
11
0.0
0.073
0.0
0.0
73
0.052
9
0.07
82
0.0
11
0.0
0.073
02
0.1
85
0.0
0.073
2
0.08
0.0
73
51
0.1
09
0.0
2
0.10
91
0.0
0.075
0.0
52
08
0.0
1
0.15
1
0.09
4
17
0.
02
0.1
36
0.81 2
4 0
0.0 0.0 02
0.0 6
3
0.8
0.052
0.0
75
51
0.1
0.0
70
1
0.15
02
0.6
11
0.0
0.0
11
0.0
74
11
0.0
73
0.0
0.0
0.0 0
87
F
E
11
0.0
0.069
0.0
0.0
70 0.0
0.0
87
74 0 73 0.076
.0
0.069
0.079
0.0
0.070 74
0.082
0.0
0.073 74
0.0
73
73
0.076
0.079
0.0
1
.01
1
.01
D
11
73
0.0
0.0 0
74
0.0 0
74
09
0.0
73
73
0.0
0.0
0.0 0.0
73
41
52
0.0
0.0
0.069 0.07
0 0.07
0.0
0.0
3 0.07
87
0.0
74
0.0 6 0.079 0.082
74
0.069
0.0
74
0.070
0.085
0.0
73
0.073
0.091
0.0
73
0.076 0.07
0.0
73
9 0.08
75
2
0.08
0.091
08
0.0
0.00
YMH WALL 3.EDB
0.50
0.70
0.90
3-D View Steel P-M Interaction Ratios (AISC 360-10)
0.95
ETABS 2016 16.2.1
4/24/2020
F
E
D
276
109
275
Fz
=
58.788
Fz = 58.788 69
Fz = 58.788
Fz = 58.788
C
B
90
Y Z
Fz89= 58.788
Fz = 58.788
A
2
73
6
4
5
X
16
1
Fz
14= 58.788
Fz = 58.788
YMH WALL 3.EDB
3-D View
Restraint Reactions
(DStlS2) [kip, kip-mm]
DESIGN OF BASE PLATE
fc'
b
h
c
𝑑
d
𝑏
b0
2500
16
6
1.5
ℎ
psi
in
in
in
𝑐
4.5 in
4
𝑑
𝑏
82 in
PUNCHING SHEAR CHECK
𝑉 4
Vc
φVc
𝑓′
𝑏
73800.0
62730.0
62.7
𝑑
lb
lb
kip
Current Date: 4/23/2020 11:55 PM
Units system: SI
Steel connections
Results
__________________________________________________________________________________________________________________________
__________________________________________________________________________________
Connection name
Connection ID
: Pinned BP - HSS Member
: 1
__________________________________________________________________________________
Family: Column - Base (CB)
Type: Base plate
Design code: AISC 360-10 LRFD, ACI 318-08
DEMANDS
Description
Pu
Mu22
Mu33
Vu2
Vu3 Load type
[KN]
[KN*m]
[KN*m] [KN] [KN]
-------------------------------------------------------------------------------------------------DL
-266.89
0.00
0.00 0.00 0.00 Design
--------------------------------------------------------------------------------------------------
Design for major axis
Base plate (AISC 360-10 LRFD)
GEOMETRIC CONSIDERATIONS
Dimensions
Base plate
Distance from anchor to edge
Weld size
Unit
Value
Min. value
Max. value
[mm]
[1/16in]
69.00
5
6.35
3
---
Sta. References
table J2.4
wmin = wmin
= 0.004763
table J2.4
DESIGN CHECK
Verification
Unit
Concrete base
Axial bearing
Capacity
Demand
0.02
0.00
[KN/mm2]
Ctrl EQ
DL
Ratio
References
0.07
DG1 3.1.1;
A2 = ((B/N)*Ncs)*Ncs
= ((400[mm]/400[mm])*1500[mm])*1500[mm]
= 2.25E+06[mm2]
DG1 Sec 3.1.1
A1 = B*N
= 400[mm]*400[mm]
= 1.60E+05[mm2]
DG1 Sec 3.1.1
1/2
fp, max = *min(0.85*f'c*(A2/A1) , 1.7*f'c)
1/2
= 0.65*min(0.85*20.68[N/mm2]*(14.06) , 1.7*20.68[N/mm2])
= 22.86[N/mm2]
Base plate
Flexural yielding (bearing interface)
DG1 3.1.1
[KN*m/m]
8.04
3.00
DL
0.37
DG1 Sec 3.1.2
2
Mn = *Fy*tp /4
2
= 0.9*248.21[N/mm2]*12[mm] /4
= 8.04[kN*m/m]
DG1 Eq. 3.3.13
Page1
A2 = ((B/N)*Ncs)*Ncs
= ((400[mm]/400[mm])*1500[mm])*1500[mm]
= 2.25E+06[mm2]
DG1 Sec 3.1.1
A1 = B*N
= 400[mm]*400[mm]
= 1.60E+05[mm2]
DG1 Sec 3.1.1
m = (N ‐ 0.95*dc)/2
= (400[mm] ‐ 0.95*350[mm])/2
= 33.75[mm]
DG1 Sec 3.1.2
n = (B ‐ 0.8*bc)/2
= (400[mm] ‐ 0.8*350[mm])/2
= 60[mm]
DG1 Sec 3.1.2
1/2
Pp = min(0.85*f'c*A1*(A2/A1) , 1.7*f'c*A1)
1/2
= min(0.85*20.68[N/mm2]*1.60E+05[mm2]*(14.06) , 1.7*20.68[N/mm2]*1.60E+05[mm2])
= 5626.09[kN]
Eq. J8‐2
2
X = (4*dc*bc/(dc + bc) )*P/(*Pp)
2
= (4*350[mm]*350[mm]/(350[mm] + 350[mm]) )*266.89[kN]/(0.65*5626.09[kN])
= 0.073
1/2
DG1 Sec 3.1.2
1/2
 = min(2*(X) /(1 + (1 ‐ X) ), 1.0)
1/2
1/2
= min(2*(0.073) /(1 + (1 ‐ 0.073) ), 1.0)
= 0.275
DG1 Sec 3.1.2
1/2
n' = *(dc*bc) /4
1/2
= 0.275*(350[mm]*350[mm]) /4
= 24.09[mm]
DG1 Sec 3.1.2
l = max(m, n, n')
= max(33.75[mm], 60[mm], 24.09[mm])
= 60[mm]
DG1 Sec 3.1.2
fp = P/(B*N)
= 266.89[kN]/(400[mm]*400[mm])
= 1.67[N/mm2]
DG1 Sec 3.1.2
2
Mpl = fp*(l /2)
2
= 1.67[N/mm2]*(60[mm] /2)
= 3[kN*m/m]
DG1 Sec 3.1.2
Flexural yielding (tension interface)
[KN*m/m]
8.04
0.00
DL
0.00
DG1 Eq. 3.3.13
2
Mn = *Fy*tp /4
2
= 0.9*248.21[N/mm2]*12[mm] /4
= 8.04[kN*m/m]
DG1 Eq. 3.3.13
MpT = Mstrip/Beff
= 0[kN*m]/112[mm]
= 0[kN*m/m]
Page2
Column
Weld capacity
[KN/m]
1828.47
0.00
DL
0.00
p. 8-9,
Sec. J2.5,
Sec. J2.4
1.5
LoadAngleFactor = 1 + 0.5*(sin())
1.5
= 1 + 0.5*(sin(1.57))
= 1.5
p. 8‐9
Fw = 0.6*FEXX*LoadAngleFactor
= 0.6*482.63[N/mm2]*1.5
= 434.37[N/mm2]
Sec. J2.5
1/2
Aw = (2) /2*D/16 [in]*L
1/2
= (2) /2*5/16 [in]*1000[mm]
= 5612.66[mm2]
Sec. J2.4
Rw = *Fw*Aw/L
= 0.75*434.37[N/mm2]*5612.66[mm2]/1000[mm]
= 1.83[kN/mm]
Elastic method weld shear capacity
[KN/m]
1218.98
0.00
DL
0.00
p. 8-9,
Sec. J2.5,
Sec. J2.4
1.5
LoadAngleFactor = 1 + 0.5*(sin())
1.5
= 1 + 0.5*(sin(0))
=1
p. 8‐9
Fw = 0.6*FEXX*LoadAngleFactor
= 0.6*482.63[N/mm2]*1
= 289.58[N/mm2]
Sec. J2.5
1/2
Aw = (2) /2*D/16 [in]*L
1/2
= (2) /2*5/16 [in]*1000[mm]
= 5612.66[mm2]
Sec. J2.4
Rw = *Fw*Aw/L
= 0.75*289.58[N/mm2]*5612.66[mm2]/1000[mm]
= 1.22[kN/mm]
fv = V/Lshear
= 0[kN]/572[mm]
= 0[kN/mm]
Elastic method weld axial capacity
[KN/m]
1828.47
0.00
DL
0.00
p. 8-9,
Sec. J2.5,
Sec. J2.4
1.5
LoadAngleFactor = 1 + 0.5*(sin())
1.5
= 1 + 0.5*(sin(1.57))
= 1.5
p. 8‐9
Fw = 0.6*FEXX*LoadAngleFactor
= 0.6*482.63[N/mm2]*1.5
= 434.37[N/mm2]
Sec. J2.5
1/2
Aw = (2) /2*D/16 [in]*L
1/2
= (2) /2*5/16 [in]*1000[mm]
= 5612.66[mm2]
Sec. J2.4
Page3
Rw = *Fw*Aw/L
= 0.75*434.37[N/mm2]*5612.66[mm2]/1000[mm]
= 1.83[kN/mm]
fa = P/L
= 0[kN]/1324[mm]
= 0[kN/mm]
fb = M*c/I
= 0[kN*m]*175[mm]/4.05E+07[mm3]
= 0[kN/mm]
f = f b + fa
= 0[kN/mm] + 0[kN/mm]
= 0[kN/mm]
Ratio
0.37
Major axis
Anchors
GEOMETRIC CONSIDERATIONS
Dimensions
Anchors
Anchor spacing
Unit
Value
Min. value
Max. value
[mm]
200.00
48.00
--
Sta. References
Sec. D.8.1
smin = 4*da
= 4*12[mm]
= 48[mm]
Sec. D.8.1
Concrete cover
[mm]
619.00
76.20
--
Sec. 7.7.1
IsConcreteCastAgainstEarthTrue
Cover = 3 [in]
Sec. 7.7.1
Effective length
DESIGN CHECK
Verification
Anchor tension
[mm]
107.80
--
Unit
Capacity
Demand
[KN]
21.37
0.00
292.20
Ctrl EQ
DL
Ratio
0.00
References
Eq. D-3
2
Ase = π/4.0*(da ‐ 0.9743 [in]/nt)
2
= π/4.0*(12[mm] ‐ 0.9743 [in]/10)
= 71.26[mm2]
Sec. D.5.1.1,
D.6.1.2
futa = min(futa, 1.9*fya, 125 [ksi])
= min(399.89[N/mm2], 1.9*248.21[N/mm2], 125 [ksi])
= 399.89[N/mm2]
Sec. D.5.1.2
Nsa = *n*Ase,N*futa
= 0.75*1*71.26[mm2]*399.89[N/mm2]
= 21.37[kN]
Eq. D‐3
Page4
Breakout of anchor in tension
[KN]
39.97
0.00
DL
0.00
Eq. D-4,
Sec. D.4.1.1
ca1Left<1.5*hef625[mm]<1.5*100[mm]False
ca1Left = 1.5*hef
= 1.5*100[mm]
= 150[mm]
Sec. D.5.2.1
ca1Right<1.5*hef875[mm]<1.5*100[mm]False
ca1Right = 1.5*hef
= 1.5*100[mm]
= 150[mm]
Sec. D.5.2.1
ca2Top<1.5*hef850[mm]<1.5*100[mm]False
ca2Top = 1.5*hef
= 1.5*100[mm]
= 150[mm]
Sec. D.5.2.1
ca2Bot<1.5*hef650[mm]<1.5*100[mm]False
ca2Bot = 1.5*hef
= 1.5*100[mm]
= 150[mm]
Sec. D.5.2.1
IsCloseToThreeEdgesFalse
hef = hef
= 100[mm]
Sec. D.5.2.3
ANc = (ca1Left + ca1Right)*(ca2Top + ca2Bot)
= (150[mm] + 150[mm])*(150[mm] + 150[mm])
= 90000[mm2]
Sec. RD.5.2.1
2
ANco = 9*hef
2
= 9*100[mm]
= 90000[mm2]
Eq. D‐6
ca,min<1.5*hef625[mm]<1.5*100[mm]False
ed,N = 1
Eq. D‐10
CrackedConcreteFalse
c,N = 1.25
Sec. D.5.2.6
IsCastInPlaceAnchorTrue
cp,N = 1
Sec. D.5.2.7
IsCastInPlaceAnchorTrue
kc = 24
Sec. D.5.2.2
(IsCastInPlaceAnchor) and (IsHeadedBolt) and (hef>=11 [in]) and (hef<=25 [in])(True) and (True) and (100[mm]> = 11 [in]) and (100[mm]<
= 25 [in])False
Page5
1/2
1.5
Nb = kc**(fc/(1 [psi])) *(hef/(1 [in])) [lb]
1/2
1.5
= 24*1*(20.68[N/mm2]/(1 [psi])) *(100[mm]/(1 [in])) [lb]
= 45.68[kN]
Eq. D‐7
Ncb = (ANc/ANco)*ed,N*c,N*cp,N*Nb
= (90000[mm2]/90000[mm2])*1*1.25*1*45.68[kN]
= 57.1[kN]
Eq. D‐4
HighSeismicDesignCategoryFalse
Ncb = *Ncb
= 0.7*57.1[kN]
= 39.97[kN]
Sec. D.4.1.1
Pullout of anchor in tension
[KN]
32.37
0.00
DL
0.00
Sec. D.4.1.1
2
Abrg = 0.866025*F ‐ Ag
2
= 0.866025*19[mm] ‐ 113[mm2]
= 199.64[mm2]
IsHeadedBoltTrue
Np = 8*Abrg*fc
= 8*199.64[mm2]*20.68[N/mm2]
= 33.03[kN]
Eq. D‐15
CrackedConcreteFalse
c,P = 1.4
Sec. D.5.3.6
Npn = c,P*Np
= 1.4*33.03[kN]
= 46.25[kN]
Eq. D‐14
HighSeismicDesignCategoryFalse
Npn = *Npn
= 0.7*46.25[kN]
= 32.37[kN]
Sec. D.4.1.1
Anchor shear
[KN]
8.89
0.00
DL
0.00
Eq. D-20,
Sec. D.6.1.3
2
Ase = π/4.0*(da ‐ 0.9743 [in]/nt)
2
= π/4.0*(12[mm] ‐ 0.9743 [in]/10)
= 71.26[mm2]
Sec. D.5.1.1,
D.6.1.2
futa = min(futa, 1.9*fya, 125 [ksi])
= min(399.89[N/mm2], 1.9*248.21[N/mm2], 125 [ksi])
= 399.89[N/mm2]
Sec. D.5.1.2
HasGroutPadTrue
Vsa = 0.8**0.6*n*Ase,V*futa
= 0.8*0.65*0.6*1*71.26[mm2]*399.89[N/mm2]
= 8.89[kN]
Eq. D‐20,
Sec. D.6.1.3
Page6
Breakout of anchor in shear
[KN]
87.94
0.00
DL
0.00
Sec. D.4.1.1
ca2Left<1.5*ca1625[mm]<1.5*850[mm]True
ca2Left = ca2Left
= 625[mm]
Sec. D.6.2.1
ca2Right<1.5*ca1875[mm]<1.5*850[mm]True
ca2Right = ca2Right
= 875[mm]
Sec. D.5.2.1
ha<1.5*ca1300[mm]<1.5*850[mm]True
ha = h a
= 300[mm]
Sec. D.5.2.1
IsCloseToThreeEdgesTrue
ca1 = max(camax/1.5, ha/1.5)
= max(875[mm]/1.5, 300[mm]/1.5)
= 583.33[mm]
Sec. D.6.2.4
ca2Left<1.5*ca1625[mm]<1.5*583.33[mm]True
ca2Left = ca2Left
= 625[mm]
Sec. D.6.2.1
ca2Right<1.5*ca1875[mm]<1.5*583.33[mm]False
ca2Right = 1.5*ca1
= 1.5*583.33[mm]
= 875[mm]
Sec. D.5.2.1
ha<1.5*ca1300[mm]<1.5*583.33[mm]True
ha = h a
= 300[mm]
Sec. D.5.2.1
LVc = ca2Left + ca2Right
= 625[mm] + 875[mm]
= 1500[mm]
Sec. RD.6.2.1
AVc = LVc*min(ha, 1.5*ca1)
= 1500[mm]*min(300[mm], 1.5*583.33[mm])
= 4.50E+05[mm2]
Sec. RD.6.2.1
2
AVco = 4.5*ca1
2
= 4.5*583.33[mm]
= 1.53E+06[mm2]
Eq. D‐23
ca2<1.5*ca1625[mm]<1.5*583.33[mm]True
ed,V = 0.7 + 0.3*(ca2/(1.5*ca1))
= 0.7 + 0.3*(625[mm]/(1.5*583.33[mm]))
= 0.914
Eq. D‐28
CrackedConcreteFalse
Page7
c,V = 1.4
Sec. D.6.2.7
ha<1.5*ca1300[mm]<1.5*583.33[mm]True
1/2
h,V = max(((1.5*ca1)/ha) , 1)
1/2
= max(((1.5*583.33[mm])/300[mm]) , 1)
= 1.71
Eq. D‐29
le = min(hef, 8*da)
= min(100[mm], 8*12[mm])
= 96[mm]
Sec. D.6.2.2
0.2
1/2
1/2
1.5
Vb = (7*(le/da) *(da/(1 [in])) )**(fc/(1 [psi])) *(ca1/(1 [in])) [lb]
0.2
1/2
1/2
= (7*(96[mm]/12[mm]) *(12[mm]/(1 [in])) )*1*(20.68[N/mm2]/(1 [psi])) *(583.33[mm]/
1.5
(1 [in])) [lb]
= 195.55[kN]
Eq. D‐24
Vcb = (AVc/AVco)*ed,V*c,V*h,V*Vb
= (4.50E+05[mm2]/1.53E+06[mm2])*0.914*1.4*1.71*195.55[kN]
= 125.63[kN]
Eq. D‐21
HighSeismicDesignCategoryFalse
Vcb = *Vcb
= 0.7*125.63[kN]
= 87.94[kN]
Pryout of anchor in shear
Sec. D.4.1.1
[KN]
79.94
0.00
DL
0.00
Eq. D-4,
Sec. D.4.1.1
hef<2.5 [in]100[mm]<2.5 [in]False
kcp = 2
Sec. D.6.3.1
ca1Left<1.5*hef625[mm]<1.5*100[mm]False
ca1Left = 1.5*hef
= 1.5*100[mm]
= 150[mm]
Sec. D.5.2.1
ca1Right<1.5*hef875[mm]<1.5*100[mm]False
ca1Right = 1.5*hef
= 1.5*100[mm]
= 150[mm]
Sec. D.5.2.1
ca2Top<1.5*hef850[mm]<1.5*100[mm]False
ca2Top = 1.5*hef
= 1.5*100[mm]
= 150[mm]
Sec. D.5.2.1
ca2Bot<1.5*hef650[mm]<1.5*100[mm]False
ca2Bot = 1.5*hef
= 1.5*100[mm]
= 150[mm]
Sec. D.5.2.1
Page8
IsCloseToThreeEdgesFalse
hef = hef
= 100[mm]
Sec. D.5.2.3
ANc = (ca1Left + ca1Right)*(ca2Top + ca2Bot)
= (150[mm] + 150[mm])*(150[mm] + 150[mm])
= 90000[mm2]
Sec. RD.5.2.1
2
ANco = 9*hef
2
= 9*100[mm]
= 90000[mm2]
Eq. D‐6
ca,min<1.5*hef625[mm]<1.5*100[mm]False
ed,N = 1
Eq. D‐10
CrackedConcreteFalse
c,N = 1.25
Sec. D.5.2.6
IsCastInPlaceAnchorTrue
cp,N = 1
Sec. D.5.2.7
IsCastInPlaceAnchorTrue
kc = 24
Sec. D.5.2.2
(IsCastInPlaceAnchor) and (IsHeadedBolt) and (hef>=11 [in]) and (hef<=25 [in])(True) and (True) and (100[mm]> = 11 [in]) and (100[mm]<
= 25 [in])False
1/2
1.5
Nb = kc**(fc/(1 [psi])) *(hef/(1 [in])) [lb]
1/2
1.5
= 24*1*(20.68[N/mm2]/(1 [psi])) *(100[mm]/(1 [in])) [lb]
= 45.68[kN]
Eq. D‐7
Ncb = (ANc/ANco)*ed,N*c,N*cp,N*Nb
= (90000[mm2]/90000[mm2])*1*1.25*1*45.68[kN]
= 57.1[kN]
Eq. D‐4
Vcp = kcp*Ncb
= 2*57.1[kN]
= 114.19[kN]
Eq. D‐30
HighSeismicDesignCategoryFalse
Vcp = *Vcp
= 0.7*114.19[kN]
= 79.94[kN]
Sec. D.4.1.1
Ratio
0.00
Global critical strength ratio
0.37
Page9
Major axis
Maximum compression and tension (DL)
------------------------------------------------------------------Maximum bearing pressure
1.67 [N/mm2]
Minimum bearing pressure
1.67 [N/mm2]
Maximum anchor tension
0.00 [KN]
Minimum anchor tension
0.00 [KN]
Neutral axis angle
0.00
Bearing length
1E33 [mm]
------------------------------------------------------------------Anchors tensions
Anchor Transverse Longitudinal Shear Tension
[mm]
[mm]
[KN]
[KN]
----------------------------------------------------------------------------1
-125.00
-100.00
0.00
0.00
2
-125.00
100.00
0.00
0.00
3
125.00
100.00
0.00
0.00
4
125.00
-100.00
0.00
0.00
----------------------------------------------------------------------------NOTATION
A1:
Base plate area
A2:
Maximum area of portion of the concrete supporting surface that is geometrically similar to and concentric with the load area
Aw:
Effective area of the weld
A2/A1: Ratio between the concrete support area and the base plate area
B:
Base plate design width
bc :
Width of column section
Beff:
Controlling ffective width
c:
Distance to weld group
dc :
Column depth
D:
Number of sixteenths of an inch in the weld size
fa:
Axial stress on welds
fb:
Bending stress on welds
f'c:
Specified compressive strength of concrete
f:
Combined stress on welds
FEXX:
Electrode classification number
fp:
Uniformly bearing stress under base plate
fp, max: Maximum uniformly bearing stress under base plate
fv:
Vertical shear force on weld
Fw:
Nominal strength of the weld metal per unit area
Fy:
Specified minimum yield stress
I:
Inertia of weld group
l:
Critical base plate cantilever dimension
L:
Length of weld
Lshear: Length of weld receiving shear
:
Auxiliary variable to calculate the critical base plate cantilever dimension
LoadAngleFactor: Load angle factor
M:
Bending required
m:
Base plate bearing interface cantilever direction parallel to moment direction
Mpl:
Plate bending moment per unit width
MpT:
Plate bending moment per unit width at tension unstiffened strip interface
Mstrip:
Maximum bending moment at the strip
N:
Base plate design length
n:
Base plate bearing interface cantilever direction perpendicular to moment direction
n':
Yield line theory cantilever distance from column web or column flange
Page10
Ncs:
P:
Pp:
Length of the concrete supporting surface or pier parallel to moment design direction
Required axial force
Nominal bearing stress
:
Mn:
Rw:
Design factors
tp:
Design or allowable strength per unit length
Fillet weld capacity per unit length
Plate thickness
:
Load angle
V:
Shear load
wmin:
Minimum weld size required
X:
Auxiliary variable to calculate the critical base plate cantilever dimension
Abrg:
Net bearing area of the head of stud or anchor bolt
Ag:
Gross area of anchor
ANc:
Projected concrete failure area of a single anchor or group of anchors, for calculation of strength in tension
ANco:
Projected concrete failure area of a single anchor, for calculation of strength in tension if not limited by edge distance or spacing
Ase:
Effective cross-sectional area of anchor
Ase,N:
Effective cross-sectional area of anchor in tension
Ase,V:
Effective cross-sectional area of anchor in shear
AVc:
Projected concrete failure area of a single anchor or group of anchors , for calculation of strength in shear
AVco:
Projected concrete failure area of a single anchor, for calculation of strength in shear, if not limited by corner influences, spacing, or member
thickness
ca1:
Distance from the anchor center to the concrete edge
ca1Left: Distance from the anchor center to the left edge of the concrete base
ca1Right: Distance from the anchor center to the right edge of the concrete base
ca2:
Distance from the anchor center to the concrete edge in perpendicular direction
ca2Bot: Distance from the anchor center to the bottom edge of the concrete base
ca2Left: Distance from the anchor center to the left edge of the concrete base
ca2Right: Distance from the anchor center to the right edge of the concrete base
ca2Top: Distance from the anchor center to the top edge of the concrete base
camax:
Maximum distance from center of an anchor shaft to the edge of concrete
ca,min:
Minimum distance from center of an anchor shaft to the edge of concrete
Cover: Concrete cover
CrackedConcrete: Cracked concrete at service loads
da:
Outside diameter of anchor or shaft diameter of headed stud, headed bolt, or hooked bolt
F:
Distance between head flat sides
fc :
Specified compressive strength of concrete
futa:
Specified tensile strength of anchor steel
fya:
Specified yield strength of anchor steel
ha:
Thickness of member in which an anchor is located, measured parallel to anchor axis
hef:
Effective embedment depth of anchor
HasGroutPad:
Has grout pad
HighSeismicDesignCategory:High seismic design category (i.e. C, D, E or F)
IsCastInPlaceAnchor:
Is cast in place anchor
IsCloseToThreeEdges:
Anchor is close to three or more edges
IsConcreteCastAgainstEarth:Is concrete cast against and permanently exposed to earth
IsHeadedBolt:
Is anchor headed stud
kc:
Coefficient for concrete pry out basic strength
kcp:
Coefficient for pry out strength
le:
Load-bearing length of the anchor for shear
LVc:
Projected concrete failure length of a single anchor or group of anchors , for calculation of strength in shear
:
n:
Nb:
Ncb:
Np:
Npn:
nt:
Lightweight concrete modification factor
Number of anchors in the group
Basic concrete breakout strength in tension of a single anchor in cracked concrete
Nominal concrete breakout strength in tension of a single anchor
Pullout strength in tension of a single anchor in cracked concrete
Nominal pullout strength of a single anchor in tension
Number of threads per inch
:
Ncb:
Npn:
Nsa:
Vcb:
Vcp:
Vsa:
c,N:
c,P:
cp,N:
c,V:
Strength reduction factor
ed,N:
ed,V:
Factor used to modify tensile strength of anchors based on proximity to edges of concrete member
Concrete breakout strength in tension of a single anchor
Pullout strength in tension of a single anchor
Strength of a single anchor or group of anchors in tension
Concrete breakout strength in shear of a single anchor
Concrete pryout strength of a single anchor
Strength in shear of a single anchor or group of anchors as governed by the steel strength
Factor used to modify tensile strength of anchors based on presence or absence of cracks in concrete
Factor used to modify pullout strength of anchors based on presence or absence of cracks in concrete
Factor used to modify tensile strength of postinstalled anchors intended for use in uncracked concrete without supplementary reinforcement
Factor used to modify shear strength of anchors based on presence or absence of cracks in concrete and presence or absence of
supplementary reinforcement
Factor used to modify shear strength of anchors based on proximity to edges of concrete member
Page11
h,V: Factor used to modify shear strength of anchors located in concrete members with ha < 1.5ca1
smin:
Center-to-center anchor minimum spacing
SideFaceBlowoutApply:
Side-face blowout apply
Vb:
Basic concrete breakout strength in shear of a single anchor in cracked concrete
Vcb:
Concrete nominal breakout strength in shear of a single anchor
Vcp:
Nominal pryout strength of a anchor in shear
Page12
Current Date: 4/24/2020 12:51 AM
Units system: SI
Steel connections
Results
__________________________________________________________________________________________________________________________
__________________________________________________________________________________
Connection name
Connection ID
: MEP BCF DG4 HSS D
: 1
__________________________________________________________________________________
Family: Beam - Column flange (BCF)
Type: Moment end plate
Design code: AISC 360-10 LRFD
DEMANDS
Beam
Right beam
Left beam
Column
Panel
Ru
Pu
Mu PufTop PufBot PufTop PufBot
Pu
Vu Load type
[KN] [KN]
[KN*m]
[KN]
[KN]
[KN]
[KN]
[KN]
[KN]
-------------------------------------------------------------------------------------------------------------------------------------------------------DL
0.00 0.00
474.53 -831.06 831.06
0.00
0.00
0.00 831.06 Design
-------------------------------------------------------------------------------------------------------------------------------------------------------Description
GEOMETRIC CONSIDERATIONS
Dimensions
Unit
Value
Min. value
Max. value
Extended end plate
End plate stiffener thickness
[mm]
20.00
14.00
--
[mm]
[mm]
[mm]
[mm]
[mm]
50.00
75.00
75.00
75.00
200.00
31.75
31.75
67.73
67.73
88.80
152.40
152.40
--302.00
[mm]
[mm]
[mm]
[mm]
[mm]
50.00
50.00
50.00
50.00
25.40
38.10
38.10
38.10
38.10
--
----38.10
5
5
5
5
5
4
----
table J2.4
table J2.4
table J2.4
[mm]
75.00
31.75
152.40
Sec. J3.5
[mm]
12.00
6.77
--
p. 9-5
312.00
127.00
12.70
5
156.00
110.67
10.00
4
-----
Sec. J10.8
Sec. J10.8
Sec. J10.8
DG 13 Eq. 4.3-6
12.00
6.65
--
Sec. G2.1,
DG 13 Eq. 4.4-4
Vertical edge distance
Horizontal edge distance
Vertical bolt spacing (external flange)
Vertical bolt spacing (internal flange)
Horizontal center-to-center spacing (gage)
Outer bolt distance (external flange)
Inner bolt distance (external flange)
Outer bolt distance (internal flange)
Inner bolt distance (internal flange)
Bolt diameter
- Use CJP weld for the end plate stiffener
Beam
Weld size (external flange)
Weld size (internal flange)
Web
Support
Horizontal edge distance
Support
Web thickness
Transverse stiffeners
Length
Width
Thickness
Weld size
Doublers
Recommended thickness for beveling and welding
[1/16in]
[1/16in]
[1/16in]
[mm]
[mm]
[mm]
[1/16in]
[mm]
Page1
Sta. References
DG4 Eq. 3.15,
AISC 358-10 Eq. 6.10-9,
Eq. 6.10-10
Sec. J3.5
Sec. J3.5
Sec. J3.3
Sec. J3.3
Sec. J3.3,
DG4 Sec. 2.4,
DG4 Sec. 2.1,
2.4,
DG16 Sec. 2.5
DG4 Sec. 2.1
DG4 Sec. 2.1
DG4 Sec. 2.1
DG4 Sec. 2.1
DG4 Sec. 1.1
PLATE / COLUMN BEHAVIOR
End plate behaviour (external flange)
Thin plate behavior controlled by plate yielding
End plate behaviour (internal flange)
Thin plate behavior controlled by plate yielding
Column flange behavior (external flange)
Thin plate behavior controlled by plate yielding
Column flange behavior (internal flange)
Thin plate behavior controlled by plate yielding
DESIGN CHECK
Verification
Unit
Capacity
Demand
Ctrl EQ
Ratio
References
Moment end plate (external flange)
Flexural yielding
No prying bolt moment strength
Bolt rupture with prying moment strength
Bolts shear
Bolt bearing under shear load
Shear yielding
Shear rupture
[KN*m]
[KN*m]
[KN*m]
[KN]
[KN]
[KN]
[KN]
527.84
743.16
551.20
848.52
2384.93
938.23
1053.98
0.00
0.00
0.00
0.00
0.00
415.53
415.53
DL
DL
DL
DL
DL
DL
DL
0.00
0.00
0.00
0.00
0.00
0.44
0.39
DG16 Sec 2.5
DG16 Sec 2.5
DG16 Sec 2.5
Tables (7-1..14)
Eq. J3-6
DG4 Eq. 3.12
DG4 Eq 3.14,
AISC 358-05 Eq. 6.9-12,
DG4 Eq. 3.13
Moment end plate (internal flange)
Flexural yielding
No prying bolt moment strength
Bolt rupture with prying moment strength
Bolts shear
Bolt bearing under shear load
Shear yielding
Shear rupture
[KN*m]
[KN*m]
[KN*m]
[KN]
[KN]
[KN]
[KN]
527.84
743.16
551.20
848.52
2384.93
938.23
1053.98
474.53
474.53
474.53
0.00
0.00
415.53
415.53
DL
DL
DL
DL
DL
DL
DL
0.90
0.64
0.86
0.00
0.00
0.44
0.39
DG16 Sec 2.5
DG16 Sec 2.5
DG16 Sec 2.5
Tables (7-1..14)
Eq. J3-6
DG4 Eq. 3.12
DG4 Eq 3.14,
AISC 358-05 Eq. 6.9-12,
DG4 Eq. 3.13
Beam
Web weld shear strength
Web weld strength to reach yield stress
[KN]
[KN/m]
636.31
3656.94
0.00
3127.45
DL
DL
0.00
0.86
[KN]
[KN]
[KN]
1238.47
1162.91
1162.91
0.00
831.06
831.06
DL
DL
DL
0.00
0.71
0.71
Eq. J2-4
Eq. J2-4,
Eq. J4-1
Eq. J4-3
Eq. J2-4
Eq. J2-4
[KN*m]
620.94
0.00
DL
0.00
Bolt rupture with prying moment strength
Support bolt bearing (external flange)
Flexural yielding (internal flange)
[KN*m]
[KN]
[KN*m]
551.20
2510.04
620.94
0.00
0.00
474.53
DL
DL
DL
0.00
0.00
0.76
Bolt rupture with prying moment strength
Support bolt bearing (internal flange)
Panel web shear
[KN*m]
[KN]
[KN]
547.16
2510.04
1688.82
474.53
0.00
831.06
DL
DL
DL
0.87
0.00
0.49
Support - right side
Local web yielding
[KN]
2568.00
831.06
DL
0.32
DG4 eq. 3.24,
Eq. J10-2,
Sec. J10,
DG13 Eq. 4.3-1
[KN]
[KN]
[KN]
[KN]
576.49
490.72
685.04
1358.73
0.00
0.00
0.00
0.00
DL
DL
DL
DL
0.00
0.00
0.00
0.00
Eq. J4-1
Sec. J4.4
Eq. J2-4
Eq. J2-4
[KN]
[KN]
[KN]
[KN]
576.49
490.72
685.04
1358.73
242.58
0.00
242.58
242.58
DL
DL
DL
DL
0.42
0.00
0.35
0.18
Eq. J4-1
Sec. J4.4
Eq. J2-4
Eq. J2-4
Shear yielding
Flange weld capacity (external flange)
Flange weld capacity (internal flange)
Support
Flexural yielding (external flange)
Transverse stiffeners - top
Yielding strength due to axial load
Compression
Flange weld capacity
Web weld capacity
Transverse stiffeners - bottom
Yielding strength due to axial load
Compression
Flange weld capacity
Web weld capacity
Global critical strength ratio
0.90
Page2
DG4 Eq. 3.20,
Sec. 2.2.3,
DG4 Eq. 3.21
DG16 Sec 2.5
Eq. J3-6
DG4 Eq. 3.20,
Sec. 2.2.3,
DG4 Eq. 3.21
DG16 Sec 2.5
Eq. J3-6
Sec. J10-6,
Eq. J10-9
Descargar